
Manifolds
Release 10.4.rc1

The Sage Development Team

Jun 27, 2024

CONTENTS

1 Topological Manifolds 3
1.1 Topological Manifolds . 3
1.2 Subsets of Topological Manifolds . 37
1.3 Manifold Structures . 66
1.4 Points of Topological Manifolds . 70
1.5 Coordinate Charts . 85

1.5.1 Coordinate Charts . 85
1.5.2 Chart Functions . 130
1.5.3 Coordinate calculus methods . 162

1.6 Scalar Fields . 168
1.6.1 Algebra of Scalar Fields . 168
1.6.2 Scalar Fields . 172

1.7 Continuous Maps . 213
1.7.1 Sets of Morphisms between Topological Manifolds . 213
1.7.2 Continuous Maps Between Topological Manifolds . 216
1.7.3 Images of Manifold Subsets under Continuous Maps as Subsets of the Codomain 243

1.8 Submanifolds of topological manifolds . 243
1.9 Topological Vector Bundles . 252

1.9.1 Topological Vector Bundle . 252
1.9.2 Vector Bundle Fibers . 268
1.9.3 Vector Bundle Fiber Elements . 271
1.9.4 Trivializations . 272
1.9.5 Local Frames . 279
1.9.6 Section Modules . 294
1.9.7 Sections . 302

1.10 Families of Manifold Objects . 326
1.11 Topological Closures of Manifold Subsets . 328
1.12 Manifold Subsets Defined as Pullbacks of Subsets under Continuous Maps 329

2 Differentiable Manifolds 335
2.1 Differentiable Manifolds . 335
2.2 Coordinate Charts on Differentiable Manifolds . 388
2.3 The Real Line and Open Intervals . 403
2.4 Scalar Fields . 414

2.4.1 Algebra of Differentiable Scalar Fields . 414
2.4.2 Differentiable Scalar Fields . 419

2.5 Differentiable Maps and Curves . 440
2.5.1 Sets of Morphisms between Differentiable Manifolds . 440
2.5.2 Differentiable Maps between Differentiable Manifolds . 453
2.5.3 Curves in Manifolds . 465

i

2.5.4 Integrated Curves and Geodesics in Manifolds . 481
2.6 Tangent Spaces . 515

2.6.1 Tangent Spaces . 515
2.6.2 Tangent Vectors . 519

2.7 Vector Fields . 531
2.7.1 Vector Field Modules . 531
2.7.2 Vector Fields . 553
2.7.3 Vector Frames . 580
2.7.4 Group of Tangent-Space Automorphism Fields . 599
2.7.5 Tangent-Space Automorphism Fields . 605

2.8 Tensor Fields . 616
2.8.1 Tensor Field Modules . 616
2.8.2 Tensor Fields . 622
2.8.3 Tensor Fields with Values on a Parallelizable Manifold . 668

2.9 Differential Forms . 691
2.9.1 Differential Form Modules . 691
2.9.2 Differential Forms . 703

2.10 Mixed Differential Forms . 722
2.10.1 Graded Algebra of Mixed Differential Forms . 722
2.10.2 Mixed Differential Forms . 727

2.11 De Rham Cohomology . 741
2.12 Alternating Multivector Fields . 745

2.12.1 Multivector Field Modules . 745
2.12.2 Multivector Fields . 751

2.13 Affine Connections . 766
2.14 Submanifolds of differentiable manifolds . 789
2.15 Differentiable Vector Bundles . 793

2.15.1 Differentiable Vector Bundles . 793
2.15.2 Bundle Connections . 815
2.15.3 Characteristic cohomology classes . 826

3 Pseudo-Riemannian Manifolds 845
3.1 Pseudo-Riemannian Manifolds . 845
3.2 Euclidean Spaces and Vector Calculus . 855

3.2.1 Euclidean Spaces . 855
3.2.2 Spheres smoothly embedded in Euclidean Space . 881
3.2.3 Operators for vector calculus . 890

3.3 Pseudo-Riemannian Metrics and Degenerate Metrics . 894
3.4 Levi-Civita Connections . 928
3.5 Pseudo-Riemannian submanifolds . 935
3.6 Degenerate Metric Manifolds . 959

3.6.1 Degenerate manifolds . 959
3.6.2 Degenerate submanifolds . 965

4 Poisson Manifolds 983
4.1 Poisson tensors . 983
4.2 Symplectic structures . 987
4.3 Symplectic vector spaces . 994

5 Utilities for Calculus 997

6 Manifolds Catalog 1011

7 Indices and Tables 1017

ii

Python Module Index 1019

Index 1021

iii

iv

Manifolds, Release 10.4.rc1

This is the Sage implementation of manifolds resulting from the SageManifolds project. This section describes only the
“manifold” part of SageManifolds; the pure algebraic part is described in the section Tensors on free modules of finite
rank.

More documentation (in particular example worksheets) can be found here.

CONTENTS 1

https://sagemanifolds.obspm.fr/
../../../../html/en/reference/tensor_free_modules/index.html#tensors-on-free-modules
../../../../html/en/reference/tensor_free_modules/index.html#tensors-on-free-modules
https://sagemanifolds.obspm.fr/documentation.html

Manifolds, Release 10.4.rc1

2 CONTENTS

CHAPTER

ONE

TOPOLOGICAL MANIFOLDS

1.1 Topological Manifolds

Given a topological field𝐾 (in most applications,𝐾 = R or𝐾 = C) and a non-negative integer 𝑛, a topological manifold
of dimension 𝑛 over K is a topological space𝑀 such that

• 𝑀 is a Hausdorff space,

• 𝑀 is second countable,

• every point in𝑀 has a neighborhood homeomorphic to𝐾𝑛.

Topological manifolds are implemented via the classTopologicalManifold. Open subsets of topological manifolds
are also implemented via TopologicalManifold, since they are topological manifolds by themselves.

In the current setting, topological manifolds are mostly described by means of charts (see Chart).

TopologicalManifold serves as a base class for more specific manifold classes.

The user interface is provided by the generic function Manifold(), with with the argument structure set to
topological .

Example 1: the 2-sphere as a topological manifold of dimension 2 over R

One starts by declaring 𝑆2 as a 2-dimensional topological manifold:

sage: M = Manifold(2, S^2 , structure= topological)
sage: M
2-dimensional topological manifold S^2

Since the base topological field has not been specified in the argument list of Manifold, R is assumed:

sage: M.base_field()
Real Field with 53 bits of precision
sage: dim(M)
2

Let us consider the complement of a point, the “North pole” say; this is an open subset of 𝑆2, which we call 𝑈 :

sage: U = M.open_subset(U); U
Open subset U of the 2-dimensional topological manifold S^2

A standard chart on 𝑈 is provided by the stereographic projection from the North pole to the equatorial plane:

3

Manifolds, Release 10.4.rc1

sage: stereoN.<x,y> = U.chart(); stereoN
Chart (U, (x, y))

Thanks to the operator <x,y> on the left-hand side, the coordinates declared in a chart (here 𝑥 and 𝑦), are accessible by
their names; they are Sage’s symbolic variables:

sage: y
y
sage: type(y)
<class sage.symbolic.expression.Expression >

The South pole is the point of coordinates (𝑥, 𝑦) = (0, 0) in the above chart:

sage: S = U.point((0,0), chart=stereoN, name= S); S
Point S on the 2-dimensional topological manifold S^2

Let us call 𝑉 the open subset that is the complement of the South pole and let us introduce on it the chart induced by the
stereographic projection from the South pole to the equatorial plane:

sage: V = M.open_subset(V); V
Open subset V of the 2-dimensional topological manifold S^2
sage: stereoS.<u,v> = V.chart(); stereoS
Chart (V, (u, v))

The North pole is the point of coordinates (𝑢, 𝑣) = (0, 0) in this chart:

sage: N = V.point((0,0), chart=stereoS, name= N); N
Point N on the 2-dimensional topological manifold S^2

To fully construct the manifold, we declare that it is the union of 𝑈 and 𝑉 :

sage: M.declare_union(U,V)

and we provide the transition map between the charts stereoN = (𝑈, (𝑥, 𝑦)) and stereoS = (𝑉, (𝑢, 𝑣)), denoting by
𝑊 the intersection of 𝑈 and 𝑉 (𝑊 is the subset of 𝑈 defined by 𝑥2 + 𝑦2 ̸= 0, as well as the subset of 𝑉 defined by
𝑢2 + 𝑣2 ̸= 0):

sage: stereoN_to_S = stereoN.transition_map(stereoS, [x/(x^2+y^2), y/(x^2+y^2)],
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: stereoN_to_S
Change of coordinates from Chart (W, (x, y)) to Chart (W, (u, v))
sage: stereoN_to_S.display()
u = x/(x^2 + y^2)
v = y/(x^2 + y^2)

We give the name W to the Python variable representing𝑊 = 𝑈 ∩ 𝑉 :

sage: W = U.intersection(V)

The inverse of the transition map is computed by the method sage.manifolds.chart.CoordChange.
inverse():

sage: stereoN_to_S.inverse()
Change of coordinates from Chart (W, (u, v)) to Chart (W, (x, y))
sage: stereoN_to_S.inverse().display()

(continues on next page)

4 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

x = u/(u^2 + v^2)
y = v/(u^2 + v^2)

At this stage, we have four open subsets on 𝑆2:

sage: M.subset_family()
Set {S^2, U, V, W} of open subsets of the 2-dimensional topological manifold S^2

𝑊 is the open subset that is the complement of the two poles:

sage: N in W or S in W
False

The North pole lies in 𝑉 and the South pole in 𝑈 :

sage: N in V, N in U
(True, False)
sage: S in U, S in V
(True, False)

The manifold’s (user) atlas contains four charts, two of them being restrictions of charts to a smaller domain:

sage: M.atlas()
[Chart (U, (x, y)), Chart (V, (u, v)),
Chart (W, (x, y)), Chart (W, (u, v))]

Let us consider the point of coordinates (1, 2) in the chart stereoN:

sage: p = M.point((1,2), chart=stereoN, name= p); p
Point p on the 2-dimensional topological manifold S^2
sage: p.parent()
2-dimensional topological manifold S^2
sage: p in W
True

The coordinates of 𝑝 in the chart stereoS are computed by letting the chart act on the point:

sage: stereoS(p)
(1/5, 2/5)

Given the definition of 𝑝, we have of course:

sage: stereoN(p)
(1, 2)

Similarly:

sage: stereoS(N)
(0, 0)
sage: stereoN(S)
(0, 0)

A continuous map 𝑆2 → R (scalar field):

sage: f = M.scalar_field({stereoN: atan(x^2+y^2), stereoS: pi/2-atan(u^2+v^2)},
....: name= f)

(continues on next page)

1.1. Topological Manifolds 5

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f
Scalar field f on the 2-dimensional topological manifold S^2
sage: f.display()
f: S^2 → ℝ
on U: (x, y) ↦ arctan(x^2 + y^2)
on V: (u, v) ↦ 1/2*pi - arctan(u^2 + v^2)
sage: f(p)
arctan(5)
sage: f(N)
1/2*pi
sage: f(S)
0
sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological manifold S^2
sage: f.parent().category()
Join of Category of commutative algebras over Symbolic Ring and Category of homsets␣
→˓of topological spaces

Example 2: the Riemann sphere as a topological manifold of dimension 1 over C

We declare the Riemann sphere C* as a 1-dimensional topological manifold over C:

sage: M = Manifold(1, ℂ* , structure= topological , field= complex); M
Complex 1-dimensional topological manifold ℂ*

We introduce a first open subset, which is actually C = C* ∖ {∞} if we interpret C* as the Alexandroff one-point
compactification of C:

sage: U = M.open_subset(U)

A natural chart on 𝑈 is then nothing but the identity map of C, hence we denote the associated coordinate by 𝑧:

sage: Z.<z> = U.chart()

The origin of the complex plane is the point of coordinate 𝑧 = 0:

sage: O = U.point((0,), chart=Z, name= O); O
Point O on the Complex 1-dimensional topological manifold ℂ*

Another open subset of C* is 𝑉 = C* ∖ {𝑂}:

sage: V = M.open_subset(V)

We define a chart on 𝑉 such that the point at infinity is the point of coordinate 0 in this chart:

sage: W.<w> = V.chart(); W
Chart (V, (w,))
sage: inf = M.point((0,), chart=W, name= inf , latex_name=r \infty)
sage: inf
Point inf on the Complex 1-dimensional topological manifold ℂ*

To fully construct the Riemann sphere, we declare that it is the union of 𝑈 and 𝑉 :

sage: M.declare_union(U,V)

6 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

and we provide the transition map between the two charts as 𝑤 = 1/𝑧 on 𝐴 = 𝑈 ∩ 𝑉 :

sage: Z_to_W = Z.transition_map(W, 1/z, intersection_name= A ,
....: restrictions1= z!=0, restrictions2= w!=0)
sage: Z_to_W
Change of coordinates from Chart (A, (z,)) to Chart (A, (w,))
sage: Z_to_W.display()
w = 1/z
sage: Z_to_W.inverse()
Change of coordinates from Chart (A, (w,)) to Chart (A, (z,))
sage: Z_to_W.inverse().display()
z = 1/w

Let consider the complex number 𝑖 as a point of the Riemann sphere:

sage: i = M((I,), chart=Z, name= i); i
Point i on the Complex 1-dimensional topological manifold ℂ*

Its coordinates w.r.t. the charts Z and W are:

sage: Z(i)
(I,)
sage: W(i)
(-I,)

and we have:

sage: i in U
True
sage: i in V
True

The following subsets and charts have been defined:

sage: M.subset_family()
Set {A, U, V, ℂ*} of open subsets of the Complex 1-dimensional topological manifold ℂ*
sage: M.atlas()
[Chart (U, (z,)), Chart (V, (w,)), Chart (A, (z,)), Chart (A, (w,))]

A constant map C* → C:

sage: f = M.constant_scalar_field(3+2*I, name= f); f
Scalar field f on the Complex 1-dimensional topological manifold ℂ*
sage: f.display()
f: ℂ* → ℂ
on U: z ↦ 2*I + 3
on V: w ↦ 2*I + 3
sage: f(O)
2*I + 3
sage: f(i)
2*I + 3
sage: f(inf)
2*I + 3
sage: f.parent()
Algebra of scalar fields on the Complex 1-dimensional topological
manifold ℂ*

sage: f.parent().category()

(continues on next page)

1.1. Topological Manifolds 7

Manifolds, Release 10.4.rc1

(continued from previous page)

Join of Category of commutative algebras over Symbolic Ring and Category of homsets␣
→˓of topological spaces

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2015): structure described via TopologicalStructure or RealTopological-
Structure

• Michael Jung (2020): topological vector bundles and orientability

REFERENCES:

• [Lee2011]

• [Lee2013]

• [KN1963]

• [Huy2005]

sage.manifolds.manifold.Manifold(dim, name, latex_name=None, field='real', structure=None,
start_index=0, **extra_kwds)

Construct a manifold of a given type over a topological field.

Given a topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C) and a non-negative integer 𝑛, a topological
manifold of dimension 𝑛 over K is a topological space𝑀 such that

• 𝑀 is a Hausdorff space,

• 𝑀 is second countable, and

• every point in𝑀 has a neighborhood homeomorphic to𝐾𝑛.

A real manifold is a manifold over R. A differentiable (resp. smooth, resp. analytic) manifold is a manifold such
that all transition maps are differentiable (resp. smooth, resp. analytic). A pseudo-Riemannian manifold is a real
differentiable manifold equipped with a metric tensor 𝑔 (i.e. a field of non-degenerate symmetric bilinear forms),
with the two subcases of Riemannian manifold (𝑔 positive-definite) and Lorentzian manifold (𝑔 has signature 𝑛−2
or 2− 𝑛).

INPUT:

• dim – positive integer; dimension of the manifold

• name – string; name (symbol) given to the manifold

• latex_name – (default: None) string; LaTeX symbol to denote the manifold; if none are provided, it is
set to name

• field – (default: real) field𝐾 on which the manifold is defined; allowed values are

– real or an object of type RealField (e.g. RR) for a manifold over R

– complex or an object of type ComplexField (e.g. CC) for a manifold over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of manifolds

• structure – (default: smooth) to specify the structure or type of manifold; allowed values are

– topological or top for a topological manifold

– differentiable or diff for a differentiable manifold

– smooth for a smooth manifold

8 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces

Manifolds, Release 10.4.rc1

– analytic for an analytic manifold

– pseudo-Riemannian for a real differentiable manifold equipped with a pseudo-Riemannian met-
ric; the signature is specified via the keyword argument signature (see below)

– Riemannian for a real differentiable manifold equipped with a Riemannian (i.e. positive definite)
metric

– Lorentzian for a real differentiablemanifold equippedwith a Lorentzianmetric; the signature con-
vention is specified by the keyword argument signature= positive (default) or negative

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
manifold, e.g. coordinates in a chart

• extra_kwds – keywords meaningful only for some specific types of manifolds:

– diff_degree – (only for differentiable manifolds; default: infinity): the degree of differentia-
bility

– ambient – (only to construct a submanifold): the ambient manifold

– metric_name – (only for pseudo-Riemannian manifolds; default: g) string; name (symbol) given
to the metric

– metric_latex_name – (only for pseudo-Riemannian manifolds; default: None) string; LaTeX
symbol to denote the metric; if none is provided, the symbol is set to metric_name

– signature – (only for pseudo-Riemannian manifolds; default: None) signature 𝑆 of the metric
as a single integer: 𝑆 = 𝑛+ − 𝑛−, where 𝑛+ (resp. 𝑛−) is the number of positive terms (resp.
negative terms) in any diagonal writing of the metric components; if signature is not provided,
𝑆 is set to the manifold’s dimension (Riemannian signature); for Lorentzian manifolds the values
signature= positive (default) or signature= negative are allowed to indicate the
chosen signature convention.

OUTPUT:

• a manifold of the specified type, as an instance of TopologicalManifold or one of its subclasses Dif-
ferentiableManifold or PseudoRiemannianManifold, or, if the keyword ambient is used,
one of the subclasses TopologicalSubmanifold, DifferentiableSubmanifold, or Pseu-
doRiemannianSubmanifold.

EXAMPLES:

A 3-dimensional real topological manifold:

sage: M = Manifold(3, M , structure= topological); M
3-dimensional topological manifold M

Given the default value of the parameter field, the above is equivalent to:

sage: M = Manifold(3, M , structure= topological , field= real); M
3-dimensional topological manifold M

A complex topological manifold:

sage: M = Manifold(3, M , structure= topological , field= complex); M
Complex 3-dimensional topological manifold M

A topological manifold over :

sage: M = Manifold(3, M , structure= topological , field=QQ); M
3-dimensional topological manifold M over the Rational Field

1.1. Topological Manifolds 9

Manifolds, Release 10.4.rc1

A 3-dimensional real differentiable manifold of class 𝐶4:

sage: M = Manifold(3, M , field= real , structure= differentiable ,
....: diff_degree=4); M
3-dimensional differentiable manifold M

Since the default value of the parameter field is real , the above is equivalent to:

sage: M = Manifold(3, M , structure= differentiable , diff_degree=4)
sage: M
3-dimensional differentiable manifold M
sage: M.base_field_type()
real

A 3-dimensional real smooth manifold:

sage: M = Manifold(3, M , structure= differentiable , diff_degree=+oo)
sage: M
3-dimensional differentiable manifold M

Instead of structure= differentiable , diff_degree=+oo, it suffices to use
structure= smooth to get the same result:

sage: M = Manifold(3, M , structure= smooth); M
3-dimensional differentiable manifold M
sage: M.diff_degree()
+Infinity

Actually, since smooth is the default value of the parameter structure, the creation of a real smooth
manifold can be shortened to:

sage: M = Manifold(3, M); M
3-dimensional differentiable manifold M
sage: M.diff_degree()
+Infinity

Other parameters can change the default of the parameter structure:

sage: M = Manifold(3, M , diff_degree=0); M
3-dimensional topological manifold M
sage: M = Manifold(3, M , diff_degree=2); M
3-dimensional differentiable manifold M
sage: M = Manifold(3, M , metric_name= g); M
3-dimensional Riemannian manifold M

For a complex smooth manifold, we have to set the parameter field:

sage: M = Manifold(3, M , field= complex); M
3-dimensional complex manifold M
sage: M.diff_degree()
+Infinity

Submanifolds are constructed by means of the keyword ambient:

sage: N = Manifold(2, N , field= complex , ambient=M); N
2-dimensional differentiable submanifold N immersed in the
3-dimensional complex manifold M

10 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

The immersion𝑁 →𝑀 has to be specified in a second stage, via the method set_immersion() or set_em-
bedding().

For more detailed examples, see the documentation of TopologicalManifold, DifferentiableMan-
ifold and PseudoRiemannianManifold, or the documentation of TopologicalSubmanifold,
DifferentiableSubmanifold and PseudoRiemannianSubmanifold for submanifolds.

Uniqueness of manifold objects

Suppose we construct a manifold named𝑀 :

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()

At some point, we change our mind and would like to restart with a new manifold, using the same name𝑀 and
keeping the previous manifold for reference:

sage: M_old = M # for reference
sage: M = Manifold(2, M , structure= topological)

This results in a brand new object:

sage: M.atlas()
[]

The object M_old is intact:

sage: M_old.atlas()
[Chart (M, (x, y))]

Both objects have the same display:

sage: M
2-dimensional topological manifold M
sage: M_old
2-dimensional topological manifold M

but they are different:

sage: M != M_old
True

Let us introduce a chart on M, using the same coordinate symbols as for M_old:

sage: X.<x,y> = M.chart()

The charts are displayed in the same way:

sage: M.atlas()
[Chart (M, (x, y))]
sage: M_old.atlas()
[Chart (M, (x, y))]

but they are actually different:

sage: M.atlas()[0] != M_old.atlas()[0]
True

1.1. Topological Manifolds 11

Manifolds, Release 10.4.rc1

Moreover, the two manifolds M and M_old are still considered distinct:

sage: M != M_old
True

This reflects the fact that the equality of manifold objects holds only for identical objects, i.e. one has M1 == M2
if, and only if, M1 is M2. Actually, the manifold classes inherit from WithEqualityById:

sage: isinstance(M, sage.misc.fast_methods.WithEqualityById)
True

class sage.manifolds.manifold.TopologicalManifold(n, name, field, structure,
base_manifold=None, latex_name=None,
start_index=0, category=None,
unique_tag=None)

Bases: ManifoldSubset

Topological manifold over a topological field𝐾.

Given a topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C) and a non-negative integer 𝑛, a topological
manifold of dimension 𝑛 over K is a topological space𝑀 such that

• 𝑀 is a Hausdorff space,

• 𝑀 is second countable, and

• every point in𝑀 has a neighborhood homeomorphic to𝐾𝑛.

This is a Sage parent class, the corresponding element class being ManifoldPoint.

INPUT:

• n – positive integer; dimension of the manifold

• name – string; name (symbol) given to the manifold

• field – field𝐾 on which the manifold is defined; allowed values are

– real or an object of type RealField (e.g., RR) for a manifold over R

– complex or an object of type ComplexField (e.g., CC) for a manifold over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of manifolds

• structure – manifold structure (see TopologicalStructure or RealTopologicalStruc-
ture)

• base_manifold – (default: None) if not None, must be a topological manifold; the created object is
then an open subset of base_manifold

• latex_name – (default: None) string; LaTeX symbol to denote the manifold; if none are provided, it is
set to name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
manifold, e.g., coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(field) is assumed (see
the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other
arguments have been used previously (without unique_tag, the UniqueRepresentation behavior
inherited from ManifoldSubset would return the previously constructed object corresponding to these
arguments)

12 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces
../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

EXAMPLES:

A 4-dimensional topological manifold (over R):

sage: M = Manifold(4, M , latex_name=r \mathcal{M} , structure= topological)
sage: M
4-dimensional topological manifold M
sage: latex(M)
\mathcal{M}
sage: type(M)
<class sage.manifolds.manifold.TopologicalManifold_with_category >
sage: M.base_field()
Real Field with 53 bits of precision
sage: dim(M)
4

The input parameter start_index defines the range of indices on the manifold:

sage: M = Manifold(4, M , structure= topological)
sage: list(M.irange())
[0, 1, 2, 3]
sage: M = Manifold(4, M , structure= topological , start_index=1)
sage: list(M.irange())
[1, 2, 3, 4]
sage: list(Manifold(4, M , structure= topological , start_index=-2).irange())
[-2, -1, 0, 1]

A complex manifold:

sage: N = Manifold(3, N , structure= topological , field= complex); N
Complex 3-dimensional topological manifold N

A manifold over :

sage: N = Manifold(6, N , structure= topological , field=QQ); N
6-dimensional topological manifold N over the Rational Field

A manifold over 5, the field of 5-adic numbers:

sage: N = Manifold(2, N , structure= topological , field=Qp(5)); N #␣
→˓needs sage.rings.padics
2-dimensional topological manifold N over the 5-adic Field with capped
relative precision 20

A manifold is a Sage parent object, in the category of topological manifolds over a given topological field (see
Manifolds):

sage: isinstance(M, Parent)
True
sage: M.category()
Category of manifolds over Real Field with 53 bits of precision
sage: from sage.categories.manifolds import Manifolds
sage: M.category() is Manifolds(RR)
True
sage: M.category() is Manifolds(M.base_field())
True
sage: M in Manifolds(RR)
True

(continues on next page)

1.1. Topological Manifolds 13

../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: N in Manifolds(Qp(5)) #␣
→˓needs sage.rings.padics
True

The corresponding Sage elements are points:

sage: X.<t, x, y, z> = M.chart()
sage: p = M.an_element(); p
Point on the 4-dimensional topological manifold M
sage: p.parent()
4-dimensional topological manifold M
sage: M.is_parent_of(p)
True
sage: p in M
True

The manifold’s points are instances of class ManifoldPoint:

sage: isinstance(p, sage.manifolds.point.ManifoldPoint)
True

Since an open subset of a topological manifold𝑀 is itself a topological manifold, open subsets of𝑀 are instances
of the class TopologicalManifold:

sage: U = M.open_subset(U); U
Open subset U of the 4-dimensional topological manifold M
sage: isinstance(U, sage.manifolds.manifold.TopologicalManifold)
True
sage: U.base_field() == M.base_field()
True
sage: dim(U) == dim(M)
True
sage: U.category()
Join of Category of subobjects of sets and Category of manifolds over
Real Field with 53 bits of precision

The manifold passes all the tests of the test suite relative to its category:

sage: TestSuite(M).run()

See also:

sage.manifolds.manifold

atlas()

Return the list of charts that have been defined on the manifold.

EXAMPLES:

Let us consider R2 as a 2-dimensional manifold:

sage: M = Manifold(2, R^2 , structure= topological)

Immediately after the manifold creation, the atlas is empty, since no chart has been defined yet:

sage: M.atlas()
[]

14 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

Let us introduce the chart of Cartesian coordinates:

sage: c_cart.<x,y> = M.chart()
sage: M.atlas()
[Chart (R^2, (x, y))]

The complement of the half line {𝑦 = 0, 𝑥 ≥ 0}:

sage: U = M.open_subset(U , coord_def={c_cart: (y!=0,x<0)})
sage: U.atlas()
[Chart (U, (x, y))]
sage: M.atlas()
[Chart (R^2, (x, y)), Chart (U, (x, y))]

Spherical (polar) coordinates on U:

sage: c_spher.<r, ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi)
sage: U.atlas()
[Chart (U, (x, y)), Chart (U, (r, ph))]
sage: M.atlas()
[Chart (R^2, (x, y)), Chart (U, (x, y)), Chart (U, (r, ph))]

See also:

top_charts()

base_field()

Return the field on which the manifold is defined.

OUTPUT:

• a topological field

EXAMPLES:

sage: M = Manifold(3, M , structure= topological)
sage: M.base_field()
Real Field with 53 bits of precision
sage: M = Manifold(3, M , structure= topological , field= complex)
sage: M.base_field()
Complex Field with 53 bits of precision
sage: M = Manifold(3, M , structure= topological , field=QQ)
sage: M.base_field()
Rational Field

base_field_type()

Return the type of topological field on which the manifold is defined.

OUTPUT:

• a string describing the field, with three possible values:

– real for the real field R

– complex for the complex field C

– neither_real_nor_complex for a field different from R and C

EXAMPLES:

1.1. Topological Manifolds 15

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= topological)
sage: M.base_field_type()
real

sage: M = Manifold(3, M , structure= topological , field= complex)
sage: M.base_field_type()
complex

sage: M = Manifold(3, M , structure= topological , field=QQ)
sage: M.base_field_type()
neither_real_nor_complex

chart(coordinates='', names=None, calc_method=None, coord_restrictions=None)
Define a chart, the domain of which is the manifold.

A chart is a pair (𝑈,𝜙), where 𝑈 is the current manifold and 𝜙 : 𝑈 → 𝑉 ⊂ 𝐾𝑛 is a homeomorphism from
𝑈 to an open subset 𝑉 of𝐾𝑛,𝐾 being the field on which the manifold is defined.

The components (𝑥1, . . . , 𝑥𝑛) of 𝜙, defined by 𝜙(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) ∈ 𝐾𝑛 for any point 𝑝 ∈ 𝑈 , are
called the coordinates of the chart (𝑈,𝜙).

See Chart for a complete documentation.

INPUT:

• coordinates – (default: (empty string)) string defining the coordinate symbols, ranges and pos-
sible periodicities, see below

• names – (default: None) unused argument, except if coordinates is not provided; it must then be
a tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

• calc_method – (default: None) string defining the calculus method to be used on this chart; must be
one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the current calculus method defined on the manifold is used (cf. set_calcu-
lus_method())

• coord_restrictions: Additional restrictions on the coordinates. See below.

The coordinates declared in the string coordinates are separated by (whitespace) and each coordi-
nate has at most four fields, separated by a colon (:):

1. The coordinate symbol (a letter or a few letters).

2. (optional, only for manifolds over R) The interval 𝐼 defining the coordinate range: if not provided, the
coordinate is assumed to span all R; otherwise 𝐼 must be provided in the form (a,b) (or equivalently
]a,b[) The bounds a and b can be +/-Infinity, Inf, infinity, inf or oo. For singular
coordinates, non-open intervals such as [a,b] and (a,b] (or equivalently]a,b]) are allowed. Note
that the interval declaration must not contain any space character.

3. (optional) Indicator of the periodic character of the coordinate, either as period=T, where T is the
period, or, for manifolds overR only, as the keywordperiodic (the value of the period is then deduced
from the interval 𝐼 declared in field 2; see the example below)

4. (optional) The LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first
field will be used.

The order of fields 2 to 4 does notmatter and each of them can be omitted. If it contains any LaTeX expression,
the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of
the backslash character (see examples below). If no interval range, no period and no LaTeX spelling is to be

16 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is used
to declare the chart (see examples below).

Additional restrictions on the coordinates can be set using the argument coord_restrictions.

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2
+ y^2 != 0. The items of the list (or set or frozenset) coord_restrictions are combined with the
and operator; if some restrictions are to be combined with the or operator instead, they have to be passed
as a tuple in some single item of the list (or set or frozenset) coord_restrictions. For example:

coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_re-
strictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the
single element list [x > y]. If the chart variables have not been declared as variables yet, coord_re-
strictions must be lambda-quoted.

OUTPUT:

• the created chart, as an instance of Chart or one of its subclasses, like RealDiffChart for dif-
ferentiable manifolds over R.

EXAMPLES:

Chart on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X = M.chart(x y); X
Chart (M, (x, y))
sage: X[0]
x
sage: X[1]
y
sage: X[:]
(x, y)

The declared coordinates are not known at the global level:

sage: y
Traceback (most recent call last):
...
NameError: name y is not defined

They can be recovered by the operator [:] applied to the chart:

sage: (x, y) = X[:]
sage: y
y
sage: type(y)
<class sage.symbolic.expression.Expression >

But a shorter way to proceed is to use the operator <,> in the left-hand side of the chart declaration (there is
then no need to pass the string ‘x y’ to chart()):

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(); X
Chart (M, (x, y))

Indeed, the declared coordinates are then known at the global level:

1.1. Topological Manifolds 17

Manifolds, Release 10.4.rc1

sage: y
y
sage: (x,y) == X[:]
True

Actually the instruction X.<x,y> = M.chart() is equivalent to the combination of the two instructions
X = M.chart(x y) and (x,y) = X[:].

As an example of coordinate ranges and LaTeX symbols passed via the string coordinates to chart(),
let us introduce polar coordinates:

sage: U = M.open_subset(U , coord_def={X: x^2+y^2 != 0})
sage: P.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):periodic:\phi); P
Chart (U, (r, ph))
sage: P.coord_range()
r: (0, +oo); ph: [0, 2*pi] (periodic)
sage: latex(P)
\left(U,(r, {\phi})\right)

Using coord_restrictions:

sage: D = Manifold(2, D , structure= topological)
sage: X.<x,y> = D.chart(coord_restrictions=lambda x,y: [x^2+y^2<1, x>0]); X
Chart (D, (x, y))
sage: X.valid_coordinates(0, 0)
False
sage: X.valid_coordinates(1/2, 0)
True

See the documentation of classes Chart and RealChart for more examples, especially regarding the
coordinates ranges and restrictions.

constant_scalar_field(value, name=None, latex_name=None)
Define a constant scalar field on the manifold.

INPUT:

• value – constant value of the scalar field, either a numerical value or a symbolic expression not involving
any chart coordinates

• name – (default: None) name given to the scalar field

• latex_name – (default: None) LaTeX symbol to denote the scalar field; if None, the LaTeX symbol
is set to name

OUTPUT:

• instance of ScalarField representing the scalar field whose constant value is value

EXAMPLES:

A constant scalar field on the 2-sphere:

sage: M = Manifold(2, M , structure= topological) # the 2-dimensional␣
→˓sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V

(continues on next page)

18 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: f = M.constant_scalar_field(-1) ; f
Scalar field on the 2-dimensional topological manifold M
sage: f.display()
M → ℝ
on U: (x, y) ↦ -1
on V: (u, v) ↦ -1

We have:

sage: f.restrict(U) == U.constant_scalar_field(-1)
True
sage: M.constant_scalar_field(0) is M.zero_scalar_field()
True

See also:

zero_scalar_field(), one_scalar_field()

continuous_map(codomain, coord_functions=None, chart1=None, chart2=None, name=None,
latex_name=None)

Define a continuous map from self to codomain.

INPUT:

• codomain – TopologicalManifold; the map’s codomain

• coord_functions – (default: None) if not None, must be either

– (i) a dictionary of the coordinate expressions (as lists (or tuples) of the coordinates of the image
expressed in terms of the coordinates of the considered point) with the pairs of charts (chart1,
chart2) as keys (chart1 being a chart on self and chart2 a chart on codomain);

– (ii) a single coordinate expression in a given pair of charts, the latter being provided by the arguments
chart1 and chart2;

in both cases, if the dimension of the codomain is 1, a single coordinate expression can be passed instead
of a tuple with a single element

• chart1 – (default: None; used only in case (ii) above) chart on self defining the start coordinates
involved in coord_functions for case (ii); if None, the coordinates are assumed to refer to the
default chart of self

• chart2 – (default: None; used only in case (ii) above) chart on codomain defining the target coor-
dinates involved in coord_functions for case (ii); if None, the coordinates are assumed to refer to
the default chart of codomain

• name – (default: None) name given to the continuous map

• latex_name – (default: None) LaTeX symbol to denote the continuous map; if None, the LaTeX
symbol is set to name

OUTPUT:

• the continuous map as an instance of ContinuousMap

1.1. Topological Manifolds 19

Manifolds, Release 10.4.rc1

EXAMPLES:

A continuous map between an open subset of 𝑆2 covered by regular spherical coordinates and R3:

sage: M = Manifold(2, S^2 , structure= topological)
sage: U = M.open_subset(U)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: N = Manifold(3, R^3 , latex_name=r \RR^3 , structure= topological)
sage: c_cart.<x,y,z> = N.chart() # Cartesian coord. on R^3
sage: Phi = U.continuous_map(N, (sin(th)*cos(ph), sin(th)*sin(ph), cos(th)),
....: name= Phi , latex_name=r \Phi)
sage: Phi
Continuous map Phi from the Open subset U of the 2-dimensional topological␣
→˓manifold S^2 to the 3-dimensional topological manifold R^3

The same definition, but with a dictionary with pairs of charts as keys (case (i) above):

sage: Phi1 = U.continuous_map(N,
....: {(c_spher, c_cart): (sin(th)*cos(ph), sin(th)*sin(ph), cos(th))},
....: name= Phi , latex_name=r \Phi)
sage: Phi1 == Phi
True

The continuous map acting on a point:

sage: p = U.point((pi/2, pi)) ; p
Point on the 2-dimensional topological manifold S^2
sage: Phi(p)
Point on the 3-dimensional topological manifold R^3
sage: Phi(p).coord(c_cart)
(-1, 0, 0)
sage: Phi1(p) == Phi(p)
True

See also:

See ContinuousMap for the complete documentation and more examples.

Todo: Allow the construction of continuous maps from self to the base field (considered as a trivial
1-dimensional manifold).

coord_change(chart1, chart2)
Return the change of coordinates (transition map) between two charts defined on the manifold.

The change of coordinates must have been defined previously, for instance by the method transi-
tion_map().

INPUT:

• chart1 – chart 1

• chart2 – chart 2

OUTPUT:

• instance of CoordChange representing the transition map from chart 1 to chart 2

EXAMPLES:

Change of coordinates on a 2-dimensional manifold:

20 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: c_xy.transition_map(c_uv, (x+y, x-y)) # defines the coord. change
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: M.coord_change(c_xy, c_uv) # returns the coord. change defined above
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))

coord_changes()

Return the changes of coordinates (transition maps) defined on subsets of the manifold.

OUTPUT:

• dictionary of changes of coordinates, with pairs of charts as keys

EXAMPLES:

Various changes of coordinates on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, [x+y, x-y])
sage: M.coord_changes()
{(Chart (M, (x, y)),

Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart␣
→˓(M, (u, v))}
sage: uv_to_xy = xy_to_uv.inverse()
sage: M.coord_changes() # random (dictionary output)
{(Chart (M, (u, v)),

Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v)) to Chart␣
→˓(M, (x, y)),
(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart␣

→˓(M, (u, v))}
sage: c_rs.<r,s> = M.chart()
sage: uv_to_rs = c_uv.transition_map(c_rs, [-u+2*v, 3*u-v])
sage: M.coord_changes() # random (dictionary output)
{(Chart (M, (u, v)),

Chart (M, (r, s))): Change of coordinates from Chart (M, (u, v)) to Chart␣
→˓(M, (r, s)),
(Chart (M, (u, v)),
Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v)) to Chart␣

→˓(M, (x, y)),
(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart␣

→˓(M, (u, v))}
sage: xy_to_rs = uv_to_rs * xy_to_uv
sage: M.coord_changes() # random (dictionary output)
{(Chart (M, (u, v)),

Chart (M, (r, s))): Change of coordinates from Chart (M, (u, v)) to Chart␣
→˓(M, (r, s)),
(Chart (M, (u, v)),
Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v)) to Chart␣

→˓(M, (x, y)),
(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart␣

→˓(M, (u, v)),

(continues on next page)

1.1. Topological Manifolds 21

Manifolds, Release 10.4.rc1

(continued from previous page)

(Chart (M, (x, y)),
Chart (M, (r, s))): Change of coordinates from Chart (M, (x, y)) to Chart␣

→˓(M, (r, s))}

default_chart()

Return the default chart defined on the manifold.

Unless changed via set_default_chart(), the default chart is the first one defined on a subset of the
manifold (possibly itself).

OUTPUT:

• instance of Chart representing the default chart

EXAMPLES:

Default chart on a 2-dimensional manifold and on some subsets:

sage: M = Manifold(2, M , structure= topological)
sage: M.chart(x y)
Chart (M, (x, y))
sage: M.chart(u v)
Chart (M, (u, v))
sage: M.default_chart()
Chart (M, (x, y))
sage: A = M.open_subset(A)
sage: A.chart(t z)
Chart (A, (t, z))
sage: A.default_chart()
Chart (A, (t, z))

dim()

Return the dimension of the manifold over its base field.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: M.dimension()
2

A shortcut is dim():

sage: M.dim()
2

The Sage global function dim can also be used:

sage: dim(M)
2

dimension()

Return the dimension of the manifold over its base field.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: M.dimension()
2

22 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

A shortcut is dim():

sage: M.dim()
2

The Sage global function dim can also be used:

sage: dim(M)
2

get_chart(coordinates, domain=None)
Get a chart from its coordinates.

The chart must have been previously created by the method chart().

INPUT:

• coordinates – single string composed of the coordinate symbols separated by a space

• domain – (default: None) string containing the name of the chart’s domain, which must be a subset of
the current manifold; if None, the current manifold is assumed

OUTPUT:

• instance of Chart (or of the subclass RealChart) representing the chart corresponding to the above
specifications

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: M.get_chart(x y)
Chart (M, (x, y))
sage: M.get_chart(x y) is X
True
sage: U = M.open_subset(U , coord_def={X: (y!=0,x<0)})
sage: Y.<r, ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi)
sage: M.atlas()
[Chart (M, (x, y)), Chart (U, (x, y)), Chart (U, (r, ph))]
sage: M.get_chart(x y , domain= U)
Chart (U, (x, y))
sage: M.get_chart(x y , domain= U) is X.restrict(U)
True
sage: U.get_chart(r ph)
Chart (U, (r, ph))
sage: M.get_chart(r ph , domain= U)
Chart (U, (r, ph))
sage: M.get_chart(r ph , domain= U) is Y
True

has_orientation()

Check whether self admits an obvious or by user set orientation.

See also:

Consult orientation() for details about orientations.

Note: Notice that if has_orientation() returns False this does not necessarily mean that the man-
ifold admits no orientation. It just means that the user has to set an orientation manually in that case, see

1.1. Topological Manifolds 23

Manifolds, Release 10.4.rc1

set_orientation().

EXAMPLES:

The trivial case:

sage: M = Manifold(3, M , structure= top)
sage: c.<x,y,z> = M.chart()
sage: M.has_orientation()
True

The non-trivial case:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: M.has_orientation()
False
sage: M.set_orientation([c_xy, c_uv])
sage: M.has_orientation()
True

homeomorphism(codomain, coord_functions=None, chart1=None, chart2=None, name=None,
latex_name=None)

Define a homeomorphism between the current manifold and another one.

See ContinuousMap for a complete documentation.

INPUT:

• codomain – TopologicalManifold; codomain of the homeomorphism

• coord_functions – (default: None) if not None, must be either

– (i) a dictionary of the coordinate expressions (as lists (or tuples) of the coordinates of the image
expressed in terms of the coordinates of the considered point) with the pairs of charts (chart1,
chart2) as keys (chart1 being a chart on self and chart2 a chart on codomain);

– (ii) a single coordinate expression in a given pair of charts, the latter being provided by the arguments
chart1 and chart2;

in both cases, if the dimension of the codomain is 1, a single coordinate expression can be passed instead
of a tuple with a single element

• chart1 – (default: None; used only in case (ii) above) chart on self defining the start coordinates
involved in coord_functions for case (ii); if None, the coordinates are assumed to refer to the
default chart of self

• chart2 – (default: None; used only in case (ii) above) chart on codomain defining the target coor-
dinates involved in coord_functions for case (ii); if None, the coordinates are assumed to refer to
the default chart of codomain

• name – (default: None) name given to the homeomorphism

• latex_name – (default: None) LaTeX symbol to denote the homeomorphism; if None, the LaTeX
symbol is set to name

OUTPUT:

• the homeomorphism, as an instance of ContinuousMap

24 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Homeomorphism between the open unit disk in R2 and R2:

sage: forget() # for doctests only
sage: M = Manifold(2, M , structure= topological) # the open unit disk
sage: c_xy.<x,y> = M.chart(x:(-1,1) y:(-1,1) , coord_restrictions=lambda x,
→˓y: x^2+y^2<1)
....: # Cartesian coord on M
sage: N = Manifold(2, N , structure= topological) # R^2
sage: c_XY.<X,Y> = N.chart() # canonical coordinates on R^2
sage: Phi = M.homeomorphism(N, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
....: name= Phi , latex_name=r \Phi)
sage: Phi
Homeomorphism Phi from the 2-dimensional topological manifold M to
the 2-dimensional topological manifold N

sage: Phi.display()
Phi: M → N

(x, y) ↦ (X, Y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))

The inverse homeomorphism:

sage: Phi^(-1)
Homeomorphism Phi^(-1) from the 2-dimensional topological
manifold N to the 2-dimensional topological manifold M

sage: (Phi^(-1)).display()
Phi^(-1): N → M

(X, Y) ↦ (x, y) = (X/sqrt(X^2 + Y^2 + 1), Y/sqrt(X^2 + Y^2 + 1))

See the documentation of ContinuousMap for more examples.

identity_map()

Identity map of self.

The identity map of a topological manifold𝑀 is the trivial homeomorphism:

Id𝑀 : 𝑀 −→ 𝑀
𝑝 ↦−→ 𝑝

OUTPUT:

• the identity map as an instance of ContinuousMap

EXAMPLES:

Identity map of a complex manifold:

sage: M = Manifold(2, M , structure= topological , field= complex)
sage: X.<x,y> = M.chart()
sage: id = M.identity_map(); id
Identity map Id_M of the Complex 2-dimensional topological manifold M
sage: id.parent()
Set of Morphisms from Complex 2-dimensional topological manifold M
to Complex 2-dimensional topological manifold M in Category of
manifolds over Complex Field with 53 bits of precision

sage: id.display()
Id_M: M → M

(x, y) ↦ (x, y)

The identity map acting on a point:

1.1. Topological Manifolds 25

Manifolds, Release 10.4.rc1

sage: p = M((1+I, 3-I), name= p); p
Point p on the Complex 2-dimensional topological manifold M
sage: id(p)
Point p on the Complex 2-dimensional topological manifold M
sage: id(p) == p
True

See also:

See ContinuousMap for the complete documentation.

index_generator(nb_indices)
Generator of index series.

INPUT:

• nb_indices – number of indices in a series

OUTPUT:

• an iterable index series for a generic component with the specified number of indices

EXAMPLES:

Indices on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological , start_index=1)
sage: list(M.index_generator(2))
[(1, 1), (1, 2), (2, 1), (2, 2)]

Loops can be nested:

sage: for ind1 in M.index_generator(2):
....: print("{} : {}".format(ind1, list(M.index_generator(2))))
(1, 1) : [(1, 1), (1, 2), (2, 1), (2, 2)]
(1, 2) : [(1, 1), (1, 2), (2, 1), (2, 2)]
(2, 1) : [(1, 1), (1, 2), (2, 1), (2, 2)]
(2, 2) : [(1, 1), (1, 2), (2, 1), (2, 2)]

irange(start=None, end=None)
Single index generator.

INPUT:

• start – (default: None) initial value 𝑖0 of the index; if None, the value returned by start_in-
dex() is assumed

• end – (default: None) final value 𝑖𝑛 of the index; if None, the value returned by start_index()
plus 𝑛− 1, where 𝑛 is the manifold dimension, is assumed

OUTPUT:

• an iterable index, starting from 𝑖0 and ending at 𝑖0 + 𝑖𝑛

EXAMPLES:

Index range on a 4-dimensional manifold:

sage: M = Manifold(4, M , structure= topological)
sage: list(M.irange())
[0, 1, 2, 3]
sage: list(M.irange(start=2))

(continues on next page)

26 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

[2, 3]
sage: list(M.irange(end=2))
[0, 1, 2]
sage: list(M.irange(start=1, end=2))
[1, 2]

Index range on a 4-dimensional manifold with starting index=1:

sage: M = Manifold(4, M , structure= topological , start_index=1)
sage: list(M.irange())
[1, 2, 3, 4]
sage: list(M.irange(start=2))
[2, 3, 4]
sage: list(M.irange(end=2))
[1, 2]
sage: list(M.irange(start=2, end=3))
[2, 3]

In general, one has always:

sage: next(M.irange()) == M.start_index()
True

is_manifestly_coordinate_domain()

Return True if the manifold is known to be the domain of some coordinate chart and False otherwise.

If False is returned, either the manifold cannot be the domain of some coordinate chart or no such chart
has been declared yet.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: X.<x,y> = U.chart()
sage: U.is_manifestly_coordinate_domain()
True
sage: M.is_manifestly_coordinate_domain()
False
sage: Y.<u,v> = M.chart()
sage: M.is_manifestly_coordinate_domain()
True

is_open()

Return if self is an open set.

In the present case (manifold or open subset of it), always return True.

one_scalar_field()

Return the constant scalar field with value the unit element of the base field of self.

OUTPUT:

• a ScalarField representing the constant scalar field with value the unit element of the base field of
self

EXAMPLES:

1.1. Topological Manifolds 27

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.one_scalar_field(); f
Scalar field 1 on the 2-dimensional topological manifold M
sage: f.display()
1: M → ℝ

(x, y) ↦ 1
sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological manifold M
sage: f is M.scalar_field_algebra().one()
True

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of the manifold.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.
It is a topological manifold by itself. Hence the returned object is an instance of TopologicalManifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none are provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_defmust a be dic-
tionary with keys charts on the manifold and values the symbolic expressions formed by the coordinates
to define the subset

• supersets – (default: only self) list of sets that the new open subset is a subset of

OUTPUT:

• the open subset, as an instance of TopologicalManifold

EXAMPLES:

Creating an open subset of a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.open_subset(A); A
Open subset A of the 2-dimensional topological manifold M

As an open subset of a topological manifold, A is itself a topological manifold, on the same topological field
and of the same dimension as M:

sage: isinstance(A, sage.manifolds.manifold.TopologicalManifold)
True
sage: A.base_field() == M.base_field()
True
sage: dim(A) == dim(M)
True
sage: A.category() is M.category().Subobjects()
True

Creating an open subset of A:

sage: B = A.open_subset(B); B
Open subset B of the 2-dimensional topological manifold M

We have then:

28 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: frozenset(A.subsets()) # random (set output)
{Open subset B of the 2-dimensional topological manifold M,
Open subset A of the 2-dimensional topological manifold M}

sage: B.is_subset(A)
True
sage: B.is_subset(M)
True

Defining an open subset by some coordinate restrictions: the open unit disk in R2:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1}); U
Open subset U of the 2-dimensional topological manifold R^2

Since the argumentcoord_def has been set, U is automatically providedwith a chart, which is the restriction
of the Cartesian one to U:

sage: U.atlas()
[Chart (U, (x, y))]

Therefore, one can immediately check whether a point belongs to U:

sage: M.point((0,0)) in U
True
sage: M.point((1/2,1/3)) in U
True
sage: M.point((1,2)) in U
False

options = Current options for manifolds - omit_function_arguments: False -
textbook_output: True

orientation()

Get the preferred orientation of self if available.

An orientation of an 𝑛-dimensional topologial manifold is an atlas of charts whose transition maps are orienta-
tion preserving. A homeomorphism 𝑓 : 𝑈 → 𝑉 for open subsets 𝑈, 𝑉 ⊂ R𝑛 is called orientation preserving
if for each 𝑥 ∈ 𝑈 the following map between singular homologies is the identity:

𝐻𝑛(R𝑛,R𝑛 − 0;) ∼= 𝐻𝑛(𝑈,𝑈 − 𝑥;)
𝑓*−→ 𝐻𝑛(𝑉, 𝑉 − 𝑓(𝑥)) ∼= 𝐻𝑛(R𝑛,R𝑛 − 0;)

See this link for details.

Note: Notice that for differentiable manifolds, the notion of orientability does not need homology theory at
all. See orientation() for details

The trivial case corresponds to the manifold being covered by one chart. In that case, if no preferred ori-
entation has been manually set before, one of those charts (usually the default chart) is set to the preferred
orientation and returned here.

EXAMPLES:

If the manifold is covered by only one chart, it certainly admits an orientation:

1.1. Topological Manifolds 29

http://www.map.mpim-bonn.mpg.de/Orientation_of_manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= top)
sage: c.<x,y,z> = M.chart()
sage: M.orientation()
[Chart (M, (x, y, z))]

Usually, an orientation cannot be obtained so easily:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: M.orientation()
[]

In that case, the orientation can be set by the user manually:

sage: M.set_orientation([c_xy, c_uv])
sage: M.orientation()
[Chart (U, (x, y)), Chart (V, (u, v))]

The orientation on submanifolds are inherited from the ambient manifold:

sage: W = U.intersection(V, name= W)
sage: W.orientation()
[Chart (W, (x, y))]

scalar_field(coord_expression=None, chart=None, name=None, latex_name=None)
Define a scalar field on the manifold.

See ScalarField (or DiffScalarField if the manifold is differentiable) for a complete documen-
tation.

INPUT:

• coord_expression – (default: None) coordinate expression(s) of the scalar field; this can be either

– a single coordinate expression; if the argument chart is all , this expression is set to all the
charts defined on the open set; otherwise, the expression is set in the specific chart provided by the
argument chart

– a dictionary of coordinate expressions, with the charts as keys

• chart – (default: None) chart defining the coordinates used in coord_expression when the
latter is a single coordinate expression; if None, the default chart of the open set is assumed; if
chart== all , coord_expression is assumed to be independent of the chart (constant scalar
field)

• name – (default: None) name given to the scalar field

• latex_name – (default: None) LaTeX symbol to denote the scalar field; if None, the LaTeX symbol
is set to name

If coord_expression is None or does not fully specified the scalar field, other coordinate expressions
can be added subsequently bymeans of themethodsadd_expr(), add_expr_by_continuation(),
or set_expr()

OUTPUT:

• instance of ScalarField (or of the subclass DiffScalarField if the manifold is differentiable)
representing the defined scalar field

30 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

A scalar field defined by its coordinate expression in the open set’s default chart:

sage: M = Manifold(3, M , structure= topological)
sage: U = M.open_subset(U)
sage: c_xyz.<x,y,z> = U.chart()
sage: f = U.scalar_field(sin(x)*cos(y) + z, name= F); f
Scalar field F on the Open subset U of the 3-dimensional topological manifold␣
→˓M
sage: f.display()
F: U → ℝ

(x, y, z) ↦ cos(y)*sin(x) + z
sage: f.parent()
Algebra of scalar fields on the Open subset U of the 3-dimensional␣
→˓topological manifold M
sage: f in U.scalar_field_algebra()
True

Equivalent definition with the chart specified:

sage: f = U.scalar_field(sin(x)*cos(y) + z, chart=c_xyz, name= F)
sage: f.display()
F: U → ℝ

(x, y, z) ↦ cos(y)*sin(x) + z

Equivalent definition with a dictionary of coordinate expression(s):

sage: f = U.scalar_field({c_xyz: sin(x)*cos(y) + z}, name= F)
sage: f.display()
F: U → ℝ

(x, y, z) ↦ cos(y)*sin(x) + z

See the documentation of class ScalarField for more examples.

See also:

constant_scalar_field(), zero_scalar_field(), one_scalar_field()

scalar_field_algebra()

Return the algebra of scalar fields defined the manifold.

See ScalarFieldAlgebra for a complete documentation.

OUTPUT:

• instance of ScalarFieldAlgebra representing the algebra 𝐶0(𝑈) of all scalar fields defined on 𝑈
= self

EXAMPLES:

Scalar algebra of a 3-dimensional open subset:

sage: M = Manifold(3, M , structure= topological)
sage: U = M.open_subset(U)
sage: CU = U.scalar_field_algebra() ; CU
Algebra of scalar fields on the Open subset U of the 3-dimensional␣
→˓topological manifold M
sage: CU.category()
Join of Category of commutative algebras over Symbolic Ring and Category of␣
→˓homsets of topological spaces

(continues on next page)

1.1. Topological Manifolds 31

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: CU.zero()
Scalar field zero on the Open subset U of the 3-dimensional topological␣
→˓manifold M

The output is cached:

sage: U.scalar_field_algebra() is CU
True

set_calculus_method(method)
Set the calculus method to be used for coordinate computations on this manifold.

The provided method is transmitted to all coordinate charts defined on the manifold.

INPUT:

• method – string specifying the method to be used for coordinate computations on this manifold; one
of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

EXAMPLES:

Let us consider a scalar field f on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field(x^2 + cos(y)*sin(x), name= F)

By default, the coordinate expression of f returned by expr() is a Sage’s symbolic expression:

sage: f.expr()
x^2 + cos(y)*sin(x)
sage: type(f.expr())
<class sage.symbolic.expression.Expression >
sage: parent(f.expr())
Symbolic Ring
sage: f.display()
F: M → ℝ

(x, y) ↦ x^2 + cos(y)*sin(x)

If we change the calculus method to SymPy, it becomes a SymPy object instead:

sage: M.set_calculus_method(sympy)
sage: f.expr()
x**2 + sin(x)*cos(y)
sage: type(f.expr())
<class sympy.core.add.Add >
sage: parent(f.expr())
<class sympy.core.add.Add >
sage: f.display()
F: M → ℝ

(x, y) ↦ x**2 + sin(x)*cos(y)

Back to the Symbolic Ring:

32 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M.set_calculus_method(SR)
sage: f.display()
F: M → ℝ

(x, y) ↦ x^2 + cos(y)*sin(x)

The calculus method chosen via set_calculus_method() applies to any chart defined subsequently on
the manifold:

sage: M.set_calculus_method(sympy)
sage: Y.<u,v> = M.chart() # a new chart
sage: Y.calculus_method()
Available calculus methods (* = current):
- SR (default)
- sympy (*)

See also:

calculus_method() for a control of the calculus method chart by chart

set_default_chart(chart)
Changing the default chart on self.

INPUT:

• chart – a chart (must be defined on some subset self)

EXAMPLES:

Charts on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: M.default_chart()
Chart (M, (x, y))
sage: M.set_default_chart(c_uv)
sage: M.default_chart()
Chart (M, (u, v))

set_orientation(orientation)
Set the preferred orientation of self.

INPUT:

• orientation – a chart or a list of charts

Warning: It is the user’s responsibility that the orientation set here is indeed an orientation. There is no
check going on in the background. See orientation() for the definition of an orientation.

EXAMPLES:

Set an orientation on a manifold:

sage: M = Manifold(2, M , structure= top)
sage: c_xy.<x,y> = M.chart(); c_uv.<u,v> = M.chart()
sage: M.set_orientation(c_uv)
sage: M.orientation()
[Chart (M, (u, v))]

1.1. Topological Manifolds 33

Manifolds, Release 10.4.rc1

Set an orientation in the non-trivial case:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: M.set_orientation([c_xy, c_uv])
sage: M.orientation()
[Chart (U, (x, y)), Chart (V, (u, v))]

set_simplify_function(simplifying_func, method=None)
Set the simplifying function associated to a given coordinate calculus method in all the charts defined on
self.

INPUT:

• simplifying_func – either the string default for restoring the default simplifying function
or a function f of a single argument expr such that f(expr) returns an object of the same type as
expr (hopefully the simplified version of expr), this type being

– Expression if method = SR

– a SymPy type if method = sympy

• method – (default: None) string defining the calculus method for which simplifying_func is
provided; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the currently active calculus method on each chart is assumed

See also:

calculus_method() and sage.manifolds.calculus_method.CalculusMethod.
simplify() for a control of the calculus method chart by chart

EXAMPLES:

Les us add two scalar fields on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field((x+y)^2 + cos(x)^2)
sage: g = M.scalar_field(-x^2-2*x*y-y^2 + sin(x)^2)
sage: f.expr()
(x + y)^2 + cos(x)^2
sage: g.expr()
-x^2 - 2*x*y - y^2 + sin(x)^2
sage: s = f + g

The outcome is automatically simplified:

sage: s.expr()
1

The simplification is performed thanks to the default simplifying function on chart X, which is sim-
plify_chain_real() in the present case (real manifold and SR calculus):

34 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression

Manifolds, Release 10.4.rc1

sage: X.calculus_method().simplify_function() is \
....: sage.manifolds.utilities.simplify_chain_real
True

Let us change it to the generic Sage function simplify():

sage: M.set_simplify_function(simplify)
sage: X.calculus_method().simplify_function() is simplify
True

simplify() is faster, but it does not do much:

sage: s = f + g
sage: s.expr()
(x + y)^2 - x^2 - 2*x*y - y^2 + cos(x)^2 + sin(x)^2

We can replaced it by any user defined function, for instance:

sage: def simpl_trig(a):
....: return a.simplify_trig()
sage: M.set_simplify_function(simpl_trig)
sage: s = f + g
sage: s.expr()
1

The default simplifying function is restored via:

sage: M.set_simplify_function(default)

Then we are back to:

sage: X.calculus_method().simplify_function() is \
....: sage.manifolds.utilities.simplify_chain_real
True

Thanks to the argument method, one can specify a simplifying function for a calculus method distinct from
the current one. For instance, let us define a simplifying function for SymPy (note that trigsimp() is a
SymPy method only):

sage: def simpl_trig_sympy(a):
....: return a.trigsimp()
sage: M.set_simplify_function(simpl_trig_sympy, method= sympy)

Then, it becomes active as soon as we change the calculus engine to SymPy:

sage: M.set_calculus_method(sympy)
sage: X.calculus_method().simplify_function() is simpl_trig_sympy
True

We have then:

sage: s = f + g
sage: s.expr()
1
sage: type(s.expr())
<class sympy.core.numbers.One >

1.1. Topological Manifolds 35

../../../../../../html/en/reference/calculus/sage/calculus/functional.html#sage.calculus.functional.simplify
../../../../../../html/en/reference/calculus/sage/calculus/functional.html#sage.calculus.functional.simplify

Manifolds, Release 10.4.rc1

start_index()

Return the first value of the index range used on the manifold.

This is the parameter start_index passed at the construction of the manifold.

OUTPUT:

• the integer 𝑖0 such that all indices of indexed objects on the manifold range from 𝑖0 to 𝑖0+𝑛− 1, where
𝑛 is the manifold’s dimension

EXAMPLES:

sage: M = Manifold(3, M , structure= topological)
sage: M.start_index()
0
sage: M = Manifold(3, M , structure= topological , start_index=1)
sage: M.start_index()
1

top_charts()

Return the list of charts defined on subsets of the current manifold that are not subcharts of charts on larger
subsets.

OUTPUT:

• list of charts defined on open subsets of the manifold but not on larger subsets

EXAMPLES:

Charts on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U , coord_def={X: x>0})
sage: Y.<u,v> = U.chart()
sage: M.top_charts()
[Chart (M, (x, y)), Chart (U, (u, v))]

Note that the (user) atlas contains one more chart: (U, (x,y)), which is not a “top” chart:

sage: M.atlas()
[Chart (M, (x, y)), Chart (U, (x, y)), Chart (U, (u, v))]

See also:

atlas() for the complete list of charts defined on the manifold.

vector_bundle(rank, name, field='real', latex_name=None)
Return a topological vector bundle over the given field with given rank over this topological manifold.

INPUT:

• rank – rank of the vector bundle

• name – name given to the total space

• field – (default: real) topological field giving the vector space structure to the fibers

• latex_name – optional LaTeX name for the total space

OUTPUT:

• a topological vector bundle as an instance of TopologicalVectorBundle

36 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: M.vector_bundle(2, E)
Topological real vector bundle E -> M of rank 2 over the base space
2-dimensional topological manifold M

zero_scalar_field()

Return the zero scalar field defined on self.

OUTPUT:

• a ScalarField representing the constant scalar field with value 0

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.zero_scalar_field() ; f
Scalar field zero on the 2-dimensional topological manifold M
sage: f.display()
zero: M → ℝ

(x, y) ↦ 0
sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological manifold M
sage: f is M.scalar_field_algebra().zero()
True

1.2 Subsets of Topological Manifolds

The class ManifoldSubset implements generic subsets of a topological manifold. Open subsets are implemented by
the class TopologicalManifold (since an open subset of a manifold is a manifold by itself), which inherits from
ManifoldSubset. Besides, subsets that are images of a manifold subset under a continuous map are implemented by
the subclass ImageManifoldSubset.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015): initial version

• Travis Scrimshaw (2015): review tweaks; removal of facade parents

• Matthias Koeppe (2021): Families and posets of subsets

REFERENCES:

• [Lee2011]

EXAMPLES:

Two subsets on a manifold:

sage: M = Manifold(2, M , structure= topological)
sage: a = M.subset(A); a
Subset A of the 2-dimensional topological manifold M
sage: b = M.subset(B); b
Subset B of the 2-dimensional topological manifold M
sage: M.subset_family()
Set {A, B, M} of subsets of the 2-dimensional topological manifold M

1.2. Subsets of Topological Manifolds 37

Manifolds, Release 10.4.rc1

The intersection of the two subsets:

sage: c = a.intersection(b); c
Subset A_inter_B of the 2-dimensional topological manifold M

Their union:

sage: d = a.union(b); d
Subset A_union_B of the 2-dimensional topological manifold M

Families of subsets after the above operations:

sage: M.subset_family()
Set {A, A_inter_B, A_union_B, B, M} of subsets of the 2-dimensional topological␣
→˓manifold M
sage: a.subset_family()
Set {A, A_inter_B} of subsets of the 2-dimensional topological manifold M
sage: c.subset_family()
Set {A_inter_B} of subsets of the 2-dimensional topological manifold M
sage: d.subset_family()
Set {A, A_inter_B, A_union_B, B} of subsets of the 2-dimensional topological manifold␣
→˓M

class sage.manifolds.subset.ManifoldSubset(manifold, name: str, latex_name=None,
category=None)

Bases: UniqueRepresentation, Parent

Subset of a topological manifold.

The class ManifoldSubset inherits from the generic class Parent. The corresponding element class is Man-
ifoldPoint.

Note that open subsets are not implemented directly by this class, but by the derived class TopologicalMan-
ifold (an open subset of a topological manifold being itself a topological manifold).

INPUT:

• manifold – topological manifold on which the subset is defined

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is set
to name

• category – (default: None) to specify the category; if None, the category for generic subsets is used

EXAMPLES:

A subset of a manifold:

sage: M = Manifold(2, M , structure= topological)
sage: from sage.manifolds.subset import ManifoldSubset
sage: A = ManifoldSubset(M, A , latex_name=r \mathcal{A})
sage: A
Subset A of the 2-dimensional topological manifold M
sage: latex(A)
\mathcal{A}
sage: A.is_subset(M)
True

Instead of importing ManifoldSubset in the global namespace, it is recommended to use the method sub-
set() to create a new subset:

38 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Manifolds, Release 10.4.rc1

sage: B = M.subset(B , latex_name=r \mathcal{B}); B
Subset B of the 2-dimensional topological manifold M
sage: M.subset_family()
Set {A, B, M} of subsets of the 2-dimensional topological manifold M

The manifold is itself a subset:

sage: isinstance(M, ManifoldSubset)
True
sage: M in M.subsets()
True

Instances of ManifoldSubset are parents:

sage: isinstance(A, Parent)
True
sage: A.category()
Category of subobjects of sets
sage: p = A.an_element(); p
Point on the 2-dimensional topological manifold M
sage: p.parent()
Subset A of the 2-dimensional topological manifold M
sage: p in A
True
sage: p in M
True

Element

alias of ManifoldPoint

ambient()

Return the ambient manifold of self.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: A.manifold()
2-dimensional topological manifold M
sage: A.manifold() is M
True
sage: B = A.subset(B)
sage: B.manifold() is M
True

An alias is ambient:

sage: A.ambient() is A.manifold()
True

closure(name=None, latex_name=None)
Return the topological closure of self as a subset of the manifold.

INPUT:

• name – (default: None) name given to the difference in the case the latter has to be created; the default
prepends cl_ to self._name

1.2. Subsets of Topological Manifolds 39

Manifolds, Release 10.4.rc1

• latex_name – (default: None) LaTeX symbol to denote the difference in the case the latter has to be
created; the default is built upon the operator cl

OUTPUT:

• if self is already known to be closed (see is_closed()), self; otherwise, an instance of Mani-
foldSubsetClosure

EXAMPLES:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: M.closure() is M
True
sage: D2 = M.open_subset(D2 , coord_def={c_cart: x^2+y^2<2}); D2
Open subset D2 of the 2-dimensional topological manifold R^2
sage: cl_D2 = D2.closure(); cl_D2
Topological closure cl_D2 of the
Open subset D2 of the 2-dimensional topological manifold R^2

sage: cl_D2.is_closed()
True
sage: cl_D2 is cl_D2.closure()
True

sage: D1 = D2.open_subset(D1); D1
Open subset D1 of the 2-dimensional topological manifold R^2
sage: D1.closure().is_subset(D2.closure())
True

complement(superset=None, name=None, latex_name=None, is_open=False)
Return the complement of self in the manifold or in superset.

INPUT:

• superset – (default: self.manifold()) a superset of self

• name – (default: None) name given to the complement in the case the latter has to be created; the
default is superset._name minus self._name

• latex_name – (default: None) LaTeX symbol to denote the complement in the case the latter has to
be created; the default is built upon the symbol ∖

• is_open – (default: False) if True, the created subset is assumed to be open with respect to the
manifold’s topology

OUTPUT:

• instance of ManifoldSubset representing the subset that is superset minus self

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: B1 = A.subset(B1)
sage: B2 = A.subset(B2)
sage: B1.complement()
Subset M_minus_B1 of the 2-dimensional topological manifold M
sage: B1.complement(A)
Subset A_minus_B1 of the 2-dimensional topological manifold M
sage: B1.complement(B2)
Traceback (most recent call last):

(continues on next page)

40 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

...
TypeError: superset must be a superset of self

Demanding that the complement is open makes self a closed subset:

sage: A.is_closed() # False a priori
False
sage: A.complement(is_open=True)
Open subset M_minus_A of the 2-dimensional topological manifold M
sage: A.is_closed()
True

declare_closed()

Declare self to be a closed subset of the manifold.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: B1 = A.subset(B1)
sage: B1.is_closed()
False
sage: B1.declare_closed()
sage: B1.is_closed()
True

sage: B2 = A.subset(B2)
sage: cl_B2 = B2.closure()
sage: A.declare_closed()
sage: cl_B2.is_subset(A)
True

declare_empty()

Declare that self is the empty set.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A , is_open=True)
sage: AA = A.subset(AA)
sage: A
Open subset A of the 2-dimensional topological manifold M
sage: A.declare_empty()
sage: A.is_empty()
True

Empty sets do not allow to define points on them:

sage: A.point()
Traceback (most recent call last):
...
TypeError: cannot define a point on the

Open subset A of the 2-dimensional topological manifold M
because it has been declared empty

Emptiness transfers to subsets:

1.2. Subsets of Topological Manifolds 41

Manifolds, Release 10.4.rc1

sage: AA.is_empty()
True
sage: AA.point()
Traceback (most recent call last):
...
TypeError: cannot define a point on the

Subset AA of the 2-dimensional topological manifold M
because it has been declared empty

sage: AD = A.subset(AD)
sage: AD.is_empty()
True

If points have already been defined on self (or its subsets), it is an error to declare it to be empty:

sage: B = M.subset(B)
sage: b = B.point(name= b); b
Point b on the 2-dimensional topological manifold M
sage: B.declare_empty()
Traceback (most recent call last):
...
TypeError: cannot be empty because it has defined points

Emptiness is recorded as empty open covers:

sage: P = M.subset_poset(open_covers=True, points=[b]) #␣
→˓needs sage.graphs
sage: def label(element):
....: if isinstance(element, str):
....: return element
....: try:
....: return element._name
....: except AttributeError:
....: return [+ , .join(sorted(x._name for x in element)) +]
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 10 graphics primitives

declare_equal(*others)
Declare that self and others are the same sets.

INPUT:

• others – finitely many subsets or iterables of subsets of the same manifold as self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)
sage: Vs = [M.open_subset(f V{i}) for i in range(2)]
sage: UV = U.intersection(V)
sage: W = UV.open_subset(W)
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: def label(element):
....: return element._name
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot

(continues on next page)

42 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

{AD}

{M}

{B}

{A}

{AA}

[]

b

{A, AA, AD}

[]

b

{B}

{M}

(continued from previous page)

Graphics object consisting of 15 graphics primitives
sage: V.declare_equal(Vs)
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 11 graphics primitives
sage: W.declare_equal(U)
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 6 graphics primitives

declare_nonempty()

Declare that self is nonempty.

Once declared nonempty, self (or any of its supersets) cannot be declared empty.

This is equivalent to defining a point on self using point() but is cheaper than actually creating a Man-
ifoldPoint instance.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A , is_open=True)
sage: AA = A.subset(AA)
sage: AA.declare_nonempty()
sage: A.has_defined_points()

(continues on next page)

1.2. Subsets of Topological Manifolds 43

Manifolds, Release 10.4.rc1

{W}

{V1} {V0}

{U_inter_V}

{V} {U}

{M}

{W}

{U_inter_V}

{V, V0, V1} {U}

{M}

{U, U_inter_V, W}

{V, V0, V1}

{M}

(continued from previous page)

True
sage: A.declare_empty()
Traceback (most recent call last):
...
TypeError: cannot be empty because it has defined points

declare_subset(*supersets)
Declare self to be a subset of each of the given supersets.

INPUT:

• supersets – other subsets of the same manifold

EXAMPLES:

sage: M = Manifold(2, M)
sage: U1 = M.open_subset(U1)
sage: U2 = M.open_subset(U2)
sage: V = M.open_subset(V)
sage: V.superset_family()
Set {M, V} of open subsets of the 2-dimensional differentiable manifold M
sage: U1.subset_family()
Set {U1} of open subsets of the 2-dimensional differentiable manifold M
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: def label(element):
....: return element._name
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 8 graphics primitives
sage: V.declare_subset(U1, U2)
sage: V.superset_family()
Set {M, U1, U2, V} of open subsets of the 2-dimensional differentiable␣
→˓manifold M
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 9 graphics primitives

44 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

Subsets in a directed cycle of inclusions are equal:

sage: M.declare_subset(V)
sage: M.superset_family()
Set {M, U1, U2, V} of open subsets of the 2-dimensional differentiable␣
→˓manifold M
sage: M.equal_subset_family()
Set {M, U1, U2, V} of open subsets of the 2-dimensional differentiable␣
→˓manifold M
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 2 graphics primitives

{V} {U2} {U1}

{M}

{V}

{U2} {U1}

{M}

{M, U1, U2, V}

declare_superset(*subsets)
Declare self to be a superset of each of the given subsets.

INPUT:

• subsets – other subsets of the same manifold

EXAMPLES:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U)
sage: V1 = M.open_subset(V1)
sage: V2 = M.open_subset(V2)
sage: W = V1.intersection(V2)
sage: U.subset_family()
Set {U} of open subsets of the 2-dimensional differentiable manifold M
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: def label(element):
....: return element._name
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 11 graphics primitives
sage: U.declare_superset(V1, V2)
sage: U.subset_family()
Set {U, V1, V1_inter_V2, V2} of open subsets of the 2-dimensional␣

(continues on next page)

1.2. Subsets of Topological Manifolds 45

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓differentiable manifold M
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 11 graphics primitives

Subsets in a directed cycle of inclusions are equal:

sage: W.declare_superset(U)
sage: W.subset_family()
Set {U, V1, V1_inter_V2, V2} of open subsets of the 2-dimensional␣
→˓differentiable manifold M
sage: W.equal_subset_family()
Set {U, V1, V1_inter_V2, V2} of open subsets of the 2-dimensional␣
→˓differentiable manifold M
sage: P = M.subset_poset() #␣
→˓needs sage.graphs
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 4 graphics primitives

{V1_inter_V2}

{V2} {V1} {U}

{M}

{V1_inter_V2}

{V2} {V1}

{U}

{M}

{U, V1, V1_inter_V2, V2}

{M}

declare_union(disjoint, *subsets_or_families)
Declare that the current subset is the union of two subsets.

Suppose 𝑈 is the current subset, then this method declares that 𝑈 =
⋃︀

𝑆∈𝐹 𝑆.

INPUT:

• subsets_or_families – finitely many subsets or iterables of subsets

• disjoint – (default: False) whether to declare the subsets pairwise disjoint

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: AB = M.subset(AB)
sage: A = AB.subset(A)
sage: B = AB.subset(B)
sage: def label(element):
....: try:

(continues on next page)

46 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: return element._name

....: except AttributeError:

....: return [+ , .join(sorted(x._name for x in element)) +]
sage: P = M.subset_poset(open_covers=True); P #␣
→˓needs sage.graphs
Finite poset containing 4 elements
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 8 graphics primitives

sage: AB.declare_union(A, B)
sage: A.union(B)
Subset AB of the 2-dimensional topological manifold M
sage: P = M.subset_poset(open_covers=True); P #␣
→˓needs sage.graphs
Finite poset containing 4 elements
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 8 graphics primitives

sage: B1 = B.subset(B1 , is_open=True)
sage: B2 = B.subset(B2 , is_open=True)
sage: B.declare_union(B1, B2, disjoint=True)
sage: P = M.subset_poset(open_covers=True); P #␣
→˓needs sage.graphs
Finite poset containing 9 elements
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 19 graphics primitives

{B} {A}

{AB}

{M}

{B} {A}

{AB}

{M}

{A}

{B1_inter_B2}

{B2} [] {B1}

{B}

{AB}

{M}

[{B1}, {B2}]

difference(other, name=None, latex_name=None, is_open=False)
Return the set difference of self minus other.

INPUT:

• other – another subset of the same manifold

• name – (default: None) name given to the difference in the case the latter has to be created; the default
is self._name minus other._name

• latex_name – (default: None) LaTeX symbol to denote the difference in the case the latter has to be

1.2. Subsets of Topological Manifolds 47

Manifolds, Release 10.4.rc1

created; the default is built upon the symbol ∖

• is_open – (default: False) if True, the created subset is assumed to be open with respect to the
manifold’s topology

OUTPUT:

• instance of ManifoldSubset representing the subset that is self minus other

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: CA = M.difference(A); CA
Subset M_minus_A of the 2-dimensional topological manifold M
sage: latex(CA)
M\setminus A
sage: A.intersection(CA).is_empty()
True
sage: A.union(CA)
2-dimensional topological manifold M

sage: O = M.open_subset(O)
sage: CO = M.difference(O); CO
Subset M_minus_O of the 2-dimensional topological manifold M
sage: M.difference(O) is CO
True

sage: CO2 = M.difference(O, is_open=True, name= CO2); CO2
Open subset CO2 of the 2-dimensional topological manifold M
sage: CO is CO2
False
sage: CO.is_subset(CO2) and CO2.is_subset(CO)
True
sage: M.difference(O, is_open=True)
Open subset CO2 of the 2-dimensional topological manifold M

Since 𝑂 is open and we have asked𝑀 ∖𝑂 to be open, 𝑂 is a clopen set (if 𝑂 ̸=𝑀 and 𝑂 ̸= ∅, this implies
that𝑀 is not connected):

sage: O.is_closed() and O.is_open()
True

equal_subset_family()

Generate the declared manifold subsets that are equal to self.

Note: If you only need to iterate over the equal sets in arbitrary order, you can use the generator method
equal_subsets() instead.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = U.subset(V)
sage: V.declare_equal(M)
sage: V.equal_subset_family()
Set {M, U, V} of subsets of the 2-dimensional topological manifold M

48 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

equal_subsets()

Generate the declared manifold subsets that are equal to self.

Note: To get the equal subsets as a family, sorted by name, use the method equal_subset_family()
instead.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = U.subset(V)
sage: V.declare_equal(M)
sage: sorted(V.equal_subsets(), key=lambda v: v._name)
[2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M,
Subset V of the 2-dimensional topological manifold M]

get_subset(name)
Get a subset by its name.

The subset must have been previously created by the method subset() (or open_subset())

INPUT:

• name – (string) name of the subset

OUTPUT:

• instance of ManifoldSubset (or of the derived class TopologicalManifold for an open sub-
set) representing the subset whose name is name

EXAMPLES:

sage: M = Manifold(4, M , structure= topological)
sage: A = M.subset(A)
sage: B = A.subset(B)
sage: U = M.open_subset(U)
sage: M.subset_family()
Set {A, B, M, U} of subsets of the 4-dimensional topological manifold M
sage: M.get_subset(A)
Subset A of the 4-dimensional topological manifold M
sage: M.get_subset(A) is A
True
sage: M.get_subset(B) is B
True
sage: A.get_subset(B) is B
True
sage: M.get_subset(U)
Open subset U of the 4-dimensional topological manifold M
sage: M.get_subset(U) is U
True

has_defined_points(subsets=True)

Return whether any points have been defined on self or any of its subsets.

INPUT:

• subsets – (default: True) if False, only consider points that have been defined directly on self;
if True, also consider points on all subsets.

1.2. Subsets of Topological Manifolds 49

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A , is_open=True)
sage: AA = A.subset(AA)
sage: AA.point()
Point on the 2-dimensional topological manifold M
sage: AA.has_defined_points()
True
sage: A.has_defined_points(subsets=False)
False
sage: A.has_defined_points()
True

intersection(name, latex_name, *others)
Return the intersection of the current subset with other subsets.

This method may return a previously constructed intersection instead of creating a new subset. In this case,
name and latex_name are not used.

INPUT:

• others – other subsets of the same manifold

• name – (default: None) name given to the intersection in the case the latter has to be created; the default
is self._name inter other._name

• latex_name – (default: None) LaTeX symbol to denote the intersection in the case the latter has to
be created; the default is built upon the symbol ∩

OUTPUT:

• instance of ManifoldSubset representing the subset that is the intersection of the current subset
with others

EXAMPLES:

Intersection of two subsets:

sage: M = Manifold(2, M , structure= topological)
sage: a = M.subset(A)
sage: b = M.subset(B)
sage: c = a.intersection(b); c
Subset A_inter_B of the 2-dimensional topological manifold M
sage: a.subset_family()
Set {A, A_inter_B} of subsets of the 2-dimensional topological manifold M
sage: b.subset_family()
Set {A_inter_B, B} of subsets of the 2-dimensional topological manifold M
sage: c.superset_family()
Set {A, A_inter_B, B, M} of subsets of the 2-dimensional topological manifold␣
→˓M

Intersection of six subsets:

sage: T = Manifold(2, T , structure= topological)
sage: S = [T.subset(f S{i}) for i in range(6)]
sage: [S[i].intersection(S[i+3]) for i in range(3)]
[Subset S0_inter_S3 of the 2-dimensional topological manifold T,
Subset S1_inter_S4 of the 2-dimensional topological manifold T,
Subset S2_inter_S5 of the 2-dimensional topological manifold T]

(continues on next page)

50 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: inter_S_i = T.intersection(*S, name= inter_S_i); inter_S_i
Subset inter_S_i of the 2-dimensional topological manifold T
sage: inter_S_i.superset_family()
Set {S0, S0_inter_S3, S0_inter_S3_inter_S1_inter_S4, S1, S1_inter_S4,

S2, S2_inter_S5, S3, S4, S5, T, inter_S_i} of
subsets of the 2-dimensional topological manifold T

{A B}

{B} {A}

{M}

{ S }

{S S }

{S } {S }

{S S S S }

{S S }

{S } {S }

{S S }

{S } {S }

{T}

is_closed()

Return if self is a closed set.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: M.is_closed()
True
sage: also_M = M.subset(also_M)
sage: M.declare_subset(also_M)
sage: also_M.is_closed()
True

sage: A = M.subset(A)
sage: A.is_closed()
False
sage: A.declare_empty()
sage: A.is_closed()
True

sage: N = M.open_subset(N)
sage: N.is_closed()
False
sage: complement_N = M.subset(complement_N)
sage: M.declare_union(N, complement_N, disjoint=True)
sage: complement_N.is_closed()
True

is_empty()

Return whether the current subset is empty.

By default, manifold subsets are considered nonempty: The method point() can be used to define points
on it, either with or without coordinates some chart.

1.2. Subsets of Topological Manifolds 51

Manifolds, Release 10.4.rc1

However, using declare_empty(), a subset can be declared empty, and emptiness transfers to all of its
subsets.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A , is_open=True)
sage: AA = A.subset(AA)
sage: A.is_empty()
False
sage: A.declare_empty()
sage: A.is_empty()
True
sage: AA.is_empty()
True

is_open()

Return if self is an open set.

This method always returns False, since open subsets must be constructed as instances of the subclass
TopologicalManifold (which redefines is_open)

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: A.is_open()
False

is_subset(other)
Return True if and only if self is included in other.

EXAMPLES:

Subsets on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: a = M.subset(A)
sage: b = a.subset(B)
sage: c = M.subset(C)
sage: a.is_subset(M)
True
sage: b.is_subset(a)
True
sage: b.is_subset(M)
True
sage: a.is_subset(b)
False
sage: c.is_subset(a)
False

lift(p)

Return the lift of p to the ambient manifold of self.

INPUT:

• p – point of the subset

OUTPUT:

• the same point, considered as a point of the ambient manifold

52 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: A = M.open_subset(A , coord_def={X: x>0})
sage: p = A((1, -2)); p
Point on the 2-dimensional topological manifold M
sage: p.parent()
Open subset A of the 2-dimensional topological manifold M
sage: q = A.lift(p); q
Point on the 2-dimensional topological manifold M
sage: q.parent()
2-dimensional topological manifold M
sage: q.coord()
(1, -2)
sage: (p == q) and (q == p)
True

list_of_subsets()

Return the list of subsets that have been defined on the current subset.

The list is sorted by the alphabetical names of the subsets.

OUTPUT:

• a list containing all the subsets that have been defined on the current subset

Note: This method is deprecated.

To get the subsets as a ManifoldSubsetFiniteFamily instance (which sorts its elements alphabeti-
cally by name), use subset_family() instead.

To loop over the subsets in an arbitrary order, use the generator method subsets() instead.

EXAMPLES:

List of subsets of a 2-dimensional manifold (deprecated):

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = M.subset(V)
sage: M.list_of_subsets()
doctest:...: DeprecationWarning: the method list_of_subsets of ManifoldSubset
is deprecated; use subset_family or subsets instead...

[2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M,
Subset V of the 2-dimensional topological manifold M]

Using subset_family() instead (recommended when order matters):

sage: M.subset_family()
Set {M, U, V} of subsets of the 2-dimensional topological manifold M

The method subsets() generates the subsets in an unspecified order. To create a set:

sage: frozenset(M.subsets()) # random (set output)
{Subset V of the 2-dimensional topological manifold M,
2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M}

1.2. Subsets of Topological Manifolds 53

Manifolds, Release 10.4.rc1

manifold()

Return the ambient manifold of self.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: A.manifold()
2-dimensional topological manifold M
sage: A.manifold() is M
True
sage: B = A.subset(B)
sage: B.manifold() is M
True

An alias is ambient:

sage: A.ambient() is A.manifold()
True

open_cover_family(trivial=True, supersets=False)
Return the family of open covers of the current subset.

If the current subset, 𝐴 say, is a subset of the manifold 𝑀 , an open cover of 𝐴 is a ManifoldSub-
setFiniteFamily 𝐹 of open subsets 𝑈 ∈ 𝐹 of𝑀 such that

𝐴 ⊂
⋃︁
𝑈∈𝐹

𝑈.

If 𝐴 is open, we ask that the above inclusion is actually an identity:

𝐴 =
⋃︁
𝑈∈𝐹

𝑈.

The family is sorted lexicographically by the names of the subsets forming the open covers.

Note: If you only need to iterate over the open covers in arbitrary order, you can use the generator method
open_covers() instead.

INPUT:

• trivial – (default: True) if self is open, include the trivial open cover of self by itself

• supersets – (default: False) if True, include open covers of all the supersets; it can also be an
iterable of supersets to include

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: M.open_cover_family()
Set {{M}} of objects of the 2-dimensional topological manifold M
sage: U = M.open_subset(U)
sage: U.open_cover_family()
Set {{U}} of objects of the 2-dimensional topological manifold M
sage: A = U.open_subset(A)
sage: B = U.open_subset(B)
sage: U.declare_union(A,B)
sage: U.open_cover_family()

(continues on next page)

54 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Set {{A, B}, {U}} of objects of the 2-dimensional topological manifold M
sage: U.open_cover_family(trivial=False)
Set {{A, B}} of objects of the 2-dimensional topological manifold M
sage: V = M.open_subset(V)
sage: M.declare_union(U,V)
sage: M.open_cover_family()
Set {{A, B, V}, {M}, {U, V}} of objects of the 2-dimensional topological␣
→˓manifold M

open_covers(trivial=True, supersets=False)
Generate the open covers of the current subset.

If the current subset, 𝐴 say, is a subset of the manifold 𝑀 , an open cover of 𝐴 is a ManifoldSub-
setFiniteFamily 𝐹 of open subsets 𝑈 ∈ 𝐹 of𝑀 such that

𝐴 ⊂
⋃︁
𝑈∈𝐹

𝑈.

If 𝐴 is open, we ask that the above inclusion is actually an identity:

𝐴 =
⋃︁
𝑈∈𝐹

𝑈.

Note: To get the open covers as a family, sorted lexicographically by the names of the subsets forming the
open covers, use the method open_cover_family() instead.

INPUT:

• trivial – (default: True) if self is open, include the trivial open cover of self by itself

• supersets – (default: False) if True, include open covers of all the supersets; it can also be an
iterable of supersets to include

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: M.open_covers()
<generator ...>
sage: list(M.open_covers())
[Set {M} of open subsets of the 2-dimensional topological manifold M]
sage: U = M.open_subset(U)
sage: list(U.open_covers())
[Set {U} of open subsets of the 2-dimensional topological manifold M]
sage: A = U.open_subset(A)
sage: B = U.open_subset(B)
sage: U.declare_union(A,B)
sage: list(U.open_covers())
[Set {U} of open subsets of the 2-dimensional topological manifold M,
Set {A, B} of open subsets of the 2-dimensional topological manifold M]

sage: list(U.open_covers(trivial=False))
[Set {A, B} of open subsets of the 2-dimensional topological manifold M]
sage: V = M.open_subset(V)
sage: M.declare_union(U,V)
sage: list(M.open_covers())
[Set {M} of open subsets of the 2-dimensional topological manifold M,
Set {U, V} of open subsets of the 2-dimensional topological manifold M,
Set {A, B, V} of open subsets of the 2-dimensional topological manifold M]

1.2. Subsets of Topological Manifolds 55

Manifolds, Release 10.4.rc1

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of the manifold that is a subset of self.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.
It is a topological manifold by itself. Hence the returned object is an instance of TopologicalManifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none are provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_defmust a be dic-
tionary with keys charts on the manifold and values the symbolic expressions formed by the coordinates
to define the subset

• supersets – (default: only self) list of sets that the new open subset is a subset of

OUTPUT:

• the open subset, as an instance of TopologicalManifold or one of its subclasses

EXAMPLES:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: cl_D = M.subset(cl_D); cl_D
Subset cl_D of the 2-dimensional topological manifold R^2
sage: D = cl_D.open_subset(D , coord_def={c_cart: x^2+y^2<1}); D
Open subset D of the 2-dimensional topological manifold R^2
sage: D.is_subset(cl_D)
True
sage: D.is_subset(M)
True

sage: M = Manifold(2, R^2 , structure= differentiable)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: cl_D = M.subset(cl_D); cl_D
Subset cl_D of the 2-dimensional differentiable manifold R^2
sage: D = cl_D.open_subset(D , coord_def={c_cart: x^2+y^2<1}); D
Open subset D of the 2-dimensional differentiable manifold R^2
sage: D.is_subset(cl_D)
True
sage: D.is_subset(M)
True

sage: M = Manifold(2, R^2 , structure= Riemannian)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: cl_D = M.subset(cl_D); cl_D
Subset cl_D of the 2-dimensional Riemannian manifold R^2
sage: D = cl_D.open_subset(D , coord_def={c_cart: x^2+y^2<1}); D
Open subset D of the 2-dimensional Riemannian manifold R^2
sage: D.is_subset(cl_D)
True
sage: D.is_subset(M)
True

open_superset_family()

Return the family of open supersets of self.

56 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

The family is sorted by the alphabetical names of the subsets.

OUTPUT:

• a ManifoldSubsetFiniteFamily instance containing all the open supersets that have been de-
fined on the current subset

Note: If you only need to iterate over the open supersets in arbitrary order, you can use the generator method
open_supersets() instead.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = U.subset(V)
sage: W = V.subset(W)
sage: W.open_superset_family()
Set {M, U} of open subsets of the 2-dimensional topological manifold M

open_supersets()

Generate the open supersets of self.

Note: To get the open supersets as a family, sorted by name, use the method open_superset_fam-
ily() instead.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = U.subset(V)
sage: W = V.subset(W)
sage: sorted(W.open_supersets(), key=lambda S: S._name)
[2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M]

point(coords=None, chart=None, name=None, latex_name=None)
Define a point in self.

See ManifoldPoint for a complete documentation.

INPUT:

• coords – the point coordinates (as a tuple or a list) in the chart specified by chart

• chart – (default: None) chart in which the point coordinates are given; if None, the coordinates are
assumed to refer to the default chart of the current subset

• name – (default: None) name given to the point

• latex_name – (default: None) LaTeX symbol to denote the point; if None, the LaTeX symbol is set
to name

OUTPUT:

• the declared point, as an instance of ManifoldPoint

EXAMPLES:

Points on a 2-dimensional manifold:

1.2. Subsets of Topological Manifolds 57

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: p = M.point((1,2), name= p); p
Point p on the 2-dimensional topological manifold M
sage: p in M
True
sage: a = M.open_subset(A)
sage: c_uv.<u,v> = a.chart()
sage: q = a.point((-1,0), name= q); q
Point q on the 2-dimensional topological manifold M
sage: q in a
True
sage: p._coordinates
{Chart (M, (x, y)): (1, 2)}
sage: q._coordinates
{Chart (A, (u, v)): (-1, 0)}

retract(p)

Return the retract of p to self.

INPUT:

• p – point of the ambient manifold

OUTPUT:

• the same point, considered as a point of the subset

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: A = M.open_subset(A , coord_def={X: x>0})
sage: p = M((1, -2)); p
Point on the 2-dimensional topological manifold M
sage: p.parent()
2-dimensional topological manifold M
sage: q = A.retract(p); q
Point on the 2-dimensional topological manifold M
sage: q.parent()
Open subset A of the 2-dimensional topological manifold M
sage: q.coord()
(1, -2)
sage: (q == p) and (p == q)
True

Of course, if the point does not belong to A, the retract method fails:

sage: p = M((-1, 3)) # x < 0, so that p is not in A
sage: q = A.retract(p)
Traceback (most recent call last):
...
ValueError: the Point on the 2-dimensional topological manifold M
is not in Open subset A of the 2-dimensional topological manifold M

subset(name, latex_name=None, is_open=False)
Create a subset of the current subset.

INPUT:

58 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

• name – name given to the subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none are provided, it is set to
name

• is_open – (default: False) if True, the created subset is assumed to be open with respect to the
manifold’s topology

OUTPUT:

• the subset, as an instance of ManifoldSubset, or of the derived class TopologicalManifold
if is_open is True

EXAMPLES:

Creating a subset of a manifold:

sage: M = Manifold(2, M , structure= topological)
sage: a = M.subset(A); a
Subset A of the 2-dimensional topological manifold M

Creating a subset of A:

sage: b = a.subset(B , latex_name=r \mathcal{B}); b
Subset B of the 2-dimensional topological manifold M
sage: latex(b)
\mathcal{B}

We have then:

sage: b.is_subset(a)
True
sage: b in a.subsets()
True

subset_digraph(loops=False, quotient=False, open_covers=False, points=False, lower_bound=None)
Return the digraph whose arcs represent subset relations among the subsets of self.

INPUT:

• loops – (default: False) whether to include the trivial containment of each subset in itself as loops
of the digraph

• quotient – (default: False) whether to contract directed cycles in the graph,
replacing equivalence classes of equal subsets by a single vertex. In this case, each vertex of the
digraph is a set of ManifoldSubset instances.

• open_covers – (default: False) whether to include vertices for open covers

• points – (default: False) whether to include vertices for declared points; this can also be an iterable
for the points to include

• lower_bound – (default: None) only include supersets of this

OUTPUT:

A digraph. Each vertex of the digraph is either:

• a ManifoldSubsetFiniteFamily containing one instance of ManifoldSubset.

• (if open_covers is True) a tuple of ManifoldSubsetFiniteFamily instances, representing
an open cover.

EXAMPLES:

1.2. Subsets of Topological Manifolds 59

Manifolds, Release 10.4.rc1

sage: # needs sage.graphs
sage: M = Manifold(3, M)
sage: U = M.open_subset(U); V = M.open_subset(V); W = M.open_subset(W)
sage: D = M.subset_digraph(); D
Digraph on 4 vertices
sage: D.edges(sort=True, key=lambda e: (e[0]._name, e[1]._name)) #␣
→˓needs sage.graphs
[(Set {U} of open subsets of the 3-dimensional differentiable manifold M,

Set {M} of open subsets of the 3-dimensional differentiable manifold M,
None),

(Set {V} of open subsets of the 3-dimensional differentiable manifold M,
Set {M} of open subsets of the 3-dimensional differentiable manifold M,
None),

(Set {W} of open subsets of the 3-dimensional differentiable manifold M,
Set {M} of open subsets of the 3-dimensional differentiable manifold M,
None)]

sage: D.plot(layout= acyclic) #␣
→˓needs sage.plot
Graphics object consisting of 8 graphics primitives
sage: def label(element):
....: try:
....: return element._name
....: except AttributeError:
....: return [+ , .join(sorted(x._name for x in element)) +]
sage: D.relabel(label, inplace=False).plot(layout= acyclic) #␣
→˓needs sage.plot
Graphics object consisting of 8 graphics primitives
sage: VW = V.union(W)
sage: D = M.subset_digraph(); D
Digraph on 5 vertices
sage: D.relabel(label, inplace=False).plot(layout= acyclic) #␣
→˓needs sage.plot
Graphics object consisting of 12 graphics primitives

If open_covers is True, the digraph includes a special vertex for each nontrivial open cover of a subset:

sage: D = M.subset_digraph(open_covers=True) #␣
→˓needs sage.graphs
sage: D.relabel(label, inplace=False).plot(layout= acyclic) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 14 graphics primitives

subset_family()

Return the family of subsets that have been defined on the current subset.

The family is sorted by the alphabetical names of the subsets.

OUTPUT:

• a ManifoldSubsetFiniteFamily instance containing all the subsets that have been defined on
the current subset

Note: If you only need to iterate over the subsets in arbitrary order, you can use the generator method
subsets() instead.

EXAMPLES:

Subsets of a 2-dimensional manifold:

60 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

{V}

{M}

{U} {W} {V}

{M}

{U}

{V_union_W}

{W} {V}

{M}

{U}

{V_union_W}

{W}

[{V}, {W}]

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = M.subset(V)
sage: M.subset_family()
Set {M, U, V} of subsets of the 2-dimensional topological manifold M

subset_poset(open_covers=False, points=False, lower_bound=None)
Return the poset of equivalence classes of the subsets of self.

Each element of the poset is a set of ManifoldSubset instances, which are known to be equal.

INPUT:

• open_covers – (default: False) whether to include vertices for open covers

• points – (default: False) whether to include vertices for declared points; this can also be an iterable
for the points to include

• lower_bound – (default: None) only include supersets of this

EXAMPLES:

sage: # needs sage.graphs
sage: M = Manifold(3, M)
sage: U = M.open_subset(U); V = M.open_subset(V); W = M.open_subset(W)
sage: P = M.subset_poset(); P
Finite poset containing 4 elements
sage: P.plot(element_labels={element: element._name for element in P}) #␣
→˓needs sage.plot
Graphics object consisting of 8 graphics primitives
sage: VW = V.union(W)
sage: P = M.subset_poset(); P
Finite poset containing 5 elements
sage: P.maximal_elements()
[Set {M} of open subsets of the 3-dimensional differentiable manifold M]
sage: sorted(P.minimal_elements(), key=lambda v: v._name)
[Set {U} of open subsets of the 3-dimensional differentiable manifold M,
Set {V} of open subsets of the 3-dimensional differentiable manifold M,
Set {W} of open subsets of the 3-dimensional differentiable manifold M]

sage: from sage.manifolds.subset import ManifoldSubsetFiniteFamily
sage: sorted(P.lower_covers(ManifoldSubsetFiniteFamily([M])), key=str)

(continues on next page)

1.2. Subsets of Topological Manifolds 61

Manifolds, Release 10.4.rc1

(continued from previous page)

[Set {U} of open subsets of the 3-dimensional differentiable manifold M,
Set {V_union_W} of open subsets of the 3-dimensional differentiable␣

→˓manifold M]
sage: P.plot(element_labels={element: element._name for element in P}) #␣
→˓needs sage.plot
Graphics object consisting of 10 graphics primitives

If open_covers is True, the poset includes a special vertex for each nontrivial open cover of a subset:

sage: # needs sage.graphs
sage: P = M.subset_poset(open_covers=True); P
Finite poset containing 6 elements
sage: from sage.manifolds.subset import ManifoldSubsetFiniteFamily
sage: sorted(P.upper_covers(ManifoldSubsetFiniteFamily([VW])), key=str)
[(Set {V} of open subsets of the 3-dimensional differentiable manifold M,

Set {W} of open subsets of the 3-dimensional differentiable manifold M),
Set {M} of open subsets of the 3-dimensional differentiable manifold M]

sage: def label(element):
....: try:
....: return element._name
....: except AttributeError:
....: return [+ , .join(sorted(x._name for x in element)) +]
sage: P.plot(element_labels={element: label(element) for element in P}) #␣
→˓needs sage.plot
Graphics object consisting of 12 graphics primitives

{W} {V} {U}

{M}

{W} {V}

{V_union_W} {U}

{M}

{U}

{V} {W}

{V_union_W}

{M} [{V}, {W}]

subsets()

Generate the subsets that have been defined on the current subset.

Note: To get the subsets as a family, sorted by name, use the method subset_family() instead.

EXAMPLES:

Subsets of a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = M.subset(V)

(continues on next page)

62 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: frozenset(M.subsets()) # random (set output)
{Subset V of the 2-dimensional topological manifold M,
2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M}

sage: U in M.subsets()
True

The method subset_family() returns a family (sorted alphabetically by the subset names):

sage: M.subset_family()
Set {M, U, V} of subsets of the 2-dimensional topological manifold M

superset(name, latex_name=None, is_open=False)
Create a superset of the current subset.

A superset is a manifold subset in which the current subset is included.

INPUT:

• name – name given to the superset

• latex_name – (default: None) LaTeX symbol to denote the superset; if none are provided, it is set
to name

• is_open – (default: False) if True, the created subset is assumed to be open with respect to the
manifold’s topology

OUTPUT:

• the superset, as an instance of ManifoldSubset or of the derived class TopologicalManifold
if is_open is True

EXAMPLES:

Creating some superset of a given subset:

sage: M = Manifold(2, M , structure= topological)
sage: a = M.subset(A)
sage: b = a.superset(B); b
Subset B of the 2-dimensional topological manifold M
sage: b.subset_family()
Set {A, B} of subsets of the 2-dimensional topological manifold M
sage: a.superset_family()
Set {A, B, M} of subsets of the 2-dimensional topological manifold M

The superset of the whole manifold is itself:

sage: M.superset(SM) is M
True

Two supersets of a given subset are a priori different:

sage: c = a.superset(C)
sage: c == b
False

superset_digraph(loops=False, quotient=False, open_covers=False, points=False, upper_bound=None)
Return the digraph whose arcs represent subset relations among the supersets of self.

INPUT:

1.2. Subsets of Topological Manifolds 63

Manifolds, Release 10.4.rc1

• loops – (default: False) whether to include the trivial containment of each subset in itself as loops
of the digraph

• quotient – (default: False) whether to contract directed cycles in the graph,
replacing equivalence classes of equal subsets by a single vertex. In this case, each vertex of the
digraph is a set of ManifoldSubset instances.

• open_covers – (default: False) whether to include vertices for open covers

• points – (default: False) whether to include vertices for declared points; this can also be an iterable
for the points to include

• upper_bound – (default: None) only include subsets of this

EXAMPLES:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U); V = M.open_subset(V); W = M.open_subset(W)
sage: VW = V.union(W)
sage: P = V.superset_digraph(loops=False, upper_bound=VW); P #␣
→˓needs sage.graphs
Digraph on 2 vertices

superset_family()

Return the family of declared supersets of the current subset.

The family is sorted by the alphabetical names of the supersets.

OUTPUT:

• a ManifoldSubsetFiniteFamily instance containing all the supersets

Note: If you only need to iterate over the supersets in arbitrary order, you can use the generator method
supersets() instead.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = M.subset(V)
sage: V.superset_family()
Set {M, V} of subsets of the 2-dimensional topological manifold M

superset_poset(open_covers=False, points=False, upper_bound=None)
Return the poset of the supersets of self.

INPUT:

• open_covers – (default: False) whether to include vertices for open covers

• points – (default: False) whether to include vertices for declared points; this can also be an iterable
for the points to include

• upper_bound – (default: None) only include subsets of this

EXAMPLES:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U); V = M.open_subset(V); W = M.open_subset(W)
sage: VW = V.union(W)

(continues on next page)

64 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: P = V.superset_poset(); P #␣
→˓needs sage.graphs
Finite poset containing 3 elements
sage: P.plot(element_labels={element: element._name for element in P}) #␣
→˓needs sage.graphs sage.plot
Graphics object consisting of 6 graphics primitives

supersets()

Generate the declared supersets of the current subset.

Note: To get the supersets as a family, sorted by name, use the method superset_family() instead.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: V = M.subset(V)
sage: sorted(V.supersets(), key=lambda v: v._name)
[2-dimensional topological manifold M,
Subset V of the 2-dimensional topological manifold M]

union(name, latex_name, *others)
Return the union of the current subset with other subsets.

This method may return a previously constructed union instead of creating a new subset. In this case, name
and latex_name are not used.

INPUT:

• others – other subsets of the same manifold

• name – (default: None) name given to the union in the case the latter has to be created; the default is
self._name union other._name

• latex_name – (default: None) LaTeX symbol to denote the union in the case the latter has to be
created; the default is built upon the symbol ∪

OUTPUT:

• instance of ManifoldSubset representing the subset that is the union of the current subset with
others

EXAMPLES:

Union of two subsets:

sage: M = Manifold(2, M , structure= topological)
sage: a = M.subset(A)
sage: b = M.subset(B)
sage: c = a.union(b); c
Subset A_union_B of the 2-dimensional topological manifold M
sage: a.superset_family()
Set {A, A_union_B, M} of subsets of the 2-dimensional topological manifold M
sage: b.superset_family()
Set {A_union_B, B, M} of subsets of the 2-dimensional topological manifold M
sage: c.superset_family()
Set {A_union_B, M} of subsets of the 2-dimensional topological manifold M

1.2. Subsets of Topological Manifolds 65

Manifolds, Release 10.4.rc1

Union of six subsets:

sage: T = Manifold(2, T , structure= topological)
sage: S = [T.subset(f S{i}) for i in range(6)]
sage: [S[i].union(S[i+3]) for i in range(3)]
[Subset S0_union_S3 of the 2-dimensional topological manifold T,
Subset S1_union_S4 of the 2-dimensional topological manifold T,
Subset S2_union_S5 of the 2-dimensional topological manifold T]

sage: union_S_i = S[0].union(S[1:], name= union_S_i); union_S_i
Subset union_S_i of the 2-dimensional topological manifold T
sage: T.subset_family()
Set {S0, S0_union_S3, S0_union_S3_union_S1_union_S4, S1,

S1_union_S4, S2, S2_union_S5, S3, S4, S5, T, union_S_i}
of subsets of the 2-dimensional topological manifold T

{B} {A}

{A B}

{M}

{S }

{S } {S }

{S }

{S S }

{S }

{S S }

{S }

{S S }

{S S S S }

{ S }

{T}

1.3 Manifold Structures

These classes encode the structure of a manifold.

AUTHORS:

• Travis Scrimshaw (2015-11-25): Initial version

• Eric Gourgoulhon (2015): add DifferentialStructure and RealDifferentialStructure

• Eric Gourgoulhon (2018): add PseudoRiemannianStructure, RiemannianStructure and
LorentzianStructure

class sage.manifolds.structure.DegenerateStructure

Bases: Singleton

The structure of a degenerate manifold.

chart

alias of RealDiffChart

homset

alias of DifferentiableManifoldHomset

name = degenerate_metric

66 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

scalar_field_algebra

alias of DiffScalarFieldAlgebra

subcategory(cat)

Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import DegenerateStructure
sage: from sage.categories.manifolds import Manifolds
sage: DegenerateStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

class sage.manifolds.structure.DifferentialStructure

Bases: Singleton

The structure of a differentiable manifold over a general topological field.

chart

alias of DiffChart

homset

alias of DifferentiableManifoldHomset

name = differentiable

scalar_field_algebra

alias of DiffScalarFieldAlgebra

subcategory(cat)
Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import DifferentialStructure
sage: from sage.categories.manifolds import Manifolds
sage: DifferentialStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

class sage.manifolds.structure.LorentzianStructure

Bases: Singleton

The structure of a Lorentzian manifold.

chart

alias of RealDiffChart

homset

alias of DifferentiableManifoldHomset

name = Lorentzian

scalar_field_algebra

alias of DiffScalarFieldAlgebra

subcategory(cat)
Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

1.3. Manifold Structures 67

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

sage: from sage.manifolds.structure import LorentzianStructure
sage: from sage.categories.manifolds import Manifolds
sage: LorentzianStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

class sage.manifolds.structure.PseudoRiemannianStructure

Bases: Singleton

The structure of a pseudo-Riemannian manifold.

chart

alias of RealDiffChart

homset

alias of DifferentiableManifoldHomset

name = pseudo-Riemannian

scalar_field_algebra

alias of DiffScalarFieldAlgebra

subcategory(cat)
Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import PseudoRiemannianStructure
sage: from sage.categories.manifolds import Manifolds
sage: PseudoRiemannianStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

class sage.manifolds.structure.RealDifferentialStructure

Bases: Singleton

The structure of a differentiable manifold over R.

chart

alias of RealDiffChart

homset

alias of DifferentiableManifoldHomset

name = differentiable

scalar_field_algebra

alias of DiffScalarFieldAlgebra

subcategory(cat)

Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import RealDifferentialStructure
sage: from sage.categories.manifolds import Manifolds
sage: RealDifferentialStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

68 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

class sage.manifolds.structure.RealTopologicalStructure

Bases: Singleton

The structure of a topological manifold over R.

chart

alias of RealChart

homset

alias of TopologicalManifoldHomset

name = topological

scalar_field_algebra

alias of ScalarFieldAlgebra

subcategory(cat)

Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import RealTopologicalStructure
sage: from sage.categories.manifolds import Manifolds
sage: RealTopologicalStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

class sage.manifolds.structure.RiemannianStructure

Bases: Singleton

The structure of a Riemannian manifold.

chart

alias of RealDiffChart

homset

alias of DifferentiableManifoldHomset

name = Riemannian

scalar_field_algebra

alias of DiffScalarFieldAlgebra

subcategory(cat)
Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import RiemannianStructure
sage: from sage.categories.manifolds import Manifolds
sage: RiemannianStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

class sage.manifolds.structure.TopologicalStructure

Bases: Singleton

The structure of a topological manifold over a general topological field.

chart

alias of Chart

1.3. Manifold Structures 69

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

homset

alias of TopologicalManifoldHomset

name = topological

scalar_field_algebra

alias of ScalarFieldAlgebra

subcategory(cat)
Return the subcategory of cat corresponding to the structure of self.

EXAMPLES:

sage: from sage.manifolds.structure import TopologicalStructure
sage: from sage.categories.manifolds import Manifolds
sage: TopologicalStructure().subcategory(Manifolds(RR))
Category of manifolds over Real Field with 53 bits of precision

1.4 Points of Topological Manifolds

The class ManifoldPoint implements points of a topological manifold.

A ManifoldPoint object can have coordinates in various charts defined on the manifold. Two points are declared
equal if they have the same coordinates in the same chart.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

REFERENCES:

• [Lee2011]

• [Lee2013]

EXAMPLES:

Defining a point in R3 by its spherical coordinates:

sage: M = Manifold(3, R^3 , structure= topological)
sage: U = M.open_subset(U) # the domain of spherical coordinates
sage: c_spher.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):periodic:\
→˓phi)

We construct the point in the coordinates in the default chart of U (c_spher):

sage: p = U((1, pi/2, pi), name= P)
sage: p
Point P on the 3-dimensional topological manifold R^3
sage: latex(p)
P
sage: p in U
True
sage: p.parent()
Open subset U of the 3-dimensional topological manifold R^3
sage: c_spher(p)
(1, 1/2*pi, pi)
sage: p.coordinates(c_spher) # equivalent to above
(1, 1/2*pi, pi)

70 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

Computing the coordinates of p in a new chart:

sage: c_cart.<x,y,z> = U.chart() # Cartesian coordinates on U
sage: spher_to_cart = c_spher.transition_map(c_cart,
....: [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)])
sage: c_cart(p) # evaluate P s Cartesian coordinates
(-1, 0, 0)

Points can be compared:

sage: p1 = U((1, pi/2, pi))
sage: p1 == p
True
sage: q = U((2, pi/2, pi))
sage: q == p
False

even if they were initially not defined within the same coordinate chart:

sage: p2 = U((-1,0,0), chart=c_cart)
sage: p2 == p
True

The 2𝜋-periodicity of the 𝜑 coordinate is also taken into account for the comparison:

sage: p3 = U((1, pi/2, 5*pi))
sage: p3 == p
True
sage: p4 = U((1, pi/2, -pi))
sage: p4 == p
True

class sage.manifolds.point.ManifoldPoint(parent, coords=None, chart=None, name=None,
latex_name=None, check_coords=True)

Bases: Element

Point of a topological manifold.

This is a Sage element class, the corresponding parent class being TopologicalManifold or Manifold-
Subset.

INPUT:

• parent – the manifold subset to which the point belongs

• coords – (default: None) the point coordinates (as a tuple or a list) in the chart chart

• chart – (default: None) chart in which the coordinates are given; if None, the coordinates are assumed to
refer to the default chart of parent

• name – (default: None) name given to the point

• latex_name – (default: None) LaTeX symbol to denote the point; if None, the LaTeX symbol is set to
name

• check_coords – (default: True) determines whethercoords are valid coordinates for the chartchart;
for symbolic coordinates, it is recommended to set check_coords to False

EXAMPLES:

A point on a 2-dimensional manifold:

1.4. Points of Topological Manifolds 71

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: (a, b) = var(a b) # generic coordinates for the point
sage: p = M.point((a, b), name= P); p
Point P on the 2-dimensional topological manifold M
sage: p.coordinates() # coordinates of P in the subset s default chart
(a, b)

Since points are Sage elements, the parent of which being the subset on which they are defined, it is equivalent to
write:

sage: p = M((a, b), name= P); p
Point P on the 2-dimensional topological manifold M

A point is an element of the manifold subset in which it has been defined:

sage: p in M
True
sage: p.parent()
2-dimensional topological manifold M
sage: U = M.open_subset(U , coord_def={c_xy: x>0})
sage: q = U.point((2,1), name= q)
sage: q.parent()
Open subset U of the 2-dimensional topological manifold M
sage: q in U
True
sage: q in M
True

By default, the LaTeX symbol of the point is deduced from its name:

sage: latex(p)
P

But it can be set to any value:

sage: p = M.point((a, b), name= P , latex_name=r \mathcal{P})
sage: latex(p)
\mathcal{P}

Points can be drawn in 2D or 3D graphics thanks to the method plot().

add_coord(coords, chart=None)
Adds some coordinates in the specified chart.

The previous coordinates with respect to other charts are kept. To clear them, use set_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates
are assumed to refer to the subset’s default chart

Warning: If the point has already coordinates in other charts, it is the user’s responsibility to make sure
that the coordinates to be added are consistent with them.

72 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: p = M.point()

We give the point some coordinates in the manifold’s default chart:

sage: p.add_coordinates((2,-3))
sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)

A shortcut for add_coordinates is add_coord:

sage: p.add_coord((2,-3))
sage: p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])

If we add coordinates for p in chart Y, those in chart X are kept:

sage: p.add_coordinates((-1,5), chart=Y)
sage: p._coordinates # random (dictionary output)
{Chart (M, (u, v)): (-1, 5), Chart (M, (x, y)): (2, -3)}

On the contrary, with the method set_coordinates(), the coordinates in charts different from Y would
be lost:

sage: p.set_coordinates((-1,5), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}

add_coordinates(coords, chart=None)
Adds some coordinates in the specified chart.

The previous coordinates with respect to other charts are kept. To clear them, use set_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates
are assumed to refer to the subset’s default chart

Warning: If the point has already coordinates in other charts, it is the user’s responsibility to make sure
that the coordinates to be added are consistent with them.

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

1.4. Points of Topological Manifolds 73

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: p = M.point()

We give the point some coordinates in the manifold’s default chart:

sage: p.add_coordinates((2,-3))
sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)

A shortcut for add_coordinates is add_coord:

sage: p.add_coord((2,-3))
sage: p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])

If we add coordinates for p in chart Y, those in chart X are kept:

sage: p.add_coordinates((-1,5), chart=Y)
sage: p._coordinates # random (dictionary output)
{Chart (M, (u, v)): (-1, 5), Chart (M, (x, y)): (2, -3)}

On the contrary, with the method set_coordinates(), the coordinates in charts different from Y would
be lost:

sage: p.set_coordinates((-1,5), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}

coord(chart=None, old_chart=None)
Return the point coordinates in the specified chart.

If these coordinates are not already known, they are computed from known ones by means of change-of-chart
formulas.

An equivalent way to get the coordinates of a point is to let the chart acting on the point, i.e. if X is a chart
and p a point, one has p.coordinates(chart=X) == X(p).

INPUT:

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates
are assumed to refer to the subset’s default chart

• old_chart – (default: None) chart from which the coordinates in chart are to be computed; if
None, a chart in which the point’s coordinates are already known will be picked, privileging the subset’s
default chart

EXAMPLES:

Spherical coordinates of a point on R3:

74 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= topological)
sage: c_spher.<r,th,ph> = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi) # spherical coordinates
sage: p = M.point((1, pi/2, pi))
sage: p.coordinates() # coordinates in the manifold s default chart
(1, 1/2*pi, pi)

Since the default chart of M is c_spher, it is equivalent to write:

sage: p.coordinates(c_spher)
(1, 1/2*pi, pi)

An alternative way to get the coordinates is to let the chart act on the point (from the very definition of a
chart):

sage: c_spher(p)
(1, 1/2*pi, pi)

A shortcut for coordinates is coord:

sage: p.coord()
(1, 1/2*pi, pi)

Computing the Cartesian coordinates from the spherical ones:

sage: c_cart.<x,y,z> = M.chart() # Cartesian coordinates
sage: c_spher.transition_map(c_cart, [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph), r*cos(th)])
Change of coordinates from Chart (M, (r, th, ph)) to Chart (M, (x, y, z))

The computation is performed by means of the above change of coordinates:

sage: p.coord(c_cart)
(-1, 0, 0)
sage: p.coord(c_cart) == c_cart(p)
True

Coordinates of a point on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: (a, b) = var(a b) # generic coordinates for the point
sage: P = M.point((a, b), name= P)

Coordinates of P in the manifold’s default chart:

sage: P.coord()
(a, b)

Coordinates of P in a new chart:

sage: c_uv.<u,v> = M.chart()
sage: ch_xy_uv = c_xy.transition_map(c_uv, [x-y, x+y])
sage: P.coord(c_uv)
(a - b, a + b)

Coordinates of P in a third chart:

1.4. Points of Topological Manifolds 75

Manifolds, Release 10.4.rc1

sage: c_wz.<w,z> = M.chart()
sage: ch_uv_wz = c_uv.transition_map(c_wz, [u^3, v^3])
sage: P.coord(c_wz, old_chart=c_uv)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)

Actually, in the present case, it is not necessary to specify old_chart= uv . Note that the first command
erases all the coordinates except those in the chart c_uv:

sage: P.set_coord((a-b, a+b), c_uv)
sage: P._coordinates
{Chart (M, (u, v)): (a - b, a + b)}
sage: P.coord(c_wz)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
sage: P._coordinates # random (dictionary output)
{Chart (M, (u, v)): (a - b, a + b),
Chart (M, (w, z)): (a^3 - 3*a^2*b + 3*a*b^2 - b^3,

a^3 + 3*a^2*b + 3*a*b^2 + b^3)}

coordinates(chart=None, old_chart=None)
Return the point coordinates in the specified chart.

If these coordinates are not already known, they are computed from known ones by means of change-of-chart
formulas.

An equivalent way to get the coordinates of a point is to let the chart acting on the point, i.e. if X is a chart
and p a point, one has p.coordinates(chart=X) == X(p).

INPUT:

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates
are assumed to refer to the subset’s default chart

• old_chart – (default: None) chart from which the coordinates in chart are to be computed; if
None, a chart in which the point’s coordinates are already known will be picked, privileging the subset’s
default chart

EXAMPLES:

Spherical coordinates of a point on R3:

sage: M = Manifold(3, M , structure= topological)
sage: c_spher.<r,th,ph> = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi) # spherical coordinates
sage: p = M.point((1, pi/2, pi))
sage: p.coordinates() # coordinates in the manifold s default chart
(1, 1/2*pi, pi)

Since the default chart of M is c_spher, it is equivalent to write:

sage: p.coordinates(c_spher)
(1, 1/2*pi, pi)

An alternative way to get the coordinates is to let the chart act on the point (from the very definition of a
chart):

sage: c_spher(p)
(1, 1/2*pi, pi)

A shortcut for coordinates is coord:

76 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: p.coord()
(1, 1/2*pi, pi)

Computing the Cartesian coordinates from the spherical ones:

sage: c_cart.<x,y,z> = M.chart() # Cartesian coordinates
sage: c_spher.transition_map(c_cart, [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph), r*cos(th)])
Change of coordinates from Chart (M, (r, th, ph)) to Chart (M, (x, y, z))

The computation is performed by means of the above change of coordinates:

sage: p.coord(c_cart)
(-1, 0, 0)
sage: p.coord(c_cart) == c_cart(p)
True

Coordinates of a point on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: (a, b) = var(a b) # generic coordinates for the point
sage: P = M.point((a, b), name= P)

Coordinates of P in the manifold’s default chart:

sage: P.coord()
(a, b)

Coordinates of P in a new chart:

sage: c_uv.<u,v> = M.chart()
sage: ch_xy_uv = c_xy.transition_map(c_uv, [x-y, x+y])
sage: P.coord(c_uv)
(a - b, a + b)

Coordinates of P in a third chart:

sage: c_wz.<w,z> = M.chart()
sage: ch_uv_wz = c_uv.transition_map(c_wz, [u^3, v^3])
sage: P.coord(c_wz, old_chart=c_uv)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)

Actually, in the present case, it is not necessary to specify old_chart= uv . Note that the first command
erases all the coordinates except those in the chart c_uv:

sage: P.set_coord((a-b, a+b), c_uv)
sage: P._coordinates
{Chart (M, (u, v)): (a - b, a + b)}
sage: P.coord(c_wz)
(a^3 - 3*a^2*b + 3*a*b^2 - b^3, a^3 + 3*a^2*b + 3*a*b^2 + b^3)
sage: P._coordinates # random (dictionary output)
{Chart (M, (u, v)): (a - b, a + b),
Chart (M, (w, z)): (a^3 - 3*a^2*b + 3*a*b^2 - b^3,

a^3 + 3*a^2*b + 3*a*b^2 + b^3)}

plot(chart=None, ambient_coords=None, mapping=None, label=None, parameters=None, size=10,
color='black', label_color=None, fontsize=10, label_offset=0.1, **kwds)

1.4. Points of Topological Manifolds 77

Manifolds, Release 10.4.rc1

For real manifolds, plot self in a Cartesian graph based on the coordinates of some ambient chart.

The point is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of a given chart, called
hereafter the ambient chart. The domain of the ambient chart must contain the point, or its image by a
continuous manifold map Φ.

INPUT:

• chart – (default: None) the ambient chart (see above); if None, the ambient chart is set the default
chart of self.parent()

• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in
terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered

• mapping – (default: None) ContinuousMap; continuous manifold map Φ providing the link be-
tween the current point 𝑝 and the ambient chart chart: the domain of chart must contain Φ(𝑝); if
None, the identity map is assumed

• label – (default: None) label printed next to the point; if None, the point’s name is used

• parameters – (default: None) dictionary giving the numerical values of the parameters that may
appear in the point coordinates

• size – (default: 10) size of the point once drawn as a small disk or sphere

• color – (default: black) color of the point

• label_color – (default: None) color to print the label; if None, the value of color is used

• fontsize – (default: 10) size of the font used to print the label

• label_offset – (default: 0.1) determines the separation between the point and its label

OUTPUT:

• a graphic object, either an instance of Graphics for a 2D plot (i.e. based on 2 coordinates of the
ambient chart) or an instance of Graphics3d for a 3D plot (i.e. based on 3 coordinates of the ambient
chart)

EXAMPLES:

Drawing a point on a 2-dimensional manifold:

sage: # needs sage.plot
sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: p = M.point((1,3), name= p)
sage: g = p.plot(X)
sage: print(g)
Graphics object consisting of 2 graphics primitives
sage: gX = X.plot(max_range=4) # plot of the coordinate grid
sage: g + gX # display of the point atop the coordinate grid
Graphics object consisting of 20 graphics primitives

Actually, since X is the default chart of the open set in which p has been defined, it can be skipped in the
arguments of plot:

sage: # needs sage.plot
sage: g = p.plot()
sage: g + gX
Graphics object consisting of 20 graphics primitives

78 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/plotting/sage/plot/graphics.html#sage.plot.graphics.Graphics
../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d

Manifolds, Release 10.4.rc1

4 3 2 1 1 2 3 4
x

4

3

2

1

1

2

3

4

y

p

1.4. Points of Topological Manifolds 79

Manifolds, Release 10.4.rc1

Call with some options:

sage: # needs sage.plot
sage: g = p.plot(chart=X, size=40, color= green , label= P ,
....: label_color= blue , fontsize=20, label_offset=0.3)
sage: g + gX
Graphics object consisting of 20 graphics primitives

4 3 2 1 1 2 3 4
x

4

3

2

1

1

2

3

4

y

P

Use of the parameters option to set a numerical value of some symbolic variable:

sage: a = var(a)
sage: q = M.point((a,2*a), name= q) #␣
→˓needs sage.plot
sage: gq = q.plot(parameters={a:-2}, label_offset=0.2) #␣
→˓needs sage.plot
sage: g + gX + gq #␣
→˓needs sage.plot
Graphics object consisting of 22 graphics primitives

The numerical value is used only for the plot:

sage: q.coord() #␣
→˓needs sage.plot
(a, 2*a)

Drawing a point on a 3-dimensional manifold:

80 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

4 3 2 1 1 2 3 4
x

4

3

2

1

1

2

3

4

y

P

q

1.4. Points of Topological Manifolds 81

Manifolds, Release 10.4.rc1

sage: # needs sage.plot
sage: M = Manifold(3, M , structure= topological)
sage: X.<x,y,z> = M.chart()
sage: p = M.point((2,1,3), name= p)
sage: g = p.plot()
sage: print(g)
Graphics3d Object
sage: gX = X.plot(number_values=5) # coordinate mesh cube
sage: g + gX # display of the point atop the coordinate mesh
Graphics3d Object

Call with some options:

sage: g = p.plot(chart=X, size=40, color= green , label= P_1 , #␣
→˓needs sage.plot
....: label_color= blue , fontsize=20, label_offset=0.3)
sage: g + gX #␣
→˓needs sage.plot
Graphics3d Object

An example of plot via a mapping: plot of a point on a 2-sphere viewed in the 3-dimensional space M:

sage: # needs sage.plot
sage: S2 = Manifold(2, S^2 , structure= topological)
sage: U = S2.open_subset(U) # the open set covered by spherical coord.
sage: XS.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: p = U.point((pi/4, pi/8), name= p)
sage: F = S2.continuous_map(M, {(XS, X): [sin(th)*cos(ph),
....: sin(th)*sin(ph), cos(th)]}, name= F)
sage: F.display()
F: S^2 → M
on U: (th, ph) ↦ (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
sage: g = p.plot(chart=X, mapping=F)
sage: gS2 = XS.plot(chart=X, mapping=F, number_values=9)
sage: g + gS2
Graphics3d Object

Use of the option ambient_coords for plots on a 4-dimensional manifold:

sage: # needs sage.plot
sage: M = Manifold(4, M , structure= topological)
sage: X.<t,x,y,z> = M.chart()
sage: p = M.point((1,2,3,4), name= p)
sage: g = p.plot(X, ambient_coords=(t,x,y), label_offset=0.4) # the␣
→˓coordinate z is skipped
sage: gX = X.plot(X, ambient_coords=(t,x,y), number_values=5) # long time
sage: g + gX # 3D plot # long time
Graphics3d Object
sage: g = p.plot(X, ambient_coords=(t,y,z), label_offset=0.4) # the␣
→˓coordinate x is skipped
sage: gX = X.plot(X, ambient_coords=(t,y,z), number_values=5) # long time
sage: g + gX # 3D plot # long time
Graphics3d Object
sage: g = p.plot(X, ambient_coords=(y,z), label_offset=0.4) # the␣
→˓coordinates t and x are skipped
sage: gX = X.plot(X, ambient_coords=(y,z))
sage: g + gX # 2D plot
Graphics object consisting of 20 graphics primitives

82 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
y

8

6

4

2

2

4

6

8

z

p

1.4. Points of Topological Manifolds 83

Manifolds, Release 10.4.rc1

set_coord(coords, chart=None)
Sets the point coordinates in the specified chart.

Coordinates with respect to other charts are deleted, in order to avoid any inconsistency. To keep them, use
the method add_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates
are assumed to refer to the subset’s default chart

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: p = M.point()

We set the coordinates in the manifold’s default chart:

sage: p.set_coordinates((2,-3))
sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)

A shortcut for set_coordinates is set_coord:

sage: p.set_coord((2,-3))
sage: p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])

If we set the coordinates of p in chart Y, those in chart X are lost:

sage: Y(p)
(-1, 5)
sage: p.set_coord(Y(p), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}

set_coordinates(coords, chart=None)
Sets the point coordinates in the specified chart.

Coordinates with respect to other charts are deleted, in order to avoid any inconsistency. To keep them, use
the method add_coord() instead.

INPUT:

• coords – the point coordinates (as a tuple or a list)

• chart – (default: None) chart in which the coordinates are given; if none are provided, the coordinates
are assumed to refer to the subset’s default chart

84 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Setting coordinates to a point on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: p = M.point()

We set the coordinates in the manifold’s default chart:

sage: p.set_coordinates((2,-3))
sage: p.coordinates()
(2, -3)
sage: X(p)
(2, -3)

A shortcut for set_coordinates is set_coord:

sage: p.set_coord((2,-3))
sage: p.coord()
(2, -3)

Let us introduce a second chart on the manifold:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])

If we set the coordinates of p in chart Y, those in chart X are lost:

sage: Y(p)
(-1, 5)
sage: p.set_coord(Y(p), chart=Y)
sage: p._coordinates
{Chart (M, (u, v)): (-1, 5)}

1.5 Coordinate Charts

1.5.1 Coordinate Charts

The class Chart implements coordinate charts on a topological manifold over a topological field 𝐾. The subclass
RealChart is devoted to the case 𝐾 = R, for which the concept of coordinate range is meaningful. Moreover,
RealChart is endowed with some plotting capabilities (cf. method plot()).

Transition maps between charts are implemented via the class CoordChange.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Travis Scrimshaw (2015): review tweaks

• Eric Gourgoulhon (2019): periodic coordinates, add calculus_method()

REFERENCES:

• Chap. 2 of [Lee2011]

• Chap. 1 of [Lee2013]

1.5. Coordinate Charts 85

Manifolds, Release 10.4.rc1

class sage.manifolds.chart.Chart(domain, coordinates, calc_method=None, periods=None,
coord_restrictions=None)

Bases: UniqueRepresentation, SageObject

Chart on a topological manifold.

Given a topological manifold𝑀 of dimension 𝑛 over a topological field 𝐾, a chart on𝑀 is a pair (𝑈,𝜙), where
𝑈 is an open subset of𝑀 and 𝜙 : 𝑈 → 𝑉 ⊂ 𝐾𝑛 is a homeomorphism from 𝑈 to an open subset 𝑉 of𝐾𝑛.

The components (𝑥1, . . . , 𝑥𝑛) of 𝜙, defined by 𝜙(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) ∈ 𝐾𝑛 for any point 𝑝 ∈ 𝑈 , are called
the coordinates of the chart (𝑈,𝜙).

INPUT:

• domain – open subset𝑈 on which the chart is defined (must be an instance of TopologicalManifold)

• coordinates – (default: ‘’ (empty string)) single string defining the coordinate symbols, with (whites-
pace) as a separator; each item has at most three fields, separated by a colon (:):

1. the coordinate symbol (a letter or a few letters)

2. (optional) the period of the coordinate if the coordinate is periodic; the period field must be written as
period=T, where T is the period (see examples below)

3. (optional) the LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first
field will be used

The order of fields 2 and 3 does not matter and each of them can be omitted. If it contains any LaTeX
expression, the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper
treatment of LaTeX’s backslash character (see examples below). If no period and no LaTeX spelling are to
be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is
used to declare the chart (see examples below).

• calc_method – (default: None) string defining the calculus method for computations involving coordi-
nates of the chart; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the default of CalculusMethod will be used

• names – (default: None) unused argument, except if coordinates is not provided; it must then be a
tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

• coord_restrictions: Additional restrictions on the coordinates. A restriction can be any symbolic
equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the
list (or set or frozenset) coord_restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list (or set or frozenset) coord_restrictions. For example:

coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_re-
strictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the
single element list [x > y]. If the chart variables have not been declared as variables yet, coord_re-
strictions must be lambda-quoted.

EXAMPLES:

A chart on a complex 2-dimensional topological manifold:

86 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X = M.chart(x y); X
Chart (M, (x, y))
sage: latex(X)
\left(M,(x, y)\right)
sage: type(X)
<class sage.manifolds.chart.Chart >

To manipulate the coordinates (𝑥, 𝑦) as global variables, one has to set:

sage: x,y = X[:]

However, a shortcut is to use the declarator <x,y> in the left-hand side of the chart declaration (there is then no
need to pass the string x y to chart()):

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x,y> = M.chart(); X
Chart (M, (x, y))

The coordinates are then immediately accessible:

sage: y
y
sage: x is X[0] and y is X[1]
True

Note that x and y declared in <x,y> are mere Python variable names and do not have to coincide with the
coordinate symbols; for instance, one may write:

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x1,y1> = M.chart(x y); X
Chart (M, (x, y))

Then y is not known as a global Python variable and the coordinate 𝑦 is accessible only through the global variable
y1:

sage: y1
y
sage: latex(y1)
y
sage: y1 is X[1]
True

However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is
recommended to declare:

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x,y> = M.chart()

In the above example, the chart X covers entirely the manifold M:

sage: X.domain()
Complex 2-dimensional topological manifold M

Of course, one may declare a chart only on an open subset of M:

1.5. Coordinate Charts 87

Manifolds, Release 10.4.rc1

sage: U = M.open_subset(U)
sage: Y.<z1, z2> = U.chart(r z1:\zeta_1 z2:\zeta_2); Y
Chart (U, (z1, z2))
sage: Y.domain()
Open subset U of the Complex 2-dimensional topological manifold M

In the above declaration, we have also specified some LaTeX writing of the coordinates different from the text one:

sage: latex(z1)
{\zeta_1}

Note the prefix r in front of the string r z1:\zeta_1 z2:\zeta_2 ; it makes sure that the backslash
character is treated as an ordinary character, to be passed to the LaTeX interpreter.

Periodic coordinates are declared through the keyword period= in the coordinate field:

sage: N = Manifold(2, N , field= complex , structure= topological)
sage: XN.<Z1,Z2> = N.chart(Z1:period=1+2*I Z2)
sage: XN.periods()
(2*I + 1, None)

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(z1)
<class sage.symbolic.expression.Expression >

In addition to the Python variable name provided in the operator <.,.>, the coordinates are accessible by their
indices:

sage: Y[0], Y[1]
(z1, z2)

The index range is that declared during the creation of the manifold. By default, it starts at 0, but this can be
changed via the parameter start_index:

sage: M1 = Manifold(2, M_1 , field= complex , structure= topological ,
....: start_index=1)
sage: Z.<u,v> = M1.chart()
sage: Z[1], Z[2]
(u, v)

The full set of coordinates is obtained by means of the slice operator [:]:

sage: Y[:]
(z1, z2)

Some partial sets of coordinates:

sage: Y[:1]
(z1,)
sage: Y[1:]
(z2,)

Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (M, (x, y)), Chart (U, (z1, z2))]

88 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#module-sage.symbolic.expression

Manifolds, Release 10.4.rc1

and to the atlas of the chart’s domain:

sage: U.atlas()
[Chart (U, (z1, z2))]

Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the
first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (M, (x, y))
sage: U.default_chart()
Chart (U, (z1, z2))

The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the
argument list of functions having an optional chart= argument.

The chart map 𝜙 acting on a point is obtained by passing it as an input to the map:

sage: p = M.point((1+i, 2), chart=X); p
Point on the Complex 2-dimensional topological manifold M
sage: X(p)
(I + 1, 2)
sage: X(p) == p.coord(X)
True

Setting additional coordinate restrictions:

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x,y> = M.chart(coord_restrictions=lambda x,y: abs(x) > 1)
sage: X.valid_coordinates(2+i, 1)
True
sage: X.valid_coordinates(i, 1)
False

See also:

sage.manifolds.chart.RealChart for charts on topological manifolds over R.

add_restrictions(restrictions)
Add some restrictions on the coordinates.

This is deprecated; provide the restrictions at the time of creating the chart.

INPUT:

• restrictions – list of restrictions on the coordinates, in addition to the ranges declared by the
intervals specified in the chart constructor

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

EXAMPLES:

1.5. Coordinate Charts 89

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.add_restrictions(abs(x) > 1)
doctest:warning...
DeprecationWarning: Chart.add_restrictions is deprecated; provide the
restrictions at the time of creating the chart
See https://github.com/sagemath/sage/issues/32102 for details.
sage: X.valid_coordinates(2+i, 1)
True
sage: X.valid_coordinates(i, 1)
False

calculus_method()

Return the interface governing the calculus engine for expressions involving coordinates of this chart.

The calculus engine can be one of the following:

• Sage’s symbolic engine (Pynac + Maxima), implemented via the Symbolic Ring SR

• SymPy

See also:

CalculusMethod for a complete documentation.

OUTPUT:

• an instance of CalculusMethod

EXAMPLES:

The default calculus method relies on Sage’s Symbolic Ring:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.calculus_method()
Available calculus methods (* = current):
- SR (default) (*)
- sympy

Accordingly the method expr() of a function f defined on the chart X returns a Sage symbolic expression:

sage: f = X.function(x^2 + cos(y)*sin(x))
sage: f.expr()
x^2 + cos(y)*sin(x)
sage: type(f.expr())
<class sage.symbolic.expression.Expression >
sage: parent(f.expr())
Symbolic Ring
sage: f.display()
(x, y) ↦ x^2 + cos(y)*sin(x)

Changing to SymPy:

sage: X.calculus_method().set(sympy)
sage: f.expr()
x**2 + sin(x)*cos(y)
sage: type(f.expr())
<class sympy.core.add.Add >
sage: parent(f.expr())

(continues on next page)

90 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

<class sympy.core.add.Add >
sage: f.display()
(x, y) ↦ x**2 + sin(x)*cos(y)

Back to the Symbolic Ring:

sage: X.calculus_method().set(SR)
sage: f.display()
(x, y) ↦ x^2 + cos(y)*sin(x)

codomain()

Return the codomain of self as a set.

EXAMPLES:

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.codomain()
Vector space of dimension 2 over Complex Field with 53 bits of precision

domain()

Return the open subset on which the chart is defined.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.domain()
2-dimensional topological manifold M
sage: U = M.open_subset(U)
sage: Y.<u,v> = U.chart()
sage: Y.domain()
Open subset U of the 2-dimensional topological manifold M

function(expression, calc_method=None, expansion_symbol=None, order=None)
Define a coordinate function to the base field.

If the current chart belongs to the atlas of a 𝑛-dimensional manifold over a topological field 𝐾, a coordinate
function is a map

𝑓 : 𝑉 ⊂ 𝐾𝑛 −→ 𝐾
(𝑥1, . . . , 𝑥𝑛) ↦−→ 𝑓(𝑥1, . . . , 𝑥𝑛),

where 𝑉 is the chart codomain and (𝑥1, . . . , 𝑥𝑛) are the chart coordinates.

INPUT:

• expression – a symbolic expression involving the chart coordinates, to represent 𝑓(𝑥1, . . . , 𝑥𝑛)

• calc_method – string (default: None): the calculus method with respect to which the internal ex-
pression of the function must be initialized from expression; one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the chart current calculus method is assumed

• expansion_symbol – (default: None) symbolic variable (the “small parameter”) with respect to
which the coordinate expression is expanded in power series (around the zero value of this variable)

1.5. Coordinate Charts 91

Manifolds, Release 10.4.rc1

• order – integer (default: None); the order of the expansion if expansion_symbol is not None;
the order is defined as the degree of the polynomial representing the truncated power series in expan-
sion_symbol.

Warning: The value of order is 𝑛 − 1, where 𝑛 is the order of the big 𝑂 in the power series
expansion

OUTPUT:

• instance of ChartFunction representing the coordinate function 𝑓

EXAMPLES:

A symbolic coordinate function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(sin(x*y))
sage: f
sin(x*y)
sage: type(f)
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >
sage: f.display()
(x, y) ↦ sin(x*y)
sage: f(2,3)
sin(6)

Using SymPy for the internal representation of the function (dictionary _express):

sage: g = X.function(x^2 + x*cos(y), calc_method= sympy)
sage: g._express
{ sympy : x**2 + x*cos(y)}

On the contrary, for f, only the SR part has been initialized:

sage: f._express
{ SR : sin(x*y)}

See ChartFunction for more examples.

function_ring()

Return the ring of coordinate functions on self.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.function_ring()
Ring of chart functions on Chart (M, (x, y))

manifold()

Return the manifold on which the chart is defined.

EXAMPLES:

92 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: X.<x,y> = U.chart()
sage: X.manifold()
2-dimensional topological manifold M
sage: X.domain()
Open subset U of the 2-dimensional topological manifold M

multifunction(*expressions)
Define a coordinate function to some Cartesian power of the base field.

If 𝑛 and𝑚 are two positive integers and (𝑈,𝜙) is a chart on a topological manifold𝑀 of dimension 𝑛 over
a topological field𝐾, a multi-coordinate function associated to (𝑈,𝜙) is a map

𝑓 : 𝑉 ⊂ 𝐾𝑛 −→ 𝐾𝑚

(𝑥1, . . . , 𝑥𝑛) ↦−→ (𝑓1(𝑥
1, . . . , 𝑥𝑛), . . . , 𝑓𝑚(𝑥1, . . . , 𝑥𝑛)),

where 𝑉 is the codomain of 𝜙. In other words, 𝑓 is a 𝐾𝑚-valued function of the coordinates associated to
the chart (𝑈,𝜙).

See MultiCoordFunction for a complete documentation.

INPUT:

• expressions – list (or tuple) of𝑚 elements to construct the coordinate functions 𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑚); for
symbolic coordinate functions, this must be symbolic expressions involving the chart coordinates, while
for numerical coordinate functions, this must be data file names

OUTPUT:

• a MultiCoordFunction representing 𝑓

EXAMPLES:

Function of two coordinates with values in R3:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x+y, sin(x*y), x^2 + 3*y); f
Coordinate functions (x + y, sin(x*y), x^2 + 3*y) on the Chart (M, (x, y))
sage: f(2,3)
(5, sin(6), 13)

one_function()

Return the constant function of the coordinates equal to one.

If the current chart belongs to the atlas of a 𝑛-dimensional manifold over a topological field 𝐾, the “one”
coordinate function is the map

𝑓 : 𝑉 ⊂ 𝐾𝑛 −→ 𝐾
(𝑥1, . . . , 𝑥𝑛) ↦−→ 1,

where 𝑉 is the chart codomain.

See class ChartFunction for a complete documentation.

OUTPUT:

• a ChartFunction representing the one coordinate function 𝑓

EXAMPLES:

1.5. Coordinate Charts 93

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.one_function()
1
sage: X.one_function().display()
(x, y) ↦ 1
sage: type(X.one_function())
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >

The result is cached:

sage: X.one_function() is X.one_function()
True

One function on a p-adic manifold:

sage: # needs sage.rings.padics
sage: M = Manifold(2, M , structure= topological , field=Qp(5)); M
2-dimensional topological manifold M over the 5-adic Field with
capped relative precision 20

sage: X.<x,y> = M.chart()
sage: X.one_function()
1 + O(5^20)
sage: X.one_function().display()
(x, y) ↦ 1 + O(5^20)

periods()

Return the coordinate periods.

OUTPUT:

• a tuple containing the period of each coordinate, with the value None if the coordinate is not periodic

EXAMPLES:

A chart without any periodic coordinate:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.periods()
(None, None)

Charts with a periodic coordinate:

sage: Y.<u,v> = M.chart("u v:(0,2*pi):periodic")
sage: Y.periods()
(None, 2*pi)
sage: Z.<a,b> = M.chart(r"a:period=sqrt(2):\alpha b:\beta")
sage: Z.periods()
(sqrt(2), None)

Complex manifold with a periodic coordinate:

sage: M = Manifold(2, M , field= complex , structure= topological ,
....: start_index=1)
sage: X.<x,y> = M.chart("x y:period=1+I")
sage: X.periods()
(None, I + 1)

94 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

preimage(codomain_subset, name=None, latex_name=None)
Return the preimage (pullback) of codomain_subset under self.

It is the subset of the domain of self formed by the points whose coordinate vectors lie in
codomain_subset.

INPUT:

• codomain_subset – an instance of ConvexSet_base or another object with a __contains__
method that accepts coordinate vectors

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is
set to name

OUTPUT:

• either a TopologicalManifold or a ManifoldSubsetPullback

EXAMPLES:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2

Pulling back a polytope under a chart:

sage: # needs sage.geometry.polyhedron
sage: P = Polyhedron(vertices=[[0, 0], [1, 2], [2, 1]]); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: McP = c_cart.preimage(P); McP
Subset x_y_inv_P of the 2-dimensional topological manifold R^2
sage: M((1, 2)) in McP
True
sage: M((2, 0)) in McP
False

Pulling back the interior of a polytope under a chart:

sage: # needs sage.geometry.polyhedron
sage: int_P = P.interior(); int_P
Relative interior of
a 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices

sage: McInt_P = c_cart.preimage(int_P, name= McInt_P); McInt_P
Open subset McInt_P of the 2-dimensional topological manifold R^2
sage: M((0, 0)) in McInt_P
False
sage: M((1, 1)) in McInt_P
True

Pulling back a point lattice:

sage: W = span([[1, 0], [3, 5]], ZZ); W
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 5]
sage: McW = c_cart.pullback(W, name= McW); McW
Subset McW of the 2-dimensional topological manifold R^2
sage: M((4, 5)) in McW

(continues on next page)

1.5. Coordinate Charts 95

../../../../../../html/en/reference/discrete_geometry/sage/geometry/convex_set.html#sage.geometry.convex_set.ConvexSet_base

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: M((4, 4)) in McW
False

Pulling back a real vector subspaces:

sage: V = span([[1, 2]], RR); V
Vector space of degree 2 and dimension 1 over Real Field with 53 bits of␣
→˓precision
Basis matrix:
[1.00000000000000 2.00000000000000]
sage: McV = c_cart.pullback(V, name= McV); McV
Subset McV of the 2-dimensional topological manifold R^2
sage: M((2, 4)) in McV
True
sage: M((1, 0)) in McV
False

Pulling back a finite set of points:

sage: F = Family([vector(QQ, [1, 2], immutable=True),
....: vector(QQ, [2, 3], immutable=True)])
sage: McF = c_cart.pullback(F, name= McF); McF
Subset McF of the 2-dimensional topological manifold R^2
sage: M((2, 3)) in McF
True
sage: M((0, 0)) in McF
False

Pulling back the integers:

sage: R = manifolds.RealLine(); R
Real number line ℝ
sage: McZ = R.canonical_chart().pullback(ZZ, name= ℤ); McZ
Subset ℤ of the Real number line ℝ
sage: R((3/2,)) in McZ
False
sage: R((-2,)) in McZ
True

pullback(codomain_subset, name=None, latex_name=None)
Return the preimage (pullback) of codomain_subset under self.

It is the subset of the domain of self formed by the points whose coordinate vectors lie in
codomain_subset.

INPUT:

• codomain_subset – an instance of ConvexSet_base or another object with a __contains__
method that accepts coordinate vectors

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is
set to name

OUTPUT:

• either a TopologicalManifold or a ManifoldSubsetPullback

96 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/discrete_geometry/sage/geometry/convex_set.html#sage.geometry.convex_set.ConvexSet_base

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2

Pulling back a polytope under a chart:

sage: # needs sage.geometry.polyhedron
sage: P = Polyhedron(vertices=[[0, 0], [1, 2], [2, 1]]); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: McP = c_cart.preimage(P); McP
Subset x_y_inv_P of the 2-dimensional topological manifold R^2
sage: M((1, 2)) in McP
True
sage: M((2, 0)) in McP
False

Pulling back the interior of a polytope under a chart:

sage: # needs sage.geometry.polyhedron
sage: int_P = P.interior(); int_P
Relative interior of
a 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices

sage: McInt_P = c_cart.preimage(int_P, name= McInt_P); McInt_P
Open subset McInt_P of the 2-dimensional topological manifold R^2
sage: M((0, 0)) in McInt_P
False
sage: M((1, 1)) in McInt_P
True

Pulling back a point lattice:

sage: W = span([[1, 0], [3, 5]], ZZ); W
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 5]
sage: McW = c_cart.pullback(W, name= McW); McW
Subset McW of the 2-dimensional topological manifold R^2
sage: M((4, 5)) in McW
True
sage: M((4, 4)) in McW
False

Pulling back a real vector subspaces:

sage: V = span([[1, 2]], RR); V
Vector space of degree 2 and dimension 1 over Real Field with 53 bits of␣
→˓precision
Basis matrix:
[1.00000000000000 2.00000000000000]
sage: McV = c_cart.pullback(V, name= McV); McV
Subset McV of the 2-dimensional topological manifold R^2
sage: M((2, 4)) in McV
True
sage: M((1, 0)) in McV
False

Pulling back a finite set of points:

1.5. Coordinate Charts 97

Manifolds, Release 10.4.rc1

sage: F = Family([vector(QQ, [1, 2], immutable=True),
....: vector(QQ, [2, 3], immutable=True)])
sage: McF = c_cart.pullback(F, name= McF); McF
Subset McF of the 2-dimensional topological manifold R^2
sage: M((2, 3)) in McF
True
sage: M((0, 0)) in McF
False

Pulling back the integers:

sage: R = manifolds.RealLine(); R
Real number line ℝ
sage: McZ = R.canonical_chart().pullback(ZZ, name= ℤ); McZ
Subset ℤ of the Real number line ℝ
sage: R((3/2,)) in McZ
False
sage: R((-2,)) in McZ
True

restrict(subset, restrictions=None)
Return the restriction of self to some open subset of its domain.

If the current chart is (𝑈,𝜙), a restriction (or subchart) is a chart (𝑉, 𝜓) such that 𝑉 ⊂ 𝑈 and 𝜓 = 𝜙|𝑉 .

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the current chart.

INPUT:

• subset – open subset 𝑉 of the chart domain 𝑈 (must be an instance of TopologicalManifold)

• restrictions – (default: None) list of coordinate restrictions defining the subset 𝑉

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

OUTPUT:

• chart (𝑉, 𝜓) as a Chart

EXAMPLES:

Coordinates on the unit open ball of C2 as a subchart of the global coordinates of C2:

sage: M = Manifold(2, C^2 , field= complex , structure= topological)
sage: X.<z1, z2> = M.chart()
sage: B = M.open_subset(B)
sage: X_B = X.restrict(B, abs(z1)^2 + abs(z2)^2 < 1); X_B
Chart (B, (z1, z2))

98 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

transition_map(other, transformations, intersection_name=None, restrictions1=None, restrictions2=None)
Construct the transition map between the current chart, (𝑈,𝜙) say, and another one, (𝑉, 𝜓) say.

If 𝑛 is the manifold’s dimension, the transition map is the map

𝜓 ∘ 𝜙−1 : 𝜙(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛 → 𝜓(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛,

where𝐾 is themanifold’s base field. In other words, the transitionmap expresses the coordinates (𝑦1, . . . , 𝑦𝑛)
of (𝑉, 𝜓) in terms of the coordinates (𝑥1, . . . , 𝑥𝑛) of (𝑈,𝜙) on the open subset where the two charts intersect,
i.e. on 𝑈 ∩ 𝑉 .

INPUT:

• other – the chart (𝑉, 𝜓)

• transformations – tuple (or list) (𝑌1, . . . , 𝑌𝑛), where 𝑌𝑖 is the symbolic expression of the coordi-
nate 𝑦𝑖 in terms of the coordinates (𝑥1, . . . , 𝑥𝑛)

• intersection_name – (default: None) name to be given to the subset 𝑈 ∩ 𝑉 if the latter differs
from 𝑈 or 𝑉

• restrictions1 – (default: None) list of conditions on the coordinates of the current chart that
define 𝑈 ∩ 𝑉 if the latter differs from 𝑈

• restrictions2 – (default: None) list of conditions on the coordinates of the chart (𝑉, 𝜓) that define
𝑈 ∩ 𝑉 if the latter differs from 𝑉

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

OUTPUT:

• the transition map 𝜓 ∘ 𝜙−1 defined on 𝑈 ∩ 𝑉 as a CoordChange

EXAMPLES:

Transition map between two stereographic charts on the circle 𝑆1:

sage: M = Manifold(1, S^1 , structure= topological)
sage: U = M.open_subset(U) # Complement of the North pole
sage: cU.<x> = U.chart() # Stereographic chart from the North pole
sage: V = M.open_subset(V) # Complement of the South pole
sage: cV.<y> = V.chart() # Stereographic chart from the South pole
sage: M.declare_union(U,V) # S^1 is the union of U and V
sage: trans = cU.transition_map(cV, 1/x, intersection_name= W ,
....: restrictions1= x!=0, restrictions2 = y!=0)
sage: trans
Change of coordinates from Chart (W, (x,)) to Chart (W, (y,))
sage: trans.display()
y = 1/x

The subset𝑊 , intersection of 𝑈 and 𝑉 , has been created by transition_map():

1.5. Coordinate Charts 99

Manifolds, Release 10.4.rc1

sage: F = M.subset_family(); F
Set {S^1, U, V, W} of open subsets of the 1-dimensional topological manifold␣
→˓S^1
sage: W = F[W]
sage: W is U.intersection(V)
True
sage: M.atlas()
[Chart (U, (x,)), Chart (V, (y,)), Chart (W, (x,)), Chart (W, (y,))]

Transition map between the spherical chart and the Cartesian one on R2:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart()
sage: U = M.open_subset(U) # the complement of the half line {y=0, x >= 0}
sage: c_spher.<r,phi> = U.chart(r r:(0,+oo) phi:(0,2*pi):\phi)
sage: trans = c_spher.transition_map(c_cart, (r*cos(phi), r*sin(phi)),
....: restrictions2=(y!=0, x<0))
sage: trans
Change of coordinates from Chart (U, (r, phi)) to Chart (U, (x, y))
sage: trans.display()
x = r*cos(phi)
y = r*sin(phi)

In this case, no new subset has been created since 𝑈 ∩𝑀 = 𝑈 :

sage: M.subset_family()
Set {R^2, U} of open subsets of the 2-dimensional topological manifold R^2

but a new chart has been created: (𝑈, (𝑥, 𝑦)):

sage: M.atlas()
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]

valid_coordinates(*coordinates, **kwds)
Check whether a tuple of coordinates can be the coordinates of a point in the chart domain.

INPUT:

• *coordinates – coordinate values

• **kwds – options:

– parameters=None, dictionary to set numerical values to some parameters (see example below)

OUTPUT:

• True if the coordinate values are admissible in the chart image, False otherwise

EXAMPLES:

sage: M = Manifold(2, M , field= complex , structure= topological)
sage: X.<x,y> = M.chart(coord_restrictions=lambda x,y: [abs(x)<1, y!=0])
sage: X.valid_coordinates(0, i)
True
sage: X.valid_coordinates(i, 1)
False
sage: X.valid_coordinates(i/2, 1)
True
sage: X.valid_coordinates(i/2, 0)

(continues on next page)

100 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

False
sage: X.valid_coordinates(2, 0)
False

Example of use with the keyword parameters to set a specific value to a parameter appearing in the
coordinate restrictions:

sage: var(a) # the parameter is a symbolic variable
a
sage: Y.<u,v> = M.chart(coord_restrictions=lambda u,v: abs(v)<a)
sage: Y.valid_coordinates(1, i, parameters={a: 2}) # setting a=2
True
sage: Y.valid_coordinates(1, 2*i, parameters={a: 2})
False

zero_function()

Return the zero function of the coordinates.

If the current chart belongs to the atlas of a 𝑛-dimensional manifold over a topological field 𝐾, the zero
coordinate function is the map

𝑓 : 𝑉 ⊂ 𝐾𝑛 −→ 𝐾
(𝑥1, . . . , 𝑥𝑛) ↦−→ 0,

where 𝑉 is the chart codomain.

See class ChartFunction for a complete documentation.

OUTPUT:

• a ChartFunction representing the zero coordinate function 𝑓

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.zero_function()
0
sage: X.zero_function().display()
(x, y) ↦ 0
sage: type(X.zero_function())
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >

The result is cached:

sage: X.zero_function() is X.zero_function()
True

Zero function on a p-adic manifold:

sage: # needs sage.rings.padics
sage: M = Manifold(2, M , structure= topological , field=Qp(5)); M
2-dimensional topological manifold M over the 5-adic Field with
capped relative precision 20

sage: X.<x,y> = M.chart()
sage: X.zero_function()
0

(continues on next page)

1.5. Coordinate Charts 101

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: X.zero_function().display()
(x, y) ↦ 0

class sage.manifolds.chart.CoordChange(chart1, chart2, *transformations)
Bases: SageObject

Transition map between two charts of a topological manifold.

Giving two coordinate charts (𝑈,𝜙) and (𝑉, 𝜓) on a topological manifold 𝑀 of dimension 𝑛 over a topological
field𝐾, the transition map from (𝑈,𝜙) to (𝑉, 𝜓) is the map

𝜓 ∘ 𝜙−1 : 𝜙(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛 → 𝜓(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛.

In other words, the transition map 𝜓 ∘ 𝜙−1 expresses the coordinates (𝑦1, . . . , 𝑦𝑛) of (𝑉, 𝜓) in terms of the
coordinates (𝑥1, . . . , 𝑥𝑛) of (𝑈,𝜙) on the open subset where the two charts intersect, i.e. on 𝑈 ∩ 𝑉 .

INPUT:

• chart1 – chart (𝑈,𝜙)

• chart2 – chart (𝑉, 𝜓)

• transformations – tuple (or list) (𝑌1, . . . , 𝑌2), where 𝑌𝑖 is the symbolic expression of the coordinate
𝑦𝑖 in terms of the coordinates (𝑥1, . . . , 𝑥𝑛)

EXAMPLES:

Transition map on a 2-dimensional topological manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: X_to_Y
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: type(X_to_Y)
<class sage.manifolds.chart.CoordChange >
sage: X_to_Y.display()
u = x + y
v = x - y

disp()

Display of the coordinate transformation.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

From spherical coordinates to Cartesian ones in the plane:

sage: M = Manifold(2, R^2 , structure= topological)
sage: U = M.open_subset(U) # the complement of the half line {y=0, x>= 0}
sage: c_cart.<x,y> = U.chart()
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi)
sage: spher_to_cart = c_spher.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: spher_to_cart.display()
x = r*cos(ph)
y = r*sin(ph)
sage: latex(spher_to_cart.display())
\left\{\begin{array}{lcl} x & = & r \cos\left({\phi}\right) \\
y & = & r \sin\left({\phi}\right) \end{array}\right.

102 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Manifolds, Release 10.4.rc1

A shortcut is disp():

sage: spher_to_cart.disp()
x = r*cos(ph)
y = r*sin(ph)

display()

Display of the coordinate transformation.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

From spherical coordinates to Cartesian ones in the plane:

sage: M = Manifold(2, R^2 , structure= topological)
sage: U = M.open_subset(U) # the complement of the half line {y=0, x>= 0}
sage: c_cart.<x,y> = U.chart()
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi)
sage: spher_to_cart = c_spher.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: spher_to_cart.display()
x = r*cos(ph)
y = r*sin(ph)
sage: latex(spher_to_cart.display())
\left\{\begin{array}{lcl} x & = & r \cos\left({\phi}\right) \\
y & = & r \sin\left({\phi}\right) \end{array}\right.

A shortcut is disp():

sage: spher_to_cart.disp()
x = r*cos(ph)
y = r*sin(ph)

inverse()

Return the inverse coordinate transformation.

If the inverse is not already known, it is computed here. If the computation fails, the inverse can be set by
hand via the method set_inverse().

OUTPUT:

• an instance of CoordChange representing the inverse of the current coordinate transformation

EXAMPLES:

Inverse of a coordinate transformation corresponding to a rotation in the Cartesian plane:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: phi = var(phi , domain= real)
sage: xy_to_uv = c_xy.transition_map(c_uv,
....: [cos(phi)*x + sin(phi)*y,
....: -sin(phi)*x + cos(phi)*y])
sage: M.coord_changes()
{(Chart (M, (x, y)),

Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart␣
→˓(M, (u, v))}
sage: uv_to_xy = xy_to_uv.inverse(); uv_to_xy
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))

(continues on next page)

1.5. Coordinate Charts 103

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: uv_to_xy.display()
x = u*cos(phi) - v*sin(phi)
y = v*cos(phi) + u*sin(phi)
sage: M.coord_changes() # random (dictionary output)
{(Chart (M, (u, v)),

Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v)) to Chart␣
→˓(M, (x, y)),
(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart␣

→˓(M, (u, v))}

The result is cached:

sage: xy_to_uv.inverse() is uv_to_xy
True

We have as well:

sage: uv_to_xy.inverse() is xy_to_uv
True

restrict(dom1, dom2=None)
Restriction to subsets.

INPUT:

• dom1 – open subset of the domain of chart1

• dom2 – (default: None) open subset of the domain of chart2; if None, dom1 is assumed

OUTPUT:

• the transition map between the charts restricted to the specified subsets

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: U = M.open_subset(U , coord_def={X: x>0, Y: u+v>0})
sage: X_to_Y_U = X_to_Y.restrict(U); X_to_Y_U
Change of coordinates from Chart (U, (x, y)) to Chart (U, (u, v))
sage: X_to_Y_U.display()
u = x + y
v = x - y

The result is cached:

sage: X_to_Y.restrict(U) is X_to_Y_U
True

set_inverse(*transformations, **kwds)
Sets the inverse of the coordinate transformation.

This is useful when the automatic computation via inverse() fails.

INPUT:

104 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

• transformations – the inverse transformations expressed as a list of the expressions of the “old”
coordinates in terms of the “new” ones

• kwds – optional arguments; valid keywords are

– check (default: True) – boolean determining whether the provided transformations are checked
to be indeed the inverse coordinate transformations

– verbose (default: False) – boolean determining whether some details of the check are printed
out; if False, no output is printed if the check is passed (see example below)

EXAMPLES:

From spherical coordinates to Cartesian ones in the plane:

sage: M = Manifold(2, R^2 , structure= topological)
sage: U = M.open_subset(U) # complement of the half line {y=0, x>= 0}
sage: c_cart.<x,y> = U.chart()
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi)
sage: spher_to_cart = c_spher.transition_map(c_cart,
....: [r*cos(ph), r*sin(ph)])
sage: spher_to_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x))
Check of the inverse coordinate transformation:

r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
x == x *passed*
y == y *passed*

NB: a failed report can reflect a mere lack of simplification.

As indicated, the failure for ph is due to a lack of simplification of the arctan2 term, not to any error in
the provided inverse formulas.

We have now:

sage: spher_to_cart.inverse()
Change of coordinates from Chart (U, (x, y)) to Chart (U, (r, ph))
sage: spher_to_cart.inverse().display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)
sage: M.coord_changes() # random (dictionary output)
{(Chart (U, (r, ph)),

Chart (U, (x, y))): Change of coordinates from Chart (U, (r, ph))
to Chart (U, (x, y)),

(Chart (U, (x, y)),
Chart (U, (r, ph))): Change of coordinates from Chart (U, (x, y))
to Chart (U, (r, ph))}

One can suppress the check of the provided formulas by means of the optional argument check=False:

sage: spher_to_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x),
....: check=False)

However, it is not recommended to do so, the check being (obviously) useful to avoid some mistake. For
instance, if the term sqrt(x^2+y^2) contains a typo (x^3 instead of x^2), we get:

sage: spher_to_cart.set_inverse(sqrt(x^3+y^2), atan2(y,x))
Check of the inverse coordinate transformation:

r == sqrt(r*cos(ph)^3 + sin(ph)^2)*r **failed**
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
x == sqrt(x^3 + y^2)*x/sqrt(x^2 + y^2) **failed**

(continues on next page)

1.5. Coordinate Charts 105

Manifolds, Release 10.4.rc1

(continued from previous page)

y == sqrt(x^3 + y^2)*y/sqrt(x^2 + y^2) **failed**
NB: a failed report can reflect a mere lack of simplification.

If the check is passed, no output is printed out:

sage: M = Manifold(2, M)
sage: X1.<x,y> = M.chart()
sage: X2.<u,v> = M.chart()
sage: X1_to_X2 = X1.transition_map(X2, [x+y, x-y])
sage: X1_to_X2.set_inverse((u+v)/2, (u-v)/2)

unless the option verbose is set to True:

sage: X1_to_X2.set_inverse((u+v)/2, (u-v)/2, verbose=True)
Check of the inverse coordinate transformation:

x == x *passed*
y == y *passed*
u == u *passed*
v == v *passed*

class sage.manifolds.chart.RealChart(domain, coordinates, calc_method=None, bounds=None,
periods=None, coord_restrictions=None)

Bases: Chart

Chart on a topological manifold over R.

Given a topological manifold𝑀 of dimension 𝑛 over R, a chart on𝑀 is a pair (𝑈,𝜙), where 𝑈 is an open subset
of𝑀 and 𝜙 : 𝑈 → 𝑉 ⊂ R𝑛 is a homeomorphism from 𝑈 to an open subset 𝑉 of R𝑛.

The components (𝑥1, . . . , 𝑥𝑛) of 𝜙, defined by 𝜙(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) ∈ R𝑛 for any point 𝑝 ∈ 𝑈 , are called
the coordinates of the chart (𝑈,𝜙).

INPUT:

• domain – open subset 𝑈 on which the chart is defined

• coordinates – (default: ‘’ (empty string)) single string defining the coordinate symbols, with (whites-
pace) as a separator; each item has at most four fields, separated by a colon (:):

1. the coordinate symbol (a letter or a few letters)

2. (optional) the interval 𝐼 defining the coordinate range: if not provided, the coordinate is assumed to span
all R; otherwise 𝐼 must be provided in the form (a,b) (or equivalently]a,b[); the bounds a and
b can be +/-Infinity, Inf, infinity, inf or oo; for singular coordinates, non-open intervals
such as [a,b] and (a,b] (or equivalently]a,b]) are allowed; note that the interval declaration must
not contain any whitespace

3. (optional) indicator of the periodic character of the coordinate, either as period=T, where T is the
period, or as the keyword periodic (the value of the period is then deduced from the interval 𝐼
declared in field 2; see examples below)

4. (optional) the LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first
field will be used

The order of fields 2 to 4 does notmatter and each of them can be omitted. If it contains any LaTeX expression,
the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of
LaTeX’s backslash character (see examples below). If interval range, no period and no LaTeX spelling are to
be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is
used to declare the chart (see examples below).

106 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

• calc_method – (default: None) string defining the calculus method for computations involving coordi-
nates of the chart; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the default of CalculusMethod will be used

• names – (default: None) unused argument, except if coordinates is not provided; it must then be a
tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

• coord_restrictions: Additional restrictions on the coordinates. A restriction can be any symbolic
equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the
list (or set or frozenset) coord_restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list (or set or frozenset) coord_restrictions. For example:

coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_re-
strictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the
single element list [x > y]. If the chart variables have not been declared as variables yet, coord_re-
strictions must be lambda-quoted.

EXAMPLES:

Cartesian coordinates on R3:

sage: M = Manifold(3, R^3 , r \RR^3 , structure= topological ,
....: start_index=1)
sage: c_cart = M.chart(x y z); c_cart
Chart (R^3, (x, y, z))
sage: type(c_cart)
<class sage.manifolds.chart.RealChart >

To have the coordinates accessible as global variables, one has to set:

sage: (x,y,z) = c_cart[:]

However, a shortcut is to use the declarator <x,y,z> in the left-hand side of the chart declaration (there is then
no need to pass the string x y z to chart()):

sage: M = Manifold(3, R^3 , r \RR^3 , structure= topological ,
....: start_index=1)
sage: c_cart.<x,y,z> = M.chart(); c_cart
Chart (R^3, (x, y, z))

The coordinates are then immediately accessible:

sage: y
y
sage: y is c_cart[2]
True

Note that x, y, z declared in <x,y,z> are mere Python variable names and do not have to coincide with the
coordinate symbols; for instance, one may write:

1.5. Coordinate Charts 107

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, R^3 , r \RR^3 , structure= topological ,
....: start_index=1)
sage: c_cart.<x1,y1,z1> = M.chart(x y z); c_cart
Chart (R^3, (x, y, z))

Then y is not known as a global variable and the coordinate 𝑦 is accessible only through the global variable y1:

sage: y1
y
sage: y1 is c_cart[2]
True

However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is
recommended to declare:

sage: forget() # for doctests only
sage: M = Manifold(3, R^3 , r \RR^3 , structure= topological , start_index=1)
sage: c_cart.<x,y,z> = M.chart()

Spherical coordinates on the subset 𝑈 of R3 that is the complement of the half-plane {𝑦 = 0, 𝑥 ≥ 0}:

sage: U = M.open_subset(U)
sage: c_spher.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: c_spher
Chart (U, (r, th, ph))

Note the prefix ‘r’ for the string defining the coordinates in the arguments of chart.

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(th)
<class sage.symbolic.expression.Expression >
sage: latex(th)
{\theta}
sage: assumptions(th)
[th is real, th > 0, th < pi]

Coordinate are also accessible by their indices:

sage: x1 = c_spher[1]; x2 = c_spher[2]; x3 = c_spher[3]
sage: [x1, x2, x3]
[r, th, ph]
sage: (x1, x2, x3) == (r, th, ph)
True

The full set of coordinates is obtained by means of the slice [:]:

sage: c_cart[:]
(x, y, z)
sage: c_spher[:]
(r, th, ph)

Let us check that the declared coordinate ranges have been taken into account:

sage: c_cart.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
sage: c_spher.coord_range()

(continues on next page)

108 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#module-sage.symbolic.expression

Manifolds, Release 10.4.rc1

(continued from previous page)

r: (0, +oo); th: (0, pi); ph: (0, 2*pi)
sage: bool(th>0 and th<pi)
True
sage: assumptions() # list all current symbolic assumptions
[x is real, y is real, z is real, r is real, r > 0, th is real,
th > 0, th < pi, ph is real, ph > 0, ph < 2*pi]

The coordinate ranges are used for simplifications:

sage: simplify(abs(r)) # r has been declared to lie in the interval (0,+oo)
r
sage: simplify(abs(x)) # no positive range has been declared for x
abs(x)

A coordinate can be declared periodic by adding the keyword periodic to its range:

sage: V = M.open_subset(V)
sage: c_spher1.<r,th,ph1> = \
....: V.chart(r r:(0,+oo) th:(0,pi):\theta ph1:(0,2*pi):periodic:\phi_1)
sage: c_spher1.periods()
(None, None, 2*pi)
sage: c_spher1.coord_range()
r: (0, +oo); th: (0, pi); ph1: [0, 2*pi] (periodic)

It is equivalent to give the period as period=2*pi, skipping the coordinate range:

sage: c_spher2.<r,th,ph2> = \
....: V.chart(r r:(0,+oo) th:(0,pi):\theta ph2:period=2*pi:\phi_2)
sage: c_spher2.periods()
(None, None, 2*pi)
sage: c_spher2.coord_range()
r: (0, +oo); th: (0, pi); ph2: [0, 2*pi] (periodic)

Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2))]

and to the atlas of its domain:

sage: U.atlas()
[Chart (U, (r, th, ph))]

Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the
first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (R^3, (x, y, z))
sage: U.default_chart()
Chart (U, (r, th, ph))

The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the
argument list of functions having an optional chart= argument.

The chart map 𝜙 acting on a point is obtained by means of the call operator, i.e. the operator ():

1.5. Coordinate Charts 109

Manifolds, Release 10.4.rc1

sage: p = M.point((1,0,-2)); p
Point on the 3-dimensional topological manifold R^3
sage: c_cart(p)
(1, 0, -2)
sage: c_cart(p) == p.coord(c_cart)
True
sage: q = M.point((2,pi/2,pi/3), chart=c_spher) # point defined by its spherical␣
→˓coordinates
sage: c_spher(q)
(2, 1/2*pi, 1/3*pi)
sage: c_spher(q) == q.coord(c_spher)
True
sage: a = U.point((1,pi/2,pi)) # the default coordinates on U are the spherical␣
→˓ones
sage: c_spher(a)
(1, 1/2*pi, pi)
sage: c_spher(a) == a.coord(c_spher)
True

Cartesian coordinates on 𝑈 as an example of chart construction with coordinate restrictions: since 𝑈 is the com-
plement of the half-plane {𝑦 = 0, 𝑥 ≥ 0}, we must have 𝑦 ̸= 0 or 𝑥 < 0 on U. Accordingly, we set:

sage: c_cartU.<x,y,z> = U.chart(coord_restrictions=lambda x,y,z: (y!=0, x<0))
sage: U.atlas()
[Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2)),
Chart (U, (x, y, z))]
sage: c_cartU.valid_coordinates(-1,0,2)
True
sage: c_cartU.valid_coordinates(1,0,2)
False
sage: c_cart.valid_coordinates(1,0,2)
True

Note that, as an example, the following would have meant 𝑦 ̸= 0 and 𝑥 < 0:

c_cartU.<x,y,z> = U.chart(coord_restrictions=lambda x,y,z: [y!=0, x<0])

Chart grids can be drawn in 2D or 3D graphics thanks to the method plot().

add_restrictions(restrictions)
Add some restrictions on the coordinates.

This is deprecated; provide the restrictions at the time of creating the chart.

INPUT:

• restrictions – list of restrictions on the coordinates, in addition to the ranges declared by the
intervals specified in the chart constructor

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

110 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

EXAMPLES:

Cartesian coordinates on the open unit disc in R2:

sage: M = Manifold(2, M , structure= topological) # the open unit disc
sage: X.<x,y> = M.chart()
sage: X.add_restrictions(x^2+y^2<1)
doctest:warning...
DeprecationWarning: Chart.add_restrictions is deprecated; provide the
restrictions at the time of creating the chart
See https://github.com/sagemath/sage/issues/32102 for details.
sage: X.valid_coordinates(0,2)
False
sage: X.valid_coordinates(0,1/3)
True

The restrictions are transmitted to subcharts:

sage: A = M.open_subset(A) # annulus 1/2 < r < 1
sage: X_A = X.restrict(A, x^2+y^2 > 1/4)
sage: X_A._restrictions
[x^2 + y^2 < 1, x^2 + y^2 > (1/4)]
sage: X_A.valid_coordinates(0,1/3)
False
sage: X_A.valid_coordinates(2/3,1/3)
True

If appropriate, the restrictions are transformed into bounds on the coordinate ranges:

sage: U = M.open_subset(U)
sage: X_U = X.restrict(U)
sage: X_U.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
sage: X_U.add_restrictions([x<0, y>1/2])
sage: X_U.coord_range()
x: (-oo, 0); y: (1/2, +oo)

codomain()

Return the codomain of self as a set.

EXAMPLES:

sage: M = Manifold(2, R^2 , structure= topological)
sage: U = M.open_subset(U) # the complement of the half line {y=0, x >= 0}
sage: c_spher.<r,phi> = U.chart(r r:(0,+oo) phi:(0,2*pi):\phi)
sage: c_spher.codomain()
The Cartesian product of ((0, +oo), (0, 2*pi))

sage: M = Manifold(3, R^3 , r \RR^3 , structure= topological , start_index=1)
sage: c_cart.<x,y,z> = M.chart()
sage: c_cart.codomain()
Vector space of dimension 3 over Real Field with 53 bits of precision

In the current implementation, the codomain of periodic coordinates are represented by a fundamental do-
main:

1.5. Coordinate Charts 111

Manifolds, Release 10.4.rc1

sage: V = M.open_subset(V)
sage: c_spher1.<r,th,ph1> = \
....: V.chart(r r:(0,+oo) th:(0,pi):\theta ph1:(0,2*pi):periodic:\phi_1)
sage: c_spher1.codomain()
The Cartesian product of ((0, +oo), (0, pi), [0, 2*pi))

coord_bounds(i=None)

Return the lower and upper bounds of the range of a coordinate.

For a nicely formatted output, use coord_range() instead.

INPUT:

• i – (default: None) index of the coordinate; if None, the bounds of all the coordinates are returned

OUTPUT:

• the coordinate bounds as the tuple ((xmin, min_included), (xmax, max_included))
where

– xmin is the coordinate lower bound

– min_included is a boolean, indicating whether the coordinate can take the value xmin, i.e.
xmin is a strict lower bound iff min_included is False

– xmin is the coordinate upper bound

– max_included is a boolean, indicating whether the coordinate can take the value xmax, i.e.
xmax is a strict upper bound iff max_included is False

EXAMPLES:

Some coordinate bounds on a 2-dimensional manifold:

sage: forget() # for doctests only
sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart(x y:[0,1))
sage: c_xy.coord_bounds(0) # x in (-oo,+oo) (the default)
((-Infinity, False), (+Infinity, False))
sage: c_xy.coord_bounds(1) # y in [0,1)
((0, True), (1, False))
sage: c_xy.coord_bounds()
(((-Infinity, False), (+Infinity, False)), ((0, True), (1, False)))
sage: c_xy.coord_bounds() == (c_xy.coord_bounds(0), c_xy.coord_bounds(1))
True

The coordinate bounds can also be recovered via the method coord_range():

sage: c_xy.coord_range()
x: (-oo, +oo); y: [0, 1)
sage: c_xy.coord_range(y)
y: [0, 1)

or via Sage’s function sage.symbolic.assumptions.assumptions():

sage: assumptions(x)
[x is real]
sage: assumptions(y)
[y is real, y >= 0, y < 1]

112 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/calculus/sage/symbolic/assumptions.html#sage.symbolic.assumptions.assumptions

Manifolds, Release 10.4.rc1

coord_range(xx=None)
Display the range of a coordinate (or all coordinates), as an interval.

INPUT:

• xx – (default: None) symbolic expression corresponding to a coordinate of the current chart; if None,
the ranges of all coordinates are displayed

EXAMPLES:

Ranges of coordinates on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: X.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
sage: X.coord_range(x)
x: (-oo, +oo)
sage: U = M.open_subset(U , coord_def={X: [x>1, y<pi]})
sage: XU = X.restrict(U) # restriction of chart X to U
sage: XU.coord_range()
x: (1, +oo); y: (-oo, pi)
sage: XU.coord_range(x)
x: (1, +oo)
sage: XU.coord_range(y)
y: (-oo, pi)

The output is LaTeX-formatted for the notebook:

sage: latex(XU.coord_range(y))
y :\ \left(-\infty, \pi \right)

plot(chart=None, ambient_coords=None, mapping=None, fixed_coords=None, ranges=None,
number_values=None, steps=None, parameters=None, max_range=8, color='red', style='-', thickness=1,
plot_points=75, label_axes=True, **kwds)

Plot self as a grid in a Cartesian graph based on the coordinates of some ambient chart.

The grid is formed by curves along which a chart coordinate varies, the other coordinates being kept fixed. It
is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of another chart, called hereafter
the ambient chart.

The ambient chart is related to the current chart either by a transition map if both charts are defined on the
same manifold, or by the coordinate expression of some continuous map (typically an immersion). In the
latter case, the two charts may be defined on two different manifolds.

INPUT:

• chart – (default: None) the ambient chart (see above); if None, the ambient chart is set to the current
chart

• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in
terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered

• mapping – (default: None) ContinuousMap; continuous manifold map providing the link between
the current chart and the ambient chart (cf. above); if None, both charts are supposed to be defined on
the same manifold and related by some transition map (see transition_map())

• fixed_coords – (default: None) dictionary with keys the chart coordinates that are not drawn and
with values the fixed value of these coordinates; if None, all the coordinates of the current chart are
drawn

1.5. Coordinate Charts 113

Manifolds, Release 10.4.rc1

• ranges – (default: None) dictionary with keys the coordinates to be drawn and values tuples(x_min,
x_max) specifying the coordinate range for the plot; if None, the entire coordinate range declared
during the chart construction is considered (with -Infinity replaced by -max_range and +In-
finity by max_range)

• number_values – (default: None) either an integer or a dictionary with keys the coordinates to be
drawn and values the number of constant values of the coordinate to be considered; ifnumber_values
is a single integer, it represents the number of constant values for all coordinates; if number_values
is None, it is set to 9 for a 2D plot and to 5 for a 3D plot

• steps – (default: None) dictionary with keys the coordinates to be drawn and values the step between
each constant value of the coordinate; if None, the step is computed from the coordinate range (specified
in ranges) and number_values. On the contrary if the step is provided for some coordinate, the
corresponding number of constant values is deduced from it and the coordinate range.

• parameters – (default: None) dictionary giving the numerical values of the parameters that may
appear in the relation between the two coordinate systems

• max_range – (default: 8) numerical value substituted to +Infinity if the latter is the upper bound of the
range of a coordinate for which the plot is performed over the entire coordinate range (i.e. for which no
specific plot range has been set in ranges); similarly -max_range is the numerical valued substituted
for -Infinity

• color – (default: red) either a single color or a dictionary of colors, with keys the coordinates to
be drawn, representing the colors of the lines along which the coordinate varies, the other being kept
constant; if color is a single color, it is used for all coordinate lines

• style – (default: -) either a single line style or a dictionary of line styles, with keys the coordinates
to be drawn, representing the style of the lines along which the coordinate varies, the other being kept
constant; if style is a single style, it is used for all coordinate lines; NB: style is effective only for
2D plots

• thickness – (default: 1) either a single line thickness or a dictionary of line thicknesses, with keys
the coordinates to be drawn, representing the thickness of the lines along which the coordinate varies,
the other being kept constant; if thickness is a single value, it is used for all coordinate lines

• plot_points – (default: 75) either a single number of points or a dictionary of integers, with keys the
coordinates to be drawn, representing the number of points to plot the lines along which the coordinate
varies, the other being kept constant; if plot_points is a single integer, it is used for all coordinate
lines

• label_axes – (default: True) boolean determining whether the labels of the ambient coordinate
axes shall be added to the graph; can be set to False if the graph is 3D and must be superposed with
another graph

OUTPUT:

• a graphic object, either a Graphics for a 2D plot (i.e. based on 2 coordinates of the ambient chart) or
a Graphics3d for a 3D plot (i.e. based on 3 coordinates of the ambient chart)

EXAMPLES:

A 2-dimensional chart plotted in terms of itself results in a rectangular grid:

sage: R2 = Manifold(2, R^2 , structure= topological) # the Euclidean plane
sage: c_cart.<x,y> = R2.chart() # Cartesian coordinates
sage: g = c_cart.plot(); g # equivalent to c_cart.plot(c_cart) #␣
→˓needs sage.plot
Graphics object consisting of 18 graphics primitives

Grid of polar coordinates in terms of Cartesian coordinates in the Euclidean plane:

114 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/plotting/sage/plot/graphics.html#sage.plot.graphics.Graphics
../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

1.5. Coordinate Charts 115

Manifolds, Release 10.4.rc1

sage: U = R2.open_subset(U , coord_def={c_cart: (y!=0, x<0)}) # the␣
→˓complement of the segment y=0 and x>0
sage: c_pol.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # polar␣
→˓coordinates on U
sage: pol_to_cart = c_pol.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: g = c_pol.plot(c_cart); g #␣
→˓needs sage.plot
Graphics object consisting of 18 graphics primitives

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

Call with non-default values:

sage: g = c_pol.plot(c_cart, ranges={ph:(pi/4,pi)}, #␣
→˓needs sage.plot
....: number_values={r:7, ph:17},
....: color={r: red , ph: green },
....: style={r: - , ph: -- })

A single coordinate line can be drawn:

sage: g = c_pol.plot(c_cart, # draw a circle of radius r=2 #␣
→˓needs sage.plot
....: fixed_coords={r: 2})

116 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

8 6 4 2 2 4
x

1

2

3

4

5

6

7

8

y

1.5. Coordinate Charts 117

Manifolds, Release 10.4.rc1

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0

y

118 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: g = c_pol.plot(c_cart, # draw a segment at phi=pi/4 #␣
→˓needs sage.plot
....: fixed_coords={ph: pi/4})

1 2 3 4 5
x

1

2

3

4

5

y

An example with the ambient chart lying in an another manifold (the plot is then performed via somemanifold
map passed as the argument mapping): 3D plot of the stereographic charts on the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= topological) # the 2-sphere
sage: U = S2.open_subset(U); V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: R3 = Manifold(3, R^3 , structure= topological) # the Euclidean space␣
→˓R^3
sage: c_cart.<X,Y,Z> = R3.chart() # Cartesian coordinates on R^3
sage: Phi = S2.continuous_map(R3, {(c_xy, c_cart): [2*x/(1+x^2+y^2),
....: 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)],
....: (c_uv, c_cart): [2*u/(1+u^2+v^2),
....: 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]},

(continues on next page)

1.5. Coordinate Charts 119

Manifolds, Release 10.4.rc1

(continued from previous page)

....: name= Phi , latex_name=r \Phi) # Embedding of␣
→˓S^2 in R^3
sage: g = c_xy.plot(c_cart, mapping=Phi); g #␣
→˓needs sage.plot
Graphics3d Object

NB: to get a better coverage of the whole sphere, one should increase the coordinate sampling via the argument
number_values or the argument steps (only the default value, number_values = 5, is used here,
which is pretty low).

The same plot without the (X,Y,Z) axes labels:

sage: g = c_xy.plot(c_cart, mapping=Phi, label_axes=False) #␣
→˓needs sage.plot

The North and South stereographic charts on the same plot:

sage: g2 = c_uv.plot(c_cart, mapping=Phi, color= green) #␣
→˓needs sage.plot
sage: g + g2 #␣
→˓needs sage.plot
Graphics3d Object

South stereographic chart drawn in terms of the North one (we split the plot in four parts to avoid the singu-
larity at (𝑢, 𝑣) = (0, 0)):

120 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

1.5. Coordinate Charts 121

Manifolds, Release 10.4.rc1

sage: # long time, needs sage.plot
sage: W = U.intersection(V) # the subset common to both charts
sage: c_uvW = c_uv.restrict(W) # chart (W,(u,v))
sage: gSN1 = c_uvW.plot(c_xy, ranges={u:[-6.,-0.02], v:[-6.,-0.02]})
sage: gSN2 = c_uvW.plot(c_xy, ranges={u:[-6.,-0.02], v:[0.02,6.]})
sage: gSN3 = c_uvW.plot(c_xy, ranges={u:[0.02,6.], v:[-6.,-0.02]})
sage: gSN4 = c_uvW.plot(c_xy, ranges={u:[0.02,6.], v:[0.02,6.]})
sage: show(gSN1+gSN2+gSN3+gSN4, xmin=-1.5, xmax=1.5, ymin=-1.5, ymax=1.5)

1.5 1.0 0.5 0.5 1.0 1.5
x

1.5

1.0

0.5

0.5

1.0

1.5

y

The coordinate line 𝑢 = 1 (red) and the coordinate line 𝑣 = 1 (green) on the same plot:

sage: # long time, needs sage.plot
sage: gu1 = c_uvW.plot(c_xy, fixed_coords={u: 1}, max_range=20,
....: plot_points=300)
sage: gv1 = c_uvW.plot(c_xy, fixed_coords={v: 1}, max_range=20,
....: plot_points=300, color= green)
sage: gu1 + gv1
Graphics object consisting of 2 graphics primitives

Note that we have set max_range=20 to have a wider range for the coordinates 𝑢 and 𝑣, i.e. to have
[−20, 20] instead of the default [−8, 8].

A 3-dimensional chart plotted in terms of itself results in a 3D rectangular grid:

122 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

0.4 0.2 0.2 0.4 0.6 0.8 1.0
x

0.4

0.2

0.2

0.4

0.6

0.8

1.0

y

1.5. Coordinate Charts 123

Manifolds, Release 10.4.rc1

sage: # long time, needs sage.plot
sage: g = c_cart.plot() # equivalent to c_cart.plot(c_cart)
sage: g
Graphics3d Object

A 4-dimensional chart plotted in terms of itself (the plot is performed for at most 3 coordinates, which must
be specified via the argument ambient_coords):

sage: # needs sage.plot
sage: M = Manifold(4, M , structure= topological)
sage: X.<t,x,y,z> = M.chart()
sage: g = X.plot(ambient_coords=(t,x,y)) # the coordinate z is not depicted
→˓# long time
sage: g
→˓# long time
Graphics3d Object

sage: # needs sage.plot
sage: g = X.plot(ambient_coords=(t,y)) # the coordinates x and z are not␣
→˓depicted
sage: g
Graphics object consisting of 18 graphics primitives

Note that the default values of some arguments of the method plot are stored in the dictionary plot.
options:

124 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

1.5. Coordinate Charts 125

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
t

8

6

4

2

2

4

6

8

y

126 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: X.plot.options # random (dictionary output)
{ color : red , label_axes : True, max_range : 8,
plot_points : 75, style : - , thickness : 1}

so that they can be adjusted by the user:

sage: X.plot.options[color] = blue

From now on, all chart plots will use blue as the default color. To restore the original default options, it suffices
to type:

sage: X.plot.reset()

restrict(subset, restrictions=None)
Return the restriction of the chart to some open subset of its domain.

If the current chart is (𝑈,𝜙), a restriction (or subchart) is a chart (𝑉, 𝜓) such that 𝑉 ⊂ 𝑈 and 𝜓 = 𝜙|𝑉 .

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the current chart.

INPUT:

• subset – open subset 𝑉 of the chart domain 𝑈 (must be an instance of TopologicalManifold)

• restrictions – (default: None) list of coordinate restrictions defining the subset 𝑉

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

OUTPUT:

• the chart (𝑉, 𝜓) as a RealChart

EXAMPLES:

Cartesian coordinates on the unit open disc in R2 as a subchart of the global Cartesian coordinates:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset(D) # the unit open disc
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: p = M.point((1/2, 0))
sage: p in D
True
sage: q = M.point((1, 2))
sage: q in D
False

Cartesian coordinates on the annulus 1 <
√︀
𝑥2 + 𝑦2 < 2:

1.5. Coordinate Charts 127

Manifolds, Release 10.4.rc1

sage: A = M.open_subset(A)
sage: c_cart_A = c_cart.restrict(A, [x^2+y^2>1, x^2+y^2<4])
sage: p in A, q in A
(False, False)
sage: a = M.point((3/2,0))
sage: a in A
True

valid_coordinates(*coordinates, **kwds)
Check whether a tuple of coordinates can be the coordinates of a point in the chart domain.

INPUT:

• *coordinates – coordinate values

• **kwds – options:

– tolerance=0, to set the absolute tolerance in the test of coordinate ranges

– parameters=None, to set some numerical values to parameters

OUTPUT:

• True if the coordinate values are admissible in the chart range and False otherwise

EXAMPLES:

Cartesian coordinates on a square interior:

sage: forget() # for doctest only
sage: M = Manifold(2, M , structure= topological) # the square interior
sage: X.<x,y> = M.chart(x:(-2,2) y:(-2,2))
sage: X.valid_coordinates(0,1)
True
sage: X.valid_coordinates(-3/2,5/4)
True
sage: X.valid_coordinates(0,3)
False

The unit open disk inside the square:

sage: D = M.open_subset(D , coord_def={X: x^2+y^2<1})
sage: XD = X.restrict(D)
sage: XD.valid_coordinates(0,1)
False
sage: XD.valid_coordinates(-3/2,5/4)
False
sage: XD.valid_coordinates(-1/2,1/2)
True
sage: XD.valid_coordinates(0,0)
True

Another open subset of the square, defined by 𝑥2 + 𝑦2 < 1 or (𝑥 > 0 and |𝑦| < 1):

sage: B = M.open_subset(B ,
....: coord_def={X: (x^2+y^2<1,
....: [x>0, abs(y)<1])})
sage: XB = X.restrict(B)
sage: XB.valid_coordinates(-1/2, 0)
True

(continues on next page)

128 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: XB.valid_coordinates(-1/2, 3/2)
False
sage: XB.valid_coordinates(3/2, 1/2)
True

valid_coordinates_numerical(*coordinates)
Check whether a tuple of float coordinates can be the coordinates of a point in the chart domain.

This version is optimized for float numbers, and cannot accept parameters nor tolerance. The chart restriction
must also be specified in CNF (i.e. a list of tuples).

INPUT:

• *coordinates – coordinate values

OUTPUT:

• True if the coordinate values are admissible in the chart range and False otherwise

EXAMPLES:

Cartesian coordinates on a square interior:

sage: forget() # for doctest only
sage: M = Manifold(2, M , structure= topological) # the square interior
sage: X.<x,y> = M.chart(x:(-2,2) y:(-2,2))
sage: X.valid_coordinates_numerical(0,1)
True
sage: X.valid_coordinates_numerical(-3/2,5/4)
True
sage: X.valid_coordinates_numerical(0,3)
False

The unit open disk inside the square:

sage: D = M.open_subset(D , coord_def={X: x^2+y^2<1})
sage: XD = X.restrict(D)
sage: XD.valid_coordinates_numerical(0,1)
False
sage: XD.valid_coordinates_numerical(-3/2,5/4)
False
sage: XD.valid_coordinates_numerical(-1/2,1/2)
True
sage: XD.valid_coordinates_numerical(0,0)
True

Another open subset of the square, defined by 𝑥2 + 𝑦2 < 1 or (𝑥 > 0 and |𝑦| < 1):

sage: B = M.open_subset(B ,coord_def={X: [(x^2+y^2<1, x>0),
....: (x^2+y^2<1, abs(y)<1)]})
sage: XB = X.restrict(B)
sage: XB.valid_coordinates_numerical(-1/2, 0)
True
sage: XB.valid_coordinates_numerical(-1/2, 3/2)
False
sage: XB.valid_coordinates_numerical(3/2, 1/2)
True

1.5. Coordinate Charts 129

Manifolds, Release 10.4.rc1

1.5.2 Chart Functions

In the context of a topological manifold𝑀 over a topological field𝐾, a chart function is a function from a chart codomain
to 𝐾. In other words, a chart function is a 𝐾-valued function of the coordinates associated to some chart. The internal
coordinate expressions of chart functions and calculus on them are taken in charge by different calculus methods, at the
choice of the user:

• Sage’s default symbolic engine (Pynac + Maxima), implemented via the Symbolic Ring (SR)

• SymPy engine, denoted sympy hereafter

See CalculusMethod for details.

AUTHORS:

• Marco Mancini (2017) : initial version

• Eric Gourgoulhon (2015) : for a previous class implementing only SR calculus (CoordFunctionSymb)

• Florentin Jaffredo (2018) : series expansion with respect to a given parameter

class sage.manifolds.chart_func.ChartFunction(parent, expression=None, calc_method=None,
expansion_symbol=None, order=None)

Bases: AlgebraElement, ModuleElementWithMutability

Function of coordinates of a given chart.

If (𝑈,𝜙) is a chart on a topological manifold 𝑀 of dimension 𝑛 over a topological field 𝐾, a chart function
associated to (𝑈,𝜙) is a map

𝑓 : 𝑉 ⊂ 𝐾𝑛 −→ 𝐾
(𝑥1, . . . , 𝑥𝑛) ↦−→ 𝑓(𝑥1, . . . , 𝑥𝑛),

where 𝑉 is the codomain of 𝜙. In other words, 𝑓 is a𝐾-valued function of the coordinates associated to the chart
(𝑈,𝜙).

The chart function 𝑓 can be represented by expressions pertaining to different calculus methods; the currently
implemented ones are

• SR (Sage’s Symbolic Ring)

• SymPy

See expr() for details.

INPUT:

• parent – the algebra of chart functions on the chart (𝑈,𝜙)

• expression – (default: None) a symbolic expression representing 𝑓(𝑥1, . . . , 𝑥𝑛), where (𝑥1, . . . , 𝑥𝑛)
are the coordinates of the chart (𝑈,𝜙)

• calc_method – string (default: None): the calculus method with respect to which the internal expression
of self must be initialized from expression; one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the chart current calculus method is assumed

• expansion_symbol – (default: None) symbolic variable (the “small parameter”) with respect to which
the coordinate expression is expanded in power series (around the zero value of this variable)

130 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AlgebraElement
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElementWithMutability

Manifolds, Release 10.4.rc1

• order – integer (default: None); the order of the expansion if expansion_symbol is not None; the or-
der is defined as the degree of the polynomial representing the truncated power series in expansion_sym-
bol

Warning: The value of order is 𝑛−1, where 𝑛 is the order of the big𝑂 in the power series expansion

EXAMPLES:

A symbolic chart function on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2+3*y+1)
sage: type(f)
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class >
sage: f.display()
(x, y) ↦ x^2 + 3*y + 1
sage: f(x,y)
x^2 + 3*y + 1

The symbolic expression is returned when asking for the direct display of the function:

sage: f
x^2 + 3*y + 1
sage: latex(f)
x^{2} + 3 \, y + 1

A similar output is obtained by means of the method expr():

sage: f.expr()
x^2 + 3*y + 1

The expression returned by expr() is by default a Sage symbolic expression:

sage: type(f.expr())
<class sage.symbolic.expression.Expression >

A SymPy expression can also be asked for:

sage: f.expr(sympy)
x**2 + 3*y + 1
sage: type(f.expr(sympy))
<class sympy.core.add.Add >

The value of the function at specified coordinates is obtained by means of the standard parentheses notation:

sage: f(2,-1)
2
sage: var(a b)
(a, b)
sage: f(a,b)
a^2 + 3*b + 1

An unspecified chart function:

1.5. Coordinate Charts 131

Manifolds, Release 10.4.rc1

sage: g = X.function(function(G)(x, y))
sage: g
G(x, y)
sage: g.display()
(x, y) ↦ G(x, y)
sage: g.expr()
G(x, y)
sage: g(2,3)
G(2, 3)

Coordinate functions can be compared to other values:

sage: f = X.function(x^2+3*y+1)
sage: f == 2
False
sage: f == x^2 + 3*y + 1
True
sage: g = X.function(x*y)
sage: f == g
False
sage: h = X.function(x^2+3*y+1)
sage: f == h
True

A coercion by means of the restriction is implemented:

sage: D = M.open_subset(D)
sage: X_D = X.restrict(D, x^2+y^2<1) # open disk
sage: c = X_D.function(x^2)
sage: c + f
2*x^2 + 3*y + 1

Expansion to a given order with respect to a small parameter:

sage: t = var(t) # the small parameter
sage: f = X.function(cos(t)*x*y, expansion_symbol=t, order=2)

The expansion is triggered by the call to simplify():

sage: f
x*y*cos(t)
sage: f.simplify()
-1/2*t^2*x*y + x*y

Differences between ChartFunction and callable symbolic expressions

Callable symbolic expressions are defined directly from symbolic expressions of the coordinates:

sage: f0(x,y) = x^2 + 3*y + 1
sage: type(f0)
<class sage.symbolic.expression.Expression >
sage: f0
(x, y) |--> x^2 + 3*y + 1
sage: f0(x,y)
x^2 + 3*y + 1

132 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

To get an output similar to that of f0 for a chart function, we must use the method display():

sage: f = X.function(x^2+3*y+1)
sage: f
x^2 + 3*y + 1
sage: f.display()
(x, y) ↦ x^2 + 3*y + 1
sage: f(x,y)
x^2 + 3*y + 1

More importantly, instances of ChartFunction differ from callable symbolic expression by the automatic sim-
plifications in all operations. For instance, adding the two callable symbolic expressions:

sage: f0(x,y,z) = cos(x)^2 ; g0(x,y,z) = sin(x)^2

results in:

sage: f0 + g0
(x, y, z) |--> cos(x)^2 + sin(x)^2

To get 1, one has to call simplify_trig():

sage: (f0 + g0).simplify_trig()
(x, y, z) |--> 1

On the contrary, the sum of the corresponding ChartFunction instances is automatically simplified (see sim-
plify_chain_real() and simplify_chain_generic() for details):

sage: f = X.function(cos(x)^2) ; g = X.function(sin(x)^2)
sage: f + g
1

Another difference regards the display of partial derivatives: for callable symbolic functions, it involves diff:

sage: g = function(g)(x, y)
sage: f0(x,y) = diff(g, x) + diff(g, y)
sage: f0
(x, y) |--> diff(g(x, y), x) + diff(g(x, y), y)

while for chart functions, the display is more “textbook” like:

sage: f = X.function(diff(g, x) + diff(g, y))
sage: f
d(g)/dx + d(g)/dy

The difference is even more dramatic on LaTeX outputs:

sage: latex(f0)
\left(x, y \right) \ {\mapsto} \ \frac{\partial}{\partial x}g\left(x, y\right) +␣
→˓\frac{\partial}{\partial y}g\left(x, y\right)
sage: latex(f)
\frac{\partial\,g}{\partial x} + \frac{\partial\,g}{\partial y}

Note that this regards only the display of coordinate functions: internally, the diff notation is still used, as we
can check by asking for the symbolic expression stored in f:

sage: f.expr()
diff(g(x, y), x) + diff(g(x, y), y)

1.5. Coordinate Charts 133

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_trig

Manifolds, Release 10.4.rc1

One can switch to Pynac notation by changing the options:

sage: Manifold.options.textbook_output=False
sage: latex(f)
\frac{\partial}{\partial x}g\left(x, y\right) + \frac{\partial}{\partial y}g\
→˓left(x, y\right)
sage: Manifold.options._reset()
sage: latex(f)
\frac{\partial\,g}{\partial x} + \frac{\partial\,g}{\partial y}

Another difference between ChartFunction and callable symbolic expression is the possibility to switch off
the display of the arguments of unspecified functions. Consider for instance:

sage: f = X.function(function(u)(x, y) * function(v)(x, y))
sage: f
u(x, y)*v(x, y)
sage: f0(x,y) = function(u)(x, y) * function(v)(x, y)
sage: f0
(x, y) |--> u(x, y)*v(x, y)

If there is a clear understanding that 𝑢 and 𝑣 are functions of (𝑥, 𝑦), the explicit mention of the latter can be
cumbersome in lengthy tensor expressions. We can switch it off by:

sage: Manifold.options.omit_function_arguments=True
sage: f
u*v

Note that neither the callable symbolic expression f0 nor the internal expression of f is affected by the above
command:

sage: f0
(x, y) |--> u(x, y)*v(x, y)
sage: f.expr()
u(x, y)*v(x, y)

We revert to the default behavior by:

sage: Manifold.options._reset()
sage: f
u(x, y)*v(x, y)

__call__(*coords, **options)
Compute the value of the function at specified coordinates.

INPUT:

• *coords – list of coordinates (𝑥1, . . . , 𝑥𝑛), where the function 𝑓 is to be evaluated

• **options – allows to pass simplify=False to disable the call of the simplification chain on the
result

OUTPUT:

• the value 𝑓(𝑥1, . . . , 𝑥𝑛), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()

(continues on next page)

134 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f = X.function(sin(x*y))
sage: f.__call__(-2, 3)
-sin(6)
sage: f(-2, 3)
-sin(6)
sage: var(a b)
(a, b)
sage: f.__call__(a, b)
sin(a*b)
sage: f(a,b)
sin(a*b)
sage: f.__call__(pi, 1)
0
sage: f.__call__(pi, 1/2)
1

With SymPy:

sage: X.calculus_method().set(sympy)
sage: f(-2,3)
-sin(6)
sage: type(f(-2,3))
<class sympy.core.mul.Mul >
sage: f(a,b)
sin(a*b)
sage: type(f(a,b))
sin
sage: type(f(pi,1))
<class sympy.core.numbers.Zero >
sage: f(pi, 1/2)
1
sage: type(f(pi, 1/2))
<class sympy.core.numbers.One >

arccos()

Arc cosine of self.

OUTPUT:

• chart function arccos(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.arccos()
arccos(x*y)
sage: arccos(f) # equivalent to f.arccos()
arccos(x*y)
sage: acos(f) # equivalent to f.arccos()
arccos(x*y)
sage: arccos(f).display()
(x, y) ↦ arccos(x*y)
sage: arccos(X.zero_function()).display()
(x, y) ↦ 1/2*pi

The same test with SymPy:

1.5. Coordinate Charts 135

Manifolds, Release 10.4.rc1

sage: M.set_calculus_method(sympy)
sage: f = X.function(x*y)
sage: f.arccos()
acos(x*y)
sage: arccos(f) # equivalent to f.arccos()
acos(x*y)
sage: acos(f) # equivalent to f.arccos()
acos(x*y)
sage: arccos(f).display()
(x, y) ↦ acos(x*y)

arccosh()

Inverse hyperbolic cosine of self.

OUTPUT:

• chart function arccosh(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.arccosh()
arccosh(x*y)
sage: arccosh(f) # equivalent to f.arccosh()
arccosh(x*y)
sage: acosh(f) # equivalent to f.arccosh()
arccosh(x*y)
sage: arccosh(f).display()
(x, y) ↦ arccosh(x*y)
sage: arccosh(X.function(1)) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.arccosh()
acosh(x*y)
sage: arccosh(f) # equivalent to f.arccosh()
acosh(x*y)
sage: acosh(f) # equivalent to f.arccosh()
acosh(x*y)

arcsin()

Arc sine of self.

OUTPUT:

• chart function arcsin(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.arcsin()
arcsin(x*y)
sage: arcsin(f) # equivalent to f.arcsin()

(continues on next page)

136 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

arcsin(x*y)
sage: asin(f) # equivalent to f.arcsin()
arcsin(x*y)
sage: arcsin(f).display()
(x, y) ↦ arcsin(x*y)
sage: arcsin(X.zero_function()) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.arcsin()
asin(x*y)
sage: arcsin(f) # equivalent to f.arcsin()
asin(x*y)
sage: asin(f) # equivalent to f.arcsin()
asin(x*y)

arcsinh()

Inverse hyperbolic sine of self.

OUTPUT:

• chart function arcsinh(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.arcsinh()
arcsinh(x*y)
sage: arcsinh(f) # equivalent to f.arcsinh()
arcsinh(x*y)
sage: asinh(f) # equivalent to f.arcsinh()
arcsinh(x*y)
sage: arcsinh(f).display()
(x, y) ↦ arcsinh(x*y)
sage: arcsinh(X.zero_function()) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.arcsinh()
asinh(x*y)
sage: arcsinh(f) # equivalent to f.arcsinh()
asinh(x*y)
sage: asinh(f) # equivalent to f.arcsinh()
asinh(x*y)

arctan()

Arc tangent of self.

OUTPUT:

• chart function arctan(𝑓), where 𝑓 is the current chart function

EXAMPLES:

1.5. Coordinate Charts 137

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.arctan()
arctan(x*y)
sage: arctan(f) # equivalent to f.arctan()
arctan(x*y)
sage: atan(f) # equivalent to f.arctan()
arctan(x*y)
sage: arctan(f).display()
(x, y) ↦ arctan(x*y)
sage: arctan(X.zero_function()) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.arctan()
atan(x*y)
sage: arctan(f) # equivalent to f.arctan()
atan(x*y)
sage: atan(f) # equivalent to f.arctan()
atan(x*y)

arctanh()

Inverse hyperbolic tangent of self.

OUTPUT:

• chart function arctanh(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.arctanh()
arctanh(x*y)
sage: arctanh(f) # equivalent to f.arctanh()
arctanh(x*y)
sage: atanh(f) # equivalent to f.arctanh()
arctanh(x*y)
sage: arctanh(f).display()
(x, y) ↦ arctanh(x*y)
sage: arctanh(X.zero_function()) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.arctanh()
atanh(x*y)
sage: arctanh(f) # equivalent to f.arctanh()
atanh(x*y)
sage: atanh(f) # equivalent to f.arctanh()
atanh(x*y)

chart()

Return the chart with respect to which self is defined.

138 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• a Chart

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(1+x+y^2)
sage: f.chart()
Chart (M, (x, y))
sage: f.chart() is X
True

collect(s)

Collect the coefficients of 𝑠 in the expression of self into a group.

INPUT:

• s – the symbol whose coefficients will be collected

OUTPUT:

• self with the coefficients of s grouped in its expression

EXAMPLES:

Action on a 2-dimensional chart function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2*y + x*y + (x*y)^2)
sage: f.display()
(x, y) ↦ x^2*y^2 + x^2*y + x*y
sage: f.collect(y)
x^2*y^2 + (x^2 + x)*y

The method collect() has changed the expression of f:

sage: f.display()
(x, y) ↦ x^2*y^2 + (x^2 + x)*y

The same test with SymPy

sage: X.calculus_method().set(sympy)
sage: f = X.function(x^2*y + x*y + (x*y)^2)
sage: f.display()
(x, y) ↦ x**2*y**2 + x**2*y + x*y
sage: f.collect(y)
x**2*y**2 + y*(x**2 + x)

collect_common_factors()

Collect common factors in the expression of self.

This method does not perform a full factorization but only looks for factors which are already explicitly
present.

OUTPUT:

• self with the common factors collected in its expression

1.5. Coordinate Charts 139

Manifolds, Release 10.4.rc1

EXAMPLES:

Action on a 2-dimensional chart function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x/(x^2*y + x*y))
sage: f.display()
(x, y) ↦ x/(x^2*y + x*y)
sage: f.collect_common_factors()
1/((x + 1)*y)

The method collect_common_factors() has changed the expression of f:

sage: f.display()
(x, y) ↦ 1/((x + 1)*y)

The same test with SymPy:

sage: X.calculus_method().set(sympy)
sage: g = X.function(x/(x^2*y + x*y))
sage: g.display()
(x, y) ↦ x/(x**2*y + x*y)
sage: g.collect_common_factors()
1/(y*(x + 1))

copy()

Return an exact copy of the object.

OUTPUT:

• a ChartFunctionSymb

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x+y^2)
sage: g = f.copy(); g
y^2 + x

By construction, g is identical to f:

sage: type(g) == type(f)
True
sage: g == f
True

but it is not the same object:

sage: g is f
False

cos()

Cosine of self.

OUTPUT:

• chart function cos(𝑓), where 𝑓 is the current chart function

140 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.cos()
cos(x*y)
sage: cos(f) # equivalent to f.cos()
cos(x*y)
sage: cos(f).display()
(x, y) ↦ cos(x*y)
sage: cos(X.zero_function()).display()
(x, y) ↦ 1

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.cos()
cos(x*y)
sage: cos(f) # equivalent to f.cos()
cos(x*y)

cosh()

Hyperbolic cosine of self.

OUTPUT:

• chart function cosh(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.cosh()
cosh(x*y)
sage: cosh(f) # equivalent to f.cosh()
cosh(x*y)
sage: cosh(f).display()
(x, y) ↦ cosh(x*y)
sage: cosh(X.zero_function()).display()
(x, y) ↦ 1

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.cosh()
cosh(x*y)
sage: cosh(f) # equivalent to f.cosh()
cosh(x*y)

derivative(coord)

Partial derivative with respect to a coordinate.

INPUT:

• coord – either the coordinate 𝑥𝑖 with respect to which the derivative of the chart function 𝑓 is to be
taken, or the index 𝑖 labelling this coordinate (with the index convention defined on the chart domain via
the parameter start_index)

1.5. Coordinate Charts 141

Manifolds, Release 10.4.rc1

OUTPUT:

• a ChartFunction representing the partial derivative 𝜕𝑓
𝜕𝑥𝑖

EXAMPLES:

Partial derivatives of a 2-dimensional chart function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(calc_method= SR)
sage: f = X.function(x^2+3*y+1); f
x^2 + 3*y + 1
sage: f.derivative(x)
2*x
sage: f.derivative(y)
3

An alias is diff:

sage: f.diff(x)
2*x

Each partial derivative is itself a chart function:

sage: type(f.diff(x))
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >

The same result is returned by the function diff:

sage: diff(f, x)
2*x

An index can be used instead of the coordinate symbol:

sage: f.diff(0)
2*x
sage: diff(f, 1)
3

The index range depends on the convention used on the chart’s domain:

sage: M = Manifold(2, M , structure= topological , start_index=1)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2+3*y+1)
sage: f.diff(0)
Traceback (most recent call last):
...
ValueError: coordinate index out of range
sage: f.diff(1)
2*x
sage: f.diff(2)
3

The same test with SymPy:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(calc_method= sympy)
sage: f = X.function(x^2+3*y+1); f

(continues on next page)

142 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

x**2 + 3*y + 1
sage: f.diff(x)
2*x
sage: f.diff(y)
3

diff(coord)

Partial derivative with respect to a coordinate.

INPUT:

• coord – either the coordinate 𝑥𝑖 with respect to which the derivative of the chart function 𝑓 is to be
taken, or the index 𝑖 labelling this coordinate (with the index convention defined on the chart domain via
the parameter start_index)

OUTPUT:

• a ChartFunction representing the partial derivative 𝜕𝑓
𝜕𝑥𝑖

EXAMPLES:

Partial derivatives of a 2-dimensional chart function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(calc_method= SR)
sage: f = X.function(x^2+3*y+1); f
x^2 + 3*y + 1
sage: f.derivative(x)
2*x
sage: f.derivative(y)
3

An alias is diff:

sage: f.diff(x)
2*x

Each partial derivative is itself a chart function:

sage: type(f.diff(x))
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >

The same result is returned by the function diff:

sage: diff(f, x)
2*x

An index can be used instead of the coordinate symbol:

sage: f.diff(0)
2*x
sage: diff(f, 1)
3

The index range depends on the convention used on the chart’s domain:

1.5. Coordinate Charts 143

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological , start_index=1)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2+3*y+1)
sage: f.diff(0)
Traceback (most recent call last):
...
ValueError: coordinate index out of range
sage: f.diff(1)
2*x
sage: f.diff(2)
3

The same test with SymPy:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(calc_method= sympy)
sage: f = X.function(x^2+3*y+1); f
x**2 + 3*y + 1
sage: f.diff(x)
2*x
sage: f.diff(y)
3

disp()

Display self in arrow notation. For display the standard SR representation is used.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

Coordinate function on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(cos(x*y/2))
sage: f.display()
(x, y) ↦ cos(1/2*x*y)
sage: latex(f.display())
\left(x, y\right) \mapsto \cos\left(\frac{1}{2} \, x y\right)

A shortcut is disp():

sage: f.disp()
(x, y) ↦ cos(1/2*x*y)

Display of the zero function:

sage: X.zero_function().display()
(x, y) ↦ 0

display()

Display self in arrow notation. For display the standard SR representation is used.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

Coordinate function on a 2-dimensional manifold:

144 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(cos(x*y/2))
sage: f.display()
(x, y) ↦ cos(1/2*x*y)
sage: latex(f.display())
\left(x, y\right) \mapsto \cos\left(\frac{1}{2} \, x y\right)

A shortcut is disp():

sage: f.disp()
(x, y) ↦ cos(1/2*x*y)

Display of the zero function:

sage: X.zero_function().display()
(x, y) ↦ 0

exp()

Exponential of self.

OUTPUT:

• chart function exp(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x+y)
sage: f.exp()
e^(x + y)
sage: exp(f) # equivalent to f.exp()
e^(x + y)
sage: exp(f).display()
(x, y) ↦ e^(x + y)
sage: exp(X.zero_function())
1

The same test with SymPy:

sage: X.calculus_method().set(sympy)
sage: f = X.function(x+y)
sage: f.exp()
exp(x + y)
sage: exp(f) # equivalent to f.exp()
exp(x + y)
sage: exp(f).display()
(x, y) ↦ exp(x + y)
sage: exp(X.zero_function())
1

expand()

Expand the coordinate expression of self.

OUTPUT:

• self with its expression expanded

1.5. Coordinate Charts 145

Manifolds, Release 10.4.rc1

EXAMPLES:

Expanding a 2-dimensional chart function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function((x - y)^2)
sage: f.display()
(x, y) ↦ (x - y)^2
sage: f.expand()
x^2 - 2*x*y + y^2

The method expand() has changed the expression of f:

sage: f.display()
(x, y) ↦ x^2 - 2*x*y + y^2

The same test with SymPy

sage: X.calculus_method().set(sympy)
sage: g = X.function((x - y)^2)
sage: g.expand()
x**2 - 2*x*y + y**2

expr(method=None)
Return the symbolic expression of self in terms of the chart coordinates, as an object of a specified calculus
method.

INPUT:

• method – string (default: None): the calculus method which the returned expression belongs to; one
of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the chart current calculus method is assumed

OUTPUT:

• a Sage symbolic expression if method is SR

• a SymPy object if method is sympy

EXAMPLES:

Chart function on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2+y)
sage: f.expr()
x^2 + y
sage: type(f.expr())
<class sage.symbolic.expression.Expression >

Asking for the SymPy expression:

sage: f.expr(sympy)
x**2 + y

(continues on next page)

146 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: type(f.expr(sympy))
<class sympy.core.add.Add >

The default corresponds to the current calculus method, here the one based on the Symbolic Ring SR:

sage: f.expr() is f.expr(SR)
True

If we change the current calculus method on chart X, we change the default:

sage: X.calculus_method().set(sympy)
sage: f.expr()
x**2 + y
sage: f.expr() is f.expr(sympy)
True
sage: X.calculus_method().set(SR) # revert back to SR

Internally, the expressions corresponding to various calculus methods are stored in the dictionary _express:

sage: for method in sorted(f._express):
....: print(" {} : {}".format(method, f._express[method]))
....:
SR : x^2 + y
sympy : x**2 + y

Themethodexpr() is useful for accessing to all the symbolic expression functionalities in Sage; for instance:

sage: var(a)
a
sage: f = X.function(a*x*y); f.display()
(x, y) ↦ a*x*y
sage: f.expr()
a*x*y
sage: f.expr().subs(a=2)
2*x*y

Note that for substituting the value of a coordinate, the function call can be used as well:

sage: f(x,3)
3*a*x
sage: bool(f(x,3) == f.expr().subs(y=3))
True

factor()

Factorize the coordinate expression of self.

OUTPUT:

• self with its expression factorized

EXAMPLES:

Factorization of a 2-dimensional chart function:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2 + 2*x*y + y^2)

(continues on next page)

1.5. Coordinate Charts 147

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.display()
(x, y) ↦ x^2 + 2*x*y + y^2
sage: f.factor()
(x + y)^2

The method factor() has changed the expression of f:

sage: f.display()
(x, y) ↦ (x + y)^2

The same test with SymPy

sage: X.calculus_method().set(sympy)
sage: g = X.function(x^2 + 2*x*y + y^2)
sage: g.display()
(x, y) ↦ x**2 + 2*x*y + y**2
sage: g.factor()
(x + y)**2

is_trivial_one()

Check if self is trivially equal to one without any simplification.

This method is supposed to be fast as compared with self == 1 and is intended to be used in library code
where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not
desirable.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(1)
sage: f.is_trivial_one()
True
sage: f = X.function(float(1.0))
sage: f.is_trivial_one()
True
sage: f = X.function(x-x+1)
sage: f.is_trivial_one()
True
sage: X.one_function().is_trivial_one()
True

No simplification is attempted, so that False is returned for non-trivial cases:

sage: f = X.function(cos(x)^2 + sin(x)^2)
sage: f.is_trivial_one()
False

On the contrary, the method is_zero() and the direct comparison to one involve some simplification
algorithms and return True:

sage: (f - 1).is_zero()
True
sage: f == 1
True

148 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element.is_zero

Manifolds, Release 10.4.rc1

is_trivial_zero()

Check if self is trivially equal to zero without any simplification.

This method is supposed to be fast as compared with self.is_zero() or self == 0 and is intended to
be used in library code where trying to obtain a mathematically correct result by applying potentially expensive
rewrite rules is not desirable.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(0)
sage: f.is_trivial_zero()
True
sage: f = X.function(float(0.0))
sage: f.is_trivial_zero()
True
sage: f = X.function(x-x)
sage: f.is_trivial_zero()
True
sage: X.zero_function().is_trivial_zero()
True

No simplification is attempted, so that False is returned for non-trivial cases:

sage: f = X.function(cos(x)^2 + sin(x)^2 - 1)
sage: f.is_trivial_zero()
False

On the contrary, the method is_zero() and the direct comparison to zero involve some simplification
algorithms and return True:

sage: f.is_zero()
True
sage: f == 0
True

is_unit()

Return True iff self is not trivially zero since most chart functions are invertible and an actual computation
would take too much time.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x^2+3*y+1)
sage: f.is_unit()
True
sage: zero = X.function(0)
sage: zero.is_unit()
False

log(base=None)

Logarithm of self.

INPUT:

• base – (default: None) base of the logarithm; if None, the natural logarithm (i.e. logarithm to base
𝑒) is returned

1.5. Coordinate Charts 149

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element.is_zero

Manifolds, Release 10.4.rc1

OUTPUT:

• chart function log𝑎(𝑓), where 𝑓 is the current chart function and 𝑎 is the base

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x+y)
sage: f.log()
log(x + y)
sage: log(f) # equivalent to f.log()
log(x + y)
sage: log(f).display()
(x, y) ↦ log(x + y)
sage: f.log(2)
log(x + y)/log(2)
sage: log(f, 2)
log(x + y)/log(2)

The same test with SymPy:

sage: X.calculus_method().set(sympy)
sage: f = X.function(x+y)
sage: f.log()
log(x + y)
sage: log(f) # equivalent to f.log()
log(x + y)
sage: log(f).display()
(x, y) ↦ log(x + y)
sage: f.log(2)
log(x + y)/log(2)
sage: log(f, 2)
log(x + y)/log(2)

scalar_field(name=None, latex_name=None)
Construct the scalar field that has self as coordinate expression.

The domain of the scalar field is the open subset covered by the chart on which self is defined.

INPUT:

• name – (default: None) name given to the scalar field

• latex_name – (default: None) LaTeX symbol to denote the scalar field; if None, the LaTeX symbol
is set to name

OUTPUT:

• a ScalarField

EXAMPLES:

Construction of a scalar field on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: fc = c_xy.function(x+2*y^3)
sage: f = fc.scalar_field() ; f
Scalar field on the 2-dimensional topological manifold M
sage: f.display()

(continues on next page)

150 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

M → ℝ
(x, y) ↦ 2*y^3 + x
sage: f.coord_function(c_xy) is fc
True

set_expr(calc_method, expression)
Add an expression in a particular calculus method self. Some control is done to verify the consistency
between the different representations of the same expression.

INPUT:

• calc_method – calculus method

• expression – symbolic expression

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(1+x^2)
sage: f._repr_()
x^2 + 1

sage: f.set_expr(sympy , x**2+1)
sage: f # indirect doctest
x^2 + 1

sage: g = X.function(1+x^3)
sage: g._repr_()
x^3 + 1

sage: g.set_expr(sympy , x**2+y)
Traceback (most recent call last):
...
ValueError: Expressions are not equal

simplify()

Simplify the coordinate expression of self.

For details about the employed chain of simplifications for the SR calculus method, see sim-
plify_chain_real() for chart functions on real manifolds and simplify_chain_generic()
for the generic case.

If self has been defined with the small parameter expansion_symbol and some truncation order, the
coordinate expression of self will be expanded in power series of that parameter and truncated to the given
order.

OUTPUT:

• self with its coordinate expression simplified

EXAMPLES:

Simplification of a chart function on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(cos(x)^2 + sin(x)^2 + sqrt(x^2))
sage: f.display()
(x, y) ↦ cos(x)^2 + sin(x)^2 + abs(x)
sage: f.simplify()
abs(x) + 1

1.5. Coordinate Charts 151

Manifolds, Release 10.4.rc1

The method simplify() has changed the expression of f:

sage: f.display()
(x, y) ↦ abs(x) + 1

Another example:

sage: f = X.function((x^2-1)/(x+1)); f
(x^2 - 1)/(x + 1)
sage: f.simplify()
x - 1

Examples taking into account the declared range of a coordinate:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(x:(1,+oo) y)
sage: f = X.function(sqrt(x^2-2*x+1)); f
sqrt(x^2 - 2*x + 1)
sage: f.simplify()
x - 1

sage: forget() # to clear the previous assumption on x
sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(x:(-oo,0) y)
sage: f = X.function(sqrt(x^2-2*x+1)); f
sqrt(x^2 - 2*x + 1)
sage: f.simplify()
-x + 1

The same tests with SymPy:

sage: forget() # to clear the previous assumption on x
sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(calc_method= sympy)
sage: f = X.function(cos(x)^2 + sin(x)^2 + sqrt(x^2)); f
sin(x)**2 + cos(x)**2 + Abs(x)
sage: f.simplify()
Abs(x) + 1

sage: f = X.function((x^2-1)/(x+1)); f
(x**2 - 1)/(x + 1)
sage: f.simplify()
x - 1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(x:(1,+oo) y , calc_method= sympy)
sage: f = X.function(sqrt(x^2-2*x+1)); f
sqrt(x**2 - 2*x + 1)
sage: f.simplify()
x - 1

sage: forget() # to clear the previous assumption on x
sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(x:(-oo,0) y , calc_method= sympy)
sage: f = X.function(sqrt(x^2-2*x+1)); f
sqrt(x**2 - 2*x + 1)

(continues on next page)

152 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.simplify()
1 - x

Power series expansion with respect to a small parameter 𝑡 (at the moment, this is implemented only for the
SR calculus backend, hence the first line below):

sage: X.calculus_method().set(SR)
sage: t = var(t)
sage: f = X.function(exp(t*x), expansion_symbol=t, order=3)

At this stage, 𝑓 is not expanded in power series:

sage: f
e^(t*x)

Invoking simplify() triggers the expansion to the given order:

sage: f.simplify()
1/6*t^3*x^3 + 1/2*t^2*x^2 + t*x + 1
sage: f.display()
(x, y) ↦ 1/6*t^3*x^3 + 1/2*t^2*x^2 + t*x + 1

sin()

Sine of self.

OUTPUT:

• chart function sin(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.sin()
sin(x*y)
sage: sin(f) # equivalent to f.sin()
sin(x*y)
sage: sin(f).display()
(x, y) ↦ sin(x*y)
sage: sin(X.zero_function()) == X.zero_function()
True
sage: f = X.function(2-cos(x)^2+y)
sage: g = X.function(-sin(x)^2+y)
sage: (f+g).simplify()
2*y + 1

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f = X.function(x*y)
sage: f.sin()
sin(x*y)
sage: sin(f) # equivalent to f.sin()
sin(x*y)

1.5. Coordinate Charts 153

Manifolds, Release 10.4.rc1

sinh()

Hyperbolic sine of self.

OUTPUT:

• chart function sinh(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.sinh()
sinh(x*y)
sage: sinh(f) # equivalent to f.sinh()
sinh(x*y)
sage: sinh(f).display()
(x, y) ↦ sinh(x*y)
sage: sinh(X.zero_function()) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.sinh()
sinh(x*y)
sage: sinh(f) # equivalent to f.sinh()
sinh(x*y)

sqrt()

Square root of self.

OUTPUT:

• chart function
√
𝑓 , where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x+y)
sage: f.sqrt()
sqrt(x + y)
sage: sqrt(f) # equivalent to f.sqrt()
sqrt(x + y)
sage: sqrt(f).display()
(x, y) ↦ sqrt(x + y)
sage: sqrt(X.zero_function()).display()
(x, y) ↦ 0

tan()

Tangent of self.

OUTPUT:

• chart function tan(𝑓), where 𝑓 is the current chart function

EXAMPLES:

154 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.tan()
sin(x*y)/cos(x*y)
sage: tan(f) # equivalent to f.tan()
sin(x*y)/cos(x*y)
sage: tan(f).display()
(x, y) ↦ sin(x*y)/cos(x*y)
sage: tan(X.zero_function()) == X.zero_function()
True

The same test with SymPy:

sage: M.set_calculus_method(sympy)
sage: g = X.function(x*y)
sage: g.tan()
tan(x*y)
sage: tan(g) # equivalent to g.tan()
tan(x*y)
sage: tan(g).display()
(x, y) ↦ tan(x*y)

tanh()

Hyperbolic tangent of self.

OUTPUT:

• chart function tanh(𝑓), where 𝑓 is the current chart function

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.function(x*y)
sage: f.tanh()
sinh(x*y)/cosh(x*y)
sage: tanh(f) # equivalent to f.tanh()
sinh(x*y)/cosh(x*y)
sage: tanh(f).display()
(x, y) ↦ sinh(x*y)/cosh(x*y)
sage: tanh(X.zero_function()) == X.zero_function()
True

The same tests with SymPy:

sage: X.calculus_method().set(sympy)
sage: f.tanh()
tanh(x*y)
sage: tanh(f) # equivalent to f.tanh()
tanh(x*y)

class sage.manifolds.chart_func.ChartFunctionRing(chart)
Bases: Parent, UniqueRepresentation

Ring of all chart functions on a chart.

INPUT:

• chart – a coordinate chart, as an instance of class Chart

1.5. Coordinate Charts 155

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

EXAMPLES:

The ring of all chart functions w.r.t. to a chart:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: FR = X.function_ring(); FR
Ring of chart functions on Chart (M, (x, y))
sage: type(FR)
<class sage.manifolds.chart_func.ChartFunctionRing_with_category >
sage: FR.category()
Category of commutative algebras over Symbolic Ring

Coercions by means of restrictions are implemented:

sage: FR_X = X.function_ring()
sage: D = M.open_subset(D)
sage: X_D = X.restrict(D, x^2+y^2<1) # open disk
sage: FR_X_D = X_D.function_ring()
sage: FR_X_D.has_coerce_map_from(FR_X)
True

But only if the charts are compatible:

sage: Y.<t,z> = D.chart()
sage: FR_Y = Y.function_ring()
sage: FR_Y.has_coerce_map_from(FR_X)
False

Element

alias of ChartFunction

is_field(proof=True)
Return False as self is not an integral domain.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: FR = X.function_ring()
sage: FR.is_integral_domain()
False
sage: FR.is_field()
False

is_integral_domain(proof=True)
Return False as self is not an integral domain.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: FR = X.function_ring()
sage: FR.is_integral_domain()
False
sage: FR.is_field()
False

156 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

one()

Return the constant function 1 in self.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: FR = X.function_ring()
sage: FR.one()
1

sage: M = Manifold(2, M , structure= topological , field=Qp(5))
sage: X.<x,y> = M.chart()
sage: X.function_ring().one()
1 + O(5^20)

zero()

Return the constant function 0 in self.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: FR = X.function_ring()
sage: FR.zero()
0

sage: M = Manifold(2, M , structure= topological , field=Qp(5))
sage: X.<x,y> = M.chart()
sage: X.function_ring().zero()
0

class sage.manifolds.chart_func.MultiCoordFunction(chart, expressions)
Bases: SageObject, Mutability

Coordinate function to some Cartesian power of the base field.

If 𝑛 and 𝑚 are two positive integers and (𝑈,𝜙) is a chart on a topological manifold 𝑀 of dimension 𝑛 over a
topological field𝐾, a multi-coordinate function associated to (𝑈,𝜙) is a map

𝑓 : 𝑉 ⊂ 𝐾𝑛 −→ 𝐾𝑚

(𝑥1, . . . , 𝑥𝑛) ↦−→ (𝑓1(𝑥
1, . . . , 𝑥𝑛), . . . , 𝑓𝑚(𝑥1, . . . , 𝑥𝑛)),

where 𝑉 is the codomain of 𝜙. In other words, 𝑓 is a𝐾𝑚-valued function of the coordinates associated to the chart
(𝑈,𝜙). Each component 𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑚) is a coordinate function and is therefore stored as a ChartFunction.

INPUT:

• chart – the chart (𝑈,𝜙)

• expressions – list (or tuple) of length𝑚 of elements to construct the coordinate functions 𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑚);
for symbolic coordinate functions, this must be symbolic expressions involving the chart coordinates, while
for numerical coordinate functions, this must be data file names

EXAMPLES:

A function 𝑓 : 𝑉 ⊂ R2 −→ R3:

1.5. Coordinate Charts 157

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../html/en/reference/structure/sage/structure/mutability.html#sage.structure.mutability.Mutability

Manifolds, Release 10.4.rc1

sage: forget() # to clear the previous assumption on x
sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x-y, x*y, cos(x)*exp(y)); f
Coordinate functions (x - y, x*y, cos(x)*e^y) on the Chart (M, (x, y))
sage: type(f)
<class sage.manifolds.chart_func.MultiCoordFunction >
sage: f(x,y)
(x - y, x*y, cos(x)*e^y)
sage: latex(f)
\left(x - y, x y, \cos\left(x\right) e^{y}\right)

Each real-valued function 𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑚) composing 𝑓 can be accessed via the square-bracket operator, by
providing 𝑖− 1 as an argument:

sage: f[0]
x - y
sage: f[1]
x*y
sage: f[2]
cos(x)*e^y

We can give a more verbose explanation of each function:

sage: f[0].display()
(x, y) ↦ x - y

Each f[i-1] is an instance of ChartFunction:

sage: isinstance(f[0], sage.manifolds.chart_func.ChartFunction)
True

A class MultiCoordFunction can represent a real-valued function (case𝑚 = 1), although one should rather
employ the class ChartFunction for this purpose:

sage: g = X.multifunction(x*y^2)
sage: g(x,y)
(x*y^2,)

Evaluating the functions at specified coordinates:

sage: f(1,2)
(-1, 2, cos(1)*e^2)
sage: var(a b)
(a, b)
sage: f(a,b)
(a - b, a*b, cos(a)*e^b)
sage: g(1,2)
(4,)

chart()

Return the chart with respect to which self is defined.

OUTPUT:

• a Chart

EXAMPLES:

158 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x-y, x*y, cos(x)*exp(y))
sage: f.chart()
Chart (M, (x, y))
sage: f.chart() is X
True

expr(method=None)
Return a tuple of data, the item no. 𝑖 being sufficient to reconstruct the coordinate function no. 𝑖.

In other words, if f is a multi-coordinate function, then f.chart().multifunction(*(f.
expr())) results in a multi-coordinate function identical to f.

INPUT:

• method – string (default: None): the calculus method which the returned expressions belong to; one
of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the chart current calculus method is assumed

OUTPUT:

• a tuple of the symbolic expressions of the chart functions composing self

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x-y, x*y, cos(x)*exp(y))
sage: f.expr()
(x - y, x*y, cos(x)*e^y)
sage: type(f.expr()[0])
<class sage.symbolic.expression.Expression >

A SymPy output:

sage: f.expr(sympy)
(x - y, x*y, exp(y)*cos(x))
sage: type(f.expr(sympy)[0])
<class sympy.core.add.Add >

One shall always have:

sage: f.chart().multifunction(*(f.expr())) == f
True

jacobian()

Return the Jacobian matrix of the system of coordinate functions.

jacobian() is a 2-dimensional array of size𝑚×𝑛, where𝑚 is the number of functions and 𝑛 the number
of coordinates, the generic element being 𝐽𝑖𝑗 = 𝜕𝑓𝑖

𝜕𝑥𝑗 with 1 ≤ 𝑖 ≤ 𝑚 (row index) and 1 ≤ 𝑗 ≤ 𝑛 (column
index).

OUTPUT:

1.5. Coordinate Charts 159

Manifolds, Release 10.4.rc1

• Jacobian matrix as a 2-dimensional array J of coordinate functions with J[i-1][j-1] being 𝐽𝑖𝑗 =
𝜕𝑓𝑖
𝜕𝑥𝑗 for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛

EXAMPLES:

Jacobian of a set of 3 functions of 2 coordinates:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x-y, x*y, y^3*cos(x))
sage: f.jacobian()
[1 -1]
[y x]
[-y^3*sin(x) 3*y^2*cos(x)]

Each element of the result is a chart function:

sage: type(f.jacobian()[2,0])
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >
sage: f.jacobian()[2,0].display()
(x, y) ↦ -y^3*sin(x)

Test of the computation:

sage: [[f.jacobian()[i,j] == f[i].diff(j) for j in range(2)] for i in␣
→˓range(3)]
[[True, True], [True, True], [True, True]]

Test with start_index = 1:

sage: M = Manifold(2, M , structure= topological , start_index=1)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x-y, x*y, y^3*cos(x))
sage: f.jacobian()
[1 -1]
[y x]
[-y^3*sin(x) 3*y^2*cos(x)]
sage: [[f.jacobian()[i,j] == f[i].diff(j+1) for j in range(2)] # note the j+1
....: for i in range(3)]
[[True, True], [True, True], [True, True]]

jacobian_det()

Return the Jacobian determinant of the system of functions.

The number𝑚 of coordinate functions must equal the number 𝑛 of coordinates.

OUTPUT:

• a ChartFunction representing the determinant

EXAMPLES:

Jacobian determinant of a set of 2 functions of 2 coordinates:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x-y, x*y)
sage: f.jacobian_det()
x + y

160 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

The output of jacobian_det() is an instance of ChartFunction and can therefore be called on
specific values of the coordinates, e.g. (𝑥, 𝑦) = (1, 2):

sage: type(f.jacobian_det())
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >
sage: f.jacobian_det().display()
(x, y) ↦ x + y
sage: f.jacobian_det()(1,2)
3

The result is cached:

sage: f.jacobian_det() is f.jacobian_det()
True

We verify the determinant of the Jacobian:

sage: f.jacobian_det() == det(matrix([[f[i].diff(j).expr() for j in range(2)]
....: for i in range(2)]))
True

An example using SymPy:

sage: M.set_calculus_method(sympy)
sage: g = X.multifunction(x*y^3, e^x)
sage: g.jacobian_det()
-3*x*y**2*exp(x)
sage: type(g.jacobian_det().expr())
<class sympy.core.mul.Mul >

Jacobian determinant of a set of 3 functions of 3 coordinates:

sage: M = Manifold(3, M , structure= topological)
sage: X.<x,y,z> = M.chart()
sage: f = X.multifunction(x*y+z^2, z^2*x+y^2*z, (x*y*z)^3)
sage: f.jacobian_det().display()
(x, y, z) ↦ 6*x^3*y^5*z^3 - 3*x^4*y^3*z^4 - 12*x^2*y^4*z^5 + 6*x^3*y^2*z^6

We verify the determinant of the Jacobian:

sage: f.jacobian_det() == det(matrix([[f[i].diff(j).expr() for j in range(3)]
....: for i in range(3)]))
True

set_immutable()

Set self and all chart functions of self immutable.

EXAMPLES:

Declare a coordinate function immutable:

sage: M = Manifold(3, M , structure= topological)
sage: X.<x,y,z> = M.chart()
sage: f = X.multifunction(x+y+z, x*y*z)
sage: f.is_immutable()
False
sage: f.set_immutable()

(continues on next page)

1.5. Coordinate Charts 161

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.is_immutable()
True

The chart functions are now immutable, too:

sage: f[0].parent()
Ring of chart functions on Chart (M, (x, y, z))
sage: f[0].is_immutable()
True

1.5.3 Coordinate calculus methods

The class CalculusMethod governs the calculus methods (symbolic and numerical) used for coordinate computations
on manifolds.

AUTHORS:

• Marco Mancini (2017): initial version

• Eric Gourgoulhon (2019): add set_simplify_function() and various accessors

class sage.manifolds.calculus_method.CalculusMethod(current=None, base_field_type='real')
Bases: SageObject

Control of calculus backends used on coordinate charts of manifolds.

This class stores the possible calculus methods and permits to switch between them, as well as to change the
simplifying functions associated with them. For the moment, only two calculus backends are implemented:

• Sage’s symbolic engine (Pynac + Maxima), implemented via the Symbolic Ring SR

• SymPy engine, denoted sympy hereafter

INPUT:

• current – (default: None) string defining the calculus method that will be considered as the active one,
until it is changed by set(); must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the default calculus method (SR)

• base_field_type – (default: real) base field type of the manifold (cf. base_field_type())

EXAMPLES:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod()

In the display, the currently active method is pointed out with a star:

sage: cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

It can be changed with set():

162 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Manifolds, Release 10.4.rc1

sage: cm.set(sympy)
sage: cm
Available calculus methods (* = current):
- SR (default)
- sympy (*)

while reset() brings back to the default:

sage: cm.reset()
sage: cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

See simplify_function() for the default simplification algorithms associated with each calculus method
and set_simplify_function() for introducing a new simplification algorithm.

current()

Return the active calculus method as a string.

OUTPUT:

• string defining the calculus method, one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

EXAMPLES:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod(); cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

sage: cm.current()
SR

sage: cm.set(sympy)
sage: cm.current()
sympy

is_trivial_zero(expression, method=None)
Check if an expression is trivially equal to zero without any simplification.

INPUT:

• expression – expression

• method – (default: None) string defining the calculus method to use; if None the current calculus
method of self is used.

OUTPUT:

• True is expression is trivially zero, False elsewhere.

EXAMPLES:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod(base_field_type= real)
sage: f = sin(x) - sin(x)
sage: cm.is_trivial_zero(f)

(continues on next page)

1.5. Coordinate Charts 163

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: cm.is_trivial_zero(f._sympy_(), method= sympy)
True

sage: f = sin(x)^2 + cos(x)^2 - 1
sage: cm.is_trivial_zero(f)
False
sage: cm.is_trivial_zero(f._sympy_(), method= sympy)
False

reset()

Set the current calculus method to the default one.

EXAMPLES:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod(base_field_type= complex)
sage: cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

sage: cm.set(sympy)
sage: cm
Available calculus methods (* = current):
- SR (default)
- sympy (*)

sage: cm.reset()
sage: cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

set(method)
Set the currently active calculus method.

• method – string defining the calculus method

EXAMPLES:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod(base_field_type= complex)
sage: cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

sage: cm.set(sympy)
sage: cm
Available calculus methods (* = current):
- SR (default)
- sympy (*)

sage: cm.set(lala)
Traceback (most recent call last):
...
NotImplementedError: method lala not implemented

set_simplify_function(simplifying_func, method=None)
Set the simplifying function associated to a given calculus method.

164 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

INPUT:

• simplifying_func – either the string default for restoring the default simplifying function
or a function f of a single argument expr such that f(expr) returns an object of the same type as
expr (hopefully the simplified version of expr), this type being

– Expression if method = SR

– a SymPy type if method = sympy

• method – (default: None) string defining the calculus method for which simplifying_func is
provided; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the currently active calculus method of self is assumed

EXAMPLES:

On a real manifold, the default simplifying function is simplify_chain_real() when the calculus
method is SR:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod(base_field_type= real); cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

sage: cm.simplify_function() is \
....: sage.manifolds.utilities.simplify_chain_real
True

Let us change it to simplify():

sage: cm.set_simplify_function(simplify)
sage: cm.simplify_function() is simplify
True

Since SR is the current calculus method, the above is equivalent to:

sage: cm.set_simplify_function(simplify, method= SR)
sage: cm.simplify_function(method= SR) is simplify
True

We revert to the default simplifying function by:

sage: cm.set_simplify_function(default)

Then we are back to:

sage: cm.simplify_function() is \
....: sage.manifolds.utilities.simplify_chain_real
True

simplify(expression, method=None)
Apply the simplifying function associated with a given calculus method to a symbolic expression.

INPUT:

• expression – symbolic expression to simplify

1.5. Coordinate Charts 165

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression
../../../../../../html/en/reference/calculus/sage/calculus/functional.html#sage.calculus.functional.simplify

Manifolds, Release 10.4.rc1

• method – (default: None) string defining the calculus method to use; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the current calculus method of self is used.

OUTPUT:

• the simplified version of expression

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x, y> = M.chart()
sage: f = x^2 + sin(x)^2 + cos(x)^2
sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod(base_field_type= real)
sage: cm.simplify(f)
x^2 + 1

Using a weaker simplifying function, like simplify(), does not succeed in this case:

sage: cm.set_simplify_function(simplify)
sage: cm.simplify(f)
x^2 + cos(x)^2 + sin(x)^2

Back to the default simplifying function (simplify_chain_real() in the present case):

sage: cm.set_simplify_function(default)
sage: cm.simplify(f)
x^2 + 1

A SR expression, such as f, cannot be simplified when the current calculus method is sympy:

sage: cm.set(sympy)
sage: cm.simplify(f)
Traceback (most recent call last):
...
AttributeError: sage.symbolic.expression.Expression object has no attribute
→˓ combsimp ...

In the present case, one should either transform f to a SymPy object:

sage: cm.simplify(f._sympy_())
x**2 + 1

or force the calculus method to be SR :

sage: cm.simplify(f, method= SR)
x^2 + 1

simplify_function(method=None)
Return the simplifying function associated to a given calculus method.

The simplifying function is that used in all computations involved with the calculus method.

INPUT:

• method – (default: None) string defining the calculus method for which simplifying_func is
provided; must be one of

166 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/calculus/sage/calculus/functional.html#sage.calculus.functional.simplify

Manifolds, Release 10.4.rc1

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the currently active calculus method of self is assumed

OUTPUT:

• the simplifying function

EXAMPLES:

sage: from sage.manifolds.calculus_method import CalculusMethod
sage: cm = CalculusMethod()
sage: cm
Available calculus methods (* = current):
- SR (default) (*)
- sympy

sage: cm.simplify_function() # random (memory address)
<function simplify_chain_real at 0x7f958d5b6758>

The output stands for the function simplify_chain_real():

sage: cm.simplify_function() is \
....: sage.manifolds.utilities.simplify_chain_real
True

Since SR is the default calculus method, we have:

sage: cm.simplify_function() is cm.simplify_function(method= SR)
True

The simplifying function associated with sympy is simplify_chain_real_sympy():

sage: cm.simplify_function(method= sympy) # random (memory address)
<function simplify_chain_real_sympy at 0x7f0b35a578c0>
sage: cm.simplify_function(method= sympy) is \
....: sage.manifolds.utilities.simplify_chain_real_sympy
True

On complex manifolds, the simplifying functions are simplify_chain_generic() and sim-
plify_chain_generic_sympy() for respectively SR and sympy:

sage: cmc = CalculusMethod(base_field_type= complex)
sage: cmc.simplify_function(method= SR) is \
....: sage.manifolds.utilities.simplify_chain_generic
True
sage: cmc.simplify_function(method= sympy) is \
....: sage.manifolds.utilities.simplify_chain_generic_sympy
True

Note that the simplifying functions can be customized via set_simplify_function().

1.5. Coordinate Charts 167

Manifolds, Release 10.4.rc1

1.6 Scalar Fields

1.6.1 Algebra of Scalar Fields

The class ScalarFieldAlgebra implements the commutative algebra 𝐶0(𝑀) of scalar fields on a topological man-
ifold 𝑀 over a topological field 𝐾. By scalar field, it is meant a continuous function 𝑀 → 𝐾. The set 𝐶0(𝑀) is an
algebra over𝐾, whose ring product is the pointwise multiplication of𝐾-valued functions, which is clearly commutative.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2014-2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• [Lee2011]

• [KN1963]

class sage.manifolds.scalarfield_algebra.ScalarFieldAlgebra(domain)
Bases: UniqueRepresentation, Parent

Commutative algebra of scalar fields on a topological manifold.

If 𝑀 is a topological manifold over a topological field 𝐾, the commutative algebra of scalar fields on 𝑀 is the
set 𝐶0(𝑀) of all continuous maps 𝑀 → 𝐾. The set 𝐶0(𝑀) is an algebra over 𝐾, whose ring product is the
pointwise multiplication of𝐾-valued functions, which is clearly commutative.

If𝐾 = R or𝐾 = C, the field𝐾 over which the algebra 𝐶0(𝑀) is constructed is represented by the Symbolic
Ring SR, since there is no exact representation of R nor C.

INPUT:

• domain – the topological manifold𝑀 on which the scalar fields are defined

EXAMPLES:

Algebras of scalar fields on the sphere 𝑆2 and on some open subsets of it:

sage: M = Manifold(2, M , structure= topological) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: CM = M.scalar_field_algebra(); CM
Algebra of scalar fields on the 2-dimensional topological manifold M
sage: W = U.intersection(V) # S^2 minus the two poles
sage: CW = W.scalar_field_algebra(); CW
Algebra of scalar fields on the Open subset W of the
2-dimensional topological manifold M

𝐶0(𝑀) and 𝐶0(𝑊) belong to the category of commutative algebras over R (represented here by Symboli-
cRing):

168 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing
../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing
../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing
../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing

Manifolds, Release 10.4.rc1

sage: CM.category()
Join of Category of commutative algebras over Symbolic Ring and Category of␣
→˓homsets of topological spaces
sage: CM.base_ring()
Symbolic Ring
sage: CW.category()
Join of Category of commutative algebras over Symbolic Ring and Category of␣
→˓homsets of topological spaces
sage: CW.base_ring()
Symbolic Ring

The elements of 𝐶0(𝑀) are scalar fields on𝑀 :

sage: CM.an_element()
Scalar field on the 2-dimensional topological manifold M
sage: CM.an_element().display() # this sample element is a constant field
M → ℝ
on U: (x, y) ↦ 2
on V: (u, v) ↦ 2

Those of 𝐶0(𝑊) are scalar fields on𝑊 :

sage: CW.an_element()
Scalar field on the Open subset W of the 2-dimensional topological
manifold M
sage: CW.an_element().display() # this sample element is a constant field
W → ℝ
(x, y) ↦ 2
(u, v) ↦ 2

The zero element:

sage: CM.zero()
Scalar field zero on the 2-dimensional topological manifold M
sage: CM.zero().display()
zero: M → ℝ
on U: (x, y) ↦ 0
on V: (u, v) ↦ 0

sage: CW.zero()
Scalar field zero on the Open subset W of the 2-dimensional
topological manifold M
sage: CW.zero().display()
zero: W → ℝ

(x, y) ↦ 0
(u, v) ↦ 0

The unit element:

sage: CM.one()
Scalar field 1 on the 2-dimensional topological manifold M
sage: CM.one().display()
1: M → ℝ
on U: (x, y) ↦ 1
on V: (u, v) ↦ 1

1.6. Scalar Fields 169

Manifolds, Release 10.4.rc1

sage: CW.one()
Scalar field 1 on the Open subset W of the 2-dimensional topological
manifold M
sage: CW.one().display()
1: W → ℝ
(x, y) ↦ 1
(u, v) ↦ 1

A generic element can be constructed by using a dictionary of the coordinate expressions defining the scalar field:

sage: f = CM({c_xy: atan(x^2+y^2), c_uv: pi/2 - atan(u^2+v^2)}); f
Scalar field on the 2-dimensional topological manifold M
sage: f.display()
M → ℝ
on U: (x, y) ↦ arctan(x^2 + y^2)
on V: (u, v) ↦ 1/2*pi - arctan(u^2 + v^2)
sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological manifold M

Specific elements can also be constructed in this way:

sage: CM(0) == CM.zero()
True
sage: CM(1) == CM.one()
True

Note that the zero scalar field is cached:

sage: CM(0) is CM.zero()
True

Elements can also be constructed by means of the method scalar_field() acting on the domain (this allows
one to set the name of the scalar field at the construction):

sage: f1 = M.scalar_field({c_xy: atan(x^2+y^2), c_uv: pi/2 - atan(u^2+v^2)},
....: name= f)
sage: f1.parent()
Algebra of scalar fields on the 2-dimensional topological manifold M
sage: f1 == f
True
sage: M.scalar_field(0, chart= all) == CM.zero()
True

The algebra 𝐶0(𝑀) coerces to 𝐶0(𝑊) since𝑊 is an open subset of𝑀 :

sage: CW.has_coerce_map_from(CM)
True

The reverse is of course false:

sage: CM.has_coerce_map_from(CW)
False

The coercion map is nothing but the restriction to𝑊 of scalar fields on𝑀 :

sage: fW = CW(f) ; fW
Scalar field on the Open subset W of the

(continues on next page)

170 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

2-dimensional topological manifold M
sage: fW.display()
W → ℝ
(x, y) ↦ arctan(x^2 + y^2)
(u, v) ↦ 1/2*pi - arctan(u^2 + v^2)

sage: CW(CM.one()) == CW.one()
True

The coercion map allows for the addition of elements of 𝐶0(𝑊) with elements of 𝐶0(𝑀), the result being an
element of 𝐶0(𝑊):

sage: s = fW + f
sage: s.parent()
Algebra of scalar fields on the Open subset W of the
2-dimensional topological manifold M
sage: s.display()
W → ℝ
(x, y) ↦ 2*arctan(x^2 + y^2)
(u, v) ↦ pi - 2*arctan(u^2 + v^2)

Another coercion is that from the Symbolic Ring. Since the Symbolic Ring is the base ring for the algebra CM, the
coercion of a symbolic expression s is performed by the operation s*CM.one(), which invokes the (reflected)
multiplication operator. If the symbolic expression does not involve any chart coordinate, the outcome is a constant
scalar field:

sage: h = CM(pi*sqrt(2)) ; h
Scalar field on the 2-dimensional topological manifold M
sage: h.display()
M → ℝ
on U: (x, y) ↦ sqrt(2)*pi
on V: (u, v) ↦ sqrt(2)*pi
sage: a = var(a)
sage: h = CM(a); h.display()
M → ℝ
on U: (x, y) ↦ a
on V: (u, v) ↦ a

If the symbolic expression involves some coordinate of one of the manifold’s charts, the outcome is initialized only
on the chart domain:

sage: h = CM(a+x); h.display()
M → ℝ
on U: (x, y) ↦ a + x
on W: (u, v) ↦ (a*u^2 + a*v^2 + u)/(u^2 + v^2)
sage: h = CM(a+u); h.display()
M → ℝ
on W: (x, y) ↦ (a*x^2 + a*y^2 + x)/(x^2 + y^2)
on V: (u, v) ↦ a + u

If the symbolic expression involves coordinates of different charts, the scalar field is created as a Python object, but
is not initialized, in order to avoid any ambiguity:

sage: h = CM(x+u); h.display()
M → ℝ

1.6. Scalar Fields 171

Manifolds, Release 10.4.rc1

Element

alias of ScalarField

one()

Return the unit element of the algebra.

This is nothing but the constant scalar field 1 on the manifold, where 1 is the unit element of the base field.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: CM = M.scalar_field_algebra()
sage: h = CM.one(); h
Scalar field 1 on the 2-dimensional topological manifold M
sage: h.display()
1: M → ℝ

(x, y) ↦ 1

The result is cached:

sage: CM.one() is h
True

zero()

Return the zero element of the algebra.

This is nothing but the constant scalar field 0 on the manifold, where 0 is the zero element of the base field.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: CM = M.scalar_field_algebra()
sage: z = CM.zero(); z
Scalar field zero on the 2-dimensional topological manifold M
sage: z.display()
zero: M → ℝ

(x, y) ↦ 0

The result is cached:

sage: CM.zero() is z
True

1.6.2 Scalar Fields

Given a topological manifold𝑀 over a topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C), a scalar field on
𝑀 is a continuous map

𝑓 :𝑀 −→ 𝐾

Scalar fields are implemented by the class ScalarField.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015): initial version

• Travis Scrimshaw (2016): review tweaks

172 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

• Marco Mancini (2017): SymPy as an optional symbolic engine, alternative to SR

• Florentin Jaffredo (2018) : series expansion with respect to a given parameter

• Michael Jung (2019) : improve restrictions; make display() show all distinct expressions

REFERENCES:

• [Lee2011]

• [KN1963]

class sage.manifolds.scalarfield.ScalarField(parent, coord_expression=None, chart=None,
name=None, latex_name=None)

Bases: CommutativeAlgebraElement, ModuleElementWithMutability

Scalar field on a topological manifold.

Given a topological manifold𝑀 over a topological field𝐾 (in most applications,𝐾 = R or𝐾 = C), a scalar field
on𝑀 is a continuous map

𝑓 :𝑀 −→ 𝐾.

A scalar field on𝑀 is an element of the commutative algebra 𝐶0(𝑀) (see ScalarFieldAlgebra).

INPUT:

• parent – the algebra of scalar fields containing the scalar field (must be an instance of class ScalarFiel-
dAlgebra)

• coord_expression – (default: None) coordinate expression(s) of the scalar field; this can be either

– a dictionary of coordinate expressions in various charts on the domain, with the charts as keys;

– a single coordinate expression; if the argument chart is all , this expression is set to all the charts
defined on the open set; otherwise, the expression is set in the specific chart provided by the argument
chart

• chart – (default: None) chart defining the coordinates used in coord_expression when the latter is
a single coordinate expression; if none is provided (default), the default chart of the open set is assumed. If
chart== all , coord_expression is assumed to be independent of the chart (constant scalar field).

• name – (default: None) string; name (symbol) given to the scalar field

• latex_name – (default: None) string; LaTeX symbol to denote the scalar field; if none is provided, the
LaTeX symbol is set to name

If coord_expression is None or incomplete, coordinate expressions can be added after the creation of the
object, by means of the methods add_expr(), add_expr_by_continuation() and set_expr().

EXAMPLES:

A scalar field on the 2-sphere:

sage: M = Manifold(2, M , structure= topological) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)

(continues on next page)

1.6. Scalar Fields 173

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.CommutativeAlgebraElement
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElementWithMutability

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: uv_to_xy = xy_to_uv.inverse()
sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2), c_uv: (u^2+v^2)/(1+u^2+v^2)},
....: name= f) ; f
Scalar field f on the 2-dimensional topological manifold M
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

For scalar fields defined by a single coordinate expression, the latter can be passed instead of the dictionary over
the charts:

sage: g = U.scalar_field(x*y, chart=c_xy, name= g) ; g
Scalar field g on the Open subset U of the 2-dimensional topological
manifold M

The above is indeed equivalent to:

sage: g = U.scalar_field({c_xy: x*y}, name= g) ; g
Scalar field g on the Open subset U of the 2-dimensional topological
manifold M

Since c_xy is the default chart of U, the argument chart can be skipped:

sage: g = U.scalar_field(x*y, name= g) ; g
Scalar field g on the Open subset U of the 2-dimensional topological
manifold M

The scalar field 𝑔 is defined on 𝑈 and has an expression in terms of the coordinates (𝑢, 𝑣) on𝑊 = 𝑈 ∩ 𝑉 :

sage: g.display()
g: U → ℝ

(x, y) ↦ x*y
on W: (u, v) ↦ u*v/(u^4 + 2*u^2*v^2 + v^4)

Scalar fields on𝑀 can also be declared with a single chart:

sage: f = M.scalar_field(1/(1+x^2+y^2), chart=c_xy, name= f) ; f
Scalar field f on the 2-dimensional topological manifold M

Their definition must then be completed by providing the expressions on other charts, via the method
add_expr(), to get a global cover of the manifold:

sage: f.add_expr((u^2+v^2)/(1+u^2+v^2), chart=c_uv)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

We can even first declare the scalar field without any coordinate expression and provide them subsequently:

sage: f = M.scalar_field(name= f)
sage: f.add_expr(1/(1+x^2+y^2), chart=c_xy)
sage: f.add_expr((u^2+v^2)/(1+u^2+v^2), chart=c_uv)
sage: f.display()
f: M → ℝ

(continues on next page)

174 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

We may also use the method add_expr_by_continuation() to complete the coordinate definition using
the analytic continuation from domains in which charts overlap:

sage: f = M.scalar_field(1/(1+x^2+y^2), chart=c_xy, name= f) ; f
Scalar field f on the 2-dimensional topological manifold M
sage: f.add_expr_by_continuation(c_uv, U.intersection(V))
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

A scalar field can also be defined by some unspecified function of the coordinates:

sage: h = U.scalar_field(function(H)(x, y), name= h) ; h
Scalar field h on the Open subset U of the 2-dimensional topological
manifold M
sage: h.display()
h: U → ℝ

(x, y) ↦ H(x, y)
on W: (u, v) ↦ H(u/(u^2 + v^2), v/(u^2 + v^2))

We may use the argument latex_name to specify the LaTeX symbol denoting the scalar field if the latter is
different from name:

sage: latex(f)
f
sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2), c_uv: (u^2+v^2)/(1+u^2+v^2)},
....: name= f , latex_name=r \mathcal{F})
sage: latex(f)
\mathcal{F}

The coordinate expression in a given chart is obtained via the method expr(), which returns a symbolic expres-
sion:

sage: f.expr(c_uv)
(u^2 + v^2)/(u^2 + v^2 + 1)
sage: type(f.expr(c_uv))
<class sage.symbolic.expression.Expression >

The method coord_function() returns instead a function of the chart coordinates, i.e. an instance of
ChartFunction:

sage: f.coord_function(c_uv)
(u^2 + v^2)/(u^2 + v^2 + 1)
sage: type(f.coord_function(c_uv))
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class >
sage: f.coord_function(c_uv).display()
(u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

The value returned by the method expr() is actually the coordinate expression of the chart function:

sage: f.expr(c_uv) is f.coord_function(c_uv).expr()
True

1.6. Scalar Fields 175

Manifolds, Release 10.4.rc1

A constant scalar field is declared by setting the argument chart to all :

sage: c = M.scalar_field(2, chart= all , name= c) ; c
Scalar field c on the 2-dimensional topological manifold M
sage: c.display()
c: M → ℝ
on U: (x, y) ↦ 2
on V: (u, v) ↦ 2

A shortcut is to use the method constant_scalar_field():

sage: c == M.constant_scalar_field(2)
True

The constant value can be some unspecified parameter:

sage: var(a)
a
sage: c = M.constant_scalar_field(a, name= c) ; c
Scalar field c on the 2-dimensional topological manifold M
sage: c.display()
c: M → ℝ
on U: (x, y) ↦ a
on V: (u, v) ↦ a

A special case of constant field is the zero scalar field:

sage: zer = M.constant_scalar_field(0) ; zer
Scalar field zero on the 2-dimensional topological manifold M
sage: zer.display()
zero: M → ℝ
on U: (x, y) ↦ 0
on V: (u, v) ↦ 0

It can be obtained directly by means of the function zero_scalar_field():

sage: zer is M.zero_scalar_field()
True

A third way is to get it as the zero element of the algebra 𝐶0(𝑀) of scalar fields on𝑀 (see below):

sage: zer is M.scalar_field_algebra().zero()
True

The constant scalar fields zero and one are immutable, and therefore their expressions cannot be changed:

sage: zer.is_immutable()
True
sage: zer.set_expr(x)
Traceback (most recent call last):
...
ValueError: the expressions of an immutable element cannot be
changed
sage: one = M.one_scalar_field()
sage: one.is_immutable()
True
sage: one.set_expr(x)
Traceback (most recent call last):

(continues on next page)

176 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

...
ValueError: the expressions of an immutable element cannot be
changed

Other scalar fields can be declared immutable, too:

sage: c.is_immutable()
False
sage: c.set_immutable()
sage: c.is_immutable()
True
sage: c.set_expr(y^2)
Traceback (most recent call last):
...
ValueError: the expressions of an immutable element cannot be
changed
sage: c.set_name(b)
Traceback (most recent call last):
...
ValueError: the name of an immutable element cannot be changed

Immutable elements are hashable and can therefore be used as keys for dictionaries:

sage: {c: 1}[c]
1

By definition, a scalar field acts on the manifold’s points, sending them to elements of the manifold’s base field (real
numbers in the present case):

sage: N = M.point((0,0), chart=c_uv) # the North pole
sage: S = M.point((0,0), chart=c_xy) # the South pole
sage: E = M.point((1,0), chart=c_xy) # a point at the equator
sage: f(N)
0
sage: f(S)
1
sage: f(E)
1/2
sage: h(E)
H(1, 0)
sage: c(E)
a
sage: zer(E)
0

A scalar field can be compared to another scalar field:

sage: f == g
False

…to a symbolic expression:

sage: f == x*y
False
sage: g == x*y
True

(continues on next page)

1.6. Scalar Fields 177

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c == a
True

…to a number:

sage: f == 2
False
sage: zer == 0
True

…to anything else:

sage: f == M
False

Standard mathematical functions are implemented:

sage: sqrt(f)
Scalar field sqrt(f) on the 2-dimensional topological manifold M
sage: sqrt(f).display()
sqrt(f): M → ℝ
on U: (x, y) ↦ 1/sqrt(x^2 + y^2 + 1)
on V: (u, v) ↦ sqrt(u^2 + v^2)/sqrt(u^2 + v^2 + 1)

sage: tan(f)
Scalar field tan(f) on the 2-dimensional topological manifold M
sage: tan(f).display()
tan(f): M → ℝ
on U: (x, y) ↦ sin(1/(x^2 + y^2 + 1))/cos(1/(x^2 + y^2 + 1))
on V: (u, v) ↦ sin((u^2 + v^2)/(u^2 + v^2 + 1))/cos((u^2 + v^2)/(u^2 + v^2 + 1))

Arithmetics of scalar fields

Scalar fields on𝑀 (resp. 𝑈) belong to the algebra 𝐶0(𝑀) (resp. 𝐶0(𝑈)):

sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological manifold M
sage: f.parent() is M.scalar_field_algebra()
True
sage: g.parent()
Algebra of scalar fields on the Open subset U of the 2-dimensional
topological manifold M
sage: g.parent() is U.scalar_field_algebra()
True

Consequently, scalar fields can be added:

sage: s = f + c ; s
Scalar field f+c on the 2-dimensional topological manifold M
sage: s.display()
f+c: M → ℝ
on U: (x, y) ↦ (a*x^2 + a*y^2 + a + 1)/(x^2 + y^2 + 1)
on V: (u, v) ↦ ((a + 1)*u^2 + (a + 1)*v^2 + a)/(u^2 + v^2 + 1)

and subtracted:

178 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: s = f - c ; s
Scalar field f-c on the 2-dimensional topological manifold M
sage: s.display()
f-c: M → ℝ
on U: (x, y) ↦ -(a*x^2 + a*y^2 + a - 1)/(x^2 + y^2 + 1)
on V: (u, v) ↦ -((a - 1)*u^2 + (a - 1)*v^2 + a)/(u^2 + v^2 + 1)

Some tests:

sage: f + zer == f
True
sage: f - f == zer
True
sage: f + (-f) == zer
True
sage: (f+c)-f == c
True
sage: (f-c)+c == f
True

We may add a number (interpreted as a constant scalar field) to a scalar field:

sage: s = f + 1 ; s
Scalar field f+1 on the 2-dimensional topological manifold M
sage: s.display()
f+1: M → ℝ
on U: (x, y) ↦ (x^2 + y^2 + 2)/(x^2 + y^2 + 1)
on V: (u, v) ↦ (2*u^2 + 2*v^2 + 1)/(u^2 + v^2 + 1)
sage: (f+1)-1 == f
True

The number can represented by a symbolic variable:

sage: s = a + f ; s
Scalar field on the 2-dimensional topological manifold M
sage: s == c + f
True

However if the symbolic variable is a chart coordinate, the addition is performed only on the chart domain:

sage: s = f + x; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ (x^3 + x*y^2 + x + 1)/(x^2 + y^2 + 1)
on W: (u, v) ↦ (u^4 + v^4 + u^3 + (2*u^2 + u)*v^2 + u)/(u^4 + v^4 + (2*u^2 + 1)*v^
→˓2 + u^2)
sage: s = f + u; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on W: (x, y) ↦ (x^3 + (x + 1)*y^2 + x^2 + x)/(x^4 + y^4 + (2*x^2 + 1)*y^2 + x^2)
on V: (u, v) ↦ (u^3 + (u + 1)*v^2 + u^2 + u)/(u^2 + v^2 + 1)

The addition of two scalar fields with different domains is possible if the domain of one of them is a subset of the
domain of the other; the domain of the result is then this subset:

1.6. Scalar Fields 179

Manifolds, Release 10.4.rc1

sage: f.domain()
2-dimensional topological manifold M
sage: g.domain()
Open subset U of the 2-dimensional topological manifold M
sage: s = f + g ; s
Scalar field f+g on the Open subset U of the 2-dimensional topological
manifold M
sage: s.domain()
Open subset U of the 2-dimensional topological manifold M
sage: s.display()
f+g: U → ℝ

(x, y) ↦ (x*y^3 + (x^3 + x)*y + 1)/(x^2 + y^2 + 1)
on W: (u, v) ↦ (u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6 + u*v^3
+ (u^3 + u)*v)/(u^6 + v^6 + (3*u^2 + 1)*v^4 + u^4 + (3*u^4 + 2*u^2)*v^2)

The operation actually performed is 𝑓 |𝑈 + 𝑔:

sage: s == f.restrict(U) + g
True

In Sage framework, the addition of 𝑓 and 𝑔 is permitted because there is a coercion of the parent of 𝑓 , namely
𝐶0(𝑀), to the parent of 𝑔, namely 𝐶0(𝑈) (see ScalarFieldAlgebra):

sage: CM = M.scalar_field_algebra()
sage: CU = U.scalar_field_algebra()
sage: CU.has_coerce_map_from(CM)
True

The coercion map is nothing but the restriction to domain 𝑈 :

sage: CU.coerce(f) == f.restrict(U)
True

Since the algebra 𝐶0(𝑀) is a vector space over R, scalar fields can be multiplied by a number, either an explicit
one:

sage: s = 2*f ; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ 2/(x^2 + y^2 + 1)
on V: (u, v) ↦ 2*(u^2 + v^2)/(u^2 + v^2 + 1)

or a symbolic one:

sage: s = a*f ; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ a/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)*a/(u^2 + v^2 + 1)

However, if the symbolic variable is a chart coordinate, the multiplication is performed only in the corresponding
chart:

sage: s = x*f; s
Scalar field on the 2-dimensional topological manifold M

(continues on next page)

180 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: s.display()
M → ℝ
on U: (x, y) ↦ x/(x^2 + y^2 + 1)
on W: (u, v) ↦ u/(u^2 + v^2 + 1)
sage: s = u*f; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on W: (x, y) ↦ x/(x^4 + y^4 + (2*x^2 + 1)*y^2 + x^2)
on V: (u, v) ↦ (u^2 + v^2)*u/(u^2 + v^2 + 1)

Some tests:

sage: 0*f == 0
True
sage: 0*f == zer
True
sage: 1*f == f
True
sage: (-2)*f == - f - f
True

The ring multiplication of the algebras 𝐶0(𝑀) and 𝐶0(𝑈) is the pointwise multiplication of functions:

sage: s = f*f ; s
Scalar field f*f on the 2-dimensional topological manifold M
sage: s.display()
f*f: M → ℝ
on U: (x, y) ↦ 1/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1)
on V: (u, v) ↦ (u^4 + 2*u^2*v^2 + v^4)/(u^4 + v^4 + 2*(u^2 + 1)*v^2
+ 2*u^2 + 1)
sage: s = g*h ; s
Scalar field g*h on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
g*h: U → ℝ

(x, y) ↦ x*y*H(x, y)
on W: (u, v) ↦ u*v*H(u/(u^2 + v^2), v/(u^2 + v^2))/(u^4 + 2*u^2*v^2 + v^4)

Thanks to the coercion 𝐶0(𝑀) → 𝐶0(𝑈) mentioned above, it is possible to multiply a scalar field defined on𝑀
by a scalar field defined on 𝑈 , the result being a scalar field defined on 𝑈 :

sage: f.domain(), g.domain()
(2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M)
sage: s = f*g ; s
Scalar field f*g on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
f*g: U → ℝ

(x, y) ↦ x*y/(x^2 + y^2 + 1)
on W: (u, v) ↦ u*v/(u^4 + v^4 + (2*u^2 + 1)*v^2 + u^2)
sage: s == f.restrict(U)*g
True

Scalar fields can be divided (pointwise division):

1.6. Scalar Fields 181

Manifolds, Release 10.4.rc1

sage: s = f/c ; s
Scalar field f/c on the 2-dimensional topological manifold M
sage: s.display()
f/c: M → ℝ
on U: (x, y) ↦ 1/(a*x^2 + a*y^2 + a)
on V: (u, v) ↦ (u^2 + v^2)/(a*u^2 + a*v^2 + a)
sage: s = g/h ; s
Scalar field g/h on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
g/h: U → ℝ

(x, y) ↦ x*y/H(x, y)
on W: (u, v) ↦ u*v/((u^4 + 2*u^2*v^2 + v^4)*H(u/(u^2 + v^2), v/(u^2 + v^2)))
sage: s = f/g ; s
Scalar field f/g on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
f/g: U → ℝ

(x, y) ↦ 1/(x*y^3 + (x^3 + x)*y)
on W: (u, v) ↦ (u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6)/(u*v^3 + (u^3 + u)*v)
sage: s == f.restrict(U)/g
True

For scalar fields defined on a single chart domain, we may perform some arithmetics with symbolic expressions
involving the chart coordinates:

sage: s = g + x^2 - y ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ x^2 + (x - 1)*y
on W: (u, v) ↦ -(v^3 - u^2 + (u^2 - u)*v)/(u^4 + 2*u^2*v^2 + v^4)

sage: s = g*x ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ x^2*y
on W: (u, v) ↦ u^2*v/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6)

sage: s = g/x ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ y
on W: (u, v) ↦ v/(u^2 + v^2)
sage: s = x/g ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ 1/y
on W: (u, v) ↦ (u^2 + v^2)/v

182 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

Examples with SymPy as the symbolic engine

From now on, we ask that all symbolic calculus on manifold𝑀 are performed by SymPy:

sage: M.set_calculus_method(sympy)

We define 𝑓 as above:

sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2), c_uv: (u^2+v^2)/(1+u^2+v^2)},
....: name= f) ; f
Scalar field f on the 2-dimensional topological manifold M
sage: f.display() # notice the SymPy display of exponents
f: M → ℝ
on U: (x, y) ↦ 1/(x**2 + y**2 + 1)
on V: (u, v) ↦ (u**2 + v**2)/(u**2 + v**2 + 1)
sage: type(f.coord_function(c_xy).expr())
<class sympy.core.power.Pow >

The scalar field 𝑔 defined on 𝑈 :

sage: g = U.scalar_field({c_xy: x*y}, name= g)
sage: g.display() # again notice the SymPy display of exponents
g: U → ℝ

(x, y) ↦ x*y
on W: (u, v) ↦ u*v/(u**4 + 2*u**2*v**2 + v**4)

Definition on a single chart and subsequent completion:

sage: f = M.scalar_field(1/(1+x^2+y^2), chart=c_xy, name= f)
sage: f.add_expr((u^2+v^2)/(1+u^2+v^2), chart=c_uv)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x**2 + y**2 + 1)
on V: (u, v) ↦ (u**2 + v**2)/(u**2 + v**2 + 1)

Definition without any coordinate expression and subsequent completion:

sage: f = M.scalar_field(name= f)
sage: f.add_expr(1/(1+x^2+y^2), chart=c_xy)
sage: f.add_expr((u^2+v^2)/(1+u^2+v^2), chart=c_uv)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x**2 + y**2 + 1)
on V: (u, v) ↦ (u**2 + v**2)/(u**2 + v**2 + 1)

Use of add_expr_by_continuation():

sage: f = M.scalar_field(1/(1+x^2+y^2), chart=c_xy, name= f)
sage: f.add_expr_by_continuation(c_uv, U.intersection(V))
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x**2 + y**2 + 1)
on V: (u, v) ↦ (u**2 + v**2)/(u**2 + v**2 + 1)

A scalar field defined by some unspecified function of the coordinates:

sage: h = U.scalar_field(function(H)(x, y), name= h) ; h
Scalar field h on the Open subset U of the 2-dimensional topological

(continues on next page)

1.6. Scalar Fields 183

Manifolds, Release 10.4.rc1

(continued from previous page)

manifold M
sage: h.display()
h: U → ℝ

(x, y) ↦ H(x, y)
on W: (u, v) ↦ H(u/(u**2 + v**2), v/(u**2 + v**2))

The coordinate expression in a given chart is obtained via the method expr(), which in the present context,
returns a SymPy object:

sage: f.expr(c_uv)
(u**2 + v**2)/(u**2 + v**2 + 1)
sage: type(f.expr(c_uv))
<class sympy.core.mul.Mul >

The method coord_function() returns instead a function of the chart coordinates, i.e. an instance of
ChartFunction:

sage: f.coord_function(c_uv)
(u**2 + v**2)/(u**2 + v**2 + 1)
sage: type(f.coord_function(c_uv))
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class >
sage: f.coord_function(c_uv).display()
(u, v) ↦ (u**2 + v**2)/(u**2 + v**2 + 1)

The value returned by the method expr() is actually the coordinate expression of the chart function:

sage: f.expr(c_uv) is f.coord_function(c_uv).expr()
True

We may ask for the SR representation of the coordinate function:

sage: f.coord_function(c_uv).expr(SR)
(u^2 + v^2)/(u^2 + v^2 + 1)

A constant scalar field with SymPy representation:

sage: c = M.constant_scalar_field(2, name= c)
sage: c.display()
c: M → ℝ
on U: (x, y) ↦ 2
on V: (u, v) ↦ 2
sage: type(c.expr(c_xy))
<class sympy.core.numbers.Integer >

The constant value can be some unspecified parameter:

sage: var(a)
a
sage: c = M.constant_scalar_field(a, name= c)
sage: c.display()
c: M → ℝ
on U: (x, y) ↦ a
on V: (u, v) ↦ a
sage: type(c.expr(c_xy))
<class sympy.core.symbol.Symbol >

The zero scalar field:

184 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: zer = M.constant_scalar_field(0) ; zer
Scalar field zero on the 2-dimensional topological manifold M
sage: zer.display()
zero: M → ℝ
on U: (x, y) ↦ 0
on V: (u, v) ↦ 0
sage: type(zer.expr(c_xy))
<class sympy.core.numbers.Zero >
sage: zer is M.zero_scalar_field()
True

Action of scalar fields on manifold’s points:

sage: N = M.point((0,0), chart=c_uv) # the North pole
sage: S = M.point((0,0), chart=c_xy) # the South pole
sage: E = M.point((1,0), chart=c_xy) # a point at the equator
sage: f(N)
0
sage: f(S)
1
sage: f(E)
1/2
sage: h(E)
H(1, 0)
sage: c(E)
a
sage: zer(E)
0

A scalar field can be compared to another scalar field:

sage: f == g
False

…to a symbolic expression:

sage: f == x*y
False
sage: g == x*y
True
sage: c == a
True

…to a number:

sage: f == 2
False
sage: zer == 0
True

…to anything else:

sage: f == M
False

Standard mathematical functions are implemented:

1.6. Scalar Fields 185

Manifolds, Release 10.4.rc1

sage: sqrt(f)
Scalar field sqrt(f) on the 2-dimensional topological manifold M
sage: sqrt(f).display()
sqrt(f): M → ℝ
on U: (x, y) ↦ 1/sqrt(x**2 + y**2 + 1)
on V: (u, v) ↦ sqrt(u**2 + v**2)/sqrt(u**2 + v**2 + 1)

sage: tan(f)
Scalar field tan(f) on the 2-dimensional topological manifold M
sage: tan(f).display()
tan(f): M → ℝ
on U: (x, y) ↦ tan(1/(x**2 + y**2 + 1))
on V: (u, v) ↦ tan((u**2 + v**2)/(u**2 + v**2 + 1))

Arithmetics of scalar fields with SymPy

Scalar fields on𝑀 (resp. 𝑈) belong to the algebra 𝐶0(𝑀) (resp. 𝐶0(𝑈)):

sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological manifold M
sage: f.parent() is M.scalar_field_algebra()
True
sage: g.parent()
Algebra of scalar fields on the Open subset U of the 2-dimensional
topological manifold M
sage: g.parent() is U.scalar_field_algebra()
True

Consequently, scalar fields can be added:

sage: s = f + c ; s
Scalar field f+c on the 2-dimensional topological manifold M
sage: s.display()
f+c: M → ℝ
on U: (x, y) ↦ (a*x**2 + a*y**2 + a + 1)/(x**2 + y**2 + 1)
on V: (u, v) ↦ (a*u**2 + a*v**2 + a + u**2 + v**2)/(u**2 + v**2 + 1)

and subtracted:

sage: s = f - c ; s
Scalar field f-c on the 2-dimensional topological manifold M
sage: s.display()
f-c: M → ℝ
on U: (x, y) ↦ (-a*x**2 - a*y**2 - a + 1)/(x**2 + y**2 + 1)
on V: (u, v) ↦ (-a*u**2 - a*v**2 - a + u**2 + v**2)/(u**2 + v**2 + 1)

Some tests:

sage: f + zer == f
True
sage: f - f == zer
True
sage: f + (-f) == zer
True
sage: (f+c)-f == c

(continues on next page)

186 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: (f-c)+c == f
True

We may add a number (interpreted as a constant scalar field) to a scalar field:

sage: s = f + 1 ; s
Scalar field f+1 on the 2-dimensional topological manifold M
sage: s.display()
f+1: M → ℝ
on U: (x, y) ↦ (x**2 + y**2 + 2)/(x**2 + y**2 + 1)
on V: (u, v) ↦ (2*u**2 + 2*v**2 + 1)/(u**2 + v**2 + 1)
sage: (f+1)-1 == f
True

The number can represented by a symbolic variable:

sage: s = a + f ; s
Scalar field on the 2-dimensional topological manifold M
sage: s == c + f
True

However if the symbolic variable is a chart coordinate, the addition is performed only on the chart domain:

sage: s = f + x; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ (x**3 + x*y**2 + x + 1)/(x**2 + y**2 + 1)
on W: (u, v) ↦ (u**4 + u**3 + 2*u**2*v**2 + u*v**2 + u + v**4)/(u**4 +␣
→˓2*u**2*v**2 + u**2 + v**4 + v**2)
sage: s = f + u; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on W: (x, y) ↦ (x**3 + x**2 + x*y**2 + x + y**2)/(x**4 + 2*x**2*y**2 + x**2 +␣
→˓y**4 + y**2)
on V: (u, v) ↦ (u**3 + u**2 + u*v**2 + u + v**2)/(u**2 + v**2 + 1)

The addition of two scalar fields with different domains is possible if the domain of one of them is a subset of the
domain of the other; the domain of the result is then this subset:

sage: f.domain()
2-dimensional topological manifold M
sage: g.domain()
Open subset U of the 2-dimensional topological manifold M
sage: s = f + g ; s
Scalar field f+g on the Open subset U of the 2-dimensional topological
manifold M
sage: s.domain()
Open subset U of the 2-dimensional topological manifold M
sage: s.display()
f+g: U → ℝ

(x, y) ↦ (x**3*y + x*y**3 + x*y + 1)/(x**2 + y**2 + 1)
on W: (u, v) ↦ (u**6 + 3*u**4*v**2 + u**3*v + 3*u**2*v**4 + u*v**3 + u*v + v**6)/
→˓(u**6 + 3*u**4*v**2 + u**4 + 3*u**2*v**4 + 2*u**2*v**2 + v**6 + v**4)

1.6. Scalar Fields 187

Manifolds, Release 10.4.rc1

The operation actually performed is 𝑓 |𝑈 + 𝑔:

sage: s == f.restrict(U) + g
True

Since the algebra 𝐶0(𝑀) is a vector space over R, scalar fields can be multiplied by a number, either an explicit
one:

sage: s = 2*f ; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ 2/(x**2 + y**2 + 1)
on V: (u, v) ↦ 2*(u**2 + v**2)/(u**2 + v**2 + 1)

or a symbolic one:

sage: s = a*f ; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ a/(x**2 + y**2 + 1)
on V: (u, v) ↦ a*(u**2 + v**2)/(u**2 + v**2 + 1)

However, if the symbolic variable is a chart coordinate, the multiplication is performed only in the corresponding
chart:

sage: s = x*f; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ x/(x**2 + y**2 + 1)
on W: (u, v) ↦ u/(u**2 + v**2 + 1)
sage: s = u*f; s
Scalar field on the 2-dimensional topological manifold M
sage: s.display()
M → ℝ
on W: (x, y) ↦ x/(x**4 + 2*x**2*y**2 + x**2 + y**4 + y**2)
on V: (u, v) ↦ u*(u**2 + v**2)/(u**2 + v**2 + 1)

Some tests:

sage: 0*f == 0
True
sage: 0*f == zer
True
sage: 1*f == f
True
sage: (-2)*f == - f - f
True

The ring multiplication of the algebras 𝐶0(𝑀) and 𝐶0(𝑈) is the pointwise multiplication of functions:

sage: s = f*f ; s
Scalar field f*f on the 2-dimensional topological manifold M
sage: s.display()
f*f: M → ℝ
on U: (x, y) ↦ 1/(x**4 + 2*x**2*y**2 + 2*x**2 + y**4 + 2*y**2 + 1)

(continues on next page)

188 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

on V: (u, v) ↦ (u**4 + 2*u**2*v**2 + v**4)/(u**4 + 2*u**2*v**2 + 2*u**2 + v**4 +␣
→˓2*v**2 + 1)

sage: s = g*h ; s
Scalar field g*h on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
g*h: U → ℝ

(x, y) ↦ x*y*H(x, y)
on W: (u, v) ↦ u*v*H(u/(u**2 + v**2), v/(u**2 + v**2))/(u**4 + 2*u**2*v**2 + v**4)

Thanks to the coercion 𝐶0(𝑀) → 𝐶0(𝑈) mentioned above, it is possible to multiply a scalar field defined on𝑀
by a scalar field defined on 𝑈 , the result being a scalar field defined on 𝑈 :

sage: f.domain(), g.domain()
(2-dimensional topological manifold M,
Open subset U of the 2-dimensional topological manifold M)
sage: s = f*g ; s
Scalar field f*g on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
f*g: U → ℝ

(x, y) ↦ x*y/(x**2 + y**2 + 1)
on W: (u, v) ↦ u*v/(u**4 + 2*u**2*v**2 + u**2 + v**4 + v**2)

sage: s == f.restrict(U)*g
True

Scalar fields can be divided (pointwise division):

sage: s = f/c ; s
Scalar field f/c on the 2-dimensional topological manifold M
sage: s.display()
f/c: M → ℝ
on U: (x, y) ↦ 1/(a*(x**2 + y**2 + 1))
on V: (u, v) ↦ (u**2 + v**2)/(a*(u**2 + v**2 + 1))
sage: s = g/h ; s
Scalar field g/h on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
g/h: U → ℝ

(x, y) ↦ x*y/H(x, y)
on W: (u, v) ↦ u*v/((u**4 + 2*u**2*v**2 + v**4)*H(u/(u**2 + v**2), v/(u**2 +␣
→˓v**2)))

sage: s = f/g ; s
Scalar field f/g on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
f/g: U → ℝ

(x, y) ↦ 1/(x*y*(x**2 + y**2 + 1))
on W: (u, v) ↦ (u**6 + 3*u**4*v**2 + 3*u**2*v**4 + v**6)/(u*v*(u**2 + v**2 + 1))
sage: s == f.restrict(U)/g
True

For scalar fields defined on a single chart domain, we may perform some arithmetics with symbolic expressions
involving the chart coordinates:

1.6. Scalar Fields 189

Manifolds, Release 10.4.rc1

sage: s = g + x^2 - y ; s
Scalar field on the Open subset U of the 2-dimensional topological manifold M
sage: s.display()
U → ℝ
(x, y) ↦ x**2 + x*y - y
on W: (u, v) ↦ (-u**2*v + u**2 + u*v - v**3)/(u**4 + 2*u**2*v**2 + v**4)

sage: s = g*x ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ x**2*y
on W: (u, v) ↦ u**2*v/(u**6 + 3*u**4*v**2 + 3*u**2*v**4 + v**6)

sage: s = g/x ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ y
on W: (u, v) ↦ v/(u**2 + v**2)
sage: s = x/g ; s
Scalar field on the Open subset U of the 2-dimensional topological
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ 1/y
on W: (u, v) ↦ u**2/v + v

The test suite is passed:

sage: TestSuite(f).run()
sage: TestSuite(zer).run()

add_expr(coord_expression, chart=None)
Add some coordinate expression to the scalar field.

The previous expressions with respect to other charts are kept. To clear them, use set_expr() instead.

INPUT:

• coord_expression – coordinate expression of the scalar field

• chart – (default: None) chart in which coord_expression is defined; if None, the default chart
of the scalar field’s domain is assumed

Warning: If the scalar field has already expressions in other charts, it is the user’s responsibility to make
sure that the expression to be added is consistent with them.

EXAMPLES:

Adding scalar field expressions on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()

(continues on next page)

190 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f = M.scalar_field(x^2 + 2*x*y +1)
sage: f._express
{Chart (M, (x, y)): x^2 + 2*x*y + 1}
sage: f.add_expr(3*y)
sage: f._express # the (x,y) expression has been changed:
{Chart (M, (x, y)): 3*y}
sage: c_uv.<u,v> = M.chart()
sage: f.add_expr(cos(u)-sin(v), c_uv)
sage: f._express # random (dict. output); f has now 2 expressions:
{Chart (M, (x, y)): 3*y, Chart (M, (u, v)): cos(u) - sin(v)}

Since zero and one are special elements, their expressions cannot be changed:

sage: z = M.zero_scalar_field()
sage: z.add_expr(cos(u)-sin(v), c_uv)
Traceback (most recent call last):
...
ValueError: the expressions of an immutable element cannot be
changed

sage: one = M.one_scalar_field()
sage: one.add_expr(cos(u)-sin(v), c_uv)
Traceback (most recent call last):
...
ValueError: the expressions of an immutable element cannot be
changed

add_expr_by_continuation(chart, subdomain)
Set coordinate expression in a chart by continuation of the coordinate expression in a subchart.

The continuation is performed by demanding that the coordinate expression is identical to that in the restriction
of the chart to a given subdomain.

INPUT:

• chart – coordinate chart (𝑈, (𝑥𝑖)) in which the expression of the scalar field is to set

• subdomain – open subset 𝑉 ⊂ 𝑈 in which the expression in terms of the restriction of the coordinate
chart (𝑈, (𝑥𝑖)) to 𝑉 is already known or can be evaluated by a change of coordinates.

EXAMPLES:

Scalar field on the sphere 𝑆2:

sage: M = Manifold(2, S^2 , structure= topological)
sage: U = M.open_subset(U) ; V = M.open_subset(V) # the complement of␣
→˓resp. N pole and S pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() # stereographic␣
→˓coordinates
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # S^2 minus the two poles
sage: f = M.scalar_field(atan(x^2+y^2), chart=c_xy, name= f)

The scalar field has been defined only on the domain covered by the chart c_xy, i.e. 𝑈 :

1.6. Scalar Fields 191

Manifolds, Release 10.4.rc1

sage: f.display()
f: S^2 → ℝ
on U: (x, y) ↦ arctan(x^2 + y^2)
on W: (u, v) ↦ arctan(1/(u^2 + v^2))

We note that on𝑊 = 𝑈 ∩𝑉 , the expression of 𝑓 in terms of coordinates (𝑢, 𝑣) can be deduced from that in
the coordinates (𝑥, 𝑦) thanks to the transition map between the two charts:

sage: f.display(c_uv.restrict(W))
f: S^2 → ℝ
on W: (u, v) ↦ arctan(1/(u^2 + v^2))

We use this fact to extend the definition of 𝑓 to the open subset 𝑉 , covered by the chart c_uv:

sage: f.add_expr_by_continuation(c_uv, W)

Then, 𝑓 is known on the whole sphere:

sage: f.display()
f: S^2 → ℝ
on U: (x, y) ↦ arctan(x^2 + y^2)
on V: (u, v) ↦ arctan(1/(u^2 + v^2))

arccos()

Arc cosine of the scalar field.

OUTPUT:

• the scalar field arccos 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = arccos(f) ; g
Scalar field arccos(f) on the 2-dimensional topological manifold M
sage: latex(g)
\arccos\left(\Phi\right)
sage: g.display()
arccos(f): M → ℝ

(x, y) ↦ arccos(x*y)

The notation acos can be used as well:

sage: acos(f)
Scalar field arccos(f) on the 2-dimensional topological manifold M
sage: acos(f) == g
True

Some tests:

sage: cos(g) == f
True
sage: arccos(M.constant_scalar_field(1)) == M.zero_scalar_field()
True
sage: arccos(M.zero_scalar_field()) == M.constant_scalar_field(pi/2)
True

192 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

arccosh()

Inverse hyperbolic cosine of the scalar field.

OUTPUT:

• the scalar field arccosh 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = arccosh(f) ; g
Scalar field arccosh(f) on the 2-dimensional topological manifold M
sage: latex(g)
\,\mathrm{arccosh}\left(\Phi\right)
sage: g.display()
arccosh(f): M → ℝ

(x, y) ↦ arccosh(x*y)

The notation acosh can be used as well:

sage: acosh(f)
Scalar field arccosh(f) on the 2-dimensional topological manifold M
sage: acosh(f) == g
True

Some tests:

sage: cosh(g) == f
True
sage: arccosh(M.constant_scalar_field(1)) == M.zero_scalar_field()
True

arcsin()

Arc sine of the scalar field.

OUTPUT:

• the scalar field arcsin 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = arcsin(f) ; g
Scalar field arcsin(f) on the 2-dimensional topological manifold M
sage: latex(g)
\arcsin\left(\Phi\right)
sage: g.display()
arcsin(f): M → ℝ

(x, y) ↦ arcsin(x*y)

The notation asin can be used as well:

sage: asin(f)
Scalar field arcsin(f) on the 2-dimensional topological manifold M
sage: asin(f) == g
True

1.6. Scalar Fields 193

Manifolds, Release 10.4.rc1

Some tests:

sage: sin(g) == f
True
sage: arcsin(M.zero_scalar_field()) == M.zero_scalar_field()
True
sage: arcsin(M.constant_scalar_field(1)) == M.constant_scalar_field(pi/2)
True

arcsinh()

Inverse hyperbolic sine of the scalar field.

OUTPUT:

• the scalar field arcsinh 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = arcsinh(f) ; g
Scalar field arcsinh(f) on the 2-dimensional topological manifold M
sage: latex(g)
\,\mathrm{arcsinh}\left(\Phi\right)
sage: g.display()
arcsinh(f): M → ℝ

(x, y) ↦ arcsinh(x*y)

The notation asinh can be used as well:

sage: asinh(f)
Scalar field arcsinh(f) on the 2-dimensional topological manifold M
sage: asinh(f) == g
True

Some tests:

sage: sinh(g) == f
True
sage: arcsinh(M.zero_scalar_field()) == M.zero_scalar_field()
True

arctan()

Arc tangent of the scalar field.

OUTPUT:

• the scalar field arctan 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = arctan(f) ; g
Scalar field arctan(f) on the 2-dimensional topological manifold M
sage: latex(g)
\arctan\left(\Phi\right)

(continues on next page)

194 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: g.display()
arctan(f): M → ℝ

(x, y) ↦ arctan(x*y)

The notation atan can be used as well:

sage: atan(f)
Scalar field arctan(f) on the 2-dimensional topological manifold M
sage: atan(f) == g
True

Some tests:

sage: tan(g) == f
True
sage: arctan(M.zero_scalar_field()) == M.zero_scalar_field()
True
sage: arctan(M.constant_scalar_field(1)) == M.constant_scalar_field(pi/4)
True

arctanh()

Inverse hyperbolic tangent of the scalar field.

OUTPUT:

• the scalar field arctanh 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = arctanh(f) ; g
Scalar field arctanh(f) on the 2-dimensional topological manifold M
sage: latex(g)
\,\mathrm{arctanh}\left(\Phi\right)
sage: g.display()
arctanh(f): M → ℝ

(x, y) ↦ arctanh(x*y)

The notation atanh can be used as well:

sage: atanh(f)
Scalar field arctanh(f) on the 2-dimensional topological manifold M
sage: atanh(f) == g
True

Some tests:

sage: tanh(g) == f
True
sage: arctanh(M.zero_scalar_field()) == M.zero_scalar_field()
True
sage: arctanh(M.constant_scalar_field(1/2)) == M.constant_scalar_field(log(3)/
→˓2)
True

1.6. Scalar Fields 195

Manifolds, Release 10.4.rc1

codomain()

Return the codomain of the scalar field.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x+2*y)
sage: f.codomain()
Real Field with 53 bits of precision

common_charts(other)
Find common charts for the expressions of the scalar field and other.

INPUT:

• other – a scalar field

OUTPUT:

• list of common charts; if no common chart is found, None is returned (instead of an empty list)

EXAMPLES:

Search for common charts on a 2-dimensional manifold with 2 overlapping domains:

sage: M = Manifold(2, M , structure= topological)
sage: U = M.open_subset(U)
sage: c_xy.<x,y> = U.chart()
sage: V = M.open_subset(V)
sage: c_uv.<u,v> = V.chart()
sage: M.declare_union(U,V) # M is the union of U and V
sage: f = U.scalar_field(x^2)
sage: g = M.scalar_field(x+y)
sage: f.common_charts(g)
[Chart (U, (x, y))]
sage: g.add_expr(u, c_uv)
sage: f._express
{Chart (U, (x, y)): x^2}
sage: g._express # random (dictionary output)
{Chart (U, (x, y)): x + y, Chart (V, (u, v)): u}
sage: f.common_charts(g)
[Chart (U, (x, y))]

Common charts found as subcharts: the subcharts are introduced via a transition map between charts c_xy
and c_uv on the intersecting subdomain𝑊 = 𝑈 ∩ 𝑉 :

sage: trans = c_xy.transition_map(c_uv, (x+y, x-y), W , x<0, u+v<0)
sage: M.atlas()
[Chart (U, (x, y)), Chart (V, (u, v)), Chart (W, (x, y)),
Chart (W, (u, v))]

sage: c_xy_W = M.atlas()[2]
sage: c_uv_W = M.atlas()[3]
sage: trans.inverse()
Change of coordinates from Chart (W, (u, v)) to Chart (W, (x, y))
sage: f.common_charts(g)
[Chart (U, (x, y))]
sage: f.expr(c_xy_W)
x^2
sage: f._express # random (dictionary output)

(continues on next page)

196 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

{Chart (U, (x, y)): x^2, Chart (W, (x, y)): x^2}
sage: g._express # random (dictionary output)
{Chart (U, (x, y)): x + y, Chart (V, (u, v)): u}
sage: g.common_charts(f) # c_xy_W is not returned because it is subchart of
→˓ xy
[Chart (U, (x, y))]
sage: f.expr(c_uv_W)
1/4*u^2 + 1/2*u*v + 1/4*v^2
sage: f._express # random (dictionary output)
{Chart (U, (x, y)): x^2, Chart (W, (x, y)): x^2,
Chart (W, (u, v)): 1/4*u^2 + 1/2*u*v + 1/4*v^2}

sage: g._express # random (dictionary output)
{Chart (U, (x, y)): x + y, Chart (V, (u, v)): u}
sage: f.common_charts(g)
[Chart (U, (x, y)), Chart (W, (u, v))]
sage: # the expressions have been updated on the subcharts
sage: g._express # random (dictionary output)
{Chart (U, (x, y)): x + y, Chart (V, (u, v)): u,
Chart (W, (u, v)): u}

Common charts found by computing some coordinate changes:

sage: W = U.intersection(V)
sage: f = W.scalar_field(x^2, c_xy_W)
sage: g = W.scalar_field(u+1, c_uv_W)
sage: f._express
{Chart (W, (x, y)): x^2}
sage: g._express
{Chart (W, (u, v)): u + 1}
sage: f.common_charts(g)
[Chart (W, (x, y)), Chart (W, (u, v))]
sage: f._express # random (dictionary output)
{Chart (W, (u, v)): 1/4*u^2 + 1/2*u*v + 1/4*v^2,
Chart (W, (x, y)): x^2}

sage: g._express # random (dictionary output)
{Chart (W, (u, v)): u + 1, Chart (W, (x, y)): x + y + 1}

coord_function(chart=None, from_chart=None)
Return the function of the coordinates representing the scalar field in a given chart.

INPUT:

• chart – (default: None) chart with respect to which the coordinate expression is to be returned; if
None, the default chart of the scalar field’s domain will be used

• from_chart – (default: None) chart from which the required expression is computed if it is not
known already in the chart chart; if None, a chart is picked in the known expressions

OUTPUT:

• instance of ChartFunction representing the coordinate function of the scalar field in the given chart

EXAMPLES:

Coordinate function on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x*y^2)

(continues on next page)

1.6. Scalar Fields 197

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.coord_function()
x*y^2
sage: f.coord_function(c_xy) # equivalent form (since c_xy is the default␣
→˓chart)
x*y^2
sage: type(f.coord_function())
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >

Expression via a change of coordinates:

sage: c_uv.<u,v> = M.chart()
sage: c_uv.transition_map(c_xy, [u+v, u-v])
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: f._express # at this stage, f is expressed only in terms of (x,y)␣
→˓coordinates
{Chart (M, (x, y)): x*y^2}
sage: f.coord_function(c_uv) # forces the computation of the expression of f␣
→˓in terms of (u,v) coordinates
u^3 - u^2*v - u*v^2 + v^3
sage: f.coord_function(c_uv) == (u+v)*(u-v)^2 # check
True
sage: f._express # random (dict. output); f has now 2 coordinate expressions:
{Chart (M, (x, y)): x*y^2, Chart (M, (u, v)): u^3 - u^2*v - u*v^2 + v^3}

Usage in a physical context (simple Lorentz transformation - boost in x direction, with relative velocity v
between o1 and o2 frames):

sage: M = Manifold(2, M , structure= topological)
sage: o1.<t,x> = M.chart()
sage: o2.<T,X> = M.chart()
sage: f = M.scalar_field(x^2 - t^2)
sage: f.coord_function(o1)
-t^2 + x^2
sage: v = var(v); gam = 1/sqrt(1-v^2)
sage: o2.transition_map(o1, [gam*(T - v*X), gam*(X - v*T)])
Change of coordinates from Chart (M, (T, X)) to Chart (M, (t, x))
sage: f.coord_function(o2)
-T^2 + X^2

copy(name=None, latex_name=None)
Return an exact copy of the scalar field.

INPUT:

• name – (default: None) name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

EXAMPLES:

Copy on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x*y^2)
sage: g = f.copy()

(continues on next page)

198 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: type(g)
<class sage.manifolds.scalarfield_algebra.ScalarFieldAlgebra_with_category.
→˓element_class >
sage: g.expr()
x*y^2
sage: g == f
True
sage: g is f
False

copy_from(other)
Make self a copy of other.

INPUT:

• other – other scalar field, in the same module as self

Note: While the derived quantities are not copied, the name is kept.

Warning: All previous defined expressions and restrictions will be deleted!

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x*y^2, name= f)
sage: f.display()
f: M → ℝ

(x, y) ↦ x*y^2
sage: g = M.scalar_field(name= g)
sage: g.copy_from(f)
sage: g.display()
g: M → ℝ

(x, y) ↦ x*y^2
sage: f == g
True

While the original scalar field is modified, the copy is not:

sage: f.set_expr(x-y)
sage: f.display()
f: M → ℝ

(x, y) ↦ x - y
sage: g.display()
g: M → ℝ

(x, y) ↦ x*y^2
sage: f == g
False

cos()

Cosine of the scalar field.

OUTPUT:

1.6. Scalar Fields 199

Manifolds, Release 10.4.rc1

• the scalar field cos 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = cos(f) ; g
Scalar field cos(f) on the 2-dimensional topological manifold M
sage: latex(g)
\cos\left(\Phi\right)
sage: g.display()
cos(f): M → ℝ

(x, y) ↦ cos(x*y)

Some tests:

sage: cos(M.zero_scalar_field()) == M.constant_scalar_field(1)
True
sage: cos(M.constant_scalar_field(pi/2)) == M.zero_scalar_field()
True

cosh()

Hyperbolic cosine of the scalar field.

OUTPUT:

• the scalar field cosh 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = cosh(f) ; g
Scalar field cosh(f) on the 2-dimensional topological manifold M
sage: latex(g)
\cosh\left(\Phi\right)
sage: g.display()
cosh(f): M → ℝ

(x, y) ↦ cosh(x*y)

Some test:

sage: cosh(M.zero_scalar_field()) == M.constant_scalar_field(1)
True

disp(chart=None)
Display the expression of the scalar field in a given chart.

Without any argument, this function displays all known, distinct expressions.

INPUT:

• chart – (default: None) chart with respect to which the coordinate expression is to be displayed; if
None, the display is performed in all the greatest charts in which the coordinate expression is known

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

Various displays:

200 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(sqrt(x+1), name= f)
sage: f.display()
f: M → ℝ

(x, y) ↦ sqrt(x + 1)
sage: latex(f.display())
\begin{array}{llcl} f:& M & \longrightarrow & \mathbb{R} \\ & \left(x, y\
→˓right) & \longmapsto & \sqrt{x + 1} \end{array}
sage: g = M.scalar_field(function(G)(x, y), name= g)
sage: g.display()
g: M → ℝ

(x, y) ↦ G(x, y)
sage: latex(g.display())
\begin{array}{llcl} g:& M & \longrightarrow & \mathbb{R} \\ & \left(x, y\
→˓right) & \longmapsto & G\left(x, y\right) \end{array}

A shortcut of display() is disp():

sage: f.disp()
f: M → ℝ

(x, y) ↦ sqrt(x + 1)

In case the scalar field is piecewise-defined, the display() command still outputs all expressions. Each
expression displayed corresponds to the chart on the greatest domainwhere this particular expression is known:

sage: U = M.open_subset(U)
sage: f.set_expr(y^2, c_xy.restrict(U))
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ y^2
sage: latex(f.display())
\begin{array}{llcl} f:& M & \longrightarrow & \mathbb{R} \\ \text{on}\ U : & \
→˓left(x, y\right) & \longmapsto & y^{2} \end{array}

display(chart=None)
Display the expression of the scalar field in a given chart.

Without any argument, this function displays all known, distinct expressions.

INPUT:

• chart – (default: None) chart with respect to which the coordinate expression is to be displayed; if
None, the display is performed in all the greatest charts in which the coordinate expression is known

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

Various displays:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(sqrt(x+1), name= f)
sage: f.display()
f: M → ℝ

(x, y) ↦ sqrt(x + 1)
sage: latex(f.display())
\begin{array}{llcl} f:& M & \longrightarrow & \mathbb{R} \\ & \left(x, y\

(continues on next page)

1.6. Scalar Fields 201

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓right) & \longmapsto & \sqrt{x + 1} \end{array}
sage: g = M.scalar_field(function(G)(x, y), name= g)
sage: g.display()
g: M → ℝ

(x, y) ↦ G(x, y)
sage: latex(g.display())
\begin{array}{llcl} g:& M & \longrightarrow & \mathbb{R} \\ & \left(x, y\
→˓right) & \longmapsto & G\left(x, y\right) \end{array}

A shortcut of display() is disp():

sage: f.disp()
f: M → ℝ

(x, y) ↦ sqrt(x + 1)

In case the scalar field is piecewise-defined, the display() command still outputs all expressions. Each
expression displayed corresponds to the chart on the greatest domainwhere this particular expression is known:

sage: U = M.open_subset(U)
sage: f.set_expr(y^2, c_xy.restrict(U))
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ y^2
sage: latex(f.display())
\begin{array}{llcl} f:& M & \longrightarrow & \mathbb{R} \\ \text{on}\ U : & \
→˓left(x, y\right) & \longmapsto & y^{2} \end{array}

domain()

Return the open subset on which the scalar field is defined.

OUTPUT:

• instance of class TopologicalManifold representing the manifold’s open subset on which the
scalar field is defined

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x+2*y)
sage: f.domain()
2-dimensional topological manifold M
sage: U = M.open_subset(U , coord_def={c_xy: x<0})
sage: g = f.restrict(U)
sage: g.domain()
Open subset U of the 2-dimensional topological manifold M

exp()

Exponential of the scalar field.

OUTPUT:

• the scalar field exp 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()

(continues on next page)

202 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f = M.scalar_field({X: x+y}, name= f , latex_name=r"\Phi")
sage: g = exp(f) ; g
Scalar field exp(f) on the 2-dimensional topological manifold M
sage: g.display()
exp(f): M → ℝ

(x, y) ↦ e^(x + y)
sage: latex(g)
\exp\left(\Phi\right)

Automatic simplifications occur:

sage: f = M.scalar_field({X: 2*ln(1+x^2)}, name= f)
sage: exp(f).display()
exp(f): M → ℝ

(x, y) ↦ x^4 + 2*x^2 + 1

The inverse function is log():

sage: log(exp(f)) == f
True

Some tests:

sage: exp(M.zero_scalar_field()) == M.constant_scalar_field(1)
True
sage: exp(M.constant_scalar_field(1)) == M.constant_scalar_field(e)
True

expr(chart=None, from_chart=None)
Return the coordinate expression of the scalar field in a given chart.

INPUT:

• chart – (default: None) chart with respect to which the coordinate expression is required; if None,
the default chart of the scalar field’s domain will be used

• from_chart – (default: None) chart from which the required expression is computed if it is not
known already in the chart chart; if None, a chart is picked in self._express

OUTPUT:

• the coordinate expression of the scalar field in the given chart, either as a Sage’s symbolic expression or
as a SymPy object, depending on the symbolic calculus method used on the chart

EXAMPLES:

Expression of a scalar field on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x*y^2)
sage: f.expr()
x*y^2
sage: f.expr(c_xy) # equivalent form (since c_xy is the default chart)
x*y^2

Expression via a change of coordinates:

1.6. Scalar Fields 203

Manifolds, Release 10.4.rc1

sage: c_uv.<u,v> = M.chart()
sage: c_uv.transition_map(c_xy, [u+v, u-v])
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: f._express # at this stage, f is expressed only in terms of (x,y)␣
→˓coordinates
{Chart (M, (x, y)): x*y^2}
sage: f.expr(c_uv) # forces the computation of the expression of f in terms␣
→˓of (u,v) coordinates
u^3 - u^2*v - u*v^2 + v^3
sage: bool(f.expr(c_uv) == (u+v)*(u-v)^2) # check
True
sage: f._express # random (dict. output); f has now 2 coordinate expressions:
{Chart (M, (x, y)): x*y^2, Chart (M, (u, v)): u^3 - u^2*v - u*v^2 + v^3}

Note that the object returned byexpr() depends on the symbolic backend used for coordinate computations:

sage: type(f.expr())
<class sage.symbolic.expression.Expression >
sage: M.set_calculus_method(sympy)
sage: type(f.expr())
<class sympy.core.mul.Mul >
sage: f.expr() # note the SymPy exponent notation
x*y**2

is_trivial_one()

Check if self is trivially equal to one without any simplification.

This method is supposed to be fast as compared with self == 1 and is intended to be used in library code
where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not
desirable.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: 1})
sage: f.is_trivial_one()
True
sage: f = M.scalar_field(1)
sage: f.is_trivial_one()
True
sage: M.one_scalar_field().is_trivial_one()
True
sage: f = M.scalar_field({X: x+y})
sage: f.is_trivial_one()
False

Scalar field defined by means of two charts:

sage: U1 = M.open_subset(U1); X1.<x1,y1> = U1.chart()
sage: U2 = M.open_subset(U2); X2.<x2,y2> = U2.chart()
sage: f = M.scalar_field({X1: 1, X2: 1})
sage: f.is_trivial_one()
True
sage: f = M.scalar_field({X1: 0, X2: 1})
sage: f.is_trivial_one()
False

204 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

No simplification is attempted, so that False is returned for non-trivial cases:

sage: f = M.scalar_field({X: cos(x)^2 + sin(x)^2})
sage: f.is_trivial_one()
False

On the contrary, the method is_zero() and the direct comparison to one involve some simplification
algorithms and return True:

sage: (f - 1).is_zero()
True
sage: f == 1
True

is_trivial_zero()

Check if self is trivially equal to zero without any simplification.

This method is supposed to be fast as compared with self.is_zero() or self == 0 and is intended to
be used in library code where trying to obtain a mathematically correct result by applying potentially expensive
rewrite rules is not desirable.

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: 0})
sage: f.is_trivial_zero()
True
sage: f = M.scalar_field(0)
sage: f.is_trivial_zero()
True
sage: M.zero_scalar_field().is_trivial_zero()
True
sage: f = M.scalar_field({X: x+y})
sage: f.is_trivial_zero()
False

Scalar field defined by means of two charts:

sage: U1 = M.open_subset(U1); X1.<x1,y1> = U1.chart()
sage: U2 = M.open_subset(U2); X2.<x2,y2> = U2.chart()
sage: f = M.scalar_field({X1: 0, X2: 0})
sage: f.is_trivial_zero()
True
sage: f = M.scalar_field({X1: 0, X2: 1})
sage: f.is_trivial_zero()
False

No simplification is attempted, so that False is returned for non-trivial cases:

sage: f = M.scalar_field({X: cos(x)^2 + sin(x)^2 - 1})
sage: f.is_trivial_zero()
False

On the contrary, the method is_zero() and the direct comparison to zero involve some simplification
algorithms and return True:

1.6. Scalar Fields 205

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element.is_zero
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element.is_zero

Manifolds, Release 10.4.rc1

sage: f.is_zero()
True
sage: f == 0
True

is_unit()

Return True iff self is not trivially zero in at least one of the given expressions since most scalar fields are
invertible and a complete computation would take too much time.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: one = M.scalar_field_algebra().one()
sage: one.is_unit()
True
sage: zero = M.scalar_field_algebra().zero()
sage: zero.is_unit()
False

log()

Natural logarithm of the scalar field.

OUTPUT:

• the scalar field ln 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y}, name= f , latex_name=r"\Phi")
sage: g = log(f) ; g
Scalar field ln(f) on the 2-dimensional topological manifold M
sage: g.display()
ln(f): M → ℝ

(x, y) ↦ log(x + y)
sage: latex(g)
\ln\left(\Phi\right)

The inverse function is exp():

sage: exp(log(f)) == f
True

preimage(codomain_subset, name=None, latex_name=None)
Return the preimage of codomain_subset.

An alias is pullback().

INPUT:

• codomain_subset – an instance of RealSet

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is
set to name

OUTPUT:

• either a TopologicalManifold or a ManifoldSubsetPullback

206 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/sets/sage/sets/real_set.html#sage.sets.real_set.RealSet

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y}, name= f)
sage: L = f.pullback(RealSet.point(1)); latex(L)
f^{-1}(\{1\})
sage: M((-1, 1)) in L
False
sage: M((0, 1)) in L
True

sage: M.zero_scalar_field().preimage(RealSet.point(0)) is M
True

pullback(codomain_subset, name=None, latex_name=None)
Return the preimage of codomain_subset.

An alias is pullback().

INPUT:

• codomain_subset – an instance of RealSet

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is
set to name

OUTPUT:

• either a TopologicalManifold or a ManifoldSubsetPullback

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y}, name= f)
sage: L = f.pullback(RealSet.point(1)); latex(L)
f^{-1}(\{1\})
sage: M((-1, 1)) in L
False
sage: M((0, 1)) in L
True

sage: M.zero_scalar_field().preimage(RealSet.point(0)) is M
True

restrict(subdomain)

Restriction of the scalar field to an open subset of its domain of definition.

INPUT:

• subdomain – an open subset of the scalar field’s domain

OUTPUT:

• instance of ScalarField representing the restriction of the scalar field to subdomain

EXAMPLES:

Restriction of a scalar field defined on R2 to the unit open disc:

1.6. Scalar Fields 207

../../../../../../html/en/reference/sets/sage/sets/real_set.html#sage.sets.real_set.RealSet

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart() # Cartesian coordinates
sage: U = M.open_subset(U , coord_def={X: x^2+y^2 < 1}) # U unit open disc
sage: f = M.scalar_field(cos(x*y), name= f)
sage: f_U = f.restrict(U) ; f_U
Scalar field f on the Open subset U of the 2-dimensional
topological manifold M

sage: f_U.display()
f: U → ℝ

(x, y) ↦ cos(x*y)
sage: f.parent()
Algebra of scalar fields on the 2-dimensional topological
manifold M

sage: f_U.parent()
Algebra of scalar fields on the Open subset U of the 2-dimensional
topological manifold M

The restriction to the whole domain is the identity:

sage: f.restrict(M) is f
True
sage: f_U.restrict(U) is f_U
True

Restriction of the zero scalar field:

sage: M.zero_scalar_field().restrict(U)
Scalar field zero on the Open subset U of the 2-dimensional
topological manifold M

sage: M.zero_scalar_field().restrict(U) is U.zero_scalar_field()
True

set_calc_order(symbol, order, truncate=False)
Trigger a power series expansion with respect to a small parameter in computations involving the scalar field.

This property is propagated by usual operations. The internal representation must be SR for this to take effect.

If the small parameter is 𝜖 and 𝑓 is self, the power series expansion to order 𝑛 is

𝑓 = 𝑓0 + 𝜖𝑓1 + 𝜖2𝑓2 + · · ·+ 𝜖𝑛𝑓𝑛 +𝑂(𝜖𝑛+1),

where 𝑓0, 𝑓1, . . . , 𝑓𝑛 are 𝑛+ 1 scalar fields that do not depend upon 𝜖.

INPUT:

• symbol – symbolic variable (the “small parameter” 𝜖) with respect to which the coordinate expressions
of self in various charts are expanded in power series (around the zero value of this variable)

• order – integer; the order 𝑛 of the expansion, defined as the degree of the polynomial representing the
truncated power series in symbol

Warning: The order of the big 𝑂 in the power series expansion is 𝑛+ 1, where 𝑛 is order.

• truncate – (default: False) determines whether the coordinate expressions of self are replaced
by their expansions to the given order

EXAMPLES:

208 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: t = var(t) # the small parameter
sage: f = M.scalar_field(exp(-t*x))
sage: f.expr()
e^(-t*x)
sage: f.set_calc_order(t, 2, truncate=True)
sage: f.expr()
1/2*t^2*x^2 - t*x + 1

set_expr(coord_expression, chart=None)
Set the coordinate expression of the scalar field.

The expressions with respect to other charts are deleted, in order to avoid any inconsistency. To keep them,
use add_expr() instead.

INPUT:

• coord_expression – coordinate expression of the scalar field

• chart – (default: None) chart in which coord_expression is defined; if None, the default chart
of the scalar field’s domain is assumed

EXAMPLES:

Setting scalar field expressions on a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x^2 + 2*x*y +1)
sage: f._express
{Chart (M, (x, y)): x^2 + 2*x*y + 1}
sage: f.set_expr(3*y)
sage: f._express # the (x,y) expression has been changed:
{Chart (M, (x, y)): 3*y}
sage: c_uv.<u,v> = M.chart()
sage: f.set_expr(cos(u)-sin(v), c_uv)
sage: f._express # the (x,y) expression has been lost:
{Chart (M, (u, v)): cos(u) - sin(v)}
sage: f.set_expr(3*y)
sage: f._express # the (u,v) expression has been lost:
{Chart (M, (x, y)): 3*y}

Since zero and one are special elements, their expressions cannot be changed:

sage: z = M.zero_scalar_field()
sage: z.set_expr(3*y)
Traceback (most recent call last):
...
ValueError: the expressions of an immutable element cannot be
changed

sage: one = M.one_scalar_field()
sage: one.set_expr(3*y)
Traceback (most recent call last):
...
ValueError: the expressions of an immutable element cannot be
changed

set_immutable()

1.6. Scalar Fields 209

Manifolds, Release 10.4.rc1

Set self and all restrictions of self immutable.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1}) # disk
sage: V = M.open_subset(U , coord_def={X: x>0}) # half plane
sage: f = M.scalar_field(x^2, name= f)
sage: fU = f.restrict(U)
sage: f.set_immutable()
sage: fU.is_immutable()
True
sage: f.restrict(V).is_immutable()
True

set_name(name=None, latex_name=None)
Set (or change) the text name and LaTeX name of the scalar field.

INPUT:

• name – (string; default: None) name given to the scalar field

• latex_name – (string; default: None) LaTeX symbol to denote the scalar field; if None while name
is provided, the LaTeX symbol is set to name

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y})
sage: f = M.scalar_field({X: x+y}); f
Scalar field on the 2-dimensional topological manifold M
sage: f.set_name(f); f
Scalar field f on the 2-dimensional topological manifold M
sage: latex(f)
f
sage: f.set_name(f , latex_name=r \Phi); f
Scalar field f on the 2-dimensional topological manifold M
sage: latex(f)
\Phi

set_restriction(rst)

Define a restriction of self to some subdomain.

INPUT:

• rst – ScalarField defined on a subdomain of the domain of self

EXAMPLES:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: f = M.scalar_field(name= f)
sage: g = U.scalar_field(x^2+y)

(continues on next page)

210 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.set_restriction(g)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ x^2 + y
sage: f.restrict(U) == g
True

sin()

Sine of the scalar field.

OUTPUT:

• the scalar field sin 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = sin(f) ; g
Scalar field sin(f) on the 2-dimensional topological manifold M
sage: latex(g)
\sin\left(\Phi\right)
sage: g.display()
sin(f): M → ℝ

(x, y) ↦ sin(x*y)

Some tests:

sage: sin(M.zero_scalar_field()) == M.zero_scalar_field()
True
sage: sin(M.constant_scalar_field(pi/2)) == M.constant_scalar_field(1)
True

sinh()

Hyperbolic sine of the scalar field.

OUTPUT:

• the scalar field sinh 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = sinh(f) ; g
Scalar field sinh(f) on the 2-dimensional topological manifold M
sage: latex(g)
\sinh\left(\Phi\right)
sage: g.display()
sinh(f): M → ℝ

(x, y) ↦ sinh(x*y)

Some test:

sage: sinh(M.zero_scalar_field()) == M.zero_scalar_field()
True

1.6. Scalar Fields 211

Manifolds, Release 10.4.rc1

sqrt()

Square root of the scalar field.

OUTPUT:

• the scalar field
√
𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: 1+x^2+y^2}, name= f ,
....: latex_name=r"\Phi")
sage: g = sqrt(f) ; g
Scalar field sqrt(f) on the 2-dimensional topological manifold M
sage: latex(g)
\sqrt{\Phi}
sage: g.display()
sqrt(f): M → ℝ

(x, y) ↦ sqrt(x^2 + y^2 + 1)

Some tests:

sage: g^2 == f
True
sage: sqrt(M.zero_scalar_field()) == M.zero_scalar_field()
True

tan()

Tangent of the scalar field.

OUTPUT:

• the scalar field tan 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = tan(f) ; g
Scalar field tan(f) on the 2-dimensional topological manifold M
sage: latex(g)
\tan\left(\Phi\right)
sage: g.display()
tan(f): M → ℝ

(x, y) ↦ sin(x*y)/cos(x*y)

Some tests:

sage: tan(f) == sin(f) / cos(f)
True
sage: tan(M.zero_scalar_field()) == M.zero_scalar_field()
True
sage: tan(M.constant_scalar_field(pi/4)) == M.constant_scalar_field(1)
True

tanh()

Hyperbolic tangent of the scalar field.

212 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• the scalar field tanh 𝑓 , where 𝑓 is the current scalar field

EXAMPLES:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x*y}, name= f , latex_name=r"\Phi")
sage: g = tanh(f) ; g
Scalar field tanh(f) on the 2-dimensional topological manifold M
sage: latex(g)
\tanh\left(\Phi\right)
sage: g.display()
tanh(f): M → ℝ

(x, y) ↦ sinh(x*y)/cosh(x*y)

Some tests:

sage: tanh(f) == sinh(f) / cosh(f)
True
sage: tanh(M.zero_scalar_field()) == M.zero_scalar_field()
True

1.7 Continuous Maps

1.7.1 Sets of Morphisms between Topological Manifolds

The class TopologicalManifoldHomset implements sets of morphisms between two topological manifolds over
the same topological field𝐾, a morphism being a continuous map for the category of topological manifolds.

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• [Lee2011]

• [KN1963]

class sage.manifolds.manifold_homset.TopologicalManifoldHomset(domain, codomain,
name=None,
latex_name=None)

Bases: UniqueRepresentation, Homset

Set of continuous maps between two topological manifolds.

Given two topological manifolds𝑀 and𝑁 over a topological field𝐾, the class TopologicalManifoldHom-
set implements the set Hom(𝑀,𝑁) of morphisms (i.e. continuous maps)𝑀 → 𝑁 .

This is a Sage parent class, whose element class is ContinuousMap.

INPUT:

• domain – TopologicalManifold; the domain topological manifold𝑀 of the morphisms

• codomain – TopologicalManifold; the codomain topological manifold 𝑁 of the morphisms

1.7. Continuous Maps 213

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Homset

Manifolds, Release 10.4.rc1

• name – (default: None) string; the name of self; if None, Hom(M,N) will be used

• latex_name – (default: None) string; LaTeX symbol to denote self; if None, Hom(𝑀,𝑁) will be
used

EXAMPLES:

Set of continuous maps between a 2-dimensional manifold and a 3-dimensional one:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: N = Manifold(3, N , structure= topological)
sage: Y.<u,v,w> = N.chart()
sage: H = Hom(M, N) ; H
Set of Morphisms from 2-dimensional topological manifold M to
3-dimensional topological manifold N in Category of manifolds over
Real Field with 53 bits of precision
sage: type(H)
<class sage.manifolds.manifold_homset.TopologicalManifoldHomset_with_category >
sage: H.category()
Category of homsets of topological spaces
sage: latex(H)
\mathrm{Hom}\left(M,N\right)
sage: H.domain()
2-dimensional topological manifold M
sage: H.codomain()
3-dimensional topological manifold N

An element of H is a continuous map from M to N:

sage: H.Element
<class sage.manifolds.continuous_map.ContinuousMap >
sage: f = H.an_element() ; f
Continuous map from the 2-dimensional topological manifold M to the
3-dimensional topological manifold N
sage: f.display()
M → N

(x, y) ↦ (u, v, w) = (0, 0, 0)

The test suite is passed:

sage: TestSuite(H).run()

When the codomain coincides with the domain, the homset is a set of endomorphisms in the category of topological
manifolds:

sage: E = Hom(M, M) ; E
Set of Morphisms from 2-dimensional topological manifold M to
2-dimensional topological manifold M in Category of manifolds over
Real Field with 53 bits of precision
sage: E.category()
Category of endsets of topological spaces
sage: E.is_endomorphism_set()
True
sage: E is End(M)
True

In this case, the homset is a monoid for the law of morphism composition:

214 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: E in Monoids()
True

This was of course not the case of H = Hom(M, N):

sage: H in Monoids()
False

The identity element of the monoid is of course the identity map of M:

sage: E.one()
Identity map Id_M of the 2-dimensional topological manifold M
sage: E.one() is M.identity_map()
True
sage: E.one().display()
Id_M: M → M

(x, y) ↦ (x, y)

The test suite is passed by E:

sage: TestSuite(E).run()

This test suite includes more tests than in the case of H, since E has some extra structure (monoid).

Element

alias of ContinuousMap

one()

Return the identity element of self considered as a monoid (case of a set of endomorphisms).

This applies only when the codomain of the homset is equal to its domain, i.e. when the homset is of the type
Hom(𝑀,𝑀). Indeed, Hom(𝑀,𝑀) equipped with the law of morphisms composition is a monoid, whose
identity element is nothing but the identity map of𝑀 .

OUTPUT:

• the identity map of𝑀 , as an instance of ContinuousMap

EXAMPLES:

The identity map of a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: H = Hom(M, M) ; H
Set of Morphisms from 2-dimensional topological manifold M to
2-dimensional topological manifold M in Category of manifolds over
Real Field with 53 bits of precision

sage: H in Monoids()
True
sage: H.one()
Identity map Id_M of the 2-dimensional topological manifold M
sage: H.one().parent() is H
True
sage: H.one().display()
Id_M: M → M

(x, y) ↦ (x, y)

The identity map is cached:

1.7. Continuous Maps 215

Manifolds, Release 10.4.rc1

sage: H.one() is H.one()
True

If the homset is not a set of endomorphisms, the identity element is meaningless:

sage: N = Manifold(3, N , structure= topological)
sage: Y.<u,v,w> = N.chart()
sage: Hom(M, N).one()
Traceback (most recent call last):
...
TypeError: Set of Morphisms
from 2-dimensional topological manifold M
to 3-dimensional topological manifold N
in Category of manifolds over Real Field with 53 bits of precision
is not a monoid

1.7.2 Continuous Maps Between Topological Manifolds

ContinuousMap implements continuous maps from a topological manifold𝑀 to some topological manifold 𝑁 over
the same topological field𝐾 as𝑀 .

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• Chap. 1 of [KN1963]

• [Lee2011]

class sage.manifolds.continuous_map.ContinuousMap(parent, coord_functions=None,
name=None, latex_name=None,
is_isomorphism=False, is_identity=False)

Bases: Morphism

Continuous map between two topological manifolds.

This class implements continuous maps of the type

Φ :𝑀 −→ 𝑁,

where𝑀 and 𝑁 are topological manifolds over the same topological field𝐾.

Continuous maps are the morphisms of the category of topological manifolds. The set of all continuous maps from
𝑀 to 𝑁 is therefore the homset between𝑀 and 𝑁 , which is denoted by Hom(𝑀,𝑁).

The class ContinuousMap is a Sage element class, whose parent class is TopologicalManifoldHomset.

INPUT:

• parent – homset Hom(𝑀,𝑁) to which the continuous map belongs

• coord_functions – a dictionary of the coordinate expressions (as lists or tuples of the coordinates of
the image expressed in terms of the coordinates of the considered point) with the pairs of charts (chart1,
chart2) as keys (chart1 being a chart on𝑀 and chart2 a chart on 𝑁)

• name – (default: None) name given to self

216 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Manifolds, Release 10.4.rc1

• latex_name – (default: None) LaTeX symbol to denote the continuous map; if None, the LaTeX symbol
is set to name

• is_isomorphism – (default: False) determines whether the constructed object is a isomorphism (i.e.
a homeomorphism); if set to True, then the manifolds𝑀 and 𝑁 must have the same dimension

• is_identity – (default: False) determines whether the constructed object is the identity map; if set to
True, then 𝑁 must be𝑀 and the entry coord_functions is not used

Note: If the information passed by means of the argument coord_functions is not sufficient to fully specify
the continuous map, further coordinate expressions, in other charts, can be subsequently added by means of the
method add_expr().

EXAMPLES:

The standard embedding of the sphere 𝑆2 into R3:

sage: M = Manifold(2, S^2 , structure= topological) # the 2-dimensional sphere␣
→˓S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1=x^2+y^2!=0,
....: restrictions2=u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: N = Manifold(3, R^3 , latex_name=r \RR^3 , structure= topological) # R^3
sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3
sage: Phi = M.continuous_map(N,
....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^
→˓2)],
....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^
→˓2)]},
....: name= Phi , latex_name=r \Phi)
sage: Phi
Continuous map Phi from the 2-dimensional topological manifold S^2
to the 3-dimensional topological manifold R^3
sage: Phi.parent()
Set of Morphisms from 2-dimensional topological manifold S^2
to 3-dimensional topological manifold R^3
in Category of manifolds over Real Field with 53 bits of precision
sage: Phi.parent() is Hom(M, N)
True
sage: type(Phi)
<class sage.manifolds.manifold_homset.TopologicalManifoldHomset_with_category.
→˓element_class >
sage: Phi.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 -
→˓ 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2␣
→˓- 1)/(u^2 + v^2 + 1))

It is possible to create themap usingcontinuous_map()with only in a single pair of charts. The argumentco-
ord_functions is then a mere list of coordinate expressions (and not a dictionary) and the arguments chart1

1.7. Continuous Maps 217

Manifolds, Release 10.4.rc1

and chart2 have to be provided if the charts differ from the default ones on the domain and/or codomain:

sage: Phi1 = M.continuous_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/
→˓(1+x^2+y^2)],
....: chart1=c_xy, chart2=c_cart,
....: name= Phi , latex_name=r \Phi)

Since c_xy and c_cart are the default charts on respectively M and N, they can be omitted, so that the above
declaration is equivalent to:

sage: Phi1 = M.continuous_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/
→˓(1+x^2+y^2)],
....: name= Phi , latex_name=r \Phi)

With such a declaration, the continuous map Phi1 is only partially defined on the manifold 𝑆2 as it is known in
only one chart:

sage: Phi1.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 -
→˓ 1)/(x^2 + y^2 + 1))

The definition can be completed by using add_expr():

sage: Phi1.add_expr(c_uv, c_cart, [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/
→˓(1+u^2+v^2)])
sage: Phi1.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 -
→˓ 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2␣
→˓- 1)/(u^2 + v^2 + 1))

At this stage, Phi1 and Phi are fully equivalent:

sage: Phi1 == Phi
True

The map acts on points:

sage: np = M.point((0,0), chart=c_uv) # the North pole
sage: Phi(np)
Point on the 3-dimensional topological manifold R^3
sage: Phi(np).coord() # Cartesian coordinates
(0, 0, 1)
sage: sp = M.point((0,0), chart=c_xy) # the South pole
sage: Phi(sp).coord() # Cartesian coordinates
(0, 0, -1)

The test suite is passed:

sage: TestSuite(Phi).run()
sage: TestSuite(Phi1).run()

Continuous maps can be composed by means of the operator *. Let us introduce the mapR3 → R2 corresponding
to the projection from the point (𝑋,𝑌, 𝑍) = (0, 0, 1) onto the equatorial plane 𝑍 = 0:

218 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: P = Manifold(2, R^2 , latex_name=r \RR^2 , structure= topological) # R^2␣
→˓(equatorial plane)
sage: cP.<xP, yP> = P.chart()
sage: Psi = N.continuous_map(P, (X/(1-Z), Y/(1-Z)), name= Psi ,
....: latex_name=r \Psi)
sage: Psi
Continuous map Psi from the 3-dimensional topological manifold R^3
to the 2-dimensional topological manifold R^2
sage: Psi.display()
Psi: R^3 → R^2

(X, Y, Z) ↦ (xP, yP) = (-X/(Z - 1), -Y/(Z - 1))

Then we compose Psi with Phi, thereby getting a map 𝑆2 → R2:

sage: ster = Psi * Phi ; ster
Continuous map from the 2-dimensional topological manifold S^2
to the 2-dimensional topological manifold R^2

Let us test on the South pole (sp) that ster is indeed the composite of Psi and Phi:

sage: ster(sp) == Psi(Phi(sp))
True

Actually ster is the stereographic projection from the North pole, as its coordinate expression reveals:

sage: ster.display()
S^2 → R^2
on U: (x, y) ↦ (xP, yP) = (x, y)
on V: (u, v) ↦ (xP, yP) = (u/(u^2 + v^2), v/(u^2 + v^2))

If the codomain of a continuous map is 1-dimensional, the map can be defined by a single symbolic expression for
each pair of charts and not by a list/tuple with a single element:

sage: N = Manifold(1, N , structure= topological)
sage: c_N = N.chart(X)
sage: Phi = M.continuous_map(N, {(c_xy, c_N): x^2+y^2,
....: (c_uv, c_N): 1/(u^2+v^2)})

sage: Psi = M.continuous_map(N, {(c_xy, c_N): [x^2+y^2],
....: (c_uv, c_N): [1/(u^2+v^2)]})
sage: Phi == Psi
True

Next we construct an example of continuous map R → R2:

sage: R = Manifold(1, R , structure= topological) # field R
sage: T.<t> = R.chart() # canonical chart on R
sage: R2 = Manifold(2, R^2 , structure= topological) # R^2
sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2
sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name= Phi); Phi
Continuous map Phi from the 1-dimensional topological manifold R
to the 2-dimensional topological manifold R^2
sage: Phi.parent()
Set of Morphisms from 1-dimensional topological manifold R
to 2-dimensional topological manifold R^2
in Category of manifolds over Real Field with 53 bits of precision
sage: Phi.parent() is Hom(R, R2)

(continues on next page)

1.7. Continuous Maps 219

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: Phi.display()
Phi: R → R^2

t ↦ (x, y) = (cos(t), sin(t))

An example of homeomorphism between the unit open disk and the Euclidean plane R2:

sage: D = R2.open_subset(D , coord_def={c_xy: x^2+y^2<1}) # the open unit disk
sage: Phi = D.homeomorphism(R2, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
....: name= Phi , latex_name=r \Phi)
sage: Phi
Homeomorphism Phi from the Open subset D of the 2-dimensional
topological manifold R^2 to the 2-dimensional topological manifold R^2
sage: Phi.parent()
Set of Morphisms from Open subset D of the 2-dimensional topological
manifold R^2 to 2-dimensional topological manifold R^2 in Category of
manifolds over Real Field with 53 bits of precision
sage: Phi.parent() is Hom(D, R2)
True
sage: Phi.display()
Phi: D → R^2

(x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))

The image of a point:

sage: p = D.point((1/2,0))
sage: q = Phi(p) ; q
Point on the 2-dimensional topological manifold R^2
sage: q.coord()
(1/3*sqrt(3), 0)

The inverse homeomorphism is computed by inverse():

sage: Phi.inverse()
Homeomorphism Phi^(-1) from the 2-dimensional topological manifold R^2
to the Open subset D of the 2-dimensional topological manifold R^2
sage: Phi.inverse().display()
Phi^(-1): R^2 → D

(x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))

Equivalently, one may use the notations ^(-1) or ~ to get the inverse:

sage: Phi^(-1) is Phi.inverse()
True
sage: ~Phi is Phi.inverse()
True

Check that ~Phi is indeed the inverse of Phi:

sage: (~Phi)(q) == p
True
sage: Phi * ~Phi == R2.identity_map()
True
sage: ~Phi * Phi == D.identity_map()
True

The coordinate expression of the inverse homeomorphism:

220 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: (~Phi).display()
Phi^(-1): R^2 → D

(x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))

A special case of homeomorphism: the identity map of the open unit disk:

sage: id = D.identity_map() ; id
Identity map Id_D of the Open subset D of the 2-dimensional topological
manifold R^2
sage: latex(id)
\mathrm{Id}_{D}
sage: id.parent()
Set of Morphisms from Open subset D of the 2-dimensional topological
manifold R^2 to Open subset D of the 2-dimensional topological
manifold R^2 in Join of Category of subobjects of sets and Category of
manifolds over Real Field with 53 bits of precision
sage: id.parent() is Hom(D, D)
True
sage: id is Hom(D,D).one() # the identity element of the monoid Hom(D,D)
True

The identity map acting on a point:

sage: id(p)
Point on the 2-dimensional topological manifold R^2
sage: id(p) == p
True
sage: id(p) is p
True

The coordinate expression of the identity map:

sage: id.display()
Id_D: D → D

(x, y) ↦ (x, y)

The identity map is its own inverse:

sage: id^(-1) is id
True
sage: ~id is id
True

add_expr(chart1, chart2, coord_functions)
Set a new coordinate representation of self.

The previous expressions with respect to other charts are kept. To clear them, use set_expr() instead.

INPUT:

• chart1 – chart for the coordinates on the map’s domain

• chart2 – chart for the coordinates on the map’s codomain

• coord_functions – the coordinate symbolic expression of the map in the above charts: list (or
tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if
the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple
with a single element

1.7. Continuous Maps 221

Manifolds, Release 10.4.rc1

Warning: If the map has already expressions in other charts, it is the user’s responsibility to make sure
that the expression to be added is consistent with them.

EXAMPLES:

Polar representation of a planar rotation initially defined in Cartesian coordinates:

sage: M = Manifold(2, R^2 , latex_name=r \RR^2 , structure= topological) #␣
→˓the Euclidean plane R^2
sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
sage: U = M.open_subset(U , coord_def={c_xy: (y!=0, x<0)}) # the complement␣
→˓of the segment y=0 and x>0
sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on U

We construct the links between spherical coordinates and Cartesian ones:

sage: ch_cart_spher = c_cart.transition_map(c_spher, [sqrt(x*x+y*y), atan2(y,
→˓x)])
sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
Check of the inverse coordinate transformation:

x == x *passed*
y == y *passed*
r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**

NB: a failed report can reflect a mere lack of simplification.
sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
....: name= R)
sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

If we calculate the expression in terms of spherical coordinates, via the method display(), we notice some
difficulties in arctan2 simplifications:

sage: rot.display(c_spher, c_spher)
R: U → U

(r, ph) ↦ (r, arctan2(1/2*(sqrt(3)*cos(ph) + sin(ph))*r, -1/
→˓2*(sqrt(3)*sin(ph) - cos(ph))*r))

Therefore, we use the method add_expr() to set the spherical-coordinate expression by hand:

sage: rot.add_expr(c_spher, c_spher, (r, ph+pi/3))
sage: rot.display(c_spher, c_spher)
R: U → U

(r, ph) ↦ (r, 1/3*pi + ph)

The call to add_expr() has not deleted the expression in terms of Cartesian coordinates, as we can check
by printing the internal dictionary _coord_expression, which stores the various internal representations
of the continuous map:

sage: rot._coord_expression # random (dictionary output)
{(Chart (U, (x, y)), Chart (U, (x, y))):
Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
on the Chart (U, (x, y)),

(continues on next page)

222 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

(Chart (U, (r, ph)), Chart (U, (r, ph))):
Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}

If, on the contrary, we use set_expr(), the expression in Cartesian coordinates is lost:

sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
sage: rot._coord_expression
{(Chart (U, (r, ph)), Chart (U, (r, ph))):
Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}

It is recovered (thanks to the known change of coordinates) by a call to display():

sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

sage: rot._coord_expression # random (dictionary output)
{(Chart (U, (x, y)), Chart (U, (x, y))):
Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
on the Chart (U, (x, y)),

(Chart (U, (r, ph)), Chart (U, (r, ph))):
Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}

The rotation can be applied to a point by means of either coordinate system:

sage: p = M.point((1,2)) # p defined by its Cartesian coord.
sage: q = rot(p) # q is computed by means of Cartesian coord.
sage: p1 = M.point((sqrt(5), arctan(2)), chart=c_spher) # p1 is defined only␣
→˓in terms of c_spher
sage: q1 = rot(p1) # computation by means of spherical coordinates
sage: q1 == q
True

add_expression(chart1, chart2, coord_functions)
Set a new coordinate representation of self.

The previous expressions with respect to other charts are kept. To clear them, use set_expr() instead.

INPUT:

• chart1 – chart for the coordinates on the map’s domain

• chart2 – chart for the coordinates on the map’s codomain

• coord_functions – the coordinate symbolic expression of the map in the above charts: list (or
tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if
the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple
with a single element

Warning: If the map has already expressions in other charts, it is the user’s responsibility to make sure
that the expression to be added is consistent with them.

EXAMPLES:

Polar representation of a planar rotation initially defined in Cartesian coordinates:

1.7. Continuous Maps 223

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, R^2 , latex_name=r \RR^2 , structure= topological) #␣
→˓the Euclidean plane R^2
sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
sage: U = M.open_subset(U , coord_def={c_xy: (y!=0, x<0)}) # the complement␣
→˓of the segment y=0 and x>0
sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on U

We construct the links between spherical coordinates and Cartesian ones:

sage: ch_cart_spher = c_cart.transition_map(c_spher, [sqrt(x*x+y*y), atan2(y,
→˓x)])
sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
Check of the inverse coordinate transformation:

x == x *passed*
y == y *passed*
r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**

NB: a failed report can reflect a mere lack of simplification.
sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
....: name= R)
sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

If we calculate the expression in terms of spherical coordinates, via the method display(), we notice some
difficulties in arctan2 simplifications:

sage: rot.display(c_spher, c_spher)
R: U → U

(r, ph) ↦ (r, arctan2(1/2*(sqrt(3)*cos(ph) + sin(ph))*r, -1/
→˓2*(sqrt(3)*sin(ph) - cos(ph))*r))

Therefore, we use the method add_expr() to set the spherical-coordinate expression by hand:

sage: rot.add_expr(c_spher, c_spher, (r, ph+pi/3))
sage: rot.display(c_spher, c_spher)
R: U → U

(r, ph) ↦ (r, 1/3*pi + ph)

The call to add_expr() has not deleted the expression in terms of Cartesian coordinates, as we can check
by printing the internal dictionary _coord_expression, which stores the various internal representations
of the continuous map:

sage: rot._coord_expression # random (dictionary output)
{(Chart (U, (x, y)), Chart (U, (x, y))):
Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
on the Chart (U, (x, y)),

(Chart (U, (r, ph)), Chart (U, (r, ph))):
Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}

If, on the contrary, we use set_expr(), the expression in Cartesian coordinates is lost:

sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
sage: rot._coord_expression

(continues on next page)

224 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

{(Chart (U, (r, ph)), Chart (U, (r, ph))):
Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}

It is recovered (thanks to the known change of coordinates) by a call to display():

sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

sage: rot._coord_expression # random (dictionary output)
{(Chart (U, (x, y)), Chart (U, (x, y))):
Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
on the Chart (U, (x, y)),

(Chart (U, (r, ph)), Chart (U, (r, ph))):
Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}

The rotation can be applied to a point by means of either coordinate system:

sage: p = M.point((1,2)) # p defined by its Cartesian coord.
sage: q = rot(p) # q is computed by means of Cartesian coord.
sage: p1 = M.point((sqrt(5), arctan(2)), chart=c_spher) # p1 is defined only␣
→˓in terms of c_spher
sage: q1 = rot(p1) # computation by means of spherical coordinates
sage: q1 == q
True

coord_functions(chart1=None, chart2=None)
Return the functions of the coordinates representing self in a given pair of charts.

If these functions are not already known, they are computed from known ones by means of change-of-chart
formulas.

INPUT:

• chart1 – (default: None) chart on the domain ofself; ifNone, the domain’s default chart is assumed

• chart2 – (default: None) chart on the codomain of self; if None, the codomain’s default chart is
assumed

OUTPUT:

• a MultiCoordFunction representing the continuous map in the above two charts

EXAMPLES:

Continuous map from a 2-dimensional manifold to a 3-dimensional one:

sage: M = Manifold(2, M , structure= topological)
sage: N = Manifold(3, N , structure= topological)
sage: c_uv.<u,v> = M.chart()
sage: c_xyz.<x,y,z> = N.chart()
sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name= Phi ,
....: latex_name=r \Phi)
sage: Phi.display()
Phi: M → N

(u, v) ↦ (x, y, z) = (u*v, u/v, u + v)
sage: Phi.coord_functions(c_uv, c_xyz)
Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
sage: Phi.coord_functions() # equivalent to above since uv and xyz are␣

(continues on next page)

1.7. Continuous Maps 225

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓default charts
Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
sage: type(Phi.coord_functions())
<class sage.manifolds.chart_func.MultiCoordFunction >

Coordinate representation in other charts:

sage: c_UV.<U,V> = M.chart() # new chart on M
sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v])
sage: ch_uv_UV.inverse()(U,V)
(1/2*U + 1/2*V, -1/2*U + 1/2*V)
sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N
sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ,
....: [2*x-3*y+z, y+z-x, -x+2*y-z])
sage: ch_xyz_XYZ.inverse()(X,Y,Z)
(3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z)
sage: Phi.coord_functions(c_UV, c_xyz)
Coordinate functions (-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V) on
the Chart (M, (U, V))

sage: Phi.coord_functions(c_uv, c_XYZ)
Coordinate functions (((2*u + 1)*v^2 + u*v - 3*u)/v,
-((u - 1)*v^2 - u*v - u)/v, -((u + 1)*v^2 + u*v - 2*u)/v) on the
Chart (M, (u, v))

sage: Phi.coord_functions(c_UV, c_XYZ)
Coordinate functions
(-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V),
1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V),
1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))

on the Chart (M, (U, V))

Coordinate representation with respect to a subchart in the domain:

sage: A = M.open_subset(A , coord_def={c_uv: u>0})
sage: Phi.coord_functions(c_uv.restrict(A), c_xyz)
Coordinate functions (u*v, u/v, u + v) on the Chart (A, (u, v))

Coordinate representation with respect to a superchart in the codomain:

sage: B = N.open_subset(B , coord_def={c_xyz: x<0})
sage: c_xyz_B = c_xyz.restrict(B)
sage: Phi1 = M.continuous_map(B, {(c_uv, c_xyz_B): (u*v, u/v, u+v)})
sage: Phi1.coord_functions(c_uv, c_xyz_B) # definition charts
Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
sage: Phi1.coord_functions(c_uv, c_xyz) # c_xyz = superchart of c_xyz_B
Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))

Coordinate representation with respect to a pair (subchart, superchart):

sage: Phi1.coord_functions(c_uv.restrict(A), c_xyz)
Coordinate functions (u*v, u/v, u + v) on the Chart (A, (u, v))

Same example with SymPy as the symbolic calculus engine:

sage: M.set_calculus_method(sympy)
sage: N.set_calculus_method(sympy)
sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name= Phi ,

(continues on next page)

226 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: latex_name=r \Phi)
sage: Phi.coord_functions(c_uv, c_xyz)
Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
sage: Phi.coord_functions(c_UV, c_xyz)
Coordinate functions (-U**2/4 + V**2/4, (-U - V)/(U - V), V) on the Chart (M,␣
→˓(U, V))
sage: Phi.coord_functions(c_UV, c_XYZ)
Coordinate functions ((-U**3 + U**2*V + U*V**2 + 2*U*V + 6*U - V**3
- 2*V**2 + 6*V)/(2*(U - V)), (U**3/4 - U**2*V/4 - U*V**2/4 + U*V
- U + V**3/4 - V**2 - V)/(U - V), (U**3 - U**2*V - U*V**2 - 4*U*V
- 8*U + V**3 + 4*V**2 - 8*V)/(4*(U - V))) on the Chart (M, (U, V))

disp(chart1=None, chart2=None)
Display the expression of self in one or more pair of charts.

If the expression is not known already, it is computed from some expression in other charts by means of
change-of-coordinate formulas.

INPUT:

• chart1 – (default: None) chart on the domain of self; if None, the display is performed on all the
charts on the domain in which the map is known or computable via some change of coordinates

• chart2 – (default: None) chart on the codomain of self; if None, the display is performed on all
the charts on the codomain in which the map is known or computable via some change of coordinates

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

A simple reparamentrization:

sage: R.<t> = manifolds.RealLine()
sage: I = R.open_interval(0, 2*pi)
sage: J = R.open_interval(2*pi, 6*pi)
sage: h = J.continuous_map(I, ((t-2*pi)/2,), name= h)
sage: h.display()
h: (2*pi, 6*pi) → (0, 2*pi)

t ↦ t = -pi + 1/2*t
sage: latex(h.display())
\begin{array}{llcl} h:& \left(2 \, \pi, 6 \, \pi\right) &
\longrightarrow & \left(0, 2 \, \pi\right) \\ & t & \longmapsto &
t = -\pi + \frac{1}{2} \, t \end{array}

Standard embedding of the sphere 𝑆2 in R3:

sage: M = Manifold(2, S^2 , structure= topological) # the 2-dimensional␣
→˓sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: N = Manifold(3, R^3 , latex_name=r \RR^3 , structure= topological) #␣
→˓R^3
sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3
sage: Phi = M.continuous_map(N,
....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^

(continues on next page)

1.7. Continuous Maps 227

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓2+y^2)],
....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^
→˓2+v^2)]},
....: name= Phi , latex_name=r \Phi)
sage: Phi.display(c_xy, c_cart)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
sage: Phi.display(c_uv, c_cart)
Phi: S^2 → R^3
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

The LaTeX output of that embedding is:

sage: latex(Phi.display(c_xy, c_cart))
\begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3
\\ \text{on}\ U : & \left(x, y\right) & \longmapsto
& \left(X, Y, Z\right) = \left(\frac{2 \, x}{x^{2} + y^{2} + 1},

\frac{2 \, y}{x^{2} + y^{2} + 1},
\frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right)

\end{array}

If the argument chart2 is not specified, the display is performed on all the charts on the codomain in which
the map is known or computable via some change of coordinates (here only one chart: c_cart):

sage: Phi.display(c_xy)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))

Similarly, if the argument chart1 is omitted, the display is performed on all the charts on the domain of
Phi in which the map is known or computable via some change of coordinates:

sage: Phi.display(chart2=c_cart)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

If neither chart1 nor chart2 is specified, the display is performed on all the pair of charts in which Phi
is known or computable via some change of coordinates:

sage: Phi.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

If a chart covers entirely the map’s domain, the mention “on …” is omitted:

sage: Phi.restrict(U).display()
Phi: U → R^3

(x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2␣
→˓- 1)/(x^2 + y^2 + 1))

228 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

A shortcut of display() is disp():

sage: Phi.disp()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

Display when SymPy is the symbolic engine:

sage: M.set_calculus_method(sympy)
sage: N.set_calculus_method(sympy)
sage: Phi.display(c_xy, c_cart)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x**2 + y**2 + 1),
2*y/(x**2 + y**2 + 1), (x**2 + y**2 - 1)/(x**2 + y**2 + 1))

sage: latex(Phi.display(c_xy, c_cart))
\begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3
\\ \text{on}\ U : & \left(x, y\right) & \longmapsto
& \left(X, Y, Z\right) = \left(\frac{2 x}{x^{2} + y^{2} + 1},

\frac{2 y}{x^{2} + y^{2} + 1},
\frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right)

\end{array}

display(chart1=None, chart2=None)
Display the expression of self in one or more pair of charts.

If the expression is not known already, it is computed from some expression in other charts by means of
change-of-coordinate formulas.

INPUT:

• chart1 – (default: None) chart on the domain of self; if None, the display is performed on all the
charts on the domain in which the map is known or computable via some change of coordinates

• chart2 – (default: None) chart on the codomain of self; if None, the display is performed on all
the charts on the codomain in which the map is known or computable via some change of coordinates

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

A simple reparamentrization:

sage: R.<t> = manifolds.RealLine()
sage: I = R.open_interval(0, 2*pi)
sage: J = R.open_interval(2*pi, 6*pi)
sage: h = J.continuous_map(I, ((t-2*pi)/2,), name= h)
sage: h.display()
h: (2*pi, 6*pi) → (0, 2*pi)

t ↦ t = -pi + 1/2*t
sage: latex(h.display())
\begin{array}{llcl} h:& \left(2 \, \pi, 6 \, \pi\right) &
\longrightarrow & \left(0, 2 \, \pi\right) \\ & t & \longmapsto &
t = -\pi + \frac{1}{2} \, t \end{array}

Standard embedding of the sphere 𝑆2 in R3:

1.7. Continuous Maps 229

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, S^2 , structure= topological) # the 2-dimensional␣
→˓sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: N = Manifold(3, R^3 , latex_name=r \RR^3 , structure= topological) #␣
→˓R^3
sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3
sage: Phi = M.continuous_map(N,
....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^
→˓2+y^2)],
....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^
→˓2+v^2)]},
....: name= Phi , latex_name=r \Phi)
sage: Phi.display(c_xy, c_cart)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
sage: Phi.display(c_uv, c_cart)
Phi: S^2 → R^3
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

The LaTeX output of that embedding is:

sage: latex(Phi.display(c_xy, c_cart))
\begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3
\\ \text{on}\ U : & \left(x, y\right) & \longmapsto
& \left(X, Y, Z\right) = \left(\frac{2 \, x}{x^{2} + y^{2} + 1},

\frac{2 \, y}{x^{2} + y^{2} + 1},
\frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right)

\end{array}

If the argument chart2 is not specified, the display is performed on all the charts on the codomain in which
the map is known or computable via some change of coordinates (here only one chart: c_cart):

sage: Phi.display(c_xy)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))

Similarly, if the argument chart1 is omitted, the display is performed on all the charts on the domain of
Phi in which the map is known or computable via some change of coordinates:

sage: Phi.display(chart2=c_cart)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

If neither chart1 nor chart2 is specified, the display is performed on all the pair of charts in which Phi
is known or computable via some change of coordinates:

230 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: Phi.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

If a chart covers entirely the map’s domain, the mention “on …” is omitted:

sage: Phi.restrict(U).display()
Phi: U → R^3

(x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2␣
→˓- 1)/(x^2 + y^2 + 1))

A shortcut of display() is disp():

sage: Phi.disp()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 +␣
→˓y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 +␣
→˓v^2 - 1)/(u^2 + v^2 + 1))

Display when SymPy is the symbolic engine:

sage: M.set_calculus_method(sympy)
sage: N.set_calculus_method(sympy)
sage: Phi.display(c_xy, c_cart)
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x**2 + y**2 + 1),
2*y/(x**2 + y**2 + 1), (x**2 + y**2 - 1)/(x**2 + y**2 + 1))

sage: latex(Phi.display(c_xy, c_cart))
\begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3
\\ \text{on}\ U : & \left(x, y\right) & \longmapsto
& \left(X, Y, Z\right) = \left(\frac{2 x}{x^{2} + y^{2} + 1},

\frac{2 y}{x^{2} + y^{2} + 1},
\frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right)

\end{array}

expr(chart1=None, chart2=None)
Return the expression of self in terms of specified coordinates.

If the expression is not already known, it is computed from some known expression by means of
change-of-chart formulas.

INPUT:

• chart1 – (default: None) chart on the map’s domain; if None, the domain’s default chart is assumed

• chart2 – (default: None) chart on the map’s codomain; if None, the codomain’s default chart is
assumed

OUTPUT:

• symbolic expression representing the continuous map in the above two charts

EXAMPLES:

Continuous map from a 2-dimensional manifold to a 3-dimensional one:

1.7. Continuous Maps 231

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: N = Manifold(3, N , structure= topological)
sage: c_uv.<u,v> = M.chart()
sage: c_xyz.<x,y,z> = N.chart()
sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name= Phi ,
....: latex_name=r \Phi)
sage: Phi.display()
Phi: M → N

(u, v) ↦ (x, y, z) = (u*v, u/v, u + v)
sage: Phi.expr(c_uv, c_xyz)
(u*v, u/v, u + v)
sage: Phi.expr() # equivalent to above since uv and xyz are default␣
→˓charts
(u*v, u/v, u + v)
sage: type(Phi.expr()[0])
<class sage.symbolic.expression.Expression >

Expressions in other charts:

sage: c_UV.<U,V> = M.chart() # new chart on M
sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v])
sage: ch_uv_UV.inverse()(U,V)
(1/2*U + 1/2*V, -1/2*U + 1/2*V)
sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N
sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ,
....: [2*x-3*y+z, y+z-x, -x+2*y-z])
sage: ch_xyz_XYZ.inverse()(X,Y,Z)
(3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z)
sage: Phi.expr(c_UV, c_xyz)
(-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V)
sage: Phi.expr(c_uv, c_XYZ)
(((2*u + 1)*v^2 + u*v - 3*u)/v,
-((u - 1)*v^2 - u*v - u)/v,
-((u + 1)*v^2 + u*v - 2*u)/v)

sage: Phi.expr(c_UV, c_XYZ)
(-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V),
1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V),
1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))

A rotation in some Euclidean plane:

sage: M = Manifold(2, M , structure= topological) # the plane (minus a␣
→˓segment to have global regular spherical coordinates)
sage: c_spher.<r,ph> = M.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on the plane
sage: rot = M.continuous_map(M, (r, ph+pi/3), name= R) # pi/3 rotation␣
→˓around r=0
sage: rot.expr()
(r, 1/3*pi + ph)

Expression of the rotation in terms of Cartesian coordinates:

sage: c_cart.<x,y> = M.chart() # Declaration of Cartesian coordinates
sage: ch_spher_cart = c_spher.transition_map(c_cart,
....: [r*cos(ph), r*sin(ph)]) # relation to spherical␣
→˓coordinates
sage: ch_spher_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x))

(continues on next page)

232 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Check of the inverse coordinate transformation:
r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
x == x *passed*
y == y *passed*

NB: a failed report can reflect a mere lack of simplification.
sage: rot.expr(c_cart, c_cart)
(-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

expression(chart1=None, chart2=None)
Return the expression of self in terms of specified coordinates.

If the expression is not already known, it is computed from some known expression by means of
change-of-chart formulas.

INPUT:

• chart1 – (default: None) chart on the map’s domain; if None, the domain’s default chart is assumed

• chart2 – (default: None) chart on the map’s codomain; if None, the codomain’s default chart is
assumed

OUTPUT:

• symbolic expression representing the continuous map in the above two charts

EXAMPLES:

Continuous map from a 2-dimensional manifold to a 3-dimensional one:

sage: M = Manifold(2, M , structure= topological)
sage: N = Manifold(3, N , structure= topological)
sage: c_uv.<u,v> = M.chart()
sage: c_xyz.<x,y,z> = N.chart()
sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name= Phi ,
....: latex_name=r \Phi)
sage: Phi.display()
Phi: M → N

(u, v) ↦ (x, y, z) = (u*v, u/v, u + v)
sage: Phi.expr(c_uv, c_xyz)
(u*v, u/v, u + v)
sage: Phi.expr() # equivalent to above since uv and xyz are default␣
→˓charts
(u*v, u/v, u + v)
sage: type(Phi.expr()[0])
<class sage.symbolic.expression.Expression >

Expressions in other charts:

sage: c_UV.<U,V> = M.chart() # new chart on M
sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v])
sage: ch_uv_UV.inverse()(U,V)
(1/2*U + 1/2*V, -1/2*U + 1/2*V)
sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N
sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ,
....: [2*x-3*y+z, y+z-x, -x+2*y-z])
sage: ch_xyz_XYZ.inverse()(X,Y,Z)
(3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z)
sage: Phi.expr(c_UV, c_xyz)

(continues on next page)

1.7. Continuous Maps 233

Manifolds, Release 10.4.rc1

(continued from previous page)

(-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V)
sage: Phi.expr(c_uv, c_XYZ)
(((2*u + 1)*v^2 + u*v - 3*u)/v,
-((u - 1)*v^2 - u*v - u)/v,
-((u + 1)*v^2 + u*v - 2*u)/v)

sage: Phi.expr(c_UV, c_XYZ)
(-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V),
1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V),
1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))

A rotation in some Euclidean plane:

sage: M = Manifold(2, M , structure= topological) # the plane (minus a␣
→˓segment to have global regular spherical coordinates)
sage: c_spher.<r,ph> = M.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on the plane
sage: rot = M.continuous_map(M, (r, ph+pi/3), name= R) # pi/3 rotation␣
→˓around r=0
sage: rot.expr()
(r, 1/3*pi + ph)

Expression of the rotation in terms of Cartesian coordinates:

sage: c_cart.<x,y> = M.chart() # Declaration of Cartesian coordinates
sage: ch_spher_cart = c_spher.transition_map(c_cart,
....: [r*cos(ph), r*sin(ph)]) # relation to spherical␣
→˓coordinates
sage: ch_spher_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x))
Check of the inverse coordinate transformation:

r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
x == x *passed*
y == y *passed*

NB: a failed report can reflect a mere lack of simplification.
sage: rot.expr(c_cart, c_cart)
(-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

image(subset=None, inverse=None)
Return the image of self or the image of subset under self.

INPUT:

• inverse – (default: None) continuous map from map.codomain() to map.domain(), which
once restricted to the image of Φ is the inverse of Φ onto its image if the latter exists (NB: no check of
this is performed)

• subset – (default: the domain of map) a subset of the domain of self

EXAMPLES:

sage: M = Manifold(2, M , structure="topological")
sage: N = Manifold(1, N , ambient=M, structure="topological")
sage: CM.<x,y> = M.chart()
sage: CN.<u> = N.chart(coord_restrictions=lambda u: [u > -1, u < 1])
sage: Phi = N.continuous_map(M, {(CN,CM): [u, u^2]}, name= Phi)
sage: Phi.image()
Image of the Continuous map Phi

(continues on next page)

234 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

from the 1-dimensional topological submanifold N
immersed in the 2-dimensional topological manifold M

to the 2-dimensional topological manifold M

sage: S = N.subset(S)
sage: Phi_S = Phi.image(S); Phi_S
Image of the Subset S of the
1-dimensional topological submanifold N
immersed in the 2-dimensional topological manifold M

under the Continuous map Phi
from the 1-dimensional topological submanifold N
immersed in the 2-dimensional topological manifold M

to the 2-dimensional topological manifold M
sage: Phi_S.is_subset(M)
True

inverse()

Return the inverse of self if it is an isomorphism.

OUTPUT:

• the inverse isomorphism

EXAMPLES:

The inverse of a rotation in the Euclidean plane:

sage: M = Manifold(2, R^2 , latex_name=r \RR^2 , structure= topological)
sage: c_cart.<x,y> = M.chart()

A pi/3 rotation around the origin:

sage: rot = M.homeomorphism(M, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
....: name= R)
sage: rot.inverse()
Homeomorphism R^(-1) of the 2-dimensional topological manifold R^2
sage: rot.inverse().display()
R^(-1): R^2 → R^2

(x, y) ↦ (1/2*sqrt(3)*y + 1/2*x, -1/2*sqrt(3)*x + 1/2*y)

Checking that applying successively the homeomorphism and its inverse results in the identity:

sage: (a, b) = var(a b)
sage: p = M.point((a,b)) # a generic point on M
sage: q = rot(p)
sage: p1 = rot.inverse()(q)
sage: p1 == p
True

The result is cached:

sage: rot.inverse() is rot.inverse()
True

The notations ^(-1) or ~ can also be used for the inverse:

sage: rot^(-1) is rot.inverse()
True

(continues on next page)

1.7. Continuous Maps 235

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: ~rot is rot.inverse()
True

An example with multiple charts: the equatorial symmetry on the 2-sphere:

sage: M = Manifold(2, M , structure= topological) # the 2-dimensional␣
→˓sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1=x^2+y^2!=0,
....: restrictions2=u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: s = M.homeomorphism(M, {(c_xy, c_uv): [x, y], (c_uv, c_xy): [u, v]},
....: name= s)
sage: s.display()
s: M → M
on U: (x, y) ↦ (u, v) = (x, y)
on V: (u, v) ↦ (x, y) = (u, v)
sage: si = s.inverse(); si
Homeomorphism s^(-1) of the 2-dimensional topological manifold M
sage: si.display()
s^(-1): M → M
on U: (x, y) ↦ (u, v) = (x, y)
on V: (u, v) ↦ (x, y) = (u, v)

The equatorial symmetry is of course an involution:

sage: si == s
True

is_identity()

Check whether self is an identity map.

EXAMPLES:

Tests on continuous maps of a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: M.identity_map().is_identity() # obviously...
True
sage: Hom(M, M).one().is_identity() # a variant of the obvious
True
sage: a = M.continuous_map(M, coord_functions={(X,X): (x, y)})
sage: a.is_identity()
True
sage: a = M.continuous_map(M, coord_functions={(X,X): (x, y+1)})
sage: a.is_identity()
False

Of course, if the codomain of the map does not coincide with its domain, the outcome is False:

236 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: N = Manifold(2, N , structure= topological)
sage: Y.<u,v> = N.chart()
sage: a = M.continuous_map(N, {(X,Y): (x, y)})
sage: a.display()
M → N

(x, y) ↦ (u, v) = (x, y)
sage: a.is_identity()
False

preimage(codomain_subset, name=None, latex_name=None)
Return the preimage of codomain_subset under self.

An alias is pullback().

INPUT:

• codomain_subset – an instance of ManifoldSubset

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is
set to name

OUTPUT:

• either a TopologicalManifold or a ManifoldSubsetPullback

EXAMPLES:

sage: R = Manifold(1, R , structure= topological) # field R
sage: T.<t> = R.chart() # canonical chart on R
sage: R2 = Manifold(2, R^2 , structure= topological) # R^2
sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2
sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name= Phi); Phi
Continuous map Phi
from the 1-dimensional topological manifold R
to the 2-dimensional topological manifold R^2

sage: Q1 = R2.open_subset(Q1 , coord_def={c_xy: [x>0, y>0]}); Q1
Open subset Q1 of the 2-dimensional topological manifold R^2
sage: Phi_inv_Q1 = Phi.preimage(Q1); Phi_inv_Q1
Subset Phi_inv_Q1 of the 1-dimensional topological manifold R
sage: R.point([pi/4]) in Phi_inv_Q1
True
sage: R.point([0]) in Phi_inv_Q1
False
sage: R.point([3*pi/4]) in Phi_inv_Q1
False

The identity map is handled specially:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: M.identity_map().preimage(M)
2-dimensional topological manifold M
sage: M.identity_map().preimage(M) is M
True

Another trivial case:

1.7. Continuous Maps 237

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: D1 = M.open_subset(D1 , coord_def={X: x^2+y^2<1}) # the open unit disk
sage: D2 = M.open_subset(D2 , coord_def={X: x^2+y^2<4})
sage: f = Hom(D1,D2)({(X.restrict(D1), X.restrict(D2)): (2*x, 2*y)}, name= f)
sage: f.preimage(D2)
Open subset D1 of the 2-dimensional topological manifold M
sage: f.preimage(M)
Open subset D1 of the 2-dimensional topological manifold M

pullback(codomain_subset, name=None, latex_name=None)
Return the preimage of codomain_subset under self.

An alias is pullback().

INPUT:

• codomain_subset – an instance of ManifoldSubset

• name – string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none are provided, it is
set to name

OUTPUT:

• either a TopologicalManifold or a ManifoldSubsetPullback

EXAMPLES:

sage: R = Manifold(1, R , structure= topological) # field R
sage: T.<t> = R.chart() # canonical chart on R
sage: R2 = Manifold(2, R^2 , structure= topological) # R^2
sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2
sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name= Phi); Phi
Continuous map Phi
from the 1-dimensional topological manifold R
to the 2-dimensional topological manifold R^2

sage: Q1 = R2.open_subset(Q1 , coord_def={c_xy: [x>0, y>0]}); Q1
Open subset Q1 of the 2-dimensional topological manifold R^2
sage: Phi_inv_Q1 = Phi.preimage(Q1); Phi_inv_Q1
Subset Phi_inv_Q1 of the 1-dimensional topological manifold R
sage: R.point([pi/4]) in Phi_inv_Q1
True
sage: R.point([0]) in Phi_inv_Q1
False
sage: R.point([3*pi/4]) in Phi_inv_Q1
False

The identity map is handled specially:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: M.identity_map().preimage(M)
2-dimensional topological manifold M
sage: M.identity_map().preimage(M) is M
True

Another trivial case:

238 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart()
sage: D1 = M.open_subset(D1 , coord_def={X: x^2+y^2<1}) # the open unit disk
sage: D2 = M.open_subset(D2 , coord_def={X: x^2+y^2<4})
sage: f = Hom(D1,D2)({(X.restrict(D1), X.restrict(D2)): (2*x, 2*y)}, name= f)
sage: f.preimage(D2)
Open subset D1 of the 2-dimensional topological manifold M
sage: f.preimage(M)
Open subset D1 of the 2-dimensional topological manifold M

restrict(subdomain, subcodomain=None)
Restriction of self to some open subset of its domain of definition.

INPUT:

• subdomain – TopologicalManifold; an open subset of the domain of self

• subcodomain – (default: None) an open subset of the codomain of self; if None, the codomain
of self is assumed

OUTPUT:

• a ContinuousMap that is the restriction of self to subdomain

EXAMPLES:

Restriction to an annulus of a homeomorphism between the open unit disk and R2:

sage: M = Manifold(2, R^2 , structure= topological) # R^2
sage: c_xy.<x,y> = M.chart() # Cartesian coord. on R^2
sage: D = M.open_subset(D , coord_def={c_xy: x^2+y^2<1}) # the open unit disk
sage: Phi = D.continuous_map(M, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
....: name= Phi , latex_name=r \Phi)
sage: Phi.display()
Phi: D → R^2

(x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))
sage: c_xy_D = c_xy.restrict(D)
sage: U = D.open_subset(U , coord_def={c_xy_D: x^2+y^2>1/2}) # the annulus 1/
→˓2 < r < 1
sage: Phi.restrict(U)
Continuous map Phi
from the Open subset U of the 2-dimensional topological manifold R^2
to the 2-dimensional topological manifold R^2

sage: Phi.restrict(U).parent()
Set of Morphisms from Open subset U of the 2-dimensional topological
manifold R^2 to 2-dimensional topological manifold R^2 in Category
of manifolds over Real Field with 53 bits of precision

sage: Phi.domain()
Open subset D of the 2-dimensional topological manifold R^2
sage: Phi.restrict(U).domain()
Open subset U of the 2-dimensional topological manifold R^2
sage: Phi.restrict(U).display()
Phi: U → R^2

(x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))

The result is cached:

sage: Phi.restrict(U) is Phi.restrict(U)
True

1.7. Continuous Maps 239

Manifolds, Release 10.4.rc1

The restriction of the identity map:

sage: id = D.identity_map() ; id
Identity map Id_D of the Open subset D of the 2-dimensional
topological manifold R^2

sage: id.restrict(U)
Identity map Id_U of the Open subset U of the 2-dimensional
topological manifold R^2

sage: id.restrict(U) is U.identity_map()
True

The codomain can be restricted (i.e. made tighter):

sage: Phi = D.continuous_map(M, [x/sqrt(1+x^2+y^2), y/sqrt(1+x^2+y^2)])
sage: Phi
Continuous map from
the Open subset D of the 2-dimensional topological manifold R^2
to the 2-dimensional topological manifold R^2

sage: Phi.restrict(D, subcodomain=D)
Continuous map from the Open subset D of the 2-dimensional
topological manifold R^2 to itself

set_expr(chart1, chart2, coord_functions)
Set a new coordinate representation of self.

The expressions with respect to other charts are deleted, in order to avoid any inconsistency. To keep them,
use add_expr() instead.

INPUT:

• chart1 – chart for the coordinates on the domain of self

• chart2 – chart for the coordinates on the codomain of self

• coord_functions – the coordinate symbolic expression of the map in the above charts: list (or
tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if
the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple
with a single element

EXAMPLES:

Polar representation of a planar rotation initially defined in Cartesian coordinates:

sage: M = Manifold(2, R^2 , latex_name=r \RR^2 , structure= topological) #␣
→˓the Euclidean plane R^2
sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
sage: U = M.open_subset(U , coord_def={c_xy: (y!=0, x<0)}) # the complement␣
→˓of the segment y=0 and x>0
sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on U

Links between spherical coordinates and Cartesian ones:

sage: ch_cart_spher = c_cart.transition_map(c_spher,
....: [sqrt(x*x+y*y), atan2(y,x)])
sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
Check of the inverse coordinate transformation:

x == x *passed*
y == y *passed*

(continues on next page)

240 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**

NB: a failed report can reflect a mere lack of simplification.
sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
....: name= R)
sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

Let us use the method set_expr() to set the spherical-coordinate expression by hand:

sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
sage: rot.display(c_spher, c_spher)
R: U → U

(r, ph) ↦ (r, 1/3*pi + ph)

The expression in Cartesian coordinates has been erased:

sage: rot._coord_expression
{(Chart (U, (r, ph)),

Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph)
on the Chart (U, (r, ph))}

It is recovered (thanks to the known change of coordinates) by a call to display():

sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

sage: rot._coord_expression # random (dictionary output)
{(Chart (U, (x, y)),

Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x,
1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)),

(Chart (U, (r, ph)),
Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph)
on the Chart (U, (r, ph))}

set_expression(chart1, chart2, coord_functions)
Set a new coordinate representation of self.

The expressions with respect to other charts are deleted, in order to avoid any inconsistency. To keep them,
use add_expr() instead.

INPUT:

• chart1 – chart for the coordinates on the domain of self

• chart2 – chart for the coordinates on the codomain of self

• coord_functions – the coordinate symbolic expression of the map in the above charts: list (or
tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if
the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple
with a single element

EXAMPLES:

Polar representation of a planar rotation initially defined in Cartesian coordinates:

1.7. Continuous Maps 241

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, R^2 , latex_name=r \RR^2 , structure= topological) #␣
→˓the Euclidean plane R^2
sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
sage: U = M.open_subset(U , coord_def={c_xy: (y!=0, x<0)}) # the complement␣
→˓of the segment y=0 and x>0
sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on U

Links between spherical coordinates and Cartesian ones:

sage: ch_cart_spher = c_cart.transition_map(c_spher,
....: [sqrt(x*x+y*y), atan2(y,x)])
sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
Check of the inverse coordinate transformation:

x == x *passed*
y == y *passed*
r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**

NB: a failed report can reflect a mere lack of simplification.
sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
....: name= R)
sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

Let us use the method set_expr() to set the spherical-coordinate expression by hand:

sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
sage: rot.display(c_spher, c_spher)
R: U → U

(r, ph) ↦ (r, 1/3*pi + ph)

The expression in Cartesian coordinates has been erased:

sage: rot._coord_expression
{(Chart (U, (r, ph)),

Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph)
on the Chart (U, (r, ph))}

It is recovered (thanks to the known change of coordinates) by a call to display():

sage: rot.display(c_cart, c_cart)
R: U → U

(x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)

sage: rot._coord_expression # random (dictionary output)
{(Chart (U, (x, y)),

Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x,
1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)),

(Chart (U, (r, ph)),
Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph)
on the Chart (U, (r, ph))}

242 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

1.7.3 Images of Manifold Subsets under Continuous Maps as Subsets of the
Codomain

ImageManifoldSubset implements the image of a continuous map Φ from a manifold𝑀 to some manifold 𝑁 as
a subset Φ(𝑀) of 𝑁 , or more generally, the image Φ(𝑆) of a subset 𝑆 ⊆𝑀 as a subset of 𝑁 .

class sage.manifolds.continuous_map_image.ImageManifoldSubset(map, inverse=None,
name=None,
latex_name=None,
domain_subset=None)

Bases: ManifoldSubset

Subset of a topological manifold that is a continuous image of a manifold subset.

INPUT:

• map – continuous map Φ

• inverse – (default: None) continuous map from map.codomain() to map.domain(), which once
restricted to the image of Φ is the inverse of Φ onto its image if the latter exists (NB: no check of this is
performed)

• name – (default: computed from the names of the map and the subset)
string; name (symbol) given to the subset

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none is provided, it is set to
name

• domain_subset – (default: the domain of map) a subset of the domain of map

1.8 Submanifolds of topological manifolds

Given a topological manifold𝑀 over a topological field 𝐾, a topological submanifold of 𝑀 is defined by a topological
manifold 𝑁 over the same field𝐾 of dimension lower than the dimension of𝑀 and a topological embedding 𝜑 from 𝑁
to𝑀 (i.e. 𝜑 is a homeomorphism onto its image).

In the case where the map 𝜑 is only an embedding locally, it is called an topological immersion, and defines an immersed
submanifold.

The global embedding property cannot be checked in sage, so the immersed or embedded aspect of the manifold must
be declared by the user, by calling either set_embedding() or set_immersion() while declaring the map 𝜑.

The map 𝜑 : 𝑁 →𝑀 can also depend on one or multiple parameters. As long as 𝜑 remains injective in these parameters,
it represents a foliation. The dimension of the foliation is defined as the number of parameters.

AUTHORS:

• Florentin Jaffredo (2018): initial version

• Eric Gourgoulhon (2018-2019): add documentation

• Matthias Koeppe (2021): open subsets of submanifolds

REFERENCES:

• J. M. Lee: Introduction to Smooth Manifolds [Lee2013]

1.8. Submanifolds of topological manifolds 243

Manifolds, Release 10.4.rc1

class sage.manifolds.topological_submanifold.TopologicalSubmanifold(n, name, field,
structure,
ambient=None,
base_mani-
fold=None,
la-
tex_name=None,
start_index=0,
cate-
gory=None,
unique_tag=None)

Bases: TopologicalManifold

Submanifold of a topological manifold.

Given a topological manifold𝑀 over a topological field𝐾, a topological submanifold of 𝑀 is defined by a topolog-
ical manifold 𝑁 over the same field𝐾 of dimension lower than the dimension of𝑀 and a topological embedding
𝜑 from 𝑁 to𝑀 (i.e. 𝜑 is an homeomorphism onto its image).

In the case where 𝜑 is only a topological immersion (i.e. is only locally an embedding), one says that 𝑁 is an
immersed submanifold.

The map 𝜑 can also depend on one or multiple parameters. As long as 𝜑 remains injective in these parameters, it
represents a foliation. The dimension of the foliation is defined as the number of parameters.

INPUT:

• n – positive integer; dimension of the submanifold

• name – string; name (symbol) given to the submanifold

• field – field𝐾 on which the submanifold is defined; allowed values are

– real or an object of type RealField (e.g., RR) for a manifold over R

– complex or an object of type ComplexField (e.g., CC) for a manifold over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of manifolds

• structure – manifold structure (see TopologicalStructure or RealTopologicalStruc-
ture)

• ambient – (default: None) codomain𝑀 of the immersion 𝜑; must be a topological manifold. If None, it
is set to self

• base_manifold – (default: None) if not None, must be a topological manifold; the created object is
then an open subset of base_manifold

• latex_name – (default: None) string; LaTeX symbol to denote the submanifold; if none are provided, it
is set to name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
submanifold, e.g., coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(field) is assumed (see
the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other ar-
guments have been used previously (without unique_tag, the UniqueRepresentation behavior in-
herited from ManifoldSubset via TopologicalManifold would return the previously constructed
object corresponding to these arguments)

244 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces
../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

EXAMPLES:

Let 𝑁 be a 2-dimensional submanifold of a 3-dimensional manifold𝑀 :

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: N
2-dimensional topological submanifold N immersed in the 3-dimensional
topological manifold M
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()

Let us define a 1-dimensional foliation indexed by 𝑡:

sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u, v, t+u^2+v^2]})
sage: phi.display()
N → M

(u, v) ↦ (x, y, z) = (u, v, u^2 + v^2 + t)

The foliation inverse maps are needed for computing the adapted chart on the ambient manifold:

sage: phi_inv = M.continuous_map(N, {(CM, CN): [x, y]})
sage: phi_inv.display()
M → N

(x, y, z) ↦ (u, v) = (x, y)
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: phi_inv_t.display()
M → ℝ
(x, y, z) ↦ -x^2 - y^2 + z

𝜑 can then be declared as an embedding 𝑁 →𝑀 :

sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})

The foliation can also be used to find new charts on the ambient manifold that are adapted to the foliation, i.e.
in which the expression of the immersion is trivial. At the same time, the appropriate coordinate changes are
computed:

sage: N.adapted_chart()
[Chart (M, (u_M, v_M, t_M))]
sage: M.atlas()
[Chart (M, (x, y, z)), Chart (M, (u_M, v_M, t_M))]
sage: len(M.coord_changes())
2

The foliation parameters are always added as the last coordinates.

See also:

manifold

adapted_chart(postscript=None, latex_postscript=None)
Create charts and changes of charts in the ambient manifold adapted to the foliation.

A manifold 𝑀 of dimension 𝑚 can be foliated by submanifolds 𝑁 of dimension 𝑛. The corresponding
embedding needs𝑚− 𝑛 free parameters to describe the whole manifold.

1.8. Submanifolds of topological manifolds 245

Manifolds, Release 10.4.rc1

A chart adapted to the foliation is a set of coordinates (𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑚−𝑛) on 𝑀 such that
(𝑥1, . . . , 𝑥𝑛) are coordinates on 𝑁 and (𝑡1, . . . , 𝑡𝑚−𝑛) are the𝑚− 𝑛 free parameters of the foliation.

Provided that an embedding with free variables is already defined, this function constructs such charts and
coordinates changes whenever it is possible.

If there are restrictions of the coordinates on the starting chart, these restrictions are also propagated.

INPUT:

• postscript – (default: None) string defining the name of the coordinates of the adapted chart.
This string will be appended to the names of the coordinates (𝑥1, . . . , 𝑥𝑛) and of the parameters
(𝑡1, . . . , 𝑡𝑚−𝑛). If None, "_" + self.ambient()._name is used

• latex_postscript – (default: None) string defining the LaTeX name of the coordinates of the
adapted chart. This string will be appended to the LaTeX names of the coordinates (𝑥1, . . . , 𝑥𝑛) and of
the parameters (𝑡1, . . . , 𝑡𝑚−𝑛), If None, "_" + self.ambient()._latex_() is used

OUTPUT:

• list of adapted charts on𝑀 created from the charts of self

EXAMPLES:

sage: M = Manifold(3, M , structure="topological",
....: latex_name=r"\mathcal{M}")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: N
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse={t:phi_inv_t})
sage: N.adapted_chart()
[Chart (M, (u_M, v_M, t_M))]
sage: latex(_)
\left[\left(\mathcal{M},({{u}_{\mathcal{M}}}, {{v}_{\mathcal{M}}},
{{t}_{\mathcal{M}}})\right)\right]

The adapted chart has been added to the atlas of M:

sage: M.atlas()
[Chart (M, (x, y, z)), Chart (M, (u_M, v_M, t_M))]
sage: N.atlas()
[Chart (N, (u, v))]

The names of the adapted coordinates can be customized:

sage: N.adapted_chart(postscript= 1 , latex_postscript= _1)
[Chart (M, (u1, v1, t1))]
sage: latex(_)
\left[\left(\mathcal{M},({{u}_1}, {{v}_1}, {{t}_1})\right)\right]

ambient()

Return the manifold in which self is immersed or embedded.

246 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: N.ambient()
3-dimensional topological manifold M

as_subset()

Return self as a subset of the ambient manifold.

self must be an embedded submanifold.

EXAMPLES:

sage: M = Manifold(2, M , structure="topological")
sage: N = Manifold(1, N , ambient=M, structure="topological")
sage: CM.<x,y> = M.chart()
sage: CN.<u> = N.chart(coord_restrictions=lambda u: [u > -1, u < 1])
sage: phi = N.continuous_map(M, {(CN,CM): [u, u^2]})
sage: N.set_embedding(phi)
sage: N
1-dimensional topological submanifold N

embedded in the 2-dimensional topological manifold M
sage: N.as_subset()
Image of the Continuous map

from the 1-dimensional topological submanifold N
embedded in the 2-dimensional topological manifold M

to the 2-dimensional topological manifold M

declare_embedding()

Declare that the immersion provided by set_immersion() is in fact an embedding.

A topological embedding is a continuous map that is a homeomorphism onto its image. A differentiable
embedding is a topological embedding that is also a differentiable immersion.

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: N
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: N.set_immersion(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})
sage: N._immersed
True
sage: N._embedded
False
sage: N.declare_embedding()
sage: N._immersed
True
sage: N._embedded
True

1.8. Submanifolds of topological manifolds 247

Manifolds, Release 10.4.rc1

embedding()

Return the embedding of self into the ambient manifold.

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})
sage: N.embedding()
Continuous map from the 2-dimensional topological submanifold N
embedded in the 3-dimensional topological manifold M to the
3-dimensional topological manifold M

immersion()

Return the immersion of self into the ambient manifold.

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: N.set_immersion(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})
sage: N.immersion()
Continuous map from the 2-dimensional topological submanifold N
immersed in the 3-dimensional topological manifold M to the
3-dimensional topological manifold M

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of the manifold.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.
It is a topological manifold by itself.

As self is a submanifold of its ambient manifold, the new open subset is also considered a submanifold of
that. Hence the returned object is an instance of TopologicalSubmanifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none are provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_defmust a be dic-
tionary with keys charts on the manifold and values the symbolic expressions formed by the coordinates
to define the subset

• supersets – (default: only self) list of sets that the new open subset is a subset of

248 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• the open subset, as an instance of TopologicalSubmanifold

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological"); N
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: S = N.subset(S); S
Subset S of the
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: O = N.subset(O , is_open=True); O # indirect doctest
Open subset O of the
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: phi = N.continuous_map(M)
sage: N.set_embedding(phi)
sage: N
2-dimensional topological submanifold N embedded in the
3-dimensional topological manifold M

sage: S = N.subset(S); S
Subset S of the
2-dimensional topological submanifold N embedded in the
3-dimensional topological manifold M

sage: O = N.subset(O , is_open=True); O # indirect doctest
Open subset O of the
2-dimensional topological submanifold N embedded in the
3-dimensional topological manifold M

plot(param, u, v, chart1=None, chart2=None, **kwargs)
Plot an embedding.

Plot the embedding defined by the foliation and a set of values for the free parameters. This function can only
plot 2-dimensional surfaces embedded in 3-dimensional manifolds. It ultimately calls ParametricSur-
face.

INPUT:

• param – dictionary of values indexed by the free variables appearing in the foliation.

• u – iterable of the values taken by the first coordinate of the surface to plot

• v – iterable of the values taken by the second coordinate of the surface to plot

• chart1 – (default: None) chart in which u and v are considered. By default, the default chart of the
submanifold is used

• chart2 – (default: None) chart in the codomain of the embedding. By default, the default chart of the
codomain is used

• **kwargs – other arguments as used in ParametricSurface

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient = M, structure="topological")
sage: CM.<x,y,z> = M.chart()

(continues on next page)

1.8. Submanifolds of topological manifolds 249

../../../../../../html/en/reference/plot3d/sage/plot/plot3d/parametric_surface.html#sage.plot.plot3d.parametric_surface.ParametricSurface
../../../../../../html/en/reference/plot3d/sage/plot/plot3d/parametric_surface.html#sage.plot.plot3d.parametric_surface.ParametricSurface
../../../../../../html/en/reference/plot3d/sage/plot/plot3d/parametric_surface.html#sage.plot.plot3d.parametric_surface.ParametricSurface

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse = {t:phi_inv_t})
sage: N.adapted_chart()
[Chart (M, (u_M, v_M, t_M))]
sage: P0 = N.plot({t:0}, srange(-1, 1, 0.1), srange(-1, 1, 0.1),
....: CN, CM, opacity=0.3, mesh=True)
sage: P1 = N.plot({t:1}, srange(-1, 1, 0.1), srange(-1, 1, 0.1),
....: CN, CM, opacity=0.3, mesh=True)
sage: P2 = N.plot({t:2}, srange(-1, 1, 0.1), srange(-1, 1, 0.1),
....: CN, CM, opacity=0.3, mesh=True)
sage: P3 = N.plot({t:3}, srange(-1, 1, 0.1), srange(-1, 1, 0.1),
....: CN, CM, opacity=0.3, mesh=True)
sage: P0 + P1 + P2 + P3
Graphics3d Object

See also:

ParametricSurface

set_embedding(phi, inverse=None, var=None, t_inverse=None)

250 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/plot3d/sage/plot/plot3d/parametric_surface.html#sage.plot.plot3d.parametric_surface.ParametricSurface

Manifolds, Release 10.4.rc1

Register the embedding of an embedded submanifold.

A topological embedding is a continuous map that is a homeomorphism onto its image. A differentiable
embedding is a topological embedding that is also a differentiable immersion.

INPUT:

• phi – continuous map 𝜑 from self to self.ambient()

• inverse – (default: None) continuousmap fromself.ambient() toself, which once restricted
to the image of 𝜑 is the inverse of 𝜑 onto its image (NB: no check of this is performed)

• var – (default: None) list of parameters involved in the definition of 𝜑 (case of foliation); if 𝜑 depends
on a single parameter t, one can write var=t as a shortcut for var=[t]

• t_inverse – (default: None) dictionary of scalar fields on self.ambient() providing the values
of the parameters involved in the definition of 𝜑 (case of foliation), the keys being the parameters

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: N
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi.display()
N → M

(u, v) ↦ (x, y, z) = (u, v, u^2 + v^2 + t)
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv.display()
M → N

(x, y, z) ↦ (u, v) = (x, y)
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: phi_inv_t.display()
M → ℝ
(x, y, z) ↦ -x^2 - y^2 + z
sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})

Now N appears as an embedded submanifold:

sage: N
2-dimensional topological submanifold N embedded in the
3-dimensional topological manifold M

set_immersion(phi, inverse=None, var=None, t_inverse=None)
Register the immersion of the immersed submanifold.

A topological immersion is a continuous map that is locally a topological embedding (i.e. a homeomorphism
onto its image). A differentiable immersion is a differentiable map whose differential is injective at each point.

If an inverse of the immersion onto its image exists, it can be registered at the same time. If the immersion
depends on parameters, they must also be declared here.

INPUT:

• phi – continuous map 𝜑 from self to self.ambient()

1.8. Submanifolds of topological manifolds 251

Manifolds, Release 10.4.rc1

• inverse – (default: None) continuousmap fromself.ambient() toself, which once restricted
to the image of 𝜑 is the inverse of 𝜑 onto its image if the latter exists (NB: no check of this is performed)

• var – (default: None) list of parameters involved in the definition of 𝜑 (case of foliation); if 𝜑 depends
on a single parameter t, one can write var=t as a shortcut for var=[t]

• t_inverse – (default: None) dictionary of scalar fields on self.ambient() providing the values
of the parameters involved in the definition of 𝜑 (case of foliation), the keys being the parameters

EXAMPLES:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological")
sage: N
2-dimensional topological submanifold N immersed in the
3-dimensional topological manifold M

sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi.display()
N → M

(u, v) ↦ (x, y, z) = (u, v, u^2 + v^2 + t)
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv.display()
M → N

(x, y, z) ↦ (u, v) = (x, y)
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: phi_inv_t.display()
M → ℝ
(x, y, z) ↦ -x^2 - y^2 + z
sage: N.set_immersion(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})

1.9 Topological Vector Bundles

1.9.1 Topological Vector Bundle

Let𝐾 be a topological field. A vector bundle of rank 𝑛 over the field𝐾 and over a topological manifold 𝐵 (base space)
is a topological manifold 𝐸 (total space) together with a continuous and surjective map 𝜋 : 𝐸 → 𝐵 such that for every
point 𝑝 ∈ 𝐵, we have:

• the set 𝐸𝑝 = 𝜋−1(𝑝) has the vector space structure of𝐾𝑛,

• there is a neighborhood 𝑈 ⊂ 𝐵 of 𝑝 and a homeomorphism (trivialization) 𝜙 : 𝜋−1(𝑝) → 𝑈 ×𝐾𝑛 such that 𝜙 is
compatible with the fibers, namely 𝜋 ∘ 𝜙−1 = pr1, and 𝑣 ↦→ 𝜙−1(𝑞, 𝑣) is a linear isomorphism between 𝐾𝑛 and
𝐸𝑞 for any 𝑞 ∈ 𝑈 .

AUTHORS:

• Michael Jung (2019) : initial version

REFERENCES:

• [Lee2013]

• [Mil1974]

252 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

class sage.manifolds.vector_bundle.TopologicalVectorBundle(rank, name, base_space,
field='real',
latex_name=None,
category=None,
unique_tag=None)

Bases: CategoryObject, UniqueRepresentation

An instance of this class is a topological vector bundle 𝐸 → 𝐵 over a topological field𝐾.

INPUT:

• rank – positive integer; rank of the vector bundle

• name – string representation given to the total space

• base_space – the base space (topological manifold) over which the vector bundle is defined

• field – field𝐾 which gives the fibers the structure of a vector space over𝐾; allowed values are

– real or an object of type RealField (e.g., RR) for a vector bundle over R

– complex or an object of type ComplexField (e.g., CC) for a vector bundle over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of topological fields

• latex_name – (default: None) LaTeX representation given to the total space

• category – (default: None) to specify the category; if None, VectorBundles(base_space,
c_field) is assumed (see the category VectorBundles)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other
arguments have been used previously (without unique_tag, the UniqueRepresentation behavior
would return the previously constructed object corresponding to these arguments)

EXAMPLES:

A real line bundle over some 4-dimensional topological manifold:

sage: M = Manifold(4, M , structure= top)
sage: E = M.vector_bundle(1, E); E
Topological real vector bundle E -> M of rank 1 over the base space
4-dimensional topological manifold M
sage: E.base_space()
4-dimensional topological manifold M
sage: E.base_ring()
Real Field with 53 bits of precision
sage: E.rank()
1

For a more sophisticated example, let us define a non-trivial 2-manifold to work with:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(2, E); E

(continues on next page)

1.9. Topological Vector Bundles 253

../../../../../../html/en/reference/structure/sage/structure/category_object.html#sage.structure.category_object.CategoryObject
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces
../../../../../../html/en/reference/categories/sage/categories/vector_bundles.html#sage.categories.vector_bundles.VectorBundles
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

(continued from previous page)

Topological real vector bundle E -> M of rank 2 over the base space
2-dimensional topological manifold M

Now, there a two ways to go. Most effortlessly, we define trivializations similar to charts (see Trivialization):

sage: phi_U = E.trivialization(phi_U , domain=U); phi_U
Trivialization (phi_U, E|_U)
sage: phi_V = E.trivialization(phi_V , domain=V); phi_V
Trivialization (phi_V, E|_V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]]) # transition map␣
→˓between trivializations
sage: fU = phi_U.frame(); fU
Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2)))
sage: fV = phi_V.frame(); fV
Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2)))
sage: E.changes_of_frame() # random
{(Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))),
Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2)))): Automorphism
phi_U^(-1)*phi_V^(-1) of the Free module C^0(W;E) of sections on
the Open subset W of the 2-dimensional topological manifold M with
values in the real vector bundle E of rank 2,
(Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))),
Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2)))): Automorphism
phi_U^(-1)*phi_V of the Free module C^0(W;E) of sections on the
Open subset W of the 2-dimensional topological manifold M with
values in the real vector bundle E of rank 2}

Then, the atlas of 𝐸 consists of all known trivializations defined on E:

sage: E.atlas() # a shallow copy of the atlas
[Trivialization (phi_U, E|_U), Trivialization (phi_V, E|_V)]

Or we just define frames, an automorphism on the free section module over the intersection domain𝑊 and declare
the change of frame manually (for more details consult LocalFrame):

sage: eU = E.local_frame(eU , domain=U); eU
Local frame (E|_U, (eU_0,eU_1))
sage: eUW = eU.restrict(W) # to trivialize E|_W
sage: eV = E.local_frame(eV , domain=V); eV
Local frame (E|_V, (eV_0,eV_1))
sage: eVW = eV.restrict(W)
sage: a = E.section_module(domain=W).automorphism(); a
Automorphism of the Free module C^0(W;E) of sections on the Open
subset W of the 2-dimensional topological manifold M with values in
the real vector bundle E of rank 2
sage: a[eUW,:] = [[0,x],[x,0]]
sage: E.set_change_of_frame(eUW, eVW, a)
sage: E.change_of_frame(eUW, eVW)
Automorphism of the Free module C^0(W;E) of sections on the Open
subset W of the 2-dimensional topological manifold M with values in
the real vector bundle E of rank 2

Now, the list of all known frames defined on 𝐸 can be displayed via frames():

sage: E.frames() # a shallow copy of all known frames on E
[Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))),

(continues on next page)

254 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2))),
Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))),
Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))),
Local frame (E|_U, (eU_0,eU_1)),
Local frame (E|_W, (eU_0,eU_1)),
Local frame (E|_V, (eV_0,eV_1)),
Local frame (E|_W, (eV_0,eV_1))]

By definition𝐸 is a manifold, in this case of dimension 4 (notice that the induced charts are not implemented, yet):

sage: E.total_space()
4-dimensional topological manifold E

The method section() returns a section while the method section_module() returns the section module
on the corresponding domain:

sage: s = E.section(name= s); s
Section s on the 2-dimensional topological manifold M with values in
the real vector bundle E of rank 2
sage: s in E.section_module()
True

atlas()

Return the list of trivializations that have been defined for self.

EXAMPLES:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: phi_M = E.trivialization(phi_M)
sage: E.atlas()
[Trivialization (phi_U, E|_U),
Trivialization (phi_V, E|_V),
Trivialization (phi_M, E|_M)]

base_field()

Return the field on which the fibers are defined.

OUTPUT:

• a topological field

EXAMPLES:

sage: M = Manifold(3, M , structure= topological)
sage: E = M.vector_bundle(2, E , field=CC)
sage: E.base_field()
Complex Field with 53 bits of precision

base_field_type()

Return the type of topological field on which the fibers are defined.

OUTPUT:

1.9. Topological Vector Bundles 255

Manifolds, Release 10.4.rc1

• a string describing the field, with three possible values:

– real for the real field R

– complex for the complex field C

– neither_real_nor_complex for a field different from R and C

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(2, E , field=CC)
sage: E.base_field_type()
complex

base_space()

Return the base space of the vector bundle.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: E.base_space()
2-dimensional topological manifold M

change_of_frame(frame1, frame2)
Return a change of local frames defined on self.

INPUT:

• frame1 – local frame 1

• frame2 – local frame 2

OUTPUT:

• a FreeModuleAutomorphism representing, at each point, the vector space automorphism 𝑃 that
relates frame 1, (𝑒𝑖) say, to frame 2, (𝑓𝑖) say, according to 𝑓𝑖 = 𝑃 (𝑒𝑖)

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: a = E.section_module().automorphism() # Now, the section module is free
sage: a[:] = [[sqrt(3)/2, -1/2], [1/2, sqrt(3)/2]]
sage: f = e.new_frame(a, f)
sage: E.change_of_frame(e, f)
Automorphism of the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 2

sage: a == E.change_of_frame(e, f)
True
sage: a.inverse() == E.change_of_frame(f, e)
True

changes_of_frame()

Return all the changes of local frames defined on self.

OUTPUT:

256 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

• dictionary of vector bundle automorphisms representing the changes of frames, the keys being the pair
of frames

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: c_xyz.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_0,e_1))
sage: auto_group = E.section_module().general_linear_group()
sage: e_to_f = auto_group([[0,1],[1,0]]); e_to_f
Automorphism of the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 2

sage: f_in_e = auto_group([[0,1],[1,0]])
sage: f = e.new_frame(f_in_e, f); f
Local frame (E|_M, (f_0,f_1))
sage: E.changes_of_frame() # random
{(Local frame (E|_M, (f_0,f_1)),
Local frame (E|_M, (e_0,e_1))): Automorphism of the Free module
C^0(M;E) of sections on the 3-dimensional topological manifold M
with values in the real vector bundle E of rank 2,
(Local frame (E|_M, (e_0,e_1)),
Local frame (E|_M, (f_0,f_1))): Automorphism of the Free module
C^0(M;E) of sections on the 3-dimensional topological manifold M
with values in the real vector bundle E of rank 2}

coframes()

Return the list of coframes defined on self.

OUTPUT:

• list of coframes defined on self

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: e = E.local_frame(e , domain=V)
sage: E.coframes()
[Trivialization coframe (E|_U, ((phi_U^*e^1),(phi_U^*e^2))),
Local coframe (E|_V, (e^0,e^1))]

default_frame()

Return the default frame of on self.

OUTPUT:

• a local frame as an instance of LocalFrame

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: E.default_frame()
Local frame (E|_M, (e_0,e_1))

1.9. Topological Vector Bundles 257

Manifolds, Release 10.4.rc1

fiber(point)
Return the vector bundle fiber over a point.

INPUT:

• point – ManifoldPoint; point 𝑝 of the base space of self

OUTPUT:

• instance of VectorBundleFiber representing the fiber over 𝑝

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: X.<x,y,z> = M.chart()
sage: p = M((0,2,1), name= p); p
Point p on the 3-dimensional topological manifold M
sage: E = M.vector_bundle(2, E); E
Topological real vector bundle E -> M of rank 2 over the base space
3-dimensional topological manifold M

sage: E.fiber(p)
Fiber of E at Point p on the 3-dimensional topological manifold M

frames()

Return the list of local frames defined on self.

OUTPUT:

• list of local frames defined on self

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: e = E.local_frame(e , domain=V)
sage: E.frames()
[Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2))),
Local frame (E|_V, (e_0,e_1))]

has_orientation()

Check whether self admits an obvious or by user set orientation.

See also:

Consult orientation() for details about orientations.

Note: Notice that if has_orientation() returns False this does not necessarily mean that the vector
bundle admits no orientation. It just means that the user has to set an orientation manually in that case, see
set_orientation().

EXAMPLES:

The trivial case:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)

(continues on next page)

258 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E.has_orientation() # trivial case
True

Non-trivial case:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U)
sage: f = E.local_frame(f , domain=V)
sage: E.has_orientation()
False
sage: E.set_orientation([e, f])
sage: E.has_orientation()
True

irange(start=None)
Single index generator.

INPUT:

• start – (default: None) initial value 𝑖0 of the index; if none are provided, the value returned by
sage.manifolds.manifold.Manifold.start_index() is assumed

OUTPUT:

• an iterable index, starting from 𝑖0 and ending at 𝑖0 + 𝑛− 1, where 𝑛 is the vector bundle’s dimension

EXAMPLES:

Index range on a 4-dimensional vector bundle over a 5-dimensional manifold:

sage: M = Manifold(5, M , structure= topological)
sage: E = M.vector_bundle(4, E)
sage: list(E.irange())
[0, 1, 2, 3]
sage: list(E.irange(2))
[2, 3]

Index range on a 4-dimensional vector bundle over a 5-dimensional manifold with starting index=1:

sage: M = Manifold(5, M , structure= topological , start_index=1)
sage: E = M.vector_bundle(4, E)
sage: list(E.irange())
[1, 2, 3, 4]
sage: list(E.irange(2))
[2, 3, 4]

In general, one has always:

sage: next(E.irange()) == M.start_index()
True

is_manifestly_trivial()

Return True if self is manifestly a trivial bundle, i.e. there exists a frame or a trivialization defined on the
whole base space.

EXAMPLES:

1.9. Topological Vector Bundles 259

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(1, E)
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: phi_U = E.trivialization(phi_U , domain=U); phi_U
Trivialization (phi_U, E|_U)
sage: phi_V = E.trivialization(phi_V , domain=V); phi_V
Trivialization (phi_V, E|_V)
sage: E.is_manifestly_trivial()
False
sage: E.trivialization(phi_M , M)
Trivialization (phi_M, E|_M)
sage: E.is_manifestly_trivial()
True

local_frame(*args, **kwargs)
Define a local frame on self.

A local frame is a section on a subset 𝑈 ⊂𝑀 in 𝐸 that provides, at each point 𝑝 of the base space, a vector
basis of the fiber 𝐸𝑝 at 𝑝.

See also:

LocalFrame for complete documentation.

INPUT:

• symbol – either a string, to be used as a common base for the symbols of the sections constituting the
local frame, or a list/tuple of strings, representing the individual symbols of the sections

• sections – tuple or list of 𝑛 linearly independent sections on self (𝑛 being the rank of self)
defining the local frame; can be omitted if the local frame is created from scratch

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the sections constituting the local frame, or a list/tuple of strings, representing the individual LaTeX
symbols of the sections; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the sections of the frame; if None, the indices will be generated as integers within the
range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the sections; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbolmust
be a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

• domain – (default: None) domain on which the local frame is defined; if None, the whole base space
is assumed

OUTPUT:

• a LocalFrame representing the defined local frame

EXAMPLES:

Defining a local frame from two linearly independent sections on a real rank-2 vector bundle:

260 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: X.<x,y,z> = U.chart()
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi , domain=U)
sage: s0 = E.section(name= s_0 , domain=U)
sage: s0[:] = 1+z^2, -2
sage: s1 = E.section(name= s_1 , domain=U)
sage: s1[:] = 1, 1+x^2
sage: e = E.local_frame(e , (s0, s1), domain=U); e
Local frame (E|_U, (e_0,e_1))
sage: (e[0], e[1]) == (s0, s1)
True

If the sections are not linearly independent, an error is raised:

sage: e = E.local_frame(z , (s0, -s0), domain=U)
Traceback (most recent call last):
...
ValueError: the provided sections are not linearly independent

It is also possible to create a local frame from scratch, without connecting it to previously defined local frames
or sections (this can still be performed later via the method set_change_of_frame()):

sage: f = E.local_frame(f , domain=U); f
Local frame (E|_U, (f_0,f_1))

For a global frame, the argument domain is omitted:

sage: g = E.local_frame(g); g
Local frame (E|_M, (g_0,g_1))

See also:

For more options, in particular for the choice of symbols and indices, see LocalFrame.

orientation()

Get the orientation of self if available.

An orientation on a vector bundle is a choice of local frames whose

1. union of domains cover the base space,

2. changes of frames are pairwise orientation preserving, i.e. have positive determinant.

A vector bundle endowed with an orientation is called orientable.

The trivial case corresponds to self being trivial, i.e. self can be covered by one frame. In that case, if no
preferred orientation has been set before, one of those frames (usually the default frame) is set automatically
to the preferred orientation and returned here.

EXAMPLES:

The trivial case is covered automatically:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_0,e_1))

(continues on next page)

1.9. Topological Vector Bundles 261

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E.orientation() # trivial case
[Local frame (E|_M, (e_0,e_1))]

The orientation can also be set by the user:

sage: f = E.local_frame(f); f
Local frame (E|_M, (f_0,f_1))
sage: E.set_orientation(f)
sage: E.orientation()
[Local frame (E|_M, (f_0,f_1))]

In case of the non-trivial case, the orientation must be set manually, otherwise no orientation is returned:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U); e
Local frame (E|_U, (e_0,e_1))
sage: f = E.local_frame(f , domain=V); f
Local frame (E|_V, (f_0,f_1))
sage: E.orientation()
[]
sage: E.set_orientation([e, f])
sage: E.orientation()
[Local frame (E|_U, (e_0,e_1)),
Local frame (E|_V, (f_0,f_1))]

rank()

Return the rank of the vector bundle.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(3, E)
sage: E.rank()
3

section(*comp, **kwargs)
Return a continuous section of self.

INPUT:

• domain – (default: None) domain on which the section shall be defined; if None, the base space is
assumed

• name – (default: None) name of the local section

• latex_name – (default``None``) latex representation of the local section

OUTPUT:

• an instance of Section representing a continuous section of𝑀 with values on 𝐸

EXAMPLES:

A section on a non-trivial rank 2 vector bundle over a non-trivial 2-manifold:

262 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(2, E) # define the vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]]) # transition map␣
→˓between trivializations
sage: fU = phi_U.frame(); fV = phi_V.frame() # define induced frames
sage: s = E.section(name= s); s
Section s on the 2-dimensional topological manifold M with values in the
real vector bundle E of rank 2

section_module(domain=None, force_free=False)
Return the section module of continuous sections on self.

See SectionModule for a complete documentation.

INPUT:

• domain – (default: None) the domain on which the module is defined; if None the base space is
assumed

• force_free – (default: False) if set to True, force the construction of a free module (this implies
that 𝐸 is trivial)

OUTPUT:

• a SectionModule (or if𝐸 is trivial, a SectionFreeModule) representing the module of contin-
uous sections on 𝑈 taking values in 𝐸

EXAMPLES:

Module of sections on the Möbius bundle over the real-projective space𝑀 = R𝑃 1:

sage: M = Manifold(1, RP^1 , structure= top , start_index=1)
sage: U = M.open_subset(U) # the complement of one point
sage: c_u.<u> = U.chart() # [1:u] in homogeneous coord.
sage: V = M.open_subset(V) # the complement of the point u=0
sage: M.declare_union(U,V) # [v:1] in homogeneous coord.
sage: c_v.<v> = V.chart()
sage: u_to_v = c_u.transition_map(c_v, (1/u),
....: intersection_name= W ,
....: restrictions1 = u!=0,
....: restrictions2 = v!=0)
sage: v_to_u = u_to_v.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(1, E)
sage: phi_U = E.trivialization(phi_U , latex_name=r \varphi_U ,
....: domain=U)
sage: phi_V = E.trivialization(phi_V , latex_name=r \varphi_V ,
....: domain=V)
sage: transf = phi_U.transition_map(phi_V, [[u]])
sage: C0 = E.section_module(); C0

(continues on next page)

1.9. Topological Vector Bundles 263

Manifolds, Release 10.4.rc1

(continued from previous page)

Module C^0(RP^1;E) of sections on the 1-dimensional topological
manifold RP^1 with values in the real vector bundle E of rank 1

𝐶0(R𝑃 1;𝐸) is a module over the algebra 𝐶0(R𝑃 1):

sage: C0.category()
Category of modules over Algebra of scalar fields on the
1-dimensional topological manifold RP^1

sage: C0.base_ring() is M.scalar_field_algebra()
True

However, 𝐶0(R𝑃 1;𝐸) is not a free module:

sage: isinstance(C0, FiniteRankFreeModule)
False

since the Möbius bundle is not trivial:

sage: E.is_manifestly_trivial()
False

The section module over𝑈 , on the other hand, is a free module since𝐸|𝑈 admits a trivialization and therefore
has a local frame:

sage: C0_U = E.section_module(domain=U)
sage: isinstance(C0_U, FiniteRankFreeModule)
True

The elements of 𝐶0(𝑈) are sections on 𝑈 :

sage: C0_U.an_element()
Section on the Open subset U of the 1-dimensional topological
manifold RP^1 with values in the real vector bundle E of rank 1

sage: C0_U.an_element().display(phi_U.frame())
2 (phi_U^*e_1)

set_change_of_frame(frame1, frame2, change_of_frame, compute_inverse=True)
Relate two vector frames by an automorphism.

This updates the internal dictionary self._frame_changes.

INPUT:

• frame1 – frame 1, denoted (𝑒𝑖) below

• frame2 – frame 2, denoted (𝑓𝑖) below

• change_of_frame – instance of class FreeModuleAutomorphism describing the automor-
phism 𝑃 that relates the basis (𝑒𝑖) to the basis (𝑓𝑖) according to 𝑓𝑖 = 𝑃 (𝑒𝑖)

• compute_inverse (default: True) – if set to True, the inverse automorphism is computed and the
change from basis (𝑓𝑖) to (𝑒𝑖) is set to it in the internal dictionary self._frame_changes

EXAMPLES:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)

(continues on next page)

264 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: e = E.local_frame(e)
sage: f = E.local_frame(f)
sage: a = E.section_module().automorphism()
sage: a[e,:] = [[1,2],[0,3]]
sage: E.set_change_of_frame(e, f, a)
sage: f[0].display(e)
f_0 = e_0
sage: f[1].display(e)
f_1 = 2 e_0 + 3 e_1
sage: e[0].display(f)
e_0 = f_0
sage: e[1].display(f)
e_1 = -2/3 f_0 + 1/3 f_1
sage: E.change_of_frame(e,f)[e,:]
[1 2]
[0 3]

set_default_frame(frame)
Set the default frame of self.

INPUT:

• frame – a local frame defined on self as an instance of LocalFrame

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: E.default_frame()
Local frame (E|_M, (e_0,e_1))
sage: f = E.local_frame(f)
sage: E.set_default_frame(f)
sage: E.default_frame()
Local frame (E|_M, (f_0,f_1))

set_orientation(orientation)
Set the preferred orientation of self.

INPUT:

• orientation – a local frame or a list of local frames whose domains cover the base space

Warning: It is the user’s responsibility that the orientation set here is indeed an orientation. There is no
check going on in the background. See orientation() for the definition of an orientation.

EXAMPLES:

Set an orientation on a vector bundle:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_0,e_1))
sage: f = E.local_frame(f); f
Local frame (E|_M, (f_0,f_1))

(continues on next page)

1.9. Topological Vector Bundles 265

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E.set_orientation(f)
sage: E.orientation()
[Local frame (E|_M, (f_0,f_1))]

Set an orientation in the non-trivial case:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U); e
Local frame (E|_U, (e_0,e_1))
sage: f = E.local_frame(f , domain=V); f
Local frame (E|_V, (f_0,f_1))
sage: E.orientation()
[]
sage: E.set_orientation([e, f])
sage: E.orientation()
[Local frame (E|_U, (e_0,e_1)),
Local frame (E|_V, (f_0,f_1))]

total_space()

Return the total space of self.

Note: At this stage, the total space does not come with induced charts.

OUTPUT:

• the total space of self as an instance of TopologicalManifold

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: E.total_space()
6-dimensional topological manifold E

transition(triv1, triv2)
Return the transition map between two trivializations defined over the manifold.

The transition map must have been defined previously, for instance by the method transition_map().

INPUT:

• triv1 – trivialization 1

• triv2 – trivialization 2

OUTPUT:

• instance of TransitionMap representing the transition map from trivialization 1 to trivialization 2

EXAMPLES:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)

(continues on next page)

266 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: X_UV = X.restrict(U.intersection(V))
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, 1)
sage: E.transition(phi_V, phi_U)
Transition map from Trivialization (phi_V, E|_V) to Trivialization
(phi_U, E|_U)

transitions()

Return the transition maps defined over subsets of the base space.

OUTPUT:

• dictionary of transition maps, with pairs of trivializations as keys

EXAMPLES:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)
sage: X_UV = X.restrict(U.intersection(V))
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_U , domain=V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, 1)
sage: E.transitions() # random
{(Trivialization (phi_U, E|_U),
Trivialization (phi_U, E|_V)): Transition map from Trivialization
(phi_U, E|_U) to Trivialization (phi_U, E|_V),
(Trivialization (phi_U, E|_V),
Trivialization (phi_U, E|_U)): Transition map from Trivialization
(phi_U, E|_V) to Trivialization (phi_U, E|_U)}

trivialization(name, domain=None, latex_name=None)
Return a trivialization of self over the domain domain.

INPUT:

• domain – (default: None) domain on which the trivialization is defined; if None the base space is
assumed

• name – (default: None) name given to the trivialization

• latex_name – (default: None) LaTeX name given to the trivialization

OUTPUT:

• a Trivialization representing a trivialization of 𝐸

EXAMPLES:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi , domain=U); phi
Trivialization (phi, E|_U)

1.9. Topological Vector Bundles 267

Manifolds, Release 10.4.rc1

1.9.2 Vector Bundle Fibers

The class VectorBundleFiber implements fibers over a vector bundle.

AUTHORS:

• Michael Jung (2019): initial version

class sage.manifolds.vector_bundle_fiber.VectorBundleFiber(vector_bundle, point)
Bases: FiniteRankFreeModule

Fiber of a given vector bundle at a given point.

Let 𝜋 : 𝐸 → 𝑀 be a vector bundle of rank 𝑛 over the field 𝐾 (see TopologicalVectorBundle) and
𝑝 ∈ 𝑀 . The fiber 𝐸𝑝 at 𝑝 is defined via 𝐸𝑝 := 𝜋−1(𝑝) and takes the structure of an 𝑛-dimensional vector space
over the field𝐾.

INPUT:

• vector_bundle – TopologicalVectorBundle; vector bundle 𝐸 on which the fiber is defined

• point – ManifoldPoint; point 𝑝 at which the fiber is defined

EXAMPLES:

A vector bundle fiber in a trivial rank 2 vector bundle over a 4-dimensional topological manifold:

sage: M = Manifold(4, M , structure= top)
sage: X.<x,y,z,t> = M.chart()
sage: p = M((0,0,0,0), name= p)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: Ep = E.fiber(p); Ep
Fiber of E at Point p on the 4-dimensional topological manifold M

Fibers are free modules of finite rank over SymbolicRing (actually vector spaces of finite dimension over the
vector bundle field𝐾, here𝐾 = R):

sage: Ep.base_ring()
Symbolic Ring
sage: Ep.category()
Category of finite dimensional vector spaces over Symbolic Ring
sage: Ep.rank()
2
sage: dim(Ep)
2

The fiber is automatically endowed with bases deduced from the local frames around the point:

sage: Ep.bases()
[Basis (e_0,e_1) on the Fiber of E at Point p on the 4-dimensional
topological manifold M]
sage: E.frames()
[Local frame (E|_M, (e_0,e_1))]

At this stage, only one basis has been defined in the fiber, but new bases can be added from local frames on the
vector bundle by means of the method at():

sage: aut = E.section_module().automorphism()
sage: aut[:] = [[-1, x], [y, 2]]
sage: f = e.new_frame(aut, f)

(continues on next page)

268 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule
../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: fp = f.at(p); fp
Basis (f_0,f_1) on the Fiber of E at Point p on the 4-dimensional
topological manifold M
sage: Ep.bases()
[Basis (e_0,e_1) on the Fiber of E at Point p on the 4-dimensional
topological manifold M,
Basis (f_0,f_1) on the Fiber of E at Point p on the 4-dimensional
topological manifold M]

The changes of bases are applied to the fibers:

sage: f[1].display(e) # second component of frame f
f_1 = x e_0 + 2 e_1
sage: ep = e.at(p)
sage: fp[1].display(ep) # second component of frame f at p
f_1 = 2 e_1

All the bases defined on Ep are on the same footing. Accordingly the fiber is not in the category of modules with
a distinguished basis:

sage: Ep in ModulesWithBasis(SR)
False

It is simply in the category of modules:

sage: Ep in Modules(SR)
True

Since the base ring is a field, it is actually in the category of vector spaces:

sage: Ep in VectorSpaces(SR)
True

A typical element:

sage: v = Ep.an_element(); v
Vector in the fiber of E at Point p on the 4-dimensional topological
manifold M
sage: v.display()
e_0 + 2 e_1
sage: v.parent()
Fiber of E at Point p on the 4-dimensional topological manifold M

The zero vector:

sage: Ep.zero()
Vector zero in the fiber of E at Point p on the 4-dimensional
topological manifold M
sage: Ep.zero().display()
zero = 0
sage: Ep.zero().parent()
Fiber of E at Point p on the 4-dimensional topological manifold M

Fibers are unique:

1.9. Topological Vector Bundles 269

Manifolds, Release 10.4.rc1

sage: E.fiber(p) is Ep
True
sage: p1 = M.point((0,0,0,0))
sage: E.fiber(p1) is Ep
True

even if points are different instances:

sage: p1 is p
False

but p1 and p share the same fiber because they compare equal:

sage: p1 == p
True

See also:

FiniteRankFreeModule for more documentation.

Element

alias of VectorBundleFiberElement

base_point()

Return the manifold point over which self is defined.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: p = M.point((3,-2), name= p)
sage: Ep = E.fiber(p)
sage: Ep.base_point()
Point p on the 2-dimensional topological manifold M
sage: p is Ep.base_point()
True

construction()

dim()

Return the vector space dimension of self.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: X.<x,y,z> = M.chart()
sage: p = M((0,0,0), name= p)
sage: E = M.vector_bundle(2, E)
sage: Ep = E.fiber(p)
sage: Ep.dim()
2

dimension()

Return the vector space dimension of self.

EXAMPLES:

270 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= top)
sage: X.<x,y,z> = M.chart()
sage: p = M((0,0,0), name= p)
sage: E = M.vector_bundle(2, E)
sage: Ep = E.fiber(p)
sage: Ep.dim()
2

1.9.3 Vector Bundle Fiber Elements

The class VectorBundleFiberElement implements vectors in the fiber of a vector bundle.

AUTHORS:

• Michael Jung (2019): initial version

class sage.manifolds.vector_bundle_fiber_element.VectorBundleFiberElement(par-
ent,
name=None,
la-
tex_name=None)

Bases: FiniteRankFreeModuleElement

Vector in a fiber of a vector bundle at the given point.

INPUT:

• parent – VectorBundleFiber; the fiber to which the vector belongs

• name – (default: None) string; symbol given to the vector

• latex_name – (default: None) string; LaTeX symbol to denote the vector; if None, name will be used

EXAMPLES:

A vector 𝑣 in a fiber of a rank 2 vector bundle:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: p = M((1,-1), name= p)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: Ep = E.fiber(p)
sage: v = Ep((-2,1), name= v); v
Vector v in the fiber of E at Point p on the 2-dimensional topological
manifold M
sage: v.display()
v = -2 e_0 + e_1
sage: v.parent()
Fiber of E at Point p on the 2-dimensional topological manifold M
sage: v in Ep
True

See also:

FiniteRankFreeModuleElement for more documentation.

1.9. Topological Vector Bundles 271

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_element.html#sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement
../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_element.html#sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement

Manifolds, Release 10.4.rc1

1.9.4 Trivializations

The class Trivialization implements trivializations on vector bundles. The corresponding transition maps between
two trivializations are represented by TransitionMap.

AUTHORS:

• Michael Jung (2019) : initial version

class sage.manifolds.trivialization.TransitionMap(triv1, triv2, transf , compute_inverse=True)
Bases: SageObject

Transition map between two trivializations.

Given a vector bundle 𝜋 : 𝐸 →𝑀 of class𝐶𝑘 and rank 𝑛 over the field𝐾, and two trivializations𝜙𝑈 : 𝜋−1(𝑈) →
𝑈 ×𝐾𝑛 and 𝜙𝑉 : 𝜋−1(𝑉) → 𝑉 ×𝐾𝑛, the transition map from 𝜙𝑈 to 𝜙𝑉 is given by the composition

𝜙𝑉 ∘ 𝜙−1
𝑈 : 𝑈 ∩ 𝑉 ×𝐾𝑛 → 𝑈 ∩ 𝑉 ×𝐾𝑛.

This composition is of the form

(𝑝, 𝑣) ↦→ (𝑝, 𝑔(𝑝)𝑣),

where 𝑝 ↦→ 𝑔(𝑝) is a 𝐶𝑘 family of invertible 𝑛× 𝑛 matrices.

INPUT:

• triv1 – trivialization 1

• triv2 – trivialization 2

• transf – the transformation between both trivializations in form of a matrix of scalar fields
(ScalarField) or coordinate functions (ChartFunction), or a bundle automorphism (FreeMod-
uleAutomorphism)

• compute_inverse – (default: True) determines whether the inverse shall be computed or not

EXAMPLES:

Transition map of two trivializations on a real rank 2 vector bundle of the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the North␣
→˓and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: phi_U_to_phi_V
Transition map from Trivialization (phi_U, E|_U) to Trivialization
(phi_V, E|_V)

272 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism
../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

automorphism()

Return the automorphism connecting both trivializations.

The family of matrices 𝑝 ↦→ 𝑔(𝑝) given by the transition map induce a bundle automorphism

𝜙−1
𝑈 ∘ 𝜙𝑉 : 𝜋−1(𝑈 ∩ 𝑉) → 𝜋−1(𝑈 ∩ 𝑉)

correlating the local frames induced by the trivializations in the following way:

(𝜙−1
𝑈 ∘ 𝜙𝑉)(𝜙

*
𝑉 𝑒𝑖) = 𝜙*

𝑈𝑒𝑖.

Then, for each point 𝑝 ∈𝑀 , the matrix 𝑔(𝑝) is the representation of the induced automorphism on the fiber
𝐸𝑝 = 𝜋−1(𝑝) in the basis ((𝜙*

𝑉 𝑒𝑖)(𝑝))𝑖=1,...,𝑛.

EXAMPLES:

sage: S2 = Manifold(2, S^2 , structure= top)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , latex_name=r \varphi_U ,
....: domain=U); phi_U
Trivialization (phi_U, E|_U)
sage: phi_V = E.trivialization(phi_V , latex_name=r \varphi_V ,
....: domain=V); phi_V
Trivialization (phi_V, E|_V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: aut = phi_U_to_phi_V.automorphism(); aut
Automorphism phi_U^(-1)*phi_V of the Free module C^0(W;E) of
sections on the Open subset W of the 2-dimensional topological
manifold S^2 with values in the real vector bundle E of rank 2

sage: aut.display(phi_U.frame().restrict(W))
phi_U^(-1)*phi_V = (phi_U^*e_1)⊗(phi_U^*e^2) +
(phi_U^*e_2)⊗(phi_U^*e^1)

det()

Return the determinant of self.

OUTPUT:

• An instance of ScalarField.

EXAMPLES:

sage: S2 = Manifold(2, S^2 , structure= top)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),

(continues on next page)

1.9. Topological Vector Bundles 273

Manifolds, Release 10.4.rc1

(continued from previous page)

....: intersection_name= W , restrictions1= x^2+y^2!=0,

....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , latex_name=r \varphi_U ,
....: domain=U); phi_U
Trivialization (phi_U, E|_U)
sage: phi_V = E.trivialization(phi_V , latex_name=r \varphi_V ,
....: domain=V); phi_V
Trivialization (phi_V, E|_V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: det = phi_U_to_phi_V.det(); det
Scalar field det(phi_U^(-1)*phi_V) on the Open subset W of the
2-dimensional topological manifold S^2

sage: det.display()
det(phi_U^(-1)*phi_V): W → ℝ

(x, y) ↦ -1
(u, v) ↦ -1

inverse()

Return the inverse transition map.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: XU = X.restrict(U); XV = X.restrict(U)
sage: W = U.intersection(V)
sage: XW = X.restrict(W)
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, [[1,1],[-1,1]],
....: compute_inverse=False)
sage: phi_V_to_phi_U = phi_U_to_phi_V.inverse(); phi_V_to_phi_U
Transition map from Trivialization (phi_V, E|_V) to Trivialization (phi_U, E|_
→˓U)
sage: phi_V_to_phi_U.automorphism() == phi_U_to_phi_V.automorphism().inverse()
True

matrix()

Return the matrix representation the transition map.

EXAMPLES:

Local trivializations on a real rank 2 vector bundle over the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,

(continues on next page)

274 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , latex_name=r \varphi_U ,
....: domain=U); phi_U
Trivialization (phi_U, E|_U)
sage: phi_V = E.trivialization(phi_V , latex_name=r \varphi_V ,
....: domain=V); phi_V
Trivialization (phi_V, E|_V)

The input is coerced into a bundle automorphism. From there, the matrix can be recovered:

sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: matrix = phi_U_to_phi_V.matrix(); matrix
[Scalar field zero on the Open subset W of the 2-dimensional
topological manifold S^2 Scalar field 1 on the Open subset
W of the 2-dimensional topological manifold S^2]
[Scalar field 1 on the Open subset W of the 2-dimensional
topological manifold S^2 Scalar field zero on the Open subset W of
the 2-dimensional topological manifold S^2]

Let us check the matrix components:

sage: matrix[0,0].display()
zero: W → ℝ

(x, y) ↦ 0
(u, v) ↦ 0

sage: matrix[0,1].display()
1: W → ℝ
(x, y) ↦ 1
(u, v) ↦ 1

sage: matrix[1,0].display()
1: W → ℝ
(x, y) ↦ 1
(u, v) ↦ 1

sage: matrix[1,1].display()
zero: W → ℝ

(x, y) ↦ 0
(u, v) ↦ 0

class sage.manifolds.trivialization.Trivialization(vector_bundle, name, domain,
latex_name=None)

Bases: UniqueRepresentation, SageObject

A local trivialization of a given vector bundle.

Let 𝜋 : 𝐸 → 𝑀 be a vector bundle of rank 𝑛 and class 𝐶𝑘 over the field 𝐾 (see TopologicalVector-
Bundle or DifferentiableVectorBundle). A local trivialization over an open subset 𝑈 ⊂ 𝑀 is a
𝐶𝑘-diffeomorphism 𝜙 : 𝜋−1(𝑈) → 𝑈 ×𝐾𝑛 such that 𝜋 ∘𝜙−1 = pr1 and 𝑣 ↦→ 𝜙−1(𝑞, 𝑣) is a linear isomorphism
for any 𝑞 ∈ 𝑈 .

Note: Notice that frames and trivializations are equivalent concepts (for further details see LocalFrame).
However, in order to facilitate applications and being consistent with the implementations of charts, trivializations
are introduced separately.

1.9. Topological Vector Bundles 275

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Manifolds, Release 10.4.rc1

EXAMPLES:

Local trivializations on a real rank 2 vector bundle over the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the North␣
→˓and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , latex_name=r \varphi_U ,
....: domain=U); phi_U
Trivialization (phi_U, E|_U)
sage: phi_V = E.trivialization(phi_V , latex_name=r \varphi_V ,
....: domain=V); phi_V
Trivialization (phi_V, E|_V)
sage: phi_U_to_phi_V = phi_U.transition_map(phi_V, [[0,1],[1,0]]); phi_U_to_phi_V
Transition map from Trivialization (phi_U, E|_U) to Trivialization
(phi_V, E|_V)

The LaTeX output gives the following:

sage: latex(phi_U)
\varphi_U : E |_{U} \to U \times \Bold{R}^2
sage: latex(phi_V)
\varphi_V : E |_{V} \to V \times \Bold{R}^2

The trivializations are part of the vector bundle atlas:

sage: E.atlas()
[Trivialization (phi_U, E|_U), Trivialization (phi_V, E|_V)]

Each trivialization induces a local trivialization frame:

sage: fU = phi_U.frame(); fU
Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2)))
sage: fV = phi_V.frame(); fV
Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2)))

and the transition map connects these two frames via a bundle automorphism:

sage: aut = phi_U_to_phi_V.automorphism(); aut
Automorphism phi_U^(-1)*phi_V of the Free module C^0(W;E) of sections on
the Open subset W of the 2-dimensional topological manifold S^2 with
values in the real vector bundle E of rank 2
sage: aut.display(fU.restrict(W))
phi_U^(-1)*phi_V = (phi_U^*e_1)⊗(phi_U^*e^2) + (phi_U^*e_2)⊗(phi_U^*e^1)
sage: aut.display(fV.restrict(W))
phi_U^(-1)*phi_V = (phi_V^*e_1)⊗(phi_V^*e^2) + (phi_V^*e_2)⊗(phi_V^*e^1)

The automorphisms are listed in the frame changes of the vector bundle:

276 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: E.changes_of_frame() # random
{(Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2))),
Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2)))): Automorphism
phi_U^(-1)*phi_V^(-1) of the Free module C^0(W;E) of sections on the
Open subset W of the 2-dimensional topological manifold S^2 with values
in the real vector bundle E of rank 2,
(Local frame (E|_W, ((phi_V^*e_1),(phi_V^*e_2))),
Local frame (E|_W, ((phi_U^*e_1),(phi_U^*e_2)))): Automorphism
phi_U^(-1)*phi_V of the Free module C^0(W;E) of sections on the Open
subset W of the 2-dimensional topological manifold S^2 with values in
the real vector bundle E of rank 2}

Let us check the components of fU with respect to the frame fV:

sage: fU[0].comp(fV.restrict(W))[:]
[0, 1]
sage: fU[1].comp(fV.restrict(W))[:]
[1, 0]

base_space()

Return the manifold on which the trivialization is defined.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi , domain=U)
sage: phi.base_space()
2-dimensional topological manifold M

coframe()

Return the standard coframe induced by self.

See also:

LocalCoFrame

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi)
sage: phi.coframe()
Trivialization coframe (E|_M, ((phi^*e^1),(phi^*e^2)))

domain()

Return the domain on which the trivialization is defined.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi , domain=U)
sage: phi.domain()
Open subset U of the 2-dimensional topological manifold M

1.9. Topological Vector Bundles 277

Manifolds, Release 10.4.rc1

frame()

Return the standard frame induced by self. If 𝜓 is a trivialization then the corresponding frame can be
obtained by the maps 𝑝 ↦→ 𝜓−1(𝑝, 𝑒𝑖), where (𝑒1, . . . , 𝑒𝑛) is the standard basis of 𝐾𝑛. We briefly denote
(𝜓*𝑒𝑖) instead of 𝜓−1(·, 𝑒𝑖).

See also:

LocalFrame

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi)
sage: phi.frame()
Trivialization frame (E|_M, ((phi^*e_1),(phi^*e_2)))

transition_map(other, transf , compute_inverse=True)
Return the transition map between self and other.

INPUT:

• other – the trivialization where the transition map from self goes to

• transf – transformation of the transition map

• intersection_name – (default: None) name to be given to the subset 𝑈 ∩ 𝑉 if the latter differs
from 𝑈 or 𝑉

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: XU = X.restrict(U); XV = X.restrict(U)
sage: W = U.intersection(V)
sage: XW = X.restrict(W)
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: phi_U.transition_map(phi_V, 1)
Transition map from Trivialization (phi_U, E|_U) to Trivialization
(phi_V, E|_V)

vector_bundle()

Return the vector bundle on which the trivialization is defined.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: phi = E.trivialization(phi , domain=U)
sage: phi.vector_bundle()
Topological real vector bundle E -> M of rank 2 over the base space
2-dimensional topological manifold M

278 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

1.9.5 Local Frames

The class LocalFrame implements local frames on vector bundles (see TopologicalVectorBundle or Dif-
ferentiableVectorBundle).

For 𝑘 = 0, 1, . . ., a local frame on a vector bundle 𝐸 →𝑀 of class 𝐶𝑘 and rank 𝑛 is a local section (𝑒1, . . . , 𝑒𝑛) : 𝑈 →
𝐸𝑛 of class 𝐶𝑘 defined on some subset 𝑈 of the base space𝑀 , such that 𝑒(𝑝) is a basis of the fiber 𝐸𝑝 for any 𝑝 ∈ 𝑈 .

AUTHORS:

• Michael Jung (2019): initial version

EXAMPLES:

Defining a global frame on a topological vector bundle of rank 3:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(3, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_0,e_1,e_2))

This frame is now the default frame of the corresponding section module and saved in the vector bundle:

sage: e in E.frames()
True
sage: sec_module = E.section_module(); sec_module
Free module C^0(M;E) of sections on the 3-dimensional topological manifold M
with values in the real vector bundle E of rank 3

sage: sec_module.default_basis()
Local frame (E|_M, (e_0,e_1,e_2))

However, the default frame can be changed:

sage: sec_module.set_default_basis(e)
sage: sec_module.default_basis()
Local frame (E|_M, (e_0,e_1,e_2))

The elements of a local frame are local sections in the vector bundle:

sage: for vec in e:
....: print(vec)
Section e_0 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3
Section e_1 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3
Section e_2 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3

Each element of a vector frame can be accessed by its index:

sage: e[0]
Section e_0 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3

The slice operator : can be used to access to more than one element:

sage: e[0:2]
(Section e_0 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3,

(continues on next page)

1.9. Topological Vector Bundles 279

Manifolds, Release 10.4.rc1

(continued from previous page)

Section e_1 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3)

sage: e[:]
(Section e_0 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3,
Section e_1 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3,
Section e_2 on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3)

The index range depends on the starting index defined on the manifold:

sage: M = Manifold(3, M , structure= top , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: U = M.open_subset(U)
sage: c_xyz_U = c_xyz.restrict(U)
sage: E = M.vector_bundle(3, E)
sage: e = E.local_frame(e , domain=U); e
Local frame (E|_U, (e_1,e_2,e_3))
sage: [e[i] for i in M.irange()]
[Section e_1 on the Open subset U of the 3-dimensional topological manifold
M with values in the real vector bundle E of rank 3,
Section e_2 on the Open subset U of the 3-dimensional topological manifold
M with values in the real vector bundle E of rank 3,
Section e_3 on the Open subset U of the 3-dimensional topological manifold
M with values in the real vector bundle E of rank 3]

sage: e[1], e[2], e[3]
(Section e_1 on the Open subset U of the 3-dimensional topological manifold
M with values in the real vector bundle E of rank 3,
Section e_2 on the Open subset U of the 3-dimensional topological manifold
M with values in the real vector bundle E of rank 3,
Section e_3 on the Open subset U of the 3-dimensional topological manifold
M with values in the real vector bundle E of rank 3)

Let us check that the local sections e[i] are indeed the frame vectors from their components with respect to the frame
𝑒:

sage: e[1].comp(e)[:]
[1, 0, 0]
sage: e[2].comp(e)[:]
[0, 1, 0]
sage: e[3].comp(e)[:]
[0, 0, 1]

Defining a local frame on a vector bundle, the dual coframe is automatically created, which, by default, bares the same
name (here 𝑒):

sage: E.coframes()
[Local coframe (E|_U, (e^1,e^2,e^3))]
sage: e_dual = E.coframes()[0] ; e_dual
Local coframe (E|_U, (e^1,e^2,e^3))
sage: e_dual is e.coframe()
True

Let us check that the coframe (𝑒𝑖) is indeed the dual of the vector frame (𝑒𝑖):

280 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: e_dual[1](e[1]) # linear form e^1 applied to local section e_1
Scalar field e^1(e_1) on the Open subset U of the 3-dimensional topological
manifold M

sage: e_dual[1](e[1]).expr() # the explicit expression of e^1(e_1)
1
sage: e_dual[1](e[1]).expr(), e_dual[1](e[2]).expr(), e_dual[1](e[3]).expr()
(1, 0, 0)
sage: e_dual[2](e[1]).expr(), e_dual[2](e[2]).expr(), e_dual[2](e[3]).expr()
(0, 1, 0)
sage: e_dual[3](e[1]).expr(), e_dual[3](e[2]).expr(), e_dual[3](e[3]).expr()
(0, 0, 1)

Via bundle automorphisms, a new frame can be created from an existing one:

sage: sec_module_U = E.section_module(domain=U)
sage: change_frame = sec_module_U.automorphism()
sage: change_frame[:] = [[0,1,0],[0,0,1],[1,0,0]]
sage: f = e.new_frame(change_frame, f); f
Local frame (E|_U, (f_1,f_2,f_3))

A copy of this automorphism and its inverse is now part of the vector bundle’s frame changes:

sage: E.change_of_frame(e, f)
Automorphism of the Free module C^0(U;E) of sections on the Open subset U of
the 3-dimensional topological manifold M with values in the real vector
bundle E of rank 3

sage: E.change_of_frame(e, f) == change_frame
True
sage: E.change_of_frame(f, e) == change_frame.inverse()
True

Let us check the components of 𝑓 with respect to the frame 𝑒:

sage: f[1].comp(e)[:]
[0, 0, 1]
sage: f[2].comp(e)[:]
[1, 0, 0]
sage: f[3].comp(e)[:]
[0, 1, 0]

class sage.manifolds.local_frame.LocalCoFrame(frame, symbol, latex_symbol=None,
indices=None, latex_indices=None)

Bases: FreeModuleCoBasis

Local coframe on a vector bundle.

A local coframe on a vector bundle 𝐸 → 𝑀 of class 𝐶𝑘 is a local section 𝑒* : 𝑈 → 𝐸𝑛 of class 𝐶𝑘 on some
subset 𝑈 of the base space𝑀 , such that 𝑒*(𝑝) is a basis of the fiber 𝐸*

𝑝 of the dual bundle for any 𝑝 ∈ 𝑈 .

INPUT:

• frame – the local frame dual to the coframe

• symbol – either a string, to be used as a common base for the symbols of the linear forms constituting the
coframe, or a tuple of strings, representing the individual symbols of the linear forms

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of
the linear forms constituting the coframe, or a tuple of strings, representing the individual LaTeX symbols of
the linear forms; if None, symbol is used in place of latex_symbol

1.9. Topological Vector Bundles 281

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleCoBasis

Manifolds, Release 10.4.rc1

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices
labelling the linear forms of the coframe; if None, the indices will be generated as integers within the range
declared on the coframe’s domain

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the
linear forms of the coframe; if None, indices is used instead

EXAMPLES:

Local coframe on a topological vector bundle of rank 3:

sage: M = Manifold(3, M , structure= top , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(3, E)
sage: e = E.local_frame(e)
sage: from sage.manifolds.local_frame import LocalCoFrame
sage: f = LocalCoFrame(e, f); f
Local coframe (E|_M, (f^1,f^2,f^3))

The local coframe can also be obtained by using the method dual_basis() or coframe():

sage: e_dual = e.dual_basis(); e_dual
Local coframe (E|_M, (e^1,e^2,e^3))
sage: e_dual is e.coframe()
True
sage: e_dual is f
False
sage: e_dual[:] == f[:]
True
sage: f[1].display(e)
f^1 = e^1

The consisted linear forms can be obtained via the operator []:

sage: f[1], f[2], f[3]
(Linear form f^1 on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3,
Linear form f^2 on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3,
Linear form f^3 on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3)

Checking that 𝑓 is the dual of 𝑒:

sage: f[1](e[1]).expr(), f[1](e[2]).expr(), f[1](e[3]).expr()
(1, 0, 0)
sage: f[2](e[1]).expr(), f[2](e[2]).expr(), f[2](e[3]).expr()
(0, 1, 0)
sage: f[3](e[1]).expr(), f[3](e[2]).expr(), f[3](e[3]).expr()
(0, 0, 1)

at(point)

Return the value of self at a given point on the base space, this value being a basis of the dual vector bundle
at this point.

INPUT:

282 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis.dual_basis

Manifolds, Release 10.4.rc1

• point – ManifoldPoint; point 𝑝 in the domain 𝑈 of the coframe (denoted 𝑓 hereafter)

OUTPUT:

• FreeModuleCoBasis representing the basis 𝑓(𝑝) of the vector space 𝐸*
𝑝 , dual to the vector bundle

fiber 𝐸𝑝

EXAMPLES:

Cobasis of a vector bundle fiber:

sage: M = Manifold(2, M , structure= top , start_index=1)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: e_dual = e.coframe(); e_dual
Local coframe (E|_M, (e^1,e^2))
sage: p = M.point((-1,2), name= p)
sage: e_dual_p = e_dual.at(p) ; e_dual_p
Dual basis (e^1,e^2) on the Fiber of E at Point p on the
2-dimensional topological manifold M
sage: type(e_dual_p)
<class sage.tensor.modules.free_module_basis.FreeModuleCoBasis_with_category
→˓ >
sage: e_dual_p[1]
Linear form e^1 on the Fiber of E at Point p on the 2-dimensional
topological manifold M

sage: e_dual_p[2]
Linear form e^2 on the Fiber of E at Point p on the 2-dimensional
topological manifold M

sage: e_dual_p is e.at(p).dual_basis()
True

set_name(symbol, latex_symbol=None, indices=None, latex_indices=None, index_position='up',
include_domain=True)

Set (or change) the text name and LaTeX name of self.

INPUT:

• symbol – either a string, to be used as a common base for the symbols of the linear forms constituting
the coframe, or a list/tuple of strings, representing the individual symbols of the linear forms

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the linear forms constituting the coframe, or a list/tuple of strings, representing the individual LaTeX
symbols of the linear forms; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the linear forms of the coframe; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the linear forms; if None, indices is used instead

• index_position – (default: up) determines the position of the indices labelling the linear forms
of the coframe; can be either down or up

• include_domain – (default: True) boolean determining whether the name of the domain is in-
cluded in the beginning of the coframe name

EXAMPLES:

1.9. Topological Vector Bundles 283

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleCoBasis

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e).coframe(); e
Local coframe (E|_M, (e^0,e^1))
sage: e.set_name(f); e
Local coframe (E|_M, (f^0,f^1))
sage: e.set_name(e , latex_symbol=r \epsilon)
sage: latex(e)
\left(E|_{M}, \left(\epsilon^{0},\epsilon^{1}\right)\right)
sage: e.set_name(e , include_domain=False); e
Local coframe (e^0,e^1)
sage: e.set_name([a , b], latex_symbol=[r \alpha , r \beta]); e
Local coframe (E|_M, (a,b))
sage: latex(e)
\left(E|_{M}, \left(\alpha,\beta\right)\right)
sage: e.set_name(e , indices=[x , y],
....: latex_indices=[r \xi , r \zeta]); e
Local coframe (E|_M, (e^x,e^y))
sage: latex(e)
\left(E|_{M}, \left(e^{\xi},e^{\zeta}\right)\right)

class sage.manifolds.local_frame.LocalFrame(section_module, symbol, latex_symbol=None,
indices=None, latex_indices=None,
symbol_dual=None, latex_symbol_dual=None)

Bases: FreeModuleBasis

Local frame on a vector bundle.

A local frame on a vector bundle 𝐸 → 𝑀 of class 𝐶𝑘 is a local section (𝑒1, . . . , 𝑒𝑛) : 𝑈 → 𝐸𝑛 of class 𝐶𝑘

defined on some subset 𝑈 of the base space𝑀 , such that 𝑒(𝑝) is a basis of the fiber 𝐸𝑝 for any 𝑝 ∈ 𝑈 .

For each instantiation of a local frame, a local coframe is automatically created, as an instance of the class Lo-
calCoFrame. It is returned by the method coframe().

INPUT:

• section_module – free module of local sections over 𝑈 in the given vector bundle 𝐸 →𝑀

• symbol – either a string, to be used as a common base for the symbols of the local sections constituting the
local frame, or a tuple of strings, representing the individual symbols of the local sections

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of
the local sections constituting the local frame, or a tuple of strings, representing the individual LaTeX symbols
of the local sections; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices
labelling the local sections of the frame; if None, the indices will be generated as integers within the range
declared on the local frame’s domain

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the
local sections; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbol must be
a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

EXAMPLES:

Defining a local frame on a 3-dimensional vector bundle over a 3-dimensional manifold:

284 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , start_index=1, structure= top)
sage: E = M.vector_bundle(3, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_1,e_2,e_3))
sage: latex(e)
\left(E|_{M}, \left(e_{1},e_{2},e_{3}\right)\right)

The individual elements of the vector frame are accessed via square brackets, with the possibility to invoke the slice
operator ‘:’ to get more than a single element:

sage: e[2]
Section e_2 on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3
sage: e[1:3]
(Section e_1 on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3,
Section e_2 on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3)
sage: e[:]
(Section e_1 on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3,
Section e_2 on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3,
Section e_3 on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3)

The LaTeX symbol can be specified:

sage: eps = E.local_frame(eps , latex_symbol=r \epsilon)
sage: latex(eps)
\left(E|_{M}, \left(\epsilon_{1},\epsilon_{2},\epsilon_{3}\right)\right)

By default, the elements of the local frame are labelled by integers within the range specified at the manifold
declaration. It is however possible to fully customize the labels, via the argument indices:

sage: u = E.local_frame(u , indices=(x , y , z)) ; u
Local frame (E|_M, (u_x,u_y,u_z))
sage: u[1]
Section u_x on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 3
sage: u.coframe()
Local coframe (E|_M, (u^x,u^y,u^z))

The LaTeX format of the indices can be adjusted:

sage: v = E.local_frame(v , indices=(a , b , c),
....: latex_indices=(r \alpha , r \beta , r \gamma))
sage: v
Local frame (E|_M, (v_a,v_b,v_c))
sage: latex(v)
\left(E|_{M}, \left(v_{\alpha},v_{\beta},v_{\gamma}\right)\right)
sage: latex(v.coframe())
\left(E|_{M}, \left(v^{\alpha},v^{\beta},v^{\gamma}\right)\right)

The symbol of each element of the local frame can also be freely chosen, by providing a tuple of symbols as the
first argument of local_frame; it is then mandatory to specify as well some symbols for the dual coframe:

1.9. Topological Vector Bundles 285

Manifolds, Release 10.4.rc1

sage: h = E.local_frame((a , b , c), symbol_dual=(A , B , C)); h
Local frame (E|_M, (a,b,c))
sage: h[1]
Section a on the 3-dimensional topological manifold M with values in the
real vector bundle E of rank 3
sage: h.coframe()
Local coframe (E|_M, (A,B,C))
sage: h.coframe()[1]
Linear form A on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3

Local frames are bases of free modules formed by local sections:

sage: N = Manifold(2, N , structure= top , start_index=1)
sage: X.<x,y> = N.chart()
sage: U = N.open_subset(U)
sage: F = N.vector_bundle(2, F)
sage: f = F.local_frame(f , domain=U)
sage: f.module()
Free module C^0(U;F) of sections on the Open subset U of the
2-dimensional topological manifold N with values in the real vector
bundle F of rank 2
sage: f.module().base_ring()
Algebra of scalar fields on the Open subset U of the 2-dimensional
topological manifold N
sage: f.module() is F.section_module(domain=f.domain())
True
sage: f in F.section_module(domain=U).bases()
True

The value of the local frame at a given point is a basis of the corresponding fiber:

sage: X_U = X.restrict(U) # We need coordinates on the subset
sage: p = N((0,1), name= p) ; p
Point p on the 2-dimensional topological manifold N
sage: f.at(p)
Basis (f_1,f_2) on the Fiber of F at Point p on the 2-dimensional
topological manifold N

at(point)
Return the value of self at a given point, this value being a basis of the vector bundle fiber at the point.

INPUT:

• point – ManifoldPoint; point 𝑝 in the domain 𝑈 of the local frame (denoted 𝑒 hereafter)

OUTPUT:

• FreeModuleBasis representing the basis 𝑒(𝑝) of the vector bundle fiber 𝐸𝑝

EXAMPLES:

Basis of a fiber of a trivial vector bundle:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e

(continues on next page)

286 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

(continued from previous page)

Local frame (E|_M, (e_0,e_1))
sage: p = M.point((-1,2), name= p)
sage: ep = e.at(p) ; ep
Basis (e_0,e_1) on the Fiber of E at Point p on the 2-dimensional
topological manifold M

sage: type(ep)
<class sage.tensor.modules.free_module_basis.FreeModuleBasis_with_category >
sage: ep[0]
Vector e_0 in the fiber of E at Point p on the 2-dimensional
topological manifold M

sage: ep[1]
Vector e_1 in the fiber of E at Point p on the 2-dimensional
topological manifold M

Note that the symbols used to denote the vectors are same as those for the vector fields of the frame. At this
stage, ep is the unique basis on fiber at p:

sage: Ep = E.fiber(p)
sage: Ep.bases()
[Basis (e_0,e_1) on the Fiber of E at Point p on the 2-dimensional
topological manifold M]

Let us consider another local frame:

sage: aut = E.section_module().automorphism()
sage: aut[:] = [[1+y^2, 0], [0, 2]]
sage: f = e.new_frame(aut, f) ; f
Local frame (E|_M, (f_0,f_1))
sage: fp = f.at(p) ; fp
Basis (f_0,f_1) on the Fiber of E at Point p on the 2-dimensional
topological manifold M

There are now two bases on the fiber:

sage: Ep.bases()
[Basis (e_0,e_1) on the Fiber of E at Point p on the 2-dimensional
topological manifold M,
Basis (f_0,f_1) on the Fiber of E at Point p on the 2-dimensional
topological manifold M]

Moreover, the changes of bases in the tangent space have been computed from the known relation between
the frames e and f (via the automorphism aut defined above):

sage: Ep.change_of_basis(ep, fp)
Automorphism of the Fiber of E at Point p on the 2-dimensional
topological manifold M

sage: Ep.change_of_basis(ep, fp).display()
5 e_0⊗e^0 + 2 e_1⊗e^1
sage: Ep.change_of_basis(fp, ep)
Automorphism of the Fiber of E at Point p on the 2-dimensional
topological manifold M

sage: Ep.change_of_basis(fp, ep).display()
1/5 e_0⊗e^0 + 1/2 e_1⊗e^1

The dual bases:

1.9. Topological Vector Bundles 287

Manifolds, Release 10.4.rc1

sage: e.coframe()
Local coframe (E|_M, (e^0,e^1))
sage: ep.dual_basis()
Dual basis (e^0,e^1) on the Fiber of E at Point p on the
2-dimensional topological manifold M

sage: ep.dual_basis() is e.coframe().at(p)
True
sage: f.coframe()
Local coframe (E|_M, (f^0,f^1))
sage: fp.dual_basis()
Dual basis (f^0,f^1) on the Fiber of E at Point p on the
2-dimensional topological manifold M

sage: fp.dual_basis() is f.coframe().at(p)
True

base_space()

Return the base space on which the overlying vector bundle is defined.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U)
sage: e.base_space()
3-dimensional topological manifold M

coframe()

Return the coframe of self.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_0,e_1))
sage: e.coframe()
Local coframe (E|_M, (e^0,e^1))

domain()

Return the domain on which self is defined.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U); e
Local frame (E|_U, (e_0,e_1))
sage: e.domain()
Open subset U of the 3-dimensional topological manifold M

new_frame(change_of_frame, symbol, latex_symbol=None, indices=None, latex_indices=None,
symbol_dual=None, latex_symbol_dual=None)

Define a new local frame from self.

The new local frame is defined from vector bundle automorphisms; its module is the same as that of the
current frame.

288 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

INPUT:

• change_of_frame – FreeModuleAutomorphism; vector bundle automorphisms 𝑃 that relates
the current frame (𝑒𝑖) to the new frame (𝑓𝑖) according to 𝑓𝑖 = 𝑃 (𝑒𝑖)

• symbol – either a string, to be used as a common base for the symbols of the sections constituting the
local frame, or a list/tuple of strings, representing the individual symbols of the sections

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the sections constituting the local frame, or a list/tuple of strings, representing the individual LaTeX
symbols of the sections; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the sections of the frame; if None, the indices will be generated as integers within the
range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the sections; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbolmust
be a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

OUTPUT:

• the new frame (𝑓𝑖), as an instance of LocalFrame

EXAMPLES:

Orthogonal transformation of a frame on the 2-dimensional trivial vector bundle over the Euclidean plane:

sage: M = Manifold(2, R^2 , structure= top , start_index=1)
sage: c_cart.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_R^2, (e_1,e_2))
sage: orth = E.section_module().automorphism()
sage: orth[:] = [[sqrt(3)/2, -1/2], [1/2, sqrt(3)/2]]
sage: f = e.new_frame(orth, f)
sage: f[1][:]
[1/2*sqrt(3), 1/2]
sage: f[2][:]
[-1/2, 1/2*sqrt(3)]
sage: a = E.change_of_frame(e,f)
sage: a[:]
[1/2*sqrt(3) -1/2]
[1/2 1/2*sqrt(3)]
sage: a == orth
True
sage: a is orth
False
sage: a._components # random (dictionary output)
{Local frame (E|_D_0, (e_1,e_2)): 2-indices components w.r.t.
Local frame (E|_D_0, (e_1,e_2)),
Local frame (E|_D_0, (f_1,f_2)): 2-indices components w.r.t.
Local frame (E|_D_0, (f_1,f_2))}

sage: a.comp(f)[:]
[1/2*sqrt(3) -1/2]
[1/2 1/2*sqrt(3)]

sage: a1 = E.change_of_frame(f,e)

(continues on next page)

1.9. Topological Vector Bundles 289

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a1[:]
[1/2*sqrt(3) 1/2]
[-1/2 1/2*sqrt(3)]
sage: a1 == orth.inverse()
True
sage: a1 is orth.inverse()
False
sage: e[1].comp(f)[:]
[1/2*sqrt(3), -1/2]
sage: e[2].comp(f)[:]
[1/2, 1/2*sqrt(3)]

restrict(subdomain)

Return the restriction of self to some open subset of its domain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset 𝑉 of the current frame domain 𝑈

OUTPUT:

• the restriction of the current frame to 𝑉 as a LocalFrame

EXAMPLES:

Restriction of a frame defined on R2 to the unit disk:

sage: M = Manifold(2, R^2 , structure= top , start_index=1)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_R^2, (e_1,e_2))
sage: a = E.section_module().automorphism()
sage: a[:] = [[1-y^2,0], [1+x^2, 2]]
sage: f = e.new_frame(a, f); f
Local frame (E|_R^2, (f_1,f_2))
sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1})
sage: e_U = e.restrict(U); e_U
Local frame (E|_U, (e_1,e_2))
sage: f_U = f.restrict(U) ; f_U
Local frame (E|_U, (f_1,f_2))

The vectors of the restriction have the same symbols as those of the original frame:

sage: f_U[1].display()
f_1 = (-y^2 + 1) e_1 + (x^2 + 1) e_2
sage: f_U[2].display()
f_2 = 2 e_2

Actually, the components are the restrictions of the original frame vectors:

sage: f_U[1] is f[1].restrict(U)
True
sage: f_U[2] is f[2].restrict(U)
True

290 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

set_name(symbol, latex_symbol=None, indices=None, latex_indices=None, index_position='down',
include_domain=True)

Set (or change) the text name and LaTeX name of self.

INPUT:

• symbol – either a string, to be used as a common base for the symbols of the local sections constituting
the local frame, or a list/tuple of strings, representing the individual symbols of the local sections

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the local sections constituting the local frame, or a list/tuple of strings, representing the individual
LaTeX symbols of the local sections; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the local sections of the frame; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the local sections; if None, indices is used instead

• index_position – (default: down) determines the position of the indices labelling the local
sections of the frame; can be either down or up

• include_domain – (default: True) boolean determining whether the name of the domain is in-
cluded in the beginning of the vector frame name

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e); e
Local frame (E|_M, (e_0,e_1))
sage: e.set_name(f); e
Local frame (E|_M, (f_0,f_1))
sage: e.set_name(e , include_domain=False); e
Local frame (e_0,e_1)
sage: e.set_name([a , b]); e
Local frame (E|_M, (a,b))
sage: e.set_name(e , indices=[x , y]); e
Local frame (E|_M, (e_x,e_y))
sage: e.set_name(e , latex_symbol=r \epsilon)
sage: latex(e)
\left(E|_{M}, \left(\epsilon_{0},\epsilon_{1}\right)\right)
sage: e.set_name(e , latex_symbol=[r \alpha , r \beta])
sage: latex(e)
\left(E|_{M}, \left(\alpha,\beta\right)\right)
sage: e.set_name(e , latex_symbol= E ,
....: latex_indices=[r \alpha , r \beta])
sage: latex(e)
\left(E|_{M}, \left(E_{\alpha},E_{\beta}\right)\right)

vector_bundle()

Return the vector bundle on which self is defined.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U)

(continues on next page)

1.9. Topological Vector Bundles 291

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: e.vector_bundle()
Topological real vector bundle E -> M of rank 2 over the base space
3-dimensional topological manifold M
sage: e.vector_bundle() is E
True

class sage.manifolds.local_frame.TrivializationCoFrame(triv_frame, symbol,
latex_symbol=None, indices=None,
latex_indices=None)

Bases: LocalCoFrame

Trivialization coframe on a vector bundle.

A trivialization coframe is the coframe of the trivialization frame induced by a trivialization (see: Trivializa-
tionFrame).

More precisely, a trivialization frame on a vector bundle 𝐸 →𝑀 of class 𝐶𝑘 and rank 𝑛 over the topological field
𝐾 and over a topological manifold𝑀 is a local coframe induced by a local trivialization 𝜙 : 𝐸|𝑈 → 𝑈 ×𝐾𝑛 of
the domain 𝑈 ∈𝑀 . Namely, the local dual sections

𝜙*𝑒𝑖 := 𝜙(· , 𝑒𝑖)

on 𝑈 induce a local frame (𝜙*𝑒1, . . . , 𝜙*𝑒𝑛), where (𝑒1, . . . , 𝑒𝑛) is the dual of the standard basis of𝐾𝑛.

INPUT:

• triv_frame – trivialization frame dual to the trivialization coframe

• symbol – either a string, to be used as a common base for the symbols of the dual sections constituting the
coframe, or a tuple of strings, representing the individual symbols of the dual sections

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of
the dual sections constituting the coframe, or a tuple of strings, representing the individual LaTeX symbols
of the dual sections; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices
labelling the dual sections of the coframe; if None, the indices will be generated as integers within the range
declared on the local frame’s domain

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the
dual sections of the coframe; if None, indices is used instead

EXAMPLES:

Trivialization coframe on a trivial vector bundle of rank 3:

sage: M = Manifold(3, M , start_index=1, structure= top)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(3, E)
sage: phi = E.trivialization(phi); phi
Trivialization (phi, E|_M)
sage: E.frames()
[Trivialization frame (E|_M, ((phi^*e_1),(phi^*e_2),(phi^*e_3)))]
sage: E.coframes()
[Trivialization coframe (E|_M, ((phi^*e^1),(phi^*e^2),(phi^*e^3)))]
sage: f = E.coframes()[0] ; f
Trivialization coframe (E|_M, ((phi^*e^1),(phi^*e^2),(phi^*e^3)))

The linear forms composing the coframe are obtained via the operator []:

292 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: f[1]
Linear form (phi^*e^1) on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3
sage: f[2]
Linear form (phi^*e^2) on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3
sage: f[3]
Linear form (phi^*e^3) on the Free module C^0(M;E) of sections on the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 3
sage: f[1][:]
[1, 0, 0]
sage: f[2][:]
[0, 1, 0]
sage: f[3][:]
[0, 0, 1]

The coframe is the dual of the trivialization frame:

sage: e = phi.frame() ; e
Trivialization frame (E|_M, ((phi^*e_1),(phi^*e_2),(phi^*e_3)))
sage: f[1](e[1]).expr(), f[1](e[2]).expr(), f[1](e[3]).expr()
(1, 0, 0)
sage: f[2](e[1]).expr(), f[2](e[2]).expr(), f[2](e[3]).expr()
(0, 1, 0)
sage: f[3](e[1]).expr(), f[3](e[2]).expr(), f[3](e[3]).expr()
(0, 0, 1)

class sage.manifolds.local_frame.TrivializationFrame(trivialization)
Bases: LocalFrame

Trivialization frame on a topological vector bundle.

A trivialization frame on a topological vector bundle 𝐸 → 𝑀 of rank 𝑛 over the topological field 𝐾 and over
a topological manifold 𝑀 is a local frame induced by a local trivialization 𝜙 : 𝐸|𝑈 → 𝑈 × 𝐾𝑛 of the domain
𝑈 ∈𝑀 . More precisely, the local sections

𝜙*𝑒𝑖 := 𝜙(· , 𝑒𝑖)

on 𝑈 induce a local frame (𝜙*𝑒1, . . . , 𝜙
*𝑒𝑛), where (𝑒1, . . . , 𝑒𝑛) is the standard basis of𝐾𝑛.

INPUT:

• trivialization – the trivialization defined on the vector bundle

EXAMPLES:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_U.frame()
Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2)))
sage: latex(phi_U.frame())
\left(E|_{U}, \left(\left(phi_U^* e_{ 1 }\right),\left(phi_U^* e_{ 2 }\right)\
→˓right)\right)

1.9. Topological Vector Bundles 293

Manifolds, Release 10.4.rc1

trivialization()

Return the underlying trivialization of self.

EXAMPLES:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: e = phi_U.frame()
sage: e.trivialization()
Trivialization (phi_U, E|_U)
sage: e.trivialization() is phi_U
True

1.9.6 Section Modules

The set of sections over a vector bundle 𝐸 → 𝑀 of class 𝐶𝑘 on a domain 𝑈 ∈ 𝑀 is a module over the algebra 𝐶𝑘(𝑈)
of scalar fields on 𝑈 .

Depending on the domain, there are two classes of section modules:

• SectionModule for local sections over a non-trivial part of a topological vector bundle

• SectionFreeModule for local sections over a trivial part of a topological vector bundle

AUTHORS:

• Michael Jung (2019): initial version

class sage.manifolds.section_module.SectionFreeModule(vbundle, domain)
Bases: FiniteRankFreeModule

Freemodule of sections over a vector bundle𝐸 →𝑀 of class𝐶𝑘 on a domain𝑈 ∈𝑀 which admits a trivialization
or local frame.

The section module 𝐶𝑘(𝑈 ;𝐸) is the set of all 𝐶𝑘-maps, called sections, of type

𝑠 : 𝑈 −→ 𝐸

such that

∀𝑝 ∈ 𝑈, 𝑠(𝑝) ∈ 𝐸𝑝,

where 𝐸𝑝 is the vector bundle fiber of 𝐸 at the point 𝑝.

Since the domain 𝑈 admits a local frame, the corresponding vector bundle 𝐸|𝑈 → 𝑈 is trivial and 𝐶𝑘(𝑈 ;𝐸) is a
free module over 𝐶𝑘(𝑈).

Note: If 𝐸|𝑈 is not trivial, the class SectionModule should be used instead, for 𝐶𝑘(𝑈 ;𝐸) is no longer a free
module.

INPUT:

• vbundle – vector bundle 𝐸 on which the sections takes its values

• domain – (default: None) subdomain 𝑈 of the base space on which the sections are defined

294 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule

Manifolds, Release 10.4.rc1

EXAMPLES:

Module of sections on the 2-rank trivial vector bundle over the Euclidean plane R2:

sage: M = Manifold(2, R^2 , structure= top)
sage: c_cart.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # Trivializes the vector bundle
sage: C0 = E.section_module(); C0
Free module C^0(R^2;E) of sections on the 2-dimensional topological
manifold R^2 with values in the real vector bundle E of rank 2
sage: C0.category()
Category of finite dimensional modules over Algebra of scalar fields on
the 2-dimensional topological manifold R^2
sage: C0.base_ring() is M.scalar_field_algebra()
True

The vector bundle admits a global frame and is therefore trivial:

sage: E.is_manifestly_trivial()
True

Since the vector bundle is trivial, its section module of global sections is a free module:

sage: isinstance(C0, FiniteRankFreeModule)
True

Some elements are:

sage: C0.an_element().display()
2 e_0 + 2 e_1
sage: C0.zero().display()
zero = 0
sage: s = C0([-y,x]); s
Section on the 2-dimensional topological manifold R^2 with values in the
real vector bundle E of rank 2
sage: s.display()
-y e_0 + x e_1

The rank of the free module equals the rank of the vector bundle:

sage: C0.rank()
2

The basis is given by the definition above:

sage: C0.bases()
[Local frame (E|_R^2, (e_0,e_1))]

The test suite is passed as well:

sage: TestSuite(C0).run()

Element

alias of TrivialSection

base_space()

Return the base space of the sections in this module.

1.9. Topological Vector Bundles 295

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = U.vector_bundle(2, E)
sage: C0 = E.section_module(force_free=True); C0
Free module C^0(U;E) of sections on the Open subset U of the
3-dimensional topological manifold M with values in the real
vector bundle E of rank 2

sage: C0.base_space()
Open subset U of the 3-dimensional topological manifold M

basis(symbol=None, latex_symbol=None, from_frame=None, indices=None, latex_indices=None,
symbol_dual=None, latex_symbol_dual=None)

Define a basis of self.

A basis of the section module is actually a local frame on the differentiable manifold 𝑈 over which the section
module is defined.

If the basis specified by the given symbol already exists, it is simply returned. If no argument is provided the
module’s default basis is returned.

INPUT:

• symbol – (default: None) either a string, to be used as a common base for the symbols of the elements
of the basis, or a tuple of strings, representing the individual symbols of the elements of the basis

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the elements of the basis, or a tuple of strings, representing the individual LaTeX symbols of the
elements of the basis; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the elements of the basis; if None, the indices will be generated as integers within the
range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the elements of the basis; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual basis; if None, symbolmust be
a string and is used for the common base of the symbols of the elements of the dual basis

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual basis

OUTPUT:

• a LocalFrame representing a basis on self

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: C0 = E.section_module(force_free=True)
sage: e = C0.basis(e); e
Local frame (E|_M, (e_0,e_1))

See LocalFrame for more examples and documentation.

default_frame()

Return the default basis of the free module self.

296 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

The default basis is simply a basis whose name can be skipped in methods requiring a basis as an argument. By
default, it is the first basis introduced on the module. It can be changed by the method set_default_ba-
sis().

OUTPUT:

• instance of FreeModuleBasis

EXAMPLES:

At the module construction, no default basis is assumed:

sage: M = FiniteRankFreeModule(ZZ, 2, name= M , start_index=1)
sage: M.default_basis()
No default basis has been defined on the
Rank-2 free module M over the Integer Ring

The first defined basis becomes the default one:

sage: e = M.basis(e) ; e
Basis (e_1,e_2) on the Rank-2 free module M over the Integer Ring
sage: M.default_basis()
Basis (e_1,e_2) on the Rank-2 free module M over the Integer Ring
sage: f = M.basis(f) ; f
Basis (f_1,f_2) on the Rank-2 free module M over the Integer Ring
sage: M.default_basis()
Basis (e_1,e_2) on the Rank-2 free module M over the Integer Ring

domain()

Return the domain of the section module.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: C0_U = E.section_module(domain=U, force_free=True); C0_U
Free module C^0(U;E) of sections on the Open subset U of the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 2

sage: C0_U.domain()
Open subset U of the 3-dimensional topological manifold M

set_default_frame(basis)
Sets the default basis of self.

The default basis is simply a basis whose name can be skipped in methods requiring a basis as an argument.
By default, it is the first basis introduced on the module.

INPUT:

• basis – instance of FreeModuleBasis representing a basis on self

EXAMPLES:

Changing the default basis on a rank-3 free module:

sage: M = FiniteRankFreeModule(ZZ, 3, name= M , start_index=1)
sage: e = M.basis(e) ; e
Basis (e_1,e_2,e_3) on the Rank-3 free module M over the Integer Ring
sage: f = M.basis(f) ; f

(continues on next page)

1.9. Topological Vector Bundles 297

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis
../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

(continued from previous page)

Basis (f_1,f_2,f_3) on the Rank-3 free module M over the Integer Ring
sage: M.default_basis()
Basis (e_1,e_2,e_3) on the Rank-3 free module M over the Integer Ring
sage: M.set_default_basis(f)
sage: M.default_basis()
Basis (f_1,f_2,f_3) on the Rank-3 free module M over the Integer Ring

vector_bundle()

Return the overlying vector bundle on which the section module is defined.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: C0 = E.section_module(force_free=True); C0
Free module C^0(M;E) of sections on the 3-dimensional topological
manifold M with values in the real vector bundle E of rank 2

sage: C0.vector_bundle()
Topological real vector bundle E -> M of rank 2 over the base space
3-dimensional topological manifold M

sage: E is C0.vector_bundle()
True

class sage.manifolds.section_module.SectionModule(vbundle, domain)
Bases: UniqueRepresentation, Parent

Module of sections over a vector bundle 𝐸 →𝑀 of class 𝐶𝑘 on a domain 𝑈 ∈𝑀 .

The section module 𝐶𝑘(𝑈 ;𝐸) is the set of all 𝐶𝑘-maps, called sections, of type

𝑠 : 𝑈 −→ 𝐸

such that

∀𝑝 ∈ 𝑈, 𝑠(𝑝) ∈ 𝐸𝑝,

where 𝐸𝑝 is the vector bundle fiber of 𝐸 at the point 𝑝.

𝐶𝑘(𝑈 ;𝐸) is a module over 𝐶𝑘(𝑈), the algebra of 𝐶𝑘 scalar fields on 𝑈 .

INPUT:

• vbundle – vector bundle 𝐸 on which the sections takes its values

• domain – (default: None) subdomain 𝑈 of the base space on which the sections are defined

EXAMPLES:

Module of sections on the Möbius bundle:

sage: M = Manifold(1, RP^1 , structure= top , start_index=1)
sage: U = M.open_subset(U) # the complement of one point
sage: c_u.<u> = U.chart() # [1:u] in homogeneous coord.
sage: V = M.open_subset(V) # the complement of the point u=0
sage: M.declare_union(U,V) # [v:1] in homogeneous coord.
sage: c_v.<v> = V.chart()
sage: u_to_v = c_u.transition_map(c_v, (1/u),
....: intersection_name= W ,
....: restrictions1 = u!=0,

(continues on next page)

298 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Manifolds, Release 10.4.rc1

(continued from previous page)

....: restrictions2 = v!=0)
sage: v_to_u = u_to_v.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(1, E)
sage: phi_U = E.trivialization(phi_U , latex_name=r \varphi_U ,
....: domain=U)
sage: phi_V = E.trivialization(phi_V , latex_name=r \varphi_V ,
....: domain=V)
sage: transf = phi_U.transition_map(phi_V, [[u]])
sage: C0 = E.section_module(); C0
Module C^0(RP^1;E) of sections on the 1-dimensional topological manifold
RP^1 with values in the real vector bundle E of rank 1

𝐶0(R𝑃 1;𝐸) is a module over the algebra 𝐶0(R𝑃 1):

sage: C0.category()
Category of modules over Algebra of scalar fields on the 1-dimensional
topological manifold RP^1
sage: C0.base_ring() is M.scalar_field_algebra()
True

However, 𝐶0(R𝑃 1;𝐸) is not a free module:

sage: isinstance(C0, FiniteRankFreeModule)
False

since the Möbius bundle is not trivial:

sage: E.is_manifestly_trivial()
False

The section module over 𝑈 , on the other hand, is a free module since 𝐸|𝑈 admits a trivialization and therefore has
a local frame:

sage: C0_U = E.section_module(domain=U)
sage: isinstance(C0_U, FiniteRankFreeModule)
True

The zero element of the module:

sage: z = C0.zero() ; z
Section zero on the 1-dimensional topological manifold RP^1 with values
in the real vector bundle E of rank 1
sage: z.display(phi_U.frame())
zero = 0
sage: z.display(phi_V.frame())
zero = 0

The module 𝐶0(𝑀 ;𝐸) coerces to any module of sections defined on a subdomain of𝑀 , for instance 𝐶0(𝑈 ;𝐸):

sage: C0_U.has_coerce_map_from(C0)
True
sage: C0_U.coerce_map_from(C0)
Coercion map:
From: Module C^0(RP^1;E) of sections on the 1-dimensional topological
manifold RP^1 with values in the real vector bundle E of rank 1

(continues on next page)

1.9. Topological Vector Bundles 299

Manifolds, Release 10.4.rc1

(continued from previous page)

To: Free module C^0(U;E) of sections on the Open subset U of the
1-dimensional topological manifold RP^1 with values in the real vector
bundle E of rank 1

The conversion map is actually the restriction of sections defined on𝑀 to 𝑈 .

Element

alias of Section

base_space()

Return the base space of the sections in this module.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = U.vector_bundle(2, E)
sage: C0 = E.section_module(); C0
Module C^0(U;E) of sections on the Open subset U of the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 2

sage: C0.base_space()
Open subset U of the 3-dimensional topological manifold M

default_frame()

Return the default frame defined on self.

EXAMPLES:

Get the default local frame of a non-trivial section module:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: E = M.vector_bundle(2, E)
sage: C0 = E.section_module()
sage: e = E.local_frame(e , domain=U)
sage: C0.default_frame()
Local frame (E|_U, (e_0,e_1))

The local frame is indeed the same, and not a copy:

sage: e is C0.default_frame()
True

domain()

Return the domain of the section module.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: C0_U = E.section_module(domain=U); C0_U
Module C^0(U;E) of sections on the Open subset U of the
3-dimensional topological manifold M with values in the real vector

(continues on next page)

300 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

bundle E of rank 2
sage: C0_U.domain()
Open subset U of the 3-dimensional topological manifold M

set_default_frame(basis)
Set the default local frame on self.

EXAMPLES:

Set a default frame of a non-trivial section module:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: E = M.vector_bundle(2, E)
sage: C0 = E.section_module(); C0
Module C^0(M;E) of sections on the 3-dimensional topological
manifold M with values in the real vector bundle E of rank 2

sage: e = E.local_frame(e , domain=U)
sage: C0.set_default_frame(e)
sage: C0.default_frame()
Local frame (E|_U, (e_0,e_1))

The local frame is indeed the same, and not a copy:

sage: e is C0.default_frame()
True

Notice, that the local frame is defined on a subset and is not part of the section module 𝐶𝑘(𝑀 ;𝐸):

sage: C0.default_frame().domain()
Open subset U of the 3-dimensional topological manifold M

vector_bundle()

Return the overlying vector bundle on which the section module is defined.

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: C0 = E.section_module(); C0
Module C^0(M;E) of sections on the 3-dimensional topological
manifold M with values in the real vector bundle E of rank 2

sage: C0.vector_bundle()
Topological real vector bundle E -> M of rank 2 over the base space
3-dimensional topological manifold M

sage: E is C0.vector_bundle()
True

zero()

Return the zero of self.

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()

(continues on next page)

1.9. Topological Vector Bundles 301

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E = M.vector_bundle(2, E)
sage: C0 = E.section_module()
sage: z = C0.zero(); z
Section zero on the 2-dimensional topological manifold M with values
in the real vector bundle E of rank 2

sage: z == 0
True

1.9.7 Sections

The classSection implements sections on vector bundles. The derived classTrivialSection is devoted to sections
on trivial parts of a vector bundle.

AUTHORS:

• Michael Jung (2019): initial version

class sage.manifolds.section.Section(section_module, name=None, latex_name=None)
Bases: ModuleElementWithMutability

Section in a vector bundle.

An instance of this class is a section in a vector bundle 𝐸 → 𝑀 of class 𝐶𝑘, where 𝐸|𝑈 is not manifestly trivial.
More precisely, a (local) section on a subset 𝑈 ∈𝑀 is a map of class 𝐶𝑘

𝑠 : 𝑈 −→ 𝐸

such that

∀𝑝 ∈ 𝑈, 𝑠(𝑝) ∈ 𝐸𝑝

where 𝐸𝑝 denotes the vector bundle fiber of 𝐸 over the point 𝑝 ∈ 𝑈 .

If 𝐸|𝑈 is trivial, the class TrivialSection should be used instead.

This is a Sage element class, the corresponding parent class being SectionModule.

INPUT:

• section_module – module 𝐶𝑘(𝑈 ;𝐸) of sections on 𝐸 over 𝑈 (cf. SectionModule)

• name – (default: None) name given to the section

• latex_name – (default: None) LaTeX symbol to denote the section; if none is provided, the LaTeX symbol
is set to name

EXAMPLES:

A section on a non-trivial rank 2 vector bundle over a non-trivial 2-manifold:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)

(continues on next page)

302 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElementWithMutability

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E = M.vector_bundle(2, E) # define the vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]]) # transition map␣
→˓between trivializations
sage: fU = phi_U.frame(); fV = phi_V.frame() # define induced frames
sage: s = E.section(name= s); s
Section s on the 2-dimensional topological manifold M with values in the
real vector bundle E of rank 2

The parent of 𝑠 is not a free module, since 𝐸 is not trivial:

sage: isinstance(s.parent(), FiniteRankFreeModule)
False

To fully define 𝑠, we have to specify its components in some local frames defined on the trivial parts of 𝐸. The
components consist of scalar fields defined on the corresponding domain. Let us start with 𝐸|𝑈 :

sage: s[fU,:] = [x^2, 1-y]
sage: s.display(fU)
s = x^2 (phi_U^*e_1) + (-y + 1) (phi_U^*e_2)

To set the components of 𝑠 on 𝑉 consistently, we copy the expressions of the components in the common subset
𝑊 :

sage: fUW = fU.restrict(W); fVW = fV.restrict(W)
sage: c_uvW = c_uv.restrict(W)
sage: s[fV,0] = s[fVW,0,c_uvW].expr() # long time
sage: s[fV,1] = s[fVW,1,c_uvW].expr() # long time

Actually, the operation above can be performed in a single line by means of the method add_comp_by_con-
tinuation():

sage: s.add_comp_by_continuation(fV, W, chart=c_uv)

At this stage, 𝑠 is fully defined, having components in frames fU and fV and the union of the domains of fU and
fV being the whole manifold:

sage: s.display(fV)
s = (-1/4*u^2 + 1/4*v^2 + 1/2*u + 1/2*v) (phi_V^*e_1)

+ (1/8*u^3 + 3/8*u^2*v + 3/8*u*v^2 + 1/8*v^3) (phi_V^*e_2)

Sections can be pointwisely added:

sage: t = E.section([x,y], frame=fU, name= t); t
Section t on the 2-dimensional topological manifold M with values in the
real vector bundle E of rank 2
sage: t.add_comp_by_continuation(fV, W, chart=c_uv)
sage: t.display(fV)
t = (1/4*u^2 - 1/4*v^2) (phi_V^*e_1) + (1/4*u^2 + 1/2*u*v + 1/4*v^2) (phi_V^*e_2)
sage: a = s + t; a
Section s+t on the 2-dimensional topological manifold M with values
in the real vector bundle E of rank 2
sage: a.display(fU)
s+t = (x^2 + x) (phi_U^*e_1) + (phi_U^*e_2)
sage: a.display(fV)

(continues on next page)

1.9. Topological Vector Bundles 303

Manifolds, Release 10.4.rc1

(continued from previous page)

s+t = (1/2*u + 1/2*v) (phi_V^*e_1) + (1/8*u^3 + 1/8*(3*u + 2)*v^2
+ 1/8*v^3 + 1/4*u^2 + 1/8*(3*u^2 + 4*u)*v) (phi_V^*e_2)

and multiplied by scalar fields:

sage: f = M.scalar_field(y^2-x^2, name= f)
sage: f.add_expr_by_continuation(c_uv, W)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ -x^2 + y^2
on V: (u, v) ↦ -u*v
sage: b = f*s; b
Section f*s on the 2-dimensional topological manifold M with values
in the real vector bundle E of rank 2
sage: b.display(fU)
f*s = (-x^4 + x^2*y^2) (phi_U^*e_1) + (x^2*y - y^3 - x^2 + y^2) (phi_U^*e_2)
sage: b.display(fV)
f*s = (-1/4*u*v^3 - 1/2*u*v^2 + 1/4*(u^3 - 2*u^2)*v) (phi_V^*e_1)

+ (-1/8*u^4*v - 3/8*u^3*v^2 - 3/8*u^2*v^3 - 1/8*u*v^4) (phi_V^*e_2)

The domain on which the section should be defined, can be stated via the domain option in section():

sage: cU = E.section([1,x], domain=U, name= c); cU
Section c on the Open subset U of the 2-dimensional topological manifold
M with values in the real vector bundle E of rank 2
sage: cU.display()
c = (phi_U^*e_1) + x (phi_U^*e_2)

Since 𝐸|𝑈 is trivial, cU now belongs to the free module:

sage: isinstance(cU.parent(), FiniteRankFreeModule)
True

Omitting the domain option, the section is defined on the whole base space:

sage: c = E.section(name= c); c
Section c on the 2-dimensional topological manifold M with values in the
real vector bundle E of rank 2

Via set_restriction(), cU can be defined as the restriction of c to 𝑈 :

sage: c.set_restriction(cU)
sage: c.display(fU)
c = (phi_U^*e_1) + x (phi_U^*e_2)
sage: c.restrict(U) == cU
True

Notice that the zero section is immutable, and therefore its components cannot be changed:

sage: zer = E.section_module().zero()
sage: zer.is_immutable()
True
sage: zer.set_comp()
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed

304 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

Other sections can be declared immutable, too:

sage: c.is_immutable()
False
sage: c.set_immutable()
sage: c.is_immutable()
True
sage: c.set_comp()
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed
sage: c.set_name(b)
Traceback (most recent call last):
...
ValueError: the name of an immutable element cannot be changed

add_comp(basis=None)

Return the components of self in a given local frame for assignment.

The components with respect to other frames having the same domain as the provided local frame are kept.
To delete them, use the method set_comp() instead.

INPUT:

• basis – (default: None) local frame in which the components are defined; if None, the components
are assumed to refer to the section domain’s default frame

OUTPUT:

• components in the given frame, as a Components; if such components did not exist previously, they
are created

EXAMPLES:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: fN = phi_U.frame(); fS = phi_V.frame() # get induced frames
sage: s = E.section(name= s)
sage: s.add_comp(fS)
1-index components w.r.t. Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_
→˓2)))
sage: s.add_comp(fS)[1] = u+v
sage: s.display(fS)
s = (u + v) (phi_V^*e_1)

1.9. Topological Vector Bundles 305

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

Setting the components in a new frame:

sage: e = E.local_frame(e , domain=V)
sage: s.add_comp(e)
1-index components w.r.t. Local frame (E|_V, (e_1,e_2))
sage: s.add_comp(e)[1] = u*v
sage: s.display(e)
s = u*v e_1

The components with respect to fS are kept:

sage: s.display(fS)
s = (u + v) (phi_V^*e_1)

add_comp_by_continuation(frame, subdomain, chart=None)
Set components with respect to a local frame by continuation of the coordinate expression of the components
in a subframe.

The continuation is performed by demanding that the components have the same coordinate expression as
those on the restriction of the frame to a given subdomain.

INPUT:

• frame – local frame 𝑒 in which the components are to be set

• subdomain – open subset of 𝑒’s domain in which the components are known or can be evaluated from
other components

• chart – (default: None) coordinate chart on 𝑒’s domain in which the extension of the expression of
the components is to be performed; if None, the default’s chart of 𝑒’s domain is assumed

EXAMPLES:

Components of a vector field on the sphere 𝑆2:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: fN = phi_U.frame(); fS = phi_V.frame() # get induced frames
sage: a = E.section({fN: [x, 2+y]}, name= a)

At this stage, the section has been defined only on the open subset U (through its components in the frame
fN):

306 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

sage: a.display(fN)
a = x (phi_U^*e_1) + (y + 2) (phi_U^*e_2)

The components with respect to the restriction of fS to the common subdomain W, in terms of the (u,v)
coordinates, are obtained by a change-of-frame formula on W:

sage: a.display(fS.restrict(W), stereoS.restrict(W))
a = (2*u^2 + 2*v^2 + v)/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2)
(phi_V^*e_2)

The continuation consists in extending the definition of the vector field to the whole open subset V by de-
manding that the components in the frame eV have the same coordinate expression as the above one:

sage: a.add_comp_by_continuation(fS, W, chart=stereoS)

We have then:

sage: a.display(fS)
a = (2*u^2 + 2*v^2 + v)/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2)
(phi_V^*e_2)

and 𝑎 is defined on the entire manifold 𝑆2.

add_expr_from_subdomain(frame, subdomain)
Add an expression to an existing component from a subdomain.

INPUT:

• frame – local frame 𝑒 in which the components are to be set

• subdomain – open subset of 𝑒’s domain in which the components have additional expressions.

EXAMPLES:

We are going to consider a section on the trivial rank 2 vector bundle over the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: e = E.local_frame(e) # frame to trivialize E
sage: eU = e.restrict(U); eV = e.restrict(V); eW = e.restrict(W) # this step␣
→˓is essential since U, V and W must be trivial

To define a section s on 𝑆2, we first set the components on U:

1.9. Topological Vector Bundles 307

Manifolds, Release 10.4.rc1

sage: s = E.section(name= s)
sage: sU = s.restrict(U)
sage: sU[:] = [x, y]

But because E is trivial, these components can be extended with respect to the global frame e onto 𝑆2:

sage: s.add_comp_by_continuation(e, U)

One can see that s is not yet fully defined: the components (scalar fields) do not have values on the whole
manifold:

sage: sorted(s._components.values())[0]._comp[(1,)].display()
S^2 → ℝ
on U: (x, y) ↦ x
on W: (u, v) ↦ u/(u^2 + v^2)

To fix that, we extend the components from W to V first, using add_comp_by_continuation():

sage: s.add_comp_by_continuation(eV, W, stereoS)

Then, the expression on the subdomain V is added to the components on 𝑆2 already known by:

sage: s.add_expr_from_subdomain(e, V)

The definition of s is now complete:

sage: sorted(s._components.values())[0]._comp[(2,)].display()
S^2 → ℝ
on U: (x, y) ↦ y
on V: (u, v) ↦ v/(u^2 + v^2)

at(point)
Value of self at a point of its domain.

If the current section is

𝑠 : 𝑈 −→ 𝐸,

then for any point 𝑝 ∈ 𝑈 , 𝑠(𝑝) is a vector in the fiber 𝐸𝑝 of 𝐸 at 𝑝.

INPUT:

• point – ManifoldPoint; point 𝑝 in the domain of the section 𝑈

OUTPUT:

• VectorBundleFiberElement representing the vector 𝑠(𝑝) in the fiber 𝐸𝑝 of 𝐸 at 𝑝.

EXAMPLES:

Vector on a rank 2 vector bundle fiber over a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)

(continues on next page)

308 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]])
sage: fU = phi_U.frame(); fV = phi_V.frame() # get induced frames
sage: s = E.section({fU: [1+y, x]}, name= s)
sage: s.add_comp_by_continuation(fV, W, chart=c_uv)
sage: s.display(fU)
s = (y + 1) (phi_U^*e_1) + x (phi_U^*e_2)
sage: s.display(fV)
s = (1/4*u^2 + 1/2*u*v + 1/4*v^2) (phi_V^*e_1) + (1/4*u^2 - 1/4*v^2
+ 1/2*u + 1/2*v) (phi_V^*e_2)

sage: p = M.point((2,3), chart=c_xy, name= p)
sage: sp = s.at(p) ; sp
Vector s in the fiber of E at Point p on the 2-dimensional
topological manifold M

sage: sp.parent()
Fiber of E at Point p on the 2-dimensional topological manifold M
sage: sp.display(fU.at(p))
s = 4 (phi_U^*e_1) + 2 (phi_U^*e_2)
sage: sp.display(fV.at(p))
s = 4 (phi_V^*e_1) + 8 (phi_V^*e_2)
sage: p.coord(c_uv) # to check the above expression
(5, -1)

base_module()

Return the section module on which self acts as a section.

OUTPUT:

• instance of SectionModule

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: s = E.section(domain=U)
sage: s.base_module()
Module C^0(U;E) of sections on the Open subset U of the
3-dimensional topological manifold M with values in the real vector
bundle E of rank 2

comp(basis=None, from_basis=None)
Return the components in a given local frame.

If the components are not known already, they are computed by the change-of-basis formula from components
in another local frame.

INPUT:

• basis – (default: None) local frame in which the components are required; if none is provided, the
components are assumed to refer to the section module’s default frame on the corresponding domain

• from_basis – (default: None) local frame from which the required components are computed, via
the change-of-basis formula, if they are not known already in the basis basis

1.9. Topological Vector Bundles 309

Manifolds, Release 10.4.rc1

OUTPUT:

• components in the local frame basis, as a Components

EXAMPLES:

Components of a section defined on a rank 2 vector bundle over two open subsets:

sage: M = Manifold(2, M , structure= top)
sage: X.<x, y> = M.chart()
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: XU = X.restrict(U); XV = X.restrict(V)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U); e
Local frame (E|_U, (e_0,e_1))
sage: f = E.local_frame(f , domain=V); f
Local frame (E|_V, (f_0,f_1))
sage: s = E.section(name= s)
sage: s[e,:] = - x + y^3, 2+x
sage: s[f,0] = x^2
sage: s[f,1] = x+y
sage: s.comp(e)
1-index components w.r.t. Local frame (E|_U, (e_0,e_1))
sage: s.comp(e)[:]
[y^3 - x, x + 2]
sage: s.comp(f)
1-index components w.r.t. Local frame (E|_V, (f_0,f_1))
sage: s.comp(f)[:]
[x^2, x + y]

Since e is the default frame of E|_U, the argument e can be omitted after restricting:

sage: e is E.section_module(domain=U).default_frame()
True
sage: s.restrict(U).comp() is s.comp(e)
True

copy(name=None, latex_name=None)
Return an exact copy of self.

INPUT:

• name – (default: None) name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

Note: The name and the derived quantities are not copied.

EXAMPLES:

Copy of a section on a rank 2 vector bundle over a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),

(continues on next page)

310 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

(continued from previous page)

....: intersection_name= W , restrictions1= x>0,

....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]])
sage: fU = phi_U.frame(); fV = phi_V.frame()
sage: s = E.section(name= s)
sage: s[fU,:] = [2, 1-y]
sage: s.add_comp_by_continuation(fV, U.intersection(V), c_uv)
sage: t = s.copy(); t
Section on the 2-dimensional topological manifold M with values in
the real vector bundle E of rank 2

sage: t.display(fU)
2 (phi_U^*e_1) + (-y + 1) (phi_U^*e_2)
sage: t == s
True

If the original section is modified, the copy is not:

sage: s[fU,0] = -1
sage: s.display(fU)
s = -(phi_U^*e_1) + (-y + 1) (phi_U^*e_2)
sage: t.display(fU)
2 (phi_U^*e_1) + (-y + 1) (phi_U^*e_2)
sage: t == s
False

copy_from(other)
Make self a copy of other.

INPUT:

• other – other section, in the same module as self

Note: While the derived quantities are not copied, the name is kept.

Warning: All previous defined components and restrictions will be deleted!

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: E = M.vector_bundle(2, E) # define vector bundle

(continues on next page)

1.9. Topological Vector Bundles 311

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[x,0]])
sage: fU = phi_U.frame(); fV = phi_V.frame()
sage: s = E.section(name= s)
sage: s[fU,:] = [2, 1-y]
sage: s.add_comp_by_continuation(fV, U.intersection(V), c_uv)
sage: t = E.section(name= t)
sage: t.copy_from(s)
sage: t.display(fU)
t = 2 (phi_U^*e_1) + (-y + 1) (phi_U^*e_2)
sage: s == t
True

If the original section is modified, the copy is not:

sage: s[fU,0] = -1
sage: s.display(fU)
s = -(phi_U^*e_1) + (-y + 1) (phi_U^*e_2)
sage: t.display(fU)
t = 2 (phi_U^*e_1) + (-y + 1) (phi_U^*e_2)
sage: s == t
False

disp(frame=None, chart=None)
Display the section in terms of its expansion with respect to a given local frame.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) local frame with respect to which the section is expanded; if frame is None
and chart is not None, the default frame in the corresponding section module is assumed

• chart – (default: None) chart with respect to which the components of the section in the selected
frame are expressed; if None, the default chart of the local frame domain is assumed

EXAMPLES:

Display of section on a rank 2 vector bundle over the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations

(continues on next page)

312 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: fN = phi_U.frame(); fS = phi_V.frame() # get induced frames
sage: s = E.section(name= s)
sage: s[fN,:] = [x, y]
sage: s.add_comp_by_continuation(fS, W, stereoS)
sage: s.display(fN)
s = x (phi_U^*e_1) + y (phi_U^*e_2)
sage: s.display(fS)
s = v/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2) (phi_V^*e_2)

Since fN is the default frame on E|_U, the argument fN can be omitted after restricting:

sage: fN is E.section_module(domain=U).default_frame()
True
sage: s.restrict(U).display()
s = x (phi_U^*e_1) + y (phi_U^*e_2)

Similarly, since fS is V’s default frame, the argument fS can be omitted when considering the restriction of
s to V:

sage: s.restrict(V).display()
s = v/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2) (phi_V^*e_2)

The second argument comes into play whenever the frame’s domain is covered by two distinct charts. Since
stereoN.restrict(W) is the default chart on W, the second argument can be omitted for the expression
in this chart:

sage: s.display(fS.restrict(W))
s = y (phi_V^*e_1) + x (phi_V^*e_2)

To get the expression in the other chart, the second argument must be used:

sage: s.display(fN.restrict(W), stereoS.restrict(W))
s = u/(u^2 + v^2) (phi_U^*e_1) + v/(u^2 + v^2) (phi_U^*e_2)

One can ask for the display with respect to a frame in which s has not been initialized yet (this will automat-
ically trigger the use of the change-of-frame formula for tensors):

sage: a = E.section_module(domain=U).automorphism()
sage: a[:] = [[1+x^2,0],[0,1+y^2]]
sage: e = fN.new_frame(a, e)
sage: [e[i].display() for i in S2.irange()]
[e_1 = (x^2 + 1) (phi_U^*e_1), e_2 = (y^2 + 1) (phi_U^*e_2)]
sage: s.display(e)
s = x/(x^2 + 1) e_1 + y/(y^2 + 1) e_2

A shortcut of display() is disp():

sage: s.disp(fS)
s = v/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2) (phi_V^*e_2)

display(frame=None, chart=None)
Display the section in terms of its expansion with respect to a given local frame.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

1.9. Topological Vector Bundles 313

Manifolds, Release 10.4.rc1

INPUT:

• frame – (default: None) local frame with respect to which the section is expanded; if frame is None
and chart is not None, the default frame in the corresponding section module is assumed

• chart – (default: None) chart with respect to which the components of the section in the selected
frame are expressed; if None, the default chart of the local frame domain is assumed

EXAMPLES:

Display of section on a rank 2 vector bundle over the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,1],[1,0]])
sage: fN = phi_U.frame(); fS = phi_V.frame() # get induced frames
sage: s = E.section(name= s)
sage: s[fN,:] = [x, y]
sage: s.add_comp_by_continuation(fS, W, stereoS)
sage: s.display(fN)
s = x (phi_U^*e_1) + y (phi_U^*e_2)
sage: s.display(fS)
s = v/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2) (phi_V^*e_2)

Since fN is the default frame on E|_U, the argument fN can be omitted after restricting:

sage: fN is E.section_module(domain=U).default_frame()
True
sage: s.restrict(U).display()
s = x (phi_U^*e_1) + y (phi_U^*e_2)

Similarly, since fS is V’s default frame, the argument fS can be omitted when considering the restriction of
s to V:

sage: s.restrict(V).display()
s = v/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2) (phi_V^*e_2)

The second argument comes into play whenever the frame’s domain is covered by two distinct charts. Since
stereoN.restrict(W) is the default chart on W, the second argument can be omitted for the expression
in this chart:

sage: s.display(fS.restrict(W))
s = y (phi_V^*e_1) + x (phi_V^*e_2)

314 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

To get the expression in the other chart, the second argument must be used:

sage: s.display(fN.restrict(W), stereoS.restrict(W))
s = u/(u^2 + v^2) (phi_U^*e_1) + v/(u^2 + v^2) (phi_U^*e_2)

One can ask for the display with respect to a frame in which s has not been initialized yet (this will automat-
ically trigger the use of the change-of-frame formula for tensors):

sage: a = E.section_module(domain=U).automorphism()
sage: a[:] = [[1+x^2,0],[0,1+y^2]]
sage: e = fN.new_frame(a, e)
sage: [e[i].display() for i in S2.irange()]
[e_1 = (x^2 + 1) (phi_U^*e_1), e_2 = (y^2 + 1) (phi_U^*e_2)]
sage: s.display(e)
s = x/(x^2 + 1) e_1 + y/(y^2 + 1) e_2

A shortcut of display() is disp():

sage: s.disp(fS)
s = v/(u^2 + v^2) (phi_V^*e_1) + u/(u^2 + v^2) (phi_V^*e_2)

display_comp(frame=None, chart=None, only_nonzero=True)
Display the section components with respect to a given frame, one per line.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) local frame with respect to which the section components are defined; if
None, then the default frame on the section module is used

• chart – (default: None) chart specifying the coordinate expression of the components; if None, the
default chart of the section domain is used

• only_nonzero – (default: True) boolean; if True, only nonzero components are displayed

EXAMPLES:

Display of the components of a section defined on two open subsets:

sage: M = Manifold(2, M , structure= top)
sage: U = M.open_subset(U)
sage: c_xy.<x, y> = U.chart()
sage: V = M.open_subset(V)
sage: c_uv.<u, v> = V.chart()
sage: M.declare_union(U,V) # M is the union of U and V
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e , domain=U)
sage: f = E.local_frame(f , domain=V)
sage: s = E.section(name= s)
sage: s[e,0] = - x + y^3
sage: s[e,1] = 2+x
sage: s[f,1] = - u*v
sage: s.display_comp(e)
s^0 = y^3 - x
s^1 = x + 2
sage: s.display_comp(f)
s^1 = -u*v

See documentation of sage.manifolds.section.TrivialSection.display_comp() for
more options.

1.9. Topological Vector Bundles 315

Manifolds, Release 10.4.rc1

domain()

Return the manifold on which self is defined.

OUTPUT:

• instance of class TopologicalManifold

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: U = M.open_subset(U)
sage: E = M.vector_bundle(2, E)
sage: C0_U = E.section_module(domain=U, force_free=True)
sage: z = C0_U.zero()
sage: z.domain()
Open subset U of the 3-dimensional topological manifold M

restrict(subdomain)
Return the restriction of self to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – DifferentiableManifold; open subset 𝑈 of the section domain 𝑆

OUTPUT:

• Section representing the restriction

EXAMPLES:

Restrictions of a section on a rank 2 vector bundle over the 2-sphere:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[y,0]])
sage: fN = phi_U.frame(); fS = phi_V.frame() # get induced frames
sage: fN_W = fN.restrict(W); fS_W = fS.restrict(W) # restrict them
sage: stereoN_W = stereoN.restrict(W) # restrict charts, too
sage: stereoS_W = stereoS.restrict(W)
sage: s = E.section({fN: [1, 0]}, name= s)
sage: s.display(fN)
s = (phi_U^*e_1)
sage: sU = s.restrict(U) ; sU

(continues on next page)

316 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Section s on the Open subset U of the 2-dimensional topological
manifold S^2 with values in the real vector bundle E of rank 2

sage: sU.display() # fN is the default frame on U
s = (phi_U^*e_1)
sage: sU == fN[1]
True
sage: sW = s.restrict(W) ; sW
Section s on the Open subset W of the 2-dimensional topological
manifold S^2 with values in the real vector bundle E of rank 2

sage: sW.display(fN_W)
s = (phi_U^*e_1)
sage: sW.display(fS_W, stereoN_W)
s = y (phi_V^*e_2)
sage: sW.display(fS_W, stereoS_W)
s = v/(u^2 + v^2) (phi_V^*e_2)
sage: sW == fN_W[1]
True

At this stage, defining the restriction of s to the open subset V fully specifies s:

sage: s.restrict(V)[1] = sW[fS_W, 1, stereoS_W].expr() # note that fS is the␣
→˓default frame on V
sage: s.restrict(V)[2] = sW[fS_W, 2, stereoS_W].expr()
sage: s.display(fS, stereoS)
s = v/(u^2 + v^2) (phi_V^*e_2)
sage: s.restrict(U).display()
s = (phi_U^*e_1)
sage: s.restrict(V).display()
s = v/(u^2 + v^2) (phi_V^*e_2)

The restriction of the section to its own domain is of course itself:

sage: s.restrict(S2) is s
True
sage: sU.restrict(U) is sU
True

set_comp(basis=None)
Return the components of self in a given local frame for assignment.

The components with respect to other frames having the same domain as the provided local frame are deleted,
in order to avoid any inconsistency. To keep them, use the method add_comp() instead.

INPUT:

• basis – (default: None) local frame in which the components are defined; if none is provided, the
components are assumed to refer to the section domain’s default frame

OUTPUT:

• components in the given frame, as a Components; if such components did not exist previously, they
are created

EXAMPLES:

sage: S2 = Manifold(2, S^2 , structure= top , start_index=1)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively

(continues on next page)

1.9. Topological Vector Bundles 317

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E) # define vector bundle
sage: phi_U = E.trivialization(phi_U , domain=U) # define trivializations
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: transf = phi_U.transition_map(phi_V, [[0,x],[y,0]])
sage: fN = phi_U.frame(); fS = phi_V.frame() # get induced frames
sage: s = E.section(name= s)
sage: s.set_comp(fS)
1-index components w.r.t. Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_
→˓2)))
sage: s.set_comp(fS)[1] = u+v
sage: s.display(fS)
s = (u + v) (phi_V^*e_1)

Setting the components in a new frame (e):

sage: e = E.local_frame(e , domain=V)
sage: s.set_comp(e)
1-index components w.r.t. Local frame (E|_V, (e_1,e_2))
sage: s.set_comp(e)[1] = u*v
sage: s.display(e)
s = u*v e_1

Since the frames e and fS are defined on the same domain, the components w.r.t. fS have been erased:

sage: s.display(phi_V.frame())
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components in
the Trivialization frame (E|_V, ((phi_V^*e_1),(phi_V^*e_2)))

set_immutable()

Set self and all restrictions of self immutable.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1})
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: s = E.section([1+y,x], name= s)
sage: sU = s.restrict(U)
sage: s.set_immutable()
sage: s.is_immutable()
True

(continues on next page)

318 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: sU.is_immutable()
True

set_name(name=None, latex_name=None)
Set (or change) the text name and LaTeX name of self.

INPUT:

• name – string (default: None); name given to the section

• latex_name – string (default: None); LaTeX symbol to denote the section; if None while name is
provided, the LaTeX symbol is set to name

EXAMPLES:

sage: M = Manifold(3, M , structure= top)
sage: E = M.vector_bundle(2, E)
sage: s = E.section(); s
Section on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 2

sage: s.set_name(name= s)
sage: s
Section s on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 2

sage: latex(s)
s
sage: s.set_name(latex_name=r \sigma)
sage: latex(s)
\sigma
sage: s.set_name(name= a)
sage: s
Section a on the 3-dimensional topological manifold M with values in
the real vector bundle E of rank 2

sage: latex(s)
a

set_restriction(rst)
Define a restriction of self to some subdomain.

INPUT:

• rst – Section defined on a subdomain of the domain of self

EXAMPLES:

sage: S2 = Manifold(2, S^2 , structure= top)
sage: U = S2.open_subset(U) ; V = S2.open_subset(V) # complement of the␣
→˓North and South pole, respectively
sage: S2.declare_union(U,V)
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: xy_to_uv = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)

(continues on next page)

1.9. Topological Vector Bundles 319

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: W = U.intersection(V)
sage: uv_to_xy = xy_to_uv.inverse()
sage: E = S2.vector_bundle(2, E)
sage: phi_U = E.trivialization(phi_U , domain=U)
sage: phi_V = E.trivialization(phi_V , domain=V)
sage: s = E.section(name= s)
sage: sU = E.section(domain=U, name= s)
sage: sU[:] = x+y, x
sage: s.set_restriction(sU)
sage: s.display(phi_U.frame())
s = (x + y) (phi_U^*e_1) + x (phi_U^*e_2)
sage: s.restrict(U) == sU
True

class sage.manifolds.section.TrivialSection(section_module, name=None, latex_name=None)
Bases: FiniteRankFreeModuleElement, Section

Section in a trivial vector bundle.

An instance of this class is a section in a vector bundle𝐸 →𝑀 of class 𝐶𝑘, where𝐸|𝑈 is manifestly trivial. More
precisely, a (local) section on a subset 𝑈 ∈𝑀 is a map of class 𝐶𝑘

𝑠 : 𝑈 −→ 𝐸

such that

∀𝑝 ∈ 𝑈, 𝑠(𝑝) ∈ 𝐸𝑝

where𝐸𝑝 denotes the vector bundle fiber of𝐸 over the point 𝑝 ∈ 𝑈 . 𝐸 being trivial means𝐸 being homeomorphic
to 𝐸 × 𝐹 , for 𝐹 is the typical fiber of 𝐸, namely the underlying topological vector space. By this means, 𝑠 can be
seen as a map of class 𝐶𝑘(𝑈 ;𝐸)

𝑠 : 𝑈 −→ 𝐹,

so that the set of all sections 𝐶𝑘(𝑈 ;𝐸) becomes a free module over the algebra of scalar fields on 𝑈 .

Note: If 𝐸|𝑈 is not manifestly trivial, the class Section should be used instead.

This is a Sage element class, the corresponding parent class being SectionFreeModule.

INPUT:

• section_module – free module 𝐶𝑘(𝑈 ;𝐸) of sections on 𝐸 over 𝑈 (cf. SectionFreeModule)

• name – (default: None) name given to the section

• latex_name – (default: None) LaTeX symbol to denote the section; if none is provided, the LaTeX symbol
is set to name

EXAMPLES:

A section on a trivial rank 3 vector bundle over the 3-sphere:

sage: M = Manifold(3, S^3 , structure= top)
sage: U = M.open_subset(U) ; V = M.open_subset(V) # complement of the North␣
→˓and South pole, respectively
sage: M.declare_union(U,V)

(continues on next page)

320 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_element.html#sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: stereoN.<x,y,z> = U.chart() # stereographic coordinates from the North pole
sage: stereoS.<u,v,t> = V.chart() # stereographic coordinates from the South pole
sage: xyz_to_uvt = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2+z^2), y/(x^2+y^2+z^2), z/(x^2+y^2+z^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2+z^2!=0,
....: restrictions2= u^2+v^2+t^2!=0)
sage: W = U.intersection(V)
sage: uvt_to_xyz = xyz_to_uvt.inverse()
sage: E = M.vector_bundle(3, E)
sage: e = E.local_frame(e) # Trivializes E
sage: s = E.section(name= s); s
Section s on the 3-dimensional topological manifold S^3 with values in
the real vector bundle E of rank 3
sage: s[e,:] = z^2, x-y, 1-x
sage: s.display()
s = z^2 e_0 + (x - y) e_1 + (-x + 1) e_2

Since 𝐸 is trivial, 𝑠 is now element of a free section module:

sage: s.parent()
Free module C^0(S^3;E) of sections on the 3-dimensional topological
manifold S^3 with values in the real vector bundle E of rank 3
sage: isinstance(s.parent(), FiniteRankFreeModule)
True

add_comp(basis=None)
Return the components of the section in a given local frame for assignment.

The components with respect to other frames on the same domain are kept. To delete them, use the method
set_comp() instead.

INPUT:

• basis – (default: None) local frame in which the components are defined; if none is provided, the
components are assumed to refer to the section module’s default frame

OUTPUT:

• components in the given frame, as an instance of the class Components; if such components did not
exist previously, they are created

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # makes E trivial
sage: s = E.section(name= s)
sage: s.add_comp(e)
1-index components w.r.t. Local frame (E|_M, (e_0,e_1))
sage: s.add_comp(e)[0] = 2
sage: s.display(e)
s = 2 e_0

Adding components with respect to a new frame (f):

1.9. Topological Vector Bundles 321

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

sage: f = E.local_frame(f)
sage: s.add_comp(f)
1-index components w.r.t. Local frame (E|_M, (f_0,f_1))
sage: s.add_comp(f)[0] = x
sage: s.display(f)
s = x f_0

The components with respect to the frame e are kept:

sage: s.display(e)
s = 2 e_0

Adding components in a frame defined on a subdomain:

sage: U = M.open_subset(U , coord_def={X: x>0})
sage: g = E.local_frame(g , domain=U)
sage: s.add_comp(g)
1-index components w.r.t. Local frame (E|_U, (g_0,g_1))
sage: s.add_comp(g)[0] = 1+y
sage: s.display(g)
s = (y + 1) g_0

The components previously defined are kept:

sage: s.display(e)
s = 2 e_0
sage: s.display(f)
s = x f_0

at(point)
Value of self at a point of its domain.

If the current section is

𝑠 : 𝑈 −→ 𝐸,

then for any point 𝑝 ∈ 𝑈 , 𝑠(𝑝) is a vector in the fiber 𝐸𝑝 of 𝐸 at the point 𝑝 ∈ 𝑈 .

INPUT:

• point – ManifoldPoint point 𝑝 in the domain of the section 𝑈

OUTPUT:

• FreeModuleTensor representing the vector 𝑠(𝑝) in the vector space 𝐸𝑝

EXAMPLES:

Vector in a tangent space of a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: p = M.point((-2,3), name= p)
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # makes E trivial
sage: s = E.section(y, x^2, name= s)
sage: s.display()
s = y e_0 + x^2 e_1
sage: sp = s.at(p) ; sp

(continues on next page)

322 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor

Manifolds, Release 10.4.rc1

(continued from previous page)

Vector s in the fiber of E at Point p on the 2-dimensional
topological manifold M

sage: sp.parent()
Fiber of E at Point p on the 2-dimensional topological manifold M
sage: sp.display()
s = 3 e_0 + 4 e_1

comp(basis=None, from_basis=None)
Return the components in a given local frame.

If the components are not known already, they are computed by the tensor change-of-basis formula from
components in another local frame.

INPUT:

• basis – (default: None) local frame in which the components are required; if none is provided, the
components are assumed to refer to the section module’s default frame

• from_basis – (default: None) local frame from which the required components are computed, via
the tensor change-of-basis formula, if they are not known already in the basis basis

OUTPUT:

• components in the local frame basis, as an instance of the class Components

EXAMPLES:

sage: M = Manifold(2, M , structure= top , start_index=1)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # makes E trivial
sage: s = E.section(name= s)
sage: s[1] = x*y
sage: s.comp(e)
1-index components w.r.t. Local frame (E|_M, (e_1,e_2))
sage: s.comp() # the default frame is e
1-index components w.r.t. Local frame (E|_M, (e_1,e_2))
sage: s.comp()[:]
[x*y, 0]
sage: f = E.local_frame(f)
sage: s[f, 1] = x-3
sage: s.comp(f)
1-index components w.r.t. Local frame (E|_M, (f_1,f_2))
sage: s.comp(f)[:]
[x - 3, 0]

display_comp(frame=None, chart=None, only_nonzero=False)
Display the section components with respect to a given frame, one per line.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) local frame with respect to which the section components are defined; if
None, then the default basis of the section module on which the section is defined is used

• chart – (default: None) chart specifying the coordinate expression of the components; if None, the
default chart of the section module domain is used

• only_nonzero – (default: False) boolean; if True, only nonzero components are displayed

1.9. Topological Vector Bundles 323

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

EXAMPLES:

Display of the components of a section on a rank 4 vector bundle over a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(3, E)
sage: e = E.local_frame(e) # makes E trivial
sage: s = E.section(name= s)
sage: s[0], s[2] = x+y, x*y
sage: s.display_comp()
s^0 = x + y
s^1 = 0
s^2 = x*y

By default, the vanishing components are displayed, too; to see only non-vanishing components, the argument
only_nonzero must be set to True:

sage: s.display_comp(only_nonzero=True)
s^0 = x + y
s^2 = x*y

Display in a frame different from the default one:

sage: a = E.section_module().automorphism()
sage: a[:] = [[1+y^2, 0, 0], [0, 2+x^2, 0], [0, 0, 1]]
sage: f = e.new_frame(a, f)
sage: s.display_comp(frame=f)
s^0 = (x + y)/(y^2 + 1)
s^1 = 0
s^2 = x*y

Display with respect to a chart different from the default one:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: Y_to_X = X_to_Y.inverse()
sage: s.display_comp(chart=Y)
s^0 = u
s^1 = 0
s^2 = 1/4*u^2 - 1/4*v^2

Display of the components with respect to a specific frame, expressed in terms of a specific chart:

sage: s.display_comp(frame=f, chart=Y)
s^0 = 4*u/(u^2 - 2*u*v + v^2 + 4)
s^1 = 0
s^2 = 1/4*u^2 - 1/4*v^2

restrict(subdomain)
Return the restriction of self to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – DifferentiableManifold; open subset 𝑈 of the section module domain 𝑆

OUTPUT:

324 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

• instance of TrivialSection representing the restriction

EXAMPLES:

Restriction of a section defined over R2 to a disk:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # makes E trivial
sage: s = E.section(x+y, -1+x^2, name= s)
sage: D = M.open_subset(D) # the unit open disc
sage: e_D = e.restrict(D)
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: s_D = s.restrict(D) ; s_D
Section s on the Open subset D of the 2-dimensional differentiable
manifold R^2 with values in the real vector bundle E of rank 2

sage: s_D.display(e_D)
s = (x + y) e_0 + (x^2 - 1) e_1

The symbolic expressions of the components with respect to Cartesian coordinates are equal:

sage: bool(s_D[1].expr() == s[1].expr())
True

but neither the chart functions representing the components (they are defined on different charts):

sage: s_D[1] == s[1]
False

nor the scalar fields representing the components (they are defined on different open subsets):

sage: s_D[[1]] == s[[1]]
False

The restriction of the section to its own domain is of course itself:

sage: s.restrict(M) is s
True

set_comp(basis=None)
Return the components of the section in a given local frame for assignment.

The components with respect to other frames on the same domain are deleted, in order to avoid any in-
consistency. To keep them, use the method add_comp() instead.

INPUT:

• basis – (default: None) local frame in which the components are defined; if none is provided, the
components are assumed to refer to the section module’s default frame

OUTPUT:

• components in the given frame, as an instance of the class Components; if such components did not
exist previously, they are created

EXAMPLES:

sage: M = Manifold(2, M , structure= top)
sage: X.<x,y> = M.chart()

(continues on next page)

1.9. Topological Vector Bundles 325

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # makes E trivial
sage: s = E.section(name= s)
sage: s.set_comp(e)
1-index components w.r.t. Local frame (E|_M, (e_0,e_1))
sage: s.set_comp(e)[0] = 2
sage: s.display(e)
s = 2 e_0

Setting components in a new frame (f):

sage: f = E.local_frame(f)
sage: s.set_comp(f)
1-index components w.r.t. Local frame (E|_M, (f_0,f_1))
sage: s.set_comp(f)[0] = x
sage: s.display(f)
s = x f_0

The components with respect to the frame e have be erased:

sage: s.display(e)
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components
in the Local frame (E|_M, (e_0,e_1))

Setting components in a frame defined on a subdomain deletes previously defined components as well:

sage: U = M.open_subset(U , coord_def={X: x>0})
sage: g = E.local_frame(g , domain=U)
sage: s.set_comp(g)
1-index components w.r.t. Local frame (E|_U, (g_0,g_1))
sage: s.set_comp(g)[0] = 1+y
sage: s.display(g)
s = (y + 1) g_0
sage: s.display(f)
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components
in the Local frame (E|_M, (f_0,f_1))

1.10 Families of Manifold Objects

The classManifoldObjectFiniteFamily is a subclass ofFiniteFamily that provides an associative container
of manifold objects, indexed by their _name attributes.

ManifoldObjectFiniteFamily instances are totally ordered according to their lexicographically ordered element
names.

The subclass ManifoldSubsetFiniteFamily customizes the print representation further.

AUTHORS:

• Matthias Koeppe (2021): initial version

326 Chapter 1. Topological Manifolds

../../../../../../html/en/reference/sets/sage/sets/family.html#sage.sets.family.FiniteFamily

Manifolds, Release 10.4.rc1

class sage.manifolds.family.ManifoldObjectFiniteFamily(objects=(), keys=None)
Bases: FiniteFamily

Finite family of manifold objects, indexed by their names.

The class ManifoldObjectFiniteFamily inherits from FiniteFamily. Therefore it is an associative
container.

It provides specialized __repr__ and _latex_ methods.

ManifoldObjectFiniteFamily instances are totally ordered according to their lexicographically ordered
element names.

EXAMPLES:

sage: from sage.manifolds.family import ManifoldObjectFiniteFamily
sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: B = M.subset(B)
sage: C = B.subset(C)
sage: F = ManifoldObjectFiniteFamily([A, B, C]); F
Set {A, B, C} of objects of the 2-dimensional topological manifold M
sage: latex(F)
\{A, B, C\}
sage: F[B]
Subset B of the 2-dimensional topological manifold M

All objects must have the same base manifold:

sage: N = Manifold(2, N , structure= topological)
sage: ManifoldObjectFiniteFamily([M, N])
Traceback (most recent call last):
...
TypeError: all objects must have the same manifold

class sage.manifolds.family.ManifoldSubsetFiniteFamily(objects=(), keys=None)
Bases: ManifoldObjectFiniteFamily

Finite family of subsets of a topological manifold, indexed by their names.

The class ManifoldSubsetFiniteFamily inherits from ManifoldObjectFiniteFamily. It pro-
vides an associative container with specialized __repr__ and _latex_ methods.

ManifoldSubsetFiniteFamily instances are totally ordered according to their lexicographically ordered
element (subset) names.

EXAMPLES:

sage: from sage.manifolds.family import ManifoldSubsetFiniteFamily
sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: B = M.subset(B)
sage: C = B.subset(C)
sage: ManifoldSubsetFiniteFamily([A, B, C])
Set {A, B, C} of subsets of the 2-dimensional topological manifold M
sage: latex(_)
\{A, B, C\}

All subsets must have the same base manifold:

1.10. Families of Manifold Objects 327

../../../../../../html/en/reference/sets/sage/sets/family.html#sage.sets.family.FiniteFamily
../../../../../../html/en/reference/sets/sage/sets/family.html#sage.sets.family.FiniteFamily

Manifolds, Release 10.4.rc1

sage: N = Manifold(2, N , structure= topological)
sage: ManifoldSubsetFiniteFamily([M, N])
Traceback (most recent call last):
...
TypeError: all open subsets must have the same manifold

classmethod from_subsets_or_families(*subsets_or_families)

Construct a ManifoldSubsetFiniteFamily from given subsets or iterables of subsets.

EXAMPLES:

sage: from sage.manifolds.family import ManifoldSubsetFiniteFamily
sage: M = Manifold(2, M , structure= topological)
sage: A = M.subset(A)
sage: Bs = (M.subset(f B{i}) for i in range(5))
sage: Cs = ManifoldSubsetFiniteFamily([M.subset(C0), M.subset(C1)])
sage: ManifoldSubsetFiniteFamily.from_subsets_or_families(A, Bs, Cs)
Set {A, B0, B1, B2, B3, B4, C0, C1} of subsets of the 2-dimensional␣
→˓topological manifold M

1.11 Topological Closures of Manifold Subsets

ManifoldSubsetClosure implements the topological closure of a manifold subset in the topology of the manifold.

class sage.manifolds.subsets.closure.ManifoldSubsetClosure(subset, name=None,
latex_name=None)

Bases: ManifoldSubset

Topological closure of a manifold subset in the topology of the manifold.

INPUT:

• subset – a ManifoldSubset

• name – (default: computed from the name of the subset) string; name (symbol) given to the closure

• latex_name – (default: None) string; LaTeX symbol to denote the subset; if none is provided, it is set to
name

EXAMPLES:

sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset(D , coord_def={c_cart: x^2+y^2<1}); D
Open subset D of the 2-dimensional topological manifold R^2
sage: cl_D = D.closure()
sage: cl_D
Topological closure cl_D of the Open subset D of the 2-dimensional
topological manifold R^2
sage: latex(cl_D)
\mathop{\mathrm{cl}}(D)
sage: type(cl_D)
<class sage.manifolds.subsets.closure.ManifoldSubsetClosure_with_category >
sage: cl_D.category()
Category of subobjects of sets

328 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

The closure of the subset 𝐷 is a subset of every closed superset of 𝐷:

sage: S = D.superset(S)
sage: S.declare_closed()
sage: cl_D.is_subset(S)
True

is_closed()

Return if self is a closed set.

This implementation of the method always returns True.

EXAMPLES:

sage: from sage.manifolds.subsets.closure import ManifoldSubsetClosure
sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset(D , coord_def={c_cart: x^2+y^2<1}); D
Open subset D of the 2-dimensional topological manifold R^2
sage: cl_D = D.closure(); cl_D # indirect doctest
Topological closure cl_D of the Open subset D of the 2-dimensional␣
→˓topological manifold R^2
sage: cl_D.is_closed()
True

1.12 Manifold Subsets Defined as Pullbacks of Subsets under Con-
tinuous Maps

class sage.manifolds.subsets.pullback.ManifoldSubsetPullback(map, codomain_subset,
inverse, name,
latex_name)

Bases: ManifoldSubset

Manifold subset defined as a pullback of a subset under a continuous map.

INPUT:

• map – an instance of ContinuousMap, ScalarField, or Chart

• codomain_subset – an instance of ManifoldSubset, RealSet, or ConvexSet_base

EXAMPLES:

sage: from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2

Pulling back a real interval under a scalar field:

sage: r_squared = M.scalar_field(x^2+y^2)
sage: r_squared.set_immutable()
sage: cl_I = RealSet([1, 4]); cl_I
[1, 4]
sage: cl_O = ManifoldSubsetPullback(r_squared, cl_I); cl_O
Subset f_inv_[1, 4] of the 2-dimensional topological manifold R^2
sage: M.point((0, 0)) in cl_O

(continues on next page)

1.12. Manifold Subsets Defined as Pullbacks of Subsets under Continuous Maps 329

../../../../../../../html/en/reference/sets/sage/sets/real_set.html#sage.sets.real_set.RealSet
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/convex_set.html#sage.geometry.convex_set.ConvexSet_base

Manifolds, Release 10.4.rc1

(continued from previous page)

False
sage: M.point((0, 1)) in cl_O
True

Pulling back an open real interval gives an open subset:

sage: I = RealSet((1, 4)); I
(1, 4)
sage: O = ManifoldSubsetPullback(r_squared, I); O
Open subset f_inv_(1, 4) of the 2-dimensional topological manifold R^2
sage: M.point((1, 0)) in O
False
sage: M.point((1, 1)) in O
True

Pulling back a polytope under a chart:

sage: # needs sage.geometry.polyhedron
sage: P = Polyhedron(vertices=[[0, 0], [1, 2], [2, 1]]); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: S = ManifoldSubsetPullback(c_cart, P); S
Subset x_y_inv_P of the 2-dimensional topological manifold R^2
sage: M((1, 2)) in S
True
sage: M((2, 0)) in S
False

Pulling back the interior of a polytope under a chart:

sage: # needs sage.geometry.polyhedron
sage: int_P = P.interior(); int_P
Relative interior of a
2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: int_S = ManifoldSubsetPullback(c_cart, int_P, name= int_S); int_S
Open subset int_S of the 2-dimensional topological manifold R^2
sage: M((0, 0)) in int_S
False
sage: M((1, 1)) in int_S
True

Using the embedding map of a submanifold:

sage: M = Manifold(3, M , structure="topological")
sage: N = Manifold(2, N , ambient=M, structure="topological"); N
2-dimensional topological submanifold N
immersed in the 3-dimensional topological manifold M
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()
sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u,v,t+u^2+v^2]})
sage: phi_inv = M.continuous_map(N, {(CM,CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: N.set_immersion(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})
sage: N.declare_embedding()

sage: from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
(continues on next page)

330 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: S = M.open_subset(S , coord_def={CM: z<1})
sage: phi_without_t = N.continuous_map(M, {(CN, CM): [expr.subs(t=0)
....: for expr in phi.expr()]})
sage: phi_without_t
Continuous map
from the 2-dimensional topological submanifold N
embedded in the 3-dimensional topological manifold M

to the 3-dimensional topological manifold M
sage: phi_without_t.expr()
(u, v, u^2 + v^2)
sage: D = ManifoldSubsetPullback(phi_without_t, S); D
Subset f_inv_S of the 2-dimensional topological submanifold N
embedded in the 3-dimensional topological manifold M
sage: N.point((2,0)) in D
False

closure(name=None, latex_name=None)
Return the topological closure of self in the manifold.

Because self is a pullback of some subset under a continuous map, the closure of self is the pullback of
the closure.

EXAMPLES:

sage: from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: r_squared = M.scalar_field(x^2+y^2)
sage: r_squared.set_immutable()
sage: I = RealSet.open_closed(1, 2); I
(1, 2]
sage: O = ManifoldSubsetPullback(r_squared, I); O
Subset f_inv_(1, 2] of the 2-dimensional topological manifold R^2
sage: latex(O)
f^{-1}((1, 2])
sage: cl_O = O.closure(); cl_O
Subset f_inv_[1, 2] of the 2-dimensional topological manifold R^2
sage: cl_O.is_closed()
True

is_closed()

Return if self is (known to be) a closed subset of the manifold.

EXAMPLES:

sage: from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2

The pullback of a closed real interval under a scalar field is closed:

sage: r_squared = M.scalar_field(x^2+y^2)
sage: r_squared.set_immutable()
sage: cl_I = RealSet([1, 2]); cl_I
[1, 2]
sage: cl_O = ManifoldSubsetPullback(r_squared, cl_I); cl_O
Subset f_inv_[1, 2] of the 2-dimensional topological manifold R^2

(continues on next page)

1.12. Manifold Subsets Defined as Pullbacks of Subsets under Continuous Maps 331

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: cl_O.is_closed()
True

The pullback of a (closed convex) polyhedron under a chart is closed:

sage: # needs sage.geometry.polyhedron
sage: P = Polyhedron(vertices=[[0, 0], [1, 2], [3, 4]]); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: McP = ManifoldSubsetPullback(c_cart, P, name= McP); McP
Subset McP of the 2-dimensional topological manifold R^2
sage: McP.is_closed()
True

The pullback of real vector subspaces under a chart is closed:

sage: V = span([[1, 2]], RR); V
Vector space of degree 2 and dimension 1 over Real Field with 53 bits of␣
→˓precision
Basis matrix:
[1.00000000000000 2.00000000000000]
sage: McV = ManifoldSubsetPullback(c_cart, V, name= McV); McV
Subset McV of the 2-dimensional topological manifold R^2
sage: McV.is_closed()
True

The pullback of point lattices under a chart is closed:

sage: W = span([[1, 0], [3, 5]], ZZ); W
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 5]
sage: McW = ManifoldSubsetPullback(c_cart, W, name= McW); McW
Subset McW of the 2-dimensional topological manifold R^2
sage: McW.is_closed()
True

The pullback of finite sets is closed:

sage: F = Family([vector(QQ, [1, 2], immutable=True), vector(QQ, [2, 3],␣
→˓immutable=True)])
sage: McF = ManifoldSubsetPullback(c_cart, F, name= McF); McF
Subset McF of the 2-dimensional topological manifold R^2
sage: McF.is_closed()
True

is_open()

Return if self is (known to be) an open set.

This version of the method always returns False.

Because the map is continuous, the pullback is open if the codomain_subset is open.

However, the design of ManifoldSubset requires that open subsets are instances of the subclass sage.
manifolds.manifold.TopologicalManifold. The constructor of ManifoldSubsetPull-
back delegates to a subclass of sage.manifolds.manifold.TopologicalManifold for some
open subsets.

332 Chapter 1. Topological Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
sage: M = Manifold(2, R^2 , structure= topological)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2

sage: # needs sage.geometry.polyhedron
sage: P = Polyhedron(vertices=[[0, 0], [1, 2], [3, 4]]); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: P.is_open()
False
sage: McP = ManifoldSubsetPullback(c_cart, P, name= McP); McP
Subset McP of the 2-dimensional topological manifold R^2
sage: McP.is_open()
False

some_elements()

Generate some elements of self.

EXAMPLES:

sage: # needs sage.geometry.polyhedron
sage: from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
sage: M = Manifold(3, R^3 , structure= topological)
sage: c_cart.<x,y,z> = M.chart() # Cartesian coordinates on R^3
sage: Cube = polytopes.cube(); Cube
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: McCube = ManifoldSubsetPullback(c_cart, Cube, name= McCube); McCube
Subset McCube of the 3-dimensional topological manifold R^3
sage: L = list(McCube.some_elements()); L
[Point on the 3-dimensional topological manifold R^3,
Point on the 3-dimensional topological manifold R^3,
Point on the 3-dimensional topological manifold R^3,
Point on the 3-dimensional topological manifold R^3,
Point on the 3-dimensional topological manifold R^3,
Point on the 3-dimensional topological manifold R^3]

sage: list(p.coordinates(c_cart) for p in L)
[(0, 0, 0),
(1, -1, -1),
(1, 0, -1),
(1, 1/2, 0),
(1, -1/4, 1/2),
(0, -5/8, 3/4)]

sage: # needs sage.geometry.polyhedron
sage: Empty = Polyhedron(ambient_dim=3)
sage: McEmpty = ManifoldSubsetPullback(c_cart, Empty, name= McEmpty)
sage: McEmpty
Subset McEmpty of the 3-dimensional topological manifold R^3
sage: list(McEmpty.some_elements())
[]

1.12. Manifold Subsets Defined as Pullbacks of Subsets under Continuous Maps 333

Manifolds, Release 10.4.rc1

334 Chapter 1. Topological Manifolds

CHAPTER

TWO

DIFFERENTIABLE MANIFOLDS

2.1 Differentiable Manifolds

Given a non-discrete topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C; see however [Ser1992] for 𝐾 = 𝑝

and [Ber2008] for other fields), a differentiable manifold over 𝐾 is a topological manifold 𝑀 over 𝐾 equipped with
an atlas whose transitions maps are of class 𝐶𝑘 (i.e. 𝑘-times continuously differentiable) for a fixed positive integer 𝑘
(possibly 𝑘 = ∞). 𝑀 is then called a 𝐶𝑘-manifold over 𝐾.

Note that

• if the mention of𝐾 is omitted, then𝐾 = R is assumed;

• if𝐾 = C, any 𝐶𝑘-manifold with 𝑘 ≥ 1 is actually a 𝐶∞-manifold (even an analytic manifold);

• if𝐾 = R, any 𝐶𝑘-manifold with 𝑘 ≥ 1 admits a compatible 𝐶∞-structure (Whitney’s smoothing theorem).

Differentiable manifolds are implemented via the class DifferentiableManifold. Open subsets of differentiable
manifolds are also implemented via DifferentiableManifold, since they are differentiable manifolds by them-
selves.

The user interface is provided by the generic function Manifold(), with the argument structure set to
differentiable and the argument diff_degree set to 𝑘, or the argument structure set to smooth

(the default value).

Example 1: the 2-sphere as a differentiable manifold of dimension 2 over R

One starts by declaring 𝑆2 as a 2-dimensional differentiable manifold:

sage: M = Manifold(2, S^2)
sage: M
2-dimensional differentiable manifold S^2

Since the base topological field has not been specified in the argument list of Manifold, R is assumed:

sage: M.base_field()
Real Field with 53 bits of precision
sage: dim(M)
2

By default, the created object is a smooth manifold:

sage: M.diff_degree()
+Infinity

Let us consider the complement of a point, the “North pole” say; this is an open subset of 𝑆2, which we call 𝑈 :

335

Manifolds, Release 10.4.rc1

sage: U = M.open_subset(U); U
Open subset U of the 2-dimensional differentiable manifold S^2

A standard chart on 𝑈 is provided by the stereographic projection from the North pole to the equatorial plane:

sage: stereoN.<x,y> = U.chart(); stereoN
Chart (U, (x, y))

Thanks to the operator <x,y> on the left-hand side, the coordinates declared in a chart (here 𝑥 and 𝑦), are accessible by
their names; they are Sage’s symbolic variables:

sage: y
y
sage: type(y)
<class sage.symbolic.expression.Expression >

The South pole is the point of coordinates (𝑥, 𝑦) = (0, 0) in the above chart:

sage: S = U.point((0,0), chart=stereoN, name= S); S
Point S on the 2-dimensional differentiable manifold S^2

Let us call 𝑉 the open subset that is the complement of the South pole and let us introduce on it the chart induced by the
stereographic projection from the South pole to the equatorial plane:

sage: V = M.open_subset(V); V
Open subset V of the 2-dimensional differentiable manifold S^2
sage: stereoS.<u,v> = V.chart(); stereoS
Chart (V, (u, v))

The North pole is the point of coordinates (𝑢, 𝑣) = (0, 0) in this chart:

sage: N = V.point((0,0), chart=stereoS, name= N); N
Point N on the 2-dimensional differentiable manifold S^2

To fully construct the manifold, we declare that it is the union of 𝑈 and 𝑉 :

sage: M.declare_union(U,V)

and we provide the transition map between the charts stereoN = (𝑈, (𝑥, 𝑦)) and stereoS = (𝑉, (𝑢, 𝑣)), denoting by
𝑊 the intersection of 𝑈 and 𝑉 (𝑊 is the subset of 𝑈 defined by 𝑥2 + 𝑦2 ̸= 0, as well as the subset of 𝑉 defined by
𝑢2 + 𝑣2 ̸= 0):

sage: stereoN_to_S = stereoN.transition_map(stereoS,
....: [x/(x^2+y^2), y/(x^2+y^2)], intersection_name= W ,
....: restrictions1= x^2+y^2!=0, restrictions2= u^2+v^2!=0)
sage: stereoN_to_S
Change of coordinates from Chart (W, (x, y)) to Chart (W, (u, v))
sage: stereoN_to_S.display()
u = x/(x^2 + y^2)
v = y/(x^2 + y^2)

We give the name W to the Python variable representing𝑊 = 𝑈 ∩ 𝑉 :

sage: W = U.intersection(V)

The inverse of the transition map is computed by the method inverse():

336 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: stereoN_to_S.inverse()
Change of coordinates from Chart (W, (u, v)) to Chart (W, (x, y))
sage: stereoN_to_S.inverse().display()
x = u/(u^2 + v^2)
y = v/(u^2 + v^2)

At this stage, we have four open subsets on 𝑆2:

sage: M.subset_family()
Set {S^2, U, V, W} of open subsets of the 2-dimensional differentiable manifold S^2

𝑊 is the open subset that is the complement of the two poles:

sage: N in W or S in W
False

The North pole lies in 𝑉 and the South pole in 𝑈 :

sage: N in V, N in U
(True, False)
sage: S in U, S in V
(True, False)

The manifold’s (user) atlas contains four charts, two of them being restrictions of charts to a smaller domain:

sage: M.atlas()
[Chart (U, (x, y)), Chart (V, (u, v)), Chart (W, (x, y)), Chart (W, (u, v))]

Let us consider the point of coordinates (1,2) in the chart stereoN:

sage: p = M.point((1,2), chart=stereoN, name= p); p
Point p on the 2-dimensional differentiable manifold S^2
sage: p.parent()
2-dimensional differentiable manifold S^2
sage: p in W
True

The coordinates of 𝑝 in the chart stereoS are computed by letting the chart act on the point:

sage: stereoS(p)
(1/5, 2/5)

Given the definition of 𝑝, we have of course:

sage: stereoN(p)
(1, 2)

Similarly:

sage: stereoS(N)
(0, 0)
sage: stereoN(S)
(0, 0)

A differentiable scalar field on the sphere:

2.1. Differentiable Manifolds 337

Manifolds, Release 10.4.rc1

sage: f = M.scalar_field({stereoN: atan(x^2+y^2), stereoS: pi/2-atan(u^2+v^2)},
....: name= f)
sage: f
Scalar field f on the 2-dimensional differentiable manifold S^2
sage: f.display()
f: S^2 → ℝ
on U: (x, y) ↦ arctan(x^2 + y^2)
on V: (u, v) ↦ 1/2*pi - arctan(u^2 + v^2)
sage: f(p)
arctan(5)
sage: f(N)
1/2*pi
sage: f(S)
0
sage: f.parent()
Algebra of differentiable scalar fields on the 2-dimensional differentiable
manifold S^2

sage: f.parent().category()
Join of Category of commutative algebras over Symbolic Ring and Category of homsets␣
→˓of topological spaces

A differentiable manifold has a default vector frame, which, unless otherwise specified, is the coordinate frame associated
with the first defined chart:

sage: M.default_frame()
Coordinate frame (U, (∂/∂x,∂/∂y))
sage: latex(M.default_frame())
\left(U, \left(\frac{\partial}{\partial x },\frac{\partial}{\partial y }\right)\right)
sage: M.default_frame() is stereoN.frame()
True

A vector field on the sphere:

sage: w = M.vector_field(name= w)
sage: w[stereoN.frame(), :] = [x, y]
sage: w.add_comp_by_continuation(stereoS.frame(), W, stereoS)
sage: w.display() # display in the default frame (stereoN.frame())
w = x ∂/∂x + y ∂/∂y
sage: w.display(stereoS.frame())
w = -u ∂/∂u - v ∂/∂v
sage: w.parent()
Module X(S^2) of vector fields on the 2-dimensional differentiable
manifold S^2

sage: w.parent().category()
Category of modules over Algebra of differentiable scalar fields on the
2-dimensional differentiable manifold S^2

Vector fields act on scalar fields:

sage: w(f)
Scalar field w(f) on the 2-dimensional differentiable manifold S^2
sage: w(f).display()
w(f): S^2 → ℝ
on U: (x, y) ↦ 2*(x^2 + y^2)/(x^4 + 2*x^2*y^2 + y^4 + 1)
on V: (u, v) ↦ 2*(u^2 + v^2)/(u^4 + 2*u^2*v^2 + v^4 + 1)
sage: w(f) == f.differential()(w)
True

338 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The value of the vector field at point 𝑝 is a vector tangent to the sphere:

sage: w.at(p)
Tangent vector w at Point p on the 2-dimensional differentiable manifold S^2
sage: w.at(p).display()
w = ∂/∂x + 2 ∂/∂y
sage: w.at(p).parent()
Tangent space at Point p on the 2-dimensional differentiable manifold S^2

A 1-form on the sphere:

sage: df = f.differential() ; df
1-form df on the 2-dimensional differentiable manifold S^2
sage: df.display()
df = 2*x/(x^4 + 2*x^2*y^2 + y^4 + 1) dx + 2*y/(x^4 + 2*x^2*y^2 + y^4 + 1) dy
sage: df.display(stereoS.frame())
df = -2*u/(u^4 + 2*u^2*v^2 + v^4 + 1) du - 2*v/(u^4 + 2*u^2*v^2 + v^4 + 1) dv
sage: df.parent()
Module Omega^1(S^2) of 1-forms on the 2-dimensional differentiable
manifold S^2

sage: df.parent().category()
Category of modules over Algebra of differentiable scalar fields on the
2-dimensional differentiable manifold S^2

The value of the 1-form at point 𝑝 is a linear form on the tangent space at 𝑝:

sage: df.at(p)
Linear form df on the Tangent space at Point p on the 2-dimensional
differentiable manifold S^2

sage: df.at(p).display()
df = 1/13 dx + 2/13 dy
sage: df.at(p).parent()
Dual of the Tangent space at Point p on the 2-dimensional differentiable
manifold S^2

Example 2: the Riemann sphere as a differentiable manifold of dimension 1 over C

We declare the Riemann sphere C* as a 1-dimensional differentiable manifold over C:

sage: M = Manifold(1, ℂ* , field= complex); M
1-dimensional complex manifold ℂ*

We introduce a first open subset, which is actually C = C* ∖ {∞} if we interpret C* as the Alexandroff one-point
compactification of C:

sage: U = M.open_subset(U)

A natural chart on 𝑈 is then nothing but the identity map of C, hence we denote the associated coordinate by 𝑧:

sage: Z.<z> = U.chart()

The origin of the complex plane is the point of coordinate 𝑧 = 0:

sage: O = U.point((0,), chart=Z, name= O); O
Point O on the 1-dimensional complex manifold ℂ*

Another open subset of C* is 𝑉 = C* ∖ {𝑂}:

2.1. Differentiable Manifolds 339

Manifolds, Release 10.4.rc1

sage: V = M.open_subset(V)

We define a chart on 𝑉 such that the point at infinity is the point of coordinate 0 in this chart:

sage: W.<w> = V.chart(); W
Chart (V, (w,))
sage: inf = M.point((0,), chart=W, name= inf , latex_name=r \infty)
sage: inf
Point inf on the 1-dimensional complex manifold ℂ*

To fully construct the Riemann sphere, we declare that it is the union of 𝑈 and 𝑉 :

sage: M.declare_union(U,V)

and we provide the transition map between the two charts as 𝑤 = 1/𝑧 on on 𝐴 = 𝑈 ∩ 𝑉 :

sage: Z_to_W = Z.transition_map(W, 1/z, intersection_name= A ,
....: restrictions1= z!=0, restrictions2= w!=0)
sage: Z_to_W
Change of coordinates from Chart (A, (z,)) to Chart (A, (w,))
sage: Z_to_W.display()
w = 1/z
sage: Z_to_W.inverse()
Change of coordinates from Chart (A, (w,)) to Chart (A, (z,))
sage: Z_to_W.inverse().display()
z = 1/w

Let consider the complex number 𝑖 as a point of the Riemann sphere:

sage: i = M((I,), chart=Z, name= i); i
Point i on the 1-dimensional complex manifold ℂ*

Its coordinates with respect to the charts Z and W are:

sage: Z(i)
(I,)
sage: W(i)
(-I,)

and we have:

sage: i in U
True
sage: i in V
True

The following subsets and charts have been defined:

sage: M.subset_family()
Set {A, U, V, ℂ*} of open subsets of the 1-dimensional complex manifold ℂ*
sage: M.atlas()
[Chart (U, (z,)), Chart (V, (w,)), Chart (A, (z,)), Chart (A, (w,))]

A constant map C* → C:

sage: f = M.constant_scalar_field(3+2*I, name= f); f
Scalar field f on the 1-dimensional complex manifold ℂ*

(continues on next page)

340 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.display()
f: ℂ* → ℂ
on U: z ↦ 2*I + 3
on V: w ↦ 2*I + 3
sage: f(O)
2*I + 3
sage: f(i)
2*I + 3
sage: f(inf)
2*I + 3
sage: f.parent()
Algebra of differentiable scalar fields on the 1-dimensional complex
manifold ℂ*

sage: f.parent().category()
Join of Category of commutative algebras over Symbolic Ring and Category of homsets␣
→˓of topological spaces

A vector field on the Riemann sphere:

sage: v = M.vector_field(name= v)
sage: v[Z.frame(), 0] = z^2
sage: v.add_comp_by_continuation(W.frame(), U.intersection(V), W)
sage: v.display(Z.frame())
v = z^2 ∂/∂z
sage: v.display(W.frame())
v = -∂/∂w
sage: v.parent()
Module X(ℂ*) of vector fields on the 1-dimensional complex manifold ℂ*

The vector field 𝑣 acting on the scalar field 𝑓 :

sage: v(f)
Scalar field zero on the 1-dimensional complex manifold ℂ*

Since 𝑓 is constant, 𝑣(𝑓) is vanishing:

sage: v(f).display()
zero: ℂ* → ℂ
on U: z ↦ 0
on V: w ↦ 0

The value of the vector field 𝑣 at the point∞ is a vector tangent to the Riemann sphere:

sage: v.at(inf)
Tangent vector v at Point inf on the 1-dimensional complex manifold ℂ*
sage: v.at(inf).display()
v = -∂/∂w
sage: v.at(inf).parent()
Tangent space at Point inf on the 1-dimensional complex manifold ℂ*

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

• Michael Jung (2020): tensor bundles and orientability

• Matthias Koeppe (2021): refactoring of subsets code

2.1. Differentiable Manifolds 341

Manifolds, Release 10.4.rc1

REFERENCES:

• [Lee2013]

• [KN1963]

• [Huy2005]

• [Ser1992]

• [Ber2008]

• [BG1988]

class sage.manifolds.differentiable.manifold.DifferentiableManifold(n, name, field,
structure,
base_mani-
fold=None,
diff_de-
gree=+Infinity,
la-
tex_name=None,
start_index=0,
cate-
gory=None,
unique_tag=None)

Bases: TopologicalManifold

Differentiable manifold over a topological field𝐾.

Given a non-discrete topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C; see however [Ser1992] for
𝐾 = 𝑝 and [Ber2008] for other fields), a differentiable manifold over 𝐾 is a topological manifold 𝑀 over 𝐾
equipped with an atlas whose transitions maps are of class 𝐶𝑘 (i.e. 𝑘-times continuously differentiable) for a fixed
positive integer 𝑘 (possibly 𝑘 = ∞). 𝑀 is then called a 𝐶𝑘-manifold over 𝐾.

Note that

• if the mention of𝐾 is omitted, then𝐾 = R is assumed;

• if𝐾 = C, any 𝐶𝑘-manifold with 𝑘 ≥ 1 is actually a 𝐶∞-manifold (even an analytic manifold);

• if𝐾 = R, any 𝐶𝑘-manifold with 𝑘 ≥ 1 admits a compatible 𝐶∞-structure (Whitney’s smoothing theorem).

INPUT:

• n – positive integer; dimension of the manifold

• name – string; name (symbol) given to the manifold

• field – field𝐾 on which the manifold is defined; allowed values are

– real or an object of type RealField (e.g., RR) for a manifold over R

– complex or an object of type ComplexField (e.g., CC) for a manifold over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of manifolds

• structure –manifold structure (seeDifferentialStructure orRealDifferentialStruc-
ture)

• base_manifold – (default: None) if not None, must be a differentiable manifold; the created object is
then an open subset of base_manifold

• diff_degree – (default: infinity) degree 𝑘 of differentiability

342 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces

Manifolds, Release 10.4.rc1

• latex_name – (default: None) string; LaTeX symbol to denote the manifold; if none is provided, it is set
to name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
manifold, e.g. coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(field).
Differentiable() (or Manifolds(field).Smooth() if diff_degree = infinity)
is assumed (see the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other ar-
guments have been used previously (without unique_tag, the UniqueRepresentation behavior in-
herited fromManifoldSubset, viaTopologicalManifold, would return the previously constructed
object corresponding to these arguments).

EXAMPLES:

A 4-dimensional differentiable manifold (over R):

sage: M = Manifold(4, M , latex_name=r \mathcal{M}); M
4-dimensional differentiable manifold M
sage: type(M)
<class sage.manifolds.differentiable.manifold.DifferentiableManifold_with_
→˓category >
sage: latex(M)
\mathcal{M}
sage: dim(M)
4

Since the base field has not been specified, R has been assumed:

sage: M.base_field()
Real Field with 53 bits of precision

Since the degree of differentiability has not been specified, the default value, 𝐶∞, has been assumed:

sage: M.diff_degree()
+Infinity

The input parameter start_index defines the range of indices on the manifold:

sage: M = Manifold(4, M)
sage: list(M.irange())
[0, 1, 2, 3]
sage: M = Manifold(4, M , start_index=1)
sage: list(M.irange())
[1, 2, 3, 4]
sage: list(Manifold(4, M , start_index=-2).irange())
[-2, -1, 0, 1]

A complex manifold:

sage: N = Manifold(3, N , field= complex); N
3-dimensional complex manifold N

A differentiable manifold over 5, the field of 5-adic numbers:

sage: N = Manifold(2, N , field=Qp(5)); N
2-dimensional differentiable manifold N over the 5-adic Field with
capped relative precision 20

2.1. Differentiable Manifolds 343

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

A differentiable manifold is of course a topological manifold:

sage: isinstance(M, sage.manifolds.manifold.TopologicalManifold)
True
sage: isinstance(N, sage.manifolds.manifold.TopologicalManifold)
True

A differentiable manifold is a Sage parent object, in the category of differentiable (here smooth) manifolds over a
given topological field (see Manifolds):

sage: isinstance(M, Parent)
True
sage: M.category()
Category of smooth manifolds over Real Field with 53 bits of precision
sage: from sage.categories.manifolds import Manifolds
sage: M.category() is Manifolds(RR).Smooth()
True
sage: M.category() is Manifolds(M.base_field()).Smooth()
True
sage: M in Manifolds(RR).Smooth()
True
sage: N in Manifolds(Qp(5)).Smooth()
True

The corresponding Sage elements are points:

sage: X.<t, x, y, z> = M.chart()
sage: p = M.an_element(); p
Point on the 4-dimensional differentiable manifold M
sage: p.parent()
4-dimensional differentiable manifold M
sage: M.is_parent_of(p)
True
sage: p in M
True

The manifold’s points are instances of class ManifoldPoint:

sage: isinstance(p, sage.manifolds.point.ManifoldPoint)
True

Since an open subset of a differentiable manifold𝑀 is itself a differentiable manifold, open subsets of𝑀 have all
attributes of manifolds:

sage: U = M.open_subset(U , coord_def={X: t>0}); U
Open subset U of the 4-dimensional differentiable manifold M
sage: U.category()
Join of Category of subobjects of sets and Category of smooth manifolds
over Real Field with 53 bits of precision
sage: U.base_field() == M.base_field()
True
sage: dim(U) == dim(M)
True

The manifold passes all the tests of the test suite relative to its category:

sage: TestSuite(M).run()

344 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds

Manifolds, Release 10.4.rc1

affine_connection(name, latex_name=None)
Define an affine connection on the manifold.

See AffineConnection for a complete documentation.

INPUT:

• name – name given to the affine connection

• latex_name – (default: None) LaTeX symbol to denote the affine connection

OUTPUT:

• the affine connection, as an instance of AffineConnection

EXAMPLES:

Affine connection on an open subset of a 3-dimensional smooth manifold:

sage: M = Manifold(3, M , start_index=1)
sage: A = M.open_subset(A , latex_name=r \mathcal{A})
sage: nab = A.affine_connection(nabla , r \nabla) ; nab
Affine connection nabla on the Open subset A of the 3-dimensional
differentiable manifold M

See also:

AffineConnection for more examples.

automorphism_field(*comp, **kwargs)
Define a field of automorphisms (invertible endomorphisms in each tangent space) on self.

Via the argument dest_map, it is possible to let the field take its values on another manifold. More precisely,
if𝑀 is the current manifold, 𝑁 a differentiable manifold and Φ : 𝑀 → 𝑁 a differentiable map, a field of
automorphisms along𝑀 with values on 𝑁 is a differentiable map

𝑡 : 𝑀 −→ 𝑇 (1,1)𝑁

(𝑇 (1,1)𝑁 being the tensor bundle of type (1, 1) over 𝑁) such that

∀𝑝 ∈𝑀, 𝑡(𝑝) ∈ GL
(︀
𝑇Φ(𝑝)𝑁

)︀
,

where GL
(︀
𝑇Φ(𝑝)𝑁

)︀
is the general linear group of the tangent space 𝑇Φ(𝑝)𝑁 .

The standard case of a field of automorphisms on𝑀 corresponds to 𝑁 =𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

See also:

AutomorphismField and AutomorphismFieldParal for a complete documentation.

INPUT:

• comp – (optional) either the components of the field of automorphisms with respect to the vector frame
specified by the argument frame or a dictionary of components, the keys of which are vector frames or
pairs (f, c) where f is a vector frame and c the chart in which the components are expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the field

2.1. Differentiable Manifolds 345

Manifolds, Release 10.4.rc1

• latex_name – (default: None) LaTeX symbol to denote the field; if none is provided, the LaTeX
symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a field of automorphisms on𝑀), otherwise dest_map must be
a DiffMap

OUTPUT:

• a AutomorphismField (or if𝑁 is parallelizable, a AutomorphismFieldParal) representing
the defined field of automorphisms

EXAMPLES:

A field of automorphisms on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: a = M.automorphism_field([[1+x^2, 0], [0, 1+y^2]], name= A)
sage: a
Field of tangent-space automorphisms A on the 2-dimensional
differentiable manifold M

sage: a.parent()
General linear group of the Free module X(M) of vector fields on
the 2-dimensional differentiable manifold M

sage: a(X.frame()[0]).display()
A(∂/∂x) = (x^2 + 1) ∂/∂x
sage: a(X.frame()[1]).display()
A(∂/∂y) = (y^2 + 1) ∂/∂y

For more examples, see AutomorphismField and AutomorphismFieldParal.

automorphism_field_group(dest_map=None)
Return the group of tangent-space automorphism fields defined on self, possibly with values in another
manifold, as a module over the algebra of scalar fields defined on self.

If𝑀 is the current manifold and Φ a differentiable map Φ :𝑀 → 𝑁 , where 𝑁 is a differentiable manifold,
this method called with dest_map being Φ returns the general linear group GL(X(𝑀,Φ)) of the module
X(𝑀,Φ) of vector fields along𝑀 with values in Φ(𝑀) ⊂ 𝑁 .

INPUT:

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map, otherwise dest_map must be a DiffMap

OUTPUT:

• a AutomorphismFieldParalGroup (if 𝑁 is parallelizable) or a AutomorphismField-
Group (if 𝑁 is not parallelizable) representing GL(X(𝑈,Φ))

EXAMPLES:

Group of tangent-space automorphism fields of a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: M.automorphism_field_group()
General linear group of the Module X(M) of vector fields on the
2-dimensional differentiable manifold M

sage: M.automorphism_field_group().category()
Category of groups

346 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

See also:

For more examples, see AutomorphismFieldParalGroup and AutomorphismFieldGroup.

change_of_frame(frame1, frame2)
Return a change of vector frames defined on self.

INPUT:

• frame1 – vector frame 1

• frame2 – vector frame 2

OUTPUT:

• a AutomorphismField representing, at each point, the vector space automorphism 𝑃 that relates
frame 1, (𝑒𝑖) say, to frame 2, (𝑛𝑖) say, according to 𝑛𝑖 = 𝑃 (𝑒𝑖)

EXAMPLES:

Change of vector frames induced by a change of coordinates:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: c_xy.transition_map(c_uv, (x+y, x-y))
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: M.change_of_frame(c_xy.frame(), c_uv.frame())
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M

sage: M.change_of_frame(c_xy.frame(), c_uv.frame())[:]
[1/2 1/2]
[1/2 -1/2]
sage: M.change_of_frame(c_uv.frame(), c_xy.frame())
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M

sage: M.change_of_frame(c_uv.frame(), c_xy.frame())[:]
[1 1]
[1 -1]
sage: M.change_of_frame(c_uv.frame(), c_xy.frame()) == \
....: M.change_of_frame(c_xy.frame(), c_uv.frame()).inverse()
True

In the present example, the manifold𝑀 is parallelizable, so that the module 𝑋(𝑀) of vector fields on𝑀 is
free. A change of frame on𝑀 is then identical to a change of basis in 𝑋(𝑀):

sage: XM = M.vector_field_module() ; XM
Free module X(M) of vector fields on the 2-dimensional
differentiable manifold M

sage: XM.print_bases()
Bases defined on the Free module X(M) of vector fields on the
2-dimensional differentiable manifold M:
- (M, (∂/∂x,∂/∂y)) (default basis)
- (M, (∂/∂u,∂/∂v))

sage: XM.change_of_basis(c_xy.frame(), c_uv.frame())
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M

sage: M.change_of_frame(c_xy.frame(), c_uv.frame()) is \
....: XM.change_of_basis(c_xy.frame(), c_uv.frame())
True

2.1. Differentiable Manifolds 347

Manifolds, Release 10.4.rc1

changes_of_frame()

Return all the changes of vector frames defined on self.

OUTPUT:

• dictionary of fields of tangent-space automorphisms representing the changes of frames, the keys being
the pair of frames

EXAMPLES:

Let us consider a first vector frame on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: e = X.frame(); e
Coordinate frame (M, (∂/∂x,∂/∂y))

At this stage, the dictionary of changes of frame is empty:

sage: M.changes_of_frame()
{}

We introduce a second frame on themanifold, relating it to frame e by a field of tangent space automorphisms:

sage: a = M.automorphism_field(name= a)
sage: a[:] = [[-y, x], [1, 2]]
sage: f = e.new_frame(a, f); f
Vector frame (M, (f_0,f_1))

Then we have:

sage: M.changes_of_frame() # random (dictionary output)
{(Coordinate frame (M, (∂/∂x,∂/∂y)),

Vector frame (M, (f_0,f_1))): Field of tangent-space
automorphisms on the 2-dimensional differentiable manifold M,

(Vector frame (M, (f_0,f_1)),
Coordinate frame (M, (∂/∂x,∂/∂y))): Field of tangent-space
automorphisms on the 2-dimensional differentiable manifold M}

Some checks:

sage: M.changes_of_frame()[(e,f)] == a
True
sage: M.changes_of_frame()[(f,e)] == a^(-1)
True

coframes()

Return the list of coframes defined on open subsets of self.

OUTPUT:

• list of coframes defined on open subsets of self

EXAMPLES:

Coframes on subsets of R2:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: M.coframes()

(continues on next page)

348 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

[Coordinate coframe (R^2, (dx,dy))]
sage: e = M.vector_frame(e)
sage: M.coframes()
[Coordinate coframe (R^2, (dx,dy)), Coframe (R^2, (e^0,e^1))]
sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1}) # unit disk
sage: U.coframes()
[Coordinate coframe (U, (dx,dy))]
sage: e.restrict(U)
Vector frame (U, (e_0,e_1))
sage: U.coframes()
[Coordinate coframe (U, (dx,dy)), Coframe (U, (e^0,e^1))]
sage: M.coframes()
[Coordinate coframe (R^2, (dx,dy)),
Coframe (R^2, (e^0,e^1)),
Coordinate coframe (U, (dx,dy)),
Coframe (U, (e^0,e^1))]

cotangent_bundle(dest_map=None)
Return the cotangent bundle possibly along a destination map with base space self.

See also:

TensorBundle for complete documentation.

INPUT:

• dest_map – (default: None) destination map Φ : 𝑀 → 𝑁 (type: DiffMap) from which the
cotangent bundle is pulled back; if None, it is assumed that 𝑁 = 𝑀 and Φ is the identity map of𝑀
(case of the standard tangent bundle over𝑀)

EXAMPLES:

sage: M = Manifold(2, M)
sage: cTM = M.cotangent_bundle(); cTM
Cotangent bundle T*M over the 2-dimensional differentiable
manifold M

curve(coord_expression, param, chart=None, name=None, latex_name=None)
Define a differentiable curve in the manifold.

See also:

DifferentiableCurve for details.

INPUT:

• coord_expression – either

– (i) a dictionary whose keys are charts on the manifold and values the coordinate expressions (as lists
or tuples) of the curve in the given chart

– (ii) a single coordinate expression in a given chart on the manifold, the latter being provided by the
argument chart

in both cases, if the dimension of the manifold is 1, a single coordinate expression can be passed instead
of a tuple with a single element

• param – a tuple of the type (t, t_min, t_max), where

– t is the curve parameter used in coord_expression;

– t_min is its minimal value;

2.1. Differentiable Manifolds 349

Manifolds, Release 10.4.rc1

– t_max its maximal value;

if t_min=-Infinity and t_max=+Infinity, they can be omitted and t can be passed for
param instead of the tuple (t, t_min, t_max)

• chart – (default: None) chart on the manifold used for case (ii) above; if None the default chart of
the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name
will be used

OUTPUT:

• DifferentiableCurve

EXAMPLES:

The lemniscate of Gerono in the 2-dimensional Euclidean plane:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: R.<t> = manifolds.RealLine()
sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= c) ; c
Curve c in the 2-dimensional differentiable manifold M

The same definition with the coordinate expression passed as a dictionary:

sage: c = M.curve({X: [sin(t), sin(2*t)/2]}, (t, 0, 2*pi), name= c) ; c
Curve c in the 2-dimensional differentiable manifold M

An example of definition with t_min and t_max omitted: a helix in R3:

sage: R3 = Manifold(3, R^3)
sage: X.<x,y,z> = R3.chart()
sage: c = R3.curve([cos(t), sin(t), t], t, name= c) ; c
Curve c in the 3-dimensional differentiable manifold R^3
sage: c.domain() # check that t is unbounded
Real number line ℝ

See also:

DifferentiableCurve for more examples, including plots.

de_rham_complex(dest_map=None)
Return the set of mixed forms defined on self, possibly with values in another manifold, as a graded algebra.

See also:

MixedFormAlgebra for complete documentation.

INPUT:

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map (case of mixed forms on𝑀), otherwise dest_map must be a DiffMap

OUTPUT:

• aMixedFormAlgebra representing the graded algebraΩ*(𝑀,Φ) ofmixed forms on𝑀 taking values
on Φ(𝑀) ⊂ 𝑁

350 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Graded algebra of mixed forms on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: M.mixed_form_algebra()
Graded algebra Omega^*(M) of mixed differential forms on the
2-dimensional differentiable manifold M

sage: M.mixed_form_algebra().category()
Join of Category of graded algebras over Symbolic Ring and Category of chain␣
→˓complexes over Symbolic Ring
sage: M.mixed_form_algebra().base_ring()
Symbolic Ring

The outcome is cached:

sage: M.mixed_form_algebra() is M.mixed_form_algebra()
True

default_frame()

Return the default vector frame defined on self.

By vector frame, it is meant a field on the manifold that provides, at each point 𝑝, a vector basis of the tangent
space at 𝑝.

Unless changed via set_default_frame(), the default frame is the first one defined on the manifold,
usually implicitly as the coordinate basis associated with the first chart defined on the manifold.

OUTPUT:

• a VectorFrame representing the default vector frame

EXAMPLES:

The default vector frame is often the coordinate frame associated with the first chart defined on the manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: M.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y))

degenerate_metric(name, latex_name=None, dest_map=None)
Define a degenerate (or null or lightlike) metric on the manifold.

A degenerate metric is a field of degenerate symmetric bilinear forms acting in the tangent spaces.

See DegenerateMetric for a complete documentation.

INPUT:

• name – name given to the metric

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

• dest_map – (default: None) instance of class DiffMap representing the destination map Φ : 𝑈 →
𝑀 , where 𝑈 is the current manifold; if None, the identity map is assumed (case of a metric tensor field
on 𝑈)

OUTPUT:

• instance of DegenerateMetric representing the defined degenerate metric.

2.1. Differentiable Manifolds 351

Manifolds, Release 10.4.rc1

EXAMPLES:

Lightlike cone:

sage: M = Manifold(3, M); X.<x,y,z> = M.chart()
sage: g = M.degenerate_metric(g); g
degenerate metric g on the 3-dimensional differentiable manifold M
sage: det(g)
Scalar field zero on the 3-dimensional differentiable manifold M
sage: g.parent()
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
3-dimensional differentiable manifold M
sage: g[0,0], g[0,1], g[0,2] = (y^2 + z^2)/(x^2 + y^2 + z^2), \
....: - x*y/(x^2 + y^2 + z^2), - x*z/(x^2 + y^2 + z^2)
sage: g[1,1], g[1,2], g[2,2] = (x^2 + z^2)/(x^2 + y^2 + z^2), \
....: - y*z/(x^2 + y^2 + z^2), (x^2 + y^2)/(x^2 + y^2 + z^2)
sage: g.disp()
g = (y^2 + z^2)/(x^2 + y^2 + z^2) dx⊗dx - x*y/(x^2 + y^2 + z^2) dx⊗dy
- x*z/(x^2 + y^2 + z^2) dx⊗dz - x*y/(x^2 + y^2 + z^2) dy⊗dx
+ (x^2 + z^2)/(x^2 + y^2 + z^2) dy⊗dy - y*z/(x^2 + y^2 + z^2) dy⊗dz
- x*z/(x^2 + y^2 + z^2) dz⊗dx - y*z/(x^2 + y^2 + z^2) dz⊗dy
+ (x^2 + y^2)/(x^2 + y^2 + z^2) dz⊗dz

See also:

DegenerateMetric for more examples.

diff_degree()

Return the manifold’s degree of differentiability.

The degree of differentiability is the integer 𝑘 (possibly 𝑘 = ∞) such that the manifold is a𝐶𝑘-manifold over
its base field.

EXAMPLES:

sage: M = Manifold(2, M)
sage: M.diff_degree()
+Infinity
sage: M = Manifold(2, M , structure= differentiable , diff_degree=3)
sage: M.diff_degree()
3

diff_form(*args, **kwargs)
Define a differential form on self.

Via the argument dest_map, it is possible to let the differential form take its values on another manifold.
More precisely, if 𝑀 is the current manifold, 𝑁 a differentiable manifold, Φ : 𝑀 → 𝑁 a differentiable
map and 𝑝 a non-negative integer, a differential form of degree 𝑝 (or 𝑝-form) along𝑀 with values on 𝑁 is a
differentiable map

𝑡 : 𝑀 −→ 𝑇 (0,𝑝)𝑁

(𝑇 (0,𝑝)𝑁 being the tensor bundle of type (0, 𝑝) over 𝑁) such that

∀𝑥 ∈𝑀, 𝑡(𝑥) ∈ Λ𝑝(𝑇 *
Φ(𝑥)𝑁),

where Λ𝑝(𝑇 *
Φ(𝑥)𝑁) is the 𝑝-th exterior power of the dual of the tangent space 𝑇Φ(𝑥)𝑁 .

The standard case of a differential form on𝑀 corresponds to 𝑁 = 𝑀 and Φ = Id𝑀 . Other common cases
are Φ being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

352 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

For 𝑝 = 1, one can use the method one_form() instead.

See also:

DiffForm and DiffFormParal for a complete documentation.

INPUT:

• degree – the degree 𝑝 of the differential form (i.e. its tensor rank)

• comp – (optional) either the components of the differential form with respect to the vector frame spec-
ified by the argument frame or a dictionary of components, the keys of which are vector frames or pairs
(f, c) where f is a vector frame and c the chart in which the components are expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the differential form

• latex_name – (default: None) LaTeX symbol to denote the differential form; if none is provided,
the LaTeX symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a differential form on 𝑀), otherwise dest_map must be a
DiffMap

OUTPUT:

• the 𝑝-form as a DiffForm (or if 𝑁 is parallelizable, a DiffFormParal)

EXAMPLES:

A 2-form on a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: f = M.diff_form(2, name= F); f
2-form F on the 3-dimensional differentiable manifold M
sage: f[0,1], f[1,2] = x+y, x*z
sage: f.display()
F = (x + y) dx∧dy + x*z dy∧dz

For more examples, see DiffForm and DiffFormParal.

diff_form_module(degree, dest_map=None)
Return the set of differential forms of a given degree defined on self, possibly with values in another
manifold, as a module over the algebra of scalar fields defined on self.

See also:

DiffFormModule for complete documentation.

INPUT:

• degree – positive integer; the degree 𝑝 of the differential forms

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map (case of differential forms on𝑀), otherwise dest_map must be a DiffMap

OUTPUT:

2.1. Differentiable Manifolds 353

Manifolds, Release 10.4.rc1

• a DiffFormModule (or if𝑁 is parallelizable, a DiffFormFreeModule) representing the module
Ω𝑝(𝑀,Φ) of 𝑝-forms on𝑀 taking values on Φ(𝑀) ⊂ 𝑁

EXAMPLES:

Module of 2-forms on a 3-dimensional parallelizable manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: M.diff_form_module(2)
Free module Omega^2(M) of 2-forms on the 3-dimensional
differentiable manifold M

sage: M.diff_form_module(2).category()
Category of finite dimensional modules over Algebra of
differentiable scalar fields on the 3-dimensional
differentiable manifold M

sage: M.diff_form_module(2).base_ring()
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M

sage: M.diff_form_module(2).rank()
3

The outcome is cached:

sage: M.diff_form_module(2) is M.diff_form_module(2)
True

diff_map(codomain, coord_functions=None, chart1=None, chart2=None, name=None, latex_name=None)
Define a differentiable map between the current differentiable manifold and a differentiable manifold over the
same topological field.

See DiffMap for a complete documentation.

INPUT:

• codomain – the map codomain (a differentiable manifold over the same topological field as the current
differentiable manifold)

• coord_functions – (default: None) if not None, must be either

– (i) a dictionary of the coordinate expressions (as lists (or tuples) of the coordinates of the image
expressed in terms of the coordinates of the considered point) with the pairs of charts (chart1,
chart2) as keys (chart1 being a chart on the current manifold and chart2 a chart on codomain)

– (ii) a single coordinate expression in a given pair of charts, the latter being provided by the arguments
chart1 and chart2

In both cases, if the dimension of the arrival manifold is 1, a single coordinate expression can be passed
instead of a tuple with a single element

• chart1 – (default: None; used only in case (ii) above) chart on the current manifold defining the
start coordinates involved in coord_functions for case (ii); if none is provided, the coordinates are
assumed to refer to the manifold’s default chart

• chart2 – (default: None; used only in case (ii) above) chart on codomain defining the arrival coor-
dinates involved in coord_functions for case (ii); if none is provided, the coordinates are assumed
to refer to the default chart of codomain

• name – (default: None) name given to the differentiable map

• latex_name – (default: None) LaTeX symbol to denote the differentiable map; if none is provided,
the LaTeX symbol is set to name

354 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• the differentiable map, as an instance of DiffMap

EXAMPLES:

A differentiable map between an open subset of 𝑆2 covered by regular spherical coordinates and R3:

sage: M = Manifold(2, S^2)
sage: U = M.open_subset(U)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: N = Manifold(3, R^3 , r \RR^3)
sage: c_cart.<x,y,z> = N.chart() # Cartesian coord. on R^3
sage: Phi = U.diff_map(N, (sin(th)*cos(ph), sin(th)*sin(ph), cos(th)),
....: name= Phi , latex_name=r \Phi)
sage: Phi
Differentiable map Phi from the Open subset U of the 2-dimensional
differentiable manifold S^2 to the 3-dimensional differentiable
manifold R^3

The same definition, but with a dictionary with pairs of charts as keys (case (i) above):

sage: Phi1 = U.diff_map(N,
....: {(c_spher, c_cart): (sin(th)*cos(ph), sin(th)*sin(ph),
....: cos(th))}, name= Phi , latex_name=r \Phi)
sage: Phi1 == Phi
True

The differentiable map acting on a point:

sage: p = U.point((pi/2, pi)) ; p
Point on the 2-dimensional differentiable manifold S^2
sage: Phi(p)
Point on the 3-dimensional differentiable manifold R^3
sage: Phi(p).coord(c_cart)
(-1, 0, 0)
sage: Phi1(p) == Phi(p)
True

See the documentation of class DiffMap for more examples.

diffeomorphism(codomain=None, coord_functions=None, chart1=None, chart2=None, name=None,
latex_name=None)

Define a diffeomorphism between the current manifold and another one.

See DiffMap for a complete documentation.

INPUT:

• codomain – (default: None) codomain of the diffeomorphism (the arrival manifold or some subset of
it). If None, the current manifold is taken.

• coord_functions – (default: None) if not None, must be either

– (i) a dictionary of the coordinate expressions (as lists (or tuples) of the coordinates of the image
expressed in terms of the coordinates of the considered point) with the pairs of charts (chart1,
chart2) as keys (chart1 being a chart on the current manifold and chart2 a chart on codomain)

– (ii) a single coordinate expression in a given pair of charts, the latter being provided by the arguments
chart1 and chart2

2.1. Differentiable Manifolds 355

Manifolds, Release 10.4.rc1

In both cases, if the dimension of the arrival manifold is 1, a single coordinate expression can be passed
instead of a tuple with a single element

• chart1 – (default: None; used only in case (ii) above) chart on the current manifold defining the
start coordinates involved in coord_functions for case (ii); if none is provided, the coordinates are
assumed to refer to the manifold’s default chart

• chart2 – (default: None; used only in case (ii) above) chart on codomain defining the arrival coor-
dinates involved in coord_functions for case (ii); if none is provided, the coordinates are assumed
to refer to the default chart of codomain

• name – (default: None) name given to the diffeomorphism

• latex_name – (default: None) LaTeX symbol to denote the diffeomorphism; if none is provided, the
LaTeX symbol is set to name

OUTPUT:

• the diffeomorphism, as an instance of DiffMap

EXAMPLES:

Diffeomorphism between the open unit disk in R2 and R2:

sage: M = Manifold(2, M) # the open unit disk
sage: forget() # for doctests only
sage: c_xy.<x,y> = M.chart(x:(-1,1) y:(-1,1) , coord_restrictions=lambda x,
→˓y: x^2+y^2<1)
....: # Cartesian coord on M
sage: N = Manifold(2, N) # R^2
sage: c_XY.<X,Y> = N.chart() # canonical coordinates on R^2
sage: Phi = M.diffeomorphism(N, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
....: name= Phi , latex_name=r \Phi)
sage: Phi
Diffeomorphism Phi from the 2-dimensional differentiable manifold M
to the 2-dimensional differentiable manifold N

sage: Phi.display()
Phi: M → N

(x, y) ↦ (X, Y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))

The inverse diffeomorphism:

sage: Phi^(-1)
Diffeomorphism Phi^(-1) from the 2-dimensional differentiable
manifold N to the 2-dimensional differentiable manifold M

sage: (Phi^(-1)).display()
Phi^(-1): N → M

(X, Y) ↦ (x, y) = (X/sqrt(X^2 + Y^2 + 1), Y/sqrt(X^2 + Y^2 + 1))

See the documentation of class DiffMap for more examples.

frames()

Return the list of vector frames defined on open subsets of self.

OUTPUT:

• list of vector frames defined on open subsets of self

EXAMPLES:

Vector frames on subsets of R2:

356 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: M.frames()
[Coordinate frame (R^2, (∂/∂x,∂/∂y))]
sage: e = M.vector_frame(e)
sage: M.frames()
[Coordinate frame (R^2, (∂/∂x,∂/∂y)),
Vector frame (R^2, (e_0,e_1))]

sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1}) # unit disk
sage: U.frames()
[Coordinate frame (U, (∂/∂x,∂/∂y))]
sage: M.frames()
[Coordinate frame (R^2, (∂/∂x,∂/∂y)),
Vector frame (R^2, (e_0,e_1)),
Coordinate frame (U, (∂/∂x,∂/∂y))]

integrated_autoparallel_curve(affine_connection, curve_param, initial_tangent_vector,
chart=None, name=None, latex_name=None, verbose=False,
across_charts=False)

Construct an autoparallel curve on the manifold with respect to a given affine connection.

See also:

IntegratedAutoparallelCurve for details.

INPUT:

• affine_connection – AffineConnection; affine connection with respect to which the curve
is autoparallel

• curve_param – a tuple of the type (t, t_min, t_max), where

– t is the symbolic variable to be used as the parameter of the curve (the equations defining an instance
of IntegratedAutoparallelCurve are such that t will actually be an affine parameter of
the curve);

– t_min is its minimal (finite) value;

– t_max its maximal (finite) value.

• initial_tangent_vector – TangentVector; initial tangent vector of the curve

• chart – (default: None) chart on the manifold in which the equations are given ; if None the default
chart of the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name
will be used

OUTPUT:

• IntegratedAutoparallelCurve

EXAMPLES:

Autoparallel curves associated with the Mercator projection of the 2-sphere S2:

sage: S2 = Manifold(2, S^2 , start_index=1)
sage: polar.<th,ph> = S2.chart(th ph)
sage: epolar = polar.frame()
sage: ch_basis = S2.automorphism_field()

(continues on next page)

2.1. Differentiable Manifolds 357

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: ch_basis[1,1], ch_basis[2,2] = 1, 1/sin(th)
sage: epolar_ON=S2.default_frame().new_frame(ch_basis, epolar_ON)

Set the affine connection associated with Mercator projection; it is metric compatible but it has non-vanishing
torsion:

sage: nab = S2.affine_connection(nab)
sage: nab.set_coef(epolar_ON)[:]
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
sage: g = S2.metric(g)
sage: g[1,1], g[2,2] = 1, (sin(th))^2
sage: nab(g)[:]
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
sage: nab.torsion()[:]
[[[0, 0], [0, 0]], [[0, cos(th)/sin(th)], [-cos(th)/sin(th), 0]]]

Declare an integrated autoparallel curve with respect to this connection:

sage: p = S2.point((pi/4, 0), name= p)
sage: Tp = S2.tangent_space(p)
sage: v = Tp((1,1), basis=epolar_ON.at(p))
sage: t = var(t)
sage: c = S2.integrated_autoparallel_curve(nab, (t, 0, 2.3),
....: v, chart=polar, name= c)
sage: sys = c.system(verbose=True)
Autoparallel curve c in the 2-dimensional differentiable
manifold S^2 equipped with Affine connection nab on the
2-dimensional differentiable manifold S^2, and integrated
over the Real interval (0, 2.30000000000000) as a solution to the
following equations, written with respect to
Chart (S^2, (th, ph)):

Initial point: Point p on the 2-dimensional differentiable
manifold S^2 with coordinates [1/4*pi, 0] with respect to
Chart (S^2, (th, ph))

Initial tangent vector: Tangent vector at Point p on the
2-dimensional differentiable manifold S^2 with
components [1, sqrt(2)] with respect to
Chart (S^2, (th, ph))

d(th)/dt = Dth
d(ph)/dt = Dph
d(Dth)/dt = 0
d(Dph)/dt = -Dph*Dth*cos(th)/sin(th)

sage: sol = c.solve()
sage: interp = c.interpolate()
sage: p = c(1.3, verbose=True)
Evaluating point coordinates from the interpolation
associated with the key cubic spline-interp-odeint
by default...

sage: p
Point on the 2-dimensional differentiable manifold S^2
sage: polar(p) # abs tol 1e-12
(2.0853981633974477, 1.4203177070475606)
sage: tgt_vec = c.tangent_vector_eval_at(1.3, verbose=True)
Evaluating tangent vector components from the interpolation

(continues on next page)

358 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

associated with the key cubic spline-interp-odeint
by default...

sage: tgt_vec[:] # abs tol 1e-12
[1.000000000000011, 1.148779968412235]

integrated_curve(equations_rhs, velocities, curve_param, initial_tangent_vector, chart=None,
name=None, latex_name=None, verbose=False, across_charts=False)

Construct a curve defined by a system of second order differential equations in the coordinate functions.

See also:

IntegratedCurve for details.

INPUT:

• equations_rhs – list of the right-hand sides of the equations on the velocities only

• velocities – list of the symbolic expressions used in equations_rhs to denote the velocities

• curve_param – a tuple of the type (t, t_min, t_max), where

– t is the symbolic variable used in equations_rhs to denote the parameter of the curve;

– t_min is its minimal (finite) value;

– t_max its maximal (finite) value.

• initial_tangent_vector – TangentVector; initial tangent vector of the curve

• chart – (default: None) chart on the manifold in which the equations are given; if None the default
chart of the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name
will be used

OUTPUT:

• IntegratedCurve

EXAMPLES:

Trajectory of a particle of unit mass and unit charge in a unit, uniform, stationary magnetic field:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: t = var(t)
sage: D = X.symbolic_velocities()
sage: eqns = [D[1], -D[0], SR(0)]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,6), v, name= c); c
Integrated curve c in the 3-dimensional differentiable
manifold M

sage: sys = c.system(verbose=True)
Curve c in the 3-dimensional differentiable manifold M
integrated over the Real interval (0, 6) as a solution to
the following system, written with respect to
Chart (M, (x1, x2, x3)):

(continues on next page)

2.1. Differentiable Manifolds 359

Manifolds, Release 10.4.rc1

(continued from previous page)

Initial point: Point p on the 3-dimensional differentiable
manifold M with coordinates [0, 0, 0] with respect to
Chart (M, (x1, x2, x3))

Initial tangent vector: Tangent vector at Point p on the
3-dimensional differentiable manifold M with
components [1, 0, 1] with respect to Chart (M, (x1, x2, x3))

d(x1)/dt = Dx1
d(x2)/dt = Dx2
d(x3)/dt = Dx3
d(Dx1)/dt = Dx2
d(Dx2)/dt = -Dx1
d(Dx3)/dt = 0

sage: sol = c.solve()
sage: interp = c.interpolate()
sage: p = c(1.3, verbose=True)
Evaluating point coordinates from the interpolation
associated with the key cubic spline-interp-odeint
by default...

sage: p
Point on the 3-dimensional differentiable manifold M
sage: p.coordinates() # abs tol 1e-12
(0.9635581599167499, -0.7325011788437327, 1.3)
sage: tgt_vec = c.tangent_vector_eval_at(3.7, verbose=True)
Evaluating tangent vector components from the interpolation
associated with the key cubic spline-interp-odeint
by default...

sage: tgt_vec[:] # abs tol 1e-12
[-0.8481007454066425, 0.5298350137284363, 1.0]

integrated_geodesic(metric, curve_param, initial_tangent_vector, chart=None, name=None,
latex_name=None, verbose=False, across_charts=False)

Construct a geodesic on the manifold with respect to a given metric.

See also:

IntegratedGeodesic for details.

INPUT:

• metric – PseudoRiemannianMetric metric with respect to which the curve is a geodesic

• curve_param – a tuple of the type (t, t_min, t_max), where

– t is the symbolic variable to be used as the parameter of the curve (the equations defining an instance
of IntegratedGeodesic are such that t will actually be an affine parameter of the curve);

– t_min is its minimal (finite) value;

– t_max its maximal (finite) value.

• initial_tangent_vector – TangentVector; initial tangent vector of the curve

• chart – (default: None) chart on the manifold in which the equations are given; if None the default
chart of the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name
will be used

360 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• IntegratedGeodesic

EXAMPLES:

Geodesics of the unit 2-sphere S2:

sage: S2 = Manifold(2, S^2 , start_index=1)
sage: polar.<th,ph> = S2.chart(th ph)
sage: epolar = polar.frame()

Set the standard metric tensor 𝑔 on S2:

sage: g = S2.metric(g)
sage: g[1,1], g[2,2] = 1, (sin(th))^2

Declare an integrated geodesic with respect to this metric:

sage: p = S2.point((pi/4, 0), name= p)
sage: Tp = S2.tangent_space(p)
sage: v = Tp((1, 1), basis=epolar.at(p))
sage: t = var(t)
sage: c = S2.integrated_geodesic(g, (t, 0, 6), v,
....: chart=polar, name= c)
sage: sys = c.system(verbose=True)
Geodesic c in the 2-dimensional differentiable manifold S^2
equipped with Riemannian metric g on the 2-dimensional
differentiable manifold S^2, and integrated over the Real
interval (0, 6) as a solution to the following geodesic
equations, written with respect to Chart (S^2, (th, ph)):

Initial point: Point p on the 2-dimensional differentiable
manifold S^2 with coordinates [1/4*pi, 0] with respect to
Chart (S^2, (th, ph))
Initial tangent vector: Tangent vector at Point p on the
2-dimensional differentiable manifold S^2 with
components [1, 1] with respect to Chart (S^2, (th, ph))

d(th)/dt = Dth
d(ph)/dt = Dph
d(Dth)/dt = Dph^2*cos(th)*sin(th)
d(Dph)/dt = -2*Dph*Dth*cos(th)/sin(th)

sage: sol = c.solve()
sage: interp = c.interpolate()
sage: p = c(1.3, verbose=True)
Evaluating point coordinates from the interpolation
associated with the key cubic spline-interp-odeint
by default...

sage: p
Point on the 2-dimensional differentiable manifold S^2
sage: p.coordinates() # abs tol 1e-12
(2.2047435672397526, 0.7986602654406825)
sage: tgt_vec = c.tangent_vector_eval_at(3.7, verbose=True)
Evaluating tangent vector components from the interpolation
associated with the key cubic spline-interp-odeint
by default...

sage: tgt_vec[:] # abs tol 1e-12

(continues on next page)

2.1. Differentiable Manifolds 361

Manifolds, Release 10.4.rc1

(continued from previous page)

[-1.0907409234671228, 0.6205670379855032]

is_manifestly_parallelizable()

Return True if self is known to be a parallelizable and False otherwise.

If False is returned, either the manifold is not parallelizable or no vector frame has been defined on it yet.

EXAMPLES:

A just created manifold is a priori not manifestly parallelizable:

sage: M = Manifold(2, M)
sage: M.is_manifestly_parallelizable()
False

Defining a vector frame on it makes it parallelizable:

sage: e = M.vector_frame(e)
sage: M.is_manifestly_parallelizable()
True

Defining a coordinate chart on the whole manifold also makes it parallelizable:

sage: N = Manifold(4, N)
sage: X.<t,x,y,z> = N.chart()
sage: N.is_manifestly_parallelizable()
True

lorentzian_metric(name, signature='positive', latex_name=None, dest_map=None)
Define a Lorentzian metric on the manifold.

A Lorentzian metric is a field of nondegenerate symmetric bilinear forms acting in the tangent spaces, with
signature (−,+, · · · ,+) or (+,−, · · · ,−).

See PseudoRiemannianMetric for a complete documentation.

INPUT:

• name – name given to the metric

• signature – (default: ‘positive’) sign of the metric signature:

– if set to ‘positive’, the signature is n-2, where n is the manifold’s dimension, i.e. (−,+, · · · ,+)

– if set to ‘negative’, the signature is -n+2, i.e. (+,−, · · · ,−)

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

• dest_map – (default: None) instance of class DiffMap representing the destination map Φ : 𝑈 →
𝑀 , where 𝑈 is the current manifold; if None, the identity map is assumed (case of a metric tensor field
on 𝑈)

OUTPUT:

• instance of PseudoRiemannianMetric representing the defined Lorentzian metric.

EXAMPLES:

Metric of Minkowski spacetime:

362 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(4, M)
sage: X.<t,x,y,z> = M.chart()
sage: g = M.lorentzian_metric(g); g
Lorentzian metric g on the 4-dimensional differentiable manifold M
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1, 1, 1, 1
sage: g.display()
g = -dt⊗dt + dx⊗dx + dy⊗dy + dz⊗dz
sage: g.signature()
2

Choice of a negative signature:

sage: g = M.lorentzian_metric(g , signature= negative); g
Lorentzian metric g on the 4-dimensional differentiable manifold M
sage: g[0,0], g[1,1], g[2,2], g[3,3] = 1, -1, -1, -1
sage: g.display()
g = dt⊗dt - dx⊗dx - dy⊗dy - dz⊗dz
sage: g.signature()
-2

metric(name, signature=None, latex_name=None, dest_map=None)
Define a pseudo-Riemannian metric on the manifold.

A pseudo-Riemannian metric is a field of nondegenerate symmetric bilinear forms acting in the tangent spaces.
See PseudoRiemannianMetric for a complete documentation.

INPUT:

• name – name given to the metric

• signature – (default: None) signature 𝑆 of the metric as a single integer: 𝑆 = 𝑛+ − 𝑛−, where 𝑛+
(resp. 𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the
metric components; if signature is not provided, 𝑆 is set to the manifold’s dimension (Riemannian
signature)

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

• dest_map – (default: None) instance of class DiffMap representing the destination map Φ : 𝑈 →
𝑀 , where 𝑈 is the current manifold; if None, the identity map is assumed (case of a metric tensor field
on 𝑈)

OUTPUT:

• instance of PseudoRiemannianMetric representing the defined pseudo-Riemannian metric.

EXAMPLES:

Metric on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: g = M.metric(g); g
Riemannian metric g on the 3-dimensional differentiable manifold M

See also:

PseudoRiemannianMetric for more examples.

mixed_form(comp=None, name=None, latex_name=None, dest_map=None)
Define a mixed form on self.

2.1. Differentiable Manifolds 363

Manifolds, Release 10.4.rc1

Via the argument dest_map, it is possible to let the mixed form take its values on another manifold. More
precisely, if𝑀 is the current manifold, 𝑁 a differentiable manifold, Φ : 𝑀 → 𝑁 a differentiable map, a
mixed form along Φ can be considered as a differentiable map

𝑎 :𝑀 −→
𝑛⨁︁

𝑘=0

𝑇 (0,𝑘)𝑁

(𝑇 (0,𝑘)𝑁 being the tensor bundle of type (0, 𝑘) over𝑁 ,⊕ being theWhitney sum and 𝑛 being the dimension
of 𝑁) such that

∀𝑥 ∈𝑀, 𝑎(𝑥) ∈
𝑛⨁︁

𝑘=0

Λ𝑘(𝑇 *
Φ(𝑥)𝑁),

where Λ𝑘(𝑇 *
Φ(𝑥)𝑁) is the 𝑘-th exterior power of the dual of the tangent space 𝑇Φ(𝑥)𝑁 .

The standard case of a mixed form on𝑀 corresponds to 𝑁 =𝑀 and Φ = Id𝑀 .

See also:

MixedForm for complete documentation.

INPUT:

• comp – (default: None) homogeneous components of the mixed form as a list; if none is provided, the
components are set to innocent unnamed differential forms

• name – (default: None) name given to the differential form

• latex_name – (default: None) LaTeX symbol to denote the differential form; if none is provided,
the LaTeX symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a differential form on 𝑀), otherwise dest_map must be a
DiffMap

OUTPUT:

• the mixed form as a MixedForm

EXAMPLES:

A mixed form on an open subset of a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U , latex_name=r \mathcal{U}); U
Open subset U of the 3-dimensional differentiable manifold M
sage: c_xyz.<x,y,z> = U.chart()
sage: f = U.mixed_form(name= F); f
Mixed differential form F on the Open subset U of the 3-dimensional
differentiable manifold M

See the documentation of class MixedForm for more examples.

mixed_form_algebra(dest_map=None)
Return the set of mixed forms defined on self, possibly with values in another manifold, as a graded algebra.

See also:

MixedFormAlgebra for complete documentation.

INPUT:

364 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map (case of mixed forms on𝑀), otherwise dest_map must be a DiffMap

OUTPUT:

• aMixedFormAlgebra representing the graded algebraΩ*(𝑀,Φ) ofmixed forms on𝑀 taking values
on Φ(𝑀) ⊂ 𝑁

EXAMPLES:

Graded algebra of mixed forms on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: M.mixed_form_algebra()
Graded algebra Omega^*(M) of mixed differential forms on the
2-dimensional differentiable manifold M

sage: M.mixed_form_algebra().category()
Join of Category of graded algebras over Symbolic Ring and Category of chain␣
→˓complexes over Symbolic Ring
sage: M.mixed_form_algebra().base_ring()
Symbolic Ring

The outcome is cached:

sage: M.mixed_form_algebra() is M.mixed_form_algebra()
True

multivector_field(*args, **kwargs)
Define a multivector field on self.

Via the argument dest_map, it is possible to let the multivector field take its values on another manifold.
More precisely, if𝑀 is the current manifold,𝑁 a differentiable manifold, Φ : 𝑀 → 𝑁 a differentiable map
and 𝑝 a non-negative integer, a multivector field of degree 𝑝 (or 𝑝-vector field) along𝑀 with values on 𝑁 is
a differentiable map

𝑡 : 𝑀 −→ 𝑇 (𝑝,0)𝑁

(𝑇 (𝑝,0)𝑁 being the tensor bundle of type (𝑝, 0) over 𝑁) such that

∀𝑥 ∈𝑀, 𝑡(𝑥) ∈ Λ𝑝(𝑇Φ(𝑥)𝑁),

where Λ𝑝(𝑇Φ(𝑥)𝑁) is the 𝑝-th exterior power of the tangent vector space 𝑇Φ(𝑥)𝑁 .

The standard case of a 𝑝-vector field on𝑀 corresponds to 𝑁 =𝑀 and Φ = Id𝑀 . Other common cases are
Φ being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

For 𝑝 = 1, one can use the method vector_field() instead.

See also:

MultivectorField and MultivectorFieldParal for a complete documentation.

INPUT:

• degree – the degree 𝑝 of the multivector field (i.e. its tensor rank)

• comp – (optional) either the components of the multivector field with respect to the vector frame spec-
ified by the argument frame or a dictionary of components, the keys of which are vector frames or pairs
(f, c) where f is a vector frame and c the chart in which the components are expressed

2.1. Differentiable Manifolds 365

Manifolds, Release 10.4.rc1

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the multivector field

• latex_name – (default: None) LaTeX symbol to denote the multivector field; if none is provided, the
LaTeX symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a multivector field on 𝑀), otherwise dest_map must be a
DiffMap

OUTPUT:

• the 𝑝-vector field as a MultivectorField (or if 𝑁 is parallelizable, a MultivectorField-
Paral)

EXAMPLES:

A 2-vector field on a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: h = M.multivector_field(2, name= H); h
2-vector field H on the 3-dimensional differentiable manifold M
sage: h[0,1], h[0,2], h[1,2] = x+y, x*z, -3
sage: h.display()
H = (x + y) ∂/∂x∧∂/∂y + x*z ∂/∂x∧∂/∂z - 3 ∂/∂y∧∂/∂z

For more examples, see MultivectorField and MultivectorFieldParal.

multivector_module(degree, dest_map=None)
Return the set of multivector fields of a given degree defined on self, possibly with values in another man-
ifold, as a module over the algebra of scalar fields defined on self.

See also:

MultivectorModule for complete documentation.

INPUT:

• degree – positive integer; the degree 𝑝 of the multivector fields

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map (case of multivector fields on𝑀), otherwise dest_map must be a DiffMap

OUTPUT:

• a MultivectorModule (or if 𝑁 is parallelizable, a MultivectorFreeModule) representing
the module Ω𝑝(𝑀,Φ) of 𝑝-forms on𝑀 taking values on Φ(𝑀) ⊂ 𝑁

EXAMPLES:

Module of 2-vector fields on a 3-dimensional parallelizable manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: M.multivector_module(2)
Free module A^2(M) of 2-vector fields on the 3-dimensional

(continues on next page)

366 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

differentiable manifold M
sage: M.multivector_module(2).category()
Category of finite dimensional modules over Algebra of
differentiable scalar fields on the 3-dimensional
differentiable manifold M

sage: M.multivector_module(2).base_ring()
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M

sage: M.multivector_module(2).rank()
3

The outcome is cached:

sage: M.multivector_module(2) is M.multivector_module(2)
True

one_form(*comp, **kwargs)
Define a 1-form on the manifold.

Via the argument dest_map, it is possible to let the 1-form take its values on another manifold. More
precisely, if𝑀 is the current manifold, 𝑁 a differentiable manifold and Φ : 𝑀 → 𝑁 a differentiable map,
a 1-form along𝑀 with values on 𝑁 is a differentiable map

𝑡 : 𝑀 −→ 𝑇 *𝑁

(𝑇 *𝑁 being the cotangent bundle of 𝑁) such that

∀𝑝 ∈𝑀, 𝑡(𝑝) ∈ 𝑇 *
Φ(𝑝)𝑁,

where 𝑇 *
Φ(𝑝) is the dual of the tangent space 𝑇Φ(𝑝)𝑁 .

The standard case of a 1-form on 𝑀 corresponds to 𝑁 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ
being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

See also:

DiffForm and DiffFormParal for a complete documentation.

INPUT:

• comp – (optional) either the components of 1-form with respect to the vector frame specified by the
argument frame or a dictionary of components, the keys of which are vector frames or pairs (f, c)
where f is a vector frame and c the chart in which the components are expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the 1-form

• latex_name – (default: None) LaTeX symbol to denote the 1-form; if none is provided, the LaTeX
symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a 1-form on𝑀), otherwise dest_map must be a DiffMap

OUTPUT:

• the 1-form as a DiffForm (or if 𝑁 is parallelizable, a DiffFormParal)

2.1. Differentiable Manifolds 367

Manifolds, Release 10.4.rc1

EXAMPLES:

A 1-form on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: om = M.one_form(-y, 2+x, name= omega , latex_name=r \omega)
sage: om
1-form omega on the 2-dimensional differentiable manifold M
sage: om.display()
omega = -y dx + (x + 2) dy
sage: om.parent()
Free module Omega^1(M) of 1-forms on the 2-dimensional
differentiable manifold M

For more examples, see DiffForm and DiffFormParal.

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of the manifold.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.
It is a differentiable manifold by itself. Hence the returned object is an instance of Differentiable-
Manifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none is provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_def must a be
dictionary with keys charts in the manifold’s atlas and values the symbolic expressions formed by the
coordinates to define the subset.

• supersets – (default: only self) list of sets that the new open subset is a subset of

OUTPUT:

• the open subset, as an instance of DifferentiableManifold

EXAMPLES:

Creating an open subset of a differentiable manifold:

sage: M = Manifold(2, M)
sage: A = M.open_subset(A); A
Open subset A of the 2-dimensional differentiable manifold M

As an open subset of a differentiable manifold, A is itself a differentiable manifold, on the same topological
field and of the same dimension as M:

sage: A.category()
Join of Category of subobjects of sets and Category of smooth
manifolds over Real Field with 53 bits of precision

sage: A.base_field() == M.base_field()
True
sage: dim(A) == dim(M)
True

Creating an open subset of A:

368 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: B = A.open_subset(B); B
Open subset B of the 2-dimensional differentiable manifold M

We have then:

sage: A.subset_family()
Set {A, B} of open subsets of the 2-dimensional differentiable manifold M
sage: B.is_subset(A)
True
sage: B.is_subset(M)
True

Defining an open subset by some coordinate restrictions: the open unit disk in of the Euclidean plane:

sage: X.<x,y> = M.chart() # Cartesian coordinates on M
sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1}); U
Open subset U of the 2-dimensional differentiable manifold M

Since the argument coord_def has been set, U is automatically endowed with a chart, which is the restric-
tion of X to U:

sage: U.atlas()
[Chart (U, (x, y))]
sage: U.default_chart()
Chart (U, (x, y))
sage: U.default_chart() is X.restrict(U)
True

A point in U:

sage: p = U.an_element(); p
Point on the 2-dimensional differentiable manifold M
sage: X(p) # the coordinates (x,y) of p
(0, 0)
sage: p in U
True

Checking whether various points, defined by their coordinates with respect to chart X, are in U:

sage: M((0,1/2)) in U
True
sage: M((0,1)) in U
False
sage: M((1/2,1)) in U
False
sage: M((-1/2,1/3)) in U
True

orientation()

Get the preferred orientation of self if available.

An orientation on a differentiable manifold is an atlas of charts whose transition maps are pairwise orientation
preserving, i.e. whose Jacobian determinants are pairwise positive.

A differentiable manifold with an orientation is called orientable.

A differentiable manifold is orientable if and only if the tangent bundle is orientable in terms of a vector
bundle, see orientation().

2.1. Differentiable Manifolds 369

Manifolds, Release 10.4.rc1

Note: In contrast to topological manifolds, see orientation(), differentiable manifolds preferably use
the notion of orientability in terms of the tangent bundle.

The trivial case corresponds to the manifold being parallelizable, i.e. admitting a frame covering the whole
manifold. In that case, if no preferred orientation has been manually set before, one of those frames (usually
the default frame) is set to the preferred orientation on self and returned here.

EXAMPLES:

In case one frame already covers the manifold, an orientation is readily obtained:

sage: M = Manifold(3, M)
sage: c.<x,y,z> = M.chart()
sage: M.orientation()
[Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))]

However, orientations are usually not easy to obtain:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: M.orientation()
[]

In that case, the orientation can be set by the user; either in terms of charts or in terms of frames:

sage: M.set_orientation([c_xy, c_uv])
sage: M.orientation()
[Coordinate frame (U, (∂/∂x,∂/∂y)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

sage: M.set_orientation([c_xy.frame(), c_uv.frame()])
sage: M.orientation()
[Coordinate frame (U, (∂/∂x,∂/∂y)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

The orientation on submanifolds are inherited from the ambient manifold:

sage: W = U.intersection(V, name= W)
sage: W.orientation()
[Vector frame (W, (∂/∂x,∂/∂y))]

poisson_tensor(name=None, latex_name=None)
Construct a Poisson tensor on the current manifold.

OUTPUT:

• instance of PoissonTensorField

EXAMPLES:

Standard Poisson tensor on R2:

sage: M.<q, p> = EuclideanSpace(2)
sage: poisson = M.poisson_tensor(varpi)
sage: poisson.set_comp()[1,2] = -1
sage: poisson.display()
varpi = -e_q∧e_p

370 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

riemannian_metric(name, latex_name=None, dest_map=None)
Define a Riemannian metric on the manifold.

A Riemannian metric is a field of positive definite symmetric bilinear forms acting in the tangent spaces.

See PseudoRiemannianMetric for a complete documentation.

INPUT:

• name – name given to the metric

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

• dest_map – (default: None) instance of class DiffMap representing the destination map Φ : 𝑈 →
𝑀 , where 𝑈 is the current manifold; if None, the identity map is assumed (case of a metric tensor field
on 𝑈)

OUTPUT:

• instance of PseudoRiemannianMetric representing the defined Riemannian metric.

EXAMPLES:

Metric of the hyperbolic plane 𝐻2:

sage: H2 = Manifold(2, H^2 , start_index=1)
sage: X.<x,y> = H2.chart(x y:(0,+oo)) # Poincaré half-plane coord.
sage: g = H2.riemannian_metric(g)
sage: g[1,1], g[2,2] = 1/y^2, 1/y^2
sage: g
Riemannian metric g on the 2-dimensional differentiable manifold H^2
sage: g.display()
g = y^(-2) dx⊗dx + y^(-2) dy⊗dy
sage: g.signature()
2

See also:

PseudoRiemannianMetric for more examples.

set_change_of_frame(frame1, frame2, change_of_frame, compute_inverse=True)
Relate two vector frames by an automorphism.

This updates the internal dictionary self._frame_changes.

INPUT:

• frame1 – frame 1, denoted (𝑒𝑖) below

• frame2 – frame 2, denoted (𝑓𝑖) below

• change_of_frame – instance of class AutomorphismFieldParal describing the automor-
phism 𝑃 that relates the basis (𝑒𝑖) to the basis (𝑓𝑖) according to 𝑓𝑖 = 𝑃 (𝑒𝑖)

• compute_inverse (default: True) – if set to True, the inverse automorphism is computed and the
change from basis (𝑓𝑖) to (𝑒𝑖) is set to it in the internal dictionary self._frame_changes

EXAMPLES:

Connecting two vector frames on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: e = M.vector_frame(e)

(continues on next page)

2.1. Differentiable Manifolds 371

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f = M.vector_frame(f)
sage: a = M.automorphism_field()
sage: a[e,:] = [[1,2],[0,3]]
sage: M.set_change_of_frame(e, f, a)
sage: f[0].display(e)
f_0 = e_0
sage: f[1].display(e)
f_1 = 2 e_0 + 3 e_1
sage: e[0].display(f)
e_0 = f_0
sage: e[1].display(f)
e_1 = -2/3 f_0 + 1/3 f_1
sage: M.change_of_frame(e,f)[e,:]
[1 2]
[0 3]

set_default_frame(frame)

Changing the default vector frame on self.

INPUT:

• frame – VectorFrame a vector frame defined on some subset of self

EXAMPLES:

Changing the default frame on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: e = M.vector_frame(e)
sage: M.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: M.set_default_frame(e)
sage: M.default_frame()
Vector frame (M, (e_0,e_1))

set_orientation(orientation)
Set the preferred orientation of self.

INPUT:

• orientation – either a chart / list of charts, or a vector frame / list of vector frames, covering self

Warning: It is the user’s responsibility that the orientation set here is indeed an orientation. There is no
check going on in the background. See orientation() for the definition of an orientation.

EXAMPLES:

Set an orientation on a manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart(); c_uv.<u,v> = M.chart()
sage: M.set_orientation(c_uv)
sage: M.orientation()
[Coordinate frame (M, (∂/∂u,∂/∂v))]

Instead of a chart, a vector frame can be given, too:

372 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M.set_orientation(c_xy.frame())
sage: M.orientation()
[Coordinate frame (M, (∂/∂x,∂/∂y))]

Set an orientation in the non-trivial case:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: M.set_orientation([c_xy, c_uv])
sage: M.orientation()
[Coordinate frame (U, (∂/∂x,∂/∂y)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

Again, the vector frame notion can be used instead:

sage: M.set_orientation([c_xy.frame(), c_uv.frame()])
sage: M.orientation()
[Coordinate frame (U, (∂/∂x,∂/∂y)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

sym_bilin_form_field(*comp, **kwargs)
Define a field of symmetric bilinear forms on self.

Via the argument dest_map, it is possible to let the field take its values on another manifold. More precisely,
if𝑀 is the current manifold, 𝑁 a differentiable manifold and Φ : 𝑀 → 𝑁 a differentiable map, a field of
symmetric bilinear forms along𝑀 with values on 𝑁 is a differentiable map

𝑡 : 𝑀 −→ 𝑇 (0,2)𝑁

(𝑇 (0,2)𝑁 being the tensor bundle of type (0, 2) over 𝑁) such that

∀𝑝 ∈𝑀, 𝑡(𝑝) ∈ 𝑆(𝑇Φ(𝑝)𝑁),

where 𝑆(𝑇Φ(𝑝)𝑁) is the space of symmetric bilinear forms on the tangent space 𝑇Φ(𝑝)𝑁 .

The standard case of fields of symmetric bilinear forms on𝑀 corresponds to 𝑁 =𝑀 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

INPUT:

• comp – (optional) either the components of the field of symmetric bilinear forms with respect to the
vector frame specified by the argument frame or a dictionary of components, the keys of which are
vector frames or pairs (f, c) where f is a vector frame and c the chart in which the components are
expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the field

• latex_name – (default: None) LaTeX symbol to denote the field; if none is provided, the LaTeX
symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a field on 𝑀), otherwise dest_map must be an instance of
instance of class DiffMap

2.1. Differentiable Manifolds 373

Manifolds, Release 10.4.rc1

OUTPUT:

• a TensorField (or if 𝑁 is parallelizable, a TensorFieldParal) of tensor type (0, 2) and sym-
metric representing the defined field of symmetric bilinear forms

EXAMPLES:

A field of symmetric bilinear forms on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: t = M.sym_bilin_form_field(name= T); t
Field of symmetric bilinear forms T on the 2-dimensional
differentiable manifold M

Such a object is a tensor field of rank 2 and type (0, 2):

sage: t.parent()
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
2-dimensional differentiable manifold M

sage: t.tensor_rank()
2
sage: t.tensor_type()
(0, 2)

The LaTeX symbol is deduced from the name or can be specified when creating the object:

sage: latex(t)
T
sage: om = M.sym_bilin_form_field(name= Omega , latex_name=r \Omega)
sage: latex(om)
\Omega

Setting the components in the manifold’s default vector frame:

sage: t[0,0], t[0,1], t[1,1] = -1, x, x*y

The unset components are either zero or deduced by symmetry:

sage: t[1, 0]
x
sage: t[:]
[-1 x]
[x x*y]

One can also set the components while defining the field of symmetric bilinear forms:

sage: t = M.sym_bilin_form_field([[-1, x], [x, x*y]], name= T)

A symmetric bilinear form acts on vector pairs:

sage: v1 = M.vector_field(y, x, name= V_1)
sage: v2 = M.vector_field(x+y, 2, name= V_2)
sage: s = t(v1,v2) ; s
Scalar field T(V_1,V_2) on the 2-dimensional differentiable
manifold M

sage: s.expr()
x^3 + (3*x^2 + x)*y - y^2
sage: s.expr() - t[0,0]*v1[0]*v2[0] - \

(continues on next page)

374 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: t[0,1]*(v1[0]*v2[1]+v1[1]*v2[0]) - t[1,1]*v1[1]*v2[1]
0
sage: latex(s)
T\left(V_1,V_2\right)

Adding two symmetric bilinear forms results in another symmetric bilinear form:

sage: a = M.sym_bilin_form_field([[1, 2], [2, 3]])
sage: b = M.sym_bilin_form_field([[-1, 4], [4, 5]])
sage: s = a + b ; s
Field of symmetric bilinear forms on the 2-dimensional
differentiable manifold M

sage: s[:]
[0 6]
[6 8]

But adding a symmetric bilinear from with a non-symmetric bilinear form results in a generic type (0, 2)
tensor:

sage: c = M.tensor_field(0, 2, [[-2, -3], [1,7]])
sage: s1 = a + c ; s1
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: s1[:]
[-1 -1]
[3 10]
sage: s2 = c + a ; s2
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: s2[:]
[-1 -1]
[3 10]

symplectic_form(name=None, latex_name=None)
Construct a symplectic form on the current manifold.

OUTPUT:

• instance of SymplecticForm

EXAMPLES:

Standard symplectic form on R2:

sage: M.<q, p> = EuclideanSpace(2)
sage: omega = M.symplectic_form(omega , r \omega)
sage: omega.set_comp()[1,2] = -1
sage: omega.display()
omega = -dq∧dp

tangent_bundle(dest_map=None)
Return the tangent bundle possibly along a destination map with base space self.

See also:

TensorBundle for complete documentation.

INPUT:

2.1. Differentiable Manifolds 375

Manifolds, Release 10.4.rc1

• dest_map – (default: None) destination mapΦ : 𝑀 → 𝑁 (type: DiffMap) from which the tangent
bundle is pulled back; if None, it is assumed that 𝑁 =𝑀 and Φ is the identity map of𝑀 (case of the
standard tangent bundle over𝑀)

EXAMPLES:

sage: M = Manifold(2, M)
sage: TM = M.tangent_bundle(); TM
Tangent bundle TM over the 2-dimensional differentiable manifold M

tangent_identity_field(dest_map=None)
Return the field of identity maps in the tangent spaces on self.

Via the argument dest_map, it is possible to let the field take its values on another manifold. More precisely,
if𝑀 is the current manifold, 𝑁 a differentiable manifold and Φ : 𝑀 → 𝑁 a differentiable map, a field of
identity maps along𝑀 with values on 𝑁 is a differentiable map

𝑡 : 𝑀 −→ 𝑇 (1,1)𝑁

(𝑇 (1,1)𝑁 being the tensor bundle of type (1, 1) over 𝑁) such that

∀𝑝 ∈𝑀, 𝑡(𝑝) = Id𝑇Φ(𝑝)𝑁 ,

where Id𝑇Φ(𝑝)𝑁 is the identity map of the tangent space 𝑇Φ(𝑝)𝑁 .

The standard case of a field of identity maps on𝑀 corresponds to 𝑁 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

INPUT:

• name – (string; default: ‘Id’) name given to the field of identity maps

• latex_name – (string; default: None) LaTeX symbol to denote the field of identity map; if none is
provided, the LaTeX symbol is set to ‘mathrm{Id}’ if name is ‘Id’ and to name otherwise

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a field of identity maps on𝑀), otherwise dest_map must be a
DiffMap

OUTPUT:

• a AutomorphismField (or if𝑁 is parallelizable, a AutomorphismFieldParal) representing
the field of identity maps

EXAMPLES:

Field of tangent-space identity maps on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: a = M.tangent_identity_field(); a
Field of tangent-space identity maps on the 3-dimensional
differentiable manifold M

sage: a.comp()
Kronecker delta of size 3x3

For more examples, see AutomorphismField.

tangent_space(point, base_ring=None)
Tangent space to self at a given point.

INPUT:

376 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• point – ManifoldPoint; point 𝑝 on the manifold

• base_ring – (default: the symbolic ring) the base ring

OUTPUT:

• TangentSpace representing the tangent vector space 𝑇𝑝𝑀 , where𝑀 is the current manifold

EXAMPLES:

A tangent space to a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((2, -3), name= p)
sage: Tp = M.tangent_space(p); Tp
Tangent space at Point p on the 2-dimensional differentiable
manifold M

sage: Tp.category()
Category of finite dimensional vector spaces over Symbolic Ring
sage: dim(Tp)
2

See also:

TangentSpace for more examples.

tangent_vector(*args, **kwargs)
Define a tangent vector at a given point of self.

INPUT:

• point – ManifoldPoint; point 𝑝 on self

• comp – components of the vector with respect to the basis specified by the argument basis, either as
an iterable or as a sequence of 𝑛 components, 𝑛 being the dimension of self (see examples below)

• basis – (default: None) FreeModuleBasis; basis of the tangent space at 𝑝 with respect to which
the components are defined; if None, the default basis of the tangent space is used

• name – (default: None) string; symbol given to the vector

• latex_name – (default: None) string; LaTeX symbol to denote the vector; if None, name will be
used

OUTPUT:

• TangentVector representing the tangent vector at point 𝑝

EXAMPLES:

Vector at a point 𝑝 of the Euclidean plane:

sage: E.<x,y>= EuclideanSpace()
sage: p = E((1, 2), name= p)
sage: v = E.tangent_vector(p, -1, 3, name= v); v
Vector v at Point p on the Euclidean plane E^2
sage: v.display()
v = -e_x + 3 e_y
sage: v.parent()
Tangent space at Point p on the Euclidean plane E^2
sage: v in E.tangent_space(p)
True

2.1. Differentiable Manifolds 377

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

An alias of tangent_vector is vector:

sage: v = E.vector(p, -1, 3, name= v); v
Vector v at Point p on the Euclidean plane E^2

The components can be passed as a tuple or a list:

sage: v1 = E.vector(p, (-1, 3)); v1
Vector at Point p on the Euclidean plane E^2
sage: v1 == v
True

or as an object created by the vector function:

sage: v2 = E.vector(p, vector([-1, 3])); v2
Vector at Point p on the Euclidean plane E^2
sage: v2 == v
True

Example of use with the options basis and latex_name:

sage: polar_basis = E.polar_frame().at(p)
sage: polar_basis
Basis (e_r,e_ph) on the Tangent space at Point p on the Euclidean plane E^2
sage: v = E.vector(p, 2, -1, basis=polar_basis, name= v ,
....: latex_name=r \vec{v})
sage: v
Vector v at Point p on the Euclidean plane E^2
sage: v.display(polar_basis)
v = 2 e_r - e_ph
sage: v.display()
v = 4/5*sqrt(5) e_x + 3/5*sqrt(5) e_y
sage: latex(v)
\vec{v}

tensor_bundle(k, l, dest_map=None)
Return a tensor bundle of type (𝑘, 𝑙) defined over self, possibly along a destination map.

INPUT:

• k – the contravariant rank of the tensor bundle

• l – the covariant rank of the tensor bundle

• dest_map – (default: None) destination map Φ : 𝑀 → 𝑁 (type: DiffMap) from which the tensor
bundle is pulled back; if None, it is assumed that 𝑁 =𝑀 and Φ is the identity map of𝑀 (case of the
standard tangent bundle over𝑀)

OUTPUT:

• a TensorBundle representing a tensor bundle of type-(𝑘, 𝑙) over self

EXAMPLES:

A tensor bundle over a parallelizable 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: M.tensor_bundle(1, 2)
Tensor bundle T^(1,2)M over the 2-dimensional differentiable
manifold M

378 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The special case of the tangent bundle as tensor bundle of type (1,0):

sage: M.tensor_bundle(1,0)
Tangent bundle TM over the 2-dimensional differentiable manifold M

The result is cached:

sage: M.tensor_bundle(1, 2) is M.tensor_bundle(1, 2)
True

See also:

TensorBundle for more examples and documentation.

tensor_field(*args, **kwargs)
Define a tensor field on self.

Via the argument dest_map, it is possible to let the tensor field take its values on another manifold. More
precisely, if𝑀 is the current manifold, 𝑁 a differentiable manifold, Φ : 𝑀 → 𝑁 a differentiable map and
(𝑘, 𝑙) a pair of non-negative integers, a tensor field of type (𝑘, 𝑙) along𝑀 with values on𝑁 is a differentiable
map

𝑡 : 𝑀 −→ 𝑇 (𝑘,𝑙)𝑁

(𝑇 (𝑘,𝑙)𝑁 being the tensor bundle of type (𝑘, 𝑙) over 𝑁) such that

∀𝑝 ∈𝑀, 𝑡(𝑝) ∈ 𝑇 (𝑘,𝑙)(𝑇Φ(𝑝)𝑁),

where 𝑇 (𝑘,𝑙)(𝑇Φ(𝑝)𝑁) is the space of tensors of type (𝑘, 𝑙) on the tangent space 𝑇Φ(𝑝)𝑁 .

The standard case of tensor fields on𝑀 corresponds to 𝑁 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ
being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

See also:

TensorField and TensorFieldParal for a complete documentation.

INPUT:

• k – the contravariant rank 𝑘, the tensor type being (𝑘, 𝑙)

• l – the covariant rank 𝑙, the tensor type being (𝑘, 𝑙)

• comp – (optional) either the components of the tensor field with respect to the vector frame specified by
the argument frame or a dictionary of components, the keys of which are vector frames or pairs (f,
c) where f is a vector frame and c the chart in which the components are expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the tensor field

• latex_name – (default: None) LaTeX symbol to denote the tensor field; if None, the LaTeX symbol
is set to name

• sym – (default: None) a symmetry or a list of symmetries among the tensor arguments: each sym-
metry is described by a tuple containing the positions of the involved arguments, with the convention
position=0 for the first argument; for instance:

– sym = (0,1) for a symmetry between the 1st and 2nd arguments

2.1. Differentiable Manifolds 379

Manifolds, Release 10.4.rc1

– sym = [(0,2), (1,3,4)] for a symmetry between the 1st and 3rd arguments and a symmetry
between the 2nd, 4th and 5th arguments

• antisym – (default: None) antisymmetry or list of antisymmetries among the arguments, with the
same convention as for sym

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a tensor field on𝑀), otherwise dest_mapmust be a DiffMap

OUTPUT:

• a TensorField (or if𝑁 is parallelizable, a TensorFieldParal) representing the defined tensor
field

EXAMPLES:

A tensor field of type (2, 0) on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: t = M.tensor_field(2, 0, [[1+x, -y], [0, x*y]], name= T); t
Tensor field T of type (2,0) on the 2-dimensional differentiable
manifold M

sage: t.display()
T = (x + 1) ∂/∂x⊗∂/∂x - y ∂/∂x⊗∂/∂y + x*y ∂/∂y⊗∂/∂y

The type (2, 0) tensor fields on𝑀 form the set 𝒯 (2,0)(𝑀), which is a module over the algebra 𝐶𝑘(𝑀) of
differentiable scalar fields on𝑀 :

sage: t.parent()
Free module T^(2,0)(M) of type-(2,0) tensors fields on the
2-dimensional differentiable manifold M

sage: t in M.tensor_field_module((2,0))
True

For more examples, see TensorField and TensorFieldParal.

tensor_field_module(tensor_type, dest_map=None)
Return the set of tensor fields of a given type defined on self, possibly with values in another manifold, as
a module over the algebra of scalar fields defined on self.

See also:

TensorFieldModule for a complete documentation.

INPUT:

• tensor_type – pair (𝑘, 𝑙) with 𝑘 being the contravariant rank and 𝑙 the covariant rank

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map (case of tensor fields on𝑀), otherwise dest_map must be a DiffMap

OUTPUT:

• a TensorFieldModule (or if 𝑁 is parallelizable, a TensorFieldFreeModule) representing
the module 𝒯 (𝑘,𝑙)(𝑀,Φ) of type-(𝑘, 𝑙) tensor fields on𝑀 taking values on Φ(𝑀) ⊂ 𝑁

EXAMPLES:

Module of type-(2, 1) tensor fields on a 3-dimensional open subset of a differentiable manifold:

380 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M)
sage: U = M.open_subset(U)
sage: c_xyz.<x,y,z> = U.chart()
sage: TU = U.tensor_field_module((2,1)) ; TU
Free module T^(2,1)(U) of type-(2,1) tensors fields on the Open
subset U of the 3-dimensional differentiable manifold M

sage: TU.category()
Category of tensor products of finite dimensional modules
over Algebra of differentiable scalar fields
on the Open subset U of the 3-dimensional differentiable manifold M

sage: TU.base_ring()
Algebra of differentiable scalar fields on the Open subset U of
the 3-dimensional differentiable manifold M

sage: TU.base_ring() is U.scalar_field_algebra()
True
sage: TU.an_element()
Tensor field of type (2,1) on the Open subset U of the
3-dimensional differentiable manifold M

sage: TU.an_element().display()
2 ∂/∂x⊗∂/∂x⊗dx

vector(*args, **kwargs)
Define a tangent vector at a given point of self.

INPUT:

• point – ManifoldPoint; point 𝑝 on self

• comp – components of the vector with respect to the basis specified by the argument basis, either as
an iterable or as a sequence of 𝑛 components, 𝑛 being the dimension of self (see examples below)

• basis – (default: None) FreeModuleBasis; basis of the tangent space at 𝑝 with respect to which
the components are defined; if None, the default basis of the tangent space is used

• name – (default: None) string; symbol given to the vector

• latex_name – (default: None) string; LaTeX symbol to denote the vector; if None, name will be
used

OUTPUT:

• TangentVector representing the tangent vector at point 𝑝

EXAMPLES:

Vector at a point 𝑝 of the Euclidean plane:

sage: E.<x,y>= EuclideanSpace()
sage: p = E((1, 2), name= p)
sage: v = E.tangent_vector(p, -1, 3, name= v); v
Vector v at Point p on the Euclidean plane E^2
sage: v.display()
v = -e_x + 3 e_y
sage: v.parent()
Tangent space at Point p on the Euclidean plane E^2
sage: v in E.tangent_space(p)
True

An alias of tangent_vector is vector:

2.1. Differentiable Manifolds 381

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

sage: v = E.vector(p, -1, 3, name= v); v
Vector v at Point p on the Euclidean plane E^2

The components can be passed as a tuple or a list:

sage: v1 = E.vector(p, (-1, 3)); v1
Vector at Point p on the Euclidean plane E^2
sage: v1 == v
True

or as an object created by the vector function:

sage: v2 = E.vector(p, vector([-1, 3])); v2
Vector at Point p on the Euclidean plane E^2
sage: v2 == v
True

Example of use with the options basis and latex_name:

sage: polar_basis = E.polar_frame().at(p)
sage: polar_basis
Basis (e_r,e_ph) on the Tangent space at Point p on the Euclidean plane E^2
sage: v = E.vector(p, 2, -1, basis=polar_basis, name= v ,
....: latex_name=r \vec{v})
sage: v
Vector v at Point p on the Euclidean plane E^2
sage: v.display(polar_basis)
v = 2 e_r - e_ph
sage: v.display()
v = 4/5*sqrt(5) e_x + 3/5*sqrt(5) e_y
sage: latex(v)
\vec{v}

vector_bundle(rank, name, field='real', latex_name=None)
Return a differentiable vector bundle over the given field with given rank over this differentiable manifold of
the same differentiability class as the manifold.

INPUT:

• rank – rank of the vector bundle

• name – name given to the total space

• field – (default: real) topological field giving the vector space structure to the fibers

• latex_name – optional LaTeX name for the total space

OUTPUT:

• a differentiable vector bundle as an instance of DifferentiableVectorBundle

EXAMPLES:

sage: M = Manifold(2, M)
sage: M.vector_bundle(2, E)
Differentiable real vector bundle E -> M of rank 2 over the base
space 2-dimensional differentiable manifold M

382 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

vector_field(*comp, **kwargs)
Define a vector field on self.

Via the argument dest_map, it is possible to let the vector field take its values on another manifold. More
precisely, if𝑀 is the current manifold, 𝑁 a differentiable manifold and Φ : 𝑀 → 𝑁 a differentiable map,
a vector field along𝑀 with values on 𝑁 is a differentiable map

𝑣 : 𝑀 −→ 𝑇𝑁

(𝑇𝑁 being the tangent bundle of 𝑁) such that

∀𝑝 ∈𝑀, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑁,

where 𝑇Φ(𝑝)𝑁 is the tangent space to 𝑁 at the point Φ(𝑝).

The standard case of vector fields on𝑀 corresponds to 𝑁 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ
being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

See also:

VectorField and VectorFieldParal for a complete documentation.

INPUT:

• comp – (optional) either the components of the vector field with respect to the vector frame specified by
the argument frame or a dictionary of components, the keys of which are vector frames or pairs (f,
c) where f is a vector frame and c the chart in which the components are expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• name – (default: None) name given to the vector field

• latex_name – (default: None) LaTeX symbol to denote the vector field; if none is provided, the
LaTeX symbol is set to name

• dest_map – (default: None) the destination map Φ : 𝑀 → 𝑁 ; if None, it is assumed that 𝑁 = 𝑀
and that Φ is the identity map (case of a vector field on𝑀), otherwise dest_mapmust be a DiffMap

OUTPUT:

• a VectorField (or if𝑁 is parallelizable, a VectorFieldParal) representing the defined vector
field

EXAMPLES:

A vector field on a open subset of a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: U = M.open_subset(U)
sage: c_xyz.<x,y,z> = U.chart()
sage: v = U.vector_field(y, -x*z, 1+y, name= v); v
Vector field v on the Open subset U of the 3-dimensional
differentiable manifold M

sage: v.display()
v = y ∂/∂x - x*z ∂/∂y + (y + 1) ∂/∂z

The vector fields on 𝑈 form the set X(𝑈), which is a module over the algebra 𝐶𝑘(𝑈) of differentiable scalar
fields on 𝑈 :

2.1. Differentiable Manifolds 383

Manifolds, Release 10.4.rc1

sage: v.parent()
Free module X(U) of vector fields on the Open subset U of the
3-dimensional differentiable manifold M

sage: v in U.vector_field_module()
True

For more examples, see VectorField and VectorFieldParal.

vector_field_module(dest_map=None, force_free=False)
Return the set of vector fields defined on self, possibly with values in another differentiable manifold, as a
module over the algebra of scalar fields defined on the manifold.

See VectorFieldModule for a complete documentation.

INPUT:

• dest_map – (default: None) destination map, i.e. a differentiable map Φ : 𝑀 → 𝑁 , where𝑀 is the
current manifold and𝑁 a differentiable manifold; if None, it is assumed that𝑁 =𝑀 and that Φ is the
identity map (case of vector fields on𝑀), otherwise dest_map must be a DiffMap

• force_free – (default: False) if set to True, force the construction of a free module (this implies
that 𝑁 is parallelizable)

OUTPUT:

• a VectorFieldModule (or if 𝑁 is parallelizable, a VectorFieldFreeModule) representing
the 𝐶𝑘(𝑀)-module X(𝑀,Φ) of vector fields on𝑀 taking values on Φ(𝑀) ⊂ 𝑁

EXAMPLES:

Vector field module X(𝑈) := X(𝑈, Id𝑈) of the complement 𝑈 of the two poles on the sphere S2:

sage: S2 = Manifold(2, S^2)
sage: U = S2.open_subset(U) # the complement of the two poles
sage: spher_coord.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi) #␣
→˓spherical coordinates
sage: XU = U.vector_field_module() ; XU
Free module X(U) of vector fields on the Open subset U of
the 2-dimensional differentiable manifold S^2

sage: XU.category()
Category of finite dimensional modules over Algebra of
differentiable scalar fields on the Open subset U of
the 2-dimensional differentiable manifold S^2

sage: XU.base_ring()
Algebra of differentiable scalar fields on the Open subset U of
the 2-dimensional differentiable manifold S^2

sage: XU.base_ring() is U.scalar_field_algebra()
True

X(𝑈) is a free module because 𝑈 is parallelizable (being a chart domain):

sage: U.is_manifestly_parallelizable()
True

Its rank is the manifold’s dimension:

sage: XU.rank()
2

The elements of X(𝑈) are vector fields on 𝑈 :

384 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: XU.an_element()
Vector field on the Open subset U of the 2-dimensional
differentiable manifold S^2

sage: XU.an_element().display()
2 ∂/∂th + 2 ∂/∂ph

Vector field module X(𝑈,Φ) of the R3-valued vector fields along 𝑈 , associated with the embedding Φ of S2
into R3:

sage: R3 = Manifold(3, R^3)
sage: cart_coord.<x, y, z> = R3.chart()
sage: Phi = U.diff_map(R3,
....: [sin(th)*cos(ph), sin(th)*sin(ph), cos(th)], name= Phi)
sage: XU_R3 = U.vector_field_module(dest_map=Phi) ; XU_R3
Free module X(U,Phi) of vector fields along the Open subset U of
the 2-dimensional differentiable manifold S^2 mapped into the
3-dimensional differentiable manifold R^3

sage: XU_R3.base_ring()
Algebra of differentiable scalar fields on the Open subset U of the
2-dimensional differentiable manifold S^2

X(𝑈,Φ) is a free module because R3 is parallelizable and its rank is 3:

sage: XU_R3.rank()
3

Without any information on the manifold, the vector field module is not free by default:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: isinstance(XM, FiniteRankFreeModule)
False

In particular, declaring a coordinate chart on M would yield an error:

sage: X.<x,y> = M.chart()
Traceback (most recent call last):
...
ValueError: the Module X(M) of vector fields on the 2-dimensional
differentiable manifold M has already been constructed as a
non-free module, which implies that the 2-dimensional
differentiable manifold M is not parallelizable and hence cannot
be the domain of a coordinate chart

Similarly, one cannot declare a vector frame on𝑀 :

sage: e = M.vector_frame(e)
Traceback (most recent call last):
...
ValueError: the Module X(M) of vector fields on the 2-dimensional
differentiable manifold M has already been constructed as a
non-free module and therefore cannot have a basis

One shall use the keyword force_free=True to construct a free module before declaring the chart:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module(force_free=True)

(continues on next page)

2.1. Differentiable Manifolds 385

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: X.<x,y> = M.chart() # OK
sage: e = M.vector_frame(e) # OK

If one declares the chart or the vector frame before asking for the vector field module, the latter is initialized
as a free module, without the need to specify force_free=True. Indeed, the information that𝑀 is the
domain of a chart or a vector frame implies that𝑀 is parallelizable and is therefore sufficient to assert that
X(𝑀) is a free module over 𝐶𝑘(𝑀):

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: XM = M.vector_field_module()
sage: isinstance(XM, FiniteRankFreeModule)
True
sage: M.is_manifestly_parallelizable()
True

vector_frame(*args, **kwargs)
Define a vector frame on self.

A vector frame is a field on the manifold that provides, at each point 𝑝 of the manifold, a vector basis of the
tangent space at 𝑝 (or at Φ(𝑝) when dest_map is not None, see below).

The vector frame can be defined from a set of 𝑛 linearly independent vector fields, 𝑛 being the dimension of
self.

See also:

VectorFrame for complete documentation.

INPUT:

• symbol – either a string, to be used as a common base for the symbols of the vector fields constituting
the vector frame, or a list/tuple of strings, representing the individual symbols of the vector fields; can
be omitted only if from_frame is not None (see below)

• vector_fields – tuple or list of 𝑛 linearly independent vector fields on the manifold self (𝑛 being
the dimension of self) defining the vector frame; can be omitted if the vector frame is created from
scratch or if from_frame is not None

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the vector fields constituting the vector frame, or a list/tuple of strings, representing the individual
LaTeX symbols of the vector fields; if None, symbol is used in place of latex_symbol

• dest_map – (default: None) DiffMap; destination map Φ : 𝑈 → 𝑀 , where 𝑈 is self and𝑀 is
a differentiable manifold; for each 𝑝 ∈ 𝑈 , the vector frame evaluated at 𝑝 is a basis of the tangent space
𝑇Φ(𝑝)𝑀 ; if dest_map is None, the identity map is assumed (case of a vector frame on 𝑈)

• from_frame – (default: None) vector frame 𝑒 on the codomain 𝑀 of the destination map Φ; the
returned frame 𝑒 is then such that for all 𝑝 ∈ 𝑈 , we have 𝑒(𝑝) = 𝑒(Φ(𝑝))

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the vector fields of the frame; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the vector fields; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbolmust
be a string and is used for the common base of the symbols of the elements of the dual coframe

386 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

OUTPUT:

• a VectorFrame representing the defined vector frame

EXAMPLES:

Defining a vector frame from two linearly independent vector fields on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: e0 = M.vector_field(1+x^2, 1+y^2)
sage: e1 = M.vector_field(2, -x*y)
sage: e = M.vector_frame(e , (e0, e1)); e
Vector frame (M, (e_0,e_1))
sage: e[0].display()
e_0 = (x^2 + 1) ∂/∂x + (y^2 + 1) ∂/∂y
sage: e[1].display()
e_1 = 2 ∂/∂x - x*y ∂/∂y
sage: (e[0], e[1]) == (e0, e1)
True

If the vector fields are not linearly independent, an error is raised:

sage: z = M.vector_frame(z , (e0, -e0))
Traceback (most recent call last):
...
ValueError: the provided vector fields are not linearly
independent

Another example, involving a pair vector fields along a curve:

sage: R.<t> = manifolds.RealLine()
sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= c)
sage: I = c.domain(); I
Real interval (0, 2*pi)
sage: v = c.tangent_vector_field()
sage: v.display()
c = cos(t) ∂/∂x + (2*cos(t)^2 - 1) ∂/∂y
sage: w = I.vector_field(1-2*cos(t)^2, cos(t), dest_map=c)
sage: u = I.vector_frame(u , (v, w))
sage: u[0].display()
u_0 = cos(t) ∂/∂x + (2*cos(t)^2 - 1) ∂/∂y
sage: u[1].display()
u_1 = (-2*cos(t)^2 + 1) ∂/∂x + cos(t) ∂/∂y
sage: (u[0], u[1]) == (v, w)
True

It is also possible to create a vector frame from scratch, without connecting it to previously defined vector
frames or vector fields (this can still be performed later via the method set_change_of_frame()):

sage: f = M.vector_frame(f); f
Vector frame (M, (f_0,f_1))
sage: f[0]
Vector field f_0 on the 2-dimensional differentiable manifold M

Thanks to the keywords dest_map and from_frame, one can also define a vector frame from one pre-
existing on another manifold, via a differentiable map (here provided by the curve c):

2.1. Differentiable Manifolds 387

Manifolds, Release 10.4.rc1

sage: fc = I.vector_frame(dest_map=c, from_frame=f); fc
Vector frame ((0, 2*pi), (f_0,f_1)) with values on the
2-dimensional differentiable manifold M

sage: fc[0]
Vector field f_0 along the Real interval (0, 2*pi) with values on
the 2-dimensional differentiable manifold M

Note that the symbol for fc, namely 𝑓 , is inherited from f, the original vector frame.

See also:

For more options, in particular for the choice of symbols and indices, see VectorFrame.

2.2 Coordinate Charts on Differentiable Manifolds

The class DiffChart implements coordinate charts on a differentiable manifold over a topological field 𝐾 (in most
applications,𝐾 = R or𝐾 = C).

The subclass RealDiffChart is devoted to the case𝐾 = R, for which the concept of coordinate range is meaningful.
Moreover, RealDiffChart is endowed with some plotting capabilities (cf. method plot()).

Transition maps between charts are implemented via the class DiffCoordChange.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

REFERENCES:

• Chap. 1 of [Lee2013]

class sage.manifolds.differentiable.chart.DiffChart(domain, coordinates,
calc_method=None, periods=None,
coord_restrictions=None)

Bases: Chart

Chart on a differentiable manifold.

Given a differentiable manifold𝑀 of dimension 𝑛 over a topological field 𝐾, a chart is a member (𝑈,𝜙) of the
manifold’s differentiable atlas; 𝑈 is then an open subset of𝑀 and 𝜙 : 𝑈 → 𝑉 ⊂ 𝐾𝑛 is a homeomorphism from
𝑈 to an open subset 𝑉 of𝐾𝑛.

The components (𝑥1, . . . , 𝑥𝑛) of 𝜙, defined by 𝜙(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) ∈ 𝐾𝑛 for any point 𝑝 ∈ 𝑈 , are called
the coordinates of the chart (𝑈,𝜙).

INPUT:

• domain – open subset 𝑈 on which the chart is defined

• coordinates – (default: ‘’ (empty string)) single string defining the coordinate symbols, with (whites-
pace) as a separator; each item has at most three fields, separated by a colon (:):

1. the coordinate symbol (a letter or a few letters)

2. (optional) the period of the coordinate if the coordinate is periodic; the period field must be written as
period=T, where T is the period (see examples below)

3. (optional) the LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first
field will be used

388 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The order of fields 2 and 3 does not matter and each of them can be omitted. If it contains any LaTeX
expression, the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper
treatment of LaTeX’s backslash character (see examples below). If no period and no LaTeX spelling are to
be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is
used to declare the chart (see examples below).

• calc_method – (default: None) string defining the calculus method for computations involving coordi-
nates of the chart; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the default of CalculusMethod will be used

• names – (default: None) unused argument, except if coordinates is not provided; it must then be a
tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used).

• coord_restrictions: Additional restrictions on the coordinates. A restriction can be any symbolic
equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the
list (or set or frozenset) coord_restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list (or set or frozenset) coord_restrictions. For example:

coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_re-
strictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the
single element list [x > y]. If the chart variables have not been declared as variables yet, coord_re-
strictions must be lambda-quoted.

EXAMPLES:

A chart on a complex 2-dimensional differentiable manifold:

sage: M = Manifold(2, M , field= complex)
sage: X = M.chart(x y); X
Chart (M, (x, y))
sage: latex(X)
\left(M,(x, y)\right)
sage: type(X)
<class sage.manifolds.differentiable.chart.DiffChart >

To manipulate the coordinates (𝑥, 𝑦) as global variables, one has to set:

sage: x,y = X[:]

However, a shortcut is to use the declarator <x,y> in the left-hand side of the chart declaration (there is then no
need to pass the string x y to chart()):

sage: M = Manifold(2, M , field= complex)
sage: X.<x,y> = M.chart(); X
Chart (M, (x, y))

The coordinates are then immediately accessible:

sage: y
y
sage: x is X[0] and y is X[1]
True

2.2. Coordinate Charts on Differentiable Manifolds 389

Manifolds, Release 10.4.rc1

The trick is performed by Sage preparser:

sage: preparse("X.<x,y> = M.chart()")
"X = M.chart(names=(x , y ,)); (x, y,) = X._first_ngens(2)"

Note that x and y declared in <x,y> are mere Python variable names and do not have to coincide with the
coordinate symbols; for instance, one may write:

sage: M = Manifold(2, M , field= complex)
sage: X.<x1,y1> = M.chart(x y); X
Chart (M, (x, y))

Then y is not known as a global Python variable and the coordinate 𝑦 is accessible only through the global variable
y1:

sage: y1
y
sage: latex(y1)
y
sage: y1 is X[1]
True

However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is
recommended to declare:

sage: M = Manifold(2, M , field= complex)
sage: X.<x,y> = M.chart()

In the above example, the chart X covers entirely the manifold M:

sage: X.domain()
2-dimensional complex manifold M

Of course, one may declare a chart only on an open subset of M:

sage: U = M.open_subset(U)
sage: Y.<z1, z2> = U.chart(r z1:\zeta_1 z2:\zeta_2); Y
Chart (U, (z1, z2))
sage: Y.domain()
Open subset U of the 2-dimensional complex manifold M

In the above declaration, we have also specified some LaTeX writing of the coordinates different from the text one:

sage: latex(z1)
{\zeta_1}

Note the prefix r in front of the string r z1:\zeta_1 z2:\zeta_2 ; it makes sure that the backslash
character is treated as an ordinary character, to be passed to the LaTeX interpreter.

Periodic coordinates are declared through the keyword period= in the coordinate field:

sage: N = Manifold(2, N , field= complex)
sage: XN.<Z1,Z2> = N.chart(Z1:period=1+2*I Z2)
sage: XN.periods()
(2*I + 1, None)

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

390 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#module-sage.symbolic.expression

Manifolds, Release 10.4.rc1

sage: type(z1)
<class sage.symbolic.expression.Expression >

In addition to the Python variable name provided in the operator <.,.>, the coordinates are accessible by their
indices:

sage: Y[0], Y[1]
(z1, z2)

The index range is that declared during the creation of the manifold. By default, it starts at 0, but this can be
changed via the parameter start_index:

sage: M1 = Manifold(2, M_1 , field= complex , start_index=1)
sage: Z.<u,v> = M1.chart()
sage: Z[1], Z[2]
(u, v)

The full set of coordinates is obtained by means of the operator [:]:

sage: Y[:]
(z1, z2)

Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (M, (x, y)), Chart (U, (z1, z2))]

and to the atlas of the chart’s domain:

sage: U.atlas()
[Chart (U, (z1, z2))]

Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the
first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (M, (x, y))
sage: U.default_chart()
Chart (U, (z1, z2))

The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the
argument list of functions having an optional chart= argument.

The action of the chart map 𝜙 on a point is obtained by means of the call operator, i.e. the operator ():

sage: p = M.point((1+i, 2), chart=X); p
Point on the 2-dimensional complex manifold M
sage: X(p)
(I + 1, 2)
sage: X(p) == p.coord(X)
True

A vector frame is naturally associated to each chart:

sage: X.frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: Y.frame()
Coordinate frame (U, (∂/∂z1,∂/∂z2))

2.2. Coordinate Charts on Differentiable Manifolds 391

Manifolds, Release 10.4.rc1

as well as a dual frame (basis of 1-forms):

sage: X.coframe()
Coordinate coframe (M, (dx,dy))
sage: Y.coframe()
Coordinate coframe (U, (dz1,dz2))

See also:

RealDiffChart for charts on differentiable manifolds over R.

coframe()

Return the coframe (basis of coordinate differentials) associated with self.

OUTPUT:

• a CoordCoFrame representing the coframe

EXAMPLES:

Coordinate coframe associated with some chart on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: c_xy.coframe()
Coordinate coframe (M, (dx,dy))
sage: type(c_xy.coframe())
<class sage.manifolds.differentiable.vectorframe.CoordCoFrame_with_category >

Check that c_xy.coframe() is indeed the coordinate coframe associated with the coordinates (𝑥, 𝑦):

sage: dx = c_xy.coframe()[0] ; dx
1-form dx on the 2-dimensional differentiable manifold M
sage: dy = c_xy.coframe()[1] ; dy
1-form dy on the 2-dimensional differentiable manifold M
sage: ex = c_xy.frame()[0] ; ex
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
sage: ey = c_xy.frame()[1] ; ey
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
sage: dx(ex).display()
dx(∂/∂x): M → ℝ

(x, y) ↦ 1
sage: dx(ey).display()
dx(∂/∂y): M → ℝ

(x, y) ↦ 0
sage: dy(ex).display()
dy(∂/∂x): M → ℝ

(x, y) ↦ 0
sage: dy(ey).display()
dy(∂/∂y): M → ℝ

(x, y) ↦ 1

frame()

Return the vector frame (coordinate frame) associated with self.

OUTPUT:

• a CoordFrame representing the coordinate frame

EXAMPLES:

Coordinate frame associated with some chart on a 2-dimensional manifold:

392 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: c_xy.frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: type(c_xy.frame())
<class sage.manifolds.differentiable.vectorframe.CoordFrame_with_category >

Check that c_xy.frame() is indeed the coordinate frame associated with the coordinates (𝑥, 𝑦):

sage: ex = c_xy.frame()[0] ; ex
Vector field ∂/∂x on the 2-dimensional differentiable manifold M
sage: ey = c_xy.frame()[1] ; ey
Vector field ∂/∂y on the 2-dimensional differentiable manifold M
sage: ex(M.scalar_field(x)).display()
1: M → ℝ

(x, y) ↦ 1
sage: ex(M.scalar_field(y)).display()
zero: M → ℝ

(x, y) ↦ 0
sage: ey(M.scalar_field(x)).display()
zero: M → ℝ

(x, y) ↦ 0
sage: ey(M.scalar_field(y)).display()
1: M → ℝ

(x, y) ↦ 1

restrict(subset, restrictions=None)
Return the restriction of self to some subset.

If the current chart is (𝑈,𝜙), a restriction (or subchart) is a chart (𝑉, 𝜓) such that 𝑉 ⊂ 𝑈 and 𝜓 = 𝜙|𝑉 .

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the original chart.

INPUT:

• subset – open subset 𝑉 of the chart domain 𝑈

• restrictions – (default: None) list of coordinate restrictions defining the subset 𝑉

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

OUTPUT:

• a DiffChart (𝑉, 𝜓)

EXAMPLES:

Coordinates on the unit open ball of C2 as a subchart of the global coordinates of C2:

2.2. Coordinate Charts on Differentiable Manifolds 393

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, C^2 , field= complex)
sage: X.<z1, z2> = M.chart()
sage: B = M.open_subset(B)
sage: X_B = X.restrict(B, abs(z1)^2 + abs(z2)^2 < 1); X_B
Chart (B, (z1, z2))

symbolic_velocities(left='D', right=None)
Return a list of symbolic variables ready to be used by the user as the derivatives of the coordinate functions
with respect to a curve parameter (i.e. the velocities along the curve). It may actually serve to denote anything
else than velocities, with a name including the coordinate functions. The choice of strings provided as ‘left’
and ‘right’ arguments is not entirely free since it must comply with Python prescriptions.

INPUT:

• left – (default: D) string to concatenate to the left of each coordinate functions of the chart

• right – (default: None) string to concatenate to the right of each coordinate functions of the chart

OUTPUT:

• a list of symbolic expressions with the desired names

EXAMPLES:

Symbolic derivatives of the Cartesian coordinates of the 3-dimensional Euclidean space:

sage: R3 = Manifold(3, R3 , start_index=1)
sage: cart.<X,Y,Z> = R3.chart()
sage: D = cart.symbolic_velocities(); D
[DX, DY, DZ]
sage: D = cart.symbolic_velocities(left= d , right="/dt"); D
Traceback (most recent call last):
...
ValueError: The name "dX/dt" is not a valid Python
identifier.

sage: D = cart.symbolic_velocities(left= d , right="_dt"); D
[dX_dt, dY_dt, dZ_dt]
sage: D = cart.symbolic_velocities(left= , right=" "); D
Traceback (most recent call last):
...
ValueError: The name "X " is not a valid Python
identifier.

sage: D = cart.symbolic_velocities(left= , right="_dot"); D
[X_dot, Y_dot, Z_dot]
sage: R.<t> = manifolds.RealLine()
sage: canon_chart = R.default_chart()
sage: D = canon_chart.symbolic_velocities() ; D
[Dt]

transition_map(other, transformations, intersection_name=None, restrictions1=None, restrictions2=None)
Construct the transition map between the current chart, (𝑈,𝜙) say, and another one, (𝑉, 𝜓) say.

If 𝑛 is the manifold’s dimension, the transition map is the map

𝜓 ∘ 𝜙−1 : 𝜙(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛 → 𝜓(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛,

where𝐾 is themanifold’s base field. In other words, the transitionmap expresses the coordinates (𝑦1, . . . , 𝑦𝑛)
of (𝑉, 𝜓) in terms of the coordinates (𝑥1, . . . , 𝑥𝑛) of (𝑈,𝜙) on the open subset where the two charts intersect,
i.e. on 𝑈 ∩ 𝑉 .

394 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

By definition, the transition map 𝜓 ∘ 𝜙−1 must be of class 𝐶𝑘, where 𝑘 is the degree of differentiability of
the manifold (cf. diff_degree()).

INPUT:

• other – the chart (𝑉, 𝜓)

• transformations – tuple (or list) (𝑌1, . . . , 𝑌2), where 𝑌𝑖 is the symbolic expression of the coordi-
nate 𝑦𝑖 in terms of the coordinates (𝑥1, . . . , 𝑥𝑛)

• intersection_name – (default: None) name to be given to the subset 𝑈 ∩ 𝑉 if the latter differs
from 𝑈 or 𝑉

• restrictions1 – (default: None) list of conditions on the coordinates of the current chart that de-
fine 𝑈 ∩ 𝑉 if the latter differs from 𝑈 . restrictions1 must be a list of of symbolic equalities or
inequalities involving the coordinates, such as x>y or x^2+y^2 != 0. The items of the list restric-
tions1 are combined with the and operator; if some restrictions are to be combined with the or
operator instead, they have to be passed as a tuple in some single item of the list restrictions1.
For example, restrictions1 = [x>y, (x!=0, y!=0), z^2<x] means (x>y) and ((x!=0) or (y!=0)) and
(z^2<x). If the list restrictions1 contains only one item, this item can be passed as such, i.e.
writing x>y instead of the single-element list [x>y].

• restrictions2 – (default: None) list of conditions on the coordinates of the chart (𝑉, 𝜓) that define
𝑈 ∩ 𝑉 if the latter differs from 𝑉 (see restrictions1 for the syntax)

OUTPUT:

• The transition map 𝜓 ∘ 𝜙−1 defined on 𝑈 ∩ 𝑉 , as an instance of DiffCoordChange.

EXAMPLES:

Transition map between two stereographic charts on the circle 𝑆1:

sage: M = Manifold(1, S^1)
sage: U = M.open_subset(U) # Complement of the North pole
sage: cU.<x> = U.chart() # Stereographic chart from the North pole
sage: V = M.open_subset(V) # Complement of the South pole
sage: cV.<y> = V.chart() # Stereographic chart from the South pole
sage: M.declare_union(U,V) # S^1 is the union of U and V
sage: trans = cU.transition_map(cV, 1/x, intersection_name= W ,
....: restrictions1= x!=0, restrictions2 = y!=0)
sage: trans
Change of coordinates from Chart (W, (x,)) to Chart (W, (y,))
sage: trans.display()
y = 1/x

The subset𝑊 , intersection of 𝑈 and 𝑉 , has been created by transition_map():

sage: F = M.subset_family(); F
Set {S^1, U, V, W} of open subsets of the 1-dimensional differentiable␣
→˓manifold S^1
sage: W = F[W]
sage: W is U.intersection(V)
True
sage: M.atlas()
[Chart (U, (x,)), Chart (V, (y,)), Chart (W, (x,)), Chart (W, (y,))]

Transition map between the polar chart and the Cartesian one on R2:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart()

(continues on next page)

2.2. Coordinate Charts on Differentiable Manifolds 395

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: U = M.open_subset(U) # the complement of the half line {y=0, x >= 0}
sage: c_spher.<r,phi> = U.chart(r r:(0,+oo) phi:(0,2*pi):\phi)
sage: trans = c_spher.transition_map(c_cart, (r*cos(phi), r*sin(phi)),
....: restrictions2=(y!=0, x<0))
sage: trans
Change of coordinates from Chart (U, (r, phi)) to Chart (U, (x, y))
sage: trans.display()
x = r*cos(phi)
y = r*sin(phi)

In this case, no new subset has been created since 𝑈 ∩𝑀 = 𝑈 :

sage: M.subset_family()
Set {R^2, U} of open subsets of the 2-dimensional differentiable manifold R^2

but a new chart has been created: (𝑈, (𝑥, 𝑦)):

sage: M.atlas()
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]

class sage.manifolds.differentiable.chart.DiffCoordChange(chart1, chart2,
*transformations)

Bases: CoordChange

Transition map between two charts of a differentiable manifold.

Giving two coordinate charts (𝑈,𝜙) and (𝑉, 𝜓) on a differentiable manifold𝑀 of dimension 𝑛 over a topological
field𝐾, the transition map from (𝑈,𝜙) to (𝑉, 𝜓) is the map

𝜓 ∘ 𝜙−1 : 𝜙(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛 → 𝜓(𝑈 ∩ 𝑉) ⊂ 𝐾𝑛,

In other words, the transition map 𝜓 ∘ 𝜙−1 expresses the coordinates (𝑦1, . . . , 𝑦𝑛) of (𝑉, 𝜓) in terms of the
coordinates (𝑥1, . . . , 𝑥𝑛) of (𝑈,𝜙) on the open subset where the two charts intersect, i.e. on 𝑈 ∩ 𝑉 .

By definition, the transition map 𝜓 ∘ 𝜙−1 must be of class 𝐶𝑘, where 𝑘 is the degree of differentiability of the
manifold (cf. diff_degree()).

INPUT:

• chart1 – chart (𝑈,𝜙)

• chart2 – chart (𝑉, 𝜓)

• transformations – tuple (or list) (𝑌1, . . . , 𝑌2), where 𝑌𝑖 is the symbolic expression of the coordinate
𝑦𝑖 in terms of the coordinates (𝑥1, . . . , 𝑥𝑛)

EXAMPLES:

Transition map on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: X_to_Y
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: type(X_to_Y)
<class sage.manifolds.differentiable.chart.DiffCoordChange >
sage: X_to_Y.display()

(continues on next page)

396 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

u = x + y
v = x - y

jacobian()

Return the Jacobian matrix of self.

If self corresponds to the change of coordinates

𝑦𝑖 = 𝑌 𝑖(𝑥1, . . . , 𝑥𝑛) 1 ≤ 𝑖 ≤ 𝑛

the Jacobian matrix 𝐽 is given by

𝐽𝑖𝑗 =
𝜕𝑌 𝑖

𝜕𝑥𝑗

where 𝑖 is the row index and 𝑗 the column one.

OUTPUT:

• Jacobian matrix 𝐽 , the elements 𝐽𝑖𝑗 of which being coordinate functions (cf. ChartFunction)

EXAMPLES:

Jacobian matrix of a 2-dimensional transition map:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y^2, 3*x-y])
sage: X_to_Y.jacobian()
[1 2*y]
[3 -1]

Each element of the Jacobian matrix is a coordinate function:

sage: parent(X_to_Y.jacobian()[0,0])
Ring of chart functions on Chart (M, (x, y))

jacobian_det()

Return the Jacobian determinant of self.

The Jacobian determinant is the determinant of the Jacobian matrix (see jacobian()).

OUTPUT:

• determinant of the Jacobian matrix 𝐽 as a coordinate function (cf. ChartFunction)

EXAMPLES:

Jacobian determinant of a 2-dimensional transition map:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y^2, 3*x-y])
sage: X_to_Y.jacobian_det()
-6*y - 1
sage: X_to_Y.jacobian_det() == det(X_to_Y.jacobian())
True

The Jacobian determinant is a coordinate function:

2.2. Coordinate Charts on Differentiable Manifolds 397

Manifolds, Release 10.4.rc1

sage: parent(X_to_Y.jacobian_det())
Ring of chart functions on Chart (M, (x, y))

class sage.manifolds.differentiable.chart.RealDiffChart(domain, coordinates,
calc_method=None,
bounds=None, periods=None,
coord_restrictions=None)

Bases: DiffChart, RealChart

Chart on a differentiable manifold over R.

Given a differentiable manifold 𝑀 of dimension 𝑛 over R, a chart is a member (𝑈,𝜙) of the manifold’s dif-
ferentiable atlas; 𝑈 is then an open subset of𝑀 and 𝜙 : 𝑈 → 𝑉 ⊂ R𝑛 is a homeomorphism from 𝑈 to an open
subset 𝑉 of R𝑛.

The components (𝑥1, . . . , 𝑥𝑛) of 𝜙, defined by 𝜙(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) ∈ R𝑛 for any point 𝑝 ∈ 𝑈 , are called
the coordinates of the chart (𝑈,𝜙).

INPUT:

• domain – open subset 𝑈 on which the chart is defined

• coordinates – (default: ‘’ (empty string)) single string defining the coordinate symbols, with (whites-
pace) as a separator; each item has at most four fields, separated by a colon (:):

1. the coordinate symbol (a letter or a few letters)

2. (optional) the interval 𝐼 defining the coordinate range: if not provided, the coordinate is assumed to span
all R; otherwise 𝐼 must be provided in the form (a,b) (or equivalently]a,b[); the bounds a and
b can be +/-Infinity, Inf, infinity, inf or oo; for singular coordinates, non-open intervals
such as [a,b] and (a,b] (or equivalently]a,b]) are allowed; note that the interval declaration must
not contain any whitespace

3. (optional) indicator of the periodic character of the coordinate, either as period=T, where T is the
period, or as the keyword periodic (the value of the period is then deduced from the interval 𝐼
declared in field 2; see examples below)

4. (optional) the LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first
field will be used

The order of fields 2 to 4 does notmatter and each of them can be omitted. If it contains any LaTeX expression,
the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of
LaTeX’s backslash character (see examples below). If interval range, no period and no LaTeX spelling are to
be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is
used to declare the chart (see examples below).

• calc_method – (default: None) string defining the calculus method for computations involving coordi-
nates of the chart; must be one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the default of CalculusMethod will be used

• names – (default: None) unused argument, except if coordinates is not provided; it must then be a
tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used).

• coord_restrictions: Additional restrictions on the coordinates. A restriction can be any symbolic
equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the
list (or set or frozenset) coord_restrictions are combined with the and operator; if some restrictions

398 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list (or set or frozenset) coord_restrictions. For example:

coord_restrictions=[x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list coord_re-
strictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the
single element list [x > y]. If the chart variables have not been declared as variables yet, coord_re-
strictions must be lambda-quoted.

EXAMPLES:

Cartesian coordinates on R3:

sage: M = Manifold(3, R^3 , r \RR^3 , start_index=1)
sage: c_cart = M.chart(x y z); c_cart
Chart (R^3, (x, y, z))
sage: type(c_cart)
<class sage.manifolds.differentiable.chart.RealDiffChart >

To have the coordinates accessible as global variables, one has to set:

sage: (x,y,z) = c_cart[:]

However, a shortcut is to use the declarator <x,y,z> in the left-hand side of the chart declaration (there is then
no need to pass the string x y z to chart()):

sage: M = Manifold(3, R^3 , r \RR^3 , start_index=1)
sage: c_cart.<x,y,z> = M.chart(); c_cart
Chart (R^3, (x, y, z))

The coordinates are then immediately accessible:

sage: y
y
sage: y is c_cart[2]
True

The trick is performed by Sage preparser:

sage: preparse("c_cart.<x,y,z> = M.chart()")
"c_cart = M.chart(names=(x , y , z ,)); (x, y, z,) = c_cart._first_ngens(3)"

Note that x, y, z declared in <x,y,z> are mere Python variable names and do not have to coincide with the
coordinate symbols; for instance, one may write:

sage: M = Manifold(3, R^3 , r \RR^3 , start_index=1)
sage: c_cart.<x1,y1,z1> = M.chart(x y z); c_cart
Chart (R^3, (x, y, z))

Then y is not known as a global variable and the coordinate 𝑦 is accessible only through the global variable y1:

sage: y1
y
sage: y1 is c_cart[2]
True

However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is
recommended to declare:

2.2. Coordinate Charts on Differentiable Manifolds 399

Manifolds, Release 10.4.rc1

sage: forget() # for doctests only
sage: M = Manifold(3, R^3 , r \RR^3 , start_index=1)
sage: c_cart.<x,y,z> = M.chart()

Spherical coordinates on the subset 𝑈 of R3 that is the complement of the half-plane {𝑦 = 0, 𝑥 ≥ 0}:

sage: U = M.open_subset(U)
sage: c_spher.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: c_spher
Chart (U, (r, th, ph))

Note the prefix ‘r’ for the string defining the coordinates in the arguments of chart.

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(th)
<class sage.symbolic.expression.Expression >
sage: latex(th)
{\theta}
sage: assumptions(th)
[th is real, th > 0, th < pi]

Coordinate are also accessible by their indices:

sage: x1 = c_spher[1]; x2 = c_spher[2]; x3 = c_spher[3]
sage: [x1, x2, x3]
[r, th, ph]
sage: (x1, x2, x3) == (r, th, ph)
True

The full set of coordinates is obtained by means of the operator [:]:

sage: c_cart[:]
(x, y, z)
sage: c_spher[:]
(r, th, ph)

Let us check that the declared coordinate ranges have been taken into account:

sage: c_cart.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
sage: c_spher.coord_range()
r: (0, +oo); th: (0, pi); ph: (0, 2*pi)
sage: bool(th>0 and th<pi)
True
sage: assumptions() # list all current symbolic assumptions
[x is real, y is real, z is real, r is real, r > 0, th is real,
th > 0, th < pi, ph is real, ph > 0, ph < 2*pi]

The coordinate ranges are used for simplifications:

sage: simplify(abs(r)) # r has been declared to lie in the interval (0,+oo)
r
sage: simplify(abs(x)) # no positive range has been declared for x
abs(x)

A coordinate can be declared periodic by adding the keyword periodic to its range:

400 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#module-sage.symbolic.expression

Manifolds, Release 10.4.rc1

sage: V = M.open_subset(V)
sage: c_spher1.<r,th,ph1> = \
....: V.chart(r r:(0,+oo) th:(0,pi):\theta ph1:(0,2*pi):periodic:\phi_1)
sage: c_spher1.periods()
(None, None, 2*pi)
sage: c_spher1.coord_range()
r: (0, +oo); th: (0, pi); ph1: [0, 2*pi] (periodic)

It is equivalent to give the period as period=2*pi, skipping the coordinate range:

sage: c_spher2.<r,th,ph2> = \
....: V.chart(r r:(0,+oo) th:(0,pi):\theta ph2:period=2*pi:\phi_2)
sage: c_spher2.periods()
(None, None, 2*pi)
sage: c_spher2.coord_range()
r: (0, +oo); th: (0, pi); ph2: [0, 2*pi] (periodic)

Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2))]

and to the atlas of its domain:

sage: U.atlas()
[Chart (U, (r, th, ph))]

Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the
first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (R^3, (x, y, z))
sage: U.default_chart()
Chart (U, (r, th, ph))

The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the
argument list of functions having an optional chart= argument.

The action of the chart map 𝜙 on a point is obtained by means of the call operator, i.e. the operator ():

sage: p = M.point((1,0,-2)); p
Point on the 3-dimensional differentiable manifold R^3
sage: c_cart(p)
(1, 0, -2)
sage: c_cart(p) == p.coord(c_cart)
True
sage: q = M.point((2,pi/2,pi/3), chart=c_spher) # point defined by its spherical␣
→˓coordinates
sage: c_spher(q)
(2, 1/2*pi, 1/3*pi)
sage: c_spher(q) == q.coord(c_spher)
True
sage: a = U.point((1,pi/2,pi)) # the default coordinates on U are the spherical␣
→˓ones
sage: c_spher(a)
(1, 1/2*pi, pi)

(continues on next page)

2.2. Coordinate Charts on Differentiable Manifolds 401

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c_spher(a) == a.coord(c_spher)
True

Cartesian coordinates on 𝑈 as an example of chart construction with coordinate restrictions: since 𝑈 is the com-
plement of the half-plane {𝑦 = 0, 𝑥 ≥ 0}, we must have 𝑦 ̸= 0 or 𝑥 < 0 on U. Accordingly, we set:

sage: c_cartU.<x,y,z> = U.chart(coord_restrictions=lambda x,y,z: (y!=0, x<0))
....: # the tuple (y!=0, x<0) means y!=0 or x<0
....: # [y!=0, x<0] would have meant y!=0 AND x<0
sage: U.atlas()
[Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)),
Chart (V, (r, th, ph1)), Chart (V, (r, th, ph2)),
Chart (U, (x, y, z))]
sage: c_cartU.valid_coordinates(-1,0,2)
True
sage: c_cartU.valid_coordinates(1,0,2)
False
sage: c_cart.valid_coordinates(1,0,2)
True

A vector frame is naturally associated to each chart:

sage: c_cart.frame()
Coordinate frame (R^3, (∂/∂x,∂/∂y,∂/∂z))
sage: c_spher.frame()
Coordinate frame (U, (∂/∂r,∂/∂th,∂/∂ph))

as well as a dual frame (basis of 1-forms):

sage: c_cart.coframe()
Coordinate coframe (R^3, (dx,dy,dz))
sage: c_spher.coframe()
Coordinate coframe (U, (dr,dth,dph))

Chart grids can be drawn in 2D or 3D graphics thanks to the method plot().

restrict(subset, restrictions=None)
Return the restriction of the chart to some subset.

If the current chart is (𝑈,𝜙), a restriction (or subchart) is a chart (𝑉, 𝜓) such that 𝑉 ⊂ 𝑈 and 𝜓 = 𝜙|𝑉 .

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the original chart.

INPUT:

• subset – open subset 𝑉 of the chart domain 𝑈

• restrictions – (default: None) list of coordinate restrictions defining the subset 𝑉

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 +
y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions
are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the
list restrictions. For example:

402 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

restrictions = [x > y, (x != 0, y != 0), z^2 < x]

means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions
contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list
[x > y].

OUTPUT:

• a RealDiffChart (𝑉, 𝜓)

EXAMPLES:

Cartesian coordinates on the unit open disc in R2 as a subchart of the global Cartesian coordinates:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset(D) # the unit open disc
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: p = M.point((1/2, 0))
sage: p in D
True
sage: q = M.point((1, 2))
sage: q in D
False

Cartesian coordinates on the annulus 1 <
√︀
𝑥2 + 𝑦2 < 2:

sage: A = M.open_subset(A)
sage: c_cart_A = c_cart.restrict(A, [x^2+y^2>1, x^2+y^2<4])
sage: p in A, q in A
(False, False)
sage: a = M.point((3/2,0))
sage: a in A
True

2.3 The Real Line and Open Intervals

The class OpenInterval implement open intervals as 1-dimensional differentiable manifolds over R. The derived
class RealLine is devoted to R itself, as the open interval (−∞,+∞).

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• [Lee2013]

2.3. The Real Line and Open Intervals 403

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.examples.real_line.OpenInterval(lower, upper,
ambient_inter-
val=None,
name=None,
la-
tex_name=None,
coordi-
nate=None,
names=None,
start_index=0)

Bases: DifferentiableManifold

Open interval as a 1-dimensional differentiable manifold over R.

INPUT:

• lower – lower bound of the interval (possibly -Infinity)

• upper – upper bound of the interval (possibly +Infinity)

• ambient_interval – (default: None) another open interval, to which the constructed interval is a subset
of

• name – (default: None) string; name (symbol) given to the interval; if None, the name is constructed from
lower and upper

• latex_name – (default: None) string; LaTeX symbol to denote the interval; if None, the LaTeX symbol
is constructed from lower and upper if name is None, otherwise, it is set to name

• coordinate – (default: None) string defining the symbol of the canonical coordinate set on the interval;
if none is provided and names is None, the symbol ‘t’ is used

• names – (default: None) used only when coordinate is None: it must be a single-element tuple con-
taining the canonical coordinate symbol (this is guaranteed if the shortcut <names> is used, see examples
below)

• start_index – (default: 0) unique value of the index for vectors and forms on the interval manifold

EXAMPLES:

The interval (0, 𝜋):

sage: I = manifolds.OpenInterval(0, pi); I
Real interval (0, pi)
sage: latex(I)
\left(0, \pi\right)

I is a 1-dimensional smooth manifold over R:

sage: I.category()
Category of smooth connected manifolds over Real Field with 53 bits of
precision
sage: I.base_field()
Real Field with 53 bits of precision
sage: dim(I)
1

It is infinitely differentiable (smooth manifold):

sage: I.diff_degree()
+Infinity

404 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The instance is unique (as long as the constructor arguments are the same):

sage: I is manifolds.OpenInterval(0, pi)
True
sage: I is manifolds.OpenInterval(0, pi, name= I)
False

The display of the interval can be customized:

sage: I # default display
Real interval (0, pi)
sage: latex(I) # default LaTeX display
\left(0, \pi\right)
sage: I1 = manifolds.OpenInterval(0, pi, name= I); I1
Real interval I
sage: latex(I1)
I
sage: I2 = manifolds.OpenInterval(0, pi, name= I , latex_name=r \mathcal{I}); I2
Real interval I
sage: latex(I2)
\mathcal{I}

I is endowed with a canonical chart:

sage: I.canonical_chart()
Chart ((0, pi), (t,))
sage: I.canonical_chart() is I.default_chart()
True
sage: I.atlas()
[Chart ((0, pi), (t,))]

The canonical coordinate is returned by the method canonical_coordinate():

sage: I.canonical_coordinate()
t
sage: t = I.canonical_coordinate()
sage: type(t)
<class sage.symbolic.expression.Expression >

However, it can be obtained in the same step as the interval construction by means of the shortcut I.<names>:

sage: I.<t> = manifolds.OpenInterval(0, pi)
sage: t
t
sage: type(t)
<class sage.symbolic.expression.Expression >

The trick is performed by the Sage preparser:

sage: preparse("I.<t> = manifolds.OpenInterval(0, pi)")
"I = manifolds.OpenInterval(Integer(0), pi, names=(t ,)); (t,) = I._first_
→˓ngens(1)"

In particular the shortcut can be used to set a canonical coordinate symbol different from t :

sage: J.<x> = manifolds.OpenInterval(0, pi)
sage: J.canonical_chart()
Chart ((0, pi), (x,))

(continues on next page)

2.3. The Real Line and Open Intervals 405

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: J.canonical_coordinate()
x

The LaTeX symbol of the canonical coordinate can be adjusted via the same syntax as a chart declaration (see
RealChart):

sage: J.<x> = manifolds.OpenInterval(0, pi, coordinate=r x:\xi)
sage: latex(x)
{\xi}
sage: latex(J.canonical_chart())
\left(\left(0, \pi\right),({\xi})\right)

An element of the open interval I:

sage: x = I.an_element(); x
Point on the Real interval (0, pi)
sage: x.coord() # coordinates in the default chart = canonical chart
(1/2*pi,)

As for any manifold subset, a specific element of I can be created by providing a tuple containing its coordinate(s)
in a given chart:

sage: x = I((2,)) # (2,) = tuple of coordinates in the canonical chart
sage: x
Point on the Real interval (0, pi)

But for convenience, it can also be created directly from the coordinate:

sage: x = I(2); x
Point on the Real interval (0, pi)
sage: x.coord()
(2,)
sage: I(2) == I((2,))
True

By default, the coordinates passed for the element x are those relative to the canonical chart:

sage: I(2) == I((2,), chart=I.canonical_chart())
True

The lower and upper bounds of the interval I:

sage: I.lower_bound()
0
sage: I.upper_bound()
pi

One of the endpoint can be infinite:

sage: J = manifolds.OpenInterval(1, +oo); J
Real interval (1, +Infinity)
sage: J.an_element().coord()
(2,)

The construction of a subinterval can be performed via the argumentambient_interval ofOpenInterval:

406 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: J = manifolds.OpenInterval(0, 1, ambient_interval=I); J
Real interval (0, 1)

However, it is recommended to use the method open_interval() instead:

sage: J = I.open_interval(0, 1); J
Real interval (0, 1)
sage: J.is_subset(I)
True
sage: J.manifold() is I
True

A subinterval of a subinterval:

sage: K = J.open_interval(1/2, 1); K
Real interval (1/2, 1)
sage: K.is_subset(J)
True
sage: K.is_subset(I)
True
sage: K.manifold() is I
True

We have:

sage: list(I.subset_family())
[Real interval (0, 1), Real interval (0, pi), Real interval (1/2, 1)]
sage: list(J.subset_family())
[Real interval (0, 1), Real interval (1/2, 1)]
sage: list(K.subset_family())
[Real interval (1/2, 1)]

As any open subset of a manifold, open subintervals are created in a category of subobjects of smooth manifolds:

sage: J.category()
Join of Category of subobjects of sets and Category of smooth manifolds
over Real Field with 53 bits of precision and Category of connected
manifolds over Real Field with 53 bits of precision
sage: K.category()
Join of Category of subobjects of sets and Category of smooth manifolds
over Real Field with 53 bits of precision and Category of connected
manifolds over Real Field with 53 bits of precision

On the contrary, I, which has not been created as a subinterval, is in the category of smooth manifolds (see
Manifolds):

sage: I.category()
Category of smooth connected manifolds over Real Field with 53 bits of
precision

and we have:

sage: J.category() is I.category().Subobjects()
True

All intervals are parents:

2.3. The Real Line and Open Intervals 407

../../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds

Manifolds, Release 10.4.rc1

sage: x = J(1/2); x
Point on the Real interval (0, pi)
sage: x.parent() is J
True
sage: y = K(3/4); y
Point on the Real interval (0, pi)
sage: y.parent() is K
True

We have:

sage: x in I, x in J, x in K
(True, True, False)
sage: y in I, y in J, y in K
(True, True, True)

The canonical chart of subintervals is inherited from the canonical chart of the parent interval:

sage: XI = I.canonical_chart(); XI
Chart ((0, pi), (t,))
sage: XI.coord_range()
t: (0, pi)
sage: XJ = J.canonical_chart(); XJ
Chart ((0, 1), (t,))
sage: XJ.coord_range()
t: (0, 1)
sage: XK = K.canonical_chart(); XK
Chart ((1/2, 1), (t,))
sage: XK.coord_range()
t: (1/2, 1)

canonical_chart()

Return the canonical chart defined on self.

OUTPUT:

• RealDiffChart

EXAMPLES:

Canonical chart on the interval (0, 𝜋):

sage: I = manifolds.OpenInterval(0, pi)
sage: I.canonical_chart()
Chart ((0, pi), (t,))
sage: I.canonical_chart().coord_range()
t: (0, pi)

The symbol used for the coordinate of the canonical chart is that defined during the construction of the interval:

sage: I.<x> = manifolds.OpenInterval(0, pi)
sage: I.canonical_chart()
Chart ((0, pi), (x,))

canonical_coordinate()

Return the canonical coordinate defined on the interval.

OUTPUT:

408 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• the symbolic variable representing the canonical coordinate

EXAMPLES:

Canonical coordinate on the interval (0, 𝜋):

sage: I = manifolds.OpenInterval(0, pi)
sage: I.canonical_coordinate()
t
sage: type(I.canonical_coordinate())
<class sage.symbolic.expression.Expression >
sage: I.canonical_coordinate().is_real()
True

The canonical coordinate is the first (unique) coordinate of the canonical chart:

sage: I.canonical_coordinate() is I.canonical_chart()[0]
True

Its default symbol is 𝑡; but it can be customized during the creation of the interval:

sage: I = manifolds.OpenInterval(0, pi, coordinate= x)
sage: I.canonical_coordinate()
x
sage: I.<x> = manifolds.OpenInterval(0, pi)
sage: I.canonical_coordinate()
x

inf()

Return the lower bound (infimum) of the interval.

EXAMPLES:

sage: I = manifolds.OpenInterval(1/4, 3)
sage: I.lower_bound()
1/4
sage: J = manifolds.OpenInterval(-oo, 2)
sage: J.lower_bound()
-Infinity

An alias of lower_bound() is inf():

sage: I.inf()
1/4
sage: J.inf()
-Infinity

lower_bound()

Return the lower bound (infimum) of the interval.

EXAMPLES:

sage: I = manifolds.OpenInterval(1/4, 3)
sage: I.lower_bound()
1/4
sage: J = manifolds.OpenInterval(-oo, 2)
sage: J.lower_bound()
-Infinity

2.3. The Real Line and Open Intervals 409

Manifolds, Release 10.4.rc1

An alias of lower_bound() is inf():

sage: I.inf()
1/4
sage: J.inf()
-Infinity

open_interval(lower, upper, name=None, latex_name=None)
Define an open subinterval of self.

INPUT:

• lower – lower bound of the subinterval (possibly -Infinity)

• upper – upper bound of the subinterval (possibly +Infinity)

• name – (default: None) string; name (symbol) given to the subinterval; if None, the name is constructed
from lower and upper

• latex_name – (default: None) string; LaTeX symbol to denote the subinterval; if None, the LaTeX
symbol is constructed from lower and upper if name is None, otherwise, it is set to name

OUTPUT:

• OpenInterval representing the open interval (lower, upper)

EXAMPLES:

The interval (0, 𝜋) as a subinterval of (−4, 4):

sage: I = manifolds.OpenInterval(-4, 4)
sage: J = I.open_interval(0, pi); J
Real interval (0, pi)
sage: J.is_subset(I)
True
sage: list(I.subset_family())
[Real interval (-4, 4), Real interval (0, pi)]

J is considered as an open submanifold of I:

sage: J.manifold() is I
True

The subinterval (−4, 4) is I itself:

sage: I.open_interval(-4, 4) is I
True

sup()

Return the upper bound (supremum) of the interval.

EXAMPLES:

sage: I = manifolds.OpenInterval(1/4, 3)
sage: I.upper_bound()
3
sage: J = manifolds.OpenInterval(1, +oo)
sage: J.upper_bound()
+Infinity

An alias of upper_bound() is sup():

410 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: I.sup()
3
sage: J.sup()
+Infinity

upper_bound()

Return the upper bound (supremum) of the interval.

EXAMPLES:

sage: I = manifolds.OpenInterval(1/4, 3)
sage: I.upper_bound()
3
sage: J = manifolds.OpenInterval(1, +oo)
sage: J.upper_bound()
+Infinity

An alias of upper_bound() is sup():

sage: I.sup()
3
sage: J.sup()
+Infinity

class sage.manifolds.differentiable.examples.real_line.RealLine(name='ℝ', la-
tex_name='\\Bold{R}',
coordinate=None,
names=None,
start_index=0)

Bases: OpenInterval

Field of real numbers, as a differentiable manifold of dimension 1 (real line) with a canonical coordinate chart.

INPUT:

• name – (default: R) string; name (symbol) given to the real line

• latex_name – (default: r \Bold{R}) string; LaTeX symbol to denote the real line

• coordinate – (default: None) string defining the symbol of the canonical coordinate set on the real line;
if none is provided and names is None, the symbol ‘t’ is used

• names – (default: None) used only when coordinate is None: it must be a single-element tuple con-
taining the canonical coordinate symbol (this is guaranteed if the shortcut <names> is used, see examples
below)

• start_index – (default: 0) unique value of the index for vectors and forms on the real line manifold

EXAMPLES:

Constructing the real line without any argument:

sage: R = manifolds.RealLine() ; R
Real number line ℝ
sage: latex(R)
\Bold{R}

R is a 1-dimensional real smooth manifold:

2.3. The Real Line and Open Intervals 411

Manifolds, Release 10.4.rc1

sage: R.category()
Category of smooth connected manifolds over Real Field with 53 bits of
precision
sage: isinstance(R, sage.manifolds.differentiable.manifold.DifferentiableManifold)
True
sage: dim(R)
1

It is endowed with a canonical chart:

sage: R.canonical_chart()
Chart (ℝ, (t,))
sage: R.canonical_chart() is R.default_chart()
True
sage: R.atlas()
[Chart (ℝ, (t,))]

The instance is unique (as long as the constructor arguments are the same):

sage: R is manifolds.RealLine()
True
sage: R is manifolds.RealLine(latex_name= R)
False

The canonical coordinate is returned by the method canonical_coordinate():

sage: R.canonical_coordinate()
t
sage: t = R.canonical_coordinate()
sage: type(t)
<class sage.symbolic.expression.Expression >

However, it can be obtained in the same step as the real line construction by means of the shortcut R.<names>:

sage: R.<t> = manifolds.RealLine()
sage: t
t
sage: type(t)
<class sage.symbolic.expression.Expression >

The trick is performed by Sage preparser:

sage: preparse("R.<t> = manifolds.RealLine()")
"R = manifolds.RealLine(names=(t ,)); (t,) = R._first_ngens(1)"

In particular the shortcut is to be used to set a canonical coordinate symbol different from ‘t’:

sage: R.<x> = manifolds.RealLine()
sage: R.canonical_chart()
Chart (ℝ, (x,))
sage: R.atlas()
[Chart (ℝ, (x,))]
sage: R.canonical_coordinate()
x

The LaTeX symbol of the canonical coordinate can be adjusted via the same syntax as a chart declaration (see
RealChart):

412 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: R.<x> = manifolds.RealLine(coordinate=r x:\xi)
sage: latex(x)
{\xi}
sage: latex(R.canonical_chart())
\left(\Bold{R},({\xi})\right)

The LaTeX symbol of the real line itself can also be customized:

sage: R.<x> = manifolds.RealLine(latex_name=r \mathbb{R})
sage: latex(R)
\mathbb{R}

Elements of the real line can be constructed directly from a number:

sage: p = R(2) ; p
Point on the Real number line ℝ
sage: p.coord()
(2,)
sage: p = R(1.742) ; p
Point on the Real number line ℝ
sage: p.coord()
(1.74200000000000,)

Symbolic variables can also be used:

sage: p = R(pi, name= pi) ; p
Point pi on the Real number line ℝ
sage: p.coord()
(pi,)
sage: a = var(a)
sage: p = R(a) ; p
Point on the Real number line ℝ
sage: p.coord()
(a,)

The real line is considered as the open interval (−∞,+∞):

sage: isinstance(R, sage.manifolds.differentiable.examples.real_line.OpenInterval)
True
sage: R.lower_bound()
-Infinity
sage: R.upper_bound()
+Infinity

A real interval can be created from R means of the method open_interval():

sage: I = R.open_interval(0, 1); I
Real interval (0, 1)
sage: I.manifold()
Real number line ℝ
sage: list(R.subset_family())
[Real interval (0, 1), Real number line ℝ]

2.3. The Real Line and Open Intervals 413

Manifolds, Release 10.4.rc1

2.4 Scalar Fields

2.4.1 Algebra of Differentiable Scalar Fields

The class DiffScalarFieldAlgebra implements the commutative algebra 𝐶𝑘(𝑀) of differentiable scalar fields
on a differentiable manifold 𝑀 of class 𝐶𝑘 over a topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C). By
differentiable scalar field, it is meant a function𝑀 → 𝐾 that is 𝑘-times continuously differentiable. 𝐶𝑘(𝑀) is an algebra
over𝐾, whose ring product is the pointwise multiplication of𝐾-valued functions, which is clearly commutative.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2014-2015): initial version

REFERENCES:

• [KN1963]

• [Lee2013]

• [ONe1983]

class sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra(do-
main)

Bases: ScalarFieldAlgebra

Commutative algebra of differentiable scalar fields on a differentiable manifold.

If𝑀 is a differentiable manifold of class 𝐶𝑘 over a topological field 𝐾, the commutative algebra of scalar fields
on𝑀 is the set 𝐶𝑘(𝑀) of all 𝑘-times continuously differentiable maps𝑀 → 𝐾. The set 𝐶𝑘(𝑀) is an algebra
over𝐾, whose ring product is the pointwise multiplication of𝐾-valued functions, which is clearly commutative.

If𝐾 = R or𝐾 = C, the field𝐾 over which the algebra 𝐶𝑘(𝑀) is constructed is represented by Sage’s Symbolic
Ring SR, since there is no exact representation of R nor C in Sage.

Via its base class ScalarFieldAlgebra, the class DiffScalarFieldAlgebra inherits from Parent,
with the category set to CommutativeAlgebras. The corresponding element class is DiffScalarField.

INPUT:

• domain – the differentiable manifold𝑀 on which the scalar fields are defined (must be an instance of class
DifferentiableManifold)

EXAMPLES:

Algebras of scalar fields on the sphere 𝑆2 and on some open subset of it:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: CM = M.scalar_field_algebra() ; CM
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M
sage: W = U.intersection(V) # S^2 minus the two poles
sage: CW = W.scalar_field_algebra() ; CW

(continues on next page)

414 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/categories/sage/categories/commutative_algebras.html#sage.categories.commutative_algebras.CommutativeAlgebras

Manifolds, Release 10.4.rc1

(continued from previous page)

Algebra of differentiable scalar fields on the Open subset W of the
2-dimensional differentiable manifold M

𝐶𝑘(𝑀) and 𝐶𝑘(𝑊) belong to the category of commutative algebras over R (represented here by Sage’s Symbolic
Ring):

sage: CM.category()
Join of Category of commutative algebras over Symbolic Ring and Category of␣
→˓homsets of topological spaces
sage: CM.base_ring()
Symbolic Ring
sage: CW.category()
Join of Category of commutative algebras over Symbolic Ring and Category of␣
→˓homsets of topological spaces
sage: CW.base_ring()
Symbolic Ring

The elements of 𝐶𝑘(𝑀) are scalar fields on𝑀 :

sage: CM.an_element()
Scalar field on the 2-dimensional differentiable manifold M
sage: CM.an_element().display() # this sample element is a constant field
M → ℝ
on U: (x, y) ↦ 2
on V: (u, v) ↦ 2

Those of 𝐶𝑘(𝑊) are scalar fields on𝑊 :

sage: CW.an_element()
Scalar field on the Open subset W of the 2-dimensional differentiable
manifold M
sage: CW.an_element().display() # this sample element is a constant field
W → ℝ
(x, y) ↦ 2
(u, v) ↦ 2

The zero element:

sage: CM.zero()
Scalar field zero on the 2-dimensional differentiable manifold M
sage: CM.zero().display()
zero: M → ℝ
on U: (x, y) ↦ 0
on V: (u, v) ↦ 0

sage: CW.zero()
Scalar field zero on the Open subset W of the 2-dimensional
differentiable manifold M
sage: CW.zero().display()
zero: W → ℝ

(x, y) ↦ 0
(u, v) ↦ 0

The unit element:

2.4. Scalar Fields 415

Manifolds, Release 10.4.rc1

sage: CM.one()
Scalar field 1 on the 2-dimensional differentiable manifold M
sage: CM.one().display()
1: M → ℝ
on U: (x, y) ↦ 1
on V: (u, v) ↦ 1

sage: CW.one()
Scalar field 1 on the Open subset W of the 2-dimensional differentiable
manifold M
sage: CW.one().display()
1: W → ℝ
(x, y) ↦ 1
(u, v) ↦ 1

A generic element can be constructed as for any parent in Sage, namely by means of the __call__ operator on
the parent (here with the dictionary of the coordinate expressions defining the scalar field):

sage: f = CM({c_xy: atan(x^2+y^2), c_uv: pi/2 - atan(u^2+v^2)}); f
Scalar field on the 2-dimensional differentiable manifold M
sage: f.display()
M → ℝ
on U: (x, y) ↦ arctan(x^2 + y^2)
on V: (u, v) ↦ 1/2*pi - arctan(u^2 + v^2)
sage: f.parent()
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M

Specific elements can also be constructed in this way:

sage: CM(0) == CM.zero()
True
sage: CM(1) == CM.one()
True

Note that the zero scalar field is cached:

sage: CM(0) is CM.zero()
True

Elements can also be constructed by means of the method scalar_field() acting on the domain (this allows
one to set the name of the scalar field at the construction):

sage: f1 = M.scalar_field({c_xy: atan(x^2+y^2), c_uv: pi/2 - atan(u^2+v^2)},
....: name= f)
sage: f1.parent()
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M
sage: f1 == f
True
sage: M.scalar_field(0, chart= all) == CM.zero()
True

The algebra 𝐶𝑘(𝑀) coerces to 𝐶𝑘(𝑊) since𝑊 is an open subset of𝑀 :

sage: CW.has_coerce_map_from(CM)
True

416 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The reverse is of course false:

sage: CM.has_coerce_map_from(CW)
False

The coercion map is nothing but the restriction to𝑊 of scalar fields on𝑀 :

sage: fW = CW(f) ; fW
Scalar field on the Open subset W of the 2-dimensional differentiable
manifold M
sage: fW.display()
W → ℝ
(x, y) ↦ arctan(x^2 + y^2)
(u, v) ↦ 1/2*pi - arctan(u^2 + v^2)

sage: CW(CM.one()) == CW.one()
True

The coercion map allows for the addition of elements of 𝐶𝑘(𝑊) with elements of 𝐶𝑘(𝑀), the result being an
element of 𝐶𝑘(𝑊):

sage: s = fW + f
sage: s.parent()
Algebra of differentiable scalar fields on the Open subset W of the
2-dimensional differentiable manifold M
sage: s.display()
W → ℝ
(x, y) ↦ 2*arctan(x^2 + y^2)
(u, v) ↦ pi - 2*arctan(u^2 + v^2)

Another coercion is that from the Symbolic Ring, the parent of all symbolic expressions (cf. SymbolicRing).
Since the Symbolic Ring is the base ring for the algebra CM, the coercion of a symbolic expression s is per-
formed by the operations*CM.one(), which invokes the reflectedmultiplication operatorsage.manifolds.
scalarfield.ScalarField._rmul_(). If the symbolic expression does not involve any chart coordinate,
the outcome is a constant scalar field:

sage: h = CM(pi*sqrt(2)) ; h
Scalar field on the 2-dimensional differentiable manifold M
sage: h.display()
M → ℝ
on U: (x, y) ↦ sqrt(2)*pi
on V: (u, v) ↦ sqrt(2)*pi
sage: a = var(a)
sage: h = CM(a); h.display()
M → ℝ
on U: (x, y) ↦ a
on V: (u, v) ↦ a

If the symbolic expression involves some coordinate of one of the manifold’s charts, the outcome is initialized only
on the chart domain:

sage: h = CM(a+x); h.display()
M → ℝ
on U: (x, y) ↦ a + x
on W: (u, v) ↦ (a*u^2 + a*v^2 + u)/(u^2 + v^2)
sage: h = CM(a+u); h.display()
M → ℝ

(continues on next page)

2.4. Scalar Fields 417

../../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing

Manifolds, Release 10.4.rc1

(continued from previous page)

on W: (x, y) ↦ (a*x^2 + a*y^2 + x)/(x^2 + y^2)
on V: (u, v) ↦ a + u

If the symbolic expression involves coordinates of different charts, the scalar field is created as a Python object, but
is not initialized, in order to avoid any ambiguity:

sage: h = CM(x+u); h.display()
M → ℝ

TESTS OF THE ALGEBRA LAWS:

Ring laws:

sage: h = CM(pi*sqrt(2))
sage: s = f + h ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ sqrt(2)*pi + arctan(x^2 + y^2)
on V: (u, v) ↦ 1/2*pi*(2*sqrt(2) + 1) - arctan(u^2 + v^2)

sage: s = f - h ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ -sqrt(2)*pi + arctan(x^2 + y^2)
on V: (u, v) ↦ -1/2*pi*(2*sqrt(2) - 1) - arctan(u^2 + v^2)

sage: s = f*h ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ sqrt(2)*pi*arctan(x^2 + y^2)
on V: (u, v) ↦ 1/2*sqrt(2)*(pi^2 - 2*pi*arctan(u^2 + v^2))

sage: s = f/h ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ 1/2*sqrt(2)*arctan(x^2 + y^2)/pi
on V: (u, v) ↦ 1/4*sqrt(2)*(pi - 2*arctan(u^2 + v^2))/pi

sage: f*(h+f) == f*h + f*f
True

Ring laws with coercion:

sage: f - fW == CW.zero()
True
sage: f/fW == CW.one()
True
sage: s = f*fW ; s
Scalar field on the Open subset W of the 2-dimensional differentiable

(continues on next page)

418 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

manifold M
sage: s.display()
W → ℝ
(x, y) ↦ arctan(x^2 + y^2)^2
(u, v) ↦ 1/4*pi^2 - pi*arctan(u^2 + v^2) + arctan(u^2 + v^2)^2
sage: s/f == fW
True

Multiplication by a number:

sage: s = 2*f ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ 2*arctan(x^2 + y^2)
on V: (u, v) ↦ pi - 2*arctan(u^2 + v^2)

sage: 0*f == CM.zero()
True
sage: 1*f == f
True
sage: 2*(f/2) == f
True
sage: (f+2*f)/3 == f
True
sage: 1/3*(f+2*f) == f
True

The Sage test suite for algebras is passed:

sage: TestSuite(CM).run()

It is passed also for 𝐶𝑘(𝑊):

sage: TestSuite(CW).run()

Element

alias of DiffScalarField

2.4.2 Differentiable Scalar Fields

Given a differentiable manifold𝑀 of class 𝐶𝑘 over a topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C), a
differentiable scalar field on𝑀 is a map

𝑓 :𝑀 −→ 𝐾

of class 𝐶𝑘.

Differentiable scalar fields are implemented by the class DiffScalarField.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015): initial version

• Eric Gourgoulhon (2018): operators gradient, Laplacian and d’Alembertian

REFERENCES:

2.4. Scalar Fields 419

Manifolds, Release 10.4.rc1

• [KN1963]

• [Lee2013]

• [ONe1983]

class sage.manifolds.differentiable.scalarfield.DiffScalarField(parent, coord_expres-
sion=None,
chart=None,
name=None,
latex_name=None)

Bases: ScalarField

Differentiable scalar field on a differentiable manifold.

Given a differentiable manifold𝑀 of class𝐶𝑘 over a topological field𝐾 (in most applications,𝐾 = R or𝐾 = C),
a differentiable scalar field defined on𝑀 is a map

𝑓 :𝑀 −→ 𝐾

that is 𝑘-times continuously differentiable.

The class DiffScalarField is a Sage element class, whose parent class is DiffScalarFieldAlgebra.
It inherits from the class ScalarField devoted to generic continuous scalar fields on topological manifolds.

INPUT:

• parent – the algebra of scalar fields containing the scalar field (must be an instance of class DiffS-
calarFieldAlgebra)

• coord_expression – (default: None) coordinate expression(s) of the scalar field; this can be either

– a dictionary of coordinate expressions in various charts on the domain, with the charts as keys;

– a single coordinate expression; if the argument chart is all , this expression is set to all the charts
defined on the open set; otherwise, the expression is set in the specific chart provided by the argument
chart

NB: If coord_expression is None or incomplete, coordinate expressions can be added after the cre-
ation of the object, by means of the methods add_expr(), add_expr_by_continuation() and
set_expr()

• chart – (default: None) chart defining the coordinates used in coord_expression when the latter is
a single coordinate expression; if none is provided (default), the default chart of the open set is assumed. If
chart== all , coord_expression is assumed to be independent of the chart (constant scalar field).

• name – (default: None) string; name (symbol) given to the scalar field

• latex_name – (default: None) string; LaTeX symbol to denote the scalar field; if none is provided, the
LaTeX symbol is set to name

EXAMPLES:

A scalar field on the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),

(continues on next page)

420 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: intersection_name= W ,

....: restrictions1= x^2+y^2!=0,

....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2), c_uv: (u^2+v^2)/(1+u^2+v^2)},
....: name= f) ; f
Scalar field f on the 2-dimensional differentiable manifold M
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

For scalar fields defined by a single coordinate expression, the latter can be passed instead of the dictionary over
the charts:

sage: g = U.scalar_field(x*y, chart=c_xy, name= g) ; g
Scalar field g on the Open subset U of the 2-dimensional differentiable
manifold M

The above is indeed equivalent to:

sage: g = U.scalar_field({c_xy: x*y}, name= g) ; g
Scalar field g on the Open subset U of the 2-dimensional differentiable
manifold M

Since c_xy is the default chart of U, the argument chart can be skipped:

sage: g = U.scalar_field(x*y, name= g) ; g
Scalar field g on the Open subset U of the 2-dimensional differentiable
manifold M

The scalar field 𝑔 is defined on 𝑈 and has an expression in terms of the coordinates (𝑢, 𝑣) on𝑊 = 𝑈 ∩ 𝑉 :

sage: g.display()
g: U → ℝ

(x, y) ↦ x*y
on W: (u, v) ↦ u*v/(u^4 + 2*u^2*v^2 + v^4)

Scalar fields on𝑀 can also be declared with a single chart:

sage: f = M.scalar_field(1/(1+x^2+y^2), chart=c_xy, name= f) ; f
Scalar field f on the 2-dimensional differentiable manifold M

Their definition must then be completed by providing the expressions on other charts, via the method
add_expr(), to get a global cover of the manifold:

sage: f.add_expr((u^2+v^2)/(1+u^2+v^2), chart=c_uv)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

We can even first declare the scalar field without any coordinate expression and provide them subsequently:

sage: f = M.scalar_field(name= f)
sage: f.add_expr(1/(1+x^2+y^2), chart=c_xy)

(continues on next page)

2.4. Scalar Fields 421

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.add_expr((u^2+v^2)/(1+u^2+v^2), chart=c_uv)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

We may also use the method add_expr_by_continuation() to complete the coordinate definition using
the analytic continuation from domains in which charts overlap:

sage: f = M.scalar_field(1/(1+x^2+y^2), chart=c_xy, name= f) ; f
Scalar field f on the 2-dimensional differentiable manifold M
sage: f.add_expr_by_continuation(c_uv, U.intersection(V))
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

A scalar field can also be defined by some unspecified function of the coordinates:

sage: h = U.scalar_field(function(H)(x, y), name= h) ; h
Scalar field h on the Open subset U of the 2-dimensional differentiable
manifold M
sage: h.display()
h: U → ℝ

(x, y) ↦ H(x, y)
on W: (u, v) ↦ H(u/(u^2 + v^2), v/(u^2 + v^2))

We may use the argument latex_name to specify the LaTeX symbol denoting the scalar field if the latter is
different from name:

sage: latex(f)
f
sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2), c_uv: (u^2+v^2)/(1+u^2+v^2)},
....: name= f , latex_name=r \mathcal{F})
sage: latex(f)
\mathcal{F}

The coordinate expression in a given chart is obtained via the method expr(), which returns a symbolic expres-
sion:

sage: f.expr(c_uv)
(u^2 + v^2)/(u^2 + v^2 + 1)
sage: type(f.expr(c_uv))
<class sage.symbolic.expression.Expression >

The method coord_function() returns instead a function of the chart coordinates, i.e. an instance of
ChartFunction:

sage: f.coord_function(c_uv)
(u^2 + v^2)/(u^2 + v^2 + 1)
sage: type(f.coord_function(c_uv))
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class >
sage: f.coord_function(c_uv).display()
(u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

The value returned by the method expr() is actually the coordinate expression of the chart function:

422 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: f.expr(c_uv) is f.coord_function(c_uv).expr()
True

A constant scalar field is declared by setting the argument chart to all :

sage: c = M.scalar_field(2, chart= all , name= c) ; c
Scalar field c on the 2-dimensional differentiable manifold M
sage: c.display()
c: M → ℝ
on U: (x, y) ↦ 2
on V: (u, v) ↦ 2

A shortcut is to use the method constant_scalar_field():

sage: c == M.constant_scalar_field(2)
True

The constant value can be some unspecified parameter:

sage: var(a)
a
sage: c = M.constant_scalar_field(a, name= c) ; c
Scalar field c on the 2-dimensional differentiable manifold M
sage: c.display()
c: M → ℝ
on U: (x, y) ↦ a
on V: (u, v) ↦ a

A special case of constant field is the zero scalar field:

sage: zer = M.constant_scalar_field(0) ; zer
Scalar field zero on the 2-dimensional differentiable manifold M
sage: zer.display()
zero: M → ℝ
on U: (x, y) ↦ 0
on V: (u, v) ↦ 0

It can be obtained directly by means of the function zero_scalar_field():

sage: zer is M.zero_scalar_field()
True

A third way is to get it as the zero element of the algebra 𝐶𝑘(𝑀) of scalar fields on𝑀 (see below):

sage: zer is M.scalar_field_algebra().zero()
True

By definition, a scalar field acts on the manifold’s points, sending them to elements of the manifold’s base field (real
numbers in the present case):

sage: N = M.point((0,0), chart=c_uv) # the North pole
sage: S = M.point((0,0), chart=c_xy) # the South pole
sage: E = M.point((1,0), chart=c_xy) # a point at the equator
sage: f(N)
0
sage: f(S)
1

(continues on next page)

2.4. Scalar Fields 423

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f(E)
1/2
sage: h(E)
H(1, 0)
sage: c(E)
a
sage: zer(E)
0

A scalar field can be compared to another scalar field:

sage: f == g
False

…to a symbolic expression:

sage: f == x*y
False
sage: g == x*y
True
sage: c == a
True

…to a number:

sage: f == 2
False
sage: zer == 0
True

…to anything else:

sage: f == M
False

Standard mathematical functions are implemented:

sage: sqrt(f)
Scalar field sqrt(f) on the 2-dimensional differentiable manifold M
sage: sqrt(f).display()
sqrt(f): M → ℝ
on U: (x, y) ↦ 1/sqrt(x^2 + y^2 + 1)
on V: (u, v) ↦ sqrt(u^2 + v^2)/sqrt(u^2 + v^2 + 1)

sage: tan(f)
Scalar field tan(f) on the 2-dimensional differentiable manifold M
sage: tan(f).display()
tan(f): M → ℝ
on U: (x, y) ↦ sin(1/(x^2 + y^2 + 1))/cos(1/(x^2 + y^2 + 1))
on V: (u, v) ↦ sin((u^2 + v^2)/(u^2 + v^2 + 1))/cos((u^2 + v^2)/(u^2 + v^2 + 1))

424 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Arithmetics of scalar fields

Scalar fields on𝑀 (resp. 𝑈) belong to the algebra 𝐶𝑘(𝑀) (resp. 𝐶𝑘(𝑈)):

sage: f.parent()
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M
sage: f.parent() is M.scalar_field_algebra()
True
sage: g.parent()
Algebra of differentiable scalar fields on the Open subset U of the
2-dimensional differentiable manifold M
sage: g.parent() is U.scalar_field_algebra()
True

Consequently, scalar fields can be added:

sage: s = f + c ; s
Scalar field f+c on the 2-dimensional differentiable manifold M
sage: s.display()
f+c: M → ℝ
on U: (x, y) ↦ (a*x^2 + a*y^2 + a + 1)/(x^2 + y^2 + 1)
on V: (u, v) ↦ ((a + 1)*u^2 + (a + 1)*v^2 + a)/(u^2 + v^2 + 1)

and subtracted:

sage: s = f - c ; s
Scalar field f-c on the 2-dimensional differentiable manifold M
sage: s.display()
f-c: M → ℝ
on U: (x, y) ↦ -(a*x^2 + a*y^2 + a - 1)/(x^2 + y^2 + 1)
on V: (u, v) ↦ -((a - 1)*u^2 + (a - 1)*v^2 + a)/(u^2 + v^2 + 1)

Some tests:

sage: f + zer == f
True
sage: f - f == zer
True
sage: f + (-f) == zer
True
sage: (f+c)-f == c
True
sage: (f-c)+c == f
True

We may add a number (interpreted as a constant scalar field) to a scalar field:

sage: s = f + 1 ; s
Scalar field f+1 on the 2-dimensional differentiable manifold M
sage: s.display()
f+1: M → ℝ
on U: (x, y) ↦ (x^2 + y^2 + 2)/(x^2 + y^2 + 1)
on V: (u, v) ↦ (2*u^2 + 2*v^2 + 1)/(u^2 + v^2 + 1)
sage: (f+1)-1 == f
True

The number can represented by a symbolic variable:

2.4. Scalar Fields 425

Manifolds, Release 10.4.rc1

sage: s = a + f ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s == c + f
True

However if the symbolic variable is a chart coordinate, the addition is performed only on the chart domain:

sage: s = f + x; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ (x^3 + x*y^2 + x + 1)/(x^2 + y^2 + 1)
on W: (u, v) ↦ (u^4 + v^4 + u^3 + (2*u^2 + u)*v^2 + u)/(u^4 + v^4 + (2*u^2 + 1)*v^
→˓2 + u^2)
sage: s = f + u; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on W: (x, y) ↦ (x^3 + (x + 1)*y^2 + x^2 + x)/(x^4 + y^4 + (2*x^2 + 1)*y^2 + x^2)
on V: (u, v) ↦ (u^3 + (u + 1)*v^2 + u^2 + u)/(u^2 + v^2 + 1)

The addition of two scalar fields with different domains is possible if the domain of one of them is a subset of the
domain of the other; the domain of the result is then this subset:

sage: f.domain()
2-dimensional differentiable manifold M
sage: g.domain()
Open subset U of the 2-dimensional differentiable manifold M
sage: s = f + g ; s
Scalar field f+g on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s.domain()
Open subset U of the 2-dimensional differentiable manifold M
sage: s.display()
f+g: U → ℝ

(x, y) ↦ (x*y^3 + (x^3 + x)*y + 1)/(x^2 + y^2 + 1)
on W: (u, v) ↦ (u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6 + u*v^3
+ (u^3 + u)*v)/(u^6 + v^6 + (3*u^2 + 1)*v^4 + u^4 + (3*u^4 + 2*u^2)*v^2)

The operation actually performed is 𝑓 |𝑈 + 𝑔:

sage: s == f.restrict(U) + g
True

In Sage framework, the addition of 𝑓 and 𝑔 is permitted because there is a coercion of the parent of 𝑓 , namely
𝐶𝑘(𝑀), to the parent of 𝑔, namely 𝐶𝑘(𝑈) (see DiffScalarFieldAlgebra):

sage: CM = M.scalar_field_algebra()
sage: CU = U.scalar_field_algebra()
sage: CU.has_coerce_map_from(CM)
True

The coercion map is nothing but the restriction to domain 𝑈 :

sage: CU.coerce(f) == f.restrict(U)
True

426 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Since the algebra 𝐶𝑘(𝑀) is a vector space over R, scalar fields can be multiplied by a number, either an explicit
one:

sage: s = 2*f ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ 2/(x^2 + y^2 + 1)
on V: (u, v) ↦ 2*(u^2 + v^2)/(u^2 + v^2 + 1)

or a symbolic one:

sage: s = a*f ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ a/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)*a/(u^2 + v^2 + 1)

However, if the symbolic variable is a chart coordinate, the multiplication is performed only in the corresponding
chart:

sage: s = x*f; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ x/(x^2 + y^2 + 1)
on W: (u, v) ↦ u/(u^2 + v^2 + 1)
sage: s = u*f; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on W: (x, y) ↦ x/(x^4 + y^4 + (2*x^2 + 1)*y^2 + x^2)
on V: (u, v) ↦ (u^2 + v^2)*u/(u^2 + v^2 + 1)

Some tests:

sage: 0*f == 0
True
sage: 0*f == zer
True
sage: 1*f == f
True
sage: (-2)*f == - f - f
True

The ring multiplication of the algebras 𝐶𝑘(𝑀) and 𝐶𝑘(𝑈) is the pointwise multiplication of functions:

sage: s = f*f ; s
Scalar field f*f on the 2-dimensional differentiable manifold M
sage: s.display()
f*f: M → ℝ
on U: (x, y) ↦ 1/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1)
on V: (u, v) ↦ (u^4 + 2*u^2*v^2 + v^4)/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1)
sage: s = g*h ; s
Scalar field g*h on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s.display()

(continues on next page)

2.4. Scalar Fields 427

Manifolds, Release 10.4.rc1

(continued from previous page)

g*h: U → ℝ
(x, y) ↦ x*y*H(x, y)

on W: (u, v) ↦ u*v*H(u/(u^2 + v^2), v/(u^2 + v^2))/(u^4 + 2*u^2*v^2 + v^4)

Thanks to the coercion 𝐶𝑘(𝑀) → 𝐶𝑘(𝑈) mentioned above, it is possible to multiply a scalar field defined on𝑀
by a scalar field defined on 𝑈 , the result being a scalar field defined on 𝑈 :

sage: f.domain(), g.domain()
(2-dimensional differentiable manifold M,
Open subset U of the 2-dimensional differentiable manifold M)
sage: s = f*g ; s
Scalar field f*g on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s.display()
f*g: U → ℝ

(x, y) ↦ x*y/(x^2 + y^2 + 1)
on W: (u, v) ↦ u*v/(u^4 + v^4 + (2*u^2 + 1)*v^2 + u^2)
sage: s == f.restrict(U)*g
True

Scalar fields can be divided (pointwise division):

sage: s = f/c ; s
Scalar field f/c on the 2-dimensional differentiable manifold M
sage: s.display()
f/c: M → ℝ
on U: (x, y) ↦ 1/(a*x^2 + a*y^2 + a)
on V: (u, v) ↦ (u^2 + v^2)/(a*u^2 + a*v^2 + a)
sage: s = g/h ; s
Scalar field g/h on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s.display()
g/h: U → ℝ

(x, y) ↦ x*y/H(x, y)
on W: (u, v) ↦ u*v/((u^4 + 2*u^2*v^2 + v^4)*H(u/(u^2 + v^2), v/(u^2 + v^2)))
sage: s = f/g ; s
Scalar field f/g on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s.display()
f/g: U → ℝ

(x, y) ↦ 1/(x*y^3 + (x^3 + x)*y)
on W: (u, v) ↦ (u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6)/(u*v^3 + (u^3 + u)*v)
sage: s == f.restrict(U)/g
True

For scalar fields defined on a single chart domain, we may perform some arithmetics with symbolic expressions
involving the chart coordinates:

sage: s = g + x^2 - y ; s
Scalar field on the Open subset U of the 2-dimensional differentiable
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ x^2 + (x - 1)*y
on W: (u, v) ↦ -(v^3 - u^2 + (u^2 - u)*v)/(u^4 + 2*u^2*v^2 + v^4)

428 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: s = g*x ; s
Scalar field on the Open subset U of the 2-dimensional differentiable
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ x^2*y
on W: (u, v) ↦ u^2*v/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6)

sage: s = g/x ; s
Scalar field on the Open subset U of the 2-dimensional differentiable
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ y
on W: (u, v) ↦ v/(u^2 + v^2)
sage: s = x/g ; s
Scalar field on the Open subset U of the 2-dimensional differentiable
manifold M
sage: s.display()
U → ℝ
(x, y) ↦ 1/y
on W: (u, v) ↦ (u^2 + v^2)/v

The test suite is passed:

sage: TestSuite(f).run()
sage: TestSuite(zer).run()

bracket(other)
Return the Schouten-Nijenhuis bracket of self, considered as a multivector field of degree 0, with a multi-
vector field.

See bracket() for details.

INPUT:

• other – a multivector field of degree 𝑝

OUTPUT:

• if 𝑝 = 0, a zero scalar field

• if 𝑝 = 1, an instance of DiffScalarField representing the Schouten-Nijenhuis bracket [self,
other]

• if 𝑝 ≥ 2, an instance of MultivectorField representing the Schouten-Nijenhuis bracket [self,
other]

EXAMPLES:

The Schouten-Nijenhuis bracket of two scalar fields is identically zero:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y^2}, name= f)
sage: g = M.scalar_field({X: y-x}, name= g)
sage: s = f.bracket(g); s
Scalar field zero on the 2-dimensional differentiable manifold M
sage: s.display()

(continues on next page)

2.4. Scalar Fields 429

Manifolds, Release 10.4.rc1

(continued from previous page)

zero: M → ℝ
(x, y) ↦ 0

while the Schouten-Nijenhuis bracket of a scalar field 𝑓 with a multivector field 𝑎 is equal to minus the interior
product of the differential of 𝑓 with 𝑎:

sage: a = M.multivector_field(2, name= a)
sage: a[0,1] = x*y ; a.display()
a = x*y ∂/∂x∧∂/∂y
sage: s = f.bracket(a); s
Vector field -i_df a on the 2-dimensional differentiable manifold M
sage: s.display()
-i_df a = 2*x*y^2 ∂/∂x - x*y ∂/∂y

See bracket() for other examples.

dalembertian(metric=None)
Return the d’Alembertian of self with respect to a given Lorentzian metric.

The d’Alembertian of a scalar field 𝑓 with respect to a Lorentzian metric 𝑔 is nothing but the Laplacian (see
laplacian()) of 𝑓 with respect to that metric:

�𝑓 = 𝑔𝑖𝑗∇𝑖∇𝑗𝑓 = ∇𝑖∇𝑖𝑓

where ∇ is the Levi-Civita connection of 𝑔.

Note: If the metric 𝑔 is not Lorentzian, the name d’Alembertian is not appropriate and one should use
laplacian() instead.

INPUT:

• metric – (default: None) the Lorentzian metric 𝑔 involved in the definition of the d’Alembertian; if
none is provided, the domain of self is supposed to be endowed with a default Lorentzian metric (i.e.
is supposed to be Lorentzian manifold, see PseudoRiemannianManifold) and the latter is used
to define the d’Alembertian

OUTPUT:

• instance of DiffScalarField representing the d’Alembertian of self

EXAMPLES:

d’Alembertian of a scalar field in Minkowski spacetime:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: X.<t,x,y,z> = M.chart()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1, 1, 1, 1
sage: f = M.scalar_field(t + x^2 + t^2*y^3 - x*z^4, name= f)
sage: s = f.dalembertian(); s
Scalar field Box(f) on the 4-dimensional Lorentzian manifold M
sage: s.display()
Box(f): M → ℝ

(t, x, y, z) ↦ 6*t^2*y - 2*y^3 - 12*x*z^2 + 2

The function dalembertian() from the operators module can be used instead of the method
dalembertian():

430 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: from sage.manifolds.operators import dalembertian
sage: dalembertian(f) == s
True

degree()

Return the degree of self, considered as a differential form or a multivector field, i.e. zero.

This trivial method is provided for consistency with the exterior calculus scheme, cf. the methods degree()
(differential forms) and degree() (multivector fields).

OUTPUT:

• 0

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y^2})
sage: f.degree()
0

derivative()

Return the differential of self.

OUTPUT:

• a DiffForm (or of DiffFormParal if the scalar field’s domain is parallelizable) representing the
1-form that is the differential of the scalar field

EXAMPLES:

Differential of a scalar field on a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart()
sage: f = M.scalar_field(cos(x)*z^3 + exp(y)*z^2, name= f)
sage: df = f.differential() ; df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = -z^3*sin(x) dx + z^2*e^y dy + (3*z^2*cos(x) + 2*z*e^y) dz
sage: latex(df)
\mathrm{d}f
sage: df.parent()
Free module Omega^1(M) of 1-forms on the 3-dimensional
differentiable manifold M

The result is cached, i.e. is not recomputed unless f is changed:

sage: f.differential() is df
True

Instead of invoking the method differential(), one may apply the function diff to the scalar field:

sage: diff(f) is f.differential()
True

Since the exterior derivative of a scalar field (considered a 0-form) is nothing but its differential, exte-
rior_derivative() is an alias of differential():

2.4. Scalar Fields 431

Manifolds, Release 10.4.rc1

sage: df = f.exterior_derivative() ; df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = -z^3*sin(x) dx + z^2*e^y dy + (3*z^2*cos(x) + 2*z*e^y) dz
sage: latex(df)
\mathrm{d}f

Differential computed on a chart that is not the default one:

sage: c_uvw.<u,v,w> = M.chart()
sage: g = M.scalar_field(u*v^2*w^3, c_uvw, name= g)
sage: dg = g.differential() ; dg
1-form dg on the 3-dimensional differentiable manifold M
sage: dg._components
{Coordinate frame (M, (∂/∂u,∂/∂v,∂/∂w)): 1-index components w.r.t.
Coordinate frame (M, (∂/∂u,∂/∂v,∂/∂w))}

sage: dg.comp(c_uvw.frame())[:, c_uvw]
[v^2*w^3, 2*u*v*w^3, 3*u*v^2*w^2]
sage: dg.display(c_uvw)
dg = v^2*w^3 du + 2*u*v*w^3 dv + 3*u*v^2*w^2 dw

The exterior derivative is nilpotent:

sage: ddf = df.exterior_derivative() ; ddf
2-form ddf on the 3-dimensional differentiable manifold M
sage: ddf == 0
True
sage: ddf[:] # for the incredule
[0 0 0]
[0 0 0]
[0 0 0]
sage: ddg = dg.exterior_derivative() ; ddg
2-form ddg on the 3-dimensional differentiable manifold M
sage: ddg == 0
True

differential()

Return the differential of self.

OUTPUT:

• a DiffForm (or of DiffFormParal if the scalar field’s domain is parallelizable) representing the
1-form that is the differential of the scalar field

EXAMPLES:

Differential of a scalar field on a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart()
sage: f = M.scalar_field(cos(x)*z^3 + exp(y)*z^2, name= f)
sage: df = f.differential() ; df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = -z^3*sin(x) dx + z^2*e^y dy + (3*z^2*cos(x) + 2*z*e^y) dz
sage: latex(df)
\mathrm{d}f
sage: df.parent()

(continues on next page)

432 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Free module Omega^1(M) of 1-forms on the 3-dimensional
differentiable manifold M

The result is cached, i.e. is not recomputed unless f is changed:

sage: f.differential() is df
True

Instead of invoking the method differential(), one may apply the function diff to the scalar field:

sage: diff(f) is f.differential()
True

Since the exterior derivative of a scalar field (considered a 0-form) is nothing but its differential, exte-
rior_derivative() is an alias of differential():

sage: df = f.exterior_derivative() ; df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = -z^3*sin(x) dx + z^2*e^y dy + (3*z^2*cos(x) + 2*z*e^y) dz
sage: latex(df)
\mathrm{d}f

Differential computed on a chart that is not the default one:

sage: c_uvw.<u,v,w> = M.chart()
sage: g = M.scalar_field(u*v^2*w^3, c_uvw, name= g)
sage: dg = g.differential() ; dg
1-form dg on the 3-dimensional differentiable manifold M
sage: dg._components
{Coordinate frame (M, (∂/∂u,∂/∂v,∂/∂w)): 1-index components w.r.t.
Coordinate frame (M, (∂/∂u,∂/∂v,∂/∂w))}

sage: dg.comp(c_uvw.frame())[:, c_uvw]
[v^2*w^3, 2*u*v*w^3, 3*u*v^2*w^2]
sage: dg.display(c_uvw)
dg = v^2*w^3 du + 2*u*v*w^3 dv + 3*u*v^2*w^2 dw

The exterior derivative is nilpotent:

sage: ddf = df.exterior_derivative() ; ddf
2-form ddf on the 3-dimensional differentiable manifold M
sage: ddf == 0
True
sage: ddf[:] # for the incredule
[0 0 0]
[0 0 0]
[0 0 0]
sage: ddg = dg.exterior_derivative() ; ddg
2-form ddg on the 3-dimensional differentiable manifold M
sage: ddg == 0
True

exterior_derivative()

Return the differential of self.

OUTPUT:

2.4. Scalar Fields 433

Manifolds, Release 10.4.rc1

• a DiffForm (or of DiffFormParal if the scalar field’s domain is parallelizable) representing the
1-form that is the differential of the scalar field

EXAMPLES:

Differential of a scalar field on a 3-dimensional differentiable manifold:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart()
sage: f = M.scalar_field(cos(x)*z^3 + exp(y)*z^2, name= f)
sage: df = f.differential() ; df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = -z^3*sin(x) dx + z^2*e^y dy + (3*z^2*cos(x) + 2*z*e^y) dz
sage: latex(df)
\mathrm{d}f
sage: df.parent()
Free module Omega^1(M) of 1-forms on the 3-dimensional
differentiable manifold M

The result is cached, i.e. is not recomputed unless f is changed:

sage: f.differential() is df
True

Instead of invoking the method differential(), one may apply the function diff to the scalar field:

sage: diff(f) is f.differential()
True

Since the exterior derivative of a scalar field (considered a 0-form) is nothing but its differential, exte-
rior_derivative() is an alias of differential():

sage: df = f.exterior_derivative() ; df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = -z^3*sin(x) dx + z^2*e^y dy + (3*z^2*cos(x) + 2*z*e^y) dz
sage: latex(df)
\mathrm{d}f

Differential computed on a chart that is not the default one:

sage: c_uvw.<u,v,w> = M.chart()
sage: g = M.scalar_field(u*v^2*w^3, c_uvw, name= g)
sage: dg = g.differential() ; dg
1-form dg on the 3-dimensional differentiable manifold M
sage: dg._components
{Coordinate frame (M, (∂/∂u,∂/∂v,∂/∂w)): 1-index components w.r.t.
Coordinate frame (M, (∂/∂u,∂/∂v,∂/∂w))}

sage: dg.comp(c_uvw.frame())[:, c_uvw]
[v^2*w^3, 2*u*v*w^3, 3*u*v^2*w^2]
sage: dg.display(c_uvw)
dg = v^2*w^3 du + 2*u*v*w^3 dv + 3*u*v^2*w^2 dw

The exterior derivative is nilpotent:

sage: ddf = df.exterior_derivative() ; ddf
2-form ddf on the 3-dimensional differentiable manifold M

(continues on next page)

434 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: ddf == 0
True
sage: ddf[:] # for the incredule
[0 0 0]
[0 0 0]
[0 0 0]
sage: ddg = dg.exterior_derivative() ; ddg
2-form ddg on the 3-dimensional differentiable manifold M
sage: ddg == 0
True

gradient(metric=None)

Return the gradient of self (with respect to a given metric).

The gradient of a scalar field 𝑓 with respect to a metric 𝑔 is the vector field grad 𝑓 whose components in any
coordinate frame are

(grad 𝑓)𝑖 = 𝑔𝑖𝑗
𝜕𝐹

𝜕𝑥𝑗

where the 𝑥𝑗 ’s are the coordinates with respect to which the frame is defined and 𝐹 is the chart function
representing 𝑓 in these coordinates: 𝑓(𝑝) = 𝐹 (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) for any point 𝑝 in the chart domain. In
other words, the gradient of 𝑓 is the vector field that is the 𝑔-dual of the differential of 𝑓 .

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the gradient; if
none is provided, the domain of self is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the gradient

OUTPUT:

• instance of VectorField representing the gradient of self

EXAMPLES:

Gradient of a scalar field in the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: f = M.scalar_field(cos(x*y), name= f)
sage: v = f.gradient(); v
Vector field grad(f) on the Euclidean plane E^2
sage: v.display()
grad(f) = -y*sin(x*y) e_x - x*sin(x*y) e_y
sage: v[:]
[-y*sin(x*y), -x*sin(x*y)]

Gradient in polar coordinates:

sage: M.<r,phi> = EuclideanSpace(coordinates= polar)
sage: f = M.scalar_field(r*cos(phi), name= f)
sage: f.gradient().display()
grad(f) = cos(phi) e_r - sin(phi) e_phi
sage: f.gradient()[:]
[cos(phi), -sin(phi)]

Note that (e_r, e_phi) is the orthonormal vector frame associated with polar coordinates (see po-
lar_frame()); the gradient expressed in the coordinate frame is:

2.4. Scalar Fields 435

Manifolds, Release 10.4.rc1

sage: f.gradient().display(M.polar_coordinates().frame())
grad(f) = cos(phi) ∂/∂r - sin(phi)/r ∂/∂phi

The function grad() from the operators module can be used instead of the method gradient():

sage: from sage.manifolds.operators import grad
sage: grad(f) == f.gradient()
True

The gradient can be taken with respect to a metric tensor that is not the default one:

sage: h = M.lorentzian_metric(h)
sage: h[1,1], h[2,2] = -1, 1/(1+r^2)
sage: h.display(M.polar_coordinates().frame())
h = -dr⊗dr + r^2/(r^2 + 1) dphi⊗dphi
sage: v = f.gradient(h); v
Vector field grad_h(f) on the Euclidean plane E^2
sage: v.display()
grad_h(f) = -cos(phi) e_r + (-r^2*sin(phi) - sin(phi)) e_phi

hodge_dual(nondegenerate_tensor)
Compute the Hodge dual of the scalar field with respect to some non-degenerate bilinear form (Riemannian
metric or symplectic form).

If 𝑀 is the domain of the scalar field (denoted by 𝑓), 𝑛 is the dimension of 𝑀 and 𝑔 is a non-degenerate
bilinear form on𝑀 , the Hodge dual of 𝑓 w.r.t. 𝑔 is the 𝑛-form *𝑓 defined by

*𝑓 = 𝑓𝜖,

where 𝜖 is the volume 𝑛-form associated with 𝑔 (see volume_form()).

INPUT:

• nondegenerate_tensor: a non-degenerate bilinear form defined on the same manifold as the cur-
rent differential form; must be an instance of PseudoRiemannianMetric or SymplecticForm.

OUTPUT:

• the 𝑛-form *𝑓

EXAMPLES:

Hodge dual of a scalar field in the Euclidean space 𝑅3:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, 1, 1
sage: f = M.scalar_field(function(F)(x,y,z), name= f)
sage: sf = f.hodge_dual(g) ; sf
3-form *f on the 3-dimensional differentiable manifold M
sage: sf.display()
*f = F(x, y, z) dx∧dy∧dz
sage: ssf = sf.hodge_dual(g) ; ssf
Scalar field **f on the 3-dimensional differentiable manifold M
sage: ssf.display()
**f: M → ℝ

(x, y, z) ↦ F(x, y, z)
sage: ssf == f # must hold for a Riemannian metric
True

436 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Instead of calling the method hodge_dual() on the scalar field, one can invoke the method
hodge_star() of the metric:

sage: f.hodge_dual(g) == g.hodge_star(f)
True

laplacian(metric=None)
Return the Laplacian of self with respect to a given metric (Laplace-Beltrami operator).

The Laplacian of a scalar field 𝑓 with respect to a metric 𝑔 is the scalar field

Δ𝑓 = 𝑔𝑖𝑗∇𝑖∇𝑗𝑓 = ∇𝑖∇𝑖𝑓

where ∇ is the Levi-Civita connection of 𝑔. Δ is also called the Laplace-Beltrami operator.

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the Laplacian;
if none is provided, the domain ofself is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the Laplacian

OUTPUT:

• instance of DiffScalarField representing the Laplacian of self

EXAMPLES:

Laplacian of a scalar field on the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: f = M.scalar_field(function(F)(x,y), name= f)
sage: s = f.laplacian(); s
Scalar field Delta(f) on the Euclidean plane E^2
sage: s.display()
Delta(f): E^2 → ℝ

(x, y) ↦ d^2(F)/dx^2 + d^2(F)/dy^2

The function laplacian() from the operators module can be used instead of the method lapla-
cian():

sage: from sage.manifolds.operators import laplacian
sage: laplacian(f) == s
True

The Laplacian can be taken with respect to a metric tensor that is not the default one:

sage: h = M.lorentzian_metric(h)
sage: h[1,1], h[2,2] = -1, 1/(1+x^2+y^2)
sage: s = f.laplacian(h); s
Scalar field Delta_h(f) on the Euclidean plane E^2
sage: s.display()
Delta_h(f): E^2 → ℝ

(x, y) ↦ (y^4*d^2(F)/dy^2 + y^3*d(F)/dy
+ (2*(x^2 + 1)*d^2(F)/dy^2 - d^2(F)/dx^2)*y^2
+ (x^2 + 1)*y*d(F)/dy + x*d(F)/dx - (x^2 + 1)*d^2(F)/dx^2
+ (x^4 + 2*x^2 + 1)*d^2(F)/dy^2)/(x^2 + y^2 + 1)

The Laplacian of 𝑓 is equal to the divergence of the gradient of 𝑓 :

Δ𝑓 = div(grad 𝑓)

2.4. Scalar Fields 437

Manifolds, Release 10.4.rc1

Let us check this formula:

sage: s == f.gradient(h).div(h)
True

lie_der(vector)
Compute the Lie derivative with respect to a vector field.

In the present case (scalar field), the Lie derivative is equal to the scalar field resulting from the action of the
vector field on the scalar field.

INPUT:

• vector – vector field with respect to which the Lie derivative is to be taken

OUTPUT:

• the scalar field that is the Lie derivative of the scalar field with respect to vector

EXAMPLES:

Lie derivative on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x^2*cos(y))
sage: v = M.vector_field(name= v)
sage: v[:] = (-y, x)
sage: f.lie_derivative(v)
Scalar field on the 2-dimensional differentiable manifold M
sage: f.lie_derivative(v).expr()
-x^3*sin(y) - 2*x*y*cos(y)

The result is cached:

sage: f.lie_derivative(v) is f.lie_derivative(v)
True

An alias is lie_der:

sage: f.lie_der(v) is f.lie_derivative(v)
True

Alternative expressions of the Lie derivative of a scalar field:

sage: f.lie_der(v) == v(f) # the vector acting on f
True
sage: f.lie_der(v) == f.differential()(v) # the differential of f acting on␣
→˓the vector
True

A vanishing Lie derivative:

sage: f.set_expr(x^2 + y^2)
sage: f.lie_der(v).display()
M → ℝ
(x, y) ↦ 0

438 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

lie_derivative(vector)
Compute the Lie derivative with respect to a vector field.

In the present case (scalar field), the Lie derivative is equal to the scalar field resulting from the action of the
vector field on the scalar field.

INPUT:

• vector – vector field with respect to which the Lie derivative is to be taken

OUTPUT:

• the scalar field that is the Lie derivative of the scalar field with respect to vector

EXAMPLES:

Lie derivative on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x^2*cos(y))
sage: v = M.vector_field(name= v)
sage: v[:] = (-y, x)
sage: f.lie_derivative(v)
Scalar field on the 2-dimensional differentiable manifold M
sage: f.lie_derivative(v).expr()
-x^3*sin(y) - 2*x*y*cos(y)

The result is cached:

sage: f.lie_derivative(v) is f.lie_derivative(v)
True

An alias is lie_der:

sage: f.lie_der(v) is f.lie_derivative(v)
True

Alternative expressions of the Lie derivative of a scalar field:

sage: f.lie_der(v) == v(f) # the vector acting on f
True
sage: f.lie_der(v) == f.differential()(v) # the differential of f acting on␣
→˓the vector
True

A vanishing Lie derivative:

sage: f.set_expr(x^2 + y^2)
sage: f.lie_der(v).display()
M → ℝ
(x, y) ↦ 0

tensor_type()

Return the tensor type of self, when the latter is considered as a tensor field on the manifold. This is always
(0, 0).

OUTPUT:

• always (0, 0)

2.4. Scalar Fields 439

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: f = M.scalar_field(x+2*y)
sage: f.tensor_type()
(0, 0)

wedge(other)
Return the exterior product of self, considered as a differential form of degree 0 or a multivector field of
degree 0, with other.

See wedge() (exterior product of differential forms) or wedge() (exterior product of multivector fields)
for details.

For a scalar field 𝑓 and a 𝑝-form (or 𝑝-vector field) 𝑎, the exterior product reduces to the standard product on
the left by an element of the base ring of the module of 𝑝-forms (or 𝑝-vector fields): 𝑓 ∧ 𝑎 = 𝑓𝑎.

INPUT:

• other – a differential form or a multivector field 𝑎

OUTPUT:

• the product 𝑓𝑎, where 𝑓 is self

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field({X: x+y^2}, name= f)
sage: a = M.diff_form(2, name= a)
sage: a[0,1] = x*y
sage: s = f.wedge(a); s
2-form f*a on the 2-dimensional differentiable manifold M
sage: s.display()
f*a = (x*y^3 + x^2*y) dx∧dy

2.5 Differentiable Maps and Curves

2.5.1 Sets of Morphisms between Differentiable Manifolds

The class DifferentiableManifoldHomset implements sets of morphisms between two differentiable manifolds
over the same topological field 𝐾 (in most applications, 𝐾 = R or 𝐾 = C), a morphism being a differentiable map for
the category of differentiable manifolds.

The subclass DifferentiableCurveSet is devoted to the specific case of differential curves, i.e. morphisms whose
domain is an open interval of R.

The subclass IntegratedCurveSet is devoted to differentiable curves that are defined as a solution to a system of
second order differential equations.

The subclass IntegratedAutoparallelCurveSet is devoted to differentiable curves that are defined as autopar-
allel curves with respect to a certain affine connection.

The subclass IntegratedGeodesicSet is devoted to differentiable curves that are defined as geodesics with respect
to a certain metric.

AUTHORS:

440 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

• Karim Van Aelst (2017): sets of integrated curves

REFERENCES:

• [Lee2013]

• [KN1963]

class sage.manifolds.differentiable.manifold_homset.DifferentiableCurveSet(do-
main,
codomain,
name=None,
la-
tex_name=None)

Bases: DifferentiableManifoldHomset

Set of differentiable curves in a differentiable manifold.

Given an open interval 𝐼 of R (possibly 𝐼 = R) and a differentiable manifold𝑀 over R, this is the set Hom(𝐼,𝑀)
of morphisms (i.e. differentiable curves) 𝐼 →𝑀 .

INPUT:

• domain – OpenInterval if an open interval 𝐼 ⊂ R (domain of the morphisms), or RealLine if 𝐼 = R

• codomain – DifferentiableManifold; differentiable manifold𝑀 (codomain of the morphisms)

• name – (default: None) string; name given to the set of curves; if None, Hom(I, M) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the set of curves; if None, Hom(𝐼,𝑀)
will be used

EXAMPLES:

Set of curves R −→𝑀 , where𝑀 is a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: R.<t> = manifolds.RealLine() ; R
Real number line ℝ
sage: H = Hom(R, M) ; H
Set of Morphisms from Real number line ℝ to 2-dimensional
differentiable manifold M in Category of smooth manifolds over Real
Field with 53 bits of precision
sage: H.category()
Category of homsets of topological spaces
sage: latex(H)
\mathrm{Hom}\left(\Bold{R},M\right)
sage: H.domain()
Real number line ℝ
sage: H.codomain()
2-dimensional differentiable manifold M

An element of H is a curve in M:

sage: c = H.an_element(); c
Curve in the 2-dimensional differentiable manifold M
sage: c.display()

(continues on next page)

2.5. Differentiable Maps and Curves 441

Manifolds, Release 10.4.rc1

(continued from previous page)

ℝ → M
t ↦ (x, y) = (1/(t^2 + 1) - 1/2, 0)

The test suite is passed:

sage: TestSuite(H).run()

The set of curves (0, 1) −→ 𝑈 , where 𝑈 is an open subset of𝑀 :

sage: I = R.open_interval(0, 1) ; I
Real interval (0, 1)
sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1}) ; U
Open subset U of the 2-dimensional differentiable manifold M
sage: H = Hom(I, U) ; H
Set of Morphisms from Real interval (0, 1) to Open subset U of the
2-dimensional differentiable manifold M in Join of Category of
subobjects of sets and Category of smooth manifolds over Real Field
with 53 bits of precision

An element of H is a curve in U:

sage: c = H.an_element() ; c
Curve in the Open subset U of the 2-dimensional differentiable
manifold M
sage: c.display()
(0, 1) → U

t ↦ (x, y) = (1/(t^2 + 1) - 1/2, 0)

The set of curves R −→ R is a set of (manifold) endomorphisms:

sage: E = Hom(R, R) ; E
Set of Morphisms from Real number line ℝ to Real number line ℝ in
Category of smooth connected manifolds over Real Field with 53 bits of
precision
sage: E.category()
Category of endsets of topological spaces
sage: E.is_endomorphism_set()
True
sage: E is End(R)
True

It is a monoid for the law of morphism composition:

sage: E in Monoids()
True

The identity element of the monoid is the identity map of R:

sage: E.one()
Identity map Id_ℝ of the Real number line ℝ
sage: E.one() is R.identity_map()
True
sage: E.one().display()
Id_ℝ: ℝ → ℝ

t ↦ t

A “typical” element of the monoid:

442 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: E.an_element().display()
ℝ → ℝ

t ↦ 1/(t^2 + 1) - 1/2

The test suite is passed by E:

sage: TestSuite(E).run()

Similarly, the set of curves 𝐼 −→ 𝐼 is a monoid, whose elements are (manifold) endomorphisms:

sage: EI = Hom(I, I) ; EI
Set of Morphisms from Real interval (0, 1) to Real interval (0, 1) in
Join of Category of subobjects of sets and Category of smooth manifolds
over Real Field with 53 bits of precision and Category of connected
manifolds over Real Field with 53 bits of precision
sage: EI.category()
Category of endsets of subobjects of sets and topological spaces
sage: EI is End(I)
True
sage: EI in Monoids()
True

The identity element and a “typical” element of this monoid:

sage: EI.one()
Identity map Id_(0, 1) of the Real interval (0, 1)
sage: EI.one().display()
Id_(0, 1): (0, 1) → (0, 1)

t ↦ t
sage: EI.an_element().display()
(0, 1) → (0, 1)

t ↦ 1/2/(t^2 + 1) + 1/4

The test suite is passed by EI:

sage: TestSuite(EI).run()

Element

alias of DifferentiableCurve

class sage.manifolds.differentiable.manifold_homset.DifferentiableManifoldHomset(do-
main,
codomain,
name=None,
la-
tex_name=None)

Bases: TopologicalManifoldHomset

Set of differentiable maps between two differentiable manifolds.

Given two differentiable manifolds 𝑀 and 𝑁 over a topological field 𝐾, the class DifferentiableMani-
foldHomset implements the set Hom(𝑀,𝑁) of morphisms (i.e. differentiable maps)𝑀 → 𝑁 .

This is a Sage parent class, whose element class is DiffMap.

INPUT:

• domain – differentiable manifold𝑀 (domain of the morphisms), as an instance of Differentiable-
Manifold

2.5. Differentiable Maps and Curves 443

Manifolds, Release 10.4.rc1

• codomain – differentiable manifold 𝑁 (codomain of the morphisms), as an instance of Differen-
tiableManifold

• name – (default: None) string; name given to the homset; if None, Hom(M,N) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the homset; if None, Hom(𝑀,𝑁) will
be used

EXAMPLES:

Set of differentiable maps between a 2-dimensional differentiable manifold and a 3-dimensional one:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: N = Manifold(3, N)
sage: Y.<u,v,w> = N.chart()
sage: H = Hom(M, N) ; H
Set of Morphisms from 2-dimensional differentiable manifold M to
3-dimensional differentiable manifold N in Category of smooth
manifolds over Real Field with 53 bits of precision
sage: type(H)
<class sage.manifolds.differentiable.manifold_homset.
→˓DifferentiableManifoldHomset_with_category >
sage: H.category()
Category of homsets of topological spaces
sage: latex(H)
\mathrm{Hom}\left(M,N\right)
sage: H.domain()
2-dimensional differentiable manifold M
sage: H.codomain()
3-dimensional differentiable manifold N

An element of H is a differentiable map from M to N:

sage: H.Element
<class sage.manifolds.differentiable.diff_map.DiffMap >
sage: f = H.an_element() ; f
Differentiable map from the 2-dimensional differentiable manifold M to the
3-dimensional differentiable manifold N
sage: f.display()
M → N

(x, y) ↦ (u, v, w) = (0, 0, 0)

The test suite is passed:

sage: TestSuite(H).run()

When the codomain coincides with the domain, the homset is a set of endomorphisms in the category of dif-
ferentiable manifolds:

sage: E = Hom(M, M) ; E
Set of Morphisms from 2-dimensional differentiable manifold M to
2-dimensional differentiable manifold M in Category of smooth
manifolds over Real Field with 53 bits of precision
sage: E.category()
Category of endsets of topological spaces
sage: E.is_endomorphism_set()
True
sage: E is End(M)
True

444 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

In this case, the homset is a monoid for the law of morphism composition:

sage: E in Monoids()
True

This was of course not the case for H = Hom(M, N):

sage: H in Monoids()
False

The identity element of the monoid is of course the identity map of M:

sage: E.one()
Identity map Id_M of the 2-dimensional differentiable manifold M
sage: E.one() is M.identity_map()
True
sage: E.one().display()
Id_M: M → M

(x, y) ↦ (x, y)

The test suite is passed by E:

sage: TestSuite(E).run()

This test suite includes more tests than in the case of H, since E has some extra structure (monoid).

Element

alias of DiffMap

class sage.manifolds.differentiable.manifold_homset.IntegratedAutoparallelCurveSet(do-
main,
codomain,
name=None,
la-
tex_name=None)

Bases: IntegratedCurveSet

Set of integrated autoparallel curves in a differentiable manifold.

INPUT:

• domain – OpenInterval open interval 𝐼 ⊂ R with finite boundaries (domain of the morphisms)

• codomain – DifferentiableManifold; differentiable manifold𝑀 (codomain of the morphisms)

• name – (default: None) string; name given to the set of integrated autoparallel curves; if None,
Hom_autoparallel(I, M) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the set of integrated autoparallel curves;
if None, Homautoparallel(𝐼,𝑀) will be used

EXAMPLES:

This parent class needs to be imported:

sage: from sage.manifolds.differentiable.manifold_homset import␣
→˓IntegratedAutoparallelCurveSet

Integrated autoparallel curves are only allowed to be defined on an interval with finite bounds. This forbids to define
an instance of this parent class whose domain has infinite bounds:

2.5. Differentiable Maps and Curves 445

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: R.<t> = manifolds.RealLine()
sage: H = IntegratedAutoparallelCurveSet(R, M)
Traceback (most recent call last):
...
ValueError: both boundaries of the interval defining the domain
of a Homset of integrated autoparallel curves need to be finite

An instance whose domain is an interval with finite bounds allows to build a curve that is autoparallel with respect
to a connection defined on the codomain:

sage: I = R.open_interval(-1, 2)
sage: H = IntegratedAutoparallelCurveSet(I, M) ; H
Set of Morphisms from Real interval (-1, 2) to 2-dimensional
differentiable manifold M in Category of homsets of topological spaces
which actually are integrated autoparallel curves with respect to a
certain affine connection
sage: nab = M.affine_connection(nabla)
sage: nab[0,1,0], nab[0,0,1] = 1,2
sage: nab.torsion()[:]
[[[0, -1], [1, 0]], [[0, 0], [0, 0]]]
sage: t = var(t)
sage: p = M.point((3,4))
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,2))
sage: c = H(nab, t, v, name= c) ; c
Integrated autoparallel curve c in the 2-dimensional
differentiable manifold M

A “typical” element of H is an autoparallel curve in M:

sage: d = H.an_element(); d
Integrated autoparallel curve in the 2-dimensional
differentiable manifold M
sage: sys = d.system(verbose=True)
Autoparallel curve in the 2-dimensional differentiable manifold
M equipped with Affine connection nab on the 2-dimensional
differentiable manifold M, and integrated over the Real
interval (-1, 2) as a solution to the following equations,
written with respect to Chart (M, (x, y)):

Initial point: Point on the 2-dimensional differentiable
manifold M with coordinates [0, -1/2] with respect to
Chart (M, (x, y))
Initial tangent vector: Tangent vector at Point on the
2-dimensional differentiable manifold M with components
[-1/6/(e^(-1) - 1), 1/3] with respect to Chart (M, (x, y))

d(x)/dt = Dx
d(y)/dt = Dy
d(Dx)/dt = -Dx*Dy
d(Dy)/dt = 0

The test suite is passed:

sage: TestSuite(H).run()

446 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

For any open interval 𝐽 with finite bounds (𝑎, 𝑏), all curves are autoparallel with respect to any connection. There-
fore, the set of autoparallel curves 𝐽 −→ 𝐽 is a set of numerical (manifold) endomorphisms that is a monoid for
the law of morphism composition:

sage: [a,b] = var(a b)
sage: J = R.open_interval(a, b)
sage: H = IntegratedAutoparallelCurveSet(J, J); H
Set of Morphisms from Real interval (a, b) to Real interval
(a, b) in Category of endsets of subobjects of sets and
topological spaces which actually are integrated autoparallel
curves with respect to a certain affine connection
sage: H.category()
Category of endsets of subobjects of sets and topological spaces
sage: H in Monoids()
True

Although it is a monoid, no identity map is implemented via the one method of this class or its subclass devoted
to geodesics. This is justified by the lack of relevance of the identity map within the framework of this parent
class and its subclass, whose purpose is mainly devoted to numerical issues (therefore, the user is left free to set a
numerical version of the identity if needed):

sage: H.one()
Traceback (most recent call last):
...
ValueError: the identity is not implemented for integrated
curves and associated subclasses

A “typical” element of the monoid:

sage: g = H.an_element() ; g
Integrated autoparallel curve in the Real interval (a, b)
sage: sys = g.system(verbose=True)
Autoparallel curve in the Real interval (a, b) equipped with
Affine connection nab on the Real interval (a, b), and
integrated over the Real interval (a, b) as a solution to the
following equations, written with respect to Chart ((a, b), (t,)):

Initial point: Point on the Real number line ℝ with coordinates
[0] with respect to Chart ((a, b), (t,))
Initial tangent vector: Tangent vector at Point on the Real
number line ℝ with components
[-(e^(1/2) - 1)/(a - b)] with respect to
Chart ((a, b), (t,))

d(t)/ds = Dt
d(Dt)/ds = -Dt^2

The test suite is passed, tests _test_one and _test_prod being skipped for reasons mentioned above:

sage: TestSuite(H).run(skip=["_test_one", "_test_prod"])

Element

alias of IntegratedAutoparallelCurve

class sage.manifolds.differentiable.manifold_homset.IntegratedCurveSet(domain,
codomain,
name=None,
la-
tex_name=None)

2.5. Differentiable Maps and Curves 447

Manifolds, Release 10.4.rc1

Bases: DifferentiableCurveSet

Set of integrated curves in a differentiable manifold.

INPUT:

• domain – OpenInterval open interval 𝐼 ⊂ R with finite boundaries (domain of the morphisms)

• codomain – DifferentiableManifold; differentiable manifold𝑀 (codomain of the morphisms)

• name – (default: None) string; name given to the set of integrated curves; if None,
Hom_integrated(I, M) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the set of integrated curves; if None,
Homintegrated(𝐼,𝑀) will be used

EXAMPLES:

This parent class needs to be imported:

sage: from sage.manifolds.differentiable.manifold_homset import IntegratedCurveSet

Integrated curves are only allowed to be defined on an interval with finite bounds. This forbids to define an instance
of this parent class whose domain has infinite bounds:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: R.<t> = manifolds.RealLine()
sage: H = IntegratedCurveSet(R, M)
Traceback (most recent call last):
...
ValueError: both boundaries of the interval defining the domain
of a Homset of integrated curves need to be finite

An instance whose domain is an interval with finite bounds allows to build an integrated curve defined on the
interval:

sage: I = R.open_interval(-1, 2)
sage: H = IntegratedCurveSet(I, M) ; H
Set of Morphisms from Real interval (-1, 2) to 2-dimensional
differentiable manifold M in Category of homsets of topological spaces
which actually are integrated curves
sage: eqns_rhs = [1,1]
sage: vels = X.symbolic_velocities()
sage: t = var(t)
sage: p = M.point((3,4))
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,2))
sage: c = H(eqns_rhs, vels, t, v, name= c) ; c
Integrated curve c in the 2-dimensional differentiable
manifold M

A “typical” element of H is a curve in M:

sage: d = H.an_element(); d
Integrated curve in the 2-dimensional differentiable manifold M
sage: sys = d.system(verbose=True)
Curve in the 2-dimensional differentiable manifold M integrated
over the Real interval (-1, 2) as a solution to the following

(continues on next page)

448 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

system, written with respect to Chart (M, (x, y)):

Initial point: Point on the 2-dimensional differentiable
manifold M with coordinates [0, 0] with respect to Chart (M, (x, y))
Initial tangent vector: Tangent vector at Point on the
2-dimensional differentiable manifold M with components
[1/4, 0] with respect to Chart (M, (x, y))

d(x)/dt = Dx
d(y)/dt = Dy
d(Dx)/dt = -1/4*sin(t + 1)
d(Dy)/dt = 0

The test suite is passed:

sage: TestSuite(H).run()

More generally, an instance of this class may be defined with abstract bounds (𝑎, 𝑏):

sage: [a,b] = var(a b)
sage: J = R.open_interval(a, b)
sage: H = IntegratedCurveSet(J, M) ; H
Set of Morphisms from Real interval (a, b) to 2-dimensional
differentiable manifold M in Category of homsets of topological spaces
which actually are integrated curves

A “typical” element of H is a curve in M:

sage: f = H.an_element(); f
Integrated curve in the 2-dimensional differentiable manifold M
sage: sys = f.system(verbose=True)
Curve in the 2-dimensional differentiable manifold M integrated
over the Real interval (a, b) as a solution to the following
system, written with respect to Chart (M, (x, y)):

Initial point: Point on the 2-dimensional differentiable
manifold M with coordinates [0, 0] with respect to Chart (M, (x, y))
Initial tangent vector: Tangent vector at Point on the
2-dimensional differentiable manifold M with components
[1/4, 0] with respect to Chart (M, (x, y))

d(x)/dt = Dx
d(y)/dt = Dy
d(Dx)/dt = -1/4*sin(-a + t)
d(Dy)/dt = 0

Yet, even in the case of abstract bounds, considering any of them to be infinite is still prohibited since no numerical
integration could be performed:

sage: f.solve(parameters_values={a:-1, b:+oo})
Traceback (most recent call last):
...
ValueError: both boundaries of the interval need to be finite

The set of integrated curves 𝐽 −→ 𝐽 is a set of numerical (manifold) endomorphisms:

2.5. Differentiable Maps and Curves 449

Manifolds, Release 10.4.rc1

sage: H = IntegratedCurveSet(J, J); H
Set of Morphisms from Real interval (a, b) to Real interval
(a, b) in Category of endsets of subobjects of sets and
topological spaces which actually are integrated curves
sage: H.category()
Category of endsets of subobjects of sets and topological spaces

It is a monoid for the law of morphism composition:

sage: H in Monoids()
True

Although it is a monoid, no identity map is implemented via the one method of this class or any of its subclasses.
This is justified by the lack of relevance of the identity map within the framework of this parent class and its
subclasses, whose purpose is mainly devoted to numerical issues (therefore, the user is left free to set a numerical
version of the identity if needed):

sage: H.one()
Traceback (most recent call last):
...
ValueError: the identity is not implemented for integrated
curves and associated subclasses

A “typical” element of the monoid:

sage: g = H.an_element() ; g
Integrated curve in the Real interval (a, b)
sage: sys = g.system(verbose=True)
Curve in the Real interval (a, b) integrated over the Real
interval (a, b) as a solution to the following system, written
with respect to Chart ((a, b), (t,)):

Initial point: Point on the Real number line ℝ with coordinates
[0] with respect to Chart ((a, b), (t,))
Initial tangent vector: Tangent vector at Point on the Real
number line ℝ with components [1/4] with respect to
Chart ((a, b), (t,))

d(t)/ds = Dt
d(Dt)/ds = -1/4*sin(-a + s)

The test suite is passed, tests _test_one and _test_prod being skipped for reasons mentioned above:

sage: TestSuite(H).run(skip=["_test_one", "_test_prod"])

Element

alias of IntegratedCurve

one()

Raise an error refusing to provide the identity element. This overrides the onemethod of class Topologi-
calManifoldHomset, which would actually raise an error as well, due to lack of option is_identity
in element_constructor method of self.

450 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.manifold_homset.IntegratedGeodesicSet(do-
main,
codomain,
name=None,
la-
tex_name=None)

Bases: IntegratedAutoparallelCurveSet

Set of integrated geodesic in a differentiable manifold.

INPUT:

• domain – OpenInterval open interval 𝐼 ⊂ R with finite boundaries (domain of the morphisms)

• codomain – DifferentiableManifold; differentiable manifold𝑀 (codomain of the morphisms)

• name – (default: None) string; name given to the set of integrated geodesics; if None,
Hom_geodesic(I, M) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the set of integrated geodesics; if None,
Homgeodesic(𝐼,𝑀) will be used

EXAMPLES:

This parent class needs to be imported:

sage: from sage.manifolds.differentiable.manifold_homset import␣
→˓IntegratedGeodesicSet

Integrated geodesics are only allowed to be defined on an interval with finite bounds. This forbids to define an
instance of this parent class whose domain has infinite bounds:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: R.<t> = manifolds.RealLine()
sage: H = IntegratedGeodesicSet(R, M)
Traceback (most recent call last):
...
ValueError: both boundaries of the interval defining the domain
of a Homset of integrated geodesics need to be finite

An instance whose domain is an interval with finite bounds allows to build a geodesic with respect to a metric
defined on the codomain:

sage: I = R.open_interval(-1, 2)
sage: H = IntegratedGeodesicSet(I, M) ; H
Set of Morphisms from Real interval (-1, 2) to 2-dimensional
differentiable manifold M in Category of homsets of topological spaces
which actually are integrated geodesics with respect to a certain
metric
sage: g = M.metric(g)
sage: g[0,0], g[1,1], g[0,1] = 1, 1, 2
sage: t = var(t)
sage: p = M.point((3,4))
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,2))
sage: c = H(g, t, v, name= c) ; c
Integrated geodesic c in the 2-dimensional differentiable
manifold M

2.5. Differentiable Maps and Curves 451

Manifolds, Release 10.4.rc1

A “typical” element of H is a geodesic in M:

sage: d = H.an_element(); d
Integrated geodesic in the 2-dimensional differentiable
manifold M
sage: sys = d.system(verbose=True)
Geodesic in the 2-dimensional differentiable manifold M equipped
with Riemannian metric g on the 2-dimensional differentiable
manifold M, and integrated over the Real interval (-1, 2) as a
solution to the following geodesic equations, written
with respect to Chart (M, (x, y)):

Initial point: Point on the 2-dimensional differentiable
manifold M with coordinates [0, 0] with respect to
Chart (M, (x, y))
Initial tangent vector: Tangent vector at Point on the
2-dimensional differentiable manifold M with components
[1/3*e^(1/2) - 1/3, 0] with respect to Chart (M, (x, y))

d(x)/dt = Dx
d(y)/dt = Dy
d(Dx)/dt = -Dx^2
d(Dy)/dt = 0

The test suite is passed:

sage: TestSuite(H).run()

For any open interval 𝐽 with finite bounds (𝑎, 𝑏), all curves are geodesics with respect to any metric. Therefore, the
set of geodesics 𝐽 −→ 𝐽 is a set of numerical (manifold) endomorphisms that is a monoid for the law of morphism
composition:

sage: [a,b] = var(a b)
sage: J = R.open_interval(a, b)
sage: H = IntegratedGeodesicSet(J, J); H
Set of Morphisms from Real interval (a, b) to Real interval
(a, b) in Category of endsets of subobjects of sets and
topological spaces which actually are integrated geodesics
with respect to a certain metric
sage: H.category()
Category of endsets of subobjects of sets and topological spaces
sage: H in Monoids()
True

Although it is a monoid, no identity map is implemented via the one method of this class. This is justified by the
lack of relevance of the identity map within the framework of this parent class, whose purpose is mainly devoted
to numerical issues (therefore, the user is left free to set a numerical version of the identity if needed):

sage: H.one()
Traceback (most recent call last):
...
ValueError: the identity is not implemented for integrated
curves and associated subclasses

A “typical” element of the monoid:

sage: g = H.an_element() ; g
Integrated geodesic in the Real interval (a, b)

(continues on next page)

452 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: sys = g.system(verbose=True)
Geodesic in the Real interval (a, b) equipped with Riemannian
metric g on the Real interval (a, b), and integrated over the
Real interval (a, b) as a solution to the following geodesic
equations, written with respect to Chart ((a, b), (t,)):

Initial point: Point on the Real number line ℝ with coordinates
[0] with respect to Chart ((a, b), (t,))
Initial tangent vector: Tangent vector at Point on the Real
number line ℝ with components [-(e^(1/2) - 1)/(a - b)]
with respect to Chart ((a, b), (t,))

d(t)/ds = Dt
d(Dt)/ds = -Dt^2

The test suite is passed, tests _test_one and _test_prod being skipped for reasons mentioned above:

sage: TestSuite(H).run(skip=["_test_one", "_test_prod"])

Element

alias of IntegratedGeodesic

2.5.2 Differentiable Maps between Differentiable Manifolds

The class DiffMap implements differentiable maps from a differentiable manifold 𝑀 to a differentiable manifold 𝑁
over the same topological field𝐾 as𝑀 (in most applications,𝐾 = R or𝐾 = C):

Φ :𝑀 −→ 𝑁

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015): initial version

• Marco Mancini (2018): pullback parallelization

REFERENCES:

• Chap. 1 of [KN1963]

• Chaps. 2 and 3 of [Lee2013]

class sage.manifolds.differentiable.diff_map.DiffMap(parent, coord_functions=None,
name=None, latex_name=None,
is_isomorphism=False,
is_identity=False)

Bases: ContinuousMap

Differentiable map between two differentiable manifolds.

This class implements differentiable maps of the type

Φ :𝑀 −→ 𝑁

where𝑀 and 𝑁 are differentiable manifolds over the same topological field 𝐾 (in most applications, 𝐾 = R or
𝐾 = C).

Differentiable maps are the morphisms of the category of differentiable manifolds. The set of all differentiable
maps from𝑀 to 𝑁 is therefore the homset between𝑀 and 𝑁 , which is denoted by Hom(𝑀,𝑁).

2.5. Differentiable Maps and Curves 453

Manifolds, Release 10.4.rc1

The class DiffMap is a Sage element class, whose parent class is DifferentiableManifoldHomset. It
inherits from the class ContinuousMap since a differentiable map is obviously a continuous one.

INPUT:

• parent – homset Hom(𝑀,𝑁) to which the differentiable map belongs

• coord_functions – (default: None) if not None, must be a dictionary of the coordinate expressions
(as lists (or tuples) of the coordinates of the image expressed in terms of the coordinates of the considered
point) with the pairs of charts (chart1, chart2) as keys (chart1 being a chart on𝑀 and chart2 a chart on 𝑁).
If the dimension of the map’s codomain is 1, a single coordinate expression can be passed instead of a tuple
with a single element

• name – (default: None) name given to the differentiable map

• latex_name – (default: None) LaTeX symbol to denote the differentiable map; if None, the LaTeX
symbol is set to name

• is_isomorphism – (default: False) determines whether the constructed object is a isomorphism (i.e.
a diffeomorphism); if set to True, then the manifolds𝑀 and 𝑁 must have the same dimension.

• is_identity – (default: False) determines whether the constructed object is the identity map; if set to
True, then 𝑁 must be𝑀 and the entry coord_functions is not used.

Note: If the information passed by means of the argument coord_functions is not sufficient to fully specify
the differentiable map, further coordinate expressions, in other charts, can be subsequently added by means of the
method add_expr()

EXAMPLES:

The standard embedding of the sphere 𝑆2 into R3:

sage: M = Manifold(2, S^2) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: N = Manifold(3, R^3 , r \RR^3) # R^3
sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3
sage: Phi = M.diff_map(N,
....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^
→˓2)],
....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^
→˓2)]},
....: name= Phi , latex_name=r \Phi)
sage: Phi
Differentiable map Phi from the 2-dimensional differentiable manifold
S^2 to the 3-dimensional differentiable manifold R^3
sage: Phi.parent()
Set of Morphisms from 2-dimensional differentiable manifold S^2 to
3-dimensional differentiable manifold R^3 in Category of smooth
manifolds over Real Field with 53 bits of precision
sage: Phi.parent() is Hom(M, N)
True

(continues on next page)

454 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: type(Phi)
<class sage.manifolds.differentiable.manifold_homset.
→˓DifferentiableManifoldHomset_with_category.element_class >
sage: Phi.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1),

(x^2 + y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1),

-(u^2 + v^2 - 1)/(u^2 + v^2 + 1))

It is possible to create the map via the method diff_map() only in a single pair of charts: the argument co-
ord_functions is then a mere list of coordinate expressions (and not a dictionary) and the arguments chart1
and chart2 have to be provided if the charts differ from the default ones on the domain and/or the codomain:

sage: Phi1 = M.diff_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2),
....: (x^2+y^2-1)/(1+x^2+y^2)],
....: chart1=c_xy, chart2=c_cart, name= Phi ,
....: latex_name=r \Phi)

Since c_xy and c_cart are the default charts on respectively M and N, they can be omitted, so that the above
declaration is equivalent to:

sage: Phi1 = M.diff_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2),
....: (x^2+y^2-1)/(1+x^2+y^2)],
....: name= Phi , latex_name=r \Phi)

With such a declaration, the differentiable map is only partially defined on the manifold 𝑆2, being known in only
one chart:

sage: Phi1.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1),

(x^2 + y^2 - 1)/(x^2 + y^2 + 1))

The definition can be completed by means of the method add_expr():

sage: Phi1.add_expr(c_uv, c_cart, [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2),
....: (1-u^2-v^2)/(1+u^2+v^2)])
sage: Phi1.display()
Phi: S^2 → R^3
on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1),

(x^2 + y^2 - 1)/(x^2 + y^2 + 1))
on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1),

-(u^2 + v^2 - 1)/(u^2 + v^2 + 1))

At this stage, Phi1 and Phi are fully equivalent:

sage: Phi1 == Phi
True

The test suite is passed:

sage: TestSuite(Phi).run()
sage: TestSuite(Phi1).run()

The map acts on points:

2.5. Differentiable Maps and Curves 455

Manifolds, Release 10.4.rc1

sage: np = M.point((0,0), chart=c_uv, name= N) # the North pole
sage: Phi(np)
Point Phi(N) on the 3-dimensional differentiable manifold R^3
sage: Phi(np).coord() # Cartesian coordinates
(0, 0, 1)
sage: sp = M.point((0,0), chart=c_xy, name= S) # the South pole
sage: Phi(sp).coord() # Cartesian coordinates
(0, 0, -1)

The differential dΦ of the map Φ at the North pole and at the South pole:

sage: Phi.differential(np)
Generic morphism:
From: Tangent space at Point N on the 2-dimensional differentiable manifold S^2
To: Tangent space at Point Phi(N) on the 3-dimensional differentiable␣

→˓manifold R^3
sage: Phi.differential(sp)
Generic morphism:
From: Tangent space at Point S on the 2-dimensional differentiable manifold S^2
To: Tangent space at Point Phi(S) on the 3-dimensional differentiable␣

→˓manifold R^3

The matrix of the linear map dΦ𝑁 with respect to the default bases of 𝑇𝑁𝑆2 and 𝑇Φ(𝑁)R3:

sage: Phi.differential(np).matrix()
[2 0]
[0 2]
[0 0]

the default bases being:

sage: Phi.differential(np).domain().default_basis()
Basis (∂/∂u,∂/∂v) on the Tangent space at Point N on the 2-dimensional
differentiable manifold S^2
sage: Phi.differential(np).codomain().default_basis()
Basis (∂/∂X,∂/∂Y,∂/∂Z) on the Tangent space at Point Phi(N) on the
3-dimensional differentiable manifold R^3

A convenient way to display the matrix of the differential:

sage: Phi.differential(np).display()
∂/∂u ∂/∂v

∂/∂X⎛ 2 0⎞
∂/∂Y⎜ 0 2⎟
∂/∂Z⎝ 0 0⎠

Differentiable maps can be composed bymeans of the operator*: let us introduce themapR3 → R2 corresponding
to the projection from the point (𝑋,𝑌, 𝑍) = (0, 0, 1) onto the equatorial plane 𝑍 = 0:

sage: P = Manifold(2, R^2 , r \RR^2) # R^2 (equatorial plane)
sage: cP.<xP, yP> = P.chart()
sage: Psi = N.diff_map(P, (X/(1-Z), Y/(1-Z)), name= Psi ,
....: latex_name=r \Psi)
sage: Psi
Differentiable map Psi from the 3-dimensional differentiable manifold
R^3 to the 2-dimensional differentiable manifold R^2
sage: Psi.display()

(continues on next page)

456 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Psi: R^3 → R^2
(X, Y, Z) ↦ (xP, yP) = (-X/(Z - 1), -Y/(Z - 1))

Then we compose Psi with Phi, thereby getting a map 𝑆2 → R2:

sage: ster = Psi*Phi ; ster
Differentiable map from the 2-dimensional differentiable manifold S^2
to the 2-dimensional differentiable manifold R^2

Let us test on the South pole (sp) that ster is indeed the composite of Psi and Phi:

sage: ster(sp) == Psi(Phi(sp))
True

Actually ster is the stereographic projection from the North pole, as its coordinate expression reveals:

sage: ster.display()
S^2 → R^2
on U: (x, y) ↦ (xP, yP) = (x, y)
on V: (u, v) ↦ (xP, yP) = (u/(u^2 + v^2), v/(u^2 + v^2))

If its codomain is 1-dimensional, a differentiable map must be defined by a single symbolic expression for each pair
of charts, and not by a list/tuple with a single element:

sage: N = Manifold(1, N)
sage: c_N = N.chart(X)
sage: Phi = M.diff_map(N, {(c_xy, c_N): x^2+y^2,
....: (c_uv, c_N): 1/(u^2+v^2)}) # not ...[1/(u^2+v^2)] or (1/(u^2+v^2),)

An example of differentiable map R → R2:

sage: R = Manifold(1, R) # field R
sage: T.<t> = R.chart() # canonical chart on R
sage: R2 = Manifold(2, R^2) # R^2
sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2
sage: Phi = R.diff_map(R2, [cos(t), sin(t)], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable manifold R
to the 2-dimensional differentiable manifold R^2
sage: Phi.parent()
Set of Morphisms from 1-dimensional differentiable manifold R to
2-dimensional differentiable manifold R^2 in Category of smooth
manifolds over Real Field with 53 bits of precision
sage: Phi.parent() is Hom(R, R2)
True
sage: Phi.display()
Phi: R → R^2

t ↦ (x, y) = (cos(t), sin(t))

An example of diffeomorphism between the unit open disk and the Euclidean plane R2:

sage: D = R2.open_subset(D , coord_def={c_xy: x^2+y^2<1}) # the open unit disk
sage: Phi = D.diffeomorphism(R2, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
....: name= Phi , latex_name=r \Phi)
sage: Phi
Diffeomorphism Phi from the Open subset D of the 2-dimensional
differentiable manifold R^2 to the 2-dimensional differentiable

(continues on next page)

2.5. Differentiable Maps and Curves 457

Manifolds, Release 10.4.rc1

(continued from previous page)

manifold R^2
sage: Phi.parent()
Set of Morphisms from Open subset D of the 2-dimensional differentiable
manifold R^2 to 2-dimensional differentiable manifold R^2 in Category
of smooth manifolds over Real Field with 53 bits of precision
sage: Phi.parent() is Hom(D, R2)
True
sage: Phi.display()
Phi: D → R^2

(x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))

The image of a point:

sage: p = D.point((1/2,0))
sage: q = Phi(p) ; q
Point on the 2-dimensional differentiable manifold R^2
sage: q.coord()
(1/3*sqrt(3), 0)

The inverse diffeomorphism is computed by means of the method inverse():

sage: Phi.inverse()
Diffeomorphism Phi^(-1) from the 2-dimensional differentiable manifold R^2
to the Open subset D of the 2-dimensional differentiable manifold R^2
sage: Phi.inverse().display()
Phi^(-1): R^2 → D

(x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))

Equivalently, one may use the notations ^(-1) or ~ to get the inverse:

sage: Phi^(-1) is Phi.inverse()
True
sage: ~Phi is Phi.inverse()
True

Check that ~Phi is indeed the inverse of Phi:

sage: (~Phi)(q) == p
True
sage: Phi * ~Phi == R2.identity_map()
True
sage: ~Phi * Phi == D.identity_map()
True

The coordinate expression of the inverse diffeomorphism:

sage: (~Phi).display()
Phi^(-1): R^2 → D

(x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))

A special case of diffeomorphism: the identity map of the open unit disk:

sage: id = D.identity_map() ; id
Identity map Id_D of the Open subset D of the 2-dimensional
differentiable manifold R^2
sage: latex(id)

(continues on next page)

458 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

\mathrm{Id}_{D}
sage: id.parent()
Set of Morphisms from Open subset D of the 2-dimensional differentiable
manifold R^2 to Open subset D of the 2-dimensional differentiable
manifold R^2 in Join of Category of subobjects of sets and Category of
smooth manifolds over Real Field with 53 bits of precision
sage: id.parent() is Hom(D, D)
True
sage: id is Hom(D,D).one() # the identity element of the monoid Hom(D,D)
True

The identity map acting on a point:

sage: id(p)
Point on the 2-dimensional differentiable manifold R^2
sage: id(p) == p
True
sage: id(p) is p
True

The coordinate expression of the identity map:

sage: id.display()
Id_D: D → D

(x, y) ↦ (x, y)

The identity map is its own inverse:

sage: id^(-1) is id
True
sage: ~id is id
True

differential(point)
Return the differential of self at a given point.

If the differentiable map self is

Φ :𝑀 −→ 𝑁,

where𝑀 and𝑁 are differentiable manifolds, the differential ofΦ at a point 𝑝 ∈𝑀 is the tangent space linear
map:

dΦ𝑝 : 𝑇𝑝𝑀 −→ 𝑇Φ(𝑝)𝑁

defined by

∀𝑣 ∈ 𝑇𝑝𝑀, dΦ𝑝(𝑣) : 𝐶𝑘(𝑁) −→ R
𝑓 ↦−→ 𝑣(𝑓 ∘ Φ)

INPUT:

• point – point 𝑝 in the domain𝑀 of the differentiable map Φ

OUTPUT:

• dΦ𝑝, the differential of Φ at 𝑝, as a FiniteRankFreeModuleMorphism

2.5. Differentiable Maps and Curves 459

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_morphism.html#sage.tensor.modules.free_module_morphism.FiniteRankFreeModuleMorphism

Manifolds, Release 10.4.rc1

EXAMPLES:

Differential of a differentiable map between a 2-dimensional manifold and a 3-dimensional one:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: N = Manifold(3, N)
sage: Y.<u,v,w> = N.chart()
sage: Phi = M.diff_map(N, {(X,Y): (x-2*y, x*y, x^2-y^3)}, name= Phi ,
....: latex_name = r \Phi)
sage: p = M.point((2,-1), name= p)
sage: dPhip = Phi.differential(p) ; dPhip
Generic morphism:

From: Tangent space at Point p on the 2-dimensional differentiable manifold␣
→˓M
To: Tangent space at Point Phi(p) on the 3-dimensional differentiable␣

→˓manifold N
sage: latex(dPhip)
{\mathrm{d}\Phi}_{p}
sage: dPhip.parent()
Set of Morphisms from Tangent space at Point p on the 2-dimensional
differentiable manifold M to Tangent space at Point Phi(p) on the
3-dimensional differentiable manifold N in Category of finite
dimensional vector spaces over Symbolic Ring

The matrix of dΦ𝑝 w.r.t. to the default bases of 𝑇𝑝𝑀 and 𝑇Φ(𝑝)𝑁 :

sage: dPhip.matrix()
[1 -2]
[-1 2]
[4 -3]

differential_functions(chart1=None, chart2=None)
Return the coordinate expression of the differential of the differentiable map with respect to a pair of charts.

If the differentiable map is

Φ :𝑀 −→ 𝑁,

where𝑀 and𝑁 are differentiable manifolds, the differential ofΦ at a point 𝑝 ∈𝑀 is the tangent space linear
map:

dΦ𝑝 : 𝑇𝑝𝑀 −→ 𝑇Φ(𝑝)𝑁

defined by

∀𝑣 ∈ 𝑇𝑝𝑀, dΦ𝑝(𝑣) : 𝐶𝑘(𝑁) −→ R,
𝑓 ↦−→ 𝑣(𝑓 ∘ Φ).

If the coordinate expression of Φ is

𝑦𝑖 = 𝑌 𝑖(𝑥1, . . . , 𝑥𝑛), 1 ≤ 𝑖 ≤ 𝑚,

where (𝑥1, . . . , 𝑥𝑛) are coordinates of a chart on𝑀 and (𝑦1, . . . , 𝑦𝑚) are coordinates of a chart on Φ(𝑀),
the expression of the differential of Φ with respect to these coordinates is

𝐽𝑖𝑗 =
𝜕𝑌 𝑖

𝜕𝑥𝑗
1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

460 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

𝐽𝑖𝑗 |𝑝 is then the matrix of the linear map dΦ𝑝 with respect to the bases of 𝑇𝑝𝑀 and 𝑇Φ(𝑝)𝑁 associated to
the above charts:

dΦ𝑝

(︃
𝜕

𝜕𝑥𝑗

⃒⃒⃒⃒
𝑝

)︃
= 𝐽𝑖𝑗 |𝑝

𝜕

𝜕𝑦𝑖

⃒⃒⃒⃒
Φ(𝑝)

.

INPUT:

• chart1 – (default: None) chart on the domain𝑀 ofΦ (coordinates denoted by (𝑥𝑗) above); if None,
the domain’s default chart is assumed

• chart2 – (default: None) chart on the codomain of Φ (coordinates denoted by (𝑦𝑖) above); if None,
the codomain’s default chart is assumed

OUTPUT:

• the functions 𝐽𝑖𝑗 as a double array, 𝐽𝑖𝑗 being the element [i][j] represented by a ChartFunction

To get symbolic expressions, use the method jacobian_matrix() instead.

EXAMPLES:

Differential functions of a map between a 2-dimensional manifold and a 3-dimensional one:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: N = Manifold(3, N)
sage: Y.<u,v,w> = N.chart()
sage: Phi = M.diff_map(N, {(X,Y): (x-2*y, x*y, x^2-y^3)}, name= Phi ,
....: latex_name = r \Phi)
sage: J = Phi.differential_functions(X, Y) ; J
[1 -2]
[y x]
[2*x -3*y^2]

The result is cached:

sage: Phi.differential_functions(X, Y) is J
True

The elements of J are functions of the coordinates of the chart X:

sage: J[2][0]
2*x
sage: type(J[2][0])
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_
→˓class >

sage: J[2][0].display()
(x, y) ↦ 2*x

In contrast, the method jacobian_matrix() leads directly to symbolic expressions:

sage: JJ = Phi.jacobian_matrix(X,Y) ; JJ
[1 -2]
[y x]
[2*x -3*y^2]
sage: JJ[2,0]
2*x
sage: type(JJ[2,0])

(continues on next page)

2.5. Differentiable Maps and Curves 461

Manifolds, Release 10.4.rc1

(continued from previous page)

<class sage.symbolic.expression.Expression >
sage: bool(JJ[2,0] == J[2][0].expr())
True

jacobian_matrix(chart1=None, chart2=None)
Return the Jacobian matrix resulting from the coordinate expression of the differentiable map with respect to
a pair of charts.

If Φ is the current differentiable map and its coordinate expression is

𝑦𝑖 = 𝑌 𝑖(𝑥1, . . . , 𝑥𝑛), 1 ≤ 𝑖 ≤ 𝑚,

where (𝑥1, . . . , 𝑥𝑛) are coordinates of a chart 𝑋 on the domain of Φ and (𝑦1, . . . , 𝑦𝑚) are coordinates of a
chart 𝑌 on the codomain of Φ, the Jacobian matrix of the differentiable map Φ w.r.t. to charts 𝑋 and 𝑌 is

𝐽 =

(︂
𝜕𝑌 𝑖

𝜕𝑥𝑗

)︂
1≤𝑖≤𝑚
1≤𝑗≤𝑛

,

where 𝑖 is the row index and 𝑗 the column one.

INPUT:

• chart1 – (default: None) chart𝑋 on the domain of Φ; if none is provided, the domain’s default chart
is assumed

• chart2 – (default: None) chart 𝑌 on the codomain of Φ; if none is provided, the codomain’s default
chart is assumed

OUTPUT:

• the matrix 𝐽 defined above

EXAMPLES:

Jacobian matrix of a map between a 2-dimensional manifold and a 3-dimensional one:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: N = Manifold(3, N)
sage: Y.<u,v,w> = N.chart()
sage: Phi = M.diff_map(N, {(X,Y): (x-2*y, x*y, x^2-y^3)}, name= Phi ,
....: latex_name = r \Phi)
sage: Phi.display()
Phi: M → N

(x, y) ↦ (u, v, w) = (x - 2*y, x*y, -y^3 + x^2)
sage: J = Phi.jacobian_matrix(X, Y) ; J
[1 -2]
[y x]
[2*x -3*y^2]
sage: J.parent()
Full MatrixSpace of 3 by 2 dense matrices over Symbolic Ring

pullback(tensor_or_codomain_subset, name=None, latex_name=None)
Pullback operator associated with self.

In what follows, let Φ denote a differentiable map self,𝑀 its domain and 𝑁 its codomain.

INPUT:

One of the following:

462 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• tensor_or_codomain_subset – one of the following:

– a TensorField; a fully covariant tensor field 𝑇 on 𝑁 , i.e. a tensor field of type (0, 𝑝), with 𝑝 a
positive or zero integer; the case 𝑝 = 0 corresponds to a scalar field

– a ManifoldSubset 𝑆

OUTPUT:

• (if the input is a tensor field 𝑇) a TensorField representing a fully covariant tensor field on𝑀 that
is the pullback of 𝑇 by Φ

• (if the input is a manifold subset 𝑆) a ManifoldSubset that is the preimage Φ−1(𝑆); same as
preimage()

EXAMPLES:

Pullback on 𝑆2 of a scalar field defined on 𝑅3:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of a meridian (domain of␣
→˓spherical coordinates)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi) #␣
→˓spherical coord. on U
sage: N = Manifold(3, R^3 , r \RR^3 , start_index=1)
sage: c_cart.<x,y,z> = N.chart() # Cartesian coord. on R^3
sage: Phi = U.diff_map(N, (sin(th)*cos(ph), sin(th)*sin(ph), cos(th)),
....: name= Phi , latex_name=r \Phi)
sage: f = N.scalar_field(x*y*z, name= f) ; f
Scalar field f on the 3-dimensional differentiable manifold R^3
sage: f.display()
f: R^3 → ℝ

(x, y, z) ↦ x*y*z
sage: pf = Phi.pullback(f) ; pf
Scalar field Phi^*(f) on the Open subset U of the 2-dimensional
differentiable manifold S^2

sage: pf.display()
Phi^*(f): U → ℝ

(th, ph) ↦ cos(ph)*cos(th)*sin(ph)*sin(th)^2

Pullback on 𝑆2 of the standard Euclidean metric on 𝑅3:

sage: g = N.sym_bilin_form_field(name= g)
sage: g[1,1], g[2,2], g[3,3] = 1, 1, 1
sage: g.display()
g = dx⊗dx + dy⊗dy + dz⊗dz
sage: pg = Phi.pullback(g) ; pg
Field of symmetric bilinear forms Phi^*(g) on the Open subset U of
the 2-dimensional differentiable manifold S^2

sage: pg.display()
Phi^*(g) = dth⊗dth + sin(th)^2 dph⊗dph

Parallel computation:

sage: Parallelism().set(tensor , nproc=2)
sage: pg = Phi.pullback(g) ; pg
Field of symmetric bilinear forms Phi^*(g) on the Open subset U of
the 2-dimensional differentiable manifold S^2

sage: pg.display()
Phi^*(g) = dth⊗dth + sin(th)^2 dph⊗dph
sage: Parallelism().set(tensor , nproc=1) # switch off parallelization

2.5. Differentiable Maps and Curves 463

Manifolds, Release 10.4.rc1

Pullback on 𝑆2 of a 3-form on 𝑅3:

sage: a = N.diff_form(3, name= A)
sage: a[1,2,3] = f
sage: a.display()
A = x*y*z dx∧dy∧dz
sage: pa = Phi.pullback(a) ; pa
3-form Phi^*(A) on the Open subset U of the 2-dimensional
differentiable manifold S^2

sage: pa.display() # should be zero (as any 3-form on a 2-dimensional␣
→˓manifold)
Phi^*(A) = 0

pushforward(tensor)
Pushforward operator associated with self.

In what follows, let Φ denote the differentiable map,𝑀 its domain and 𝑁 its codomain.

INPUT:

• tensor – TensorField; a fully contrariant tensor field 𝑇 on𝑀 , i.e. a tensor field of type (𝑝, 0),
with 𝑝 a positive integer

OUTPUT:

• a TensorField representing a fully contravariant tensor field along𝑀 with values in𝑁 , which is the
pushforward of 𝑇 by Φ

EXAMPLES:

Pushforward of a vector field on the 2-sphere 𝑆2 to the Euclidean 3-space R3, via the standard embedding of
𝑆2:

sage: S2 = Manifold(2, S^2 , start_index=1)
sage: U = S2.open_subset(U) # domain of spherical coordinates
sage: spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: R3 = Manifold(3, R^3 , start_index=1)
sage: cart.<x,y,z> = R3.chart()
sage: Phi = U.diff_map(R3, {(spher, cart): [sin(th)*cos(ph),
....: sin(th)*sin(ph), cos(th)]}, name= Phi , latex_name=r \Phi)
sage: v = U.vector_field(name= v)
sage: v[:] = 0, 1
sage: v.display()
v = ∂/∂ph
sage: pv = Phi.pushforward(v); pv
Vector field Phi_*(v) along the Open subset U of the 2-dimensional
differentiable manifold S^2 with values on the 3-dimensional
differentiable manifold R^3

sage: pv.display()
Phi_*(v) = -sin(ph)*sin(th) ∂/∂x + cos(ph)*sin(th) ∂/∂y

Pushforward of a vector field on the real line to the R3, via a helix embedding:

sage: R.<t> = manifolds.RealLine()
sage: Psi = R.diff_map(R3, [cos(t), sin(t), t], name= Psi ,
....: latex_name=r \Psi)
sage: u = R.vector_field(name= u)
sage: u[0] = 1
sage: u.display()
u = ∂/∂t

(continues on next page)

464 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: pu = Psi.pushforward(u); pu
Vector field Psi_*(u) along the Real number line ℝ with values on
the 3-dimensional differentiable manifold R^3

sage: pu.display()
Psi_*(u) = -sin(t) ∂/∂x + cos(t) ∂/∂y + ∂/∂z

2.5.3 Curves in Manifolds

Given a differentiable manifold𝑀 , a differentiable curve in𝑀 is a differentiable mapping

𝛾 : 𝐼 −→𝑀,

where 𝐼 is an interval of R.

Differentiable curves are implemented by DifferentiableCurve.

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• Chap. 1 of [KN1963]

• Chap. 3 of [Lee2013]

class sage.manifolds.differentiable.curve.DifferentiableCurve(parent,
coord_expression=None,
name=None,
latex_name=None,
is_isomorphism=False,
is_identity=False)

Bases: DiffMap

Curve in a differentiable manifold.

Given a differentiable manifold𝑀 , a differentiable curve in𝑀 is a differentiable map

𝛾 : 𝐼 −→𝑀,

where 𝐼 is an interval of R.

INPUT:

• parent – DifferentiableCurveSet the set of curves Hom(𝐼,𝑀) to which the curve belongs

• coord_expression – (default: None) dictionary (possibly empty) of the functions of the curve param-
eter 𝑡 expressing the curve in various charts of𝑀 , the keys of the dictionary being the charts and the values
being lists or tuples of 𝑛 symbolic expressions of 𝑡, where 𝑛 is the dimension of𝑀

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name will
be used

• is_isomorphism – (default: False) determines whether the constructed object is a diffeomorphism; if
set to True, then𝑀 must have dimension one

2.5. Differentiable Maps and Curves 465

Manifolds, Release 10.4.rc1

• is_identity – (default: False) determines whether the constructed object is the identity map; if set to
True, then𝑀 must be the interval 𝐼

EXAMPLES:

The lemniscate of Gerono in the 2-dimensional Euclidean plane:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: t = var(t)
sage: c = M.curve({X: [sin(t), sin(2*t)/2]}, (t, 0, 2*pi), name= c) ; c
Curve c in the 2-dimensional differentiable manifold M
sage: type(c)
<class sage.manifolds.differentiable.manifold_homset.DifferentiableCurveSet_with_
→˓category.element_class >

Instead of declaring the parameter 𝑡 as a symbolic variable by means of var(t), it is equivalent to get it as the
canonical coordinate of the real number line (see RealLine):

sage: R.<t> = manifolds.RealLine()
sage: c = M.curve({X: [sin(t), sin(2*t)/2]}, (t, 0, 2*pi), name= c) ; c
Curve c in the 2-dimensional differentiable manifold M

A graphical view of the curve is provided by the method plot():

sage: c.plot(aspect_ratio=1) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

Curves are considered as (manifold) morphisms from real intervals to differentiable manifolds:

sage: c.parent()
Set of Morphisms from Real interval (0, 2*pi) to 2-dimensional
differentiable manifold M in Category of smooth manifolds over Real
Field with 53 bits of precision
sage: I = R.open_interval(0, 2*pi)
sage: c.parent() is Hom(I, M)
True
sage: c.domain()
Real interval (0, 2*pi)
sage: c.domain() is I
True
sage: c.codomain()
2-dimensional differentiable manifold M

Accordingly, all methods of DiffMap are available for them. In particular, the method display() shows the
coordinate representations in various charts of manifold M:

sage: c.display()
c: (0, 2*pi) → M

t ↦ (x, y) = (sin(t), 1/2*sin(2*t))

Another map method is using the usual call syntax, which returns the image of a point in the curve’s domain:

sage: t0 = pi/2
sage: I(t0)
Point on the Real number line ℝ
sage: c(I(t0))

(continues on next page)

466 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

1.0 0.5 0.5 1.0
x

0.4

0.2

0.2

0.4

y

2.5. Differentiable Maps and Curves 467

Manifolds, Release 10.4.rc1

(continued from previous page)

Point on the 2-dimensional differentiable manifold M
sage: c(I(t0)).coord(X)
(1, 0)

For curves, the value of the parameter, instead of the corresponding point in the real line manifold, can be passed
directly:

sage: c(t0)
Point c(1/2*pi) on the 2-dimensional differentiable manifold M
sage: c(t0).coord(X)
(1, 0)
sage: c(t0) == c(I(t0))
True

Instead of a dictionary of coordinate expressions, the curve can be defined by a single coordinate expression in a
given chart:

sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), chart=X, name= c) ; c
Curve c in the 2-dimensional differentiable manifold M
sage: c.display()
c: (0, 2*pi) → M

t ↦ (x, y) = (sin(t), 1/2*sin(2*t))

Since X is the default chart on M, it can be omitted:

sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= c) ; c
Curve c in the 2-dimensional differentiable manifold M
sage: c.display()
c: (0, 2*pi) → M

t ↦ (x, y) = (sin(t), 1/2*sin(2*t))

Note that a curve in𝑀 can also be created as a differentiable map 𝐼 →𝑀 :

sage: c1 = I.diff_map(M, coord_functions={X: [sin(t), sin(2*t)/2]},
....: name= c) ; c1
Curve c in the 2-dimensional differentiable manifold M
sage: c1.parent() is c.parent()
True
sage: c1 == c
True

LaTeX symbols representing a curve:

sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi))
sage: latex(c)
\text{Curve in the 2-dimensional differentiable manifold M}
sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= c)
sage: latex(c)
c
sage: c = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= c ,
....: latex_name=r \gamma)
sage: latex(c)
\gamma

The curve’s tangent vector field (velocity vector):

468 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: v = c.tangent_vector_field() ; v
Vector field c along the Real interval (0, 2*pi) with values on the
2-dimensional differentiable manifold M
sage: v.display()
c = cos(t) ∂/∂x + (2*cos(t)^2 - 1) ∂/∂y

Plot of the curve and its tangent vector field:

sage: show(c.plot(thickness=2, aspect_ratio=1) +
....: v.plot(chart=X, number_values=17, scale=0.5))

1.0 0.5 0.5 1.0
x

0.6

0.4

0.2

0.2

0.4

0.6

y

Value of the tangent vector field at 𝑡 = 𝜋:

sage: v.at(R(pi))
Tangent vector c at Point on the 2-dimensional differentiable
manifold M
sage: v.at(R(pi)) in M.tangent_space(c(R(pi)))
True
sage: v.at(R(pi)).display()
c = -∂/∂x + ∂/∂y

Curves R → R can be composed: the operator ∘ is given by *:

2.5. Differentiable Maps and Curves 469

Manifolds, Release 10.4.rc1

sage: f = R.curve(t^2, (t,-oo,+oo))
sage: g = R.curve(cos(t), (t,-oo,+oo))
sage: s = g*f ; s
Differentiable map from the Real number line ℝ to itself
sage: s.display()
ℝ → ℝ

t ↦ cos(t^2)
sage: s = f*g ; s
Differentiable map from the Real number line ℝ to itself
sage: s.display()
ℝ → ℝ

t ↦ cos(t)^2

Curvature and torsion of a curve in a Riemannian manifold

Let us consider a helix 𝐶 in the Euclidean space E3 parametrized by its arc length 𝑠:

sage: E.<x,y,z> = EuclideanSpace()
sage: R.<s> = manifolds.RealLine()
sage: C = E.curve((2*cos(s/3), 2*sin(s/3), sqrt(5)*s/3), (s, 0, 6*pi),
....: name= C)

Its tangent vector field is:

sage: T = C.tangent_vector_field()
sage: T.display()
C = -2/3*sin(1/3*s) e_x + 2/3*cos(1/3*s) e_y + 1/3*sqrt(5) e_z

Since 𝐶 is parametrized by its arc length 𝑠, 𝑇 is a unit vector (with respect to the Euclidean metric of E3):

sage: norm(T)
Scalar field |C | on the Real interval (0, 6*pi)
sage: norm(T).display()
|C |: (0, 6*pi) → ℝ

s ↦ 1

Vector fields along 𝐶 are defined by the method vector_field() of the domain of 𝐶 with the keyword argu-
ment dest_map set to 𝐶. For instance the derivative vector 𝑇 ′ = d𝑇/d𝑠 is:

sage: I = C.domain(); I
Real interval (0, 6*pi)
sage: Tp = I.vector_field([diff(T[i], s) for i in E.irange()], dest_map=C,
....: name="T ")
sage: Tp.display()
T = -2/9*cos(1/3*s) e_x - 2/9*sin(1/3*s) e_y

The norm of 𝑇 ′ is the curvature of the helix:

sage: kappa = norm(Tp)
sage: kappa
Scalar field |T | on the Real interval (0, 6*pi)
sage: kappa.expr()
2/9

The unit normal vector along 𝐶 is:

470 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: N = Tp / kappa
sage: N.display()
-cos(1/3*s) e_x - sin(1/3*s) e_y

while the binormal vector along 𝐶 is 𝐵 = 𝑇 ×𝑁 :

sage: B = T.cross_product(N)
sage: B
Vector field along the Real interval (0, 6*pi) with values on the
Euclidean space E^3
sage: B.display()
1/3*sqrt(5)*sin(1/3*s) e_x - 1/3*sqrt(5)*cos(1/3*s) e_y + 2/3 e_z

The three vector fields (𝑇,𝑁,𝐵) form the Frenet-Serret frame along 𝐶:

sage: FS = I.vector_frame((T , N , B), (T, N, B),
....: symbol_dual=(t , n , b))
sage: FS
Vector frame ((0, 6*pi), (T,N,B)) with values on the Euclidean space E^3

The Frenet-Serret frame is orthonormal:

sage: matrix([[u.dot(v).expr() for v in FS] for u in FS])
[1 0 0]
[0 1 0]
[0 0 1]

The derivative vectors 𝑁 ′ and 𝐵′:

sage: Np = I.vector_field([diff(N[i], s) for i in E.irange()],
....: dest_map=C, name="N ")
sage: Np.display()
N = 1/3*sin(1/3*s) e_x - 1/3*cos(1/3*s) e_y
sage: Bp = I.vector_field([diff(B[i], s) for i in E.irange()],
....: dest_map=C, name="B ")
sage: Bp.display()
B = 1/9*sqrt(5)*cos(1/3*s) e_x + 1/9*sqrt(5)*sin(1/3*s) e_y

The Frenet-Serret formulas:

sage: for v in (Tp, Np, Bp):
....: v.display(FS)
....:
T = 2/9 N
N = -2/9 T + 1/9*sqrt(5) B
B = -1/9*sqrt(5) N

The torsion of 𝐶 is obtained as the third component of 𝑁 ′ in the Frenet-Serret frame:

sage: tau = Np[FS, 3]
sage: tau
1/9*sqrt(5)

coord_expr(chart=None)
Return the coordinate functions expressing the curve in a given chart.

INPUT:

2.5. Differentiable Maps and Curves 471

Manifolds, Release 10.4.rc1

• chart – (default: None) chart on the curve’s codomain; if None, the codomain’s default chart is
assumed

OUTPUT:

• symbolic expression representing the curve in the above chart

EXAMPLES:

Cartesian and polar expression of a curve in the Euclidean plane:

sage: M = Manifold(2, R^2 , r \RR^2) # the Euclidean plane R^2
sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
sage: U = M.open_subset(U , coord_def={c_xy: (y!=0, x<0)}) # the complement␣
→˓of the segment y=0 and x>0
sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
sage: c_spher.<r,ph> = U.chart(r r:(0,+oo) ph:(0,2*pi):\phi) # spherical␣
→˓coordinates on U

Links between spherical coordinates and Cartesian ones:

sage: ch_cart_spher = c_cart.transition_map(c_spher, [sqrt(x*x+y*y), atan2(y,
→˓x)])
sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
Check of the inverse coordinate transformation:

x == x *passed*
y == y *passed*
r == r *passed*
ph == arctan2(r*sin(ph), r*cos(ph)) **failed**

NB: a failed report can reflect a mere lack of simplification.
sage: R.<t> = manifolds.RealLine()
sage: c = U.curve({c_spher: (1,t)}, (t, 0, 2*pi), name= c)
sage: c.coord_expr(c_spher)
(1, t)
sage: c.coord_expr(c_cart)
(cos(t), sin(t))

Since c_cart is the default chart on U, it can be omitted:

sage: c.coord_expr()
(cos(t), sin(t))

Cartesian expression of a cardioid:

sage: c = U.curve({c_spher: (2*(1+cos(t)), t)}, (t, 0, 2*pi), name= c)
sage: c.coord_expr(c_cart)
(2*cos(t)^2 + 2*cos(t), 2*(cos(t) + 1)*sin(t))

plot(chart=None, ambient_coords=None, mapping=None, prange=None, include_end_point=(True, True),
end_point_offset=(0.001, 0.001), parameters=None, color='red', style='-', label_axes=True, thickness=1,
plot_points=75, max_range=8, aspect_ratio='automatic', **kwds)

Plot the current curve in a Cartesian graph based on the coordinates of some ambient chart.

The curve is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of a given chart, called
hereafter the ambient chart. The ambient chart’s domain must overlap with the curve’s codomain or with the
codomain of the composite curve Φ ∘ 𝑐, where 𝑐 is the current curve and Φ some manifold differential map
(argument mapping below).

INPUT:

472 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• chart – (default: None) the ambient chart (see above); if None, the default chart of the codomain of
the curve (or of the curve composed with Φ) is used

• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in
terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered

• mapping – (default: None) differentiable mapping Φ (instance of DiffMap) providing the link be-
tween the curve and the ambient chart chart (cf. above); if None, the ambient chart is supposed to be
defined on the codomain of the curve.

• prange – (default: None) range of the curve parameter for the plot; if None, the entire parameter
range declared during the curve construction is considered (with -Infinity replaced by -max_range
and +Infinity by max_range)

• include_end_point – (default: (True, True)) determines whether the end points of prange
are included in the plot

• end_point_offset – (default: (0.001, 0.001)) offsets from the end points when they are
not included in the plot: if include_end_point[0] == False, the minimal value of the
curve parameter used for the plot is prange[0] + end_point_offset[0], while if in-
clude_end_point[1] == False, the maximal value is prange[1] - end_point_off-
set[1].

• max_range – (default: 8) numerical value substituted to +Infinity if the latter is the upper bound of
the parameter range; similarly -max_range is the numerical valued substituted for -Infinity

• parameters – (default: None) dictionary giving the numerical values of the parameters that may
appear in the coordinate expression of the curve

• color – (default: ‘red’) color of the drawn curve

• style – (default: ‘-’) color of the drawn curve; NB: style is effective only for 2D plots

• thickness – (default: 1) thickness of the drawn curve

• plot_points – (default: 75) number of points to plot the curve

• label_axes – (default: True) boolean determining whether the labels of the coordinate axes of
chart shall be added to the graph; can be set to False if the graph is 3D and must be superposed
with another graph.

• aspect_ratio – (default: automatic) aspect ratio of the plot; the default value
(automatic) applies only for 2D plots; for 3D plots, the default value is 1 instead

OUTPUT:

• a graphic object, either an instance of Graphics for a 2D plot (i.e. based on 2 coordinates of chart)
or an instance of Graphics3d for a 3D plot (i.e. based on 3 coordinates of chart)

EXAMPLES:

Plot of the lemniscate of Gerono:

sage: R2 = Manifold(2, R^2)
sage: X.<x,y> = R2.chart()
sage: R.<t> = manifolds.RealLine()
sage: c = R2.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= c)
sage: c.plot() # 2D plot
Graphics object consisting of 1 graphics primitive

Plot for a subinterval of the curve’s domain:

2.5. Differentiable Maps and Curves 473

../../../../../../../html/en/reference/plotting/sage/plot/graphics.html#sage.plot.graphics.Graphics
../../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d

Manifolds, Release 10.4.rc1

1.0 0.5 0.5 1.0
x

0.4

0.2

0.2

0.4

y

474 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: c.plot(prange=(0,pi))
Graphics object consisting of 1 graphics primitive

0.2 0.4 0.6 0.8 1.0
x

0.4

0.2

0.2

0.4

y

Plot with various options:

sage: c.plot(color= green , style= : , thickness=3, aspect_ratio=1)
Graphics object consisting of 1 graphics primitive

Cardioid defined in terms of polar coordinates and plotted with respect to Cartesian coordinates, as an example
of use of the optional argument chart:

sage: E.<r,ph> = EuclideanSpace(coordinates= polar)
sage: c = E.curve((1 + cos(ph), ph), (ph, 0, 2*pi))
sage: c.plot(chart=E.cartesian_coordinates(), aspect_ratio=1)
Graphics object consisting of 1 graphics primitive

Plot via a mapping to another manifold: loxodrome of a sphere viewed in R3:

sage: S2 = Manifold(2, S^2)
sage: U = S2.open_subset(U)
sage: XS.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: R3 = Manifold(3, R^3)
sage: X3.<x,y,z> = R3.chart()
sage: F = S2.diff_map(R3, {(XS, X3): [sin(th)*cos(ph),

(continues on next page)

2.5. Differentiable Maps and Curves 475

Manifolds, Release 10.4.rc1

1.0 0.5 0.5 1.0
x

0.4

0.2

0.2

0.4

y

476 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

0.5 1.0 1.5 2.0
x

1.0

0.5

0.5

1.0

y

2.5. Differentiable Maps and Curves 477

Manifolds, Release 10.4.rc1

(continued from previous page)

....: sin(th)*sin(ph), cos(th)]}, name= F)
sage: F.display()
F: S^2 → R^3
on U: (th, ph) ↦ (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
sage: c = S2.curve([2*atan(exp(-t/10)), t], (t, -oo, +oo), name= c)
sage: graph_c = c.plot(mapping=F, max_range=40,
....: plot_points=200, thickness=2, label_axes=False) # 3D␣
→˓plot
sage: graph_S2 = XS.plot(X3, mapping=F, number_values=11, color= black) #␣
→˓plot of the sphere
sage: show(graph_c + graph_S2) # the loxodrome + the sphere

Example of use of the argument parameters: we define a curve with some symbolic parameters a and b:

sage: a, b = var(a b)
sage: c = R2.curve([a*cos(t) + b, a*sin(t)], (t, 0, 2*pi), name= c)

To make a plot, we set specific values for a and b by means of the Python dictionary parameters:

sage: c.plot(parameters={a: 2, b: -3}, aspect_ratio=1)
Graphics object consisting of 1 graphics primitive

tangent_vector_field(name=None, latex_name=None)
Return the tangent vector field to the curve (velocity vector).

478 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

2.5. Differentiable Maps and Curves 479

Manifolds, Release 10.4.rc1

INPUT:

• name – (default: None) string; symbol given to the tangent vector field; if none is provided, the primed
curve symbol (if any) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the tangent vector field; if None then
(i) if name is None as well, the primed curve LaTeX symbol (if any) will be used or (ii) if name is not
None, name will be used

OUTPUT:

• the tangent vector field, as an instance of VectorField

EXAMPLES:

Tangent vector field to a circle curve in R2:

sage: M = Manifold(2, R^2)
sage: X.<x,y> = M.chart()
sage: R.<t> = manifolds.RealLine()
sage: c = M.curve([cos(t), sin(t)], (t, 0, 2*pi), name= c)
sage: v = c.tangent_vector_field() ; v
Vector field c along the Real interval (0, 2*pi) with values on
the 2-dimensional differentiable manifold R^2

sage: v.display()
c = -sin(t) ∂/∂x + cos(t) ∂/∂y
sage: latex(v)
{c }
sage: v.parent()
Free module X((0, 2*pi),c) of vector fields along the Real interval
(0, 2*pi) mapped into the 2-dimensional differentiable manifold R^2

Value of the tangent vector field for some specific value of the curve parameter (𝑡 = 𝜋):

sage: R(pi) in c.domain() # pi in (0, 2*pi)
True
sage: vp = v.at(R(pi)) ; vp
Tangent vector c at Point on the 2-dimensional differentiable
manifold R^2

sage: vp.parent() is M.tangent_space(c(R(pi)))
True
sage: vp.display()
c = -∂/∂y

Tangent vector field to a curve in a non-parallelizable manifold (the 2-sphere 𝑆2): first, we introduce the
2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: A = W.open_subset(A , coord_def={c_xy.restrict(W): (y!=0, x<0)})
sage: c_spher.<th,ph> = A.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi) #␣

(continues on next page)

480 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓spherical coordinates
sage: spher_to_xy = c_spher.transition_map(c_xy.restrict(A),
....: (sin(th)*cos(ph)/(1-cos(th)), sin(th)*sin(ph)/(1-cos(th))))
sage: spher_to_xy.set_inverse(2*atan(1/sqrt(x^2+y^2)), atan2(y, x),␣
→˓check=False)

Then we define a curve (a loxodrome) by its expression in terms of spherical coordinates and evaluate the
tangent vector field:

sage: R.<t> = manifolds.RealLine()
sage: c = M.curve({c_spher: [2*atan(exp(-t/10)), t]}, (t, -oo, +oo),
....: name= c) ; c
Curve c in the 2-dimensional differentiable manifold M
sage: vc = c.tangent_vector_field() ; vc
Vector field c along the Real number line ℝ with values on
the 2-dimensional differentiable manifold M

sage: vc.parent()
Module X(ℝ,c) of vector fields along the Real number line ℝ
mapped into the 2-dimensional differentiable manifold M

sage: vc.display(c_spher.frame().along(c.restrict(R,A)))
c = -1/5*e^(1/10*t)/(e^(1/5*t) + 1) ∂/∂th + ∂/∂ph

2.5.4 Integrated Curves and Geodesics in Manifolds

Given a differentiable manifold𝑀 , an integrated curve in𝑀 is a differentiable curve constructed as a solution to a system
of second order differential equations.

Integrated curves are implemented by the class IntegratedCurve, from which the classes IntegratedAu-
toparallelCurve and IntegratedGeodesic inherit.

Example: a geodesic in the hyperbolic plane

First declare the hyperbolic plane as a 2-dimensional Riemannian manifold M and introduce the chart X corresponding to
the Poincaré half-plane model:

sage: M = Manifold(2, M , structure= Riemannian)
sage: X.<x,y> = M.chart(x y:(0,+oo))

Then set the metric to be the hyperbolic one:

sage: g = M.metric()
sage: g[0,0], g[1,1] = 1/y^2, 1/y^2
sage: g.display()
g = y^(-2) dx⊗dx + y^(-2) dy⊗dy

Pick an initial point and an initial tangent vector:

sage: p = M((0,1), name= p)
sage: v = M.tangent_space(p)((1,3/2), name= v)
sage: v.display()
v = ∂/∂x + 3/2 ∂/∂y

Declare a geodesic with such initial conditions, denoting by 𝑡 the corresponding affine parameter:

2.5. Differentiable Maps and Curves 481

Manifolds, Release 10.4.rc1

sage: t = var(t)
sage: c = M.integrated_geodesic(g, (t, 0, 10), v, name= c)

Numerically integrate the geodesic (see solve() for all possible options, including the choice of the numerical al-
gorithm):

sage: sol = c.solve() #␣
→˓needs scipy

Plot the geodesic after interpolating the solution sol:

sage: interp = c.interpolate()

sage: # needs sage.plot
sage: graph = c.plot_integrated()
sage: p_plot = p.plot(size=30, label_offset=-0.07, fontsize=20)
sage: v_plot = v.plot(label_offset=0.05, fontsize=20)
sage: graph + p_plot + v_plot
Graphics object consisting of 5 graphics primitives

0.5 1.0 1.5 2.0 2.5 3.0
x

0.5

1.0

1.5

2.0

2.5

y

p

v

𝑐 is a differentiable curve in𝑀 and inherits from the properties of DifferentiableCurve:

sage: c.domain()
Real interval (0, 10)

(continues on next page)

482 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c.codomain()
2-dimensional Riemannian manifold M
sage: c.display()
c: (0, 10) → M

In particular, its value at 𝑡 = 1 is:

sage: c(1)
Point on the 2-dimensional Riemannian manifold M

which corresponds to the following (𝑥, 𝑦) coordinates:

sage: X(c(1)) # abs tol 1e-12
(2.4784140715580136, 1.5141683866138937)

AUTHORS:

• Karim Van Aelst (2017): initial version

• Florentin Jaffredo (2018): integration over multiple charts, use of fast_callable to improve the computation
speed

class sage.manifolds.differentiable.integrated_curve.IntegratedAutoparallelCurve(par-
ent,
affine_con-
nec-
tion,
curve_pa-
ram-
e-
ter,
ini-
tial_tan-
gent_vec-
tor,
chart=None,
name=None,
la-
tex_name=None,
ver-
bose=False,
across_charts=False)

Bases: IntegratedCurve

Autoparallel curve on the manifold with respect to a given affine connection.

INPUT:

• parent – IntegratedAutoparallelCurveSet the set of curves Homautoparallel(𝐼,𝑀) to which the
curve belongs

• affine_connection – AffineConnection affine connection with respect to which the curve is
autoparallel

• curve_parameter – symbolic expression to be used as the parameter of the curve (the equations defining
an instance of IntegratedAutoparallelCurve are such that t will actually be an affine parameter of the curve)

• initial_tangent_vector – TangentVector initial tangent vector of the curve

2.5. Differentiable Maps and Curves 483

Manifolds, Release 10.4.rc1

• chart – (default: None) chart on the manifold in terms of which the equations are expressed; if None the
default chart of the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name will
be used

EXAMPLES:

Autoparallel curves associated with the Mercator projection of the unit 2-sphere S2.

See also:

https://idontgetoutmuch.wordpress.com/2016/11/24/mercator-a-connection-with-torsion/ for more details about
Mercator projection.

On the Mercator projection, the lines of longitude all appear vertical and then all parallel with respect to each other.
Likewise, all the lines of latitude appear horizontal and parallel with respect to each other. These curves may be
recovered as autoparallel curves of a certain connection∇ to be made explicit.

Start with declaring the standard polar coordinates (𝜃, 𝜑) on S2 and the corresponding coordinate frame (𝑒𝜃, 𝑒𝜑):

sage: S2 = Manifold(2, S^2 , start_index=1)
sage: polar.<th,ph>=S2.chart()
sage: epolar = polar.frame()

Normalizing 𝑒𝜑 provides an orthonormal basis:

sage: ch_basis = S2.automorphism_field()
sage: ch_basis[1,1], ch_basis[2,2] = 1, 1/sin(th)
sage: epolar_ON = epolar.new_frame(ch_basis, epolar_ON)

Denote (𝑒𝜃, 𝑒𝜑) such an orthonormal frame field. In any point, the vector field 𝑒𝜃 is normalized and tangent to the
line of longitude through the point. Likewise, 𝑒𝜑 is normalized and tangent to the line of latitude.

Now, set an affine connection with respect to such fields that are parallelly transported in all directions, that is:
∇𝑒𝜃 = ∇𝑒𝜑 = 0. This is equivalent to setting all the connection coefficients to zero with respect to this frame:

sage: nab = S2.affine_connection(nab)
sage: nab.set_coef(frame=epolar_ON)[:]
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]

This connection is such that two vectors are parallel if their angles to a given meridian are the same. Check that
this connection is compatible with the Euclidean metric tensor 𝑔 induced on S2:

sage: g = S2.metric(g)
sage: g[1,1], g[2,2] = 1, (sin(th))^2
sage: nab(g)[:]
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]

Yet, this connection is not the Levi-Civita connection, which implies that it has non-vanishing torsion:

sage: nab.torsion()[:]
[[[0, 0], [0, 0]], [[0, cos(th)/sin(th)], [-cos(th)/sin(th), 0]]]

Set generic initial conditions for the autoparallel curves to compute:

sage: [th0, ph0, v_th0, v_ph0] = var(th0 ph0 v_th0 v_ph0)
sage: p = S2.point((th0, ph0), name= p)

(continues on next page)

484 Chapter 2. Differentiable Manifolds

https://idontgetoutmuch.wordpress.com/2016/11/24/mercator-a-connection-with-torsion/

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: Tp = S2.tangent_space(p)
sage: v = Tp((v_th0, v_ph0), basis=epolar_ON.at(p))

Note here that the components (v_th0, v_ph0) of the initial tangent vector v refer to the basis epolar_ON
= (𝑒𝜃, 𝑒𝜑) and not the coordinate basis epolar= (𝑒𝜃, 𝑒𝜑). This is merely to help picture the aspect of the tangent
vector in the usual embedding of S2 in R3 thanks to using an orthonormal frame, since providing the components
with respect to the coordinate basis would requiremultiplying the second component (i.e. the𝜑 component) in order
to picture the vector in the same way. This subtlety will need to be taken into account later when the numerical
curve will be compared to the analytical solution.

Now, declare the corresponding integrated autoparallel curve and display the differential system it satisfies:

sage: [t, tmin, tmax] = var(t tmin tmax)
sage: c = S2.integrated_autoparallel_curve(nab, (t, tmin, tmax),
....: v, chart=polar, name= c)
sage: sys = c.system(verbose=True)
Autoparallel curve c in the 2-dimensional differentiable
manifold S^2 equipped with Affine connection nab on the
2-dimensional differentiable manifold S^2, and integrated over
the Real interval (tmin, tmax) as a solution to the following
equations, written with respect to Chart (S^2, (th, ph)):

Initial point: Point p on the 2-dimensional differentiable
manifold S^2 with coordinates [th0, ph0] with respect to
Chart (S^2, (th, ph))
Initial tangent vector: Tangent vector at Point p on the
2-dimensional differentiable manifold S^2 with
components [v_th0, v_ph0/sin(th0)] with respect to Chart (S^2, (th, ph))

d(th)/dt = Dth
d(ph)/dt = Dph
d(Dth)/dt = 0
d(Dph)/dt = -Dph*Dth*cos(th)/sin(th)

Set a dictionary providing the parameter range and the initial conditions for a line of latitude and a line of longitude:

sage: dict_params={ latit :{tmin:0,tmax:3,th0:pi/4,ph0:0.1,v_th0:0,v_ph0:1},
....: longi :{tmin:0,tmax:3,th0:0.1,ph0:0.1,v_th0:1,v_ph0:0}}

Declare the Mercator coordinates (𝜉, 𝜁) and the corresponding coordinate change from the polar coordinates:

sage: mercator.<xi,ze> = S2.chart(r xi:(-oo,oo):\xi ze:(0,2*pi):\zeta)
sage: polar.transition_map(mercator, (log(tan(th/2)), ph))
Change of coordinates from Chart (S^2, (th, ph)) to Chart
(S^2, (xi, ze))

Ask for the identity map in terms of these charts in order to add this coordinate change to its dictionary of expres-
sions. This is required to plot the curve with respect to the Mercator chart:

sage: identity = S2.identity_map()
sage: identity.coord_functions(polar, mercator)
Coordinate functions (log(sin(1/2*th)/cos(1/2*th)), ph) on the
Chart (S^2, (th, ph))

Solve, interpolate and prepare the plot for the solutions corresponding to the two initial conditions previously set:

2.5. Differentiable Maps and Curves 485

Manifolds, Release 10.4.rc1

sage: graph2D_mercator = Graphics()
sage: for key in dict_params:
....: sol = c.solve(solution_key= sol- +key,
....: parameters_values=dict_params[key])
....: interp = c.interpolate(solution_key= sol- +key,
....: interpolation_key= interp- +key)
....: graph2D_mercator+=c.plot_integrated(interpolation_key= interp- +key,
....: chart=mercator, thickness=2)

Prepare a grid of Mercator coordinates lines, and plot the curves over it:

sage: graph2D_mercator_coords=mercator.plot(chart=mercator,
....: number_values=8,color= yellow)
sage: graph2D_mercator + graph2D_mercator_coords
Graphics object consisting of 18 graphics primitives

8 6 4 2 2 4 6 8
ξ

1

2

3

4

5

6

ζ

The resulting curves are horizontal and vertical as expected. It is easier to check that these are latitude and longitude
lines respectively when plotting them on S2. To do so, use R3 as the codomain of the standard map embedding
(S2, (𝜃, 𝜑)) in the 3-dimensional Euclidean space:

sage: R3 = Manifold(3, R3 , start_index=1)
sage: cart.<X,Y,Z> = R3.chart()
sage: euclid_embedding = S2.diff_map(R3,
....: {(polar, cart):[sin(th)*cos(ph),sin(th)*sin(ph),cos(th)]})

486 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Plot the resulting curves on the grid of polar coordinates lines on S2:

sage: graph3D_embedded_curves = Graphics()
sage: for key in dict_params:
....: graph3D_embedded_curves += c.plot_integrated(interpolation_key= interp-
→˓ +key,
....: mapping=euclid_embedding, thickness=5,
....: display_tangent=True, scale=0.4, width_tangent=0.5)
sage: graph3D_embedded_polar_coords = polar.plot(chart=cart,
....: mapping=euclid_embedding,
....: number_values=15, color= yellow)
sage: graph3D_embedded_curves + graph3D_embedded_polar_coords
Graphics3d Object

Finally, one may plot a general autoparallel curve with respect to ∇ that is neither a line of latitude or longitude.
The vectors tangent to such a curve make an angle different from 0 or 𝜋/2 with the lines of latitude and longitude.
Then, compute a curve such that both components of its initial tangent vectors are non zero:

sage: sol = c.solve(solution_key= sol-angle ,
....: parameters_values={tmin:0,tmax:2,th0:pi/4,ph0:0.1,v_th0:1,v_ph0:8})
sage: interp = c.interpolate(solution_key= sol-angle ,
....: interpolation_key= interp-angle)

Plot the resulting curve in the Mercator plane. This generates a straight line, as expected:

2.5. Differentiable Maps and Curves 487

Manifolds, Release 10.4.rc1

sage: c.plot_integrated(interpolation_key= interp-angle ,
....: chart=mercator, thickness=1, display_tangent=True,
....: scale=0.2, width_tangent=0.2)
Graphics object consisting of 11 graphics primitives

0.5 0.5 1.0 1.5 2.0
ξ

5

10

15

20

25

ζ

One may eventually plot such a curve on S2:

sage: graph3D_embedded_angle_curve=c.plot_integrated(interpolation_key= interp-
→˓angle ,
....: mapping=euclid_embedding, thickness=5,
....: display_tangent=True, scale=0.1, width_tangent=0.5)
sage: graph3D_embedded_angle_curve + graph3D_embedded_polar_coords
Graphics3d Object

All the curves presented are loxodromes, and the differential system defining them (displayed above) may be solved
analytically, providing the following expressions:

𝜃(𝑡) = 𝜃0 + 𝜃0(𝑡− 𝑡0),

𝜑(𝑡) = 𝜑0 −
1

tan𝛼

(︃
ln tan

𝜃0 + 𝜃0(𝑡− 𝑡0)

2
− ln tan

𝜃0
2

)︃
,

where 𝛼 is the angle between the curve and any latitude line it crosses; then, one finds tan𝛼 = −𝜃0/(�̇�0 sin 𝜃0)
(then tan𝛼 ≤ 0 when the initial tangent vector points towards the southeast).

488 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.5. Differentiable Maps and Curves 489

Manifolds, Release 10.4.rc1

In order to use these expressions to compare with the result provided by the numerical integration, remember that
the components (v_th0, v_ph0) of the initial tangent vector v refer to the basis epolar_ON= (𝑒𝜃, 𝑒𝜑) and
not the coordinate basis epolar = (𝑒𝜃, 𝑒𝜑). Therefore, the following relations hold: v_ph0 = �̇�0 sin 𝜃0 (and
not merely �̇�0), while v_th0 clearly is 𝜃0.

With this in mind, plot an analytical curve to compare with a numerical solution:

sage: graph2D_mercator_angle_curve=c.plot_integrated(interpolation_key= interp-
→˓angle ,
....: chart=mercator, thickness=1)
sage: expr_ph = ph0+v_ph0/v_th0*(ln(tan((v_th0*t+th0)/2))-ln(tan(th0/2)))
sage: c_loxo = S2.curve({polar:[th0+v_th0*t, expr_ph]}, (t,0,2),
....: name= c_loxo)

Ask for the expression of the loxodrome in terms of the Mercator chart in order to add it to its dictionary of
expressions. It is a particularly long expression, and there is no particular need to display it, which is why it may
simply be affected to an arbitrary variable expr_mercator, which will never be used again. But adding the
expression to the dictionary is required to plot the curve with respect to the Mercator chart:

sage: expr_mercator = c_loxo.expression(chart2=mercator)

Plot the curves (for clarity, set a 2 degrees shift in the initial value of 𝜃0 so that the curves do not overlap):

sage: graph2D_mercator_loxo = c_loxo.plot(chart=mercator,
....: parameters={th0:pi/4+2*pi/180, ph0:0.1, v_th0:1, v_ph0:8},
....: thickness=1, color= blue)
sage: graph2D_mercator_angle_curve + graph2D_mercator_loxo
Graphics object consisting of 2 graphics primitives

Both curves do have the same aspect. One may eventually compare these curves on S2:

sage: graph3D_embedded_angle_curve=c.plot_integrated(interpolation_key= interp-
→˓angle ,
....: mapping=euclid_embedding, thickness=3)
sage: graph3D_embedded_loxo = c_loxo.plot(mapping=euclid_embedding,
....: parameters={th0:pi/4+2*pi/180, ph0:0.1, v_th0:1, v_ph0:8},
....: thickness=3, color = blue)
sage: (graph3D_embedded_angle_curve + graph3D_embedded_loxo
....: + graph3D_embedded_polar_coords)
Graphics3d Object

system(verbose=False)

Provide a detailed description of the system defining the autoparallel curve and returns the system defining it:
chart, equations and initial conditions.

INPUT:

• verbose – (default: False) prints a detailed description of the curve

OUTPUT:

• list containing the

– the equations

– the initial conditions

– the chart

EXAMPLES:

490 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

0.5 0.5 1.0 1.5
ξ

5

10

15

20

ζ

2.5. Differentiable Maps and Curves 491

Manifolds, Release 10.4.rc1

492 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

System defining an autoparallel curve:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, A, B] = var(t A B)
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[X.frame(),0,0,1],nab[X.frame(),2,1,2]=A*x1^2,B*x2*x3
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_autoparallel_curve(nab, (t, 0, 5), v)
sage: sys = c.system(verbose=True)
Autoparallel curve in the 3-dimensional differentiable
manifold M equipped with Affine connection nabla on the
3-dimensional differentiable manifold M, and integrated
over the Real interval (0, 5) as a solution to the
following equations, written with respect to
Chart (M, (x1, x2, x3)):

Initial point: Point p on the 3-dimensional differentiable
manifold M with coordinates [0, 0, 0] with respect to
Chart (M, (x1, x2, x3))

Initial tangent vector: Tangent vector at Point p on the
3-dimensional differentiable manifold M with
components [1, 0, 1] with respect to Chart (M, (x1, x2, x3))

d(x1)/dt = Dx1
d(x2)/dt = Dx2
d(x3)/dt = Dx3
d(Dx1)/dt = -A*Dx1*Dx2*x1^2
d(Dx2)/dt = 0
d(Dx3)/dt = -B*Dx2*Dx3*x2*x3

sage: sys_bis = c.system()
sage: sys_bis == sys
True

class sage.manifolds.differentiable.integrated_curve.IntegratedCurve(parent, equa-
tions_rhs,
velocities,
curve_param-
eter,
initial_tan-
gent_vector,
chart=None,
name=None,
la-
tex_name=None,
ver-
bose=False,
across_charts=False)

Bases: DifferentiableCurve

Given a chart with coordinates denoted (𝑥1, . . . , 𝑥𝑛), an instance of IntegratedCurve is a curve 𝑡 ↦→
(𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)) constructed as a solution to a system of second order differential equations satisfied by the
coordinate curves 𝑡 ↦→ 𝑥𝑖(𝑡).

INPUT:

2.5. Differentiable Maps and Curves 493

Manifolds, Release 10.4.rc1

• parent – IntegratedCurveSet the set of curves Homintegrated(𝐼,𝑀) to which the curve belongs

• equations_rhs – list of the right-hand sides of the equations on the velocities only (the term velocity
referring to the derivatives 𝑑𝑥𝑖/𝑑𝑡 of the coordinate curves)

• velocities – list of the symbolic expressions used in equations_rhs to denote the velocities

• curve_parameter – symbolic expression used in equations_rhs to denote the parameter of the
curve (denoted 𝑡 in the descriptions above)

• initial_tangent_vector – TangentVector initial tangent vector of the curve

• chart – (default: None) chart on the manifold in which the equations are given; if None the default chart
of the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name will
be used

EXAMPLES:

Motion of a charged particle in an axial magnetic field linearly increasing in time and exponentially decreasing in
space:

(𝑡, x) =
𝐵0𝑡

𝑇
exp

(︂
−𝑥

2
1 + 𝑥22
𝐿2

)︂
e3.

Equations of motion are:

�̈�1(𝑡) =
𝑞𝐵(𝑡, x(𝑡))

𝑚
�̇�2(𝑡),

�̈�2(𝑡) = −𝑞𝐵(𝑡, x(𝑡))
𝑚

�̇�1(𝑡),

�̈�3(𝑡) = 0.

Start with declaring a chart on a 3-dimensional manifold and the symbolic expressions denoting the velocities and
the various parameters:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x1,x2,x3> = M.chart()
sage: var(t B_0 m q L T)
(t, B_0, m, q, L, T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities(); D
[Dx1, Dx2, Dx3]
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]

Set the initial conditions:

sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))

Declare an integrated curve and display information relative to it:

sage: c = M.integrated_curve(eqns, D, (t, 0, 5), v, name= c ,
....: verbose=True)
The curve was correctly set.
Parameters appearing in the differential system defining the

(continues on next page)

494 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

curve are [B_0, L, T, m, q].
sage: c
Integrated curve c in the 3-dimensional differentiable
manifold M
sage: sys = c.system(verbose=True)
Curve c in the 3-dimensional differentiable manifold M
integrated over the Real interval (0, 5) as a solution to the
following system, written with respect to
Chart (M, (x1, x2, x3)):

Initial point: Point p on the 3-dimensional differentiable
manifold M with coordinates [0, 0, 0] with respect to
Chart (M, (x1, x2, x3))
Initial tangent vector: Tangent vector at Point p on
the 3-dimensional differentiable manifold M with
components [1, 0, 1] with respect to Chart (M, (x1, x2, x3))

d(x1)/dt = Dx1
d(x2)/dt = Dx2
d(x3)/dt = Dx3
d(Dx1)/dt = B_0*Dx2*q*t*e^(-(x1^2 + x2^2)/L^2)/(T*m)
d(Dx2)/dt = -B_0*Dx1*q*t*e^(-(x1^2 + x2^2)/L^2)/(T*m)
d(Dx3)/dt = 0

Generate a solution of the system and an interpolation of this solution:

sage: sol = c.solve(step=0.2, #␣
→˓needs scipy
....: parameters_values={B_0:1, m:1, q:1, L:10, T:1},
....: solution_key= carac time 1 , verbose=True)
Performing numerical integration with method odeint ...
Numerical integration completed.

Checking all points are in the chart domain...
All points are in the chart domain.

The resulting list of points was associated with the key
carac time 1 (if this key already referred to a former

numerical solution, such a solution was erased).
sage: interp = c.interpolate(solution_key= carac time 1 , #␣
→˓needs scipy
....: interpolation_key= interp 1 , verbose=True)
Performing cubic spline interpolation by default...
Interpolation completed and associated with the key interp 1
(if this key already referred to a former interpolation,
such an interpolation was erased).

Such an interpolation is required to evaluate the curve and the vector tangent to the curve for any value of the curve
parameter:

sage: # needs scipy
sage: p = c(1.9, verbose=True)
Evaluating point coordinates from the interpolation associated
with the key interp 1 by default...
sage: p
Point on the 3-dimensional differentiable manifold M
sage: p.coordinates() # abs tol 1e-12

(continues on next page)

2.5. Differentiable Maps and Curves 495

Manifolds, Release 10.4.rc1

(continued from previous page)

(1.377689074756845, -0.900114533011232, 1.9)
sage: v2 = c.tangent_vector_eval_at(4.3, verbose=True)
Evaluating tangent vector components from the interpolation
associated with the key interp 1 by default...
sage: v2
Tangent vector at Point on the 3-dimensional differentiable
manifold M
sage: v2[:] # abs tol 1e-12
[-0.9425156073651124, -0.33724314284285434, 1.0]

Plotting a numerical solution (with or without its tangent vector field) also requires the solution to be interpolated
at least once:

sage: c_plot_2d_1 = c.plot_integrated(ambient_coords=[x1, x2], #␣
→˓needs scipy
....: interpolation_key= interp 1 , thickness=2.5,
....: display_tangent=True, plot_points=200,
....: plot_points_tangent=10, scale=0.5,
....: color= blue , color_tangent= red ,
....: verbose=True)
A tiny final offset equal to 0.000251256281407035 was introduced
for the last point in order to safely compute it from the
interpolation.
sage: c_plot_2d_1 #␣
→˓needs scipy sage.plot
Graphics object consisting of 11 graphics primitives

An instance of IntegratedCurve may store several numerical solutions and interpolations:

sage: # needs scipy
sage: sol = c.solve(step=0.2,
....: parameters_values={B_0:1, m:1, q:1, L:10, T:100},
....: solution_key= carac time 100)
sage: interp = c.interpolate(solution_key= carac time 100 ,
....: interpolation_key= interp 100)
sage: c_plot_3d_100 = c.plot_integrated(interpolation_key= interp 100 , #␣
→˓needs sage.plot
....: thickness=2.5, display_tangent=True,
....: plot_points=200, plot_points_tangent=10,
....: scale=0.5, color= green ,
....: color_tangent= orange)
sage: c_plot_3d_1 = c.plot_integrated(interpolation_key= interp 1 , #␣
→˓needs sage.plot
....: thickness=2.5, display_tangent=True,
....: plot_points=200, plot_points_tangent=10,
....: scale=0.5, color= blue ,
....: color_tangent= red)
sage: c_plot_3d_1 + c_plot_3d_100 #␣
→˓needs sage.plot
Graphics3d Object

interpolate(solution_key=None, method=None, interpolation_key=None, verbose=False)
Interpolate the chosen numerical solution using the given interpolation method.

INPUT:

• solution_key – (default: None) key which the numerical solution to interpolate is associated to ; a
default value is chosen if none is provided

496 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x1

1.4

1.2

1.0

0.8

0.6

0.4

0.2

x2

2.5. Differentiable Maps and Curves 497

Manifolds, Release 10.4.rc1

498 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• method – (default: None) interpolation scheme to use; algorithms available are

– cubic spline , which makes use of GSL via Spline

• interpolation_key – (default: None) key which the resulting interpolation will be associated to
; a default value is given if none is provided

• verbose – (default: False) prints information about the interpolation in progress

OUTPUT:

• built interpolation object

EXAMPLES:

Interpolating a numerical solution previously computed:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q, L, T] = var(t B_0 m q L T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)

sage: # needs scipy
sage: sol = c.solve(method= odeint ,
....: solution_key= sol_T1 ,
....: parameters_values={B_0:1, m:1, q:1, L:10, T:1})
sage: interp = c.interpolate(method= cubic spline ,
....: solution_key= sol_T1 ,
....: interpolation_key= interp_T1 ,
....: verbose=True)
Interpolation completed and associated with the key
interp_T1 (if this key already referred to a former

interpolation, such an interpolation was erased).
sage: interp = c.interpolate(verbose=True)
Interpolating the numerical solution associated with the
key sol_T1 by default...

Performing cubic spline interpolation by default...
Resulting interpolation will be associated with the key
cubic spline-interp-sol_T1 by default.

Interpolation completed and associated with the key
cubic spline-interp-sol_T1 (if this key already referred

to a former interpolation, such an interpolation was
erased).

interpolation(interpolation_key=None, verbose=False)
Return the interpolation object associated with the given key.

INPUT:

• interpolation_key – (default: None) key which the requested interpolation is associated to; a
default value is chosen if none is provided

• verbose – (default: False) prints information about the interpolation object returned

OUTPUT:

• requested interpolation object

2.5. Differentiable Maps and Curves 499

../../../../../../../html/en/reference/calculus/sage/calculus/interpolation.html#sage.calculus.interpolation.Spline

Manifolds, Release 10.4.rc1

EXAMPLES:

Requesting an interpolation object previously computed:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q, L, T] = var(t B_0 m q L T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)

sage: # needs scipy
sage: sol = c.solve(method= odeint ,
....: solution_key= sol_T1 ,
....: parameters_values={B_0:1, m:1, q:1, L:10, T:1})
sage: interp = c.interpolate(method= cubic spline ,
....: solution_key= sol_T1 ,
....: interpolation_key= interp_T1)
sage: default_interp = c.interpolation(verbose=True)
Returning the interpolation associated with the key
interp_T1 by default...

sage: default_interp == interp
True
sage: interp_mute = c.interpolation()
sage: interp_mute == interp
True

plot_integrated(chart=None, ambient_coords=None, mapping=None, prange=None,
interpolation_key=None, include_end_point=(True, True), end_point_offset=(0.001,
0.001), verbose=False, color='red', style='-', label_axes=True, display_tangent=False,
color_tangent='blue', across_charts=False, thickness=1, plot_points=75,
aspect_ratio='automatic', plot_points_tangent=10, width_tangent=1, scale=1, **kwds)

Plot the 2D or 3D projection of self onto the space of the chosen two or three ambient coordinates, based
on the interpolation of a numerical solution previously computed.

See also:

plot for complete information about the input.

ADDITIONAL INPUT:

• interpolation_key – (default: None) key associated to the interpolation object used for the plot;
a default value is chosen if none is provided

• verbose – (default: False) prints information about the interpolation object used and the plotting in
progress

• display_tangent – (default: False) determines whether some tangent vectors should also be
plotted

• color_tangent – (default: blue) color of the tangent vectors when these are plotted

• plot_points_tangent – (default: 10) number of tangent vectors to display when these are plotted

• width_tangent – (default: 1) sets the width of the arrows representing the tangent vectors

• scale – (default: 1) scale applied to the tangent vectors before displaying them

500 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Trajectory of a particle of unit mass and unit charge in an unit, axial, uniform, stationary magnetic field:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: var(t)
t
sage: D = X.symbolic_velocities()
sage: eqns = [D[1], -D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,6), v, name= c)

sage: # needs scipy
sage: sol = c.solve()
sage: interp = c.interpolate()
sage: c_plot_2d = c.plot_integrated(ambient_coords=[x1, x2],
....: thickness=2.5,
....: display_tangent=True, plot_points=200,
....: plot_points_tangent=10, scale=0.5,
....: color= blue , color_tangent= red ,
....: verbose=True)
Plotting from the interpolation associated with the key
cubic spline-interp-odeint by default...

A tiny final offset equal to 0.000301507537688442 was
introduced for the last point in order to safely compute it
from the interpolation.

sage: c_plot_2d
Graphics object consisting of 11 graphics primitives

solution(solution_key=None, verbose=False)
Return the solution (list of points) associated with the given key.

INPUT:

• solution_key – (default: None) key which the requested numerical solution is associated to; a
default value is chosen if none is provided

• verbose – (default: False) prints information about the solution returned

OUTPUT:

• list of the numerical points of the solution requested

EXAMPLES:

Requesting a numerical solution previously computed:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q, L, T] = var(t B_0 m q L T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)

(continues on next page)

2.5. Differentiable Maps and Curves 501

Manifolds, Release 10.4.rc1

1.0 0.5 0.5 1.0
x1

2.0

1.5

1.0

0.5

x2

502 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: # needs scipy
sage: sol = c.solve(solution_key= sol_T1 ,
....: parameters_values={B_0:1, m:1, q:1, L:10, T:1})
sage: sol_bis = c.solution(verbose=True)
Returning the numerical solution associated with the key
sol_T1 by default...

sage: sol_bis == sol
True
sage: sol_ter = c.solution(solution_key= sol_T1)
sage: sol_ter == sol
True
sage: sol_mute = c.solution()
sage: sol_mute == sol
True

solve(step=None, method='odeint', solution_key=None, parameters_values=None, verbose=False,
**control_param)

Integrate the curve numerically over the domain of definition.

INPUT:

• step – (default: None) step of integration; default value is a hundredth of the domain of integration if
none is provided

• method – (default: odeint) numerical scheme to use for the integration of the curve; available
algorithms are:

– odeint – makes use of scipy.integrate.odeint() via Sage solver des-
olve_odeint(); odeint invokes the LSODA algorithm of the ODEPACK suite, which auto-
matically selects between implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).

– rk4_maxima – 4th order classical Runge-Kutta, which makes use of Maxima’s dynamics pack-
age via Sage solver desolve_system_rk4() (quite slow)

– dopri5 – Dormand-Prince Runge-Kutta of order (4)5 provided by scipy.integrate.
ode

– dop853 – Dormand-Prince Runge-Kutta of order 8(5,3) provided by scipy.integrate.
ode

and those provided by GSL via Sage class ode_solver:

– rk2 – embedded Runge-Kutta (2,3)

– rk4 – 4th order classical Runge-Kutta

– rkf45 – Runge-Kutta-Felhberg (4,5)

– rkck – embedded Runge-Kutta-Cash-Karp (4,5)

– rk8pd – Runge-Kutta Prince-Dormand (8,9)

– rk2imp – implicit 2nd order Runge-Kutta at Gaussian points

– rk4imp – implicit 4th order Runge-Kutta at Gaussian points

– gear1 –𝑀 = 1 implicit Gear

– gear2 –𝑀 = 2 implicit Gear

– bsimp – implicit Bulirsch-Stoer (requires Jacobian)

2.5. Differentiable Maps and Curves 503

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html#scipy.integrate.odeint
../../../../../../../html/en/reference/calculus/sage/calculus/desolvers.html#sage.calculus.desolvers.desolve_odeint
../../../../../../../html/en/reference/calculus/sage/calculus/desolvers.html#sage.calculus.desolvers.desolve_odeint
https://www.netlib.org/odepack/
../../../../../../../html/en/reference/calculus/sage/calculus/desolvers.html#sage.calculus.desolvers.desolve_system_rk4
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode
../../../../../../../html/en/reference/calculus/sage/calculus/ode.html#sage.calculus.ode.ode_solver

Manifolds, Release 10.4.rc1

• solution_key – (default: None) key which the resulting numerical solution will be associated to; a
default value is given if none is provided

• parameters_values – (default: None) list of numerical values of the parameters present in the
system defining the curve, to be substituted in the equations before integration

• verbose – (default: False) prints information about the computation in progress

• **control_param – extra control parameters to be passed to the chosen solver; see the example
with rtol and atol below

OUTPUT:

• list of the numerical points of the computed solution

EXAMPLES:

Computing a numerical solution:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q, L, T] = var(t B_0 m q L T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)
sage: sol = c.solve(parameters_values={B_0:1, m:1, q:1, L:10, T:1}, #␣
→˓needs scipy
....: verbose=True)
Performing numerical integration with method odeint ...
Resulting list of points will be associated with the key
odeint by default.

Numerical integration completed.

Checking all points are in the chart domain...
All points are in the chart domain.

The resulting list of points was associated with the key
odeint (if this key already referred to a former

numerical solution, such a solution was erased).

The first 3 points of the solution, in the form [t, x1, x2, x3]:

sage: sol[:3] # abs tol 1e-12 #␣
→˓needs scipy
[[0.0, 0.0, 0.0, 0.0],
[0.05, 0.04999999218759271, -2.083327338392213e-05, 0.05],
[0.1, 0.09999975001847655, -0.00016666146190783666, 0.1]]

The default is verbose=False:

sage: sol_mute = c.solve(parameters_values={B_0:1, m:1, q:1, #␣
→˓needs scipy
....: L:10, T:1})
sage: sol_mute == sol #␣
→˓needs scipy
True

504 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Specifying the relative and absolute error tolerance parameters to be used in desolve_odeint():

sage: sol = c.solve(parameters_values={B_0:1, m:1, q:1, L:10, T:1}, #␣
→˓needs scipy
....: rtol=1e-12, atol=1e-12)

Using a numerical method different from the default one:

sage: sol = c.solve(parameters_values={B_0:1, m:1, q:1, L:10, T:1}, #␣
→˓needs scipy
....: method= rk8pd)

solve_across_charts(charts=None, step=None, solution_key=None, parameters_values=None,
verbose=False, **control_param)

Integrate the curve numerically over the domain of integration, with the ability to switch chart mid-integration.

The only supported solver is scipy.integrate.ode, because it supports basic event handling, needed
to detect when the curve is reaching the frontier of the chart. This is an adaptive step solver. So the step is
not the step of integration but instead the step used to peak at the current chart, and switch if needed.

INPUT:

• step – (default: None) step of chart checking; default value is a hundredth of the domain of integration
if none is provided. If your curve can’t find a new frame on exiting the current frame, consider reducing
this parameter.

• charts – (default: None) list of chart allowed. The integration stops once it leaves those charts. By
default the whole atlas is taken (only the top-charts).

• solution_key – (default: None) key which the resulting numerical solution will be associated to; a
default value is given if none is provided

• parameters_values – (default: None) list of numerical values of the parameters present in the
system defining the curve, to be substituted in the equations before integration

• verbose – (default: False) prints information about the computation in progress

• **control_param – extra control parameters to be passed to the solver

OUTPUT:

• list of the numerical points of the computed solution

EXAMPLES:

Let us use solve_across_charts() to integrate a geodesic of the Euclidean plane (a straight line) in
polar coordinates.

In pure polar coordinates (𝑟, 𝜃), artefacts can appear near the origin because of the fast variation of 𝜃, resulting
in the direction of the geodesic being different before and after getting close to the origin.

The solution to this problem is to switch to Cartesian coordinates near (0, 0) to avoid any singularity.

First let’s declare the plane as a 2-dimensional manifold, with two charts 𝑃 en𝐶 (for “Polar” and “Cartesian”)
and their transition maps:

sage: M = Manifold(2, M , structure="Riemannian")
sage: C.<x,y> = M.chart(coord_restrictions=lambda x,y: x**2+y**2 < 3**2)
sage: P.<r,th> = M.chart(coord_restrictions=lambda r, th: r > 2)
sage: P_to_C = P.transition_map(C,(r*cos(th), r*sin(th)))
sage: C_to_P = C.transition_map(P,(sqrt(x**2+y**2), atan2(y,x)))

2.5. Differentiable Maps and Curves 505

../../../../../../../html/en/reference/calculus/sage/calculus/desolvers.html#sage.calculus.desolvers.desolve_odeint
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode

Manifolds, Release 10.4.rc1

Here we added restrictions on those charts, to avoid any singularity. The intersection is the donut region
2 < 𝑟 < 3.

We still have to define the metric. This is done in the Cartesian frame. The metric in the polar frame is
computed automatically:

sage: g = M.metric()
sage: g[0,0,C]=1
sage: g[1,1,C]=1
sage: g[P.frame(), : ,P]
[1 0]
[0 r^2]

To visualize our manifold, let’s declare a mapping between every chart and the Cartesian chart, and then plot
each chart in term of this mapping:

sage: phi = M.diff_map(M, {(C,C): [x, y], (P,C): [r*cos(th), r*sin(th)]})
sage: fig = P.plot(number_values=9, chart=C, mapping=phi, #␣
→˓needs sage.plot
....: color= grey , ranges= {r:(2, 6), th:(0,2*pi)})
sage: fig += C.plot(number_values=13, chart=C, mapping=phi, #␣
→˓needs sage.plot
....: color= grey , ranges= {x:(-3, 3), y:(-3, 3)})

There is a clear non-empty intersection between the two charts. This is the key point to successfully switch
chart during the integration. Indeed, at least 2 points must fall in the intersection.

Geodesic integration

Let’s define the time as 𝑡, the initial point as 𝑝, and the initial velocity vector as 𝑣 (define as a member of the
tangent space 𝑇𝑝). The chosen geodesic should enter the central region from the left and leave it to the right:

sage: t = var(t)
sage: p = M((5,pi+0.3), P)
sage: Tp = M.tangent_space(p)
sage: v = Tp((-1,-0.03), P.frame().at(p))

While creating the integrated geodesic, we need to specify the optional argument across_chart=True,
to prepare the compiled version of the changes of charts:

sage: c = M.integrated_geodesic(g, (t, 0, 10), v, across_charts=True)

The integration is done as usual, but using the method solve_across_charts() instead of solve().
This forces the use of scipy.integrate.ode as the solver, because of event handling support.

The argument verbose=True will cause the solver to write a small message each time it is switching chart:

sage: sol = c.solve_across_charts(step=0.1, verbose=True)
Performing numerical integration with method ode .
Integration will take place on the whole manifold domain.
Resulting list of points will be associated with the key ode_multichart by␣
→˓default.

...
Exiting chart, trying to switch to another chart.
New chart found. Resuming integration.
Exiting chart, trying to switch to another chart.

(continues on next page)

506 Chapter 2. Differentiable Manifolds

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode

Manifolds, Release 10.4.rc1

(continued from previous page)

New chart found. Resuming integration.
Integration successful.

As expected, two changes of chart occur.

The returned solution is a list of pairs (chart, solution), where each solution is given on a unique
chart, and the last point of a solution is the first of the next.

The following code prints the corresponding charts:

sage: for chart, solution in sol:
....: print(chart)
Chart (M, (r, th))
Chart (M, (x, y))
Chart (M, (r, th))

The interpolation is done as usual:

sage: interp = c.interpolate()

To plot the result, you must first be sure that the mapping encompasses all the chart, which is the case here.
You must also specify across_charts=True in order to call plot_integrated() again on each
part. Finally, color can be a list, which will be cycled through:

sage: fig += c.plot_integrated(mapping=phi, color=["green","red"], #␣
→˓needs sage.plot
....: thickness=3, plot_points=100, across_charts=True)
sage: fig #␣
→˓needs sage.plot
Graphics object consisting of 43 graphics primitives

solve_analytical(verbose=False)
Solve the differential system defining self analytically.

Solve analytically the differential system defining a curve usingMaxima via Sage solver desolve_system.
In case of success, the analytical expressions are added to the dictionary of expressions representing the curve.
Pay attention to the fact thatdesolve_system only considers initial conditions given at an initial parameter
value equal to zero, although the parameter range may not contain zero. Yet, assuming that it does, values
of the coordinates functions at such zero initial parameter value are denoted by the name of the coordinate
function followed by the string "_0".

OUTPUT:

• list of the analytical expressions of the coordinate functions (when the differential system could be solved
analytically), or boolean False (in case the differential system could not be solved analytically)

EXAMPLES:

Analytical expression of the trajectory of a charged particle in a uniform, stationary magnetic field:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q] = var(t B_0 m q)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B_0/m*D[1], -q*B_0/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))

(continues on next page)

2.5. Differentiable Maps and Curves 507

Manifolds, Release 10.4.rc1

6 4 2 2 4 6
x

6

4

2

2

4

6

y

508 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)
sage: sys = c.system(verbose=True)
Curve c in the 3-dimensional differentiable manifold M
integrated over the Real interval (0, 5) as a solution to
the following system, written with respect to
Chart (M, (x1, x2, x3)):

Initial point: Point p on the 3-dimensional differentiable
manifold M with coordinates [0, 0, 0] with respect to
Chart (M, (x1, x2, x3))

Initial tangent vector: Tangent vector at Point p on the
3-dimensional differentiable manifold M with components
[1, 0, 1] with respect to Chart (M, (x1, x2, x3))

d(x1)/dt = Dx1
d(x2)/dt = Dx2
d(x3)/dt = Dx3
d(Dx1)/dt = B_0*Dx2*q/m
d(Dx2)/dt = -B_0*Dx1*q/m
d(Dx3)/dt = 0

sage: sol = c.solve_analytical()
sage: c.expr()
((B_0*q*x1_0 - Dx2_0*m*cos(B_0*q*t/m) +

Dx1_0*m*sin(B_0*q*t/m) + Dx2_0*m)/(B_0*q),
(B_0*q*x2_0 + Dx1_0*m*cos(B_0*q*t/m) +
Dx2_0*m*sin(B_0*q*t/m) - Dx1_0*m)/(B_0*q),

Dx3_0*t + x3_0)

system(verbose=False)
Provide a detailed description of the system defining the curve and return the system defining it: chart, equa-
tions and initial conditions.

INPUT:

• verbose – (default: False) prints a detailed description of the curve

OUTPUT:

• list containing

– the equations

– the initial conditions

– the chart

EXAMPLES:

System defining an integrated curve:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q, L, T] = var(t B_0 m q L T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)

(continues on next page)

2.5. Differentiable Maps and Curves 509

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)
sage: sys = c.system(verbose=True)
Curve c in the 3-dimensional differentiable manifold M
integrated over the Real interval (0, 5) as a solution to
the following system, written with respect to
Chart (M, (x1, x2, x3)):

Initial point: Point p on the 3-dimensional differentiable
manifold M with coordinates [0, 0, 0] with respect to
Chart (M, (x1, x2, x3))

Initial tangent vector: Tangent vector at Point p on the
3-dimensional differentiable manifold M with
components [1, 0, 1] with respect to Chart (M, (x1, x2, x3))

d(x1)/dt = Dx1
d(x2)/dt = Dx2
d(x3)/dt = Dx3
d(Dx1)/dt = B_0*Dx2*q*t*e^(-(x1^2 + x2^2)/L^2)/(T*m)
d(Dx2)/dt = -B_0*Dx1*q*t*e^(-(x1^2 + x2^2)/L^2)/(T*m)
d(Dx3)/dt = 0

sage: sys_mute = c.system()
sage: sys_mute == sys
True

tangent_vector_eval_at(t, interpolation_key=None, verbose=False)
Return the vector tangent to self at the given curve parameter with components evaluated from the given
interpolation.

INPUT:

• t – curve parameter value at which the tangent vector is evaluated

• interpolation_key – (default: None) key which the interpolation requested to compute the tan-
gent vector is associated to; a default value is chosen if none is provided

• verbose – (default: False) prints information about the interpolation used

OUTPUT:

• TangentVector tangent vector with numerical components

EXAMPLES:

Evaluating a vector tangent to the curve:

sage: M = Manifold(3, M)
sage: X.<x1,x2,x3> = M.chart()
sage: [t, B_0, m, q, L, T] = var(t B_0 m q L T)
sage: B = B_0*t/T*exp(-(x1^2 + x2^2)/L^2)
sage: D = X.symbolic_velocities()
sage: eqns = [q*B/m*D[1], -q*B/m*D[0], 0]
sage: p = M.point((0,0,0), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((1,0,1))
sage: c = M.integrated_curve(eqns, D, (t,0,5), v, name= c)

sage: # needs scipy

(continues on next page)

510 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: sol = c.solve(method= odeint ,
....: solution_key= sol_T1 ,
....: parameters_values={B_0:1, m:1, q:1, L:10, T:1})
sage: interp = c.interpolate(method= cubic spline ,
....: solution_key= sol_T1 ,
....: interpolation_key= interp_T1)
sage: tg_vec = c.tangent_vector_eval_at(1.22, verbose=True)
Evaluating tangent vector components from the interpolation
associated with the key interp_T1 by default...

sage: tg_vec
Tangent vector at Point on the 3-dimensional differentiable
manifold M

sage: tg_vec[:] # abs tol 1e-12
[0.7392640422917979, -0.6734182509826023, 1.0]
sage: tg_vec_mute = c.tangent_vector_eval_at(1.22,
....: interpolation_key= interp_T1)
sage: tg_vec_mute == tg_vec
True

class sage.manifolds.differentiable.integrated_curve.IntegratedGeodesic(parent,
metric,
curve_pa-
rameter,
ini-
tial_tan-
gent_vec-
tor,
chart=None,
name=None,
la-
tex_name=None,
ver-
bose=False,
across_charts=False)

Bases: IntegratedAutoparallelCurve

Geodesic on the manifold with respect to a given metric.

INPUT:

• parent – IntegratedGeodesicSet the set of curves Homgeodesic(𝐼,𝑀) to which the curve belongs

• metric – PseudoRiemannianMetric metric with respect to which the curve is a geodesic

• curve_parameter – symbolic expression to be used as the parameter of the curve (the equations defining
an instance of IntegratedGeodesic are such that t will actually be an affine parameter of the curve);

• initial_tangent_vector – TangentVector initial tangent vector of the curve

• chart – (default: None) chart on the manifold in terms of which the equations are expressed; if None the
default chart of the manifold is assumed

• name – (default: None) string; symbol given to the curve

• latex_name – (default: None) string; LaTeX symbol to denote the curve; if none is provided, name will
be used

EXAMPLES:

2.5. Differentiable Maps and Curves 511

Manifolds, Release 10.4.rc1

Geodesics of the unit 2-sphere S2. Start with declaring the standard polar coordinates (𝜃, 𝜑) on S2 and the corre-
sponding coordinate frame (𝑒𝜃, 𝑒𝜑):

sage: S2 = Manifold(2, S^2 , structure= Riemannian , start_index=1)
sage: polar.<th,ph>=S2.chart(th ph)
sage: epolar = polar.frame()

Set the standard round metric:

sage: g = S2.metric()
sage: g[1,1], g[2,2] = 1, (sin(th))^2

Set generic initial conditions for the geodesics to compute:

sage: [th0, ph0, v_th0, v_ph0] = var(th0 ph0 v_th0 v_ph0)
sage: p = S2.point((th0, ph0), name= p)
sage: Tp = S2.tangent_space(p)
sage: v = Tp((v_th0, v_ph0), basis=epolar.at(p))

Declare the corresponding integrated geodesic and display the differential system it satisfies:

sage: [t, tmin, tmax] = var(t tmin tmax)
sage: c = S2.integrated_geodesic(g, (t, tmin, tmax), v,
....: chart=polar, name= c)
sage: sys = c.system(verbose=True)
Geodesic c in the 2-dimensional Riemannian manifold S^2
equipped with Riemannian metric g on the 2-dimensional
Riemannian manifold S^2, and integrated over the Real
interval (tmin, tmax) as a solution to the following geodesic
equations, written with respect to Chart (S^2, (th, ph)):

Initial point: Point p on the 2-dimensional Riemannian
manifold S^2 with coordinates [th0, ph0] with respect to
Chart (S^2, (th, ph))
Initial tangent vector: Tangent vector at Point p on the
2-dimensional Riemannian manifold S^2 with
components [v_th0, v_ph0] with respect to Chart (S^2, (th, ph))

d(th)/dt = Dth
d(ph)/dt = Dph
d(Dth)/dt = Dph^2*cos(th)*sin(th)
d(Dph)/dt = -2*Dph*Dth*cos(th)/sin(th)

Set a dictionary providing the parameter range and the initial conditions for various geodesics:

sage: dict_params={ equat :{tmin:0,tmax:3,th0:pi/2,ph0:0.1,v_th0:0,v_ph0:1},
....: longi :{tmin:0,tmax:3,th0:0.1,ph0:0.1,v_th0:1,v_ph0:0},
....: angle :{tmin:0,tmax:3,th0:pi/4,ph0:0.1,v_th0:1,v_ph0:1}}

Use R3 as the codomain of the standard map embedding (S2, (𝜃, 𝜑)) in the 3-dimensional Euclidean space:

sage: R3 = Manifold(3, R3 , start_index=1)
sage: cart.<X,Y,Z> = R3.chart()
sage: euclid_embedding = S2.diff_map(R3,
....: {(polar, cart):[sin(th)*cos(ph),sin(th)*sin(ph),cos(th)]})

Solve, interpolate and prepare the plot for the solutions corresponding to the three initial conditions previously set:

512 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: # needs scipy sage.plot
sage: graph3D_embedded_geods = Graphics()
sage: for key in dict_params:
....: sol = c.solve(solution_key= sol- +key,
....: parameters_values=dict_params[key])
....: interp = c.interpolate(solution_key= sol- +key,
....: interpolation_key= interp- +key)
....: graph3D_embedded_geods += c.plot_integrated(interpolation_key= interp-
→˓ +key,
....: mapping=euclid_embedding, thickness=5,
....: display_tangent=True, scale=0.3,
....: width_tangent=0.5)

Plot the resulting geodesics on the grid of polar coordinates lines on S2 and check that these are great circles:

sage: # needs scipy sage.plot
sage: graph3D_embedded_polar_coords = polar.plot(chart=cart,
....: mapping=euclid_embedding,
....: number_values=15, color= yellow)
sage: graph3D_embedded_geods + graph3D_embedded_polar_coords
Graphics3d Object

system(verbose=False)
Return the system defining the geodesic: chart, equations and initial conditions.

2.5. Differentiable Maps and Curves 513

Manifolds, Release 10.4.rc1

INPUT:

• verbose – (default: False) prints a detailed description of the curve

OUTPUT:

• list containing

– the equations

– the initial equations

– the chart

EXAMPLES:

System defining a geodesic:

sage: S2 = Manifold(2, S^2 ,structure= Riemannian)
sage: X.<theta,phi> = S2.chart()
sage: t, A = var(t A)
sage: g = S2.metric()
sage: g[0,0] = A
sage: g[1,1] = A*sin(theta)^2
sage: p = S2.point((pi/2,0), name= p)
sage: Tp = S2.tangent_space(p)
sage: v = Tp((1/sqrt(2),1/sqrt(2)))
sage: c = S2.integrated_geodesic(g, (t, 0, pi), v, name= c)
sage: sys = c.system(verbose=True)
Geodesic c in the 2-dimensional Riemannian manifold S^2
equipped with Riemannian metric g on the 2-dimensional
Riemannian manifold S^2, and integrated over the Real
interval (0, pi) as a solution to the following geodesic
equations, written with respect to Chart (S^2, (theta, phi)):

Initial point: Point p on the 2-dimensional Riemannian
manifold S^2 with coordinates [1/2*pi, 0] with respect to
Chart (S^2, (theta, phi))

Initial tangent vector: Tangent vector at Point p on the
2-dimensional Riemannian manifold S^2 with
components [1/2*sqrt(2), 1/2*sqrt(2)] with respect to
Chart (S^2, (theta, phi))

d(theta)/dt = Dtheta
d(phi)/dt = Dphi
d(Dtheta)/dt = Dphi^2*cos(theta)*sin(theta)
d(Dphi)/dt = -2*Dphi*Dtheta*cos(theta)/sin(theta)

sage: sys_bis = c.system()
sage: sys_bis == sys
True

514 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.6 Tangent Spaces

2.6.1 Tangent Spaces

The class TangentSpace implements tangent vector spaces to a differentiable manifold.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2014-2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• Chap. 3 of [Lee2013]

class sage.manifolds.differentiable.tangent_space.TangentSpace(point: ManifoldPoint,
base_ring=None)

Bases: FiniteRankFreeModule

Tangent space to a differentiable manifold at a given point.

Let𝑀 be a differentiable manifold of dimension 𝑛 over a topological field𝐾 and 𝑝 ∈𝑀 . The tangent space 𝑇𝑝𝑀
is an 𝑛-dimensional vector space over𝐾 (without a distinguished basis).

INPUT:

• point – ManifoldPoint; point 𝑝 at which the tangent space is defined

EXAMPLES:

Tangent space on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: p = M.point((-1,2), name= p)
sage: Tp = M.tangent_space(p) ; Tp
Tangent space at Point p on the 2-dimensional differentiable manifold M

Tangent spaces are free modules of finite rank over SymbolicRing (actually vector spaces of finite dimension
over the manifold base field𝐾, with𝐾 = R here):

sage: Tp.base_ring()
Symbolic Ring
sage: Tp.category()
Category of finite dimensional vector spaces over Symbolic Ring
sage: Tp.rank()
2
sage: dim(Tp)
2

The tangent space is automatically endowed with bases deduced from the vector frames around the point:

sage: Tp.bases()
[Basis (∂/∂x,∂/∂y) on the Tangent space at Point p on the 2-dimensional
differentiable manifold M]
sage: M.frames()
[Coordinate frame (M, (∂/∂x,∂/∂y))]

At this stage, only one basis has been defined in the tangent space, but new bases can be added from vector frames
on the manifold by means of the method at(), for instance, from the frame associated with some new coordinates:

2.6. Tangent Spaces 515

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule
../../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing

Manifolds, Release 10.4.rc1

sage: c_uv.<u,v> = M.chart()
sage: c_uv.frame().at(p)
Basis (∂/∂u,∂/∂v) on the Tangent space at Point p on the 2-dimensional
differentiable manifold M
sage: Tp.bases()
[Basis (∂/∂x,∂/∂y) on the Tangent space at Point p on the 2-dimensional
differentiable manifold M,
Basis (∂/∂u,∂/∂v) on the Tangent space at Point p on the 2-dimensional
differentiable manifold M]

All the bases defined on Tp are on the same footing. Accordingly the tangent space is not in the category of modules
with a distinguished basis:

sage: Tp in ModulesWithBasis(SR)
False

It is simply in the category of modules:

sage: Tp in Modules(SR)
True

Since the base ring is a field, it is actually in the category of vector spaces:

sage: Tp in VectorSpaces(SR)
True

A typical element:

sage: v = Tp.an_element() ; v
Tangent vector at Point p on the
2-dimensional differentiable manifold M
sage: v.display()
∂/∂x + 2 ∂/∂y
sage: v.parent()
Tangent space at Point p on the
2-dimensional differentiable manifold M

The zero vector:

sage: Tp.zero()
Tangent vector zero at Point p on the
2-dimensional differentiable manifold M
sage: Tp.zero().display()
zero = 0
sage: Tp.zero().parent()
Tangent space at Point p on the
2-dimensional differentiable manifold M

Tangent spaces are unique:

sage: M.tangent_space(p) is Tp
True
sage: p1 = M.point((-1,2))
sage: M.tangent_space(p1) is Tp
True

even if points are not:

516 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: p1 is p
False

Actually p1 and p share the same tangent space because they compare equal:

sage: p1 == p
True

The tangent-space uniqueness holds even if the points are created in different coordinate systems:

sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y))
sage: uv_to_xv = xy_to_uv.inverse()
sage: p2 = M.point((1, -3), chart=c_uv, name= p_2)
sage: p2 is p
False
sage: M.tangent_space(p2) is Tp
True
sage: p2 == p
True

An isomorphism of the tangent space with an inner product space with distinguished basis:

sage: g = M.metric(g)
sage: g[:] = ((1, 0), (0, 1))
sage: Q_Tp_xy = g[c_xy.frame(),:](*p.coordinates(c_xy)); Q_Tp_xy
[1 0]
[0 1]
sage: W_Tp_xy = VectorSpace(SR, 2, inner_product_matrix=Q_Tp_xy)
sage: Tp.bases()[0]
Basis (∂/∂x,∂/∂y) on the Tangent space at Point p on the
2-dimensional differentiable manifold M
sage: phi_Tp_xy = Tp.isomorphism_with_fixed_basis(Tp.bases()[0], codomain=W_Tp_xy)
sage: phi_Tp_xy
Generic morphism:
From: Tangent space at Point p on the 2-dimensional differentiable manifold M
To: Ambient quadratic space of dimension 2 over Symbolic Ring

Inner product matrix:
[1 0]
[0 1]

sage: Q_Tp_uv = g[c_uv.frame(),:](*p.coordinates(c_uv)); Q_Tp_uv
[1/2 0]
[0 1/2]
sage: W_Tp_uv = VectorSpace(SR, 2, inner_product_matrix=Q_Tp_uv)
sage: Tp.bases()[1]
Basis (∂/∂u,∂/∂v) on the Tangent space at Point p on the
2-dimensional differentiable manifold M
sage: phi_Tp_uv = Tp.isomorphism_with_fixed_basis(Tp.bases()[1], codomain=W_Tp_uv)
sage: phi_Tp_uv
Generic morphism:
From: Tangent space at Point p on the 2-dimensional differentiable manifold M
To: Ambient quadratic space of dimension 2 over Symbolic Ring

Inner product matrix:
[1/2 0]
[0 1/2]

sage: t1, t2 = Tp.tensor((1,0)), Tp.tensor((1,0))

(continues on next page)

2.6. Tangent Spaces 517

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: t1[:] = (8, 15)
sage: t2[:] = (47, 11)
sage: t1[Tp.bases()[0],:]
[8, 15]
sage: phi_Tp_xy(t1), phi_Tp_xy(t2)
((8, 15), (47, 11))
sage: phi_Tp_xy(t1).inner_product(phi_Tp_xy(t2))
541

sage: Tp_xy_to_uv = M.change_of_frame(c_xy.frame(), c_uv.frame()).at(p); Tp_xy_to_
→˓uv
Automorphism of the Tangent space at Point p on the
2-dimensional differentiable manifold M
sage: Tp.set_change_of_basis(Tp.bases()[0], Tp.bases()[1], Tp_xy_to_uv)
sage: t1[Tp.bases()[1],:]
[23, -7]
sage: phi_Tp_uv(t1), phi_Tp_uv(t2)
((23, -7), (58, 36))
sage: phi_Tp_uv(t1).inner_product(phi_Tp_uv(t2))
541

See also:

FiniteRankFreeModule for more documentation.

Element

alias of TangentVector

base_point()

Return the manifold point at which self is defined.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((1,-2), name= p)
sage: Tp = M.tangent_space(p)
sage: Tp.base_point()
Point p on the 2-dimensional differentiable manifold M
sage: Tp.base_point() is p
True

construction()

dim()

Return the vector space dimension of self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((1,-2), name= p)
sage: Tp = M.tangent_space(p)
sage: Tp.dimension()
2

A shortcut is dim():

518 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule

Manifolds, Release 10.4.rc1

sage: Tp.dim()
2

One can also use the global function dim:

sage: dim(Tp)
2

dimension()

Return the vector space dimension of self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((1,-2), name= p)
sage: Tp = M.tangent_space(p)
sage: Tp.dimension()
2

A shortcut is dim():

sage: Tp.dim()
2

One can also use the global function dim:

sage: dim(Tp)
2

2.6.2 Tangent Vectors

The class TangentVector implements tangent vectors to a differentiable manifold.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2014-2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• Chap. 3 of [Lee2013]

class sage.manifolds.differentiable.tangent_vector.TangentVector(parent,
name=None,
latex_name=None)

Bases: FiniteRankFreeModuleElement

Tangent vector to a differentiable manifold at a given point.

INPUT:

• parent – TangentSpace; the tangent space to which the vector belongs

• name – (default: None) string; symbol given to the vector

• latex_name – (default: None) string; LaTeX symbol to denote the vector; if None, name will be used

2.6. Tangent Spaces 519

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_element.html#sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement

Manifolds, Release 10.4.rc1

EXAMPLES:

A tangent vector 𝑣 on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((2,3), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((-2,1), name= v) ; v
Tangent vector v at Point p on the 2-dimensional differentiable
manifold M
sage: v.display()
v = -2 ∂/∂x + ∂/∂y
sage: v.parent()
Tangent space at Point p on the 2-dimensional differentiable manifold M
sage: v in Tp
True

Tangent vectors can also be constructed via the manifold method tangent_vector():

sage: v = M.tangent_vector(p, (-2, 1), name= v); v
Tangent vector v at Point p on the 2-dimensional differentiable
manifold M
sage: v.display()
v = -2 ∂/∂x + ∂/∂y

or via the method at() of vector fields:

sage: vf = M.vector_field(x - 4*y/3, (x-y)^2, name= v)
sage: v = vf.at(p); v
Tangent vector v at Point p on the 2-dimensional differentiable
manifold M
sage: v.display()
v = -2 ∂/∂x + ∂/∂y

By definition, a tangent vector at 𝑝 ∈ 𝑀 is a derivation at 𝑝 on the space 𝐶∞(𝑀) of smooth scalar fields on𝑀 .
Indeed let us consider a generic scalar field 𝑓 :

sage: f = M.scalar_field(function(F)(x,y), name= f)
sage: f.display()
f: M → ℝ

(x, y) ↦ F(x, y)

The tangent vector 𝑣 maps 𝑓 to the real number 𝑣𝑖 𝜕𝐹
𝜕𝑥𝑖

⃒⃒
𝑝
:

sage: v(f)
-2*D[0](F)(2, 3) + D[1](F)(2, 3)
sage: vdf(x, y) = v[0]*diff(f.expr(), x) + v[1]*diff(f.expr(), y)
sage: X(p)
(2, 3)
sage: bool(v(f) == vdf(*X(p)))
True

and if 𝑔 is a second scalar field on𝑀 :

sage: g = M.scalar_field(function(G)(x,y), name= g)

then the product 𝑓𝑔 is also a scalar field on𝑀 :

520 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: (f*g).display()
f*g: M → ℝ

(x, y) ↦ F(x, y)*G(x, y)

and we have the derivation law 𝑣(𝑓𝑔) = 𝑣(𝑓)𝑔(𝑝) + 𝑓(𝑝)𝑣(𝑔):

sage: bool(v(f*g) == v(f)*g(p) + f(p)*v(g))
True

See also:

FiniteRankFreeModuleElement for more documentation.

plot(chart=None, ambient_coords=None, mapping=None, color='blue', print_label=True, label=None,
label_color=None, fontsize=10, label_offset=0.1, parameters=None, scale=1, **extra_options)

Plot the vector in a Cartesian graph based on the coordinates of some ambient chart.

The vector is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of a given chart, called
hereafter the ambient chart. The vector’s base point 𝑝 (or its image Φ(𝑝) by some differentiable mapping
Φ) must lie in the ambient chart’s domain. If Φ is different from the identity mapping, the vector actually
depicted is dΦ𝑝(𝑣), where 𝑣 is the current vector (self) (see the example of a vector tangent to the 2-sphere
below, where Φ : 𝑆2 → R3).

INPUT:

• chart – (default: None) the ambient chart (see above); if None, it is set to the default chart of the open
set containing the point at which the vector (or the vector image via the differential dΦ𝑝 of mapping)
is defined

• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in
terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered

• mapping – (default: None) DiffMap; differentiable mapping Φ providing the link between the point
𝑝 at which the vector is defined and the ambient chart chart: the domain of chartmust containΦ(𝑝);
if None, the identity mapping is assumed

• scale – (default: 1) value by which the length of the arrow representing the vector is multiplied

• color – (default: ‘blue’) color of the arrow representing the vector

• print_label – (boolean; default: True) determines whether a label is printed next to the arrow
representing the vector

• label – (string; default: None) label printed next to the arrow representing the vector; if None, the
vector’s symbol is used, if any

• label_color – (default: None) color to print the label; if None, the value of color is used

• fontsize – (default: 10) size of the font used to print the label

• label_offset – (default: 0.1) determines the separation between the vector arrow and the label

• parameters – (default: None) dictionary giving the numerical values of the parameters that may
appear in the coordinate expression of self (see example below)

• **extra_options – extra options for the arrow plot, like linestyle, width or arrowsize
(see arrow2d() and arrow3d() for details)

OUTPUT:

• a graphic object, either an instance of Graphics for a 2D plot (i.e. based on 2 coordinates of chart)
or an instance of Graphics3d for a 3D plot (i.e. based on 3 coordinates of chart)

2.6. Tangent Spaces 521

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_element.html#sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement
../../../../../../../html/en/reference/plotting/sage/plot/arrow.html#sage.plot.arrow.arrow2d
../../../../../../../html/en/reference/plot3d/sage/plot/plot3d/shapes.html#sage.plot.plot3d.shapes.arrow3d
../../../../../../../html/en/reference/plotting/sage/plot/graphics.html#sage.plot.graphics.Graphics
../../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d

Manifolds, Release 10.4.rc1

EXAMPLES:

Vector tangent to a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M((2,2), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((2, 1), name= v) ; v
Tangent vector v at Point p on the 2-dimensional differentiable
manifold M

Plot of the vector alone (arrow + label):

sage: v.plot() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

Plot atop of the chart grid:

sage: X.plot() + v.plot() #␣
→˓needs sage.plot
Graphics object consisting of 20 graphics primitives

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

v

Plots with various options:

522 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: X.plot() + v.plot(color= green , scale=2, label= V) #␣
→˓needs sage.plot
Graphics object consisting of 20 graphics primitives

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

V

sage: X.plot() + v.plot(print_label=False) #␣
→˓needs sage.plot
Graphics object consisting of 19 graphics primitives

sage: X.plot() + v.plot(color= green , label_color= black , #␣
→˓needs sage.plot
....: fontsize=20, label_offset=0.2)
Graphics object consisting of 20 graphics primitives

sage: X.plot() + v.plot(linestyle= : , width=4, arrowsize=8, #␣
→˓needs sage.plot
....: fontsize=20)
Graphics object consisting of 20 graphics primitives

Plot with specific values of some free parameters:

sage: var(a b)
(a, b)
sage: v = Tp((1+a, -b^2), name= v) ; v.display()

(continues on next page)

2.6. Tangent Spaces 523

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

524 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

v

2.6. Tangent Spaces 525

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

v

526 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

v = (a + 1) ∂/∂x - b^2 ∂/∂y
sage: X.plot() + v.plot(parameters={a: -2, b: 3}) #␣
→˓needs sage.plot
Graphics object consisting of 20 graphics primitives

Special case of the zero vector:

sage: v = Tp.zero() ; v
Tangent vector zero at Point p on the 2-dimensional differentiable
manifold M

sage: X.plot() + v.plot() #␣
→˓needs sage.plot
Graphics object consisting of 19 graphics primitives

Vector tangent to a 4-dimensional manifold:

sage: M = Manifold(4, M)
sage: X.<t,x,y,z> = M.chart()
sage: p = M((0,1,2,3), name= p)
sage: Tp = M.tangent_space(p)
sage: v = Tp((5,4,3,2), name= v) ; v
Tangent vector v at Point p on the 4-dimensional differentiable
manifold M

We cannot make a 4D plot directly:

sage: v.plot() #␣
→˓needs sage.plot
Traceback (most recent call last):
...
ValueError: the number of coordinates involved in the plot must
be either 2 or 3, not 4

Rather, we have to select some chart coordinates for the plot, via the argument ambient_coords. For
instance, for a 2-dimensional plot in terms of the coordinates (𝑥, 𝑦):

sage: v.plot(ambient_coords=(x,y)) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

This plot involves only the components 𝑣𝑥 and 𝑣𝑦 of 𝑣. Similarly, for a 3-dimensional plot in terms of the
coordinates (𝑡, 𝑥, 𝑦):

sage: g = v.plot(ambient_coords=(t,x,z)) #␣
→˓needs sage.plot
sage: print(g) #␣
→˓needs sage.plot
Graphics3d Object

This plot involves only the components 𝑣𝑡, 𝑣𝑥 and 𝑣𝑧 of 𝑣. A nice 3D view atop the coordinate grid is obtained
via:

sage: (X.plot(ambient_coords=(t,x,z)) # long time #␣
→˓needs sage.plot
....: + v.plot(ambient_coords=(t,x,z),
....: label_offset=0.5, width=6))
Graphics3d Object

2.6. Tangent Spaces 527

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
x

8

6

4

2

2

4

6

8

y

v

528 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.6. Tangent Spaces 529

Manifolds, Release 10.4.rc1

An example of plot via a differential mapping: plot of a vector tangent to a 2-sphere viewed in R3:

sage: S2 = Manifold(2, S^2)
sage: U = S2.open_subset(U) # the open set covered by spherical coord.
sage: XS.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: R3 = Manifold(3, R^3)
sage: X3.<x,y,z> = R3.chart()
sage: F = S2.diff_map(R3, {(XS, X3): [sin(th)*cos(ph),
....: sin(th)*sin(ph),
....: cos(th)]}, name= F)
sage: F.display() # the standard embedding of S^2 into R^3
F: S^2 → R^3
on U: (th, ph) ↦ (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
sage: p = U.point((pi/4, 7*pi/4), name= p)
sage: v = XS.frame()[1].at(p) ; v # the coordinate vector ∂/∂phi at p
Tangent vector ∂/∂ph at Point p on the 2-dimensional differentiable
manifold S^2

sage: graph_v = v.plot(mapping=F) #␣
→˓needs sage.plot
sage: graph_S2 = XS.plot(chart=X3, mapping=F, number_values=9) # long time,␣
→˓needs sage.plot
sage: graph_v + graph_S2 # long time,␣
→˓needs sage.plot
Graphics3d Object

530 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.7 Vector Fields

2.7.1 Vector Field Modules

The set of vector fields along a differentiable manifold 𝑈 with values on a differentiable manifold𝑀 via a differentiable
map Φ : 𝑈 →𝑀 (possibly 𝑈 =𝑀 and Φ = Id𝑀) is a module over the algebra 𝐶𝑘(𝑈) of differentiable scalar fields on
𝑈 . If Φ is the identity map, this module is considered a Lie algebroid under the Lie bracket [,] (cf. Wikipedia article
Lie_algebroid). It is a free module if and only if𝑀 is parallelizable. Accordingly, there are two classes for vector field
modules:

• VectorFieldModule for vector fields with values on a generic (in practice, not parallelizable) differentiable
manifold𝑀 .

• VectorFieldFreeModule for vector fields with values on a parallelizable manifold𝑀 .

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2014-2015): initial version

• Travis Scrimshaw (2016): structure of Lie algebroid (Issue #20771)

REFERENCES:

• [KN1963]

• [Lee2013]

• [ONe1983]

class sage.manifolds.differentiable.vectorfield_module.VectorFieldFreeModule(do-
main,
dest_map=None)

Bases: FiniteRankFreeModule

Free module of vector fields along a differentiable manifold 𝑈 with values on a parallelizable manifold 𝑀 , via a
differentiable map 𝑈 →𝑀 .

Given a differentiable map

Φ : 𝑈 −→𝑀

the vector field module X(𝑈,Φ) is the set of all vector fields of the type

𝑣 : 𝑈 −→ 𝑇𝑀

(where 𝑇𝑀 is the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀,

where 𝑇Φ(𝑝)𝑀 is the tangent space to𝑀 at the point Φ(𝑝).

Since𝑀 is parallelizable, the set X(𝑈,Φ) is a free module over 𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar
fields on 𝑈 (see DiffScalarFieldAlgebra). In fact, it carries the structure of a finite-dimensional Lie
algebroid (cf. Wikipedia article Lie_algebroid).

The standard case of vector fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 ; we then
denote X(𝑀, Id𝑀) by merely X(𝑀). Other common cases are Φ being an immersion and Φ being a curve in𝑀
(𝑈 is then an open interval of R).

2.7. Vector Fields 531

https://en.wikipedia.org/wiki/Lie_algebroid
https://en.wikipedia.org/wiki/Lie_algebroid
https://github.com/sagemath/sage/issues/20771
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule
https://en.wikipedia.org/wiki/Lie_algebroid

Manifolds, Release 10.4.rc1

Note: If 𝑀 is not parallelizable, the class VectorFieldModule should be used instead, for X(𝑈,Φ) is no
longer a free module.

INPUT:

• domain – differentiable manifold 𝑈 along which the vector fields are defined

• dest_map – (default: None) destination map Φ : 𝑈 →𝑀 (type: DiffMap); if None, it is assumed that
𝑈 =𝑀 and Φ is the identity map of𝑀 (case of vector fields on𝑀)

EXAMPLES:

Module of vector fields on R2:

sage: M = Manifold(2, R^2)
sage: cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: XM = M.vector_field_module() ; XM
Free module X(R^2) of vector fields on the 2-dimensional differentiable
manifold R^2
sage: XM.category()
Category of finite dimensional modules
over Algebra of differentiable scalar fields
on the 2-dimensional differentiable manifold R^2
sage: XM.base_ring() is M.scalar_field_algebra()
True

Since R2 is obviously parallelizable, XM is a free module:

sage: isinstance(XM, FiniteRankFreeModule)
True

Some elements:

sage: XM.an_element().display()
2 ∂/∂x + 2 ∂/∂y
sage: XM.zero().display()
zero = 0
sage: v = XM([-y,x]) ; v
Vector field on the 2-dimensional differentiable manifold R^2
sage: v.display()
-y ∂/∂x + x ∂/∂y

An example of module of vector fields with a destination mapΦ different from the identity map, namely a mapping
Φ : 𝐼 → R2, where 𝐼 is an open interval of R:

sage: I = Manifold(1, I)
sage: canon.<t> = I.chart(t:(0,2*pi))
sage: Phi = I.diff_map(M, coord_functions=[cos(t), sin(t)], name= Phi ,
....: latex_name=r \Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable manifold
I to the 2-dimensional differentiable manifold R^2
sage: Phi.display()
Phi: I → R^2

t ↦ (x, y) = (cos(t), sin(t))
sage: XIM = I.vector_field_module(dest_map=Phi) ; XIM
Free module X(I,Phi) of vector fields along the 1-dimensional
differentiable manifold I mapped into the 2-dimensional differentiable

(continues on next page)

532 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

manifold R^2
sage: XIM.category()
Category of finite dimensional modules
over Algebra of differentiable scalar fields
on the 1-dimensional differentiable manifold I

The rank of the free module X(𝐼,Φ) is the dimension of the manifold R2, namely two:

sage: XIM.rank()
2

A basis of it is induced by the coordinate vector frame of R2:

sage: XIM.bases()
[Vector frame (I, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold R^2]

Some elements of this module:

sage: XIM.an_element().display()
2 ∂/∂x + 2 ∂/∂y
sage: v = XIM([t, t^2]) ; v
Vector field along the 1-dimensional differentiable manifold I with
values on the 2-dimensional differentiable manifold R^2
sage: v.display()
t ∂/∂x + t^2 ∂/∂y

The test suite is passed:

sage: TestSuite(XIM).run()

Let us introduce an open subset of 𝐽 ⊂ 𝐼 and the vector field module corresponding to the restriction of Φ to it:

sage: J = I.open_subset(J , coord_def= {canon: t<pi})
sage: XJM = J.vector_field_module(dest_map=Phi.restrict(J)); XJM
Free module X(J,Phi) of vector fields along the Open subset J of the
1-dimensional differentiable manifold I mapped into the 2-dimensional
differentiable manifold R^2

We have then:

sage: XJM.default_basis()
Vector frame (J, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold R^2
sage: XJM.default_basis() is XIM.default_basis().restrict(J)
True
sage: v.restrict(J)
Vector field along the Open subset J of the 1-dimensional
differentiable manifold I with values on the 2-dimensional
differentiable manifold R^2
sage: v.restrict(J).display()
t ∂/∂x + t^2 ∂/∂y

Let us now consider the module of vector fields on the circle 𝑆1; we start by constructing the 𝑆1 manifold:

2.7. Vector Fields 533

Manifolds, Release 10.4.rc1

sage: M = Manifold(1, S^1)
sage: U = M.open_subset(U) # the complement of one point
sage: c_t.<t> = U.chart(t:(0,2*pi)) # the standard angle coordinate
sage: V = M.open_subset(V) # the complement of the point t=pi
sage: M.declare_union(U,V) # S^1 is the union of U and V
sage: c_u.<u> = V.chart(u:(0,2*pi)) # the angle t-pi
sage: t_to_u = c_t.transition_map(c_u, (t-pi,), intersection_name= W ,
....: restrictions1 = t!=pi, restrictions2 = u!=pi)
sage: u_to_t = t_to_u.inverse()
sage: W = U.intersection(V)

𝑆1 cannot be covered by a single chart, so it cannot be covered by a coordinate frame. It is however parallelizable
and we introduce a global vector frame as follows. We notice that on their common subdomain,𝑊 , the coordinate
vectors 𝜕/𝜕𝑡 and 𝜕/𝜕𝑢 coincide, as we can check explicitly:

sage: c_t.frame()[0].display(c_u.frame().restrict(W))
∂/∂t = ∂/∂u

Therefore, we can extend 𝜕/𝜕𝑡 to all 𝑉 and hence to all 𝑆1, to form a vector field on 𝑆1 whose components w.r.t.
both 𝜕/𝜕𝑡 and 𝜕/𝜕𝑢 are 1:

sage: e = M.vector_frame(e)
sage: U.set_change_of_frame(e.restrict(U), c_t.frame(),
....: U.tangent_identity_field())
sage: V.set_change_of_frame(e.restrict(V), c_u.frame(),
....: V.tangent_identity_field())
sage: e[0].display(c_t.frame())
e_0 = ∂/∂t
sage: e[0].display(c_u.frame())
e_0 = ∂/∂u

Equipped with the frame 𝑒, the manifold 𝑆1 is manifestly parallelizable:

sage: M.is_manifestly_parallelizable()
True

Consequently, the module of vector fields on 𝑆1 is a free module:

sage: XM = M.vector_field_module() ; XM
Free module X(S^1) of vector fields on the 1-dimensional differentiable
manifold S^1
sage: isinstance(XM, FiniteRankFreeModule)
True
sage: XM.category()
Category of finite dimensional modules
over Algebra of differentiable scalar fields
on the 1-dimensional differentiable manifold S^1
sage: XM.base_ring() is M.scalar_field_algebra()
True

The zero element:

sage: z = XM.zero() ; z
Vector field zero on the 1-dimensional differentiable manifold S^1
sage: z.display()
zero = 0

(continues on next page)

534 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: z.display(c_t.frame())
zero = 0

The module X(𝑆1) coerces to any module of vector fields defined on a subdomain of 𝑆1, for instance X(𝑈):

sage: XU = U.vector_field_module() ; XU
Free module X(U) of vector fields on the Open subset U of the
1-dimensional differentiable manifold S^1
sage: XU.has_coerce_map_from(XM)
True
sage: XU.coerce_map_from(XM)
Coercion map:
From: Free module X(S^1) of vector fields on the 1-dimensional
differentiable manifold S^1

To: Free module X(U) of vector fields on the Open subset U of the
1-dimensional differentiable manifold S^1

The conversion map is actually the restriction of vector fields defined on 𝑆1 to 𝑈 .

The Sage test suite for modules is passed:

sage: TestSuite(XM).run()

Element

alias of VectorFieldParal

ambient_domain()

Return the manifold in which the vector fields of self take their values.

If the module is X(𝑈,Φ), returns the codomain𝑀 of Φ.

OUTPUT:

• a DifferentiableManifold representing the manifold in which the vector fields of self take
their values

EXAMPLES:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.ambient_domain()
3-dimensional differentiable manifold M
sage: U = Manifold(2, U)
sage: Y.<u,v> = U.chart()
sage: Phi = U.diff_map(M, {(Y,X): [u+v, u-v, u*v]}, name= Phi)
sage: XU = U.vector_field_module(dest_map=Phi)
sage: XU.ambient_domain()
3-dimensional differentiable manifold M

basis(symbol=None, latex_symbol=None, from_frame=None, indices=None, latex_indices=None,
symbol_dual=None, latex_symbol_dual=None)

Define a basis of self.

A basis of the vector field module is actually a vector frame along the differentiable manifold 𝑈 over which
the vector field module is defined.

If the basis specified by the given symbol already exists, it is simply returned. If no argument is provided the
module’s default basis is returned.

2.7. Vector Fields 535

Manifolds, Release 10.4.rc1

INPUT:

• symbol – (default: None) either a string, to be used as a common base for the symbols of the elements
of the basis, or a tuple of strings, representing the individual symbols of the elements of the basis

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the elements of the basis, or a tuple of strings, representing the individual LaTeX symbols of the
elements of the basis; if None, symbol is used in place of latex_symbol

• from_frame – (default: None) vector frame 𝑒 on the codomain𝑀 of the destination mapΦ of self;
the returned basis 𝑒 is then such that for all 𝑝 ∈ 𝑈 , we have 𝑒(𝑝) = 𝑒(Φ(𝑝))

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the elements of the basis; if None, the indices will be generated as integers within the
range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the elements of the basis; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual basis; if None, symbolmust be
a string and is used for the common base of the symbols of the elements of the dual basis

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual basis

OUTPUT:

• a VectorFrame representing a basis on self

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: e = XM.basis(e); e
Vector frame (M, (e_0,e_1))

See VectorFrame for more examples and documentation.

destination_map()

Return the differential map associated to self.

The differential map associated to this module is the map

Φ : 𝑈 −→𝑀

such that this module is the set X(𝑈,Φ) of all vector fields of the type

𝑣 : 𝑈 −→ 𝑇𝑀

(where 𝑇𝑀 is the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀,

where 𝑇Φ(𝑝)𝑀 is the tangent space to𝑀 at the point Φ(𝑝).

OUTPUT:

• a DiffMap representing the differential map Φ

EXAMPLES:

536 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.destination_map()
Identity map Id_M of the 3-dimensional differentiable manifold M
sage: U = Manifold(2, U)
sage: Y.<u,v> = U.chart()
sage: Phi = U.diff_map(M, {(Y,X): [u+v, u-v, u*v]}, name= Phi)
sage: XU = U.vector_field_module(dest_map=Phi)
sage: XU.destination_map()
Differentiable map Phi from the 2-dimensional differentiable
manifold U to the 3-dimensional differentiable manifold M

domain()

Return the domain of the vector fields in self.

If the module is X(𝑈,Φ), returns the domain 𝑈 of Φ.

OUTPUT:

• a DifferentiableManifold representing the domain of the vector fields that belong to this mod-
ule

EXAMPLES:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.domain()
3-dimensional differentiable manifold M
sage: U = Manifold(2, U)
sage: Y.<u,v> = U.chart()
sage: Phi = U.diff_map(M, {(Y,X): [u+v, u-v, u*v]}, name= Phi)
sage: XU = U.vector_field_module(dest_map=Phi)
sage: XU.domain()
2-dimensional differentiable manifold U

dual_exterior_power(p)
Return the 𝑝-th exterior power of the dual of self.

If the vector field module self isX(𝑈,Φ), the 𝑝-th exterior power of its dual is the setΩ𝑝(𝑈,Φ) of 𝑝-forms
along 𝑈 with values onΦ(𝑈). It is a free module over𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields
on 𝑈 .

INPUT:

• p – non-negative integer

OUTPUT:

• for 𝑝 = 0, the base ring, i.e. 𝐶𝑘(𝑈)

• for 𝑝 ≥ 1, a DiffFormFreeModule representing the module Ω𝑝(𝑈,Φ)

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.dual_exterior_power(2)

(continues on next page)

2.7. Vector Fields 537

Manifolds, Release 10.4.rc1

(continued from previous page)

Free module Omega^2(M) of 2-forms on the 2-dimensional
differentiable manifold M

sage: XM.dual_exterior_power(1)
Free module Omega^1(M) of 1-forms on the 2-dimensional differentiable␣
→˓manifold M
sage: XM.dual_exterior_power(1) is XM.dual()
True
sage: XM.dual_exterior_power(0)
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M

sage: XM.dual_exterior_power(0) is M.scalar_field_algebra()
True

See also:

DiffFormFreeModule for more examples and documentation.

exterior_power(p)
Return the 𝑝-th exterior power of self.

If the vector field module self is X(𝑈,Φ), its 𝑝-th exterior power is the set 𝐴𝑝(𝑈,Φ) of 𝑝-vector fields
along 𝑈 with values onΦ(𝑈). It is a free module over𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields
on 𝑈 .

INPUT:

• p – non-negative integer

OUTPUT:

• for 𝑝 = 0, the base ring, i.e. 𝐶𝑘(𝑈)

• for 𝑝 = 1, the vector field free module self, since 𝐴1(𝑈,Φ) = X(𝑈,Φ)

• for 𝑝 ≥ 2, instance of MultivectorFreeModule representing the module 𝐴𝑝(𝑈,Φ)

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.exterior_power(2)
Free module A^2(M) of 2-vector fields on the 2-dimensional
differentiable manifold M

sage: XM.exterior_power(1)
Free module X(M) of vector fields on the 2-dimensional
differentiable manifold M

sage: XM.exterior_power(1) is XM
True
sage: XM.exterior_power(0)
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M

sage: XM.exterior_power(0) is M.scalar_field_algebra()
True

See also:

MultivectorFreeModule for more examples and documentation.

538 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

general_linear_group()

Return the general linear group of self.

If the vector field module is X(𝑈,Φ), the general linear group is the group GL(X(𝑈,Φ)) of automorphisms
of X(𝑈,Φ). Note that an automorphism of X(𝑈,Φ) can also be viewed as a field along 𝑈 of automorphisms
of the tangent spaces of 𝑉 = Φ(𝑈).

OUTPUT:

• a AutomorphismFieldParalGroup representing GL(X(𝑈,Φ))

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.general_linear_group()
General linear group of the Free module X(M) of vector fields on
the 2-dimensional differentiable manifold M

See also:

AutomorphismFieldParalGroup for more examples and documentation.

metric(name, signature=None, latex_name=None)
Construct a pseudo-Riemannian metric (nondegenerate symmetric bilinear form) on the current vector field
module.

A pseudo-Riemannian metric of the vector field module is actually a field of tangent-space non-degenerate
symmetric bilinear forms along the manifold 𝑈 on which the vector field module is defined.

INPUT:

• name – (string) name given to the metric

• signature – (integer; default: None) signature 𝑆 of the metric: 𝑆 = 𝑛+ − 𝑛−, where 𝑛+ (resp.
𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the
metric components; if signature is not provided, 𝑆 is set to the manifold’s dimension (Riemannian
signature)

• latex_name – (string; default: None) LaTeX symbol to denote the metric; if None, it is formed
from name

OUTPUT:

• instance of PseudoRiemannianMetricParal representing the defined pseudo-Riemannian met-
ric.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.metric(g)
Riemannian metric g on the 2-dimensional differentiable manifold M
sage: XM.metric(g , signature=0)
Lorentzian metric g on the 2-dimensional differentiable manifold M

See also:

PseudoRiemannianMetricParal for more documentation.

2.7. Vector Fields 539

Manifolds, Release 10.4.rc1

poisson_tensor(name=None, latex_name=None)
Construct a Poisson tensor on the current vector field module.

OUTPUT:

• instance of PoissonTensorFieldParal

EXAMPLES:

Standard Poisson tensor on R2:

sage: M.<q, p> = EuclideanSpace(2)
sage: poisson = M.vector_field_module().poisson_tensor(varpi)
sage: poisson.set_comp()[1,2] = -1
sage: poisson.display()
varpi = -e_q∧e_p

sym_bilinear_form(name=None, latex_name=None)
Construct a symmetric bilinear form on self.

A symmetric bilinear form on the vector field module is actually a field of tangent-space symmetric bilinear
forms along the differentiable manifold 𝑈 over which the vector field module is defined.

INPUT:

• name – string (default: None); name given to the symmetric bilinear form

• latex_name – string (default: None); LaTeX symbol to denote the symmetric bilinear form; if None,
the LaTeX symbol is set to name

OUTPUT:

• a TensorFieldParal of tensor type (0, 2) and symmetric

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.sym_bilinear_form(name= a)
Field of symmetric bilinear forms a on the 2-dimensional
differentiable manifold M

See also:

TensorFieldParal for more examples and documentation.

symplectic_form(name=None, latex_name=None)
Construct a symplectic form on the current vector field module.

OUTPUT:

• instance of SymplecticFormParal

EXAMPLES:

Standard symplectic form on R2:

sage: M.<q, p> = EuclideanSpace(2)
sage: omega = M.vector_field_module().symplectic_form(omega , r \omega)
sage: omega.set_comp()[1,2] = -1
sage: omega.display()
omega = -dq∧dp

540 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

tensor_from_comp(tensor_type, comp, name=None, latex_name=None)
Construct a tensor on self from a set of components.

The tensor is actually a tensor field along the differentiable manifold 𝑈 over which the vector field module is
defined. The tensor symmetries are deduced from those of the components.

INPUT:

• tensor_type – pair (𝑘, 𝑙) with 𝑘 being the contravariant rank and 𝑙 the covariant rank

• comp – Components; the tensor components in a given basis

• name – string (default: None); name given to the tensor

• latex_name – string (default: None); LaTeX symbol to denote the tensor; if None, the LaTeX
symbol is set to name

OUTPUT:

• a TensorFieldParal representing the tensor defined on the vector field module with the provided
characteristics

EXAMPLES:

A 2-dimensional set of components transformed into a type-(1, 1) tensor field:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: XM = M.vector_field_module()
sage: from sage.tensor.modules.comp import Components
sage: comp = Components(M.scalar_field_algebra(), X.frame(), 2,
....: output_formatter=XM._output_formatter)
sage: comp[:] = [[1+x, -y], [x*y, 2-y^2]]
sage: t = XM.tensor_from_comp((1,1), comp, name= t); t
Tensor field t of type (1,1) on the 2-dimensional differentiable
manifold M

sage: t.display()
t = (x + 1) ∂/∂x⊗dx - y ∂/∂x⊗dy + x*y ∂/∂y⊗dx + (-y^2 + 2) ∂/∂y⊗dy

The same set of components transformed into a type-(0, 2) tensor field:

sage: t = XM.tensor_from_comp((0,2), comp, name= t); t
Tensor field t of type (0,2) on the 2-dimensional differentiable
manifold M

sage: t.display()
t = (x + 1) dx⊗dx - y dx⊗dy + x*y dy⊗dx + (-y^2 + 2) dy⊗dy

tensor_module(k, l, sym, antisym)
Return the free module of all tensors of type (𝑘, 𝑙) defined on self.

INPUT:

• k – non-negative integer; the contravariant rank, the tensor type being (𝑘, 𝑙)

• l – non-negative integer; the covariant rank, the tensor type being (𝑘, 𝑙)

OUTPUT:

• a TensorFieldFreeModule representing the free module of type-(𝑘, 𝑙) tensors on the vector field
module

EXAMPLES:

A tensor field module on a 2-dimensional differentiable manifold:

2.7. Vector Fields 541

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.tensor_module(1,2)
Free module T^(1,2)(M) of type-(1,2) tensors fields on the
2-dimensional differentiable manifold M

The special case of tensor fields of type (1,0):

sage: XM.tensor_module(1,0)
Free module X(M) of vector fields on the 2-dimensional
differentiable manifold M

The result is cached:

sage: XM.tensor_module(1,2) is XM.tensor_module(1,2)
True
sage: XM.tensor_module(1,0) is XM
True

See also:

TensorFieldFreeModule for more examples and documentation.

class sage.manifolds.differentiable.vectorfield_module.VectorFieldModule(do-
main:
Dif-
ferentiable-
Mani-
fold,
dest_map:
DiffMap
| None
=
None)

Bases: UniqueRepresentation, ReflexiveModule_base

Module of vector fields along a differentiable manifold 𝑈 with values on a differentiable manifold 𝑀 , via a dif-
ferentiable map 𝑈 →𝑀 .

Given a differentiable map

Φ : 𝑈 −→𝑀,

the vector field module X(𝑈,Φ) is the set of all vector fields of the type

𝑣 : 𝑈 −→ 𝑇𝑀

(where 𝑇𝑀 is the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀,

where 𝑇Φ(𝑝)𝑀 is the tangent space to𝑀 at the point Φ(𝑝).

The set X(𝑈,Φ) is a module over 𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields on 𝑈 (see DiffS-
calarFieldAlgebra). Furthermore, it is a Lie algebroid under the Lie bracket (cf. Wikipedia article Lie_al-
gebroid)

[𝑋,𝑌] = 𝑋 ∘ 𝑌 − 𝑌 ∘𝑋

542 Chapter 2. Differentiable Manifolds

https://docs.python.org/library/constants.html#None
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/reflexive_module.html#sage.tensor.modules.reflexive_module.ReflexiveModule_base
https://en.wikipedia.org/wiki/Lie_algebroid
https://en.wikipedia.org/wiki/Lie_algebroid

Manifolds, Release 10.4.rc1

over the scalarfields if Φ is the identity map. That is to say the Lie bracket is antisymmetric, bilinear over the base
field, satisfies the Jacobi identity, and [𝑋, 𝑓𝑌] = 𝑋(𝑓)𝑌 + 𝑓 [𝑋,𝑌].

The standard case of vector fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 ; we then
denote X(𝑀, Id𝑀) by merely X(𝑀). Other common cases are Φ being an immersion and Φ being a curve in𝑀
(𝑈 is then an open interval of R).

Note: If𝑀 is parallelizable, the class VectorFieldFreeModule should be used instead.

INPUT:

• domain – differentiable manifold 𝑈 along which the vector fields are defined

• dest_map – (default: None) destination map Φ : 𝑈 →𝑀 (type: DiffMap); if None, it is assumed that
𝑈 =𝑀 and Φ is the identity map of𝑀 (case of vector fields on𝑀)

EXAMPLES:

Module of vector fields on the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: XM = M.vector_field_module() ; XM
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M

X(𝑀) is a module over the algebra 𝐶𝑘(𝑀):

sage: XM.category()
Category of modules over Algebra of differentiable scalar fields on the
2-dimensional differentiable manifold M
sage: XM.base_ring() is M.scalar_field_algebra()
True

X(𝑀) is not a free module:

sage: isinstance(XM, FiniteRankFreeModule)
False

because𝑀 = 𝑆2 is not parallelizable:

sage: M.is_manifestly_parallelizable()
False

On the contrary, the module of vector fields on 𝑈 is a free module, since 𝑈 is parallelizable (being a coordinate
domain):

sage: XU = U.vector_field_module()
sage: isinstance(XU, FiniteRankFreeModule)
True

(continues on next page)

2.7. Vector Fields 543

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: U.is_manifestly_parallelizable()
True

The zero element of the module:

sage: z = XM.zero() ; z
Vector field zero on the 2-dimensional differentiable manifold M
sage: z.display(c_xy.frame())
zero = 0
sage: z.display(c_uv.frame())
zero = 0

The module X(𝑀) coerces to any module of vector fields defined on a subdomain of𝑀 , for instance X(𝑈):

sage: XU.has_coerce_map_from(XM)
True
sage: XU.coerce_map_from(XM)
Coercion map:
From: Module X(M) of vector fields on the 2-dimensional
differentiable manifold M

To: Free module X(U) of vector fields on the Open subset U of the
2-dimensional differentiable manifold M

The conversion map is actually the restriction of vector fields defined on𝑀 to 𝑈 .

Element

alias of VectorField

alternating_contravariant_tensor(degree, name=None, latex_name=None)
Construct an alternating contravariant tensor on the vector field module self.

An alternating contravariant tensor on self is actually a multivector field along the differentiable manifold
𝑈 over which self is defined.

INPUT:

• degree – degree of the alternating contravariant tensor (i.e. its tensor rank)

• name – (default: None) string; name given to the alternating contravariant tensor

• latex_name – (default: None) string; LaTeX symbol to denote the alternating contravariant tensor;
if none is provided, the LaTeX symbol is set to name

OUTPUT:

• instance of MultivectorField

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.alternating_contravariant_tensor(2, name= a)
2-vector field a on the 2-dimensional differentiable
manifold M

An alternating contravariant tensor of degree 1 is simply a vector field:

sage: XM.alternating_contravariant_tensor(1, name= a)
Vector field a on the 2-dimensional differentiable
manifold M

544 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

See also:

MultivectorField for more examples and documentation.

alternating_form(degree, name=None, latex_name=None)
Construct an alternating form on the vector field module self.

An alternating form on self is actually a differential form along the differentiable manifold 𝑈 over which
self is defined.

INPUT:

• degree – the degree of the alternating form (i.e. its tensor rank)

• name – (string; optional) name given to the alternating form

• latex_name – (string; optional) LaTeX symbol to denote the alternating form; if none is provided,
the LaTeX symbol is set to name

OUTPUT:

• instance of DiffForm

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.alternating_form(2, name= a)
2-form a on the 2-dimensional differentiable manifold M
sage: XM.alternating_form(1, name= a)
1-form a on the 2-dimensional differentiable manifold M

See also:

DiffForm for more examples and documentation.

ambient_domain()

Return the manifold in which the vector fields of this module take their values.

If the module is X(𝑈,Φ), returns the codomain𝑀 of Φ.

OUTPUT:

• instance of DifferentiableManifold representing the manifold in which the vector fields of this
module take their values

EXAMPLES:

sage: M = Manifold(5, M)
sage: XM = M.vector_field_module()
sage: XM.ambient_domain()
5-dimensional differentiable manifold M
sage: U = Manifold(2, U)
sage: Phi = U.diff_map(M, name= Phi)
sage: XU = U.vector_field_module(dest_map=Phi)
sage: XU.ambient_domain()
5-dimensional differentiable manifold M

automorphism(name=None, latex_name=None)
Construct an automorphism of the vector field module.

An automorphism of the vector field module is actually a field of tangent-space automorphisms along the
differentiable manifold 𝑈 over which the vector field module is defined.

2.7. Vector Fields 545

Manifolds, Release 10.4.rc1

INPUT:

• name – (string; optional) name given to the automorphism

• latex_name – (string; optional) LaTeX symbol to denote the automorphism; if none is provided, the
LaTeX symbol is set to name

OUTPUT:

• instance of AutomorphismField

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.automorphism()
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M

sage: XM.automorphism(name= a)
Field of tangent-space automorphisms a on the 2-dimensional
differentiable manifold M

See also:

AutomorphismField for more examples and documentation.

destination_map()

Return the differential map associated to this module.

The differential map associated to this module is the map

Φ : 𝑈 −→𝑀

such that this module is the set X(𝑈,Φ) of all vector fields of the type

𝑣 : 𝑈 −→ 𝑇𝑀

(where 𝑇𝑀 is the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀,

where 𝑇Φ(𝑝)𝑀 is the tangent space to𝑀 at the point Φ(𝑝).

OUTPUT:

• instance of DiffMap representing the differential map Φ

EXAMPLES:

sage: M = Manifold(5, M)
sage: XM = M.vector_field_module()
sage: XM.destination_map()
Identity map Id_M of the 5-dimensional differentiable manifold M
sage: U = Manifold(2, U)
sage: Phi = U.diff_map(M, name= Phi)
sage: XU = U.vector_field_module(dest_map=Phi)
sage: XU.destination_map()
Differentiable map Phi from the 2-dimensional differentiable
manifold U to the 5-dimensional differentiable manifold M

546 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

domain()

Return the domain of the vector fields in this module.

If the module is X(𝑈,Φ), returns the domain 𝑈 of Φ.

OUTPUT:

• instance of DifferentiableManifold representing the domain of the vector fields that belong to
this module

EXAMPLES:

sage: M = Manifold(5, M)
sage: XM = M.vector_field_module()
sage: XM.domain()
5-dimensional differentiable manifold M
sage: U = Manifold(2, U)
sage: Phi = U.diff_map(M, name= Phi)
sage: XU = U.vector_field_module(dest_map=Phi)
sage: XU.domain()
2-dimensional differentiable manifold U

dual()

Return the dual module.

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.dual()
Module Omega^1(M) of 1-forms on the 2-dimensional differentiable
manifold M

dual_exterior_power(p)
Return the 𝑝-th exterior power of the dual of the vector field module.

If the vector field module is X(𝑈,Φ), the 𝑝-th exterior power of its dual is the set Ω𝑝(𝑈,Φ) of 𝑝-forms along
𝑈 with values on Φ(𝑈). It is a module over 𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields on 𝑈 .

INPUT:

• p – non-negative integer

OUTPUT:

• for 𝑝 = 0, the base ring, i.e. 𝐶𝑘(𝑈)

• for 𝑝 ≥ 1, instance of DiffFormModule representing the module Ω𝑝(𝑈,Φ)

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.dual_exterior_power(2)
Module Omega^2(M) of 2-forms on the 2-dimensional differentiable
manifold M

sage: XM.dual_exterior_power(1)
Module Omega^1(M) of 1-forms on the 2-dimensional differentiable
manifold M

sage: XM.dual_exterior_power(1) is XM.dual()
True

(continues on next page)

2.7. Vector Fields 547

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: XM.dual_exterior_power(0)
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M

sage: XM.dual_exterior_power(0) is M.scalar_field_algebra()
True

See also:

DiffFormModule for more examples and documentation.

exterior_power(p)

Return the 𝑝-th exterior power of self.

If the vector field module self is X(𝑈,Φ), its 𝑝-th exterior power is the set 𝐴𝑝(𝑈,Φ) of 𝑝-vector fields
along 𝑈 with values on Φ(𝑈). It is a module over 𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields on
𝑈 .

INPUT:

• p – non-negative integer

OUTPUT:

• for 𝑝 = 0, the base ring, i.e. 𝐶𝑘(𝑈)

• for 𝑝 = 1, the vector field module self, since 𝐴1(𝑈,Φ) = X(𝑈,Φ)

• for 𝑝 ≥ 2, instance of MultivectorModule representing the module 𝐴𝑝(𝑈,Φ)

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.exterior_power(2)
Module A^2(M) of 2-vector fields on the 2-dimensional
differentiable manifold M

sage: XM.exterior_power(1)
Module X(M) of vector fields on the 2-dimensional
differentiable manifold M

sage: XM.exterior_power(1) is XM
True
sage: XM.exterior_power(0)
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M

sage: XM.exterior_power(0) is M.scalar_field_algebra()
True

See also:

MultivectorModule for more examples and documentation.

general_linear_group()

Return the general linear group of self.

If the vector field module is X(𝑈,Φ), the general linear group is the group GL(X(𝑈,Φ)) of automorphisms
of X(𝑈,Φ). Note that an automorphism of X(𝑈,Φ) can also be viewed as a field along 𝑈 of automorphisms
of the tangent spaces of𝑀 ⊃ Φ(𝑈).

OUTPUT:

• instance of class AutomorphismFieldGroup representing GL(X(𝑈,Φ))

548 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.general_linear_group()
General linear group of the Module X(M) of vector fields on the
2-dimensional differentiable manifold M

See also:

AutomorphismFieldGroup for more examples and documentation.

identity_map()

Construct the identity map on the vector field module.

The identity map on the vector field module is actually a field of tangent-space identity maps along the dif-
ferentiable manifold 𝑈 over which the vector field module is defined.

OUTPUT:

• instance of AutomorphismField

EXAMPLES:

Get the identity map on a vector field module:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: Id = XM.identity_map(); Id
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold M

If the identity should be renamed, one has to create a copy:

sage: Id.set_name(1)
Traceback (most recent call last):
...
ValueError: the name of an immutable element cannot be changed
sage: one = Id.copy(1); one
Field of tangent-space automorphisms 1 on the 2-dimensional
differentiable manifold M

linear_form(name=None, latex_name=None)
Construct a linear form on the vector field module.

A linear form on the vector fieldmodule is actually a field of linear forms (i.e. a 1-form) along the differentiable
manifold 𝑈 over which the vector field module is defined.

INPUT:

• name – (string; optional) name given to the linear form

• latex_name – (string; optional) LaTeX symbol to denote the linear form; if none is provided, the
LaTeX symbol is set to name

OUTPUT:

• instance of DiffForm

EXAMPLES:

2.7. Vector Fields 549

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.linear_form()
1-form on the 2-dimensional differentiable manifold M
sage: XM.linear_form(name= a)
1-form a on the 2-dimensional differentiable manifold M

See also:

DiffForm for more examples and documentation.

metric(name, signature=None, latex_name=None)
Construct a metric (symmetric bilinear form) on the current vector field module.

A metric of the vector field module is actually a field of tangent-space non-degenerate symmetric bilinear
forms along the manifold 𝑈 on which the vector field module is defined.

INPUT:

• name – (string) name given to the metric

• signature – (integer; default: None) signature 𝑆 of the metric: 𝑆 = 𝑛+ − 𝑛−, where 𝑛+ (resp.
𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the
metric components; if signature is not provided, 𝑆 is set to the manifold’s dimension (Riemannian
signature)

• latex_name – (string; default: None) LaTeX symbol to denote the metric; if None, it is formed
from name

OUTPUT:

• instance of PseudoRiemannianMetric representing the defined pseudo-Riemannian metric.

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.metric(g)
Riemannian metric g on the 2-dimensional differentiable manifold M
sage: XM.metric(g , signature=0)
Lorentzian metric g on the 2-dimensional differentiable manifold M

See also:

PseudoRiemannianMetric for more documentation.

poisson_tensor(name=None, latex_name=None)
Construct a Poisson tensor on the current vector field module.

OUTPUT:

• instance of PoissonTensorField

EXAMPLES:

Poisson tensor on the 2-sphere:

sage: M = manifolds.Sphere(2, coordinates= stereographic)
sage: XM = M.vector_field_module()
sage: varpi = XM.poisson_tensor(name= varpi , latex_name=r \varpi)
sage: varpi

(continues on next page)

550 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

2-vector field varpi on the 2-sphere S^2 of radius 1 smoothly embedded in the␣
→˓Euclidean space E^3

symplectic_form(name=None, latex_name=None)
Construct a symplectic form on the current vector field module.

OUTPUT:

• instance of SymplecticForm

EXAMPLES:

Symplectic form on the 2-sphere:

sage: M = manifolds.Sphere(2, coordinates= stereographic)
sage: XM = M.vector_field_module()
sage: omega = XM.symplectic_form(name= omega , latex_name=r \omega)
sage: omega
Symplectic form omega on the 2-sphere S^2 of radius 1 smoothly
embedded in the Euclidean space E^3

tensor(*args, **kwds)
Construct a tensor field on the domain of self or a tensor product of self with other modules.

If args consist of other parents, just delegate to tensor_product().

Otherwise, construct a tensor (i.e., a tensor field on the domain of the vector field module) from the following
input.

INPUT:

• tensor_type – pair (k,l) with k being the contravariant rank and l the covariant rank

• name – (string; default: None) name given to the tensor

• latex_name – (string; default: None) LaTeX symbol to denote the tensor; if none is provided, the
LaTeX symbol is set to name

• sym – (default: None) a symmetry or a list of symmetries among the tensor arguments: each symmetry
is described by a tuple containing the positions of the involved arguments, with the convention position=0
for the first argument; for instance:

– sym=(0,1) for a symmetry between the 1st and 2nd arguments

– sym=[(0,2),(1,3,4)] for a symmetry between the 1st and 3rd arguments and a symmetry
between the 2nd, 4th and 5th arguments

• antisym – (default: None) antisymmetry or list of antisymmetries among the arguments, with the
same convention as for sym

• specific_type – (default: None) specific subclass of TensorField for the output

OUTPUT:

• instance of TensorField representing the tensor defined on the vector field module with the provided
characteristics

EXAMPLES:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.tensor((1,2), name= t)

(continues on next page)

2.7. Vector Fields 551

Manifolds, Release 10.4.rc1

(continued from previous page)

Tensor field t of type (1,2) on the 2-dimensional differentiable
manifold M

sage: XM.tensor((1,0), name= a)
Vector field a on the 2-dimensional differentiable manifold M
sage: XM.tensor((0,2), name= a , antisym=(0,1))
2-form a on the 2-dimensional differentiable manifold M

Delegation to tensor_product():

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.tensor(XM)
Module T^(2,0)(M) of type-(2,0) tensors fields on the 2-dimensional␣
→˓differentiable manifold M
sage: XM.tensor(XM, XM.dual(), XM)
Module T^(3,1)(M) of type-(3,1) tensors fields on the 2-dimensional␣
→˓differentiable manifold M
sage: XM.tensor(XM).tensor(XM.dual().tensor(XM.dual()))
Traceback (most recent call last):
...
AttributeError: TensorFieldModule_with_category object has no attribute _
→˓basis_sym ...

See also:

TensorField for more examples and documentation.

tensor_module(k, l, sym, antisym)
Return the module of type-(𝑘, 𝑙) tensors on self.

INPUT:

• k – non-negative integer; the contravariant rank, the tensor type being (𝑘, 𝑙)

• l – non-negative integer; the covariant rank, the tensor type being (𝑘, 𝑙)

OUTPUT:

• instance of TensorFieldModule representing the module 𝑇 (𝑘,𝑙)(𝑈,Φ) of type-(𝑘, 𝑙) tensors on the
vector field module

EXAMPLES:

A tensor field module on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: XM = M.vector_field_module()
sage: XM.tensor_module(1,2)
Module T^(1,2)(M) of type-(1,2) tensors fields on the 2-dimensional
differentiable manifold M

The special case of tensor fields of type (1,0):

sage: XM.tensor_module(1,0)
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M

The result is cached:

552 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: XM.tensor_module(1,2) is XM.tensor_module(1,2)
True
sage: XM.tensor_module(1,0) is XM
True

See TensorFieldModule for more examples and documentation.

zero()

Return the zero of self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart() # makes M parallelizable
sage: XM = M.vector_field_module()
sage: XM.zero()
Vector field zero on the 2-dimensional differentiable
manifold M

2.7.2 Vector Fields

Given two differentiable manifolds 𝑈 and𝑀 over the same topological field𝐾 and a differentiable map

Φ : 𝑈 −→𝑀,

we define a vector field along 𝑈 with values on𝑀 to be a differentiable map

𝑣 : 𝑈 −→ 𝑇𝑀

(𝑇𝑀 being the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀.

The standard case of vector fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Vector fields are implemented via two classes: VectorFieldParal and VectorField, depending respectively
whether the manifold𝑀 is parallelizable or not, i.e. whether the bundle 𝑇𝑀 is trivial or not.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Marco Mancini (2015): parallelization of vector field plots

• Travis Scrimshaw (2016): review tweaks

• Eric Gourgoulhon (2017): vector fields inherit from multivector fields

• Eric Gourgoulhon (2018): dot and cross products, operators norm and curl

REFERENCES:

• [KN1963]

• [Lee2013]

• [ONe1983]

• [BG1988]

2.7. Vector Fields 553

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.vectorfield.VectorField(vector_field_module,
name=None,
latex_name=None)

Bases: MultivectorField

Vector field along a differentiable manifold.

An instance of this class is a vector field along a differentiable manifold 𝑈 with values on a differentiable manifold
𝑀 , via a differentiable map 𝑈 →𝑀 . More precisely, given a differentiable map

Φ : 𝑈 −→𝑀,

a vector field along 𝑈 with values on𝑀 is a differentiable map

𝑣 : 𝑈 −→ 𝑇𝑀

(𝑇𝑀 being the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀.

The standard case of vector fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is parallelizable, then VectorFieldParal must be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 ⊃ Φ(𝑈)

• name – (default: None) name given to the vector field

• latex_name – (default: None) LaTeX symbol to denote the vector field; if none is provided, the LaTeX
symbol is set to name

EXAMPLES:

A vector field on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_tu.<t,u> = V.chart()
sage: transf = c_xy.transition_map(c_tu, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= t+u>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_tu.frame()
sage: c_tuW = c_tu.restrict(W) ; eVW = c_tuW.frame()
sage: v = M.vector_field(name= v) ; v
Vector field v on the 2-dimensional differentiable manifold M
sage: v.parent()
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M

The vector field is first defined on the domain 𝑈 by means of its components with respect to the frame eU:

sage: v[eU,:] = [-y, 1+x]

554 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The components with respect to the frame eV are then deduced by continuation of the components with respect to
the frame eVW on the domain𝑊 = 𝑈 ∩ 𝑉 , expressed in terms on the coordinates covering 𝑉 :

sage: v[eV,0] = v[eVW,0,c_tuW].expr()
sage: v[eV,1] = v[eVW,1,c_tuW].expr()

At this stage, the vector field is fully defined on the whole manifold:

sage: v.display(eU)
v = -y ∂/∂x + (x + 1) ∂/∂y
sage: v.display(eV)
v = (u + 1) ∂/∂t + (-t - 1) ∂/∂u

The vector field acting on scalar fields:

sage: f = M.scalar_field({c_xy: (x+y)^2, c_tu: t^2}, name= f)
sage: s = v(f) ; s
Scalar field v(f) on the 2-dimensional differentiable manifold M
sage: s.display()
v(f): M → ℝ
on U: (x, y) ↦ 2*x^2 - 2*y^2 + 2*x + 2*y
on V: (t, u) ↦ 2*t*u + 2*t

Some checks:

sage: v(f) == f.differential()(v)
True
sage: v(f) == f.lie_der(v)
True

The result is defined on the intersection of the vector field’s domain and the scalar field’s one:

sage: s = v(f.restrict(U)) ; s
Scalar field v(f) on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s == v(f).restrict(U)
True
sage: s = v(f.restrict(W)) ; s
Scalar field v(f) on the Open subset W of the 2-dimensional
differentiable manifold M
sage: s.display()
v(f): W → ℝ

(x, y) ↦ 2*x^2 - 2*y^2 + 2*x + 2*y
(t, u) ↦ 2*t*u + 2*t

sage: s = v.restrict(U)(f) ; s
Scalar field v(f) on the Open subset U of the 2-dimensional
differentiable manifold M
sage: s.display()
v(f): U → ℝ

(x, y) ↦ 2*x^2 - 2*y^2 + 2*x + 2*y
on W: (t, u) ↦ 2*t*u + 2*t
sage: s = v.restrict(U)(f.restrict(V)) ; s
Scalar field v(f) on the Open subset W of the 2-dimensional
differentiable manifold M
sage: s.display()
v(f): W → ℝ

(x, y) ↦ 2*x^2 - 2*y^2 + 2*x + 2*y
(t, u) ↦ 2*t*u + 2*t

2.7. Vector Fields 555

Manifolds, Release 10.4.rc1

bracket(other)
Return the Lie bracket [self, other].

INPUT:

• other – a VectorField

OUTPUT:

• the VectorField [self, other]

EXAMPLES:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: v = -X.frame()[0] + 2*X.frame()[1] - (x^2 - y)*X.frame()[2]
sage: w = (z + y) * X.frame()[1] - X.frame()[2]
sage: vw = v.bracket(w); vw
Vector field on the 3-dimensional differentiable manifold M
sage: vw.display()
(-x^2 + y + 2) ∂/∂y + (-y - z) ∂/∂z

Some checks:

sage: vw == - w.bracket(v)
True
sage: f = M.scalar_field({X: x+y*z})
sage: vw(f) == v(w(f)) - w(v(f))
True
sage: vw == w.lie_derivative(v)
True

cross(other, metric=None)
Return the cross product of self with another vector field (with respect to a given metric), assuming that
the domain of self is 3-dimensional.

If self is a vector field 𝑢 on a 3-dimensional differentiable orientable manifold𝑀 and other is a vector
field 𝑣 on𝑀 , the cross product (also called vector product) of 𝑢 by 𝑣 with respect to a pseudo-Riemannian
metric 𝑔 on𝑀 is the vector field 𝑤 = 𝑢× 𝑣 defined by

𝑤𝑖 = 𝜖𝑖𝑗𝑘𝑢
𝑗𝑣𝑘 = 𝑔𝑖𝑙𝜖𝑙𝑗𝑘𝑢

𝑗𝑣𝑘

where 𝜖 is the volume 3-form (Levi-Civita tensor) of 𝑔 (cf. volume_form())

Note: The method cross_product is meaningful only if for vector fields on a 3-dimensional manifold.

INPUT:

• other – a vector field, defined on the same domain as self

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the cross
product; if none is provided, the domain of self is supposed to be endowed with a default metric (i.e.
is supposed to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter
is used to define the cross product

OUTPUT:

• instance of VectorField representing the cross product of self by other.

556 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Cross product in the Euclidean 3-space:

sage: M.<x,y,z> = EuclideanSpace()
sage: u = M.vector_field(-y, x, 0, name= u)
sage: v = M.vector_field(x, y, 0, name= v)
sage: w = u.cross_product(v); w
Vector field u x v on the Euclidean space E^3
sage: w.display()
u x v = (-x^2 - y^2) e_z

A shortcut alias of cross_product is cross:

sage: u.cross(v) == w
True

The cross product of a vector field with itself is zero:

sage: u.cross_product(u).display()
u x u = 0

Cross product with respect to a metric that is not the default one:

sage: h = M.riemannian_metric(h)
sage: h[1,1], h[2,2], h[3,3] = 1/(1+y^2), 1/(1+z^2), 1/(1+x^2)
sage: w = u.cross_product(v, metric=h); w
Vector field on the Euclidean space E^3
sage: w.display()
-(x^2 + y^2)*sqrt(x^2 + 1)/(sqrt(y^2 + 1)*sqrt(z^2 + 1)) e_z

Cross product of two vector fields along a curve (arc of a helix):

sage: R.<t> = manifolds.RealLine()
sage: C = M.curve((cos(t), sin(t), t), (t, 0, 2*pi), name= C)
sage: u = C.tangent_vector_field()
sage: u.display()
C = -sin(t) e_x + cos(t) e_y + e_z
sage: I = C.domain(); I
Real interval (0, 2*pi)
sage: v = I.vector_field(-cos(t), sin(t), 0, dest_map=C)
sage: v.display()
-cos(t) e_x + sin(t) e_y
sage: w = u.cross_product(v); w
Vector field along the Real interval (0, 2*pi) with values on the
Euclidean space E^3

sage: w.parent().destination_map()
Curve C in the Euclidean space E^3
sage: w.display()
-sin(t) e_x - cos(t) e_y + (2*cos(t)^2 - 1) e_z

Cross product between a vector field along the curve and a vector field on the ambient Euclidean space:

sage: e_x = M.cartesian_frame()[1]
sage: w = u.cross_product(e_x); w
Vector field C x e_x along the Real interval (0, 2*pi) with values
on the Euclidean space E^3

sage: w.display()
C x e_x = e_y - cos(t) e_z

2.7. Vector Fields 557

Manifolds, Release 10.4.rc1

cross_product(other, metric=None)
Return the cross product of self with another vector field (with respect to a given metric), assuming that
the domain of self is 3-dimensional.

If self is a vector field 𝑢 on a 3-dimensional differentiable orientable manifold𝑀 and other is a vector
field 𝑣 on𝑀 , the cross product (also called vector product) of 𝑢 by 𝑣 with respect to a pseudo-Riemannian
metric 𝑔 on𝑀 is the vector field 𝑤 = 𝑢× 𝑣 defined by

𝑤𝑖 = 𝜖𝑖𝑗𝑘𝑢
𝑗𝑣𝑘 = 𝑔𝑖𝑙𝜖𝑙𝑗𝑘𝑢

𝑗𝑣𝑘

where 𝜖 is the volume 3-form (Levi-Civita tensor) of 𝑔 (cf. volume_form())

Note: The method cross_product is meaningful only if for vector fields on a 3-dimensional manifold.

INPUT:

• other – a vector field, defined on the same domain as self

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the cross
product; if none is provided, the domain of self is supposed to be endowed with a default metric (i.e.
is supposed to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter
is used to define the cross product

OUTPUT:

• instance of VectorField representing the cross product of self by other.

EXAMPLES:

Cross product in the Euclidean 3-space:

sage: M.<x,y,z> = EuclideanSpace()
sage: u = M.vector_field(-y, x, 0, name= u)
sage: v = M.vector_field(x, y, 0, name= v)
sage: w = u.cross_product(v); w
Vector field u x v on the Euclidean space E^3
sage: w.display()
u x v = (-x^2 - y^2) e_z

A shortcut alias of cross_product is cross:

sage: u.cross(v) == w
True

The cross product of a vector field with itself is zero:

sage: u.cross_product(u).display()
u x u = 0

Cross product with respect to a metric that is not the default one:

sage: h = M.riemannian_metric(h)
sage: h[1,1], h[2,2], h[3,3] = 1/(1+y^2), 1/(1+z^2), 1/(1+x^2)
sage: w = u.cross_product(v, metric=h); w
Vector field on the Euclidean space E^3
sage: w.display()
-(x^2 + y^2)*sqrt(x^2 + 1)/(sqrt(y^2 + 1)*sqrt(z^2 + 1)) e_z

Cross product of two vector fields along a curve (arc of a helix):

558 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: R.<t> = manifolds.RealLine()
sage: C = M.curve((cos(t), sin(t), t), (t, 0, 2*pi), name= C)
sage: u = C.tangent_vector_field()
sage: u.display()
C = -sin(t) e_x + cos(t) e_y + e_z
sage: I = C.domain(); I
Real interval (0, 2*pi)
sage: v = I.vector_field(-cos(t), sin(t), 0, dest_map=C)
sage: v.display()
-cos(t) e_x + sin(t) e_y
sage: w = u.cross_product(v); w
Vector field along the Real interval (0, 2*pi) with values on the
Euclidean space E^3

sage: w.parent().destination_map()
Curve C in the Euclidean space E^3
sage: w.display()
-sin(t) e_x - cos(t) e_y + (2*cos(t)^2 - 1) e_z

Cross product between a vector field along the curve and a vector field on the ambient Euclidean space:

sage: e_x = M.cartesian_frame()[1]
sage: w = u.cross_product(e_x); w
Vector field C x e_x along the Real interval (0, 2*pi) with values
on the Euclidean space E^3

sage: w.display()
C x e_x = e_y - cos(t) e_z

curl(metric=None)
Return the curl of self with respect to a given metric, assuming that the domain of self is 3-dimensional.

If self is a vector field 𝑣 on a 3-dimensional differentiable orientable manifold𝑀 , the curl of 𝑣 with respect
to a metric 𝑔 on𝑀 is the vector field defined by

curl 𝑣 = (*(d𝑣♭))♯

where 𝑣♭ is the 1-form associated to 𝑣 by the metric 𝑔 (see down()), *(d𝑣♭) is the Hodge dual with respect
to 𝑔 of the 2-form d𝑣♭ (exterior derivative of 𝑣♭) (see hodge_dual()) and (*(d𝑣♭))♯ is corresponding
vector field by 𝑔-duality (see up()).

An alternative expression of the curl is

(curl 𝑣)𝑖 = 𝜖𝑖𝑗𝑘∇𝑗𝑣𝑘

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection) and 𝜖 the volume 3-form
(Levi-Civita tensor) of 𝑔 (cf. volume_form())

Note: The method curl is meaningful only if self is a vector field on a 3-dimensional manifold.

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the curl; if
none is provided, the domain of self is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the curl

OUTPUT:

• instance of VectorField representing the curl of self

2.7. Vector Fields 559

Manifolds, Release 10.4.rc1

EXAMPLES:

Curl of a vector field in the Euclidean 3-space:

sage: M.<x,y,z> = EuclideanSpace()
sage: v = M.vector_field(-y, x, 0, name= v)
sage: v.display()
v = -y e_x + x e_y
sage: s = v.curl(); s
Vector field curl(v) on the Euclidean space E^3
sage: s.display()
curl(v) = 2 e_z

The function curl() from the operators module can be used instead of the method curl():

sage: from sage.manifolds.operators import curl
sage: curl(v) == s
True

If one prefers the notation rot over curl, it suffices to do:

sage: from sage.manifolds.operators import curl as rot
sage: rot(v) == s
True

The curl of a gradient vanishes identically:

sage: f = M.scalar_field(function(F)(x,y,z))
sage: gradf = f.gradient()
sage: gradf.display()
d(F)/dx e_x + d(F)/dy e_y + d(F)/dz e_z
sage: s = curl(gradf); s
Vector field on the Euclidean space E^3
sage: s.display()
0

dot(other, metric=None)
Return the scalar product of self with another vector field (with respect to a given metric).

If self is the vector field 𝑢 and other is the vector field 𝑣, the scalar product of 𝑢 by 𝑣 with respect to a
given pseudo-Riemannian metric 𝑔 is the scalar field 𝑠 defined by

𝑠 = 𝑢 · 𝑣 = 𝑔(𝑢, 𝑣) = 𝑔𝑖𝑗𝑢
𝑖𝑣𝑗

INPUT:

• other – a vector field, defined on the same domain as self

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the scalar
product; if none is provided, the domain of self is supposed to be endowed with a default metric (i.e.
is supposed to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter
is used to define the scalar product

OUTPUT:

• instance of DiffScalarField representing the scalar product of self by other.

EXAMPLES:

Scalar product in the Euclidean plane:

560 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M.<x,y> = EuclideanSpace()
sage: u = M.vector_field(x, y, name= u)
sage: v = M.vector_field(y, x, name= v)
sage: s = u.dot_product(v); s
Scalar field u.v on the Euclidean plane E^2
sage: s.display()
u.v: E^2 → ℝ

(x, y) ↦ 2*x*y

A shortcut alias of dot_product is dot:

sage: u.dot(v) == s
True

A test of orthogonality:

sage: v[:] = -y, x
sage: u.dot_product(v) == 0
True

Scalar product with respect to a metric that is not the default one:

sage: h = M.riemannian_metric(h)
sage: h[1,1], h[2,2] = 1/(1+y^2), 1/(1+x^2)
sage: s = u.dot_product(v, metric=h); s
Scalar field h(u,v) on the Euclidean plane E^2
sage: s.display()
h(u,v): E^2 → ℝ

(x, y) ↦ -(x^3*y - x*y^3)/((x^2 + 1)*y^2 + x^2 + 1)

Scalar product of two vector fields along a curve (a lemniscate of Gerono):

sage: R.<t> = manifolds.RealLine()
sage: C = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= C)
sage: u = C.tangent_vector_field(name= u)
sage: u.display()
u = cos(t) e_x + (2*cos(t)^2 - 1) e_y
sage: I = C.domain(); I
Real interval (0, 2*pi)
sage: v = I.vector_field(cos(t), -1, dest_map=C, name= v)
sage: v.display()
v = cos(t) e_x - e_y
sage: s = u.dot_product(v); s
Scalar field u.v on the Real interval (0, 2*pi)
sage: s.display()
u.v: (0, 2*pi) → ℝ

t ↦ sin(t)^2

Scalar product between a vector field along the curve and a vector field on the ambient Euclidean plane:

sage: e_x = M.cartesian_frame()[1]
sage: s = u.dot_product(e_x); s
Scalar field u.e_x on the Real interval (0, 2*pi)
sage: s.display()
u.e_x: (0, 2*pi) → ℝ

t ↦ cos(t)

2.7. Vector Fields 561

Manifolds, Release 10.4.rc1

dot_product(other, metric=None)
Return the scalar product of self with another vector field (with respect to a given metric).

If self is the vector field 𝑢 and other is the vector field 𝑣, the scalar product of 𝑢 by 𝑣 with respect to a
given pseudo-Riemannian metric 𝑔 is the scalar field 𝑠 defined by

𝑠 = 𝑢 · 𝑣 = 𝑔(𝑢, 𝑣) = 𝑔𝑖𝑗𝑢
𝑖𝑣𝑗

INPUT:

• other – a vector field, defined on the same domain as self

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the scalar
product; if none is provided, the domain of self is supposed to be endowed with a default metric (i.e.
is supposed to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter
is used to define the scalar product

OUTPUT:

• instance of DiffScalarField representing the scalar product of self by other.

EXAMPLES:

Scalar product in the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: u = M.vector_field(x, y, name= u)
sage: v = M.vector_field(y, x, name= v)
sage: s = u.dot_product(v); s
Scalar field u.v on the Euclidean plane E^2
sage: s.display()
u.v: E^2 → ℝ

(x, y) ↦ 2*x*y

A shortcut alias of dot_product is dot:

sage: u.dot(v) == s
True

A test of orthogonality:

sage: v[:] = -y, x
sage: u.dot_product(v) == 0
True

Scalar product with respect to a metric that is not the default one:

sage: h = M.riemannian_metric(h)
sage: h[1,1], h[2,2] = 1/(1+y^2), 1/(1+x^2)
sage: s = u.dot_product(v, metric=h); s
Scalar field h(u,v) on the Euclidean plane E^2
sage: s.display()
h(u,v): E^2 → ℝ

(x, y) ↦ -(x^3*y - x*y^3)/((x^2 + 1)*y^2 + x^2 + 1)

Scalar product of two vector fields along a curve (a lemniscate of Gerono):

sage: R.<t> = manifolds.RealLine()
sage: C = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= C)
sage: u = C.tangent_vector_field(name= u)

(continues on next page)

562 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: u.display()
u = cos(t) e_x + (2*cos(t)^2 - 1) e_y
sage: I = C.domain(); I
Real interval (0, 2*pi)
sage: v = I.vector_field(cos(t), -1, dest_map=C, name= v)
sage: v.display()
v = cos(t) e_x - e_y
sage: s = u.dot_product(v); s
Scalar field u.v on the Real interval (0, 2*pi)
sage: s.display()
u.v: (0, 2*pi) → ℝ

t ↦ sin(t)^2

Scalar product between a vector field along the curve and a vector field on the ambient Euclidean plane:

sage: e_x = M.cartesian_frame()[1]
sage: s = u.dot_product(e_x); s
Scalar field u.e_x on the Real interval (0, 2*pi)
sage: s.display()
u.e_x: (0, 2*pi) → ℝ

t ↦ cos(t)

norm(metric=None)
Return the norm of self (with respect to a given metric).

The norm of a vector field 𝑣 with respect to a given pseudo-Riemannian metric 𝑔 is the scalar field ‖𝑣‖ defined
by

‖𝑣‖ =
√︀
𝑔(𝑣, 𝑣)

Note: If the metric 𝑔 is not positive definite, it may be that ‖𝑣‖ takes imaginary values.

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the norm; if
none is provided, the domain of self is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the norm

OUTPUT:

• instance of DiffScalarField representing the norm of self.

EXAMPLES:

Norm in the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: v = M.vector_field(-y, x, name= v)
sage: s = v.norm(); s
Scalar field |v| on the Euclidean plane E^2
sage: s.display()
|v|: E^2 → ℝ

(x, y) ↦ sqrt(x^2 + y^2)

The global function norm() can be used instead of the method norm():

2.7. Vector Fields 563

../../../../../../../html/en/reference/misc/sage/misc/functional.html#sage.misc.functional.norm

Manifolds, Release 10.4.rc1

sage: norm(v) == s
True

Norm with respect to a metric that is not the default one:

sage: h = M.riemannian_metric(h)
sage: h[1,1], h[2,2] = 1/(1+y^2), 1/(1+x^2)
sage: s = v.norm(metric=h); s
Scalar field |v|_h on the Euclidean plane E^2
sage: s.display()
|v|_h: E^2 → ℝ

(x, y) ↦ sqrt((2*x^2 + 1)*y^2 + x^2)/(sqrt(x^2 + 1)*sqrt(y^2 + 1))

Norm of the tangent vector field to a curve (a lemniscate of Gerono):

sage: R.<t> = manifolds.RealLine()
sage: C = M.curve([sin(t), sin(2*t)/2], (t, 0, 2*pi), name= C)
sage: v = C.tangent_vector_field()
sage: v.display()
C = cos(t) e_x + (2*cos(t)^2 - 1) e_y
sage: s = v.norm(); s
Scalar field |C | on the Real interval (0, 2*pi)
sage: s.display()
|C |: (0, 2*pi) → ℝ

t ↦ sqrt(4*cos(t)^4 - 3*cos(t)^2 + 1)

plot(chart=None, ambient_coords=None, mapping=None, chart_domain=None, fixed_coords=None,
ranges=None, number_values=None, steps=None, parameters=None, label_axes=True, max_range=8,
scale=1, color='blue', **extra_options)

Plot the vector field in a Cartesian graph based on the coordinates of some ambient chart.

The vector field is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of a given chart,
called hereafter the ambient chart. The vector field’s base points 𝑝 (or their imagesΦ(𝑝) by some differentiable
mapping Φ) must lie in the ambient chart’s domain.

INPUT:

• chart – (default: None) the ambient chart (see above); if None, the default chart of the vector field’s
domain is used

• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in
terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered

• mapping – DiffMap (default: None); differentiable map Φ providing the link between the vector
field’s domain and the ambient chart chart; if None, the identity map is assumed

• chart_domain – (default: None) chart on the vector field’s domain to define the points at which
vector arrows are to be plotted; if None, the default chart of the vector field’s domain is used

• fixed_coords – (default: None) dictionary with keys the coordinates of chart_domain that are
kept fixed and with values the value of these coordinates; if None, all the coordinates of chart_do-
main are used

• ranges – (default: None) dictionary with keys the coordinates of chart_domain to be used and
values tuples (x_min, x_max) specifying the coordinate range for the plot; if None, the entire
coordinate range declared during the construction ofchart_domain is considered (with-Infinity
replaced by -max_range and +Infinity by max_range)

• number_values – (default: None) either an integer or a dictionary with keys the coordinates of
chart_domain to be used and values the number of values of the coordinate for sampling the part of

564 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

the vector field’s domain involved in the plot ; if number_values is a single integer, it represents the
number of values for all coordinates; if number_values is None, it is set to 9 for a 2D plot and to 5
for a 3D plot

• steps – (default: None) dictionary with keys the coordinates of chart_domain to be used and
values the step between each constant value of the coordinate; if None, the step is computed from the
coordinate range (specified in ranges) and number_values; on the contrary, if the step is provided
for some coordinate, the corresponding number of values is deduced from it and the coordinate range

• parameters – (default: None) dictionary giving the numerical values of the parameters that may
appear in the coordinate expression of the vector field (see example below)

• label_axes – (default: True) boolean determining whether the labels of the coordinate axes of
chart shall be added to the graph; can be set to False if the graph is 3D and must be superposed
with another graph

• color – (default: ‘blue’) color of the arrows representing the vectors

• max_range – (default: 8) numerical value substituted to +Infinity if the latter is the upper bound
of the range of a coordinate for which the plot is performed over the entire coordinate range (i.e. for
which no specific plot range has been set in ranges); similarly -max_range is the numerical valued
substituted for -Infinity

• scale – (default: 1) value by which the lengths of the arrows representing the vectors is multiplied

• **extra_options – extra options for the arrow plot, like linestyle, width or arrowsize
(see arrow2d() and arrow3d() for details)

OUTPUT:

• a graphic object, either an instance of Graphics for a 2D plot (i.e. based on 2 coordinates of chart)
or an instance of Graphics3d for a 3D plot (i.e. based on 3 coordinates of chart)

EXAMPLES:

Plot of a vector field on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: v = M.vector_field(-y, x, name= v)
sage: v.display()
v = -y ∂/∂x + x ∂/∂y
sage: v.plot() #␣
→˓needs sage.plot
Graphics object consisting of 80 graphics primitives

Plot with various options:

sage: v.plot(scale=0.5, color= green , linestyle= -- , width=1, #␣
→˓needs sage.plot
....: arrowsize=6)
Graphics object consisting of 80 graphics primitives

sage: v.plot(max_range=4, number_values=5, scale=0.5) #␣
→˓needs sage.plot
Graphics object consisting of 24 graphics primitives

Plot using parallel computation:

2.7. Vector Fields 565

../../../../../../../html/en/reference/plotting/sage/plot/arrow.html#sage.plot.arrow.arrow2d
../../../../../../../html/en/reference/plot3d/sage/plot/plot3d/shapes.html#sage.plot.plot3d.shapes.arrow3d
../../../../../../../html/en/reference/plotting/sage/plot/graphics.html#sage.plot.graphics.Graphics
../../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d

Manifolds, Release 10.4.rc1

15 10 5 5 10 15
x

15

10

5

5

10

15

y

566 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

10 5 5 10
x

10

5

5

10

y

2.7. Vector Fields 567

Manifolds, Release 10.4.rc1

6 4 2 2 4 6
x

6

4

2

2

4

6

y

568 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: Parallelism().set(nproc=2)
sage: v.plot(scale=0.5, number_values=10, linestyle= -- , width=1, #␣
→˓needs sage.plot
....: arrowsize=6)
Graphics object consisting of 100 graphics primitives

10 5 5 10
x

10

5

5

10

y

sage: Parallelism().set(nproc=1) # switch off parallelization

Plots along a line of fixed coordinate:

sage: v.plot(fixed_coords={x: -2}) #␣
→˓needs sage.plot
Graphics object consisting of 9 graphics primitives

sage: v.plot(fixed_coords={y: 1}) #␣
→˓needs sage.plot
Graphics object consisting of 9 graphics primitives

Let us now consider a vector field on a 4-dimensional manifold:

sage: M = Manifold(4, M)
sage: X.<t,x,y,z> = M.chart()
sage: v = M.vector_field((t/8)^2, -t*y/4, t*x/4, t*z/4, name= v)

(continues on next page)

2.7. Vector Fields 569

Manifolds, Release 10.4.rc1

10 8 6 4 2 2 4 6
x

10

5

5

y

570 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

8 6 4 2 2 4 6 8
x

6

4

2

2

4

6

8

y

2.7. Vector Fields 571

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: v.display()
v = 1/64*t^2 ∂/∂t - 1/4*t*y ∂/∂x + 1/4*t*x ∂/∂y + 1/4*t*z ∂/∂z

We cannot make a 4D plot directly:

sage: v.plot()
Traceback (most recent call last):
...
ValueError: the number of ambient coordinates must be either 2 or 3, not 4

Rather, we have to select some coordinates for the plot, via the argument ambient_coords. For instance,
for a 3D plot:

sage: v.plot(ambient_coords=(x, y, z), fixed_coords={t: 1}, # long␣
→˓time, needs sage.plot
....: number_values=4)
Graphics3d Object

sage: v.plot(ambient_coords=(x, y, t), fixed_coords={z: 0}, # long␣
→˓time, needs sage.plot
....: ranges={x: (-2,2), y: (-2,2), t: (-1, 4)},
....: number_values=4)
Graphics3d Object

572 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.7. Vector Fields 573

Manifolds, Release 10.4.rc1

or, for a 2D plot:

sage: v.plot(ambient_coords=(x, y), fixed_coords={t: 1, z: 0}) # long␣
→˓time, needs sage.plot
Graphics object consisting of 80 graphics primitives

10 5 5 10
x

10

5

5

10

y

sage: v.plot(ambient_coords=(x, t), fixed_coords={y: 1, z: 0}) # long␣
→˓time, needs sage.plot
Graphics object consisting of 72 graphics primitives

An example of plot via a differential mapping: plot of a vector field tangent to a 2-sphere viewed in R3:

sage: S2 = Manifold(2, S^2)
sage: U = S2.open_subset(U) # the open set covered by spherical coord.
sage: XS.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: R3 = Manifold(3, R^3)
sage: X3.<x,y,z> = R3.chart()
sage: F = S2.diff_map(R3, {(XS, X3): [sin(th)*cos(ph),
....: sin(th)*sin(ph), cos(th)]}, name= F)
sage: F.display() # the standard embedding of S^2 into R^3
F: S^2 → R^3
on U: (th, ph) ↦ (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
sage: v = XS.frame()[1] ; v # the coordinate vector ∂/∂phi
Vector field ∂/∂ph on the Open subset U of the 2-dimensional
differentiable manifold S^2

(continues on next page)

574 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

10 5 5 10
x

8

6

4

2

2

4

6

8

t

2.7. Vector Fields 575

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: graph_v = v.plot(chart=X3, mapping=F, label_axes=False) #␣
→˓needs sage.plot
sage: graph_S2 = XS.plot(chart=X3, mapping=F, number_values=9) #␣
→˓needs sage.plot
sage: graph_v + graph_S2 #␣
→˓needs sage.plot
Graphics3d Object

Note that the default values of some arguments of the method plot are stored in the dictionary plot.
options:

sage: v.plot.options # random (dictionary output)
{ color : blue , max_range : 8, scale : 1}

so that they can be adjusted by the user:

sage: v.plot.options[color] = red

From now on, all plots of vector fields will use red as the default color. To restore the original default options,
it suffices to type:

sage: v.plot.reset()

576 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.vectorfield.VectorFieldParal(vector_field_mod-
ule, name=None,
latex_name=None)

Bases: FiniteRankFreeModuleElement, MultivectorFieldParal, VectorField

Vector field along a differentiable manifold, with values on a parallelizable manifold.

An instance of this class is a vector field along a differentiable manifold 𝑈 with values on a parallelizable manifold
𝑀 , via a differentiable map Φ : 𝑈 →𝑀 . More precisely, given a differentiable map

Φ : 𝑈 −→𝑀,

a vector field along 𝑈 with values on𝑀 is a differentiable map

𝑣 : 𝑈 −→ 𝑇𝑀

(𝑇𝑀 being the tangent bundle of𝑀) such that

∀𝑝 ∈ 𝑈, 𝑣(𝑝) ∈ 𝑇Φ(𝑝)𝑀.

The standard case of vector fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is not parallelizable, then VectorField must be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 ⊃ Φ(𝑈)

• name – (default: None) name given to the vector field

• latex_name – (default: None) LaTeX symbol to denote the vector field; if none is provided, the LaTeX
symbol is set to name

EXAMPLES:

A vector field on a parallelizable 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart()
sage: v = M.vector_field(name= V) ; v
Vector field V on the 3-dimensional differentiable manifold M
sage: latex(v)
V

Vector fields are considered as elements of a module over the ring (algebra) of scalar fields on𝑀 :

sage: v.parent()
Free module X(M) of vector fields on the 3-dimensional differentiable
manifold M
sage: v.parent().base_ring()
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: v.parent() is M.vector_field_module()
True

A vector field is a tensor field of rank 1 and of type (1, 0):

2.7. Vector Fields 577

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_element.html#sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement

Manifolds, Release 10.4.rc1

sage: v.tensor_rank()
1
sage: v.tensor_type()
(1, 0)

Components of a vector field with respect to a given frame:

sage: e = M.vector_frame(e) ; M.set_default_frame(e)
sage: v[0], v[1], v[2] = (1+y, 4*x*z, 9) # components on M s default frame (e)
sage: v.comp()
1-index components w.r.t. Vector frame (M, (e_0,e_1,e_2))

The totality of the components are accessed via the operator [:]:

sage: v[:] = (1+y, 4*x*z, 9)
sage: v[:]
[y + 1, 4*x*z, 9]

The components are also read on the expansion on the frame e, as provided by the method display():

sage: v.display() # expansion in the default frame
V = (y + 1) e_0 + 4*x*z e_1 + 9 e_2

A subset of the components can be accessed by using slice notation:

sage: v[1:] = (-2, -x*y)
sage: v[:]
[y + 1, -2, -x*y]
sage: v[:2]
[y + 1, -2]

Components in another frame:

sage: f = M.vector_frame(f)
sage: for i in range(3):
....: v.set_comp(f)[i] = (i+1)**3 * c_xyz[i]
sage: v.comp(f)[2]
27*z
sage: v[f, 2] # equivalent to above
27*z
sage: v.display(f)
V = x f_0 + 8*y f_1 + 27*z f_2

One can set the components at the vector definition:

sage: v = M.vector_field(1+y, 4*x*z, 9, name= V)
sage: v.display()
V = (y + 1) e_0 + 4*x*z e_1 + 9 e_2

If the components regard a vector frame different from the default one, the vector frame has to be specified via the
argument frame:

sage: v = M.vector_field(x, 8*y, 27*z, frame=f, name= V)
sage: v.display(f)
V = x f_0 + 8*y f_1 + 27*z f_2

For providing the components in various frames, one may use a dictionary:

578 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor.display

Manifolds, Release 10.4.rc1

sage: v = M.vector_field({e: [1+y, -2, -x*y], f: [x, 8*y, 27*z]},
....: name= V)
sage: v.display(e)
V = (y + 1) e_0 - 2 e_1 - x*y e_2
sage: v.display(f)
V = x f_0 + 8*y f_1 + 27*z f_2

It is also possible to construct a vector field from a vector of symbolic expressions (or any other iterable):

sage: v = M.vector_field(vector([1+y, 4*x*z, 9]), name= V)
sage: v.display()
V = (y + 1) e_0 + 4*x*z e_1 + 9 e_2

The range of the indices depends on the convention set for the manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: e = M.vector_frame(e) ; M.set_default_frame(e)
sage: v = M.vector_field(1+y, 4*x*z, 9, name= V)
sage: v[0]
Traceback (most recent call last):
...
IndexError: index out of range: 0 not in [1, 3]
sage: v[1] # OK
y + 1

A vector field acts on scalar fields (derivation along the vector field):

sage: M = Manifold(2, M)
sage: c_cart.<x,y> = M.chart()
sage: f = M.scalar_field(x*y^2, name= f)
sage: v = M.vector_field(-y, x, name= v)
sage: v.display()
v = -y ∂/∂x + x ∂/∂y
sage: v(f)
Scalar field v(f) on the 2-dimensional differentiable manifold M
sage: v(f).expr()
2*x^2*y - y^3
sage: latex(v(f))
v\left(f\right)

Example of a vector field associated with a non-trivial map Φ; a vector field along a curve in𝑀 :

sage: R = Manifold(1, R)
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, [cos(t), sin(t)], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable manifold R
to the 2-dimensional differentiable manifold M
sage: Phi.display()
Phi: R → M

t ↦ (x, y) = (cos(t), sin(t))
sage: w = R.vector_field(-sin(t), cos(t), dest_map=Phi, name= w) ; w
Vector field w along the 1-dimensional differentiable manifold R with
values on the 2-dimensional differentiable manifold M
sage: w.parent()
Free module X(R,Phi) of vector fields along the 1-dimensional
differentiable manifold R mapped into the 2-dimensional differentiable

(continues on next page)

2.7. Vector Fields 579

Manifolds, Release 10.4.rc1

(continued from previous page)

manifold M
sage: w.display()
w = -sin(t) ∂/∂x + cos(t) ∂/∂y

Value at a given point:

sage: p = R((0,), name= p) ; p
Point p on the 1-dimensional differentiable manifold R
sage: w.at(p)
Tangent vector w at Point Phi(p) on the 2-dimensional differentiable
manifold M
sage: w.at(p).display()
w = ∂/∂y
sage: w.at(p) == v.at(Phi(p))
True

2.7.3 Vector Frames

The class VectorFrame implements vector frames on differentiable manifolds. By vector frame, it is meant a field 𝑒
on some differentiable manifold 𝑈 endowed with a differentiable map Φ : 𝑈 → 𝑀 to a differentiable manifold𝑀 such
that for each 𝑝 ∈ 𝑈 , 𝑒(𝑝) is a vector basis of the tangent space 𝑇Φ(𝑝)𝑀 .

The standard case of a vector frame on 𝑈 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ being an
immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

A derived class of VectorFrame is CoordFrame; it regards the vector frames associated with a chart, i.e. the
so-called coordinate bases.

The vector frame duals, i.e. the coframes, are implemented via the class CoFrame. The derived class CoordCoFrame
is devoted to coframes deriving from a chart.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015): initial version

• Travis Scrimshaw (2016): review tweaks

• Eric Gourgoulhon (2018): some refactoring and more functionalities in the choice of symbols for vector frame
elements (Issue #24792)

REFERENCES:

• [Lee2013]

EXAMPLES:

Introducing a chart on a manifold automatically endows it with a vector frame: the coordinate frame associated to the
chart:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: M.frames()
[Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))]
sage: M.frames()[0] is X.frame()
True

A new vector frame can be defined from a family of 3 linearly independent vector fields:

580 Chapter 2. Differentiable Manifolds

https://github.com/sagemath/sage/issues/24792

Manifolds, Release 10.4.rc1

sage: e1 = M.vector_field(1, x, y)
sage: e2 = M.vector_field(z, -2, x*y)
sage: e3 = M.vector_field(1, 1, 0)
sage: e = M.vector_frame(e , (e1, e2, e3)); e
Vector frame (M, (e_0,e_1,e_2))
sage: latex(e)
\left(M, \left(e_{0},e_{1},e_{2}\right)\right)

The first frame defined on a manifold is its default frame; in the present case it is the coordinate frame associated to the
chart X:

sage: M.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))

The default frame can be changed via the method set_default_frame():

sage: M.set_default_frame(e)
sage: M.default_frame()
Vector frame (M, (e_0,e_1,e_2))

The elements of a vector frame are vector fields on the manifold:

sage: for vec in e:
....: print(vec)
....:
Vector field e_0 on the 3-dimensional differentiable manifold M
Vector field e_1 on the 3-dimensional differentiable manifold M
Vector field e_2 on the 3-dimensional differentiable manifold M

Each element of a vector frame can be accessed by its index:

sage: e[0]
Vector field e_0 on the 3-dimensional differentiable manifold M
sage: e[0].display(X.frame())
e_0 = ∂/∂x + x ∂/∂y + y ∂/∂z
sage: X.frame()[1]
Vector field ∂/∂y on the 3-dimensional differentiable manifold M
sage: X.frame()[1].display(e)
∂/∂y = x/(x^2 - x + z + 2) e_0 - 1/(x^2 - x + z + 2) e_1
- (x - z)/(x^2 - x + z + 2) e_2

The slice operator : can be used to access to more than one element:

sage: e[0:2]
(Vector field e_0 on the 3-dimensional differentiable manifold M,
Vector field e_1 on the 3-dimensional differentiable manifold M)

sage: e[:]
(Vector field e_0 on the 3-dimensional differentiable manifold M,
Vector field e_1 on the 3-dimensional differentiable manifold M,
Vector field e_2 on the 3-dimensional differentiable manifold M)

Vector frames can be constructed from scratch, without any connection to previously defined frames or vector fields (the
connection can be performed later via the method set_change_of_frame()):

sage: f = M.vector_frame(f); f
Vector frame (M, (f_0,f_1,f_2))
sage: M.frames()

(continues on next page)

2.7. Vector Fields 581

Manifolds, Release 10.4.rc1

(continued from previous page)

[Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z)),
Vector frame (M, (e_0,e_1,e_2)),
Vector frame (M, (f_0,f_1,f_2))]

The index range depends on the starting index defined on the manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: e = M.vector_frame(e)
sage: [e[i] for i in M.irange()]
[Vector field e_1 on the 3-dimensional differentiable manifold M,
Vector field e_2 on the 3-dimensional differentiable manifold M,
Vector field e_3 on the 3-dimensional differentiable manifold M]

sage: e[1], e[2], e[3]
(Vector field e_1 on the 3-dimensional differentiable manifold M,
Vector field e_2 on the 3-dimensional differentiable manifold M,
Vector field e_3 on the 3-dimensional differentiable manifold M)

Let us check that the vector fields e[i] are the frame vectors from their components with respect to the frame 𝑒:

sage: e[1].comp(e)[:]
[1, 0, 0]
sage: e[2].comp(e)[:]
[0, 1, 0]
sage: e[3].comp(e)[:]
[0, 0, 1]

Defining a vector frame on a manifold automatically creates the dual coframe, which, by default, bares the same name
(here 𝑒):

sage: M.coframes()
[Coordinate coframe (M, (dx,dy,dz)), Coframe (M, (e^1,e^2,e^3))]
sage: f = M.coframes()[1] ; f
Coframe (M, (e^1,e^2,e^3))
sage: f is e.coframe()
True

Each element of the coframe is a 1-form:

sage: f[1], f[2], f[3]
(1-form e^1 on the 3-dimensional differentiable manifold M,
1-form e^2 on the 3-dimensional differentiable manifold M,
1-form e^3 on the 3-dimensional differentiable manifold M)
sage: latex(f[1]), latex(f[2]), latex(f[3])
(e^{1}, e^{2}, e^{3})

Let us check that the coframe (𝑒𝑖) is indeed the dual of the vector frame (𝑒𝑖):

sage: f[1](e[1]) # the 1-form e^1 applied to the vector field e_1
Scalar field e^1(e_1) on the 3-dimensional differentiable manifold M
sage: f[1](e[1]).expr() # the explicit expression of e^1(e_1)
1
sage: f[1](e[1]).expr(), f[1](e[2]).expr(), f[1](e[3]).expr()
(1, 0, 0)
sage: f[2](e[1]).expr(), f[2](e[2]).expr(), f[2](e[3]).expr()
(0, 1, 0)

(continues on next page)

582 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f[3](e[1]).expr(), f[3](e[2]).expr(), f[3](e[3]).expr()
(0, 0, 1)

The coordinate frame associated to spherical coordinates of the sphere 𝑆2:

sage: M = Manifold(2, S^2 , start_index=1) # Part of S^2 covered by spherical coord.
sage: c_spher.<th,ph> = M.chart(r th:[0,pi]:\theta ph:[0,2*pi):\phi)
sage: b = M.default_frame() ; b
Coordinate frame (S^2, (∂/∂th,∂/∂ph))
sage: b[1]
Vector field ∂/∂th on the 2-dimensional differentiable manifold S^2
sage: b[2]
Vector field ∂/∂ph on the 2-dimensional differentiable manifold S^2

The orthonormal frame constructed from the coordinate frame:

sage: e = M.vector_frame(e , (b[1], b[2]/sin(th))); e
Vector frame (S^2, (e_1,e_2))
sage: e[1].display()
e_1 = ∂/∂th
sage: e[2].display()
e_2 = 1/sin(th) ∂/∂ph

The change-of-frame automorphisms and their matrices:

sage: M.change_of_frame(c_spher.frame(), e)
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold S^2

sage: M.change_of_frame(c_spher.frame(), e)[:]
[1 0]
[0 1/sin(th)]
sage: M.change_of_frame(e, c_spher.frame())
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold S^2

sage: M.change_of_frame(e, c_spher.frame())[:]
[1 0]
[0 sin(th)]

class sage.manifolds.differentiable.vectorframe.CoFrame(frame, symbol,
latex_symbol=None,
indices=None,
latex_indices=None)

Bases: FreeModuleCoBasis

Coframe on a differentiable manifold.

By coframe, it is meant a field 𝑓 on some differentiable manifold𝑈 endowed with a differentiable mapΦ : 𝑈 →𝑀
to a differentiable manifold𝑀 such that for each 𝑝 ∈ 𝑈 , 𝑓(𝑝) is a basis of the vector space 𝑇 *

Φ(𝑝)𝑀 (the dual to
the tangent space 𝑇Φ(𝑝)𝑀).

The standard case of a coframe on 𝑈 corresponds to 𝑈 =𝑀 and Φ = Id𝑀 . Other common cases are Φ being an
immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

INPUT:

• frame – the vector frame dual to the coframe

• symbol – either a string, to be used as a common base for the symbols of the 1-forms constituting the
coframe, or a tuple of strings, representing the individual symbols of the 1-forms

2.7. Vector Fields 583

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleCoBasis

Manifolds, Release 10.4.rc1

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of
the 1-forms constituting the coframe, or a tuple of strings, representing the individual LaTeX symbols of the
1-forms; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices
labelling the 1-forms of the coframe; if None, the indices will be generated as integers within the range
declared on the coframe’s domain

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the
1-forms of the coframe; if None, indices is used instead

EXAMPLES:

Coframe on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: v = M.vector_frame(v)
sage: from sage.manifolds.differentiable.vectorframe import CoFrame
sage: e = CoFrame(v, e) ; e
Coframe (M, (e^1,e^2,e^3))

Instead of importing CoFrame in the global namespace, the coframe can be obtained by means of the method
dual_basis(); the symbol is then the same as that of the frame:

sage: a = v.dual_basis() ; a
Coframe (M, (v^1,v^2,v^3))
sage: a[1] == e[1]
True
sage: a[1] is e[1]
False
sage: e[1].display(v)
e^1 = v^1

The 1-forms composing the coframe are obtained via the operator []:

sage: e[1], e[2], e[3]
(1-form e^1 on the 3-dimensional differentiable manifold M,
1-form e^2 on the 3-dimensional differentiable manifold M,
1-form e^3 on the 3-dimensional differentiable manifold M)

Checking that 𝑒 is the dual of 𝑣:

sage: e[1](v[1]).expr(), e[1](v[2]).expr(), e[1](v[3]).expr()
(1, 0, 0)
sage: e[2](v[1]).expr(), e[2](v[2]).expr(), e[2](v[3]).expr()
(0, 1, 0)
sage: e[3](v[1]).expr(), e[3](v[2]).expr(), e[3](v[3]).expr()
(0, 0, 1)

at(point)
Return the value of self at a given point on the manifold, this value being a basis of the dual of the tangent
space at the point.

INPUT:

• point – ManifoldPoint; point 𝑝 in the domain 𝑈 of the coframe (denoted 𝑓 hereafter)

OUTPUT:

584 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis.dual_basis

Manifolds, Release 10.4.rc1

• FreeModuleCoBasis representing the basis 𝑓(𝑝) of the vector space 𝑇 *
Φ(𝑝)𝑀 , dual to the tangent

space 𝑇Φ(𝑝)𝑀 , where Φ : 𝑈 →𝑀 is the differentiable map associated with 𝑓 (possibly Φ = Id𝑈)

EXAMPLES:

Cobasis of a tangent space on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((-1,2), name= p)
sage: f = X.coframe() ; f
Coordinate coframe (M, (dx,dy))
sage: fp = f.at(p) ; fp
Dual basis (dx,dy) on the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: type(fp)
<class sage.tensor.modules.free_module_basis.FreeModuleCoBasis_with_category
→˓ >
sage: fp[0]
Linear form dx on the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: fp[1]
Linear form dy on the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: fp is X.frame().at(p).dual_basis()
True

set_name(symbol, latex_symbol=None, indices=None, latex_indices=None, index_position='up',
include_domain=True)

Set (or change) the text name and LaTeX name of self.

INPUT:

• symbol – either a string, to be used as a common base for the symbols of the 1-forms constituting the
coframe, or a list/tuple of strings, representing the individual symbols of the 1-forms

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the 1-forms constituting the coframe, or a list/tuple of strings, representing the individual LaTeX
symbols of the 1-forms; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the 1-forms of the coframe; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the 1-forms; if None, indices is used instead

• index_position – (default: up) determines the position of the indices labelling the 1-forms of
the coframe; can be either down or up

• include_domain – (default: True) boolean determining whether the name of the domain is in-
cluded in the beginning of the coframe name

EXAMPLES:

sage: M = Manifold(2, M)
sage: e = M.vector_frame(e).coframe(); e
Coframe (M, (e^0,e^1))
sage: e.set_name(f); e
Coframe (M, (f^0,f^1))

(continues on next page)

2.7. Vector Fields 585

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleCoBasis

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: e.set_name(e , latex_symbol=r \epsilon)
sage: latex(e)
\left(M, \left(\epsilon^{0},\epsilon^{1}\right)\right)
sage: e.set_name(e , include_domain=False); e
Coframe (e^0,e^1)
sage: e.set_name([a , b], latex_symbol=[r \alpha , r \beta]); e
Coframe (M, (a,b))
sage: latex(e)
\left(M, \left(\alpha,\beta\right)\right)
sage: e.set_name(e , indices=[x , y],
....: latex_indices=[r \xi , r \zeta]); e
Coframe (M, (e^x,e^y))
sage: latex(e)
\left(M, \left(e^{\xi},e^{\zeta}\right)\right)

class sage.manifolds.differentiable.vectorframe.CoordCoFrame(coord_frame, symbol,
latex_symbol=None,
indices=None,
latex_indices=None)

Bases: CoFrame

Coordinate coframe on a differentiable manifold.

By coordinate coframe, it is meant the 𝑛-tuple of the differentials of the coordinates of some chart on the manifold,
with 𝑛 being the manifold’s dimension.

INPUT:

• coord_frame – coordinate frame dual to the coordinate coframe

• symbol – either a string, to be used as a common base for the symbols of the 1-forms constituting the
coframe, or a tuple of strings, representing the individual symbols of the 1-forms

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of
the 1-forms constituting the coframe, or a tuple of strings, representing the individual LaTeX symbols of the
1-forms; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices
labelling the 1-forms of the coframe; if None, the indices will be generated as integers within the range
declared on the vector frame’s domain

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the
1-forms of the coframe; if None, indices is used instead

EXAMPLES:

Coordinate coframe on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: M.frames()
[Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))]
sage: M.coframes()
[Coordinate coframe (M, (dx,dy,dz))]
sage: dX = M.coframes()[0] ; dX
Coordinate coframe (M, (dx,dy,dz))

The 1-forms composing the coframe are obtained via the operator []:

586 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: dX[1]
1-form dx on the 3-dimensional differentiable manifold M
sage: dX[2]
1-form dy on the 3-dimensional differentiable manifold M
sage: dX[3]
1-form dz on the 3-dimensional differentiable manifold M
sage: dX[1][:]
[1, 0, 0]
sage: dX[2][:]
[0, 1, 0]
sage: dX[3][:]
[0, 0, 1]

The coframe is the dual of the coordinate frame:

sage: e = X.frame() ; e
Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))
sage: dX[1](e[1]).expr(), dX[1](e[2]).expr(), dX[1](e[3]).expr()
(1, 0, 0)
sage: dX[2](e[1]).expr(), dX[2](e[2]).expr(), dX[2](e[3]).expr()
(0, 1, 0)
sage: dX[3](e[1]).expr(), dX[3](e[2]).expr(), dX[3](e[3]).expr()
(0, 0, 1)

Each 1-form of a coordinate coframe is closed:

sage: dX[1].exterior_derivative()
2-form ddx on the 3-dimensional differentiable manifold M
sage: dX[1].exterior_derivative() == 0
True

class sage.manifolds.differentiable.vectorframe.CoordFrame(chart)
Bases: VectorFrame

Coordinate frame on a differentiable manifold.

By coordinate frame, it is meant a vector frame on a differentiable manifold𝑀 that is associated to a coordinate
chart on𝑀 .

INPUT:

• chart – the chart defining the coordinates

EXAMPLES:

The coordinate frame associated to spherical coordinates of the sphere 𝑆2:

sage: M = Manifold(2, S^2 , start_index=1) # Part of S^2 covered by spherical␣
→˓coord.
sage: M.chart(r th:[0,pi]:\theta ph:[0,2*pi):\phi)
Chart (S^2, (th, ph))
sage: b = M.default_frame()
sage: b
Coordinate frame (S^2, (∂/∂th,∂/∂ph))
sage: b[1]
Vector field ∂/∂th on the 2-dimensional differentiable manifold S^2
sage: b[2]
Vector field ∂/∂ph on the 2-dimensional differentiable manifold S^2
sage: latex(b)

(continues on next page)

2.7. Vector Fields 587

Manifolds, Release 10.4.rc1

(continued from previous page)

\left(S^2, \left(\frac{\partial}{\partial {\theta} },\frac{\partial}{\partial {\
→˓phi} }\right)\right)

chart()

Return the chart defining this coordinate frame.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: e = X.frame()
sage: e.chart()
Chart (M, (x, y))
sage: U = M.open_subset(U , coord_def={X: x>0})
sage: e.restrict(U).chart()
Chart (U, (x, y))

structure_coeff()

Return the structure coefficients associated to self.

𝑛 being the manifold’s dimension, the structure coefficients of the frame (𝑒𝑖) are the 𝑛3 scalar fields 𝐶𝑘
𝑖𝑗

defined by

[𝑒𝑖, 𝑒𝑗] = 𝐶𝑘
𝑖𝑗𝑒𝑘.

In the present case, since (𝑒𝑖) is a coordinate frame, 𝐶𝑘
𝑖𝑗 = 0.

OUTPUT:

• the structure coefficients 𝐶𝑘
𝑖𝑗 , as a vanishing instance of CompWithSym with 3 indices ordered as

(𝑘, 𝑖, 𝑗)

EXAMPLES:

Structure coefficients of the coordinate frame associated to spherical coordinates in the Euclidean space R3:

sage: M = Manifold(3, R^3 , r \RR^3 , start_index=1) # Part of R^3 covered␣
→˓by spherical coord.
sage: c_spher = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: b = M.default_frame() ; b
Coordinate frame (R^3, (∂/∂r,∂/∂th,∂/∂ph))
sage: c = b.structure_coeff() ; c
3-indices components w.r.t. Coordinate frame
(R^3, (∂/∂r,∂/∂th,∂/∂ph)), with antisymmetry on the index
positions (1, 2)

sage: c == 0
True

class sage.manifolds.differentiable.vectorframe.VectorFrame(vector_field_module,
symbol,
latex_symbol=None,
from_frame=None,
indices=None,
latex_indices=None,
symbol_dual=None,
latex_symbol_dual=None)

Bases: FreeModuleBasis

588 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompWithSym
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

Vector frame on a differentiable manifold.

By vector frame, it is meant a field 𝑒 on some differentiable manifold 𝑈 endowed with a differentiable map Φ :
𝑈 → 𝑀 to a differentiable manifold 𝑀 such that for each 𝑝 ∈ 𝑈 , 𝑒(𝑝) is a vector basis of the tangent space
𝑇Φ(𝑝)𝑀 .

The standard case of a vector frame on 𝑈 corresponds to 𝑈 =𝑀 and Φ = Id𝑀 . Other common cases are Φ being
an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

For each instantiation of a vector frame, a coframe is automatically created, as an instance of the class CoFrame.
It is returned by the method coframe().

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 ⊃ Φ(𝑈)

• symbol – either a string, to be used as a common base for the symbols of the vector fields constituting the
vector frame, or a tuple of strings, representing the individual symbols of the vector fields

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the vector fields constituting the vector frame, or a tuple of strings, representing the individual LaTeX
symbols of the vector fields; if None, symbol is used in place of latex_symbol

• from_frame – (default: None) vector frame 𝑒 on the codomain 𝑀 of the destination map Φ; the con-
structed frame 𝑒 is then such that ∀𝑝 ∈ 𝑈, 𝑒(𝑝) = 𝑒(Φ(𝑝))

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices
labelling the vector fields of the frame; if None, the indices will be generated as integers within the range
declared on the vector frame’s domain

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the
vector fields; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbol must be
a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

EXAMPLES:

Defining a vector frame on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: e = M.vector_frame(e) ; e
Vector frame (M, (e_1,e_2,e_3))
sage: latex(e)
\left(M, \left(e_{1},e_{2},e_{3}\right)\right)

The individual elements of the vector frame are accessed via square brackets, with the possibility to invoke the slice
operator ‘:’ to get more than a single element:

sage: e[2]
Vector field e_2 on the 3-dimensional differentiable manifold M
sage: e[1:3]
(Vector field e_1 on the 3-dimensional differentiable manifold M,
Vector field e_2 on the 3-dimensional differentiable manifold M)
sage: e[:]
(Vector field e_1 on the 3-dimensional differentiable manifold M,
Vector field e_2 on the 3-dimensional differentiable manifold M,
Vector field e_3 on the 3-dimensional differentiable manifold M)

The LaTeX symbol can be specified:

2.7. Vector Fields 589

Manifolds, Release 10.4.rc1

sage: E = M.vector_frame(E , latex_symbol=r"\epsilon")
sage: latex(E)
\left(M, \left(\epsilon_{1},\epsilon_{2},\epsilon_{3}\right)\right)

By default, the elements of the vector frame are labelled by integers within the range specified at the manifold
declaration. It is however possible to fully customize the labels, via the argument indices:

sage: u = M.vector_frame(u , indices=(x , y , z)) ; u
Vector frame (M, (u_x,u_y,u_z))
sage: u[1]
Vector field u_x on the 3-dimensional differentiable manifold M
sage: u.coframe()
Coframe (M, (u^x,u^y,u^z))

The LaTeX format of the indices can be adjusted:

sage: v = M.vector_frame(v , indices=(a , b , c),
....: latex_indices=(r \alpha , r \beta , r \gamma))
sage: v
Vector frame (M, (v_a,v_b,v_c))
sage: latex(v)
\left(M, \left(v_{\alpha},v_{\beta},v_{\gamma}\right)\right)
sage: latex(v.coframe())
\left(M, \left(v^{\alpha},v^{\beta},v^{\gamma}\right)\right)

The symbol of each element of the vector frame can also be freely chosen, by providing a tuple of symbols as the
first argument of vector_frame; it is then mandatory to specify as well some symbols for the dual coframe:

sage: h = M.vector_frame((a , b , c), symbol_dual=(A , B , C))
sage: h
Vector frame (M, (a,b,c))
sage: h[1]
Vector field a on the 3-dimensional differentiable manifold M
sage: h.coframe()
Coframe (M, (A,B,C))
sage: h.coframe()[1]
1-form A on the 3-dimensional differentiable manifold M

Example with a non-trivial map Φ (see above); a vector frame along a curve:

sage: U = Manifold(1, U) # open interval (-1,1) as a 1-dimensional manifold
sage: T.<t> = U.chart(t:(-1,1)) # canonical chart on U
sage: Phi = U.diff_map(M, [cos(t), sin(t), t], name= Phi ,
....: latex_name=r \Phi)
sage: Phi
Differentiable map Phi from the 1-dimensional differentiable manifold U
to the 3-dimensional differentiable manifold M
sage: f = U.vector_frame(f , dest_map=Phi) ; f
Vector frame (U, (f_1,f_2,f_3)) with values on the 3-dimensional
differentiable manifold M
sage: f.domain()
1-dimensional differentiable manifold U
sage: f.ambient_domain()
3-dimensional differentiable manifold M

The value of the vector frame at a given point is a basis of the corresponding tangent space:

590 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: p = U((0,), name= p) ; p
Point p on the 1-dimensional differentiable manifold U
sage: f.at(p)
Basis (f_1,f_2,f_3) on the Tangent space at Point Phi(p) on the
3-dimensional differentiable manifold M

Vector frames are bases of free modules formed by vector fields:

sage: e.module()
Free module X(M) of vector fields on the 3-dimensional differentiable
manifold M
sage: e.module().base_ring()
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: e.module() is M.vector_field_module()
True
sage: e in M.vector_field_module().bases()
True

sage: f.module()
Free module X(U,Phi) of vector fields along the 1-dimensional
differentiable manifold U mapped into the 3-dimensional differentiable
manifold M
sage: f.module().base_ring()
Algebra of differentiable scalar fields on the 1-dimensional
differentiable manifold U
sage: f.module() is U.vector_field_module(dest_map=Phi)
True
sage: f in U.vector_field_module(dest_map=Phi).bases()
True

along(mapping)
Return the vector frame deduced from the current frame via a differentiable map, the codomain of which is
included in the domain of of the current frame.

If 𝑒 is the current vector frame, 𝑉 its domain and if Φ : 𝑈 → 𝑉 is a differentiable map from some dif-
ferentiable manifold 𝑈 to 𝑉 , the returned object is a vector frame 𝑒 along 𝑈 with values on 𝑉 such that

∀𝑝 ∈ 𝑈, 𝑒(𝑝) = 𝑒(Φ(𝑝)).

INPUT:

• mapping – differentiable map Φ : 𝑈 → 𝑉

OUTPUT:

• vector frame 𝑒 along 𝑈 defined above.

EXAMPLES:

Vector frame along a curve:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: R = Manifold(1, R) # R as a 1-dimensional manifold
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, {(T,X): [cos(t), t]}, name= Phi ,
....: latex_name=r \Phi) ; Phi

(continues on next page)

2.7. Vector Fields 591

Manifolds, Release 10.4.rc1

(continued from previous page)

Differentiable map Phi from the 1-dimensional differentiable
manifold R to the 2-dimensional differentiable manifold M

sage: e = X.frame() ; e
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: te = e.along(Phi) ; te
Vector frame (R, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold M

Check of the formula 𝑒(𝑝) = 𝑒(Φ(𝑝)):

sage: p = R((pi,)) ; p
Point on the 1-dimensional differentiable manifold R
sage: te[0].at(p) == e[0].at(Phi(p))
True
sage: te[1].at(p) == e[1].at(Phi(p))
True

The result is cached:

sage: te is e.along(Phi)
True

ambient_domain()

Return the differentiable manifold in which self takes its values.

The ambient domain is the codomain𝑀 of the differentiable map Φ : 𝑈 →𝑀 associated with the frame.

OUTPUT:

• a DifferentiableManifold representing𝑀

EXAMPLES:

sage: M = Manifold(2, M)
sage: e = M.vector_frame(e)
sage: e.ambient_domain()
2-dimensional differentiable manifold M

In the present case, since Φ is the identity map:

sage: e.ambient_domain() == e.domain()
True

An example with a non trivial map Φ:

sage: U = Manifold(1, U)
sage: T.<t> = U.chart()
sage: X.<x,y> = M.chart()
sage: Phi = U.diff_map(M, {(T,X): [cos(t), t]}, name= Phi ,
....: latex_name=r \Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable
manifold U to the 2-dimensional differentiable manifold M

sage: f = U.vector_frame(f , dest_map=Phi); f
Vector frame (U, (f_0,f_1)) with values on the 2-dimensional
differentiable manifold M

sage: f.ambient_domain()
2-dimensional differentiable manifold M

(continues on next page)

592 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: f.domain()
1-dimensional differentiable manifold U

at(point)

Return the value of self at a given point, this value being a basis of the tangent vector space at the point.

INPUT:

• point – ManifoldPoint; point 𝑝 in the domain 𝑈 of the vector frame (denoted 𝑒 hereafter)

OUTPUT:

• FreeModuleBasis representing the basis 𝑒(𝑝) of the tangent vector space 𝑇Φ(𝑝)𝑀 , where Φ : 𝑈 →
𝑀 is the differentiable map associated with 𝑒 (possibly Φ = Id𝑈)

EXAMPLES:

Basis of a tangent space to a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: p = M.point((-1,2), name= p)
sage: e = X.frame() ; e
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: ep = e.at(p) ; ep
Basis (∂/∂x,∂/∂y) on the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: type(ep)
<class sage.tensor.modules.free_module_basis.FreeModuleBasis_with_category >
sage: ep[0]
Tangent vector ∂/∂x at Point p on the 2-dimensional differentiable
manifold M

sage: ep[1]
Tangent vector ∂/∂y at Point p on the 2-dimensional differentiable
manifold M

Note that the symbols used to denote the vectors are same as those for the vector fields of the frame. At this
stage, ep is the unique basis on the tangent space at p:

sage: Tp = M.tangent_space(p)
sage: Tp.bases()
[Basis (∂/∂x,∂/∂y) on the Tangent space at Point p on the
2-dimensional differentiable manifold M]

Let us consider a vector frame that is a not a coordinate one:

sage: aut = M.automorphism_field()
sage: aut[:] = [[1+y^2, 0], [0, 2]]
sage: f = e.new_frame(aut, f) ; f
Vector frame (M, (f_0,f_1))
sage: fp = f.at(p) ; fp
Basis (f_0,f_1) on the Tangent space at Point p on the
2-dimensional differentiable manifold M

There are now two bases on the tangent space:

sage: Tp.bases()
[Basis (∂/∂x,∂/∂y) on the Tangent space at Point p on the

(continues on next page)

2.7. Vector Fields 593

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_basis.html#sage.tensor.modules.free_module_basis.FreeModuleBasis

Manifolds, Release 10.4.rc1

(continued from previous page)

2-dimensional differentiable manifold M,
Basis (f_0,f_1) on the Tangent space at Point p on the
2-dimensional differentiable manifold M]

Moreover, the changes of bases in the tangent space have been computed from the known relation between
the frames e and f (field of automorphisms aut defined above):

sage: Tp.change_of_basis(ep, fp)
Automorphism of the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: Tp.change_of_basis(ep, fp).display()
5 ∂/∂x⊗dx + 2 ∂/∂y⊗dy
sage: Tp.change_of_basis(fp, ep)
Automorphism of the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: Tp.change_of_basis(fp, ep).display()
1/5 ∂/∂x⊗dx + 1/2 ∂/∂y⊗dy

The dual bases:

sage: e.coframe()
Coordinate coframe (M, (dx,dy))
sage: ep.dual_basis()
Dual basis (dx,dy) on the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: ep.dual_basis() is e.coframe().at(p)
True
sage: f.coframe()
Coframe (M, (f^0,f^1))
sage: fp.dual_basis()
Dual basis (f^0,f^1) on the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: fp.dual_basis() is f.coframe().at(p)
True

coframe()

Return the coframe of self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: e = M.vector_frame(e)
sage: e.coframe()
Coframe (M, (e^0,e^1))
sage: X.<x,y> = M.chart()
sage: X.frame().coframe()
Coordinate coframe (M, (dx,dy))

destination_map()

Return the differential map associated to this vector frame.

Let 𝑒 denote the vector frame; the differential map associated to it is the map Φ : 𝑈 →𝑀 such that for each
𝑝 ∈ 𝑈 , 𝑒(𝑝) is a vector basis of the tangent space 𝑇Φ(𝑝)𝑀 .

OUTPUT:

• a DiffMap representing the differential map Φ

594 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M)
sage: e = M.vector_frame(e)
sage: e.destination_map()
Identity map Id_M of the 2-dimensional differentiable manifold M

An example with a non trivial map Φ:

sage: U = Manifold(1, U)
sage: T.<t> = U.chart()
sage: X.<x,y> = M.chart()
sage: Phi = U.diff_map(M, {(T,X): [cos(t), t]}, name= Phi ,
....: latex_name=r \Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable
manifold U to the 2-dimensional differentiable manifold M

sage: f = U.vector_frame(f , dest_map=Phi); f
Vector frame (U, (f_0,f_1)) with values on the 2-dimensional
differentiable manifold M

sage: f.destination_map()
Differentiable map Phi from the 1-dimensional differentiable
manifold U to the 2-dimensional differentiable manifold M

domain()

Return the domain on which self is defined.

OUTPUT:

• a DifferentiableManifold; representing the domain of the vector frame

EXAMPLES:

sage: M = Manifold(2, M)
sage: e = M.vector_frame(e)
sage: e.domain()
2-dimensional differentiable manifold M
sage: U = M.open_subset(U)
sage: f = e.restrict(U)
sage: f.domain()
Open subset U of the 2-dimensional differentiable manifold M

new_frame(change_of_frame, symbol, latex_symbol=None, indices=None, latex_indices=None,
symbol_dual=None, latex_symbol_dual=None)

Define a new vector frame from self.

The new vector frame is defined from a field of tangent-space automorphisms; its domain is the same as that
of the current frame.

INPUT:

• change_of_frame – AutomorphismFieldParal; the field of tangent space automorphisms 𝑃
that relates the current frame (𝑒𝑖) to the new frame (𝑛𝑖) according to 𝑛𝑖 = 𝑃 (𝑒𝑖)

• symbol – either a string, to be used as a common base for the symbols of the vector fields constituting
the vector frame, or a list/tuple of strings, representing the individual symbols of the vector fields

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the vector fields constituting the vector frame, or a list/tuple of strings, representing the individual
LaTeX symbols of the vector fields; if None, symbol is used in place of latex_symbol

2.7. Vector Fields 595

Manifolds, Release 10.4.rc1

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the vector fields of the frame; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the vector fields; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbolmust
be a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

OUTPUT:

• the new frame (𝑛𝑖), as an instance of VectorFrame

EXAMPLES:

Frame resulting from a 𝜋/3-rotation in the Euclidean plane:

sage: M = Manifold(2, R^2)
sage: X.<x,y> = M.chart()
sage: e = M.vector_frame(e) ; M.set_default_frame(e)
sage: M._frame_changes
{}
sage: rot = M.automorphism_field()
sage: rot[:] = [[sqrt(3)/2, -1/2], [1/2, sqrt(3)/2]]
sage: n = e.new_frame(rot, n)
sage: n[0][:]
[1/2*sqrt(3), 1/2]
sage: n[1][:]
[-1/2, 1/2*sqrt(3)]
sage: a = M.change_of_frame(e,n)
sage: a[:]
[1/2*sqrt(3) -1/2]
[1/2 1/2*sqrt(3)]
sage: a == rot
True
sage: a is rot
False
sage: a._components # random (dictionary output)
{Vector frame (R^2, (e_0,e_1)): 2-indices components w.r.t.
Vector frame (R^2, (e_0,e_1)),
Vector frame (R^2, (n_0,n_1)): 2-indices components w.r.t.
Vector frame (R^2, (n_0,n_1))}

sage: a.comp(n)[:]
[1/2*sqrt(3) -1/2]
[1/2 1/2*sqrt(3)]
sage: a1 = M.change_of_frame(n,e)
sage: a1[:]
[1/2*sqrt(3) 1/2]
[-1/2 1/2*sqrt(3)]
sage: a1 == rot.inverse()
True
sage: a1 is rot.inverse()
False
sage: e[0].comp(n)[:]
[1/2*sqrt(3), -1/2]
sage: e[1].comp(n)[:]
[1/2, 1/2*sqrt(3)]

596 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

restrict(subdomain)
Return the restriction of self to some open subset of its domain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset 𝑉 of the current frame domain 𝑈

OUTPUT:

• the restriction of the current frame to 𝑉 as a VectorFrame

EXAMPLES:

Restriction of a frame defined on R2 to the unit disk:

sage: M = Manifold(2, R^2 , start_index=1)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: a = M.automorphism_field()
sage: a[:] = [[1-y^2,0], [1+x^2, 2]]
sage: e = c_cart.frame().new_frame(a, e) ; e
Vector frame (R^2, (e_1,e_2))
sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1})
sage: e_U = e.restrict(U) ; e_U
Vector frame (U, (e_1,e_2))

The vectors of the restriction have the same symbols as those of the original frame:

sage: e_U[1].display()
e_1 = (-y^2 + 1) ∂/∂x + (x^2 + 1) ∂/∂y
sage: e_U[2].display()
e_2 = 2 ∂/∂y

They are actually the restrictions of the original frame vectors:

sage: e_U[1] is e[1].restrict(U)
True
sage: e_U[2] is e[2].restrict(U)
True

set_name(symbol, latex_symbol=None, indices=None, latex_indices=None, index_position='down',
include_domain=True)

Set (or change) the text name and LaTeX name of self.

INPUT:

• symbol – either a string, to be used as a common base for the symbols of the vector fields constituting
the vector frame, or a list/tuple of strings, representing the individual symbols of the vector fields

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the vector fields constituting the vector frame, or a list/tuple of strings, representing the individual
LaTeX symbols of the vector fields; if None, symbol is used in place of latex_symbol

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the vector fields of the frame; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the vector fields; if None, indices is used instead

2.7. Vector Fields 597

Manifolds, Release 10.4.rc1

• index_position – (default: down) determines the position of the indices labelling the vector
fields of the frame; can be either down or up

• include_domain – (default: True) boolean determining whether the name of the domain is in-
cluded in the beginning of the vector frame name

EXAMPLES:

sage: M = Manifold(2, M)
sage: e = M.vector_frame(e); e
Vector frame (M, (e_0,e_1))
sage: e.set_name(f); e
Vector frame (M, (f_0,f_1))
sage: e.set_name(e , include_domain=False); e
Vector frame (e_0,e_1)
sage: e.set_name([a , b]); e
Vector frame (M, (a,b))
sage: e.set_name(e , indices=[x , y]); e
Vector frame (M, (e_x,e_y))
sage: e.set_name(e , latex_symbol=r \epsilon)
sage: latex(e)
\left(M, \left(\epsilon_{0},\epsilon_{1}\right)\right)
sage: e.set_name(e , latex_symbol=[r \alpha , r \beta])
sage: latex(e)
\left(M, \left(\alpha,\beta\right)\right)
sage: e.set_name(e , latex_symbol= E ,
....: latex_indices=[r \alpha , r \beta])
sage: latex(e)
\left(M, \left(E_{\alpha},E_{\beta}\right)\right)

structure_coeff()

Evaluate the structure coefficients associated to self.

𝑛 being the manifold’s dimension, the structure coefficients of the vector frame (𝑒𝑖) are the 𝑛3 scalar fields
𝐶𝑘

𝑖𝑗 defined by

[𝑒𝑖, 𝑒𝑗] = 𝐶𝑘
𝑖𝑗𝑒𝑘

OUTPUT:

• the structure coefficients 𝐶𝑘
𝑖𝑗 , as an instance of CompWithSym with 3 indices ordered as (𝑘, 𝑖, 𝑗).

EXAMPLES:

Structure coefficients of the orthonormal frame associated to spherical coordinates in the Euclidean spaceR3:

sage: M = Manifold(3, R^3 , r \RR^3 , start_index=1) # Part of R^3 covered␣
→˓by spherical coordinates
sage: c_spher.<r,th,ph> = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: ch_frame = M.automorphism_field()
sage: ch_frame[1,1], ch_frame[2,2], ch_frame[3,3] = 1, 1/r, 1/(r*sin(th))
sage: M.frames()
[Coordinate frame (R^3, (∂/∂r,∂/∂th,∂/∂ph))]
sage: e = c_spher.frame().new_frame(ch_frame, e)
sage: e[1][:] # components of e_1 in the manifold s default frame (∂/∂r, ∂/
→˓∂th, ∂/∂th)
[1, 0, 0]
sage: e[2][:]
[0, 1/r, 0]

(continues on next page)

598 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompWithSym

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: e[3][:]
[0, 0, 1/(r*sin(th))]
sage: c = e.structure_coeff() ; c
3-indices components w.r.t. Vector frame (R^3, (e_1,e_2,e_3)), with
antisymmetry on the index positions (1, 2)

sage: c[:]
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, -1/r, 0], [1/r, 0, 0], [0, 0, 0]],
[[0, 0, -1/r], [0, 0, -cos(th)/(r*sin(th))], [1/r, cos(th)/(r*sin(th)), 0]]]

sage: c[2,1,2] # C^2_{12}
-1/r
sage: c[3,1,3] # C^3_{13}
-1/r
sage: c[3,2,3] # C^3_{23}
-cos(th)/(r*sin(th))

2.7.4 Group of Tangent-Space Automorphism Fields

Given a differentiable manifold 𝑈 and a differentiable mapΦ : 𝑈 →𝑀 to a differentiable manifold𝑀 (possibly 𝑈 =𝑀
and Φ = Id𝑀), the group of tangent-space automorphism fields associated with 𝑈 and Φ is the general linear group
GL(X(𝑈,Φ)) of the moduleX(𝑈,Φ) of vector fields along𝑈 with values on𝑀 ⊃ Φ(𝑈) (see VectorFieldModule).
Note that X(𝑈,Φ) is a module over 𝐶𝑘(𝑈), the algebra of differentiable scalar fields on 𝑈 . Elements of GL(X(𝑈,Φ))
are fields along 𝑈 of automorphisms of tangent spaces to𝑀 .

Two classes implement GL(X(𝑈,Φ)) depending whether𝑀 is parallelizable or not: AutomorphismFieldParal-
Group and AutomorphismFieldGroup.

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

• Michael Jung (2019): improve treatment of the identity element

REFERENCES:

• Chap. 15 of [God1968]

class sage.manifolds.differentiable.automorphismfield_group.AutomorphismFieldGroup(vec-
tor_field_mod-
ule)

Bases: UniqueRepresentation, Parent

General linear group of the module of vector fields along a differentiable manifold 𝑈 with values on a differentiable
manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a differentiable manifold𝑀 (possibly
𝑈 = 𝑀 and Φ = Id𝑀), the group of tangent-space automorphism fields associated with 𝑈 and Φ is the general
linear group GL(X(𝑈,Φ)) of the module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 ⊃ Φ(𝑈) (see Vec-
torFieldModule). Note that X(𝑈,Φ) is a module over 𝐶𝑘(𝑈), the algebra of differentiable scalar fields on
𝑈 . Elements of GL(X(𝑈,Φ)) are fields along 𝑈 of automorphisms of tangent spaces to𝑀 .

Note: If𝑀 is parallelizable, then AutomorphismFieldParalGroup must be used instead.

INPUT:

2.7. Vector Fields 599

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Manifolds, Release 10.4.rc1

• vector_field_module – VectorFieldModule; module X(𝑈,Φ) of vector fields along 𝑈 with
values on𝑀

EXAMPLES:

Group of tangent-space automorphism fields of the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0, restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: G = M.automorphism_field_group() ; G
General linear group of the Module X(M) of vector fields on the
2-dimensional differentiable manifold M

G is the general linear group of the vector field module X(𝑀):

sage: XM = M.vector_field_module() ; XM
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: G is XM.general_linear_group()
True

G is a non-abelian group:

sage: G.category()
Category of groups
sage: G in Groups()
True
sage: G in CommutativeAdditiveGroups()
False

The elements of G are tangent-space automorphisms:

sage: a = G.an_element(); a
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M
sage: a.parent() is G
True
sage: a.restrict(U).display()
2 ∂/∂x⊗dx + 2 ∂/∂y⊗dy
sage: a.restrict(V).display()
2 ∂/∂u⊗du + 2 ∂/∂v⊗dv

The identity element of the group G:

sage: e = G.one() ; e
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold M
sage: eU = U.default_frame() ; eU
Coordinate frame (U, (∂/∂x,∂/∂y))
sage: eV = V.default_frame() ; eV
Coordinate frame (V, (∂/∂u,∂/∂v))

(continues on next page)

600 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: e.display(eU)
Id = ∂/∂x⊗dx + ∂/∂y⊗dy
sage: e.display(eV)
Id = ∂/∂u⊗du + ∂/∂v⊗dv

Element

alias of AutomorphismField

base_module()

Return the vector-field module of which self is the general linear group.

OUTPUT:

• VectorFieldModule

EXAMPLES:

Base module of the group of tangent-space automorphism fields of the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^
→˓2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: G = M.automorphism_field_group()
sage: G.base_module()
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M

sage: G.base_module() is M.vector_field_module()
True

one()

Return identity element of self.

The group identity element is the field of tangent-space identity maps.

OUTPUT:

• AutomorphismField representing the identity element

EXAMPLES:

Identity element of the group of tangent-space automorphism fields of the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^
→˓2+y^2!=0,

(continues on next page)

2.7. Vector Fields 601

Manifolds, Release 10.4.rc1

(continued from previous page)

....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: G = M.automorphism_field_group()
sage: G.one()
Field of tangent-space identity maps on the 2-dimensional differentiable␣
→˓manifold M
sage: G.one().restrict(U)[:]
[1 0]
[0 1]
sage: G.one().restrict(V)[:]
[1 0]
[0 1]

class sage.manifolds.differentiable.automorphismfield_group.AutomorphismFieldParalGroup(vec-
tor_field_mod-
ule)

Bases: FreeModuleLinearGroup

General linear group of the module of vector fields along a differentiable manifold 𝑈 with values on a parallelizable
manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a parallelizable manifold𝑀 (possibly
𝑈 = 𝑀 and Φ = Id𝑀), the group of tangent-space automorphism fields associated with 𝑈 and Φ is the general
linear group GL(X(𝑈,Φ)) of the module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 ⊃ Φ(𝑈) (see Vec-
torFieldFreeModule). Note that X(𝑈,Φ) is a free module over 𝐶𝑘(𝑈), the algebra of differentiable scalar
fields on 𝑈 . Elements of GL(X(𝑈,Φ)) are fields along 𝑈 of automorphisms of tangent spaces to𝑀 .

Note: If𝑀 is not parallelizable, the class AutomorphismFieldGroup must be used instead.

INPUT:

• vector_field_module – VectorFieldFreeModule; free module X(𝑈,Φ) of vector fields along
𝑈 with values on𝑀

EXAMPLES:

Group of tangent-space automorphism fields of a 2-dimensional parallelizable manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: XM = M.vector_field_module() ; XM
Free module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: G = M.automorphism_field_group(); G
General linear group of the Free module X(M) of vector fields on the
2-dimensional differentiable manifold M
sage: latex(G)
\mathrm{GL}\left(\mathfrak{X}\left(M\right) \right)

G is nothing but the general linear group of the module X(𝑀):

sage: G is XM.general_linear_group()
True

G is a group:

602 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_linear_group.html#sage.tensor.modules.free_module_linear_group.FreeModuleLinearGroup

Manifolds, Release 10.4.rc1

sage: G.category()
Category of groups
sage: G in Groups()
True

It is not an abelian group:

sage: G in CommutativeAdditiveGroups()
False

The elements of G are tangent-space automorphisms:

sage: G.Element
<class sage.manifolds.differentiable.automorphismfield.AutomorphismFieldParal >
sage: a = G.an_element() ; a
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M
sage: a.parent() is G
True

As automorphisms of X(𝑀), the elements of G map a vector field to a vector field:

sage: v = XM.an_element() ; v
Vector field on the 2-dimensional differentiable manifold M
sage: v.display()
2 ∂/∂x + 2 ∂/∂y
sage: a(v)
Vector field on the 2-dimensional differentiable manifold M
sage: a(v).display()
2 ∂/∂x - 2 ∂/∂y

Indeed the matrix of a with respect to the frame (𝜕𝑥, 𝜕𝑦) is:

sage: a[X.frame(),:]
[1 0]
[0 -1]

The elements of G can also be considered as tensor fields of type (1, 1):

sage: a.tensor_type()
(1, 1)
sage: a.tensor_rank()
2
sage: a.domain()
2-dimensional differentiable manifold M
sage: a.display()
∂/∂x⊗dx - ∂/∂y⊗dy

The identity element of the group G is:

sage: id = G.one() ; id
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold M
sage: id*a == a
True
sage: a*id == a
True

(continues on next page)

2.7. Vector Fields 603

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a*a^(-1) == id
True
sage: a^(-1)*a == id
True

Construction of an element by providing its components with respect to the manifold’s default frame (frame asso-
ciated to the coordinates (𝑥, 𝑦)):

sage: b = G([[1+x^2,0], [0,1+y^2]]) ; b
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M
sage: b.display()
(x^2 + 1) ∂/∂x⊗dx + (y^2 + 1) ∂/∂y⊗dy
sage: (~b).display() # the inverse automorphism
1/(x^2 + 1) ∂/∂x⊗dx + 1/(y^2 + 1) ∂/∂y⊗dy

We check the group law on these elements:

sage: (a*b)^(-1) == b^(-1) * a^(-1)
True

Invertible tensor fields of type (1, 1) can be converted to elements of G:

sage: t = M.tensor_field(1, 1, name= t)
sage: t[:] = [[1+exp(y), x*y], [0, 1+x^2]]
sage: t1 = G(t) ; t1
Field of tangent-space automorphisms t on the 2-dimensional
differentiable manifold M
sage: t1 in G
True
sage: t1.display()
t = (e^y + 1) ∂/∂x⊗dx + x*y ∂/∂x⊗dy + (x^2 + 1) ∂/∂y⊗dy
sage: t1^(-1)
Field of tangent-space automorphisms t^(-1) on the 2-dimensional
differentiable manifold M
sage: (t1^(-1)).display()
t^(-1) = 1/(e^y + 1) ∂/∂x⊗dx - x*y/(x^2 + (x^2 + 1)*e^y + 1) ∂/∂x⊗dy
+ 1/(x^2 + 1) ∂/∂y⊗dy

Since any automorphism field can be considered as a tensor field of type-(1, 1) on M, there is a coercion map from
G to the module 𝑇 (1,1)(𝑀) of type-(1, 1) tensor fields:

sage: T11 = M.tensor_field_module((1,1)) ; T11
Free module T^(1,1)(M) of type-(1,1) tensors fields on the
2-dimensional differentiable manifold M
sage: T11.has_coerce_map_from(G)
True

An explicit call of this coercion map is:

sage: tt = T11(t1) ; tt
Tensor field t of type (1,1) on the 2-dimensional differentiable
manifold M
sage: tt == t
True

An implicit call of the coercion map is performed to subtract an element of G from an element of 𝑇 (1,1)(𝑀):

604 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: s = t - t1 ; s
Tensor field t-t of type (1,1) on
the 2-dimensional differentiable manifold M
sage: s.parent() is T11
True
sage: s.display()
t-t = 0

as well as for the reverse operation:

sage: s = t1 - t ; s
Tensor field t-t of type (1,1) on the 2-dimensional differentiable
manifold M
sage: s.display()
t-t = 0

Element

alias of AutomorphismFieldParal

2.7.5 Tangent-Space Automorphism Fields

The class AutomorphismField implements fields of automorphisms of tangent spaces to a generic (a priori not paral-
lelizable) differentiable manifold, while the class AutomorphismFieldParal is devoted to fields of automorphisms
of tangent spaces to a parallelizable manifold. The latter play the important role of transitions between vector frames
sharing the same domain on a differentiable manifold.

AUTHORS:

• Eric Gourgoulhon (2015): initial version

• Travis Scrimshaw (2016): review tweaks

class sage.manifolds.differentiable.automorphismfield.AutomorphismField(vec-
tor_field_mod-
ule,
name=None,
la-
tex_name=None)

Bases: TensorField

Field of automorphisms of tangent spaces to a generic (a priori not parallelizable) differentiable manifold.

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 →𝑀 to a differentiable manifold𝑀 , a field of
tangent-space automorphisms along 𝑈 with values on𝑀 ⊃ Φ(𝑈) is a differentiable map

𝑎 : 𝑈 −→ 𝑇 (1,1)𝑀,

with 𝑇 (1,1)𝑀 being the tensor bundle of type (1, 1) over𝑀 , such that

∀𝑝 ∈ 𝑈, 𝑎(𝑝) ∈ Aut(𝑇Φ(𝑝)𝑀),

i.e. 𝑎(𝑝) is an automorphism of the tangent space to𝑀 at the point Φ(𝑝).

The standard case of a field of tangent-space automorphisms on a manifold corresponds to 𝑈 =𝑀 and Φ = Id𝑀 .
Other common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

2.7. Vector Fields 605

Manifolds, Release 10.4.rc1

Note: If𝑀 is parallelizable, then AutomorphismFieldParal must be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 via the map Φ

• name – (default: None) name given to the field

• latex_name – (default: None) LaTeX symbol to denote the field; if none is provided, the LaTeX symbol
is set to name

• is_identity – (default: False) determines whether the constructed object is a field of identity auto-
morphisms

EXAMPLES:

Field of tangent-space automorphisms on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: a = M.automorphism_field(name= a) ; a
Field of tangent-space automorphisms a on the 2-dimensional
differentiable manifold M
sage: a.parent()
General linear group of the Module X(M) of vector fields on the
2-dimensional differentiable manifold M

We first define the components of 𝑎 with respect to the coordinate frame on 𝑈 :

sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a[eU,:] = [[1,x], [0,2]]

It is equivalent to pass the components while defining 𝑎:

sage: a = M.automorphism_field({eU: [[1,x], [0,2]]}, name= a)

We then set the components with respect to the coordinate frame on 𝑉 by extending the expressions of the com-
ponents in the corresponding subframe on𝑊 = 𝑈 ∩ 𝑉 :

sage: W = U.intersection(V)
sage: a.add_comp_by_continuation(eV, W, c_uv)

At this stage, the automorphism field 𝑎 is fully defined:

sage: a.display(eU)
a = ∂/∂x⊗dx + x ∂/∂x⊗dy + 2 ∂/∂y⊗dy
sage: a.display(eV)
a = (1/4*u + 1/4*v + 3/2) ∂/∂u⊗du + (-1/4*u - 1/4*v - 1/2) ∂/∂u⊗dv
+ (1/4*u + 1/4*v - 1/2) ∂/∂v⊗du + (-1/4*u - 1/4*v + 3/2) ∂/∂v⊗dv

In particular, we may ask for its inverse on the whole manifold𝑀 :

606 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: ia = a.inverse() ; ia
Field of tangent-space automorphisms a^(-1) on the 2-dimensional
differentiable manifold M
sage: ia.display(eU)
a^(-1) = ∂/∂x⊗dx - 1/2*x ∂/∂x⊗dy + 1/2 ∂/∂y⊗dy
sage: ia.display(eV)
a^(-1) = (-1/8*u - 1/8*v + 3/4) ∂/∂u⊗du + (1/8*u + 1/8*v + 1/4) ∂/∂u⊗dv
+ (-1/8*u - 1/8*v + 1/4) ∂/∂v⊗du + (1/8*u + 1/8*v + 3/4) ∂/∂v⊗dv

Equivalently, one can use the power minus one to get the inverse:

sage: ia is a^(-1)
True

or the operator ~:

sage: ia is ~a
True

add_comp(basis=None)
Return the components of self w.r.t. a given module basis for assignment, keeping the components w.r.t.
other bases.

To delete the components w.r.t. other bases, use the method set_comp() instead.

INPUT:

• basis – (default: None) basis in which the components are defined; if none is provided, the components
are assumed to refer to the module’s default basis

Warning: If the automorphism field has already components in other bases, it is the user’s responsibility
to make sure that the components to be added are consistent with them.

OUTPUT:

• components in the given basis, as an instance of the class Components; if such components did not
exist previously, they are created

EXAMPLES:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: e_uv = c_uv.frame()
sage: a= M.automorphism_field(name= a)
sage: a.add_comp(e_uv)
2-indices components w.r.t. Coordinate frame (V, (∂/∂u,∂/∂v))
sage: a.add_comp(e_uv)[0,0] = u+v
sage: a.add_comp(e_uv)[1,1] = u+v
sage: a.display(e_uv)
a = (u + v) ∂/∂u⊗du + (u + v) ∂/∂v⊗dv

Setting the components in a new frame:

2.7. Vector Fields 607

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

sage: e = V.vector_frame(e)
sage: a.add_comp(e)
2-indices components w.r.t. Vector frame (V, (e_0,e_1))
sage: a.add_comp(e)[0,1] = u*v
sage: a.add_comp(e)[1,0] = u*v
sage: a.display(e)
a = u*v e_0⊗e^1 + u*v e_1⊗e^0

The components with respect to e_uv are kept:

sage: a.display(e_uv)
a = (u + v) ∂/∂u⊗du + (u + v) ∂/∂v⊗dv

Since the identity map is a special element, its components cannot be changed:

sage: id = M.tangent_identity_field()
sage: id.add_comp(e)[0,1] = u*v
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed

copy(name=None, latex_name=None)
Return an exact copy of the automorphism field self.

INPUT:

• name – (default: None) name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

Note: The name and the derived quantities are not copied.

EXAMPLES:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: Id = M.tangent_identity_field(); Id
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold M

sage: one = Id.copy(1); one
Field of tangent-space automorphisms 1 on the 2-dimensional
differentiable manifold M

inverse()

Return the inverse automorphism of self.

EXAMPLES:

Inverse of a field of tangent-space automorphisms on a non-parallelizable 2-dimensional manifold:

608 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: W = U.intersection(V)
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.automorphism_field({eU: [[1,x], [0,2]]}, name= a)
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: ia = a.inverse() ; ia
Field of tangent-space automorphisms a^(-1) on the 2-dimensional
differentiable manifold M

sage: a[eU,:], ia[eU,:]
(
[1 x] [1 -1/2*x]
[0 2], [0 1/2]
)
sage: a[eV,:], ia[eV,:]
(
[1/4*u + 1/4*v + 3/2 -1/4*u - 1/4*v - 1/2]
[1/4*u + 1/4*v - 1/2 -1/4*u - 1/4*v + 3/2],
[-1/8*u - 1/8*v + 3/4 1/8*u + 1/8*v + 1/4]
[-1/8*u - 1/8*v + 1/4 1/8*u + 1/8*v + 3/4]
)

Let us check that ia is indeed the inverse of a:

sage: s = a.contract(ia)
sage: s[eU,:], s[eV,:]
(
[1 0] [1 0]
[0 1], [0 1]
)
sage: s = ia.contract(a)
sage: s[eU,:], s[eV,:]
(
[1 0] [1 0]
[0 1], [0 1]
)

The result is cached:

sage: a.inverse() is ia
True

Instead of inverse(), one can use the power minus one to get the inverse:

sage: ia is a^(-1)
True

or the operator ~:

sage: ia is ~a
True

restrict(subdomain, dest_map=None)

2.7. Vector Fields 609

Manifolds, Release 10.4.rc1

Return the restriction of self to some subdomain.

This is a redefinition of sage.manifolds.differentiable.tensorfield.TensorField.
restrict() to take into account the identity map.

INPUT:

• subdomain – DifferentiableManifold open subset 𝑉 of self._domain

• dest_map – (default: None) DiffMap; destination map Φ : 𝑉 → 𝑁 , where 𝑁 is
a subdomain of self._codomain; if None, the restriction of self.base_module().
destination_map() to 𝑉 is used

OUTPUT:

• a AutomorphismField representing the restriction

EXAMPLES:

Restrictions of an automorphism field on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of the North pole
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: eN = stereoN.frame() # the associated vector frame
sage: V = M.open_subset(V) # the complement of the South pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: eS = stereoS.frame() # the associated vector frame
sage: transf = stereoN.transition_map(stereoS, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: inv = transf.inverse() # transformation from stereoS to stereoN
sage: W = U.intersection(V) # the complement of the North and South poles
sage: stereoN_W = W.atlas()[0] # restriction of stereo. coord. from North␣
→˓pole to W
sage: stereoS_W = W.atlas()[1] # restriction of stereo. coord. from South␣
→˓pole to W
sage: eN_W = stereoN_W.frame() ; eS_W = stereoS_W.frame()
sage: a = M.automorphism_field({eN: [[1, atan(x^2+y^2)], [0,3]]},
....: name= a)
sage: a.add_comp_by_continuation(eS, W, chart=stereoS); a
Field of tangent-space automorphisms a on the 2-dimensional
differentiable manifold S^2

sage: a.restrict(U)
Field of tangent-space automorphisms a on the Open subset U of the
2-dimensional differentiable manifold S^2

sage: a.restrict(U)[eN,:]
[1 arctan(x^2 + y^2)]
[0 3]
sage: a.restrict(V)
Field of tangent-space automorphisms a on the Open subset V of the
2-dimensional differentiable manifold S^2

sage: a.restrict(V)[eS,:]
[(u^4 + 10*u^2*v^2 + v^4 + 2*(u^3*v - u*v^3)*arctan(1/(u^2 + v^2)))/(u^4 +␣
→˓2*u^2*v^2 + v^4) -(4*u^3*v - 4*u*v^3 + (u^4 - 2*u^2*v^2 + v^4)*arctan(1/(u^
→˓2 + v^2)))/(u^4 + 2*u^2*v^2 + v^4)]
[4*(u^2*v^2*arctan(1/(u^2 + v^2)) - u^3*v + u*v^3)/(u^4 +␣

(continues on next page)

610 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓2*u^2*v^2 + v^4) (3*u^4 - 2*u^2*v^2 + 3*v^4 - 2*(u^3*v - u*v^3)*arctan(1/(u^
→˓2 + v^2)))/(u^4 + 2*u^2*v^2 + v^4)]
sage: a.restrict(W)
Field of tangent-space automorphisms a on the Open subset W of the
2-dimensional differentiable manifold S^2

sage: a.restrict(W)[eN_W,:]
[1 arctan(x^2 + y^2)]
[0 3]

Restrictions of the field of tangent-space identity maps:

sage: id = M.tangent_identity_field() ; id
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold S^2

sage: id.restrict(U)
Field of tangent-space identity maps on the Open subset U of the
2-dimensional differentiable manifold S^2

sage: id.restrict(U)[eN,:]
[1 0]
[0 1]
sage: id.restrict(V)
Field of tangent-space identity maps on the Open subset V of the
2-dimensional differentiable manifold S^2

sage: id.restrict(V)[eS,:]
[1 0]
[0 1]
sage: id.restrict(W)[eN_W,:]
[1 0]
[0 1]
sage: id.restrict(W)[eS_W,:]
[1 0]
[0 1]

set_comp(basis=None)
Return the components of self w.r.t. a given module basis for assignment.

The components with respect to other bases are deleted, in order to avoid any inconsistency. To keep them,
use the method add_comp() instead.

INPUT:

• basis – (default: None) basis in which the components are defined; if none is provided, the components
are assumed to refer to the module’s default basis

OUTPUT:

• components in the given basis, as an instance of the class Components; if such components did not
exist previously, they are created.

EXAMPLES:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: e_uv = c_uv.frame()

(continues on next page)

2.7. Vector Fields 611

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a= M.automorphism_field(name= a)
sage: a.set_comp(e_uv)
2-indices components w.r.t. Coordinate frame (V, (∂/∂u,∂/∂v))
sage: a.set_comp(e_uv)[0,0] = u+v
sage: a.set_comp(e_uv)[1,1] = u+v
sage: a.display(e_uv)
a = (u + v) ∂/∂u⊗du + (u + v) ∂/∂v⊗dv

Setting the components in a new frame:

sage: e = V.vector_frame(e)
sage: a.set_comp(e)
2-indices components w.r.t. Vector frame (V, (e_0,e_1))
sage: a.set_comp(e)[0,1] = u*v
sage: a.set_comp(e)[1,0] = u*v
sage: a.display(e)
a = u*v e_0⊗e^1 + u*v e_1⊗e^0

Since the frames e and e_uv are defined on the same domain, the components w.r.t. e_uv have been erased:

sage: a.display(c_uv.frame())
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components
in the Coordinate frame (V, (∂/∂u,∂/∂v))

Since the identity map is an immutable element, its components cannot be changed:

sage: id = M.tangent_identity_field()
sage: id.add_comp(e)[0,1] = u*v
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed

class sage.manifolds.differentiable.automorphismfield.AutomorphismFieldParal(vec-
tor_field_mod-
ule,
name=None,
la-
tex_name=None)

Bases: FreeModuleAutomorphism, TensorFieldParal

Field of tangent-space automorphisms with values on a parallelizable manifold.

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 →𝑀 to a parallelizable manifold𝑀 , a field of
tangent-space automorphisms along 𝑈 with values on𝑀 ⊃ Φ(𝑈) is a differentiable map

𝑎 : 𝑈 −→ 𝑇 (1,1)𝑀

(𝑇 (1,1)𝑀 being the tensor bundle of type (1, 1) over𝑀) such that

∀𝑝 ∈ 𝑈, 𝑎(𝑝) ∈ Aut(𝑇Φ(𝑝)𝑀)

i.e. 𝑎(𝑝) is an automorphism of the tangent space to𝑀 at the point Φ(𝑝).

The standard case of a field of tangent-space automorphisms on a manifold corresponds to 𝑈 =𝑀 and Φ = Id𝑀 .
Other common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

612 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

Note: If𝑀 is not parallelizable, the class AutomorphismField must be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 via the map
Φ

• name – (default: None) name given to the field

• latex_name – (default: None) LaTeX symbol to denote the field; if none is provided, the LaTeX symbol
is set to name

EXAMPLES:

A 𝜋/3-rotation in the Euclidean 2-plane:

sage: M = Manifold(2, R^2)
sage: c_xy.<x,y> = M.chart()
sage: rot = M.automorphism_field([[sqrt(3)/2, -1/2], [1/2, sqrt(3)/2]],
....: name= R); rot
Field of tangent-space automorphisms R on the 2-dimensional
differentiable manifold R^2
sage: rot.parent()
General linear group of the Free module X(R^2) of vector fields on the
2-dimensional differentiable manifold R^2

The inverse automorphism is obtained via the method inverse():

sage: inv = rot.inverse() ; inv
Field of tangent-space automorphisms R^(-1) on the 2-dimensional
differentiable manifold R^2
sage: latex(inv)
R^{-1}
sage: inv[:]
[1/2*sqrt(3) 1/2]
[-1/2 1/2*sqrt(3)]
sage: rot[:]
[1/2*sqrt(3) -1/2]
[1/2 1/2*sqrt(3)]
sage: inv[:] * rot[:] # check
[1 0]
[0 1]

Equivalently, one can use the power minus one to get the inverse:

sage: inv is rot^(-1)
True

or the operator ~:

sage: inv is ~rot
True

at(point)
Value of self at a given point.

If the current field of tangent-space automorphisms is

𝑎 : 𝑈 −→ 𝑇 (1,1)𝑀

2.7. Vector Fields 613

Manifolds, Release 10.4.rc1

associated with the differentiable map

Φ : 𝑈 −→𝑀,

where 𝑈 and𝑀 are two manifolds (possibly 𝑈 = 𝑀 and Φ = Id𝑀), then for any point 𝑝 ∈ 𝑈 , 𝑎(𝑝) is an
automorphism of the tangent space 𝑇Φ(𝑝)𝑀 .

INPUT:

• point – ManifoldPoint; point 𝑝 in the domain of the field of automorphisms 𝑎

OUTPUT:

• the automorphism 𝑎(𝑝) of the tangent vector space 𝑇Φ(𝑝)𝑀

EXAMPLES:

Automorphism at some point of a tangent space of a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: a = M.automorphism_field([[1+exp(y), x*y], [0, 1+x^2]],
....: name= a)
sage: a.display()
a = (e^y + 1) ∂/∂x⊗dx + x*y ∂/∂x⊗dy + (x^2 + 1) ∂/∂y⊗dy
sage: p = M.point((-2,3), name= p) ; p
Point p on the 2-dimensional differentiable manifold M
sage: ap = a.at(p) ; ap
Automorphism a of the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: ap.display()
a = (e^3 + 1) ∂/∂x⊗dx - 6 ∂/∂x⊗dy + 5 ∂/∂y⊗dy
sage: ap.parent()
General linear group of the Tangent space at Point p on the
2-dimensional differentiable manifold M

The identity map of the tangent space at point p:

sage: id = M.tangent_identity_field() ; id
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold M

sage: idp = id.at(p) ; idp
Identity map of the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: idp is M.tangent_space(p).identity_map()
True
sage: idp.display()
Id = ∂/∂x⊗dx + ∂/∂y⊗dy
sage: idp.parent()
General linear group of the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: idp * ap == ap
True

inverse()

Return the inverse automorphism of self.

EXAMPLES:

614 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: a = M.automorphism_field([[0, 2], [-1, 0]], name= a)
sage: b = a.inverse(); b
Field of tangent-space automorphisms a^(-1) on the 2-dimensional
differentiable manifold M

sage: b[:]
[0 -1]
[1/2 0]
sage: a[:]
[0 2]
[-1 0]

The result is cached:

sage: a.inverse() is b
True

Instead of inverse(), one can use the power minus one to get the inverse:

sage: b is a^(-1)
True

or the operator ~:

sage: b is ~a
True

restrict(subdomain, dest_map=None)
Return the restriction of self to some subset of its domain.

If such restriction has not been defined yet, it is constructed here.

This is a redefinition of sage.manifolds.differentiable.tensorfield_paral.
TensorFieldParal.restrict() to take into account the identity map.

INPUT:

• subdomain – DifferentiableManifold; open subset 𝑉 of self._domain

• dest_map – (default: None) DiffMap destination mapΦ : 𝑉 → 𝑁 , where𝑁 is a subset of self.
_codomain; if None, the restriction of self.base_module().destination_map() to 𝑉
is used

OUTPUT:

• a AutomorphismFieldParal representing the restriction

EXAMPLES:

Restriction of an automorphism field defined on R2 to a disk:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset(D) # the unit open disc
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: a = M.automorphism_field([[1, x*y], [0, 3]], name= a); a
Field of tangent-space automorphisms a on the 2-dimensional
differentiable manifold R^2

sage: a.restrict(D)

(continues on next page)

2.7. Vector Fields 615

Manifolds, Release 10.4.rc1

(continued from previous page)

Field of tangent-space automorphisms a on the Open subset D of the
2-dimensional differentiable manifold R^2

sage: a.restrict(D)[:]
[1 x*y]
[0 3]

Restriction to the disk of the field of tangent-space identity maps:

sage: id = M.tangent_identity_field() ; id
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold R^2

sage: id.restrict(D)
Field of tangent-space identity maps on the Open subset D of the
2-dimensional differentiable manifold R^2

sage: id.restrict(D)[:]
[1 0]
[0 1]
sage: id.restrict(D) == D.tangent_identity_field()
True

2.8 Tensor Fields

2.8.1 Tensor Field Modules

The set of tensor fields along a differentiable manifold 𝑈 with values on a differentiable manifold𝑀 via a differentiable
map Φ : 𝑈 →𝑀 (possibly 𝑈 =𝑀 and Φ = Id𝑀) is a module over the algebra 𝐶𝑘(𝑈) of differentiable scalar fields on
𝑈 . It is a free module if and only if𝑀 is parallelizable. Accordingly, two classes are devoted to tensor field modules:

• TensorFieldModule for tensor fields with values on a generic (in practice, not parallelizable) differentiable
manifold𝑀 ,

• TensorFieldFreeModule for tensor fields with values on a parallelizable manifold𝑀 .

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2014-2015): initial version

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• [KN1963]

• [Lee2013]

• [ONe1983]

class sage.manifolds.differentiable.tensorfield_module.TensorFieldFreeModule(vec-
tor_field_mod-
ule,
ten-
sor_type)

Bases: TensorFreeModule

Free module of tensor fields of a given type (𝑘, 𝑙) along a differentiable manifold 𝑈 with values on a parallelizable
manifold𝑀 , via a differentiable map 𝑈 →𝑀 .

616 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/tensor_free_module.html#sage.tensor.modules.tensor_free_module.TensorFreeModule

Manifolds, Release 10.4.rc1

Given two non-negative integers 𝑘 and 𝑙 and a differentiable map

Φ : 𝑈 −→𝑀,

the tensor field module 𝑇 (𝑘,𝑙)(𝑈,Φ) is the set of all tensor fields of the type

𝑡 : 𝑈 −→ 𝑇 (𝑘,𝑙)𝑀

(where 𝑇 (𝑘,𝑙)𝑀 is the tensor bundle of type (𝑘, 𝑙) over𝑀) such that

𝑡(𝑝) ∈ 𝑇 (𝑘,𝑙)(𝑇Φ(𝑝)𝑀)

for all 𝑝 ∈ 𝑈 , i.e. 𝑡(𝑝) is a tensor of type (𝑘, 𝑙) on the tangent vector space 𝑇Φ(𝑝)𝑀 . Since 𝑀 is paralleliz-
able, the set 𝑇 (𝑘,𝑙)(𝑈,Φ) is a free module over 𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields on 𝑈 (see
DiffScalarFieldAlgebra).

The standard case of tensor fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 ; we then
denote 𝑇 (𝑘,𝑙)(𝑀, Id𝑀) by merely 𝑇 (𝑘,𝑙)(𝑀). Other common cases areΦ being an immersion andΦ being a curve
in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is not parallelizable, the class TensorFieldModule should be used instead, for 𝑇 (𝑘,𝑙)(𝑈,Φ) is
no longer a free module.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 associated with the map Φ :
𝑈 →𝑀

• tensor_type – pair (𝑘, 𝑙) with 𝑘 being the contravariant rank and 𝑙 the covariant rank

EXAMPLES:

Module of type-(2, 0) tensor fields on R3:

sage: M = Manifold(3, R^3)
sage: c_xyz.<x,y,z> = M.chart() # Cartesian coordinates
sage: T20 = M.tensor_field_module((2,0)) ; T20
Free module T^(2,0)(R^3) of type-(2,0) tensors fields on the
3-dimensional differentiable manifold R^3

𝑇 (2,0)(R3) is a module over the algebra 𝐶𝑘(R3):

sage: T20.category()
Category of tensor products of finite dimensional modules over
Algebra of differentiable scalar fields on the 3-dimensional differentiable␣
→˓manifold R^3
sage: T20.base_ring() is M.scalar_field_algebra()
True

𝑇 (2,0)(R3) is a free module:

sage: from sage.tensor.modules.finite_rank_free_module import␣
→˓FiniteRankFreeModule_abstract
sage: isinstance(T20, FiniteRankFreeModule_abstract)
True

because𝑀 = R3 is parallelizable:

2.8. Tensor Fields 617

Manifolds, Release 10.4.rc1

sage: M.is_manifestly_parallelizable()
True

The zero element:

sage: z = T20.zero() ; z
Tensor field zero of type (2,0) on the 3-dimensional differentiable
manifold R^3
sage: z[:]
[0 0 0]
[0 0 0]
[0 0 0]

A random element:

sage: t = T20.an_element() ; t
Tensor field of type (2,0) on the 3-dimensional differentiable
manifold R^3
sage: t[:]
[2 0 0]
[0 0 0]
[0 0 0]

The module 𝑇 (2,0)(R3) coerces to any module of type-(2, 0) tensor fields defined on some subdomain of R3:

sage: U = M.open_subset(U , coord_def={c_xyz: x>0})
sage: T20U = U.tensor_field_module((2,0))
sage: T20U.has_coerce_map_from(T20)
True
sage: T20.has_coerce_map_from(T20U) # the reverse is not true
False
sage: T20U.coerce_map_from(T20)
Coercion map:
From: Free module T^(2,0)(R^3) of type-(2,0) tensors fields on the 3-

→˓dimensional differentiable manifold R^3
To: Free module T^(2,0)(U) of type-(2,0) tensors fields on the Open subset U␣

→˓of the 3-dimensional differentiable manifold R^3

The coercion map is actually the restriction of tensor fields defined on R3 to 𝑈 .

There is also a coercion map from fields of tangent-space automorphisms to tensor fields of type (1, 1):

sage: T11 = M.tensor_field_module((1,1)) ; T11
Free module T^(1,1)(R^3) of type-(1,1) tensors fields on the
3-dimensional differentiable manifold R^3
sage: GL = M.automorphism_field_group() ; GL
General linear group of the Free module X(R^3) of vector fields on the
3-dimensional differentiable manifold R^3
sage: T11.has_coerce_map_from(GL)
True

An explicit call to this coercion map is:

sage: id = GL.one() ; id
Field of tangent-space identity maps on the 3-dimensional
differentiable manifold R^3
sage: tid = T11(id) ; tid
Tensor field Id of type (1,1) on the 3-dimensional differentiable

(continues on next page)

618 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

manifold R^3
sage: tid[:]
[1 0 0]
[0 1 0]
[0 0 1]

Element

alias of TensorFieldParal

class sage.manifolds.differentiable.tensorfield_module.TensorFieldModule(vec-
tor_field_mod-
ule,
ten-
sor_type,
cate-
gory=None)

Bases: UniqueRepresentation, ReflexiveModule_tensor

Module of tensor fields of a given type (𝑘, 𝑙) along a differentiable manifold 𝑈 with values on a differentiable
manifold𝑀 , via a differentiable map 𝑈 →𝑀 .

Given two non-negative integers 𝑘 and 𝑙 and a differentiable map

Φ : 𝑈 −→𝑀,

the tensor field module 𝑇 (𝑘,𝑙)(𝑈,Φ) is the set of all tensor fields of the type

𝑡 : 𝑈 −→ 𝑇 (𝑘,𝑙)𝑀

(where 𝑇 (𝑘,𝑙)𝑀 is the tensor bundle of type (𝑘, 𝑙) over𝑀) such that

𝑡(𝑝) ∈ 𝑇 (𝑘,𝑙)(𝑇Φ(𝑝)𝑀)

for all 𝑝 ∈ 𝑈 , i.e. 𝑡(𝑝) is a tensor of type (𝑘, 𝑙) on the tangent vector space 𝑇Φ(𝑝)𝑀 . The set 𝑇 (𝑘,𝑙)(𝑈,Φ) is a
module over 𝐶𝑘(𝑈), the ring (algebra) of differentiable scalar fields on 𝑈 (see DiffScalarFieldAlgebra).

The standard case of tensor fields on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 ; we then
denote 𝑇 (𝑘,𝑙)(𝑀, Id𝑀) by merely 𝑇 (𝑘,𝑙)(𝑀). Other common cases areΦ being an immersion andΦ being a curve
in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is parallelizable, the class TensorFieldFreeModule should be used instead.

INPUT:

• vector_field_module –moduleX(𝑈,Φ) of vector fields along𝑈 associated with themapΦ : 𝑈 →𝑀

• tensor_type – pair (𝑘, 𝑙) with 𝑘 being the contravariant rank and 𝑙 the covariant rank

EXAMPLES:

Module of type-(2, 0) tensor fields on the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole

(continues on next page)

2.8. Tensor Fields 619

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/reflexive_module.html#sage.tensor.modules.reflexive_module.ReflexiveModule_tensor

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: T20 = M.tensor_field_module((2,0)); T20
Module T^(2,0)(M) of type-(2,0) tensors fields on the 2-dimensional
differentiable manifold M

𝑇 (2,0)(𝑀) is a module over the algebra 𝐶𝑘(𝑀):

sage: T20.category()
Category of tensor products of modules over Algebra of differentiable scalar␣
→˓fields
on the 2-dimensional differentiable manifold M
sage: T20.base_ring() is M.scalar_field_algebra()
True

𝑇 (2,0)(𝑀) is not a free module:

sage: from sage.tensor.modules.finite_rank_free_module import␣
→˓FiniteRankFreeModule_abstract
sage: isinstance(T20, FiniteRankFreeModule_abstract)
False

because𝑀 = 𝑆2 is not parallelizable:

sage: M.is_manifestly_parallelizable()
False

On the contrary, the module of type-(2, 0) tensor fields on 𝑈 is a free module, since 𝑈 is parallelizable (being a
coordinate domain):

sage: T20U = U.tensor_field_module((2,0))
sage: isinstance(T20U, FiniteRankFreeModule_abstract)
True
sage: U.is_manifestly_parallelizable()
True

The zero element:

sage: z = T20.zero() ; z
Tensor field zero of type (2,0) on the 2-dimensional differentiable
manifold M
sage: z is T20(0)
True
sage: z[c_xy.frame(),:]
[0 0]
[0 0]
sage: z[c_uv.frame(),:]
[0 0]
[0 0]

The module 𝑇 (2,0)(𝑀) coerces to any module of type-(2, 0) tensor fields defined on some subdomain of𝑀 , for
instance 𝑇 (2,0)(𝑈):

620 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: T20U.has_coerce_map_from(T20)
True

The reverse is not true:

sage: T20.has_coerce_map_from(T20U)
False

The coercion:

sage: T20U.coerce_map_from(T20)
Coercion map:
From: Module T^(2,0)(M) of type-(2,0) tensors fields on the 2-dimensional␣

→˓differentiable manifold M
To: Free module T^(2,0)(U) of type-(2,0) tensors fields on the Open subset U␣

→˓of the 2-dimensional differentiable manifold M

The coercion map is actually the restriction of tensor fields defined on𝑀 to 𝑈 :

sage: t = M.tensor_field(2,0, name= t)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: t[eU,:] = [[2,0], [0,-3]]
sage: t.add_comp_by_continuation(eV, W, chart=c_uv)
sage: T20U(t) # the conversion map in action
Tensor field t of type (2,0) on the Open subset U of the 2-dimensional
differentiable manifold M
sage: T20U(t) is t.restrict(U)
True

There is also a coercion map from fields of tangent-space automorphisms to tensor fields of type-(1, 1):

sage: T11 = M.tensor_field_module((1,1)) ; T11
Module T^(1,1)(M) of type-(1,1) tensors fields on the 2-dimensional
differentiable manifold M
sage: GL = M.automorphism_field_group() ; GL
General linear group of the Module X(M) of vector fields on the
2-dimensional differentiable manifold M
sage: T11.has_coerce_map_from(GL)
True

Explicit call to the coercion map:

sage: a = GL.one() ; a
Field of tangent-space identity maps on the 2-dimensional
differentiable manifold M
sage: a.parent()
General linear group of the Module X(M) of vector fields on the
2-dimensional differentiable manifold M
sage: ta = T11.coerce(a) ; ta
Tensor field Id of type (1,1) on the 2-dimensional differentiable
manifold M
sage: ta.parent()
Module T^(1,1)(M) of type-(1,1) tensors fields on the 2-dimensional
differentiable manifold M
sage: ta[eU,:] # ta on U
[1 0]
[0 1]

(continues on next page)

2.8. Tensor Fields 621

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: ta[eV,:] # ta on V
[1 0]
[0 1]

Element

alias of TensorField

base_module()

Return the vector field module on which self is constructed.

OUTPUT:

• a VectorFieldModule representing the module on which self is defined

EXAMPLES:

sage: M = Manifold(2, M)
sage: T13 = M.tensor_field_module((1,3))
sage: T13.base_module()
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M

sage: T13.base_module() is M.vector_field_module()
True
sage: T13.base_module().base_ring()
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M

tensor_type()

Return the tensor type of self.

OUTPUT:

• pair (𝑘, 𝑙) of non-negative integers such that the tensor fields belonging to this module are of type (𝑘, 𝑙)

EXAMPLES:

sage: M = Manifold(2, M)
sage: T13 = M.tensor_field_module((1,3))
sage: T13.tensor_type()
(1, 3)
sage: T20 = M.tensor_field_module((2,0))
sage: T20.tensor_type()
(2, 0)

zero()

Return the zero of self.

2.8.2 Tensor Fields

The class TensorField implements tensor fields on differentiable manifolds. The derived class TensorField-
Paral is devoted to tensor fields with values on parallelizable manifolds.

Various derived classes of TensorField are devoted to specific tensor fields:

• VectorField for vector fields (rank-1 contravariant tensor fields)

• AutomorphismField for fields of tangent-space automorphisms

622 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• DiffForm for differential forms (fully antisymmetric covariant tensor fields)

• MultivectorField for multivector fields (fully antisymmetric contravariant tensor fields)

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Travis Scrimshaw (2016): review tweaks

• Eric Gourgoulhon (2018): operators divergence, Laplacian and d’Alembertian; method TensorField.
along()

• Florentin Jaffredo (2018) : series expansion with respect to a given parameter

• Michael Jung (2019): improve treatment of the zero element; add method TensorField.copy_from()

• Eric Gourgoulhon (2020): add method TensorField.apply_map()

REFERENCES:

• [KN1963]

• [Lee2013]

• [ONe1983]

class sage.manifolds.differentiable.tensorfield.TensorField(vector_field_module:
VectorFieldModule,
tensor_type: TensorType,
name: str | None = None,
latex_name: str | None =
None, sym=None,
antisym=None,
parent=None)

Bases: ModuleElementWithMutability

Tensor field along a differentiable manifold.

An instance of this class is a tensor field along a differentiable manifold 𝑈 with values on a differentiable mani-
fold 𝑀 , via a differentiable map Φ : 𝑈 → 𝑀 . More precisely, given two non-negative integers 𝑘 and 𝑙 and a
differentiable map

Φ : 𝑈 −→𝑀,

a tensor field of type (𝑘, 𝑙) along 𝑈 with values on𝑀 is a differentiable map

𝑡 : 𝑈 −→ 𝑇 (𝑘,𝑙)𝑀

(where 𝑇 (𝑘,𝑙)𝑀 is the tensor bundle of type (𝑘, 𝑙) over𝑀) such that

∀𝑝 ∈ 𝑈, 𝑡(𝑝) ∈ 𝑇 (𝑘,𝑙)(𝑇𝑞𝑀)

i.e. 𝑡(𝑝) is a tensor of type (𝑘, 𝑙) on the tangent space 𝑇𝑞𝑀 at the point 𝑞 = Φ(𝑝), that is to say a multilinear map

𝑡(𝑝) : 𝑇 *
𝑞𝑀 × · · · × 𝑇 *

𝑞𝑀⏟ ⏞
𝑘 times

×𝑇𝑞𝑀 × · · · × 𝑇𝑞𝑀⏟ ⏞
𝑙 times

−→ 𝐾,

where 𝑇 *
𝑞𝑀 is the dual vector space to 𝑇𝑞𝑀 and𝐾 is the topological field over which the manifold𝑀 is defined.

The integer 𝑘 + 𝑙 is called the tensor rank.

The standard case of a tensor field on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

2.8. Tensor Fields 623

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElementWithMutability

Manifolds, Release 10.4.rc1

If𝑀 is parallelizable, the class TensorFieldParal should be used instead.

This is a Sage element class, the corresponding parent class being TensorFieldModule.

INPUT:

• vector_field_module –moduleX(𝑈,Φ) of vector fields along𝑈 associated with themapΦ : 𝑈 →𝑀
(cf. VectorFieldModule)

• tensor_type – pair (𝑘, 𝑙) with 𝑘 being the contravariant rank and 𝑙 the covariant rank

• name – (default: None) name given to the tensor field

• latex_name – (default: None) LaTeX symbol to denote the tensor field; if none is provided, the LaTeX
symbol is set to name

• sym – (default: None) a symmetry or a list of symmetries among the tensor arguments: each symmetry is
described by a tuple containing the positions of the involved arguments, with the convention position =
0 for the first argument; for instance:

– sym = (0,1) for a symmetry between the 1st and 2nd arguments

– sym = [(0,2), (1,3,4)] for a symmetry between the 1st and 3rd arguments and a symmetry
between the 2nd, 4th and 5th arguments.

• antisym – (default: None) antisymmetry or list of antisymmetries among the arguments, with the same
convention as for sym

• parent – (default: None) some specific parent (e.g. exterior power for differential forms); if None,
vector_field_module.tensor_module(k,l) is used

EXAMPLES:

Tensor field of type (0,2) on the sphere 𝑆2:

sage: M = Manifold(2, S^2) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: t = M.tensor_field(0,2, name= t) ; t
Tensor field t of type (0,2) on the 2-dimensional differentiable
manifold S^2
sage: t.parent()
Module T^(0,2)(S^2) of type-(0,2) tensors fields on the 2-dimensional
differentiable manifold S^2
sage: t.parent().category()
Category of tensor products of modules over Algebra of differentiable scalar␣
→˓fields
on the 2-dimensional differentiable manifold S^2

The parent of 𝑡 is not a free module, for the sphere 𝑆2 is not parallelizable:

sage: isinstance(t.parent(), FiniteRankFreeModule)
False

624 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

To fully define 𝑡, we have to specify its components in some vector frames defined on subsets of 𝑆2; let us start by
the open subset 𝑈 :

sage: eU = c_xy.frame()
sage: t[eU,:] = [[1,0], [-2,3]]
sage: t.display(eU)
t = dx⊗dx - 2 dy⊗dx + 3 dy⊗dy

To set the components of 𝑡 on 𝑉 consistently, we copy the expressions of the components in the common subset
𝑊 :

sage: eV = c_uv.frame()
sage: eVW = eV.restrict(W)
sage: c_uvW = c_uv.restrict(W)
sage: t[eV,0,0] = t[eVW,0,0,c_uvW].expr() # long time
sage: t[eV,0,1] = t[eVW,0,1,c_uvW].expr() # long time
sage: t[eV,1,0] = t[eVW,1,0,c_uvW].expr() # long time
sage: t[eV,1,1] = t[eVW,1,1,c_uvW].expr() # long time

Actually, the above operation can be performed in a single line by means of the method add_comp_by_con-
tinuation():

sage: t.add_comp_by_continuation(eV, W, chart=c_uv) # long time

At this stage, 𝑡 is fully defined, having components in frames eU and eV and the union of the domains of eU and
eV being the whole manifold:

sage: t.display(eV) # long time
t = (u^4 - 4*u^3*v + 10*u^2*v^2 + 4*u*v^3 + v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 +␣
→˓4*u^2*v^6 + v^8) du⊗du
- 4*(u^3*v + 2*u^2*v^2 - u*v^3)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^8)␣
→˓du⊗dv
+ 2*(u^4 - 2*u^3*v - 2*u^2*v^2 + 2*u*v^3 + v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 +␣
→˓4*u^2*v^6 + v^8) dv⊗du
+ (3*u^4 + 4*u^3*v - 2*u^2*v^2 - 4*u*v^3 + 3*v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 +␣
→˓4*u^2*v^6 + v^8) dv⊗dv

Let us consider two vector fields, 𝑎 and 𝑏, on 𝑆2:

sage: a = M.vector_field({eU: [-y, x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: a.display(eV)
a = -v ∂/∂u + u ∂/∂v
sage: b = M.vector_field({eU: [y, -1]}, name= b)
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)
sage: b.display(eV)
b = ((2*u + 1)*v^3 + (2*u^3 - u^2)*v)/(u^2 + v^2) ∂/∂u
- (u^4 - v^4 + 2*u*v^2)/(u^2 + v^2) ∂/∂v

As a tensor field of type (0, 2), 𝑡 acts on the pair (𝑎, 𝑏), resulting in a scalar field:

sage: f = t(a,b); f
Scalar field t(a,b) on the 2-dimensional differentiable manifold S^2
sage: f.display() # long time
t(a,b): S^2 → ℝ
on U: (x, y) ↦ -2*x*y - y^2 - 3*x
on V: (u, v) ↦ -(3*u^3 + (3*u + 1)*v^2 + 2*u*v)/(u^4 + 2*u^2*v^2 + v^4)

2.8. Tensor Fields 625

Manifolds, Release 10.4.rc1

The vectors can be defined only on subsets of 𝑆2, the domain of the result is then the common subset:

sage: # long time
sage: s = t(a.restrict(U), b) ; s
Scalar field t(a,b) on the Open subset U of the 2-dimensional
differentiable manifold S^2
sage: s.display()
t(a,b): U → ℝ

(x, y) ↦ -2*x*y - y^2 - 3*x
on W: (u, v) ↦ -(3*u^3 + (3*u + 1)*v^2 + 2*u*v)/(u^4 + 2*u^2*v^2 + v^4)
sage: s = t(a.restrict(U), b.restrict(W)) ; s
Scalar field t(a,b) on the Open subset W of the 2-dimensional
differentiable manifold S^2
sage: s.display()
t(a,b): W → ℝ

(x, y) ↦ -2*x*y - y^2 - 3*x
(u, v) ↦ -(3*u^3 + (3*u + 1)*v^2 + 2*u*v)/(u^4 + 2*u^2*v^2 + v^4)

The tensor itself can be defined only on some open subset of 𝑆2, yielding a result whose domain is this subset:

sage: s = t.restrict(V)(a,b); s # long time
Scalar field t(a,b) on the Open subset V of the 2-dimensional
differentiable manifold S^2
sage: s.display() # long time
t(a,b): V → ℝ

(u, v) ↦ -(3*u^3 + (3*u + 1)*v^2 + 2*u*v)/(u^4 + 2*u^2*v^2 + v^4)
on W: (x, y) ↦ -2*x*y - y^2 - 3*x

Tests regarding the multiplication by a scalar field:

sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2),
....: c_uv: (u^2 + v^2)/(u^2 + v^2 + 1)}, name= f)
sage: t.parent().base_ring() is f.parent()
True
sage: s = f*t; s # long time
Tensor field f*t of type (0,2) on the 2-dimensional differentiable
manifold S^2
sage: s[[0,0]] == f*t[[0,0]] # long time
True
sage: s.restrict(U) == f.restrict(U) * t.restrict(U) # long time
True
sage: s = f*t.restrict(U); s
Tensor field f*t of type (0,2) on the Open subset U of the 2-dimensional
differentiable manifold S^2
sage: s.restrict(U) == f.restrict(U) * t.restrict(U)
True

626 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Same examples with SymPy as the symbolic engine

From now on, we ask that all symbolic calculus on manifold𝑀 are performed by SymPy:

sage: M.set_calculus_method(sympy)

We define the tensor 𝑡 as above:

sage: t = M.tensor_field(0, 2, {eU: [[1,0], [-2,3]]}, name= t)
sage: t.display(eU)
t = dx⊗dx - 2 dy⊗dx + 3 dy⊗dy
sage: t.add_comp_by_continuation(eV, W, chart=c_uv) # long time
sage: t.display(eV) # long time
t = (u**4 - 4*u**3*v + 10*u**2*v**2 + 4*u*v**3 + v**4)/(u**8 +
4*u**6*v**2 + 6*u**4*v**4 + 4*u**2*v**6 + v**8) du⊗du +
4*u*v*(-u**2 - 2*u*v + v**2)/(u**8 + 4*u**6*v**2 + 6*u**4*v**4
+ 4*u**2*v**6 + v**8) du⊗dv + 2*(u**4 - 2*u**3*v - 2*u**2*v**2
+ 2*u*v**3 + v**4)/(u**8 + 4*u**6*v**2 + 6*u**4*v**4 +
4*u**2*v**6 + v**8) dv⊗du + (3*u**4 + 4*u**3*v - 2*u**2*v**2 -
4*u*v**3 + 3*v**4)/(u**8 + 4*u**6*v**2 + 6*u**4*v**4 +
4*u**2*v**6 + v**8) dv⊗dv

The default coordinate representations of tensor components are now SymPy objects:

sage: t[eV,1,1,c_uv].expr() # long time
(3*u**4 + 4*u**3*v - 2*u**2*v**2 - 4*u*v**3 + 3*v**4)/(u**8 +
4*u**6*v**2 + 6*u**4*v**4 + 4*u**2*v**6 + v**8)
sage: type(t[eV,1,1,c_uv].expr()) # long time
<class sympy.core.mul.Mul >

Let us consider two vector fields, 𝑎 and 𝑏, on 𝑆2:

sage: a = M.vector_field({eU: [-y, x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: a.display(eV)
a = -v ∂/∂u + u ∂/∂v
sage: b = M.vector_field({eU: [y, -1]}, name= b)
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)
sage: b.display(eV)
b = v*(2*u**3 - u**2 + 2*u*v**2 + v**2)/(u**2 + v**2) ∂/∂u

+ (-u**4 - 2*u*v**2 + v**4)/(u**2 + v**2) ∂/∂v

As a tensor field of type (0, 2), 𝑡 acts on the pair (𝑎, 𝑏), resulting in a scalar field:

sage: f = t(a,b)
sage: f.display() # long time
t(a,b): S^2 → ℝ
on U: (x, y) ↦ -2*x*y - 3*x - y**2
on V: (u, v) ↦ (-3*u**3 - 3*u*v**2 - 2*u*v - v**2)/(u**4 + 2*u**2*v**2 + v**4)

The vectors can be defined only on subsets of 𝑆2, the domain of the result is then the common subset:

sage: s = t(a.restrict(U), b)
sage: s.display() # long time
t(a,b): U → ℝ

(x, y) ↦ -2*x*y - 3*x - y**2
on W: (u, v) ↦ (-3*u**3 - 3*u*v**2 - 2*u*v - v**2)/(u**4 + 2*u**2*v**2 + v**4)
sage: s = t(a.restrict(U), b.restrict(W)) # long time

(continues on next page)

2.8. Tensor Fields 627

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: s.display() # long time
t(a,b): W → ℝ

(x, y) ↦ -2*x*y - 3*x - y**2
(u, v) ↦ (-3*u**3 - 3*u*v**2 - 2*u*v - v**2)/(u**4 + 2*u**2*v**2 + v**4)

The tensor itself can be defined only on some open subset of 𝑆2, yielding a result whose domain is this subset:

sage: s = t.restrict(V)(a,b) # long time
sage: s.display() # long time
t(a,b): V → ℝ

(u, v) ↦ (-3*u**3 - 3*u*v**2 - 2*u*v - v**2)/(u**4 + 2*u**2*v**2 + v**4)
on W: (x, y) ↦ -2*x*y - 3*x - y**2

Tests regarding the multiplication by a scalar field:

sage: f = M.scalar_field({c_xy: 1/(1+x^2+y^2),
....: c_uv: (u^2 + v^2)/(u^2 + v^2 + 1)}, name= f)
sage: s = f*t # long time
sage: s[[0,0]] == f*t[[0,0]] # long time
True
sage: s.restrict(U) == f.restrict(U) * t.restrict(U) # long time
True
sage: s = f*t.restrict(U)
sage: s.restrict(U) == f.restrict(U) * t.restrict(U)
True

Notice that the zero tensor field is immutable, and therefore its components cannot be changed:

sage: zer = M.tensor_field_module((1, 1)).zero()
sage: zer.is_immutable()
True
sage: zer.set_comp()
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed

Other tensor fields can be declared immutable, too:

sage: t.is_immutable()
False
sage: t.set_immutable()
sage: t.is_immutable()
True
sage: t.set_comp()
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed
sage: t.set_name(b)
Traceback (most recent call last):
...
ValueError: the name of an immutable element cannot be changed

add_comp(basis=None)
Return the components of self in a given vector frame for assignment.

628 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The components with respect to other frames having the same domain as the provided vector frame are kept.
To delete them, use the method set_comp() instead.

INPUT:

• basis – (default: None) vector frame in which the components are defined; if None, the components
are assumed to refer to the tensor field domain’s default frame

OUTPUT:

• components in the given frame, as a Components; if such components did not exist previously, they
are created

EXAMPLES:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: e_uv = c_uv.frame()
sage: t = M.tensor_field(1, 2, name= t)
sage: t.add_comp(e_uv)
3-indices components w.r.t. Coordinate frame (V, (∂/∂u,∂/∂v))
sage: t.add_comp(e_uv)[1,0,1] = u+v
sage: t.display(e_uv)
t = (u + v) ∂/∂v⊗du⊗dv

Setting the components in a new frame:

sage: e = V.vector_frame(e)
sage: t.add_comp(e)
3-indices components w.r.t. Vector frame (V, (e_0,e_1))
sage: t.add_comp(e)[0,1,1] = u*v
sage: t.display(e)
t = u*v e_0⊗e^1⊗e^1

The components with respect to e_uv are kept:

sage: t.display(e_uv)
t = (u + v) ∂/∂v⊗du⊗dv

Since zero is a special element, its components cannot be changed:

sage: z = M.tensor_field_module((1, 1)).zero()
sage: z.add_comp(e_uv)[1, 1] = u^2
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed

add_comp_by_continuation(frame, subdomain, chart=None)
Set components with respect to a vector frame by continuation of the coordinate expression of the components
in a subframe.

The continuation is performed by demanding that the components have the same coordinate expression as
those on the restriction of the frame to a given subdomain.

INPUT:

2.8. Tensor Fields 629

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

• frame – vector frame 𝑒 in which the components are to be set

• subdomain – open subset of 𝑒’s domain in which the components are known or can be evaluated from
other components

• chart – (default: None) coordinate chart on 𝑒’s domain in which the extension of the expression of
the components is to be performed; if None, the default’s chart of 𝑒’s domain is assumed

EXAMPLES:

Components of a vector field on the sphere 𝑆2:

sage: M = Manifold(2, S^2 , start_index=1)

The two open subsets covered by stereographic coordinates (North and South):

sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() # stereographic␣
→˓coordinates
sage: transf = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: inv = transf.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.vector_field({eU: [x, 2+y]}, name= a)

At this stage, the vector field has been defined only on the open subset U (through its components in the frame
eU):

sage: a.display(eU)
a = x ∂/∂x + (y + 2) ∂/∂y

The components with respect to the restriction of eV to the common subdomain W, in terms of the (u,v)
coordinates, are obtained by a change-of-frame formula on W:

sage: a.display(eV.restrict(W), c_uv.restrict(W))
a = (-4*u*v - u) ∂/∂u + (2*u^2 - 2*v^2 - v) ∂/∂v

The continuation consists in extending the definition of the vector field to the whole open subset V by de-
manding that the components in the frame eV have the same coordinate expression as the above one:

sage: a.add_comp_by_continuation(eV, W, chart=c_uv)

We have then:

sage: a.display(eV)
a = (-4*u*v - u) ∂/∂u + (2*u^2 - 2*v^2 - v) ∂/∂v

and 𝑎 is defined on the entire manifold 𝑆2.

add_expr_from_subdomain(frame, subdomain)
Add an expression to an existing component from a subdomain.

INPUT:

• frame – vector frame 𝑒 in which the components are to be set

• subdomain – open subset of 𝑒’s domain in which the components have additional expressions.

630 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

We are going to consider a vector field in R3 along the 2-sphere:

sage: M = Manifold(3, M , structure="Riemannian")
sage: S = Manifold(2, S , structure="Riemannian")
sage: E.<X,Y,Z> = M.chart()

Let us define S in terms of stereographic charts:

sage: U = S.open_subset(U)
sage: V = S.open_subset(V)
sage: S.declare_union(U,V)
sage: stereoN.<x,y> = U.chart()
sage: stereoS.<xp,yp> = V.chart("xp:x yp:y ")
sage: stereoN_to_S = stereoN.transition_map(stereoS,
....: (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W ,
....: restrictions1= x^2+y^2!=0,
....: restrictions2= xp^2+yp^2!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: W = U.intersection(V)
sage: stereoN_W = stereoN.restrict(W)
sage: stereoS_W = stereoS.restrict(W)

The embedding of 𝑆2 in R3:

sage: phi = S.diff_map(M, {(stereoN, E): [2*x/(1+x^2+y^2),
....: 2*y/(1+x^2+y^2),
....: (x^2+y^2-1)/(1+x^2+y^2)],
....: (stereoS, E): [2*xp/(1+xp^2+yp^2),
....: 2*yp/(1+xp^2+yp^2),
....: (1-xp^2-yp^2)/(1+xp^2+yp^2)]},
....: name= Phi , latex_name=r \Phi)

To define a vector field v along S taking its values in M, we first set the components on U:

sage: v = M.vector_field(name= v).along(phi)
sage: vU = v.restrict(U)
sage: vU[:] = [x,y,x**2+y**2]

But because M is parallelizable, these components can be extended to S itself:

sage: v.add_comp_by_continuation(E.frame().along(phi), U)

One can see that v is not yet fully defined: the components (scalar fields) do not have values on the whole
manifold:

sage: sorted(v._components.values())[0]._comp[(0,)].display()
S → ℝ
on U: (x, y) ↦ x
on W: (xp, yp) ↦ xp/(xp^2 + yp^2)

To fix that, we first extend the components from W to V using add_comp_by_continuation():

sage: v.add_comp_by_continuation(E.frame().along(phi).restrict(V),
....: W, stereoS)

Then, the expression on the subdomain V is added to the already known components on S by:

2.8. Tensor Fields 631

Manifolds, Release 10.4.rc1

sage: v.add_expr_from_subdomain(E.frame().along(phi), V)

The definition of v is now complete:

sage: sorted(v._components.values())[0]._comp[(2,)].display()
S → ℝ
on U: (x, y) ↦ x^2 + y^2
on V: (xp, yp) ↦ 1/(xp^2 + yp^2)

along(mapping)
Return the tensor field deduced from self via a differentiable map, the codomain of which is included in
the domain of self.

More precisely, if self is a tensor field 𝑡 on 𝑀 and if Φ : 𝑈 → 𝑀 is a differentiable map from some
differentiable manifold 𝑈 to𝑀 , the returned object is a tensor field 𝑡 along 𝑈 with values on𝑀 such that

∀𝑝 ∈ 𝑈, 𝑡(𝑝) = 𝑡(Φ(𝑝)).

INPUT:

• mapping – differentiable map Φ : 𝑈 →𝑀

OUTPUT:

• tensor field 𝑡 along 𝑈 defined above.

EXAMPLES:

Let us consider the 2-dimensional sphere 𝑆2:

sage: M = Manifold(2, S^2) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)

and the following map from the open interval (0, 5𝜋/2) to 𝑆2, the image of it being the great circle 𝑥 = 0,
𝑢 = 0, which goes through the North and South poles:

sage: I.<t> = manifolds.OpenInterval(0, 5*pi/2)
sage: J = I.open_interval(0, 3*pi/2)
sage: K = I.open_interval(pi, 5*pi/2)
sage: c_J = J.canonical_chart(); c_K = K.canonical_chart()
sage: Phi = I.diff_map(M, {(c_J, c_xy):
....: (0, sgn(pi-t)*sqrt((1+cos(t))/(1-cos(t)))),
....: (c_K, c_uv):
....: (0, sgn(t-2*pi)*sqrt((1-cos(t))/(1+cos(t))))},
....: name= Phi)

Let us consider a vector field on 𝑆2:

632 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: eU = c_xy.frame(); eV = c_uv.frame()
sage: w = M.vector_field(name= w)
sage: w[eU,0] = 1
sage: w.add_comp_by_continuation(eV, W, chart=c_uv)
sage: w.display(eU)
w = ∂/∂x
sage: w.display(eV)
w = (-u^2 + v^2) ∂/∂u - 2*u*v ∂/∂v

We have then:

sage: wa = w.along(Phi); wa
Vector field w along the Real interval (0, 5/2*pi) with values on
the 2-dimensional differentiable manifold S^2

sage: wa.display(eU.along(Phi))
w = ∂/∂x
sage: wa.display(eV.along(Phi))
w = -(cos(t) - 1)*sgn(-2*pi + t)^2/(cos(t) + 1) ∂/∂u

Some tests:

sage: p = K.an_element()
sage: wa.at(p) == w.at(Phi(p))
True
sage: wa.at(J(4*pi/3)) == wa.at(K(4*pi/3))
True
sage: wa.at(I(4*pi/3)) == wa.at(K(4*pi/3))
True
sage: wa.at(K(7*pi/4)) == eU[0].at(Phi(I(7*pi/4))) # since eU[0]=∂/∂x
True

antisymmetrize(*pos)
Antisymmetrization over some arguments.

INPUT:

• pos – (default: None) list of argument positions involved in the antisymmetrization (with the con-
vention position=0 for the first argument); if None, the antisymmetrization is performed over all
the arguments

OUTPUT:

• the antisymmetrized tensor field (instance of TensorField)

EXAMPLES:

Antisymmetrization of a type-(0, 2) tensor field on a 2-dimensional non-parallelizable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.tensor_field(0,2, {eU: [[1,x], [2,y]]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)

(continues on next page)

2.8. Tensor Fields 633

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a[eV,:]
[1/4*u + 3/4 -1/4*u + 3/4]
[1/4*v - 1/4 -1/4*v - 1/4]
sage: s = a.antisymmetrize() ; s
2-form on the 2-dimensional differentiable manifold M
sage: s[eU,:]
[0 1/2*x - 1]
[-1/2*x + 1 0]
sage: s[eV,:]
[0 -1/8*u - 1/8*v + 1/2]
[1/8*u + 1/8*v - 1/2 0]
sage: s == a.antisymmetrize(0,1) # explicit positions
True
sage: s == a.antisymmetrize(1,0) # the order of positions does not matter
True

See also:

For more details and examples, see sage.tensor.modules.free_module_tensor.
FreeModuleTensor.antisymmetrize().

apply_map(fun, frame=None, chart=None, keep_other_components=False)
Apply a function to the coordinate expressions of all components of self in a given vector frame.

This method allows operations like factorization, expansion, simplification or substitution to be performed on
all components of self in a given vector frame (see examples below).

INPUT:

• fun – function to be applied to the coordinate expressions of the components

• frame – (default: None) vector frame defining the components on which the operation fun is to be
performed; if None, the default frame of the domain of self is assumed

• chart – (default: None) coordinate chart; if specified, the operation fun is performed only on the
coordinate expressions with respect to chart of the components w.r.t. frame; if None, the operation
fun is performed on all available coordinate expressions

• keep_other_components – (default: False) determine whether the components with respect
to vector frames distinct from frame and having the same domain as frame are kept. If fun is
non-destructive, keep_other_components can be set to True; otherwise, it is advised to set it to
False (the default) in order to avoid any inconsistency between the various sets of components

EXAMPLES:

Factorizing all components in the default frame of a vector field:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: a, b = var(a b)
sage: v = M.vector_field(x^2 - y^2, a*(b^2 - b)*x)
sage: v.display()
(x^2 - y^2) ∂/∂x + (b^2 - b)*a*x ∂/∂y
sage: v.apply_map(factor)
sage: v.display()
(x + y)*(x - y) ∂/∂x + a*(b - 1)*b*x ∂/∂y

Performing a substitution in all components in the default frame:

634 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor.antisymmetrize
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor.antisymmetrize

Manifolds, Release 10.4.rc1

sage: v.apply_map(lambda f: f.subs({a: 2}))
sage: v.display()
(x + y)*(x - y) ∂/∂x + 2*(b - 1)*b*x ∂/∂y

Specifying the vector frame via the argument frame:

sage: P.<p, q> = M.chart()
sage: X_to_P = X.transition_map(P, [x + 1, y - 1])
sage: P_to_X = X_to_P.inverse()
sage: v.display(P)
(p^2 - q^2 - 2*p - 2*q) ∂/∂p + (-2*b^2 + 2*(b^2 - b)*p + 2*b) ∂/∂q
sage: v.apply_map(lambda f: f.subs({b: pi}), frame=P.frame())
sage: v.display(P)
(p^2 - q^2 - 2*p - 2*q) ∂/∂p + (2*pi - 2*pi^2 - 2*(pi - pi^2)*p) ∂/∂q

Note that the required operation has been performed in all charts:

sage: v.display(P.frame(), P)
(p^2 - q^2 - 2*p - 2*q) ∂/∂p + (2*pi - 2*pi^2 - 2*(pi - pi^2)*p) ∂/∂q
sage: v.display(P.frame(), X)
(x + y)*(x - y) ∂/∂p + 2*pi*(pi - 1)*x ∂/∂q

By default, the components of v in frames distinct from the specified one have been deleted:

sage: X.frame() in v._components
False

When requested, they are recomputed by change-of-frame formulas, thereby enforcing the consistency be-
tween the representations in various vector frames. In particular, we can check that the substitution of b by
pi, which was asked in P.frame(), is effective in X.frame() as well:

sage: v.display(X.frame(), X)
(x + y)*(x - y) ∂/∂x + 2*pi*(pi - 1)*x ∂/∂y

When the requested operation does not change the value of the tensor field, one can use the keyword ar-
gument keep_other_components=True, in order to avoid the recomputation of the components in
other frames:

sage: v.apply_map(factor, keep_other_components=True)
sage: v.display()
(x + y)*(x - y) ∂/∂x + 2*pi*(pi - 1)*x ∂/∂y

The components with respect to P.frame() have been kept:

sage: P.frame() in v._components
True

One can restrict the operation to expressions in a given chart, via the argument chart:

sage: v.display(X.frame(), P)
(p + q)*(p - q - 2) ∂/∂x + 2*pi*(pi - 1)*(p - 1) ∂/∂y
sage: v.apply_map(expand, chart=P)
sage: v.display(X.frame(), P)
(p^2 - q^2 - 2*p - 2*q) ∂/∂x + (2*pi + 2*pi^2*p - 2*pi^2 - 2*pi*p) ∂/∂y
sage: v.display(X.frame(), X)
(x + y)*(x - y) ∂/∂x + 2*pi*(pi - 1)*x ∂/∂y

2.8. Tensor Fields 635

Manifolds, Release 10.4.rc1

at(point)
Value of self at a point of its domain.

If the current tensor field is

𝑡 : 𝑈 −→ 𝑇 (𝑘,𝑙)𝑀

associated with the differentiable map

Φ : 𝑈 −→𝑀,

where 𝑈 and 𝑀 are two manifolds (possibly 𝑈 = 𝑀 and Φ = Id𝑀), then for any point 𝑝 ∈ 𝑈 , 𝑡(𝑝) is a
tensor on the tangent space to𝑀 at the point Φ(𝑝).

INPUT:

• point – ManifoldPoint; point 𝑝 in the domain of the tensor field 𝑈

OUTPUT:

• FreeModuleTensor representing the tensor 𝑡(𝑝) on the tangent vector space 𝑇Φ(𝑝)𝑀

EXAMPLES:

Tensor on a tangent space of a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.tensor_field(1, 1, {eU: [[1+y,x], [0,x+y]]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: a.display(eU)
a = (y + 1) ∂/∂x⊗dx + x ∂/∂x⊗dy + (x + y) ∂/∂y⊗dy
sage: a.display(eV)
a = (u + 1/2) ∂/∂u⊗du + (-1/2*u - 1/2*v + 1/2) ∂/∂u⊗dv
+ 1/2 ∂/∂v⊗du + (1/2*u - 1/2*v + 1/2) ∂/∂v⊗dv

sage: p = M.point((2,3), chart=c_xy, name= p)
sage: ap = a.at(p) ; ap
Type-(1,1) tensor a on the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: ap.parent()
Free module of type-(1,1) tensors on the Tangent space at Point p
on the 2-dimensional differentiable manifold M

sage: ap.display(eU.at(p))
a = 4 ∂/∂x⊗dx + 2 ∂/∂x⊗dy + 5 ∂/∂y⊗dy
sage: ap.display(eV.at(p))
a = 11/2 ∂/∂u⊗du - 3/2 ∂/∂u⊗dv + 1/2 ∂/∂v⊗du + 7/2 ∂/∂v⊗dv
sage: p.coord(c_uv) # to check the above expression
(5, -1)

base_module()

Return the vector field module on which self acts as a tensor.

OUTPUT:

636 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor

Manifolds, Release 10.4.rc1

• instance of VectorFieldModule

EXAMPLES:

The module of vector fields on the 2-sphere as a “base module”:

sage: M = Manifold(2, S^2)
sage: t = M.tensor_field(0,2)
sage: t.base_module()
Module X(S^2) of vector fields on the 2-dimensional differentiable
manifold S^2

sage: t.base_module() is M.vector_field_module()
True
sage: XM = M.vector_field_module()
sage: XM.an_element().base_module() is XM
True

comp(basis=None, from_basis=None)
Return the components in a given vector frame.

If the components are not known already, they are computed by the tensor change-of-basis formula from
components in another vector frame.

INPUT:

• basis – (default: None) vector frame in which the components are required; if none is provided, the
components are assumed to refer to the tensor field domain’s default frame

• from_basis – (default: None) vector frame from which the required components are computed, via
the tensor change-of-basis formula, if they are not known already in the basis basis

OUTPUT:

• components in the vector frame basis, as a Components

EXAMPLES:

Components of a type-(1, 1) tensor field defined on two open subsets:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U)
sage: c_xy.<x, y> = U.chart()
sage: e = U.default_frame() ; e
Coordinate frame (U, (∂/∂x,∂/∂y))
sage: V = M.open_subset(V)
sage: c_uv.<u, v> = V.chart()
sage: f = V.default_frame() ; f
Coordinate frame (V, (∂/∂u,∂/∂v))
sage: M.declare_union(U,V) # M is the union of U and V
sage: t = M.tensor_field(1,1, name= t)
sage: t[e,0,0] = - x + y^3
sage: t[e,0,1] = 2+x
sage: t[f,1,1] = - u*v
sage: t.comp(e)
2-indices components w.r.t. Coordinate frame (U, (∂/∂x,∂/∂y))
sage: t.comp(e)[:]
[y^3 - x x + 2]
[0 0]
sage: t.comp(f)
2-indices components w.r.t. Coordinate frame (V, (∂/∂u,∂/∂v))
sage: t.comp(f)[:]

(continues on next page)

2.8. Tensor Fields 637

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

(continued from previous page)

[0 0]
[0 -u*v]

Since e is M’s default frame, the argument e can be omitted:

sage: e is M.default_frame()
True
sage: t.comp() is t.comp(e)
True

Example of computation of the components via a change of frame:

sage: a = V.automorphism_field()
sage: a[:] = [[1+v, -u^2], [0, 1-u]]
sage: h = f.new_frame(a, h)
sage: t.comp(h)
2-indices components w.r.t. Vector frame (V, (h_0,h_1))
sage: t.comp(h)[:]
[0 -u^3*v/(v + 1)]
[0 -u*v]

contract(*args)
Contraction of self with another tensor field on one or more indices.

INPUT:

• pos1 – positions of the indices in the current tensor field involved in the contraction; pos1 must be a
sequence of integers, with 0 standing for the first index position, 1 for the second one, etc.; if pos1 is
not provided, a single contraction on the last index position of the tensor field is assumed

• other – the tensor field to contract with

• pos2 – positions of the indices in other involved in the contraction, with the same conventions as for
pos1; if pos2 is not provided, a single contraction on the first index position of other is assumed

OUTPUT:

• tensor field resulting from the contraction at the positionspos1 andpos2 of the tensor field withother

EXAMPLES:

Contractions of a type-(1, 1) tensor field with a type-(2, 0) one on a 2-dimensional non-parallelizable mani-
fold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.tensor_field(1, 1, {eU: [[1, x], [0, 2]]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: b = M.tensor_field(2, 0, {eU: [[y, -1], [x+y, 2]]}, name= b)
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)
sage: s = a.contract(b) ; s # contraction on last index of a and first one␣
→˓of b

(continues on next page)

638 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

Check 1: components with respect to the manifold’s default frame (eU):

sage: all(bool(s[i,j] == sum(a[i,k]*b[k,j] for k in M.irange()))
....: for i in M.irange() for j in M.irange())
True

Check 2: components with respect to the frame eV:

sage: all(bool(s[eV,i,j] == sum(a[eV,i,k]*b[eV,k,j]
....: for k in M.irange()))
....: for i in M.irange() for j in M.irange())
True

Instead of the explicit call to the method contract(), one may use the index notation with Einstein con-
vention (summation over repeated indices); it suffices to pass the indices as a string inside square brackets:

sage: a[^i_k]*b[^kj] == s
True

Indices not involved in the contraction may be replaced by dots:

sage: a[^._k]*b[^k.] == s
True

LaTeX notation may be used:

sage: a[^{i}_{k}]*b[^{kj}] == s
True

Contraction on the last index of a and last index of b:

sage: s = a.contract(b, 1) ; s
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: a[^i_k]*b[^jk] == s
True

Contraction on the first index of b and the last index of a:

sage: s = b.contract(0,a,1) ; s
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: b[^ki]*a[^j_k] == s
True

The domain of the result is the intersection of the domains of the two tensor fields:

sage: aU = a.restrict(U) ; bV = b.restrict(V)
sage: s = aU.contract(b) ; s
Tensor field of type (2,0) on the Open subset U of the
2-dimensional differentiable manifold M

sage: s = a.contract(bV) ; s
Tensor field of type (2,0) on the Open subset V of the

(continues on next page)

2.8. Tensor Fields 639

Manifolds, Release 10.4.rc1

(continued from previous page)

2-dimensional differentiable manifold M
sage: s = aU.contract(bV) ; s
Tensor field of type (2,0) on the Open subset W of the
2-dimensional differentiable manifold M

sage: s0 = a.contract(b)
sage: s == s0.restrict(W)
True

The contraction can be performed on more than one index: c being a type-(2, 2) tensor, contracting the
indices in positions 2 and 3 of c with respectively those in positions 0 and 1 of b is:

sage: c = a*a ; c
Tensor field of type (2,2) on the 2-dimensional differentiable
manifold M

sage: s = c.contract(2,3, b, 0,1) ; s # long time
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

The same double contraction using index notation:

sage: s == c[^.._kl]*b[^kl] # long time
True

The symmetries are either conserved or destroyed by the contraction:

sage: c = c.symmetrize(0,1).antisymmetrize(2,3)
sage: c.symmetries()
symmetry: (0, 1); antisymmetry: (2, 3)
sage: s = b.contract(0, c, 2) ; s
Tensor field of type (3,1) on the 2-dimensional differentiable
manifold M

sage: s.symmetries()
symmetry: (1, 2); no antisymmetry

Case of a scalar field result:

sage: a = M.one_form({eU: [y, 1+x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: b = M.vector_field({eU: [x, y^2]}, name= b)
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)
sage: a.display(eU)
a = y dx + (x + 1) dy
sage: b.display(eU)
b = x ∂/∂x + y^2 ∂/∂y
sage: s = a.contract(b) ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ (x + 1)*y^2 + x*y
on V: (u, v) ↦ 1/8*u^3 - 1/8*u*v^2 + 1/8*v^3 + 1/2*u^2 - 1/8*(u^2 + 4*u)*v
sage: s == a[_i]*b[^i] # use of index notation
True
sage: s == b.contract(a)
True

Case of a vanishing scalar field result:

640 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: b = M.vector_field({eU: [1+x, -y]}, name= b)
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)
sage: s = a.contract(b) ; s
Scalar field zero on the 2-dimensional differentiable manifold M
sage: s.display()
zero: M → ℝ
on U: (x, y) ↦ 0
on V: (u, v) ↦ 0

copy(name=None, latex_name=None)
Return an exact copy of self.

INPUT:

• name – (default: None) name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

Note: The name and the derived quantities are not copied.

EXAMPLES:

Copy of a type-(1, 1) tensor field on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: t = M.tensor_field(1, 1, name= t)
sage: t[e_xy,:] = [[x+y, 0], [2, 1-y]]
sage: t.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: s = t.copy(); s
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: s.display(e_xy)
(x + y) ∂/∂x⊗dx + 2 ∂/∂y⊗dx + (-y + 1) ∂/∂y⊗dy
sage: s == t
True

If the original tensor field is modified, the copy is not:

sage: t[e_xy,0,0] = -1
sage: t.display(e_xy)
t = -∂/∂x⊗dx + 2 ∂/∂y⊗dx + (-y + 1) ∂/∂y⊗dy
sage: s.display(e_xy)
(x + y) ∂/∂x⊗dx + 2 ∂/∂y⊗dx + (-y + 1) ∂/∂y⊗dy
sage: s == t
False

copy_from(other)
Make self a copy of other.

2.8. Tensor Fields 641

Manifolds, Release 10.4.rc1

INPUT:

• other – other tensor field, in the same module as self

Note: While the derived quantities are not copied, the name is kept.

Warning: All previous defined components and restrictions will be deleted!

EXAMPLES:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: t = M.tensor_field(1, 1, name= t)
sage: t[e_xy,:] = [[x+y, 0], [2, 1-y]]
sage: t.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: s = M.tensor_field(1, 1, name= s)
sage: s.copy_from(t)
sage: s.display(e_xy)
s = (x + y) ∂/∂x⊗dx + 2 ∂/∂y⊗dx + (-y + 1) ∂/∂y⊗dy
sage: s == t
True

While the original tensor field is modified, the copy is not:

sage: t[e_xy,0,0] = -1
sage: t.display(e_xy)
t = -∂/∂x⊗dx + 2 ∂/∂y⊗dx + (-y + 1) ∂/∂y⊗dy
sage: s.display(e_xy)
s = (x + y) ∂/∂x⊗dx + 2 ∂/∂y⊗dx + (-y + 1) ∂/∂y⊗dy
sage: s == t
False

dalembertian(metric=None)
Return the d’Alembertian of self with respect to a given Lorentzian metric.

The d’Alembertian of a tensor field 𝑡with respect to a Lorentzian metric 𝑔 is nothing but the Laplace-Beltrami
operator of 𝑔 applied to 𝑡 (see laplacian()); if self a tensor field 𝑡 of type (𝑘, 𝑙), the d’Alembertian of
𝑡 with respect to 𝑔 is then the tensor field of type (𝑘, 𝑙) defined by

(�𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑘
= ∇𝑖∇𝑖𝑡𝑎1...𝑎𝑘

𝑏1...𝑏𝑘
,

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection) and ∇𝑖 := 𝑔𝑖𝑗∇𝑗 .

Note: If the metric 𝑔 is not Lorentzian, the name d’Alembertian is not appropriate and one should use
laplacian() instead.

INPUT:

642 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• metric – (default: None) the Lorentzian metric 𝑔 involved in the definition of the d’Alembertian; if
none is provided, the domain of self is supposed to be endowed with a default Lorentzian metric (i.e.
is supposed to be Lorentzian manifold, see PseudoRiemannianManifold) and the latter is used
to define the d’Alembertian

OUTPUT:

• instance of TensorField representing the d’Alembertian of self

EXAMPLES:

d’Alembertian of a vector field in Minkowski spacetime, representing the electric field of a simple plane
electromagnetic wave:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: X.<t,x,y,z> = M.chart()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1, 1, 1, 1
sage: e = M.vector_field(name= e)
sage: e[1] = cos(t-z)
sage: e.display() # plane wave propagating in the z direction
e = cos(t - z) ∂/∂x
sage: De = e.dalembertian(); De # long time
Vector field Box(e) on the 4-dimensional Lorentzian manifold M

The function dalembertian() from the operators module can be used instead of the method
dalembertian():

sage: from sage.manifolds.operators import dalembertian
sage: dalembertian(e) == De # long time
True

We check that the electric field obeys the wave equation:

sage: De.display() # long time
Box(e) = 0

disp(frame=None, chart=None)
Display the tensor field in terms of its expansion with respect to a given vector frame.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) vector frame with respect to which the tensor is expanded; if frame is None
and chart is not None, the coordinate frame associated with chart is assumed; if both frame and
chart are None, the default frame of the domain of definition of the tensor field is assumed

• chart – (default: None) chart with respect to which the components of the tensor field in the selected
frame are expressed; if None, the default chart of the vector frame domain is assumed

EXAMPLES:

Display of a type-(1, 1) tensor field on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),

(continues on next page)

2.8. Tensor Fields 643

Manifolds, Release 10.4.rc1

(continued from previous page)

....: intersection_name= W , restrictions1= x>0,

....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: t = M.tensor_field(1,1, name= t)
sage: t[e_xy,:] = [[x, 1], [y, 0]]
sage: t.add_comp_by_continuation(e_uv, W, c_uv)
sage: t.display(e_xy)
t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx
sage: t.display(e_uv)
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

Since e_xy is M’s default frame, the argument e_xy can be omitted:

sage: e_xy is M.default_frame()
True
sage: t.display()
t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx

Similarly, since e_uv is V’s default frame, the argument e_uv can be omitted when considering the restric-
tion of t to V:

sage: t.restrict(V).display()
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

If the coordinate expression of the components are to be displayed in a chart distinct from the default one on
the considered domain, then the chart has to be passed as the second argument of display. For instance, on
𝑊 = 𝑈∩𝑉 , two charts are available: c_xy.restrict(W) (the default one) andc_uv.restrict(W).
Accordingly, one can have two views of the expansion of t in the same vector frame e_uv.restrict(W):

sage: t.display(e_uv.restrict(W)) # W s default chart assumed
t = (1/2*x + 1/2*y + 1/2) ∂/∂u⊗du + (1/2*x + 1/2*y - 1/2) ∂/∂u⊗dv

+ (1/2*x - 1/2*y + 1/2) ∂/∂v⊗du + (1/2*x - 1/2*y - 1/2) ∂/∂v⊗dv
sage: t.display(e_uv.restrict(W), c_uv.restrict(W))
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

As a shortcut, one can pass just a chart to display. It is then understood that the expansion is to be
performed with respect to the coordinate frame associated with this chart. Therefore the above command can
be abridged to:

sage: t.display(c_uv.restrict(W))
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

and one has:

sage: t.display(c_xy)
t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx
sage: t.display(c_uv)
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv
sage: t.display(c_xy.restrict(W))

(continues on next page)

644 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx
sage: t.restrict(W).display(c_uv.restrict(W))
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

One can ask for the display with respect to a frame in which t has not been initialized yet (this will automat-
ically trigger the use of the change-of-frame formula for tensors):

sage: a = V.automorphism_field()
sage: a[:] = [[1+v, -u^2], [0, 1-u]]
sage: f = e_uv.new_frame(a, f)
sage: [f[i].display() for i in M.irange()]
[f_0 = (v + 1) ∂/∂u, f_1 = -u^2 ∂/∂u + (-u + 1) ∂/∂v]
sage: t.display(f)
t = -1/2*(u^2*v + 1)/(u - 1) f_0⊗f^0

- 1/2*(2*u^3 - 5*u^2 - (u^4 + u^3 - u^2)*v + 3*u - 1)/((u - 1)*v + u - 1) f_
→˓0⊗f^1
- 1/2*(v^2 + 2*v + 1)/(u - 1) f_1⊗f^0
+ 1/2*(u^2 + (u^2 + u - 1)*v - u + 1)/(u - 1) f_1⊗f^1

A shortcut of display() is disp():

sage: t.disp(e_uv)
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

display(frame=None, chart=None)
Display the tensor field in terms of its expansion with respect to a given vector frame.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) vector frame with respect to which the tensor is expanded; if frame is None
and chart is not None, the coordinate frame associated with chart is assumed; if both frame and
chart are None, the default frame of the domain of definition of the tensor field is assumed

• chart – (default: None) chart with respect to which the components of the tensor field in the selected
frame are expressed; if None, the default chart of the vector frame domain is assumed

EXAMPLES:

Display of a type-(1, 1) tensor field on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: t = M.tensor_field(1,1, name= t)
sage: t[e_xy,:] = [[x, 1], [y, 0]]
sage: t.add_comp_by_continuation(e_uv, W, c_uv)
sage: t.display(e_xy)

(continues on next page)

2.8. Tensor Fields 645

Manifolds, Release 10.4.rc1

(continued from previous page)

t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx
sage: t.display(e_uv)
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

Since e_xy is M’s default frame, the argument e_xy can be omitted:

sage: e_xy is M.default_frame()
True
sage: t.display()
t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx

Similarly, since e_uv is V’s default frame, the argument e_uv can be omitted when considering the restric-
tion of t to V:

sage: t.restrict(V).display()
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

If the coordinate expression of the components are to be displayed in a chart distinct from the default one on
the considered domain, then the chart has to be passed as the second argument of display. For instance, on
𝑊 = 𝑈∩𝑉 , two charts are available: c_xy.restrict(W) (the default one) andc_uv.restrict(W).
Accordingly, one can have two views of the expansion of t in the same vector frame e_uv.restrict(W):

sage: t.display(e_uv.restrict(W)) # W s default chart assumed
t = (1/2*x + 1/2*y + 1/2) ∂/∂u⊗du + (1/2*x + 1/2*y - 1/2) ∂/∂u⊗dv

+ (1/2*x - 1/2*y + 1/2) ∂/∂v⊗du + (1/2*x - 1/2*y - 1/2) ∂/∂v⊗dv
sage: t.display(e_uv.restrict(W), c_uv.restrict(W))
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

As a shortcut, one can pass just a chart to display. It is then understood that the expansion is to be
performed with respect to the coordinate frame associated with this chart. Therefore the above command can
be abridged to:

sage: t.display(c_uv.restrict(W))
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

and one has:

sage: t.display(c_xy)
t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx
sage: t.display(c_uv)
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv
sage: t.display(c_xy.restrict(W))
t = x ∂/∂x⊗dx + ∂/∂x⊗dy + y ∂/∂y⊗dx
sage: t.restrict(W).display(c_uv.restrict(W))
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

One can ask for the display with respect to a frame in which t has not been initialized yet (this will automat-
ically trigger the use of the change-of-frame formula for tensors):

646 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: a = V.automorphism_field()
sage: a[:] = [[1+v, -u^2], [0, 1-u]]
sage: f = e_uv.new_frame(a, f)
sage: [f[i].display() for i in M.irange()]
[f_0 = (v + 1) ∂/∂u, f_1 = -u^2 ∂/∂u + (-u + 1) ∂/∂v]
sage: t.display(f)
t = -1/2*(u^2*v + 1)/(u - 1) f_0⊗f^0

- 1/2*(2*u^3 - 5*u^2 - (u^4 + u^3 - u^2)*v + 3*u - 1)/((u - 1)*v + u - 1) f_
→˓0⊗f^1
- 1/2*(v^2 + 2*v + 1)/(u - 1) f_1⊗f^0
+ 1/2*(u^2 + (u^2 + u - 1)*v - u + 1)/(u - 1) f_1⊗f^1

A shortcut of display() is disp():

sage: t.disp(e_uv)
t = (1/2*u + 1/2) ∂/∂u⊗du + (1/2*u - 1/2) ∂/∂u⊗dv

+ (1/2*v + 1/2) ∂/∂v⊗du + (1/2*v - 1/2) ∂/∂v⊗dv

display_comp(frame=None, chart=None, coordinate_labels=True, only_nonzero=True,
only_nonredundant=False)

Display the tensor components with respect to a given frame, one per line.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) vector frame with respect to which the tensor field components are defined;
if None, then

– if chart is not None, the coordinate frame associated to chart is used

– otherwise, the default basis of the vector field module on which the tensor field is defined is used

• chart – (default: None) chart specifying the coordinate expression of the components; if None, the
default chart of the tensor field domain is used

• coordinate_labels – (default: True) boolean; if True, coordinate symbols are used by default
(instead of integers) as index labels whenever frame is a coordinate frame

• only_nonzero – (default: True) boolean; if True, only nonzero components are displayed

• only_nonredundant – (default: False) boolean; if True, only nonredundant components are
displayed in case of symmetries

EXAMPLES:

Display of the components of a type-(1, 1) tensor field defined on two open subsets:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U)
sage: c_xy.<x, y> = U.chart()
sage: e = U.default_frame()
sage: V = M.open_subset(V)
sage: c_uv.<u, v> = V.chart()
sage: f = V.default_frame()
sage: M.declare_union(U,V) # M is the union of U and V
sage: t = M.tensor_field(1,1, name= t)
sage: t[e,0,0] = - x + y^3
sage: t[e,0,1] = 2+x
sage: t[f,1,1] = - u*v

(continues on next page)

2.8. Tensor Fields 647

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: t.display_comp(e)
t^x_x = y^3 - x
t^x_y = x + 2
sage: t.display_comp(f)
t^v_v = -u*v

Components in a chart frame:

sage: t.display_comp(chart=c_xy)
t^x_x = y^3 - x
t^x_y = x + 2
sage: t.display_comp(chart=c_uv)
t^v_v = -u*v

See documentation of sage.manifolds.differentiable.tensorfield_paral.
TensorFieldParal.display_comp() for more options.

div(metric=None)
Return the divergence of self (with respect to a given metric).

The divergence is taken on the last index: if self is a tensor field 𝑡 of type (𝑘, 0) with 𝑘 ≥ 1, the divergence
of 𝑡 with respect to the metric 𝑔 is the tensor field of type (𝑘 − 1, 0) defined by

(div 𝑡)𝑎1...𝑎𝑘−1 = ∇𝑖𝑡
𝑎1...𝑎𝑘−1𝑖 = (∇𝑡)𝑎1...𝑎𝑘−1𝑖

𝑖,

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection).

This definition is extended to tensor fields of type (𝑘, 𝑙) with 𝑘 ≥ 0 and 𝑙 ≥ 1, by raising the last index with
the metric 𝑔: div 𝑡 is then the tensor field of type (𝑘, 𝑙 − 1) defined by

(div 𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑙−1
= ∇𝑖(𝑔

𝑖𝑗𝑡𝑎1...𝑎𝑘

𝑏1...𝑏𝑙−1𝑗
) = (∇𝑡♯)𝑎1...𝑎𝑘𝑖

𝑏1...𝑏𝑙−1𝑖
,

where 𝑡♯ is the tensor field deduced from 𝑡 by raising the last index with the metric 𝑔 (see up()).

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the divergence;
if none is provided, the domain ofself is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the divergence.

OUTPUT:

• instance of either DiffScalarField if (𝑘, 𝑙) = (1, 0) (self is a vector field) or (𝑘, 𝑙) = (0, 1)
(self is a 1-form) or of TensorField if 𝑘+𝑙 ≥ 2 representing the divergence of selfwith respect
to metric

EXAMPLES:

Divergence of a vector field in the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: v = M.vector_field(x, y, name= v)
sage: s = v.divergence(); s
Scalar field div(v) on the Euclidean plane E^2
sage: s.display()
div(v): E^2 → ℝ

(x, y) ↦ 2

648 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

A shortcut alias of divergence is div:

sage: v.div() == s
True

The function div() from the operators module can be used instead of the method divergence():

sage: from sage.manifolds.operators import div
sage: div(v) == s
True

The divergence can be taken with respect to a metric tensor that is not the default one:

sage: h = M.lorentzian_metric(h)
sage: h[1,1], h[2,2] = -1, 1/(1+x^2+y^2)
sage: s = v.div(h); s
Scalar field div_h(v) on the Euclidean plane E^2
sage: s.display()
div_h(v): E^2 → ℝ

(x, y) ↦ (x^2 + y^2 + 2)/(x^2 + y^2 + 1)

The standard formula

divℎ 𝑣 =
1√︀

| detℎ|
𝜕

𝜕𝑥𝑖

(︁√︀
| detℎ| 𝑣𝑖

)︁
is checked as follows:

sage: sqrth = h.sqrt_abs_det().expr(); sqrth
1/sqrt(x^2 + y^2 + 1)
sage: s == 1/sqrth * sum((sqrth*v[i]).diff(i) for i in M.irange())
True

A divergence-free vector:

sage: w = M.vector_field(-y, x, name= w)
sage: w.div().display()
div(w): E^2 → ℝ

(x, y) ↦ 0
sage: w.div(h).display()
div_h(w): E^2 → ℝ

(x, y) ↦ 0

Divergence of a type-(2,0) tensor field:

sage: t = v*w; t
Tensor field v⊗w of type (2,0) on the Euclidean plane E^2
sage: s = t.div(); s
Vector field div(v⊗w) on the Euclidean plane E^2
sage: s.display()
div(v⊗w) = -y e_x + x e_y

divergence(metric=None)
Return the divergence of self (with respect to a given metric).

The divergence is taken on the last index: if self is a tensor field 𝑡 of type (𝑘, 0) with 𝑘 ≥ 1, the divergence
of 𝑡 with respect to the metric 𝑔 is the tensor field of type (𝑘 − 1, 0) defined by

(div 𝑡)𝑎1...𝑎𝑘−1 = ∇𝑖𝑡
𝑎1...𝑎𝑘−1𝑖 = (∇𝑡)𝑎1...𝑎𝑘−1𝑖

𝑖,

2.8. Tensor Fields 649

Manifolds, Release 10.4.rc1

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection).

This definition is extended to tensor fields of type (𝑘, 𝑙) with 𝑘 ≥ 0 and 𝑙 ≥ 1, by raising the last index with
the metric 𝑔: div 𝑡 is then the tensor field of type (𝑘, 𝑙 − 1) defined by

(div 𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑙−1
= ∇𝑖(𝑔

𝑖𝑗𝑡𝑎1...𝑎𝑘

𝑏1...𝑏𝑙−1𝑗
) = (∇𝑡♯)𝑎1...𝑎𝑘𝑖

𝑏1...𝑏𝑙−1𝑖
,

where 𝑡♯ is the tensor field deduced from 𝑡 by raising the last index with the metric 𝑔 (see up()).

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the divergence;
if none is provided, the domain ofself is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the divergence.

OUTPUT:

• instance of either DiffScalarField if (𝑘, 𝑙) = (1, 0) (self is a vector field) or (𝑘, 𝑙) = (0, 1)
(self is a 1-form) or of TensorField if 𝑘+𝑙 ≥ 2 representing the divergence of selfwith respect
to metric

EXAMPLES:

Divergence of a vector field in the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: v = M.vector_field(x, y, name= v)
sage: s = v.divergence(); s
Scalar field div(v) on the Euclidean plane E^2
sage: s.display()
div(v): E^2 → ℝ

(x, y) ↦ 2

A shortcut alias of divergence is div:

sage: v.div() == s
True

The function div() from the operators module can be used instead of the method divergence():

sage: from sage.manifolds.operators import div
sage: div(v) == s
True

The divergence can be taken with respect to a metric tensor that is not the default one:

sage: h = M.lorentzian_metric(h)
sage: h[1,1], h[2,2] = -1, 1/(1+x^2+y^2)
sage: s = v.div(h); s
Scalar field div_h(v) on the Euclidean plane E^2
sage: s.display()
div_h(v): E^2 → ℝ

(x, y) ↦ (x^2 + y^2 + 2)/(x^2 + y^2 + 1)

The standard formula

divℎ 𝑣 =
1√︀

| detℎ|
𝜕

𝜕𝑥𝑖

(︁√︀
| detℎ| 𝑣𝑖

)︁
is checked as follows:

650 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: sqrth = h.sqrt_abs_det().expr(); sqrth
1/sqrt(x^2 + y^2 + 1)
sage: s == 1/sqrth * sum((sqrth*v[i]).diff(i) for i in M.irange())
True

A divergence-free vector:

sage: w = M.vector_field(-y, x, name= w)
sage: w.div().display()
div(w): E^2 → ℝ

(x, y) ↦ 0
sage: w.div(h).display()
div_h(w): E^2 → ℝ

(x, y) ↦ 0

Divergence of a type-(2,0) tensor field:

sage: t = v*w; t
Tensor field v⊗w of type (2,0) on the Euclidean plane E^2
sage: s = t.div(); s
Vector field div(v⊗w) on the Euclidean plane E^2
sage: s.display()
div(v⊗w) = -y e_x + x e_y

domain()

Return the manifold on which self is defined.

OUTPUT:

• instance of class DifferentiableManifold

EXAMPLES:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: t = M.tensor_field(1,2)
sage: t.domain()
2-dimensional differentiable manifold M
sage: U = M.open_subset(U , coord_def={c_xy: x<0})
sage: h = t.restrict(U)
sage: h.domain()
Open subset U of the 2-dimensional differentiable manifold M

down(non_degenerate_form, pos=None)
Compute a dual of the tensor field by lowering some index with a given non-degenerate form
(pseudo-Riemannian metric or symplectic form).

If 𝑇 is the tensor field, (𝑘, 𝑙) its type and 𝑝 the position of a contravariant index (i.e. 0 ≤ 𝑝 < 𝑘), this method
called with pos = 𝑝 yields the tensor field 𝑇 ♭ of type (𝑘 − 1, 𝑙 + 1) whose components are

(𝑇 ♭)
𝑎1...𝑎𝑘−1

𝑏1...𝑏𝑙+1
= 𝑔𝑖𝑏1 𝑇

𝑎1...𝑎𝑝 𝑖 𝑎𝑝+1...𝑎𝑘−1

𝑏2...𝑏𝑙+1
,

𝑔𝑎𝑏 being the components of the metric tensor or the symplectic form, respectively.

The reverse operation is TensorField.up().

INPUT:

• non_degenerate_form – non-degenerate form 𝑔

2.8. Tensor Fields 651

Manifolds, Release 10.4.rc1

• pos – (default: None) position of the index (with the convention pos=0 for the first index); if None,
the lowering is performed over all the contravariant indices, starting from the last one

OUTPUT:

• the tensor field 𝑇 ♭ resulting from the index lowering operation

EXAMPLES:

Lowering the index of a vector field results in a 1-form:

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[1,2], g[2,2] = 1+x, x*y, 1-y
sage: v = M.vector_field(-1, 2)
sage: w = v.down(g) ; w
1-form on the 2-dimensional differentiable manifold M
sage: w.display()
(2*x*y - x - 1) dx + (-(x + 2)*y + 2) dy

Using the index notation instead of down():

sage: w == g[_ab]*v[^b]
True

The reverse operation:

sage: v1 = w.up(g) ; v1
Vector field on the 2-dimensional differentiable manifold M
sage: v1 == v
True

Lowering the indices of a tensor field of type (2,0):

sage: t = M.tensor_field(2, 0, [[1,2], [3,4]])
sage: td0 = t.down(g, 0) ; td0 # lowering the first index
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: td0 == g[_ac]*t[^cb] # the same operation in index notation
True
sage: td0[:]
[3*x*y + x + 1 (x - 3)*y + 3]
[4*x*y + 2*x + 2 2*(x - 2)*y + 4]
sage: tdd0 = td0.down(g) ; tdd0 # the two indices have been lowered, starting␣
→˓from the first one
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: tdd0 == g[_ac]*td0[^c_b] # the same operation in index notation
True
sage: tdd0[:]
[4*x^2*y^2 + x^2 + 5*(x^2 + x)*y + 2*x + 1 2*(x^2 - 2*x)*y^2 + (x^2 +␣
→˓2*x - 3)*y + 3*x + 3]
[(3*x^2 - 4*x)*y^2 + (x^2 + 3*x - 2)*y + 2*x + 2 (x^2 - 5*x + 4)*y^
→˓2 + (5*x - 8)*y + 4]
sage: td1 = t.down(g, 1) ; td1 # lowering the second index
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: td1 == g[_ac]*t[^bc] # the same operation in index notation

(continues on next page)

652 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: td1[:]
[2*x*y + x + 1 (x - 2)*y + 2]
[4*x*y + 3*x + 3 (3*x - 4)*y + 4]
sage: tdd1 = td1.down(g) ; tdd1 # the two indices have been lowered, starting␣
→˓from the second one
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: tdd1 == g[_ac]*td1[^c_b] # the same operation in index notation
True
sage: tdd1[:]
[4*x^2*y^2 + x^2 + 5*(x^2 + x)*y + 2*x + 1 (3*x^2 - 4*x)*y^2 + (x^2 +␣
→˓3*x - 2)*y + 2*x + 2]
[2*(x^2 - 2*x)*y^2 + (x^2 + 2*x - 3)*y + 3*x + 3 (x^2 - 5*x + 4)*y^
→˓2 + (5*x - 8)*y + 4]
sage: tdd1 == tdd0 # the order of index lowering is important
False
sage: tdd = t.down(g) ; tdd # both indices are lowered, starting from the␣
→˓last one
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: tdd[:]
[4*x^2*y^2 + x^2 + 5*(x^2 + x)*y + 2*x + 1 (3*x^2 - 4*x)*y^2 + (x^2 +␣
→˓3*x - 2)*y + 2*x + 2]
[2*(x^2 - 2*x)*y^2 + (x^2 + 2*x - 3)*y + 3*x + 3 (x^2 - 5*x + 4)*y^
→˓2 + (5*x - 8)*y + 4]
sage: tdd0 == tdd # to get tdd0, indices have been lowered from the first␣
→˓one, contrary to tdd
False
sage: tdd1 == tdd # the same order for index lowering has been applied
True
sage: u0tdd = tdd.up(g, 0) ; u0tdd # the first index is raised again
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: uu0tdd = u0tdd.up(g) ; uu0tdd # the second index is then raised
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: u1tdd = tdd.up(g, 1) ; u1tdd # raising operation, starting from the␣
→˓last index
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: uu1tdd = u1tdd.up(g) ; uu1tdd
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: uutdd = tdd.up(g) ; uutdd # both indices are raised, starting from the␣
→˓first one
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: uutdd == t # should be true
True
sage: uu0tdd == t # should be true
True
sage: uu1tdd == t # not true, because of the order of index raising to get␣
→˓uu1tdd
False

laplacian(metric=None)

2.8. Tensor Fields 653

Manifolds, Release 10.4.rc1

Return the Laplacian of self with respect to a given metric (Laplace-Beltrami operator).

If self is a tensor field 𝑡 of type (𝑘, 𝑙), the Laplacian of 𝑡 with respect to the metric 𝑔 is the tensor field of
type (𝑘, 𝑙) defined by

(Δ𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑘
= ∇𝑖∇𝑖𝑡𝑎1...𝑎𝑘

𝑏1...𝑏𝑘
,

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection) and ∇𝑖 := 𝑔𝑖𝑗∇𝑗 . The
operator Δ = ∇𝑖∇𝑖 is called the Laplace-Beltrami operator of metric 𝑔.

INPUT:

• metric – (default: None) the pseudo-Riemannian metric 𝑔 involved in the definition of the Laplacian;
if none is provided, the domain ofself is supposed to be endowed with a default metric (i.e. is supposed
to be pseudo-Riemannian manifold, see PseudoRiemannianManifold) and the latter is used to
define the Laplacian

OUTPUT:

• instance of TensorField representing the Laplacian of self

EXAMPLES:

Laplacian of a vector field in the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: v = M.vector_field(x^3 + y^2, x*y, name= v)
sage: Dv = v.laplacian(); Dv
Vector field Delta(v) on the Euclidean plane E^2
sage: Dv.display()
Delta(v) = (6*x + 2) e_x

The function laplacian() from the operators module can be used instead of the method lapla-
cian():

sage: from sage.manifolds.operators import laplacian
sage: laplacian(v) == Dv
True

In the present case (Euclidean metric and Cartesian coordinates), the components of the Laplacian are the
Laplacians of the components:

sage: all(Dv[[i]] == laplacian(v[[i]]) for i in M.irange())
True

The Laplacian can be taken with respect to a metric tensor that is not the default one:

sage: h = M.lorentzian_metric(h)
sage: h[1,1], h[2,2] = -1, 1+x^2
sage: Dv = v.laplacian(h); Dv
Vector field Delta_h(v) on the Euclidean plane E^2
sage: Dv.display()
Delta_h(v) = -(8*x^5 - 2*x^4 - x^2*y^2 + 15*x^3 - 4*x^2 + 6*x
- 2)/(x^4 + 2*x^2 + 1) e_x - 3*x^3*y/(x^4 + 2*x^2 + 1) e_y

lie_der(vector)
Lie derivative of self with respect to a vector field.

INPUT:

• vector – vector field with respect to which the Lie derivative is to be taken

654 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• the tensor field that is the Lie derivative of the current tensor field with respect to vector

EXAMPLES:

Lie derivative of a type-(1, 1) tensor field along a vector field on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: t = M.tensor_field(1, 1, {e_xy: [[x, 1], [y, 0]]}, name= t)
sage: t.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: w = M.vector_field({e_xy: [-y, x]}, name= w)
sage: w.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: lt = t.lie_derivative(w); lt
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: lt.display(e_xy)
∂/∂x⊗dx - x ∂/∂x⊗dy + (-y - 1) ∂/∂y⊗dy
sage: lt.display(e_uv)
-1/2*u ∂/∂u⊗du + (1/2*u + 1) ∂/∂u⊗dv + (-1/2*v + 1) ∂/∂v⊗du + 1/2*v ∂/∂v⊗dv

The result is cached:

sage: t.lie_derivative(w) is lt
True

An alias is lie_der:

sage: t.lie_der(w) is t.lie_derivative(w)
True

Lie derivative of a vector field:

sage: a = M.vector_field({e_xy: [1-x, x-y]}, name= a)
sage: a.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: a.lie_der(w)
Vector field on the 2-dimensional differentiable manifold M
sage: a.lie_der(w).display(e_xy)
x ∂/∂x + (-y - 1) ∂/∂y
sage: a.lie_der(w).display(e_uv)
(v - 1) ∂/∂u + (u + 1) ∂/∂v

The Lie derivative is antisymmetric:

sage: a.lie_der(w) == - w.lie_der(a)
True

and it coincides with the commutator of the two vector fields:

2.8. Tensor Fields 655

Manifolds, Release 10.4.rc1

sage: f = M.scalar_field({c_xy: 3*x-1, c_uv: 3/2*(u+v)-1})
sage: a.lie_der(w)(f) == w(a(f)) - a(w(f)) # long time
True

lie_derivative(vector)
Lie derivative of self with respect to a vector field.

INPUT:

• vector – vector field with respect to which the Lie derivative is to be taken

OUTPUT:

• the tensor field that is the Lie derivative of the current tensor field with respect to vector

EXAMPLES:

Lie derivative of a type-(1, 1) tensor field along a vector field on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: t = M.tensor_field(1, 1, {e_xy: [[x, 1], [y, 0]]}, name= t)
sage: t.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: w = M.vector_field({e_xy: [-y, x]}, name= w)
sage: w.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: lt = t.lie_derivative(w); lt
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: lt.display(e_xy)
∂/∂x⊗dx - x ∂/∂x⊗dy + (-y - 1) ∂/∂y⊗dy
sage: lt.display(e_uv)
-1/2*u ∂/∂u⊗du + (1/2*u + 1) ∂/∂u⊗dv + (-1/2*v + 1) ∂/∂v⊗du + 1/2*v ∂/∂v⊗dv

The result is cached:

sage: t.lie_derivative(w) is lt
True

An alias is lie_der:

sage: t.lie_der(w) is t.lie_derivative(w)
True

Lie derivative of a vector field:

sage: a = M.vector_field({e_xy: [1-x, x-y]}, name= a)
sage: a.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: a.lie_der(w)
Vector field on the 2-dimensional differentiable manifold M
sage: a.lie_der(w).display(e_xy)
x ∂/∂x + (-y - 1) ∂/∂y
sage: a.lie_der(w).display(e_uv)
(v - 1) ∂/∂u + (u + 1) ∂/∂v

656 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The Lie derivative is antisymmetric:

sage: a.lie_der(w) == - w.lie_der(a)
True

and it coincides with the commutator of the two vector fields:

sage: f = M.scalar_field({c_xy: 3*x-1, c_uv: 3/2*(u+v)-1})
sage: a.lie_der(w)(f) == w(a(f)) - a(w(f)) # long time
True

restrict(subdomain, dest_map=None)
Return the restriction of self to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – DifferentiableManifold; open subset 𝑈 of the tensor field domain 𝑆

• dest_map – DiffMap (default: None); destination map Ψ : 𝑈 → 𝑉 , where 𝑉 is an open subset
of the manifold𝑀 where the tensor field takes it values; if None, the restriction of Φ to 𝑈 is used, Φ
being the differentiable map 𝑆 →𝑀 associated with the tensor field

OUTPUT:

• TensorField representing the restriction

EXAMPLES:

Restrictions of a vector field on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of the North pole
sage: stereoN.<x,y> = U.chart() # stereographic coordinates from the North␣
→˓pole
sage: eN = stereoN.frame() # the associated vector frame
sage: V = M.open_subset(V) # the complement of the South pole
sage: stereoS.<u,v> = V.chart() # stereographic coordinates from the South␣
→˓pole
sage: eS = stereoS.frame() # the associated vector frame
sage: transf = stereoN.transition_map(stereoS, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: inv = transf.inverse() # transformation from stereoS to stereoN
sage: W = U.intersection(V) # the complement of the North and South poles
sage: stereoN_W = W.atlas()[0] # restriction of stereographic coord. from␣
→˓North pole to W
sage: stereoS_W = W.atlas()[1] # restriction of stereographic coord. from␣
→˓South pole to W
sage: eN_W = stereoN_W.frame() ; eS_W = stereoS_W.frame()
sage: v = M.vector_field({eN: [1, 0]}, name= v)
sage: v.display()
v = ∂/∂x
sage: vU = v.restrict(U) ; vU
Vector field v on the Open subset U of the 2-dimensional
differentiable manifold S^2

sage: vU.display()
v = ∂/∂x
sage: vU == eN[1]

(continues on next page)

2.8. Tensor Fields 657

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: vW = v.restrict(W) ; vW
Vector field v on the Open subset W of the 2-dimensional
differentiable manifold S^2

sage: vW.display()
v = ∂/∂x
sage: vW.display(eS_W, stereoS_W)
v = (-u^2 + v^2) ∂/∂u - 2*u*v ∂/∂v
sage: vW == eN_W[1]
True

At this stage, defining the restriction of v to the open subset V fully specifies v:

sage: v.restrict(V)[1] = vW[eS_W, 1, stereoS_W].expr() # note that eS is the␣
→˓default frame on V
sage: v.restrict(V)[2] = vW[eS_W, 2, stereoS_W].expr()
sage: v.display(eS, stereoS)
v = (-u^2 + v^2) ∂/∂u - 2*u*v ∂/∂v
sage: v.restrict(U).display()
v = ∂/∂x
sage: v.restrict(V).display()
v = (-u^2 + v^2) ∂/∂u - 2*u*v ∂/∂v

The restriction of the vector field to its own domain is of course itself:

sage: v.restrict(M) is v
True
sage: vU.restrict(U) is vU
True

set_calc_order(symbol, order, truncate=False)
Trigger a series expansion with respect to a small parameter in computations involving the tensor field.

This property is propagated by usual operations. The internal representation must be SR for this to take effect.

If the small parameter is 𝜖 and 𝑇 is self, the power series expansion to order 𝑛 is

𝑇 = 𝑇0 + 𝜖𝑇1 + 𝜖2𝑇2 + · · ·+ 𝜖𝑛𝑇𝑛 +𝑂(𝜖𝑛+1),

where 𝑇0, 𝑇1, . . . , 𝑇𝑛 are 𝑛+ 1 tensor fields of the same tensor type as self and do not depend upon 𝜖.

INPUT:

• symbol – symbolic variable (the “small parameter” 𝜖) with respect to which the components of self
are expanded in power series

• order – integer; the order 𝑛 of the expansion, defined as the degree of the polynomial representing the
truncated power series in symbol

• truncate – (default: False) determines whether the components of self are replaced by their
expansions to the given order

EXAMPLES:

Let us consider two vector fields depending on a small parameter ℎ on a non-parallelizable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V

(continues on next page)

658 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.vector_field()
sage: h = var(h , domain= real)
sage: a[eU,:] = (cos(h*x), -y)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: b = M.vector_field()
sage: b[eU,:] = (exp(h*x), exp(h*y))
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)

If we set the calculus order on one of the vector fields, any operation involving both of them is performed to
that order:

sage: a.set_calc_order(h, 2)
sage: s = a + b
sage: s[eU,:]
[h*x + 2, 1/2*h^2*y^2 + h*y - y + 1]
sage: s[eV,:]
[1/8*(u^2 - 2*u*v + v^2)*h^2 + h*u - 1/2*u + 1/2*v + 3,
-1/8*(u^2 - 2*u*v + v^2)*h^2 + h*v + 1/2*u - 1/2*v + 1]

Note that the components of a have not been affected by the above call to set_calc_order:

sage: a[eU,:]
[cos(h*x), -y]
sage: a[eV,:]
[cos(1/2*h*u)*cos(1/2*h*v) - sin(1/2*h*u)*sin(1/2*h*v) - 1/2*u + 1/2*v,
cos(1/2*h*u)*cos(1/2*h*v) - sin(1/2*h*u)*sin(1/2*h*v) + 1/2*u - 1/2*v]

To have set_calc_order act on them, set the optional argument truncate to True:

sage: a.set_calc_order(h, 2, truncate=True)
sage: a[eU,:]
[-1/2*h^2*x^2 + 1, -y]
sage: a[eV,:]
[-1/8*(u^2 + 2*u*v + v^2)*h^2 - 1/2*u + 1/2*v + 1,
-1/8*(u^2 + 2*u*v + v^2)*h^2 + 1/2*u - 1/2*v + 1]

set_comp(basis=None)
Return the components of self in a given vector frame for assignment.

The components with respect to other frames having the same domain as the provided vector frame are
deleted, in order to avoid any inconsistency. To keep them, use the method add_comp() instead.

INPUT:

• basis – (default: None) vector frame in which the components are defined; if none is provided, the
components are assumed to refer to the tensor field domain’s default frame

OUTPUT:

• components in the given frame, as a Components; if such components did not exist previously, they
are created

EXAMPLES:

2.8. Tensor Fields 659

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: e_uv = c_uv.frame()
sage: t = M.tensor_field(1, 2, name= t)
sage: t.set_comp(e_uv)
3-indices components w.r.t. Coordinate frame (V, (∂/∂u,∂/∂v))
sage: t.set_comp(e_uv)[1,0,1] = u+v
sage: t.display(e_uv)
t = (u + v) ∂/∂v⊗du⊗dv

Setting the components in a new frame (e):

sage: e = V.vector_frame(e)
sage: t.set_comp(e)
3-indices components w.r.t. Vector frame (V, (e_0,e_1))
sage: t.set_comp(e)[0,1,1] = u*v
sage: t.display(e)
t = u*v e_0⊗e^1⊗e^1

Since the frames e and e_uv are defined on the same domain, the components w.r.t. e_uv have been erased:

sage: t.display(c_uv.frame())
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components
in the Coordinate frame (V, (∂/∂u,∂/∂v))

Since zero is an immutable, its components cannot be changed:

sage: z = M.tensor_field_module((1, 1)).zero()
sage: z.set_comp(e)[0,1] = u*v
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be
changed

set_immutable()

Set self and all restrictions of self immutable.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1})
sage: a = M.tensor_field(1, 1, [[1+y,x], [0,x+y]], name= a)
sage: aU = a.restrict(U)
sage: a.set_immutable()
sage: aU.is_immutable()
True

set_name(name=None, latex_name=None)
Set (or change) the text name and LaTeX name of self.

INPUT:

660 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• name – string (default: None); name given to the tensor field

• latex_name – string (default: None); LaTeX symbol to denote the tensor field; if None while name
is provided, the LaTeX symbol is set to name

EXAMPLES:

sage: M = Manifold(2, M)
sage: t = M.tensor_field(1, 3); t
Tensor field of type (1,3) on the 2-dimensional differentiable
manifold M

sage: t.set_name(name= t)
sage: t
Tensor field t of type (1,3) on the 2-dimensional differentiable
manifold M

sage: latex(t)
t
sage: t.set_name(latex_name=r \tau)
sage: latex(t)
\tau
sage: t.set_name(name= a)
sage: t
Tensor field a of type (1,3) on the 2-dimensional differentiable
manifold M

sage: latex(t)
a

set_restriction(rst)
Define a restriction of self to some subdomain.

INPUT:

• rst – TensorField of the same type and symmetries as the current tensor field self, defined on a
subdomain of the domain of self

EXAMPLES:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: t = M.tensor_field(1, 2, name= t)
sage: s = U.tensor_field(1, 2)
sage: s[0,0,1] = x+y
sage: t.set_restriction(s)
sage: t.display(c_xy.frame())
t = (x + y) ∂/∂x⊗dx⊗dy
sage: t.restrict(U) == s
True

If the restriction is defined on the very same domain, the tensor field becomes a copy of it (see
copy_from()):

sage: v = M.tensor_field(1, 2, name= v)
sage: v.set_restriction(t)
sage: v.restrict(U) == t.restrict(U)
True

2.8. Tensor Fields 661

Manifolds, Release 10.4.rc1

symmetries()

Print the list of symmetries and antisymmetries.

EXAMPLES:

sage: M = Manifold(2, S^2)
sage: t = M.tensor_field(1,2)
sage: t.symmetries()
no symmetry; no antisymmetry
sage: t = M.tensor_field(1,2, sym=(1,2))
sage: t.symmetries()
symmetry: (1, 2); no antisymmetry
sage: t = M.tensor_field(2,2, sym=(0,1), antisym=(2,3))
sage: t.symmetries()
symmetry: (0, 1); antisymmetry: (2, 3)
sage: t = M.tensor_field(2,2, antisym=[(0,1),(2,3)])
sage: t.symmetries()
no symmetry; antisymmetries: [(0, 1), (2, 3)]

symmetrize(*pos)
Symmetrization over some arguments.

INPUT:

• pos – (default: None) list of argument positions involved in the symmetrization (with the convention
position=0 for the first argument); if None, the symmetrization is performed over all the arguments

OUTPUT:

• the symmetrized tensor field (instance of TensorField)

EXAMPLES:

Symmetrization of a type-(0, 2) tensor field on a 2-dimensional non-parallelizable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.tensor_field(0,2, {eU: [[1,x], [2,y]]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: a[eV,:]
[1/4*u + 3/4 -1/4*u + 3/4]
[1/4*v - 1/4 -1/4*v - 1/4]
sage: s = a.symmetrize() ; s
Field of symmetric bilinear forms on the 2-dimensional
differentiable manifold M

sage: s[eU,:]
[1 1/2*x + 1]
[1/2*x + 1 y]
sage: s[eV,:]
[1/4*u + 3/4 -1/8*u + 1/8*v + 1/4]
[-1/8*u + 1/8*v + 1/4 -1/4*v - 1/4]
sage: s == a.symmetrize(0,1) # explicit positions
True

662 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

See also:

For more details and examples, see sage.tensor.modules.free_module_tensor.
FreeModuleTensor.symmetrize().

tensor_rank()

Return the tensor rank of self.

OUTPUT:

• integer 𝑘 + 𝑙, where 𝑘 is the contravariant rank and 𝑙 is the covariant rank

EXAMPLES:

sage: M = Manifold(2, S^2)
sage: t = M.tensor_field(1,2)
sage: t.tensor_rank()
3
sage: v = M.vector_field()
sage: v.tensor_rank()
1

tensor_type()

Return the tensor type of self.

OUTPUT:

• pair (𝑘, 𝑙), where 𝑘 is the contravariant rank and 𝑙 is the covariant rank

EXAMPLES:

sage: M = Manifold(2, S^2)
sage: t = M.tensor_field(1,2)
sage: t.tensor_type()
(1, 2)
sage: v = M.vector_field()
sage: v.tensor_type()
(1, 0)

trace(pos1=0, pos2=1, using=None)
Trace (contraction) on two slots of the tensor field.

If a non-degenerate form is provided, the trace of a (0, 2) tensor field is computed by first raising the last
index.

INPUT:

• pos1 – (default: 0) position of the first index for the contraction, with the convention pos1=0 for the
first slot

• pos2 – (default: 1) position of the second index for the contraction, with the same convention as for
pos1. The variance type of pos2 must be opposite to that of pos1

• using – (default: None) a non-degenerate form

OUTPUT:

• tensor field resulting from the (pos1, pos2) contraction

EXAMPLES:

Trace of a type-(1, 1) tensor field on a 2-dimensional non-parallelizable manifold:

2.8. Tensor Fields 663

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor.symmetrize
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor.symmetrize

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: W = U.intersection(V)
sage: a = M.tensor_field(1,1, name= a)
sage: a[e_xy,:] = [[1,x], [2,y]]
sage: a.add_comp_by_continuation(e_uv, W, chart=c_uv)
sage: s = a.trace() ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.display()
M → ℝ
on U: (x, y) ↦ y + 1
on V: (u, v) ↦ 1/2*u - 1/2*v + 1
sage: s == a.trace(0,1) # explicit mention of the positions
True

The trace of a type-(0, 2) tensor field using a metric:

sage: g = M.metric(g)
sage: g[0,0], g[0,1], g[1,1] = 1, 0, 1
sage: g.trace(using=g).display()
M → ℝ
on U: (x, y) ↦ 2
on W: (u, v) ↦ 2

Instead of the explicit call to the method trace(), one may use the index notation with Einstein convention
(summation over repeated indices); it suffices to pass the indices as a string inside square brackets:

sage: a[^i_i]
Scalar field on the 2-dimensional differentiable manifold M
sage: a[^i_i] == s
True

Any letter can be used to denote the repeated index:

sage: a[^b_b] == s
True

Trace of a type-(1, 2) tensor field:

sage: b = M.tensor_field(1,2, name= b) ; b
Tensor field b of type (1,2) on the 2-dimensional differentiable
manifold M

sage: b[e_xy,:] = [[[0,x+y], [y,0]], [[0,2], [3*x,-2]]]
sage: b.add_comp_by_continuation(e_uv, W, chart=c_uv) # long time
sage: s = b.trace(0,1) ; s # contraction on first and second slots
1-form on the 2-dimensional differentiable manifold M
sage: s.display(e_xy)
3*x dx + (x + y - 2) dy
sage: s.display(e_uv) # long time
(5/4*u + 3/4*v - 1) du + (1/4*u + 3/4*v + 1) dv

664 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Use of the index notation:

sage: b[^k_ki]
1-form on the 2-dimensional differentiable manifold M
sage: b[^k_ki] == s # long time
True

Indices not involved in the contraction may be replaced by dots:

sage: b[^k_k.] == s # long time
True

The symbol ^ may be omitted:

sage: b[k_k.] == s # long time
True

LaTeX notations are allowed:

sage: b[^{k}_{ki}] == s # long time
True

Contraction on first and third slots:

sage: s = b.trace(0,2) ; s
1-form on the 2-dimensional differentiable manifold M
sage: s.display(e_xy)
2 dx + (y - 2) dy
sage: s.display(e_uv) # long time
(1/4*u - 1/4*v) du + (-1/4*u + 1/4*v + 2) dv

Use of index notation:

sage: b[^k_.k] == s # long time
True

up(non_degenerate_form, pos=None)
Compute a dual of the tensor field by raising some index with the given tensor field (usually, a
pseudo-Riemannian metric, a symplectic form or a Poisson tensor).

If 𝑇 is the tensor field, (𝑘, 𝑙) its type and 𝑝 the position of a covariant index (i.e. 𝑘 ≤ 𝑝 < 𝑘+ 𝑙), this method
called with pos = 𝑝 yields the tensor field 𝑇 ♯ of type (𝑘 + 1, 𝑙 − 1) whose components are

(𝑇 ♯)
𝑎1...𝑎𝑘+1

𝑏1...𝑏𝑙−1
= 𝑔𝑎𝑘+1𝑖 𝑇 𝑎1...𝑎𝑘

𝑏1...𝑏𝑝−𝑘 𝑖 𝑏𝑝−𝑘+1...𝑏𝑙−1
,

𝑔𝑎𝑏 being the components of the inverse metric or the Poisson tensor, respectively.

The reverse operation is TensorField.down().

INPUT:

• non_degenerate_form – non-degenerate form 𝑔, or a Poisson tensor

• pos – (default: None) position of the index (with the convention pos=0 for the first index); if None,
the raising is performed over all the covariant indices, starting from the first one

OUTPUT:

• the tensor field 𝑇 ♯ resulting from the index raising operation

2.8. Tensor Fields 665

Manifolds, Release 10.4.rc1

EXAMPLES:

Raising the index of a 1-form results in a vector field:

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[1,2], g[2,2] = 1+x, x*y, 1-y
sage: w = M.one_form(-1, 2)
sage: v = w.up(g) ; v
Vector field on the 2-dimensional differentiable manifold M
sage: v.display()
((2*x - 1)*y + 1)/(x^2*y^2 + (x + 1)*y - x - 1) ∂/∂x
- (x*y + 2*x + 2)/(x^2*y^2 + (x + 1)*y - x - 1) ∂/∂y

sage: ig = g.inverse(); ig[:]
[(y - 1)/(x^2*y^2 + (x + 1)*y - x - 1) x*y/(x^2*y^2 + (x + 1)*y - x -␣
→˓1)]
[x*y/(x^2*y^2 + (x + 1)*y - x - 1) -(x + 1)/(x^2*y^2 + (x + 1)*y - x -␣
→˓1)]

Using the index notation instead of up():

sage: v == ig[^ab]*w[_b]
True

The reverse operation:

sage: w1 = v.down(g) ; w1
1-form on the 2-dimensional differentiable manifold M
sage: w1.display()
-dx + 2 dy
sage: w1 == w
True

The reverse operation in index notation:

sage: g[_ab]*v[^b] == w
True

Raising the indices of a tensor field of type (0,2):

sage: t = M.tensor_field(0, 2, [[1,2], [3,4]])
sage: tu0 = t.up(g, 0) ; tu0 # raising the first index
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: tu0[:]
[((3*x + 1)*y - 1)/(x^2*y^2 + (x + 1)*y - x - 1) 2*((2*x + 1)*y - 1)/(x^2*y^
→˓2 + (x + 1)*y - x - 1)]
[(x*y - 3*x - 3)/(x^2*y^2 + (x + 1)*y - x - 1) 2*(x*y - 2*x - 2)/(x^2*y^
→˓2 + (x + 1)*y - x - 1)]
sage: tu0 == ig[^ac]*t[_cb] # the same operation in index notation
True
sage: tuu0 = tu0.up(g) ; tuu0 # the two indices have been raised, starting␣
→˓from the first one
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: tuu0 == tu0[^a_c]*ig[^cb] # the same operation in index notation
True

(continues on next page)

666 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: tu1 = t.up(g, 1) ; tu1 # raising the second index
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: tu1 == ig[^ac]*t[_bc] # the same operation in index notation
True
sage: tu1[:]
[((2*x + 1)*y - 1)/(x^2*y^2 + (x + 1)*y - x - 1) ((4*x + 3)*y - 3)/(x^2*y^2 +␣
→˓(x + 1)*y - x - 1)]
[(x*y - 2*x - 2)/(x^2*y^2 + (x + 1)*y - x - 1) (3*x*y - 4*x - 4)/(x^2*y^2 +␣
→˓(x + 1)*y - x - 1)]
sage: tuu1 = tu1.up(g) ; tuu1 # the two indices have been raised, starting␣
→˓from the second one
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: tuu1 == tu1[^a_c]*ig[^cb] # the same operation in index notation
True
sage: tuu0 == tuu1 # the order of index raising is important
False
sage: tuu = t.up(g) ; tuu # both indices are raised, starting from the first␣
→˓one
Tensor field of type (2,0) on the 2-dimensional differentiable
manifold M

sage: tuu0 == tuu # the same order for index raising has been applied
True
sage: tuu1 == tuu # to get tuu1, indices have been raised from the last one,␣
→˓contrary to tuu
False
sage: d0tuu = tuu.down(g, 0) ; d0tuu # the first index is lowered again
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: dd0tuu = d0tuu.down(g) ; dd0tuu # the second index is then lowered
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: d1tuu = tuu.down(g, 1) ; d1tuu # lowering operation, starting from the␣
→˓last index
Tensor field of type (1,1) on the 2-dimensional differentiable
manifold M

sage: dd1tuu = d1tuu.down(g) ; dd1tuu
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: ddtuu = tuu.down(g) ; ddtuu # both indices are lowered, starting from␣
→˓the last one
Tensor field of type (0,2) on the 2-dimensional differentiable
manifold M

sage: ddtuu == t # should be true
True
sage: dd0tuu == t # not true, because of the order of index lowering to get␣
→˓dd0tuu
False
sage: dd1tuu == t # should be true
True

2.8. Tensor Fields 667

Manifolds, Release 10.4.rc1

2.8.3 Tensor Fields with Values on a Parallelizable Manifold

The class TensorFieldParal implements tensor fields along a differentiable manifolds with values on a parallelizable
differentiable manifold. For non-parallelizable manifolds, see the class TensorField.

Various derived classes of TensorFieldParal are devoted to specific tensor fields:

• VectorFieldParal for vector fields (rank-1 contravariant tensor fields)

• AutomorphismFieldParal for fields of tangent-space automorphisms

• DiffFormParal for differential forms (fully antisymmetric covariant tensor fields)

• MultivectorFieldParal for multivector fields (fully antisymmetric contravariant tensor fields)

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Travis Scrimshaw (2016): review tweaks

• Eric Gourgoulhon (2018): method TensorFieldParal.along()

• Florentin Jaffredo (2018) : series expansion with respect to a given parameter

REFERENCES:

• [KN1963]

• [Lee2013]

• [ONe1983]

EXAMPLES:

A tensor field of type (1, 1) on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: t = M.tensor_field(1, 1, name= T) ; t
Tensor field T of type (1,1) on the 2-dimensional differentiable manifold M
sage: t.tensor_type()
(1, 1)
sage: t.tensor_rank()
2

Components with respect to the manifold’s default frame are created by providing the relevant indices inside square
brackets:

sage: t[1,1] = x^2

Unset components are initialized to zero:

sage: t[:] # list of components w.r.t. the manifold s default vector frame
[x^2 0]
[0 0]

It is also possible to initialize the components at the tensor field construction:

sage: t = M.tensor_field(1, 1, [[x^2, 0], [0, 0]], name= T)
sage: t[:]
[x^2 0]
[0 0]

668 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The full set of components with respect to a given vector frame is returned by the method comp():

sage: t.comp(c_xy.frame())
2-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))

If no vector frame is mentioned in the argument of comp(), it is assumed to be the manifold’s default frame:

sage: M.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: t.comp() is t.comp(c_xy.frame())
True

Individual components with respect to the manifold’s default frame are accessed by listing their indices inside double
square brackets. They are scalar fields on the manifold:

sage: t[[1,1]]
Scalar field on the 2-dimensional differentiable manifold M
sage: t[[1,1]].display()
M → ℝ
(x, y) ↦ x^2
sage: t[[1,2]]
Scalar field zero on the 2-dimensional differentiable manifold M
sage: t[[1,2]].display()
zero: M → ℝ

(x, y) ↦ 0

A direct access to the coordinate expression of some component is obtained via the single square brackets:

sage: t[1,1]
x^2
sage: t[1,1] is t[[1,1]].coord_function() # the coordinate function
True
sage: t[1,1] is t[[1,1]].coord_function(c_xy)
True
sage: t[1,1].expr() is t[[1,1]].expr() # the symbolic expression
True

Expressions in a chart different from the manifold’s default one are obtained by specifying the chart as the last argument
inside the single square brackets:

sage: c_uv.<u,v> = M.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, [x+y, x-y])
sage: uv_to_xy = xy_to_uv.inverse()
sage: t[1,1, c_uv]
1/4*u^2 + 1/2*u*v + 1/4*v^2

Note that t[1,1, c_uv] is the component of the tensor t with respect to the coordinate frame associated to the
chart (𝑥, 𝑦) expressed in terms of the coordinates (𝑢, 𝑣). Indeed, t[1,1, c_uv] is a shortcut for t.comp(c_xy.
frame())[[1,1]].coord_function(c_uv):

sage: t[1,1, c_uv] is t.comp(c_xy.frame())[[1,1]].coord_function(c_uv)
True

Similarly, t[1,1] is a shortcut for t.comp(c_xy.frame())[[1,1]].coord_function(c_xy):

sage: t[1,1] is t.comp(c_xy.frame())[[1,1]].coord_function(c_xy)
True

(continues on next page)

2.8. Tensor Fields 669

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: t[1,1] is t.comp()[[1,1]].coord_function() # since c_xy.frame() and c_xy are␣
→˓the manifold s default values
True

All the components can be set at once via [:]:

sage: t[:] = [[1, -x], [x*y, 2]]
sage: t[:]
[1 -x]
[x*y 2]

To set the components in a vector frame different from the manifold’s default one, the method set_comp() can be
employed:

sage: e = M.vector_frame(e)
sage: t.set_comp(e)[1,1] = x+y
sage: t.set_comp(e)[2,1], t.set_comp(e)[2,2] = y, -3*x

but, as a shortcut, one may simply specify the frame as the first argument of the square brackets:

sage: t[e,1,1] = x+y
sage: t[e,2,1], t[e,2,2] = y, -3*x
sage: t.comp(e)
2-indices components w.r.t. Vector frame (M, (e_1,e_2))
sage: t.comp(e)[:]
[x + y 0]
[y -3*x]
sage: t[e,:] # a shortcut of the above
[x + y 0]
[y -3*x]

All the components in some frame can be set at once, via the operator [:]:

sage: t[e,:] = [[x+y, 0], [y, -3*x]]
sage: t[e,:] # same as above:
[x + y 0]
[y -3*x]

Equivalently, one can initialize the components in e at the tensor field construction:

sage: t = M.tensor_field(1, 1, [[x+y, 0], [y, -3*x]], frame=e, name= T)
sage: t[e,:] # same as above:
[x + y 0]
[y -3*x]

To avoid any inconsistency between the various components, the method set_comp() clears the components in other
frames. To keep the other components, one must use the method add_comp():

sage: t = M.tensor_field(1, 1, name= T) # Let us restart
sage: t[:] = [[1, -x], [x*y, 2]] # by first setting the components in the frame c_xy.
→˓frame()

We now set the components in the frame e with add_comp:

sage: t.add_comp(e)[:] = [[x+y, 0], [y, -3*x]]

The expansion of the tensor field in a given frame is obtained via the method display:

670 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: t.display() # expansion in the manifold s default frame
T = ∂/∂x⊗dx - x ∂/∂x⊗dy + x*y ∂/∂y⊗dx + 2 ∂/∂y⊗dy
sage: t.display(e)
T = (x + y) e_1⊗e^1 + y e_2⊗e^1 - 3*x e_2⊗e^2

See display() for more examples.

By definition, a tensor field acts as a multilinear map on 1-forms and vector fields; in the present case, T being of type
(1, 1), it acts on pairs (1-form, vector field):

sage: a = M.one_form(1, x, name= a)
sage: v = M.vector_field(y, 2, name= V)
sage: t(a,v)
Scalar field T(a,V) on the 2-dimensional differentiable manifold M
sage: t(a,v).display()
T(a,V): M → ℝ

(x, y) ↦ x^2*y^2 + 2*x + y
(u, v) ↦ 1/16*u^4 - 1/8*u^2*v^2 + 1/16*v^4 + 3/2*u + 1/2*v

sage: latex(t(a,v))
T\left(a,V\right)

Check by means of the component expression of t(a,v):

sage: t(a,v).expr() - t[1,1]*a[1]*v[1] - t[1,2]*a[1]*v[2] \
....: - t[2,1]*a[2]*v[1] - t[2,2]*a[2]*v[2]
0

A scalar field (rank-0 tensor field):

sage: f = M.scalar_field(x*y + 2, name= f) ; f
Scalar field f on the 2-dimensional differentiable manifold M
sage: f.tensor_type()
(0, 0)

A scalar field acts on points on the manifold:

sage: p = M.point((1,2))
sage: f(p)
4

See DiffScalarField for more details on scalar fields.

A vector field (rank-1 contravariant tensor field):

sage: v = M.vector_field(-x, y, name= v) ; v
Vector field v on the 2-dimensional differentiable manifold M
sage: v.tensor_type()
(1, 0)
sage: v.display()
v = -x ∂/∂x + y ∂/∂y

A field of symmetric bilinear forms:

sage: q = M.sym_bilin_form_field(name= Q) ; q
Field of symmetric bilinear forms Q on the 2-dimensional differentiable
manifold M

sage: q.tensor_type()
(0, 2)

2.8. Tensor Fields 671

Manifolds, Release 10.4.rc1

The components of a symmetric bilinear form are dealt by the subclass CompFullySym of the class Components,
which takes into account the symmetry between the two indices:

sage: q[1,1], q[1,2], q[2,2] = (0, -x, y) # no need to set the component (2,1)
sage: type(q.comp())
<class sage.tensor.modules.comp.CompFullySym >
sage: q[:] # note that the component (2,1) is equal to the component (1,2)
[0 -x]
[-x y]
sage: q.display()
Q = -x dx⊗dy - x dy⊗dx + y dy⊗dy

More generally, tensor symmetries or antisymmetries can be specified via the keywords sym and antisym. For instance
a rank-4 covariant tensor symmetric with respect to its first two arguments (no. 0 and no. 1) and antisymmetric with
respect to its last two ones (no. 2 and no. 3) is declared as follows:

sage: t = M.tensor_field(0, 4, name= T , sym=(0,1), antisym=(2,3))
sage: t[1,2,1,2] = 3
sage: t[2,1,1,2] # check of the symmetry with respect to the first 2 indices
3
sage: t[1,2,2,1] # check of the antisymmetry with respect to the last 2 indices
-3

class sage.manifolds.differentiable.tensorfield_paral.TensorFieldParal(vec-
tor_field_mod-
ule,
ten-
sor_type,
name=None,
la-
tex_name=None,
sym=None,
anti-
sym=None)

Bases: FreeModuleTensor, TensorField

Tensor field along a differentiable manifold, with values on a parallelizable manifold.

An instance of this class is a tensor field along a differentiable manifold 𝑈 with values on a parallelizable mani-
fold 𝑀 , via a differentiable map Φ : 𝑈 → 𝑀 . More precisely, given two non-negative integers 𝑘 and 𝑙 and a
differentiable map

Φ : 𝑈 −→𝑀,

a tensor field of type (𝑘, 𝑙) along 𝑈 with values on𝑀 is a differentiable map

𝑡 : 𝑈 −→ 𝑇 (𝑘,𝑙)𝑀

(where 𝑇 (𝑘,𝑙)𝑀 is the tensor bundle of type (𝑘, 𝑙) over𝑀) such that

𝑡(𝑝) ∈ 𝑇 (𝑘,𝑙)(𝑇𝑞𝑀)

for all 𝑝 ∈ 𝑈 , i.e. 𝑡(𝑝) is a tensor of type (𝑘, 𝑙) on the tangent space 𝑇𝑞𝑀 at the point 𝑞 = Φ(𝑝). That is to say a
multilinear map

𝑡(𝑝) : 𝑇 *
𝑞𝑀 × · · · × 𝑇 *

𝑞𝑀⏟ ⏞
𝑘 times

×𝑇𝑞𝑀 × · · · × 𝑇𝑞𝑀⏟ ⏞
𝑙 times

−→ 𝐾,

672 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompFullySym
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor

Manifolds, Release 10.4.rc1

where 𝑇 *
𝑞𝑀 is the dual vector space to 𝑇𝑞𝑀 and𝐾 is the topological field over which the manifold𝑀 is defined.

The integer 𝑘 + 𝑙 is called the tensor rank.

The standard case of a tensor field on a differentiable manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is not parallelizable, the class TensorField should be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 associated with the map Φ :
𝑈 →𝑀 (cf. VectorFieldFreeModule)

• tensor_type – pair (𝑘, 𝑙) with 𝑘 being the contravariant rank and 𝑙 the covariant rank

• name – (default: None) name given to the tensor field

• latex_name – (default: None) LaTeX symbol to denote the tensor field; if none is provided, the LaTeX
symbol is set to name

• sym – (default: None) a symmetry or a list of symmetries among the tensor arguments: each symmetry is
described by a tuple containing the positions of the involved arguments, with the convention position=0 for
the first argument; for instance:

– sym=(0,1) for a symmetry between the 1st and 2nd arguments

– sym=[(0,2),(1,3,4)] for a symmetry between the 1st and 3rd arguments and a symmetry be-
tween the 2nd, 4th and 5th arguments

• antisym – (default: None) antisymmetry or list of antisymmetries among the arguments, with the same
convention as for sym

EXAMPLES:

A tensor field of type (2, 0) on a 3-dimensional parallelizable manifold:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart() # makes M parallelizable
sage: t = M.tensor_field(2, 0, name= T) ; t
Tensor field T of type (2,0) on the 3-dimensional differentiable
manifold M

Tensor fields are considered as elements of a module over the ring 𝐶𝑘(𝑀) of scalar fields on𝑀 :

sage: t.parent()
Free module T^(2,0)(M) of type-(2,0) tensors fields on the
3-dimensional differentiable manifold M
sage: t.parent().base_ring()
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M

The components with respect to the manifold’s default frame are set or read by means of square brackets:

sage: e = M.vector_frame(e) ; M.set_default_frame(e)
sage: for i in M.irange():
....: for j in M.irange():
....: t[i,j] = (i+1)**(j+1)
sage: [[t[i,j] for j in M.irange()] for i in M.irange()]
[[1, 1, 1], [2, 4, 8], [3, 9, 27]]

2.8. Tensor Fields 673

Manifolds, Release 10.4.rc1

A shortcut for the above is using [:]:

sage: t[:]
[1 1 1]
[2 4 8]
[3 9 27]

The components with respect to another frame are set via the method set_comp() and read via the method
comp(); both return an instance of Components:

sage: f = M.vector_frame(f) # a new frame defined on M, in addition to e
sage: t.set_comp(f)[0,0] = -3
sage: t.comp(f)
2-indices components w.r.t. Vector frame (M, (f_0,f_1,f_2))
sage: t.comp(f)[0,0]
-3
sage: t.comp(f)[:] # the full list of components
[-3 0 0]
[0 0 0]
[0 0 0]

To avoid any inconsistency between the various components, the method set_comp() deletes the components
in other frames. Accordingly, the components in the frame e have been deleted:

sage: t._components
{Vector frame (M, (f_0,f_1,f_2)): 2-indices components w.r.t. Vector
frame (M, (f_0,f_1,f_2))}

To keep the other components, one must use the method add_comp():

sage: t = M.tensor_field(2, 0, name= T) # let us restart
sage: t[0,0] = 2 # sets the components in the frame e

We now set the components in the frame f with add_comp:

sage: t.add_comp(f)[0,0] = -3

The components w.r.t. frame e have been kept:

sage: t._components # random (dictionary output)
{Vector frame (M, (e_0,e_1,e_2)): 2-indices components w.r.t. Vector frame (M, (e_
→˓0,e_1,e_2)),
Vector frame (M, (f_0,f_1,f_2)): 2-indices components w.r.t. Vector frame (M, (f_
→˓0,f_1,f_2))}

The basic properties of a tensor field are:

sage: t.domain()
3-dimensional differentiable manifold M
sage: t.tensor_type()
(2, 0)

Symmetries and antisymmetries are declared via the keywordssym andantisym. For instance, a rank-6 covariant
tensor that is symmetric with respect to its 1st and 3rd arguments and antisymmetric with respect to the 2nd, 5th
and 6th arguments is set up as follows:

674 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

sage: a = M.tensor_field(0, 6, name= T , sym=(0,2), antisym=(1,4,5))
sage: a[0,0,1,0,1,2] = 3
sage: a[1,0,0,0,1,2] # check of the symmetry
3
sage: a[0,1,1,0,0,2], a[0,1,1,0,2,0] # check of the antisymmetry
(-3, 3)

Multiple symmetries or antisymmetries are allowed; they must then be declared as a list. For instance, a rank-4
covariant tensor that is antisymmetric with respect to its 1st and 2nd arguments and with respect to its 3rd and 4th
argument must be declared as:

sage: r = M.tensor_field(0, 4, name= T , antisym=[(0,1), (2,3)])
sage: r[0,1,2,0] = 3
sage: r[1,0,2,0] # first antisymmetry
-3
sage: r[0,1,0,2] # second antisymmetry
-3
sage: r[1,0,0,2] # both antisymmetries acting
3

Tensor fields of the same type can be added and subtracted:

sage: a = M.tensor_field(2, 0)
sage: a[0,0], a[0,1], a[0,2] = (1,2,3)
sage: b = M.tensor_field(2, 0)
sage: b[0,0], b[1,1], b[2,2], b[0,2] = (4,5,6,7)
sage: s = a + 2*b ; s
Tensor field of type (2,0) on the 3-dimensional differentiable
manifold M
sage: a[:], (2*b)[:], s[:]
(
[1 2 3] [8 0 14] [9 2 17]
[0 0 0] [0 10 0] [0 10 0]
[0 0 0], [0 0 12], [0 0 12]
)
sage: s = a - b ; s
Tensor field of type (2,0) on the 3-dimensional differentiable
manifold M
sage: a[:], b[:], s[:]
(
[1 2 3] [4 0 7] [-3 2 -4]
[0 0 0] [0 5 0] [0 -5 0]
[0 0 0], [0 0 6], [0 0 -6]
)

Symmetries are preserved by the addition whenever it is possible:

sage: a = M.tensor_field(2, 0, sym=(0,1))
sage: a[0,0], a[0,1], a[0,2] = (1,2,3)
sage: s = a + b
sage: a[:], b[:], s[:]
(
[1 2 3] [4 0 7] [5 2 10]
[2 0 0] [0 5 0] [2 5 0]
[3 0 0], [0 0 6], [3 0 6]
)
sage: a.symmetries()

(continues on next page)

2.8. Tensor Fields 675

Manifolds, Release 10.4.rc1

(continued from previous page)

symmetry: (0, 1); no antisymmetry
sage: b.symmetries()
no symmetry; no antisymmetry
sage: s.symmetries()
no symmetry; no antisymmetry

Let us now make b symmetric:

sage: b = M.tensor_field(2, 0, sym=(0,1))
sage: b[0,0], b[1,1], b[2,2], b[0,2] = (4,5,6,7)
sage: s = a + b
sage: a[:], b[:], s[:]
(
[1 2 3] [4 0 7] [5 2 10]
[2 0 0] [0 5 0] [2 5 0]
[3 0 0], [7 0 6], [10 0 6]
)
sage: s.symmetries() # s is symmetric because both a and b are
symmetry: (0, 1); no antisymmetry

The tensor product is taken with the operator *:

sage: c = a*b ; c
Tensor field of type (4,0) on the 3-dimensional differentiable
manifold M
sage: c.symmetries() # since a and b are both symmetric, a*b has two symmetries:
symmetries: [(0, 1), (2, 3)]; no antisymmetry

The tensor product of two fully contravariant tensors is not symmetric in general:

sage: a*b == b*a
False

The tensor product of a fully contravariant tensor by a fully covariant one is symmetric:

sage: d = M.diff_form(2) # a fully covariant tensor field
sage: d[0,1], d[0,2], d[1,2] = (3, 2, 1)
sage: s = a*d ; s
Tensor field of type (2,2) on the 3-dimensional differentiable
manifold M
sage: s.symmetries()
symmetry: (0, 1); antisymmetry: (2, 3)
sage: s1 = d*a ; s1
Tensor field of type (2,2) on the 3-dimensional differentiable
manifold M
sage: s1.symmetries()
symmetry: (0, 1); antisymmetry: (2, 3)
sage: d*a == a*d
True

Example of tensor field associated with a non-trivial differentiable map Φ: tensor field along a curve in𝑀 :

sage: R = Manifold(1, R) # R as a 1-dimensional manifold
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, [cos(t), sin(t), t], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable manifold R

(continues on next page)

676 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

to the 3-dimensional differentiable manifold M
sage: h = R.tensor_field(2, 0, name= h , dest_map=Phi) ; h
Tensor field h of type (2,0) along the 1-dimensional differentiable
manifold R with values on the 3-dimensional differentiable manifold M
sage: h.parent()
Free module T^(2,0)(R,Phi) of type-(2,0) tensors fields along the
1-dimensional differentiable manifold R mapped into the 3-dimensional
differentiable manifold M
sage: h[0,0], h[0,1], h[2,0] = 1+t, t^2, sin(t)
sage: h.display()
h = (t + 1) ∂/∂x⊗∂/∂x + t^2 ∂/∂x⊗∂/∂y + sin(t) ∂/∂z⊗∂/∂x

add_comp(basis=None)

Return the components of the tensor field in a given vector frame for assignment.

The components with respect to other frames on the same domain are kept. To delete them, use the method
set_comp() instead.

INPUT:

• basis – (default: None) vector frame in which the components are defined; if none is provided, the
components are assumed to refer to the tensor field domain’s default frame

OUTPUT:

• components in the given frame, as an instance of the class Components; if such components did not
exist previously, they are created

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: e_xy = X.frame()
sage: t = M.tensor_field(1,1, name= t)
sage: t.add_comp(e_xy)
2-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: t.add_comp(e_xy)[1,0] = 2
sage: t.display(e_xy)
t = 2 ∂/∂y⊗dx

Adding components with respect to a new frame (e):

sage: e = M.vector_frame(e)
sage: t.add_comp(e)
2-indices components w.r.t. Vector frame (M, (e_0,e_1))
sage: t.add_comp(e)[0,1] = x
sage: t.display(e)
t = x e_0⊗e^1

The components with respect to the frame e_xy are kept:

sage: t.display(e_xy)
t = 2 ∂/∂y⊗dx

Adding components in a frame defined on a subdomain:

sage: U = M.open_subset(U , coord_def={X: x>0})
sage: f = U.vector_frame(f)

(continues on next page)

2.8. Tensor Fields 677

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: t.add_comp(f)
2-indices components w.r.t. Vector frame (U, (f_0,f_1))
sage: t.add_comp(f)[0,1] = 1+y
sage: t.display(f)
t = (y + 1) f_0⊗f^1

The components previously defined are kept:

sage: t.display(e_xy)
t = 2 ∂/∂y⊗dx
sage: t.display(e)
t = x e_0⊗e^1

along(mapping)
Return the tensor field deduced from self via a differentiable map, the codomain of which is included in
the domain of self.

More precisely, if self is a tensor field 𝑡 on 𝑀 and if Φ : 𝑈 → 𝑀 is a differentiable map from some
differentiable manifold 𝑈 to𝑀 , the returned object is a tensor field 𝑡 along 𝑈 with values on𝑀 such that

∀𝑝 ∈ 𝑈, 𝑡(𝑝) = 𝑡(Φ(𝑝)).

INPUT:

• mapping – differentiable map Φ : 𝑈 →𝑀

OUTPUT:

• tensor field 𝑡 along 𝑈 defined above.

EXAMPLES:

Let us consider the map Φ between the interval 𝑈 = (0, 2𝜋) and the Euclidean plane𝑀 = R2 defining the
lemniscate of Gerono:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: t = var(t , domain= real)
sage: Phi = M.curve({X: [sin(t), sin(2*t)/2]}, (t, 0, 2*pi),
....: name= Phi)
sage: U = Phi.domain(); U
Real interval (0, 2*pi)

and a vector field on𝑀 :

sage: v = M.vector_field(-y , x, name= v)

We have then:

sage: vU = v.along(Phi); vU
Vector field v along the Real interval (0, 2*pi) with values on
the 2-dimensional differentiable manifold M

sage: vU.display()
v = -cos(t)*sin(t) ∂/∂x + sin(t) ∂/∂y
sage: vU.parent()
Free module X((0, 2*pi),Phi) of vector fields along the Real
interval (0, 2*pi) mapped into the 2-dimensional differentiable
manifold M

(continues on next page)

678 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: vU.parent() is Phi.tangent_vector_field().parent()
True

We check that the defining relation 𝑡(𝑝) = 𝑡(Φ(𝑝)) holds:

sage: p = U(t) # a generic point of U
sage: vU.at(p) == v.at(Phi(p))
True

Case of a tensor field of type (0,2):

sage: a = M.tensor_field(0, 2)
sage: a[0,0], a[0,1], a[1,1] = x+y, x*y, x^2-y^2
sage: aU = a.along(Phi); aU
Tensor field of type (0,2) along the Real interval (0, 2*pi) with
values on the 2-dimensional differentiable manifold M

sage: aU.display()
(cos(t) + 1)*sin(t) dx⊗dx + cos(t)*sin(t)^2 dx⊗dy + sin(t)^4 dy⊗dy
sage: aU.parent()
Free module T^(0,2)((0, 2*pi),Phi) of type-(0,2) tensors fields
along the Real interval (0, 2*pi) mapped into the 2-dimensional
differentiable manifold M

sage: aU.at(p) == a.at(Phi(p))
True

at(point)
Value of self at a point of its domain.

If the current tensor field is

𝑡 : 𝑈 −→ 𝑇 (𝑘,𝑙)𝑀

associated with the differentiable map

Φ : 𝑈 −→𝑀,

where 𝑈 and 𝑀 are two manifolds (possibly 𝑈 = 𝑀 and Φ = Id𝑀), then for any point 𝑝 ∈ 𝑈 , 𝑡(𝑝) is a
tensor on the tangent space to𝑀 at the point Φ(𝑝).

INPUT:

• point – ManifoldPoint point 𝑝 in the domain of the tensor field 𝑈

OUTPUT:

• FreeModuleTensor representing the tensor 𝑡(𝑝) on the tangent vector space 𝑇Φ(𝑝)𝑀

EXAMPLES:

Vector in a tangent space of a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: p = M.point((-2,3), name= p)
sage: v = M.vector_field(y, x^2, name= v)
sage: v.display()
v = y ∂/∂x + x^2 ∂/∂y
sage: vp = v.at(p) ; vp

(continues on next page)

2.8. Tensor Fields 679

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html#sage.tensor.modules.free_module_tensor.FreeModuleTensor

Manifolds, Release 10.4.rc1

(continued from previous page)

Tangent vector v at Point p on the 2-dimensional differentiable
manifold M

sage: vp.parent()
Tangent space at Point p on the 2-dimensional differentiable
manifold M

sage: vp.display()
v = 3 ∂/∂x + 4 ∂/∂y

A 1-form gives birth to a linear form in the tangent space:

sage: w = M.one_form(-x, 1+y, name= w)
sage: w.display()
w = -x dx + (y + 1) dy
sage: wp = w.at(p) ; wp
Linear form w on the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: wp.parent()
Dual of the Tangent space at Point p on the 2-dimensional
differentiable manifold M

sage: wp.display()
w = 2 dx + 4 dy

A tensor field of type (1, 1) yields a tensor of type (1, 1) in the tangent space:

sage: t = M.tensor_field(1, 1, name= t)
sage: t[0,0], t[0,1], t[1,1] = 1+x, x*y, 1-y
sage: t.display()
t = (x + 1) ∂/∂x⊗dx + x*y ∂/∂x⊗dy + (-y + 1) ∂/∂y⊗dy
sage: tp = t.at(p) ; tp
Type-(1,1) tensor t on the Tangent space at Point p on the
2-dimensional differentiable manifold M

sage: tp.parent()
Free module of type-(1,1) tensors on the Tangent space at Point p
on the 2-dimensional differentiable manifold M

sage: tp.display()
t = -∂/∂x⊗dx - 6 ∂/∂x⊗dy - 2 ∂/∂y⊗dy

A 2-form yields an alternating form of degree 2 in the tangent space:

sage: a = M.diff_form(2, name= a)
sage: a[0,1] = x*y
sage: a.display()
a = x*y dx∧dy
sage: ap = a.at(p) ; ap
Alternating form a of degree 2 on the Tangent space at Point p on
the 2-dimensional differentiable manifold M

sage: ap.parent()
2nd exterior power of the dual of the Tangent space at Point p on
the 2-dimensional differentiable manifold M

sage: ap.display()
a = -6 dx∧dy

Example with a non trivial map Φ:

sage: U = Manifold(1, U) # (0,2*pi) as a 1-dimensional manifold
sage: T.<t> = U.chart(r t:(0,2*pi)) # canonical chart on U
sage: Phi = U.diff_map(M, [cos(t), sin(t)], name= Phi ,

(continues on next page)

680 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: latex_name=r \Phi)
sage: v = U.vector_field(1+t, t^2, name= v , dest_map=Phi) ; v
Vector field v along the 1-dimensional differentiable manifold U
with values on the 2-dimensional differentiable manifold M

sage: v.display()
v = (t + 1) ∂/∂x + t^2 ∂/∂y
sage: p = U((pi/6,))
sage: vp = v.at(p) ; vp
Tangent vector v at Point on the 2-dimensional differentiable
manifold M

sage: vp.parent() is M.tangent_space(Phi(p))
True
sage: vp.display()
v = (1/6*pi + 1) ∂/∂x + 1/36*pi^2 ∂/∂y

comp(basis=None, from_basis=None)
Return the components in a given vector frame.

If the components are not known already, they are computed by the tensor change-of-basis formula from
components in another vector frame.

INPUT:

• basis – (default: None) vector frame in which the components are required; if none is provided, the
components are assumed to refer to the tensor field domain’s default frame

• from_basis – (default: None) vector frame from which the required components are computed, via
the tensor change-of-basis formula, if they are not known already in the basis basis

OUTPUT:

• components in the vector frame basis, as an instance of the class Components

EXAMPLES:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: t = M.tensor_field(1,2, name= t)
sage: t[1,2,1] = x*y
sage: t.comp(X.frame())
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: t.comp() # the default frame is X.frame()
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: t.comp()[:]
[[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]]
sage: e = M.vector_frame(e)
sage: t[e, 2,1,1] = x-3
sage: t.comp(e)
3-indices components w.r.t. Vector frame (M, (e_1,e_2))
sage: t.comp(e)[:]
[[[0, 0], [0, 0]], [[x - 3, 0], [0, 0]]]

contract(*args)
Contraction with another tensor field, on one or more indices.

INPUT:

• pos1 – positions of the indices in self involved in the contraction; pos1 must be a sequence of
integers, with 0 standing for the first index position, 1 for the second one, etc. If pos1 is not provided,
a single contraction on the last index position of self is assumed

2.8. Tensor Fields 681

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

• other – the tensor field to contract with

• pos2 – positions of the indices in other involved in the contraction, with the same conventions as for
pos1. If pos2 is not provided, a single contraction on the first index position of other is assumed

OUTPUT:

• tensor field resulting from the contraction at the positions pos1 and pos2 of self with other

EXAMPLES:

Contraction of a tensor field of type (2, 0) with a tensor field of type (1, 1):

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: a = M.tensor_field(2,0, [[1+x, 2], [y, -x^2]], name= a)
sage: b = M.tensor_field(1,1, [[-y, 1], [x, x+y]], name= b)
sage: s = a.contract(0, b, 1); s
Tensor field of type (2,0) on the 2-dimensional differentiable manifold M
sage: s.display()
-x*y ∂/∂x⊗∂/∂x + (x^2 + x*y + y^2 + x) ∂/∂x⊗∂/∂y
+ (-x^2 - 2*y) ∂/∂y⊗∂/∂x + (-x^3 - x^2*y + 2*x) ∂/∂y⊗∂/∂y

Check:

sage: all(s[ind] == sum(a[k, ind[0]]*b[ind[1], k] for k in [0..1])
....: for ind in M.index_generator(2))
True

The same contraction with repeated index notation:

sage: s == a[^ki]*b[^j_k]
True

Contraction on the second index of a:

sage: s = a.contract(1, b, 1); s
Tensor field of type (2,0) on the 2-dimensional differentiable manifold M
sage: s.display()
(-(x + 1)*y + 2) ∂/∂x⊗∂/∂x + (x^2 + 3*x + 2*y) ∂/∂x⊗∂/∂y
+ (-x^2 - y^2) ∂/∂y⊗∂/∂x + (-x^3 - (x^2 - x)*y) ∂/∂y⊗∂/∂y

Check:

sage: all(s[ind] == sum(a[ind[0], k]*b[ind[1], k] for k in [0..1])
....: for ind in M.index_generator(2))
True

The same contraction with repeated index notation:

sage: s == a[^ik]*b[^j_k]
True

See also:

sage.manifolds.differentiable.tensorfield.TensorField.contract() for more
examples.

display_comp(frame=None, chart=None, coordinate_labels=True, only_nonzero=True,
only_nonredundant=False)

682 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Display the tensor components with respect to a given frame, one per line.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) vector frame with respect to which the tensor field components are defined;
if None, then

– if chart is not None, the coordinate frame associated to chart is used

– otherwise, the default basis of the vector field module on which the tensor field is defined is used

• chart – (default: None) chart specifying the coordinate expression of the components; if None, the
default chart of the tensor field domain is used

• coordinate_labels – (default: True) boolean; if True, coordinate symbols are used by default
(instead of integers) as index labels whenever frame is a coordinate frame

• only_nonzero – (default: True) boolean; if True, only nonzero components are displayed

• only_nonredundant – (default: False) boolean; if True, only nonredundant components are
displayed in case of symmetries

EXAMPLES:

Display of the components of a type-(2, 1) tensor field on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: t = M.tensor_field(2, 1, name= t , sym=(0,1))
sage: t[0,0,0], t[0,1,0], t[1,1,1] = x+y, x*y, -3
sage: t.display_comp()
t^xx_x = x + y
t^xy_x = x*y
t^yx_x = x*y
t^yy_y = -3

By default, only the non-vanishing components are displayed; to see all the components, the argument
only_nonzero must be set to False:

sage: t.display_comp(only_nonzero=False)
t^xx_x = x + y
t^xx_y = 0
t^xy_x = x*y
t^xy_y = 0
t^yx_x = x*y
t^yx_y = 0
t^yy_x = 0
t^yy_y = -3

t being symmetric with respect to its first two indices, one may ask to skip the components that can be
deduced by symmetry:

sage: t.display_comp(only_nonredundant=True)
t^xx_x = x + y
t^xy_x = x*y
t^yy_y = -3

Instead of coordinate labels, one may ask for integers:

2.8. Tensor Fields 683

Manifolds, Release 10.4.rc1

sage: t.display_comp(coordinate_labels=False)
t^00_0 = x + y
t^01_0 = x*y
t^10_0 = x*y
t^11_1 = -3

Display in a frame different from the default one (note that since f is not a coordinate frame, integer are used
to label the indices):

sage: a = M.automorphism_field()
sage: a[:] = [[1+y^2, 0], [0, 2+x^2]]
sage: f = X.frame().new_frame(a, f)
sage: t.display_comp(frame=f)
t^00_0 = (x + y)/(y^2 + 1)
t^01_0 = x*y/(x^2 + 2)
t^10_0 = x*y/(x^2 + 2)
t^11_1 = -3/(x^2 + 2)

Display with respect to a chart different from the default one:

sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: Y_to_X = X_to_Y.inverse()
sage: t.display_comp(chart=Y)
t^uu_u = 1/4*u^2 - 1/4*v^2 + 1/2*u - 3/2
t^uu_v = 1/4*u^2 - 1/4*v^2 + 1/2*u + 3/2
t^uv_u = 1/2*u + 3/2
t^uv_v = 1/2*u - 3/2
t^vu_u = 1/2*u + 3/2
t^vu_v = 1/2*u - 3/2
t^vv_u = -1/4*u^2 + 1/4*v^2 + 1/2*u - 3/2
t^vv_v = -1/4*u^2 + 1/4*v^2 + 1/2*u + 3/2

Note that the frame defining the components is the coordinate frame associated with chart Y, i.e. we have:

sage: str(t.display_comp(chart=Y)) == str(t.display_comp(frame=Y.frame(),␣
→˓chart=Y))
True

Display of the components with respect to a specific frame, expressed in terms of a specific chart:

sage: t.display_comp(frame=f, chart=Y)
t^00_0 = 4*u/(u^2 - 2*u*v + v^2 + 4)
t^01_0 = (u^2 - v^2)/(u^2 + 2*u*v + v^2 + 8)
t^10_0 = (u^2 - v^2)/(u^2 + 2*u*v + v^2 + 8)
t^11_1 = -12/(u^2 + 2*u*v + v^2 + 8)

lie_der(vector)

Compute the Lie derivative with respect to a vector field.

INPUT:

• vector – vector field with respect to which the Lie derivative is to be taken

OUTPUT:

• the tensor field that is the Lie derivative of self with respect to vector

EXAMPLES:

684 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Lie derivative of a vector:

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: v = M.vector_field(-y, x, name= v)
sage: w = M.vector_field(2*x+y, x*y)
sage: w.lie_derivative(v)
Vector field on the 2-dimensional differentiable manifold M
sage: w.lie_derivative(v).display()
((x - 2)*y + x) ∂/∂x + (x^2 - y^2 - 2*x - y) ∂/∂y

The result is cached:

sage: w.lie_derivative(v) is w.lie_derivative(v)
True

An alias is lie_der:

sage: w.lie_der(v) is w.lie_derivative(v)
True

The Lie derivative is antisymmetric:

sage: w.lie_der(v) == -v.lie_der(w)
True

For vectors, it coincides with the commutator:

sage: f = M.scalar_field(x^3 + x*y^2)
sage: w.lie_der(v)(f).display()
M → ℝ
(x, y) ↦ -(x + 2)*y^3 + 3*x^3 - x*y^2 + 5*(x^3 - 2*x^2)*y
sage: w.lie_der(v)(f) == v(w(f)) - w(v(f)) # rhs = commutator [v,w] acting␣
→˓on f
True

Lie derivative of a 1-form:

sage: om = M.one_form(y^2*sin(x), x^3*cos(y))
sage: om.lie_der(v)
1-form on the 2-dimensional differentiable manifold M
sage: om.lie_der(v).display()
(-y^3*cos(x) + x^3*cos(y) + 2*x*y*sin(x)) dx
+ (-x^4*sin(y) - 3*x^2*y*cos(y) - y^2*sin(x)) dy

Parallel computation:

sage: Parallelism().set(tensor , nproc=2)
sage: om.lie_der(v)
1-form on the 2-dimensional differentiable manifold M
sage: om.lie_der(v).display()
(-y^3*cos(x) + x^3*cos(y) + 2*x*y*sin(x)) dx
+ (-x^4*sin(y) - 3*x^2*y*cos(y) - y^2*sin(x)) dy

sage: Parallelism().set(tensor , nproc=1) # switch off parallelization

Check of Cartan identity:

2.8. Tensor Fields 685

Manifolds, Release 10.4.rc1

sage: om.lie_der(v) == (v.contract(0, om.exterior_derivative(), 0)
....: + om(v).exterior_derivative())
True

lie_derivative(vector)
Compute the Lie derivative with respect to a vector field.

INPUT:

• vector – vector field with respect to which the Lie derivative is to be taken

OUTPUT:

• the tensor field that is the Lie derivative of self with respect to vector

EXAMPLES:

Lie derivative of a vector:

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: v = M.vector_field(-y, x, name= v)
sage: w = M.vector_field(2*x+y, x*y)
sage: w.lie_derivative(v)
Vector field on the 2-dimensional differentiable manifold M
sage: w.lie_derivative(v).display()
((x - 2)*y + x) ∂/∂x + (x^2 - y^2 - 2*x - y) ∂/∂y

The result is cached:

sage: w.lie_derivative(v) is w.lie_derivative(v)
True

An alias is lie_der:

sage: w.lie_der(v) is w.lie_derivative(v)
True

The Lie derivative is antisymmetric:

sage: w.lie_der(v) == -v.lie_der(w)
True

For vectors, it coincides with the commutator:

sage: f = M.scalar_field(x^3 + x*y^2)
sage: w.lie_der(v)(f).display()
M → ℝ
(x, y) ↦ -(x + 2)*y^3 + 3*x^3 - x*y^2 + 5*(x^3 - 2*x^2)*y
sage: w.lie_der(v)(f) == v(w(f)) - w(v(f)) # rhs = commutator [v,w] acting␣
→˓on f
True

Lie derivative of a 1-form:

sage: om = M.one_form(y^2*sin(x), x^3*cos(y))
sage: om.lie_der(v)
1-form on the 2-dimensional differentiable manifold M
sage: om.lie_der(v).display()

(continues on next page)

686 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

(-y^3*cos(x) + x^3*cos(y) + 2*x*y*sin(x)) dx
+ (-x^4*sin(y) - 3*x^2*y*cos(y) - y^2*sin(x)) dy

Parallel computation:

sage: Parallelism().set(tensor , nproc=2)
sage: om.lie_der(v)
1-form on the 2-dimensional differentiable manifold M
sage: om.lie_der(v).display()
(-y^3*cos(x) + x^3*cos(y) + 2*x*y*sin(x)) dx
+ (-x^4*sin(y) - 3*x^2*y*cos(y) - y^2*sin(x)) dy

sage: Parallelism().set(tensor , nproc=1) # switch off parallelization

Check of Cartan identity:

sage: om.lie_der(v) == (v.contract(0, om.exterior_derivative(), 0)
....: + om(v).exterior_derivative())
True

restrict(subdomain, dest_map=None)
Return the restriction of self to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – DifferentiableManifold; open subset 𝑈 of the tensor field domain 𝑆

• dest_map – DiffMap (default: None); destination map Ψ : 𝑈 → 𝑉 , where 𝑉 is an open subset
of the manifold𝑀 where the tensor field takes it values; if None, the restriction of Φ to 𝑈 is used, Φ
being the differentiable map 𝑆 →𝑀 associated with the tensor field

OUTPUT:

• instance of TensorFieldParal representing the restriction

EXAMPLES:

Restriction of a vector field defined on R2 to a disk:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: v = M.vector_field(x+y, -1+x^2, name= v)
sage: D = M.open_subset(D) # the unit open disc
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: v_D = v.restrict(D) ; v_D
Vector field v on the Open subset D of the 2-dimensional
differentiable manifold R^2

sage: v_D.display()
v = (x + y) ∂/∂x + (x^2 - 1) ∂/∂y

The symbolic expressions of the components with respect to Cartesian coordinates are equal:

sage: bool(v_D[1].expr() == v[1].expr())
True

but neither the chart functions representing the components (they are defined on different charts):

2.8. Tensor Fields 687

Manifolds, Release 10.4.rc1

sage: v_D[1] == v[1]
False

nor the scalar fields representing the components (they are defined on different open subsets):

sage: v_D[[1]] == v[[1]]
False

The restriction of the vector field to its own domain is of course itself:

sage: v.restrict(M) is v
True

series_expansion(symbol, order)
Expand the tensor field in power series with respect to a small parameter.

If the small parameter is 𝜖 and 𝑇 is self, the power series expansion to order 𝑛 is

𝑇 = 𝑇0 + 𝜖𝑇1 + 𝜖2𝑇2 + · · ·+ 𝜖𝑛𝑇𝑛 +𝑂(𝜖𝑛+1),

where 𝑇0, 𝑇1, . . . , 𝑇𝑛 are 𝑛+ 1 tensor fields of the same tensor type as self and do not depend upon 𝜖.

INPUT:

• symbol – symbolic variable (the “small parameter” 𝜖) with respect to which the components of self
are expanded in power series

• order – integer; the order 𝑛 of the expansion, defined as the degree of the polynomial representing the
truncated power series in symbol

OUTPUT:

• list of the tensor fields 𝑇𝑖 (size order+1)

EXAMPLES:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: C.<t,x,y,z> = M.chart()
sage: e = var(e)
sage: g = M.metric()
sage: h1 = M.tensor_field(0,2,sym=(0,1))
sage: h2 = M.tensor_field(0,2,sym=(0,1))
sage: g[0, 0], g[1, 1], g[2, 2], g[3, 3] = -1, 1, 1, 1
sage: h1[0, 1], h1[1, 2], h1[2, 3] = 1, 1, 1
sage: h2[0, 2], h2[1, 3] = 1, 1
sage: g.set(g + e*h1 + e^2*h2)
sage: g_ser = g.series_expansion(e, 2); g_ser
[Field of symmetric bilinear forms on the 4-dimensional Lorentzian manifold M,
Field of symmetric bilinear forms on the 4-dimensional Lorentzian manifold M,
Field of symmetric bilinear forms on the 4-dimensional Lorentzian manifold M]

sage: g_ser[0][:]
[-1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: g_ser[1][:]
[0 1 0 0]
[1 0 1 0]
[0 1 0 1]

(continues on next page)

688 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

[0 0 1 0]
sage: g_ser[2][:]
[0 0 1 0]
[0 0 0 1]
[1 0 0 0]
[0 1 0 0]
sage: all([g_ser[1] == h1, g_ser[2] == h2])
True

set_calc_order(symbol, order, truncate=False)
Trigger a power series expansion with respect to a small parameter in computations involving the tensor field.

This property is propagated by usual operations. The internal representation must be SR for this to take effect.

If the small parameter is 𝜖 and 𝑇 is self, the power series expansion to order 𝑛 is

𝑇 = 𝑇0 + 𝜖𝑇1 + 𝜖2𝑇2 + · · ·+ 𝜖𝑛𝑇𝑛 +𝑂(𝜖𝑛+1),

where 𝑇0, 𝑇1, . . . , 𝑇𝑛 are 𝑛+ 1 tensor fields of the same tensor type as self and do not depend upon 𝜖.

INPUT:

• symbol – symbolic variable (the “small parameter” 𝜖) with respect to which the components of self
are expanded in power series

• order – integer; the order 𝑛 of the expansion, defined as the degree of the polynomial representing the
truncated power series in symbol

• truncate – (default: False) determines whether the components of self are replaced by their
expansions to the given order

EXAMPLES:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: C.<t,x,y,z> = M.chart()
sage: e = var(e)
sage: g = M.metric()
sage: h1 = M.tensor_field(0, 2, sym=(0,1))
sage: h2 = M.tensor_field(0, 2, sym=(0,1))
sage: g[0, 0], g[1, 1], g[2, 2], g[3, 3] = -1, 1, 1, 1
sage: h1[0, 1], h1[1, 2], h1[2, 3] = 1, 1, 1
sage: h2[0, 2], h2[1, 3] = 1, 1
sage: g.set(g + e*h1 + e^2*h2)
sage: g.set_calc_order(e, 1)
sage: g[:]
[-1 e e^2 0]
[e 1 e e^2]
[e^2 e 1 e]
[0 e^2 e 1]
sage: g.set_calc_order(e, 1, truncate=True)
sage: g[:]
[-1 e 0 0]
[e 1 e 0]
[0 e 1 e]
[0 0 e 1]

set_comp(basis=None)
Return the components of the tensor field in a given vector frame for assignment.

2.8. Tensor Fields 689

Manifolds, Release 10.4.rc1

The components with respect to other frames on the same domain are deleted, in order to avoid any in-
consistency. To keep them, use the method add_comp() instead.

INPUT:

• basis – (default: None) vector frame in which the components are defined; if none is provided, the
components are assumed to refer to the tensor field domain’s default frame

OUTPUT:

• components in the given frame, as an instance of the class Components; if such components did not
exist previously, they are created

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: e_xy = X.frame()
sage: t = M.tensor_field(1,1, name= t)
sage: t.set_comp(e_xy)
2-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: t.set_comp(e_xy)[1,0] = 2
sage: t.display(e_xy)
t = 2 ∂/∂y⊗dx

Setting components in a new frame (e):

sage: e = M.vector_frame(e)
sage: t.set_comp(e)
2-indices components w.r.t. Vector frame (M, (e_0,e_1))
sage: t.set_comp(e)[0,1] = x
sage: t.display(e)
t = x e_0⊗e^1

The components with respect to the frame e_xy have be erased:

sage: t.display(e_xy)
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components
in the Coordinate frame (M, (∂/∂x,∂/∂y))

Setting components in a frame defined on a subdomain deletes previously defined components as well:

sage: U = M.open_subset(U , coord_def={X: x>0})
sage: f = U.vector_frame(f)
sage: t.set_comp(f)
2-indices components w.r.t. Vector frame (U, (f_0,f_1))
sage: t.set_comp(f)[0,1] = 1+y
sage: t.display(f)
t = (y + 1) f_0⊗f^1
sage: t.display(e)
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components
in the Vector frame (M, (e_0,e_1))

truncate(symbol, order)
Return the tensor field truncated at a given order in the power series expansion with respect to some small
parameter.

690 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

If the small parameter is 𝜖 and 𝑇 is self, the power series expansion to order 𝑛 is

𝑇 = 𝑇0 + 𝜖𝑇1 + 𝜖2𝑇2 + · · ·+ 𝜖𝑛𝑇𝑛 +𝑂(𝜖𝑛+1),

where 𝑇0, 𝑇1, . . . , 𝑇𝑛 are 𝑛+ 1 tensor fields of the same tensor type as self and do not depend upon 𝜖.

INPUT:

• symbol – symbolic variable (the “small parameter” 𝜖) with respect to which the components of self
are expanded in power series

• order – integer; the order 𝑛 of the expansion, defined as the degree of the polynomial representing the
truncated power series in symbol

OUTPUT:

• the tensor field 𝑇0 + 𝜖𝑇1 + 𝜖2𝑇2 + · · ·+ 𝜖𝑛𝑇𝑛

EXAMPLES:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: C.<t,x,y,z> = M.chart()
sage: e = var(e)
sage: g = M.metric()
sage: h1 = M.tensor_field(0,2,sym=(0,1))
sage: h2 = M.tensor_field(0,2,sym=(0,1))
sage: g[0, 0], g[1, 1], g[2, 2], g[3, 3] = -1, 1, 1, 1
sage: h1[0, 1], h1[1, 2], h1[2, 3] = 1, 1, 1
sage: h2[0, 2], h2[1, 3] = 1, 1
sage: g.set(g + e*h1 + e^2*h2)
sage: g[:]
[-1 e e^2 0]
[e 1 e e^2]
[e^2 e 1 e]
[0 e^2 e 1]
sage: g.truncate(e, 1)[:]
[-1 e 0 0]
[e 1 e 0]
[0 e 1 e]
[0 0 e 1]

2.9 Differential Forms

2.9.1 Differential Form Modules

The set Ω𝑝(𝑈,Φ) of 𝑝-forms along a differentiable manifold 𝑈 with values on a differentiable manifold 𝑀 via a dif-
ferentiable map Φ : 𝑈 → 𝑀 (possibly 𝑈 = 𝑀 and Φ = Id𝑀) is a module over the algebra 𝐶𝑘(𝑈) of differentiable
scalar fields on 𝑈 . It is a free module if and only if𝑀 is parallelizable. Accordingly, two classes implement Ω𝑝(𝑈,Φ):

• DiffFormModule for differential forms with values on a generic (in practice, not parallelizable) differentiable
manifold𝑀

• DiffFormFreeModule for differential forms with values on a parallelizable manifold𝑀 (the subclass Vec-
torFieldDualFreeModule implements the special case of differential 1-forms on a parallelizable manifold
𝑀)

AUTHORS:

• Eric Gourgoulhon (2015): initial version

2.9. Differential Forms 691

Manifolds, Release 10.4.rc1

• Travis Scrimshaw (2016): review tweaks

• Matthias Koeppe (2022): VectorFieldDualFreeModule

REFERENCES:

• [KN1963]

• [Lee2013]

class sage.manifolds.differentiable.diff_form_module.DiffFormFreeModule(vec-
tor_field_mod-
ule,
degree)

Bases: ExtPowerDualFreeModule

Free module of differential forms of a given degree 𝑝 (𝑝-forms) along a differentiable manifold 𝑈 with values on a
parallelizable manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a parallelizable manifold 𝑀 of
dimension 𝑛, the set Ω𝑝(𝑈,Φ) of 𝑝-forms along 𝑈 with values on𝑀 is a free module of rank

(︀
𝑛
𝑝

)︀
over 𝐶𝑘(𝑈),

the commutative algebra of differentiable scalar fields on 𝑈 (see DiffScalarFieldAlgebra). The standard
case of 𝑝-forms on a differentiable manifold𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are
Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: This class implements Ω𝑝(𝑈,Φ) in the case where𝑀 is parallelizable; Ω𝑝(𝑈,Φ) is then a free module. If
𝑀 is not parallelizable, the class DiffFormModule must be used instead.

For the special case of 1-forms, use the class VectorFieldDualFreeModule.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 associated with the map Φ :
𝑈 → 𝑉

• degree – positive integer; the degree 𝑝 of the differential forms

EXAMPLES:

Free module of 2-forms on a parallelizable 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: XM = M.vector_field_module() ; XM
Free module X(M) of vector fields on the 3-dimensional differentiable
manifold M
sage: A = M.diff_form_module(2) ; A
Free module Omega^2(M) of 2-forms on the 3-dimensional differentiable
manifold M
sage: latex(A)
\Omega^{2}\left(M\right)

A is nothing but the second exterior power of the dual of XM, i.e. we have Ω2(𝑀) = Λ2(X(𝑀)*) (see ExtPow-
erDualFreeModule):

sage: A is XM.dual_exterior_power(2)
True

Ω2(𝑀) is a module over the algebra 𝐶𝑘(𝑀) of (differentiable) scalar fields on𝑀 :

692 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerDualFreeModule
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerDualFreeModule
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerDualFreeModule

Manifolds, Release 10.4.rc1

sage: A.category()
Category of finite dimensional modules over Algebra of differentiable
scalar fields on the 3-dimensional differentiable manifold M
sage: CM = M.scalar_field_algebra() ; CM
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: A in Modules(CM)
True
sage: A.base_ring()
Algebra of differentiable scalar fields on
the 3-dimensional differentiable manifold M
sage: A.base_module()
Free module X(M) of vector fields on
the 3-dimensional differentiable manifold M
sage: A.base_module() is XM
True
sage: A.rank()
3

Elements can be constructed from 𝐴. In particular, 0 yields the zero element of 𝐴:

sage: A(0)
2-form zero on the 3-dimensional differentiable manifold M
sage: A(0) is A.zero()
True

while non-zero elements are constructed by providing their components in a given vector frame:

sage: comp = [[0,3*x,-z],[-3*x,0,4],[z,-4,0]]
sage: a = A(comp, frame=X.frame(), name= a) ; a
2-form a on the 3-dimensional differentiable manifold M
sage: a.display()
a = 3*x dx∧dy - z dx∧dz + 4 dy∧dz

An alternative is to construct the 2-form from an empty list of components and to set the nonzero nonredundant
components afterwards:

sage: a = A([], name= a)
sage: a[0,1] = 3*x # component in the manifold s default frame
sage: a[0,2] = -z
sage: a[1,2] = 4
sage: a.display()
a = 3*x dx∧dy - z dx∧dz + 4 dy∧dz

The module Ω1(𝑀) is nothing but the dual of X(𝑀) (the free module of vector fields on𝑀):

sage: L1 = M.diff_form_module(1) ; L1
Free module Omega^1(M) of 1-forms on the 3-dimensional differentiable
manifold M
sage: L1 is XM.dual()
True

Since any tensor field of type (0, 1) is a 1-form, it is also equal to the set 𝑇 (0,1)(𝑀) of such tensors to Ω1(𝑀):

sage: T01 = M.tensor_field_module((0,1)) ; T01
Free module Omega^1(M) of 1-forms on the 3-dimensional differentiable manifold M
sage: L1 is T01
True

2.9. Differential Forms 693

Manifolds, Release 10.4.rc1

For a degree 𝑝 ≥ 2, the coercion holds only in the direction Ω𝑝(𝑀) → 𝑇 (0,𝑝)(𝑀):

sage: T02 = M.tensor_field_module((0,2)); T02
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
3-dimensional differentiable manifold M
sage: T02.has_coerce_map_from(A)
True
sage: A.has_coerce_map_from(T02)
False

The coercion map Ω2(𝑀) → 𝑇 (0,2)(𝑀) in action:

sage: T02 = M.tensor_field_module((0,2)) ; T02
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
3-dimensional differentiable manifold M
sage: ta = T02(a) ; ta
Tensor field a of type (0,2) on the 3-dimensional differentiable
manifold M
sage: ta.display()
a = 3*x dx⊗dy - z dx⊗dz - 3*x dy⊗dx + 4 dy⊗dz + z dz⊗dx - 4 dz⊗dy
sage: a.display()
a = 3*x dx∧dy - z dx∧dz + 4 dy∧dz
sage: ta.symmetries() # the antisymmetry is preserved
no symmetry; antisymmetry: (0, 1)

There is also coercion to subdomains, which is nothing but the restriction of the differential form to some subset
of its domain:

sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1})
sage: B = U.diff_form_module(2) ; B
Free module Omega^2(U) of 2-forms on the Open subset U of the
3-dimensional differentiable manifold M
sage: B.has_coerce_map_from(A)
True
sage: a_U = B(a) ; a_U
2-form a on the Open subset U of the 3-dimensional differentiable
manifold M
sage: a_U.display()
a = 3*x dx∧dy - z dx∧dz + 4 dy∧dz

Element

alias of DiffFormParal

class sage.manifolds.differentiable.diff_form_module.DiffFormModule(vec-
tor_field_mod-
ule, degree)

Bases: UniqueRepresentation, Parent

Module of differential forms of a given degree 𝑝 (𝑝-forms) along a differentiable manifold 𝑈 with values on a
differentiable manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a differentiable manifold𝑀 , the set
Ω𝑝(𝑈,Φ) of 𝑝-forms along𝑈 with values on𝑀 is a module over𝐶𝑘(𝑈), the commutative algebra of differentiable
scalar fields on 𝑈 (see DiffScalarFieldAlgebra). The standard case of 𝑝-forms on a differentiable man-
ifold 𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ being an immersion and Φ being a
curve in𝑀 (𝑈 is then an open interval of R).

Note: This class implements Ω𝑝(𝑈,Φ) in the case where 𝑀 is not assumed to be parallelizable; the module

694 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Manifolds, Release 10.4.rc1

Ω𝑝(𝑈,Φ) is then not necessarily free. If 𝑀 is parallelizable, the class DiffFormFreeModule must be used
instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on 𝑀 via the map
Φ : 𝑈 →𝑀

• degree – positive integer; the degree 𝑝 of the differential forms

EXAMPLES:

Module of 2-forms on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: XM = M.vector_field_module() ; XM
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: A = M.diff_form_module(2) ; A
Module Omega^2(M) of 2-forms on the 2-dimensional differentiable
manifold M
sage: latex(A)
\Omega^{2}\left(M\right)

A is nothing but the second exterior power of the dual of XM, i.e. we have Ω2(𝑀) = Λ2(X(𝑀)*):

sage: A is XM.dual_exterior_power(2)
True

Modules of differential forms are unique:

sage: A is M.diff_form_module(2)
True

Ω2(𝑀) is a module over the algebra 𝐶𝑘(𝑀) of (differentiable) scalar fields on𝑀 :

sage: A.category()
Category of modules over Algebra of differentiable scalar fields on
the 2-dimensional differentiable manifold M
sage: CM = M.scalar_field_algebra() ; CM
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M
sage: A in Modules(CM)
True
sage: A.base_ring() is CM
True
sage: A.base_module()
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: A.base_module() is XM
True

2.9. Differential Forms 695

Manifolds, Release 10.4.rc1

Elements can be constructed from A(). In particular, 0 yields the zero element of A:

sage: z = A(0) ; z
2-form zero on the 2-dimensional differentiable manifold M
sage: z.display(eU)
zero = 0
sage: z.display(eV)
zero = 0
sage: z is A.zero()
True

while non-zero elements are constructed by providing their components in a given vector frame:

sage: a = A([[0,3*x],[-3*x,0]], frame=eU, name= a) ; a
2-form a on the 2-dimensional differentiable manifold M
sage: a.add_comp_by_continuation(eV, W, c_uv) # finishes initializ. of a
sage: a.display(eU)
a = 3*x dx∧dy
sage: a.display(eV)
a = (-3/4*u - 3/4*v) du∧dv

An alternative is to construct the 2-form from an empty list of components and to set the nonzero nonredundant
components afterwards:

sage: a = A([], name= a)
sage: a[eU,0,1] = 3*x
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = 3*x dx∧dy
sage: a.display(eV)
a = (-3/4*u - 3/4*v) du∧dv

The module Ω1(𝑀) is nothing but the dual of X(𝑀) (the module of vector fields on𝑀):

sage: L1 = M.diff_form_module(1) ; L1
Module Omega^1(M) of 1-forms on the 2-dimensional differentiable
manifold M
sage: L1 is XM.dual()
True

Since any tensor field of type (0, 1) is a 1-form, there is a coercion map from the set 𝑇 (0,1)(𝑀) of such tensors to
Ω1(𝑀):

sage: T01 = M.tensor_field_module((0,1)) ; T01
Module T^(0,1)(M) of type-(0,1) tensors fields on the 2-dimensional
differentiable manifold M
sage: L1.has_coerce_map_from(T01)
True

There is also a coercion map in the reverse direction:

sage: T01.has_coerce_map_from(L1)
True

For a degree 𝑝 ≥ 2, the coercion holds only in the direction Ω𝑝(𝑀) → 𝑇 (0,𝑝)(𝑀):

sage: T02 = M.tensor_field_module((0,2)) ; T02
Module T^(0,2)(M) of type-(0,2) tensors fields on the 2-dimensional

(continues on next page)

696 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

differentiable manifold M
sage: T02.has_coerce_map_from(A)
True
sage: A.has_coerce_map_from(T02)
False

The coercion map 𝑇 (0,1)(𝑀) → Ω1(𝑀) in action:

sage: b = T01([y,x], frame=eU, name= b) ; b
Tensor field b of type (0,1) on the 2-dimensional differentiable
manifold M
sage: b.add_comp_by_continuation(eV, W, c_uv)
sage: b.display(eU)
b = y dx + x dy
sage: b.display(eV)
b = 1/2*u du - 1/2*v dv
sage: lb = L1(b) ; lb
1-form b on the 2-dimensional differentiable manifold M
sage: lb.display(eU)
b = y dx + x dy
sage: lb.display(eV)
b = 1/2*u du - 1/2*v dv

The coercion map Ω1(𝑀) → 𝑇 (0,1)(𝑀) in action:

sage: tlb = T01(lb) ; tlb
Tensor field b of type (0,1) on the 2-dimensional differentiable
manifold M
sage: tlb.display(eU)
b = y dx + x dy
sage: tlb.display(eV)
b = 1/2*u du - 1/2*v dv
sage: tlb == b
True

The coercion map Ω2(𝑀) → 𝑇 (0,2)(𝑀) in action:

sage: ta = T02(a) ; ta
Tensor field a of type (0,2) on the 2-dimensional differentiable
manifold M
sage: ta.display(eU)
a = 3*x dx⊗dy - 3*x dy⊗dx
sage: a.display(eU)
a = 3*x dx∧dy
sage: ta.display(eV)
a = (-3/4*u - 3/4*v) du⊗dv + (3/4*u + 3/4*v) dv⊗du
sage: a.display(eV)
a = (-3/4*u - 3/4*v) du∧dv

There is also coercion to subdomains, which is nothing but the restriction of the differential form to some subset
of its domain:

sage: L2U = U.diff_form_module(2) ; L2U
Free module Omega^2(U) of 2-forms on the Open subset U of the
2-dimensional differentiable manifold M
sage: L2U.has_coerce_map_from(A)

(continues on next page)

2.9. Differential Forms 697

Manifolds, Release 10.4.rc1

(continued from previous page)

True
sage: a_U = L2U(a) ; a_U
2-form a on the Open subset U of the 2-dimensional differentiable
manifold M
sage: a_U.display(eU)
a = 3*x dx∧dy

Element

alias of DiffForm

base_module()

Return the vector field module on which the differential form module self is constructed.

OUTPUT:

• a VectorFieldModule representing the module on which self is defined

EXAMPLES:

sage: M = Manifold(3, M)
sage: A2 = M.diff_form_module(2) ; A2
Module Omega^2(M) of 2-forms on the 3-dimensional differentiable
manifold M

sage: A2.base_module()
Module X(M) of vector fields on the 3-dimensional differentiable
manifold M

sage: A2.base_module() is M.vector_field_module()
True
sage: U = M.open_subset(U)
sage: A2U = U.diff_form_module(2) ; A2U
Module Omega^2(U) of 2-forms on the Open subset U of the
3-dimensional differentiable manifold M

sage: A2U.base_module()
Module X(U) of vector fields on the Open subset U of the
3-dimensional differentiable manifold M

degree()

Return the degree of the differential forms in self.

OUTPUT:

• integer 𝑝 such that self is a set of 𝑝-forms

EXAMPLES:

sage: M = Manifold(3, M)
sage: M.diff_form_module(1).degree()
1
sage: M.diff_form_module(2).degree()
2
sage: M.diff_form_module(3).degree()
3

tensor(*others)
Return the tensor product of self and others.

EXAMPLES:

698 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = FiniteRankFreeModule(QQ, 2)
sage: M.tensor_product(M)
Free module of type-(2,0) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_product(M.dual())
Free module of type-(1,1) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.dual().tensor_product(M, M.dual())
Free module of type-(1,2) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_product(M.tensor_module(1,2))
Free module of type-(2,2) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_module(1,2).tensor_product(M)
Free module of type-(2,2) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_module(1,1).tensor_product(M.tensor_module(1,2))
Free module of type-(2,3) tensors on the 2-dimensional vector space over the␣
→˓Rational Field

sage: Sym2M = M.tensor_module(2, 0, sym=range(2)); Sym2M
Free module of fully symmetric type-(2,0) tensors on the 2-dimensional vector␣
→˓space over the Rational Field
sage: Sym01x23M = Sym2M.tensor_product(Sym2M); Sym01x23M
Free module of type-(4,0) tensors on the 2-dimensional vector space over the␣
→˓Rational Field,
with symmetry on the index positions (0, 1), with symmetry on the index␣
→˓positions (2, 3)
sage: Sym01x23M._index_maps
((0, 1), (2, 3))

sage: N = M.tensor_module(3, 3, sym=[1, 2], antisym=[3, 4]); N
Free module of type-(3,3) tensors on the 2-dimensional vector space over the␣
→˓Rational Field,
with symmetry on the index positions (1, 2),
with antisymmetry on the index positions (3, 4)

sage: NxN = N.tensor_product(N); NxN
Free module of type-(6,6) tensors on the 2-dimensional vector space over the␣
→˓Rational Field,
with symmetry on the index positions (1, 2), with symmetry on the index␣
→˓positions (4, 5),
with antisymmetry on the index positions (6, 7), with antisymmetry on the␣
→˓index positions (9, 10)
sage: NxN._index_maps
((0, 1, 2, 6, 7, 8), (3, 4, 5, 9, 10, 11))

tensor_product(*others)
Return the tensor product of self and others.

EXAMPLES:

sage: M = FiniteRankFreeModule(QQ, 2)
sage: M.tensor_product(M)
Free module of type-(2,0) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_product(M.dual())
Free module of type-(1,1) tensors on the 2-dimensional vector space over the␣

(continues on next page)

2.9. Differential Forms 699

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓Rational Field
sage: M.dual().tensor_product(M, M.dual())
Free module of type-(1,2) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_product(M.tensor_module(1,2))
Free module of type-(2,2) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_module(1,2).tensor_product(M)
Free module of type-(2,2) tensors on the 2-dimensional vector space over the␣
→˓Rational Field
sage: M.tensor_module(1,1).tensor_product(M.tensor_module(1,2))
Free module of type-(2,3) tensors on the 2-dimensional vector space over the␣
→˓Rational Field

sage: Sym2M = M.tensor_module(2, 0, sym=range(2)); Sym2M
Free module of fully symmetric type-(2,0) tensors on the 2-dimensional vector␣
→˓space over the Rational Field
sage: Sym01x23M = Sym2M.tensor_product(Sym2M); Sym01x23M
Free module of type-(4,0) tensors on the 2-dimensional vector space over the␣
→˓Rational Field,
with symmetry on the index positions (0, 1), with symmetry on the index␣
→˓positions (2, 3)
sage: Sym01x23M._index_maps
((0, 1), (2, 3))

sage: N = M.tensor_module(3, 3, sym=[1, 2], antisym=[3, 4]); N
Free module of type-(3,3) tensors on the 2-dimensional vector space over the␣
→˓Rational Field,
with symmetry on the index positions (1, 2),
with antisymmetry on the index positions (3, 4)

sage: NxN = N.tensor_product(N); NxN
Free module of type-(6,6) tensors on the 2-dimensional vector space over the␣
→˓Rational Field,
with symmetry on the index positions (1, 2), with symmetry on the index␣
→˓positions (4, 5),
with antisymmetry on the index positions (6, 7), with antisymmetry on the␣
→˓index positions (9, 10)
sage: NxN._index_maps
((0, 1, 2, 6, 7, 8), (3, 4, 5, 9, 10, 11))

tensor_type()

Return the tensor type of self if self is a module of 1-forms.

In this case, the pair (0, 1) is returned, indicating that the module is identified with the dual of the base
module.

For differential forms of other degrees, an exception is raised.

EXAMPLES:

sage: M = Manifold(3, M)
sage: M.diff_form_module(1).tensor_type()
(0, 1)
sage: M.diff_form_module(2).tensor_type()
Traceback (most recent call last):
...
NotImplementedError

700 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

zero()

Return the zero of self.

EXAMPLES:

sage: M = Manifold(3, M)
sage: A2 = M.diff_form_module(2)
sage: A2.zero()
2-form zero on the 3-dimensional differentiable manifold M

class sage.manifolds.differentiable.diff_form_module.VectorFieldDualFreeModule(vec-
tor_field_mod-
ule)

Bases: DiffFormFreeModule

Free module of differential 1-forms along a differentiable manifold 𝑈 with values on a parallelizable manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a parallelizable manifold 𝑀 of
dimension 𝑛, the set Ω1(𝑈,Φ) of 1-forms along 𝑈 with values on𝑀 is a free module of rank 𝑛 over 𝐶𝑘(𝑈), the
commutative algebra of differentiable scalar fields on𝑈 (see DiffScalarFieldAlgebra). The standard case
of 1-forms on a differentiable manifold 𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ
being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: This class implements Ω1(𝑈,Φ) in the case where𝑀 is parallelizable; Ω1(𝑈,Φ) is then a free module. If
𝑀 is not parallelizable, the class DiffFormModule must be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 associated with the map Φ :
𝑈 → 𝑉

EXAMPLES:

Free module of 1-forms on a parallelizable 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: XM = M.vector_field_module() ; XM
Free module X(M) of vector fields on the 3-dimensional differentiable
manifold M
sage: A = M.diff_form_module(1) ; A
Free module Omega^1(M) of 1-forms on the 3-dimensional differentiable manifold M
sage: latex(A)
\Omega^{1}\left(M\right)

A is nothing but the dual of XM (the free module of vector fields on𝑀) and thus also equal to the 1st exterior power
of the dual, i.e. we have Ω1(𝑀) = Λ1(X(𝑀)*) = X(𝑀)* (See ExtPowerDualFreeModule):

sage: A is XM.dual_exterior_power(1)
True

Ω1(𝑀) is a module over the algebra 𝐶𝑘(𝑀) of (differentiable) scalar fields on𝑀 :

sage: A.category()
Category of finite dimensional modules over Algebra of differentiable
scalar fields on the 3-dimensional differentiable manifold M
sage: CM = M.scalar_field_algebra() ; CM

(continues on next page)

2.9. Differential Forms 701

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerDualFreeModule

Manifolds, Release 10.4.rc1

(continued from previous page)

Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: A in Modules(CM)
True
sage: A.base_ring()
Algebra of differentiable scalar fields on
the 3-dimensional differentiable manifold M
sage: A.base_module()
Free module X(M) of vector fields on
the 3-dimensional differentiable manifold M
sage: A.base_module() is XM
True
sage: A.rank()
3

Elements can be constructed from 𝐴. In particular, 0 yields the zero element of 𝐴:

sage: A(0)
1-form zero on the 3-dimensional differentiable manifold M
sage: A(0) is A.zero()
True

while non-zero elements are constructed by providing their components in a given vector frame:

sage: comp = [3*x,-z,4]
sage: a = A(comp, frame=X.frame(), name= a) ; a
1-form a on the 3-dimensional differentiable manifold M
sage: a.display()
a = 3*x dx - z dy + 4 dz

An alternative is to construct the 1-form from an empty list of components and to set the nonzero nonredundant
components afterwards:

sage: a = A([], name= a)
sage: a[0] = 3*x # component in the manifold s default frame
sage: a[1] = -z
sage: a[2] = 4
sage: a.display()
a = 3*x dx - z dy + 4 dz

Since any tensor field of type (0, 1) is a 1-form, there is a coercion map from the set 𝑇 (0,1)(𝑀) of such tensors to
Ω1(𝑀):

sage: T01 = M.tensor_field_module((0,1)) ; T01
Free module Omega^1(M) of 1-forms on the 3-dimensional differentiable manifold M
sage: A.has_coerce_map_from(T01)
True

There is also a coercion map in the reverse direction:

sage: T01.has_coerce_map_from(A)
True

The coercion map 𝑇 (0,1)(𝑀) → Ω1(𝑀) in action:

702 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: b = T01([-x,2,3*y], name= b); b
1-form b on the 3-dimensional differentiable manifold M
sage: b.display()
b = -x dx + 2 dy + 3*y dz
sage: lb = A(b) ; lb
1-form b on the 3-dimensional differentiable manifold M
sage: lb.display()
b = -x dx + 2 dy + 3*y dz

The coercion map Ω1(𝑀) → 𝑇 (0,1)(𝑀) in action:

sage: tlb = T01(lb); tlb
1-form b on the 3-dimensional differentiable manifold M
sage: tlb == b
True

tensor_type()

Return the tensor type of self.

EXAMPLES:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: A = M.vector_field_module().dual(); A
Free module Omega^1(M) of 1-forms on the 3-dimensional differentiable␣
→˓manifold M
sage: A.tensor_type()
(0, 1)

2.9.2 Differential Forms

Let 𝑈 and 𝑀 be two differentiable manifolds. Given a positive integer 𝑝 and a differentiable map Φ : 𝑈 → 𝑀 , a
differential form of degree 𝑝, or 𝑝-form, along 𝑈 with values on𝑀 is a field along 𝑈 of alternating multilinear forms of
degree 𝑝 in the tangent spaces to𝑀 . The standard case of a differential form on a differentiable manifold corresponds to
𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open
interval of R).

Two classes implement differential forms, depending whether the manifold𝑀 is parallelizable:

• DiffFormParal when𝑀 is parallelizable

• DiffForm when𝑀 is not assumed parallelizable.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013, 2014): initial version

• Joris Vankerschaver (2010): developed a previous class, DifferentialForm (cf. Issue #24444), which in-
spired the storage of the non-zero components as a dictionary whose keys are the indices.

• Travis Scrimshaw (2016): review tweaks

REFERENCES:

• [KN1963]

• [Lee2013]

2.9. Differential Forms 703

https://github.com/sagemath/sage/issues/24444

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.diff_form.DiffForm(vector_field_module, degree,
name=None, latex_name=None)

Bases: TensorField

Differential form with values on a generic (i.e. a priori not parallelizable) differentiable manifold.

Given a differentiable manifold 𝑈 , a differentiable map Φ : 𝑈 →𝑀 to a differentiable manifold𝑀 and a positive
integer 𝑝, a differential form of degree 𝑝 (or 𝑝-form) along 𝑈 with values on𝑀 ⊃ Φ(𝑈) is a differentiable map

𝑎 : 𝑈 −→ 𝑇 (0,𝑝)𝑀

(𝑇 (0,𝑝)𝑀 being the tensor bundle of type (0, 𝑝) over𝑀) such that

∀𝑥 ∈ 𝑈, 𝑎(𝑥) ∈ Λ𝑝(𝑇 *
Φ(𝑥)𝑀),

where 𝑇 *
Φ(𝑥)𝑀 is the dual of the tangent space to 𝑀 at Φ(𝑥) and Λ𝑝 stands for the exterior power of degree 𝑝

(cf. ExtPowerDualFreeModule). In other words, 𝑎(𝑥) is an alternating multilinear form of degree 𝑝 of the
tangent vector space 𝑇Φ(𝑥)𝑀 .

The standard case of a differential form on a manifold𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is parallelizable, the class DiffFormParal must be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 via the map Φ

• degree – the degree of the differential form (i.e. its tensor rank)

• name – (default: None) name given to the differential form

• latex_name – (default: None) LaTeX symbol to denote the differential form; if none is provided, the
LaTeX symbol is set to name

EXAMPLES:

Differential form of degree 2 on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.diff_form(2, name= a) ; a
2-form a on the 2-dimensional differentiable manifold M
sage: a.parent()
Module Omega^2(M) of 2-forms on the 2-dimensional differentiable
manifold M
sage: a.degree()
2

Setting the components of a:

704 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerDualFreeModule

Manifolds, Release 10.4.rc1

sage: a[eU,0,1] = x*y^2 + 2*x
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = (x*y^2 + 2*x) dx∧dy
sage: a.display(eV)
a = (-1/16*u^3 + 1/16*u*v^2 - 1/16*v^3
+ 1/16*(u^2 - 8)*v - 1/2*u) du∧dv

A 1-form on M:

sage: a = M.one_form(name= a) ; a
1-form a on the 2-dimensional differentiable manifold M
sage: a.parent()
Module Omega^1(M) of 1-forms on the 2-dimensional differentiable
manifold M
sage: a.degree()
1

Setting the components of the 1-form in a consistent way:

sage: a[eU,:] = [-y, x]
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = -y dx + x dy
sage: a.display(eV)
a = 1/2*v du - 1/2*u dv

It is also possible to set the components at the 1-form definition, via a dictionary whose keys are the vector frames:

sage: a1 = M.one_form({eU: [-y, x], eV: [v/2, -u/2]}, name= a)
sage: a1 == a
True

The exterior derivative of the 1-form is a 2-form:

sage: da = a.exterior_derivative() ; da
2-form da on the 2-dimensional differentiable manifold M
sage: da.display(eU)
da = 2 dx∧dy
sage: da.display(eV)
da = -du∧dv

The exterior derivative can also be obtained by applying the function diff to a differentiable form:

sage: diff(a) is a.exterior_derivative()
True

Another 1-form defined by its components in eU:

sage: b = M.one_form(1+x*y, x^2, frame=eU, name= b)

Since eU is the default vector frame on M, it can be omitted in the definition:

sage: b = M.one_form(1+x*y, x^2, name= b)
sage: b.add_comp_by_continuation(eV, W, c_uv)

Adding two 1-forms results in another 1-form:

2.9. Differential Forms 705

Manifolds, Release 10.4.rc1

sage: s = a + b ; s
1-form a+b on the 2-dimensional differentiable manifold M
sage: s.display(eU)
a+b = ((x - 1)*y + 1) dx + (x^2 + x) dy
sage: s.display(eV)
a+b = (1/4*u^2 + 1/4*(u + 2)*v + 1/2) du
+ (-1/4*u*v - 1/4*v^2 - 1/2*u + 1/2) dv

The exterior product of two 1-forms is a 2-form:

sage: s = a.wedge(b) ; s
2-form a∧b on the 2-dimensional differentiable manifold M
sage: s.display(eU)
a∧b = (-2*x^2*y - x) dx∧dy
sage: s.display(eV)
a∧b = (1/8*u^3 - 1/8*u*v^2 - 1/8*v^3 + 1/8*(u^2 + 2)*v + 1/4*u) du∧dv

Multiplying a 1-form by a scalar field results in another 1-form:

sage: f = M.scalar_field({c_xy: (x+y)^2, c_uv: u^2}, name= f)
sage: s = f*a ; s
1-form f*a on the 2-dimensional differentiable manifold M
sage: s.display(eU)
f*a = (-x^2*y - 2*x*y^2 - y^3) dx + (x^3 + 2*x^2*y + x*y^2) dy
sage: s.display(eV)
f*a = 1/2*u^2*v du - 1/2*u^3 dv

Examples with SymPy as the symbolic engine

From now on, we ask that all symbolic calculus on manifold𝑀 are performed by SymPy:

sage: M.set_calculus_method(sympy)

We define a 2-form 𝑎 as above:

sage: a = M.diff_form(2, name= a)
sage: a[eU,0,1] = x*y^2 + 2*x
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = (x*y**2 + 2*x) dx∧dy
sage: a.display(eV)
a = (-u**3/16 + u**2*v/16 + u*v**2/16 - u/2 - v**3/16 - v/2) du∧dv

A 1-form on M:

sage: a = M.one_form(-y, x, name= a)
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = -y dx + x dy
sage: a.display(eV)
a = v/2 du - u/2 dv

The exterior derivative of a:

706 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: da = a.exterior_derivative()
sage: da.display(eU)
da = 2 dx∧dy
sage: da.display(eV)
da = -du∧dv

Another 1-form:

sage: b = M.one_form(1+x*y, x^2, name= b)
sage: b.add_comp_by_continuation(eV, W, c_uv)

Adding two 1-forms:

sage: s = a + b
sage: s.display(eU)
a+b = (x*y - y + 1) dx + x*(x + 1) dy
sage: s.display(eV)
a+b = (u**2/4 + u*v/4 + v/2 + 1/2) du + (-u*v/4 - u/2 - v**2/4 + 1/2) dv

The exterior product of two 1-forms:

sage: s = a.wedge(b)
sage: s.display(eU)
a∧b = x*(-2*x*y - 1) dx∧dy
sage: s.display(eV)
a∧b = (u**3/8 + u**2*v/8 - u*v**2/8 + u/4 - v**3/8 + v/4) du∧dv

Multiplying a 1-form by a scalar field:

sage: f = M.scalar_field({c_xy: (x+y)^2, c_uv: u^2}, name= f)
sage: s = f*a
sage: s.display(eU)
f*a = y*(-x**2 - 2*x*y - y**2) dx + x*(x**2 + 2*x*y + y**2) dy
sage: s.display(eV)
f*a = u**2*v/2 du - u**3/2 dv

degree()

Return the degree of self.

OUTPUT:

• integer 𝑝 such that the differential form is a 𝑝-form

EXAMPLES:

sage: M = Manifold(3, M)
sage: a = M.diff_form(2); a
2-form on the 3-dimensional differentiable manifold M
sage: a.degree()
2
sage: b = M.diff_form(1); b
1-form on the 3-dimensional differentiable manifold M
sage: b.degree()
1

derivative()

Compute the exterior derivative of self.

OUTPUT:

2.9. Differential Forms 707

Manifolds, Release 10.4.rc1

• instance of DiffForm representing the exterior derivative of the differential form

EXAMPLES:

Exterior derivative of a 1-form on the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()

The 1-form:

sage: a = M.one_form({e_xy: [-y^2, x^2]}, name= a)
sage: a.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: a.display(e_xy)
a = -y^2 dx + x^2 dy
sage: a.display(e_uv)
a = -(2*u^3*v - u^2*v^2 + v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^
→˓8) du
+ (u^4 - u^2*v^2 + 2*u*v^3)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^8)␣
→˓dv

Its exterior derivative:

sage: da = a.exterior_derivative(); da
2-form da on the 2-dimensional differentiable manifold M
sage: da.display(e_xy)
da = (2*x + 2*y) dx∧dy
sage: da.display(e_uv)
da = -2*(u + v)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) du∧dv

The result is cached, i.e. is not recomputed unless a is changed:

sage: a.exterior_derivative() is da
True

Instead of invoking the method exterior_derivative(), one may use the global function diff:

sage: diff(a) is a.exterior_derivative()
True

Let us check Cartan’s identity:

sage: v = M.vector_field({e_xy: [-y, x]}, name= v)
sage: v.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: a.lie_der(v) == v.contract(diff(a)) + diff(a(v)) # long time
True

exterior_derivative()

Compute the exterior derivative of self.

OUTPUT:

708 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• instance of DiffForm representing the exterior derivative of the differential form

EXAMPLES:

Exterior derivative of a 1-form on the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()

The 1-form:

sage: a = M.one_form({e_xy: [-y^2, x^2]}, name= a)
sage: a.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: a.display(e_xy)
a = -y^2 dx + x^2 dy
sage: a.display(e_uv)
a = -(2*u^3*v - u^2*v^2 + v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^
→˓8) du
+ (u^4 - u^2*v^2 + 2*u*v^3)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^8)␣
→˓dv

Its exterior derivative:

sage: da = a.exterior_derivative(); da
2-form da on the 2-dimensional differentiable manifold M
sage: da.display(e_xy)
da = (2*x + 2*y) dx∧dy
sage: da.display(e_uv)
da = -2*(u + v)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) du∧dv

The result is cached, i.e. is not recomputed unless a is changed:

sage: a.exterior_derivative() is da
True

Instead of invoking the method exterior_derivative(), one may use the global function diff:

sage: diff(a) is a.exterior_derivative()
True

Let us check Cartan’s identity:

sage: v = M.vector_field({e_xy: [-y, x]}, name= v)
sage: v.add_comp_by_continuation(e_uv, U.intersection(V), c_uv)
sage: a.lie_der(v) == v.contract(diff(a)) + diff(a(v)) # long time
True

hodge_dual(nondegenerate_tensor=None, minus_eigenvalues_convention=False)
Compute the Hodge dual of the differential form with respect to some non-degenerate bilinear form (Rie-
mannian metric or symplectic form).

2.9. Differential Forms 709

Manifolds, Release 10.4.rc1

If the differential form is a 𝑝-form 𝐴, its Hodge dual with respect to the non-degenerate form 𝑔 is the (𝑛 −
𝑝)-form *𝐴 defined by

*𝐴𝑖1...𝑖𝑛−𝑝
=

1

𝑝!
𝐴𝑘1...𝑘𝑝𝜖𝑘1...𝑘𝑝 𝑖1...𝑖𝑛−𝑝

where 𝑛 is the manifold’s dimension, 𝜖 is the volume 𝑛-form associated with 𝑔 (see volume_form()) and
the indices 𝑘1, . . . , 𝑘𝑝 are raised with 𝑔. If 𝑔 is a pseudo-Riemannian metric, sometimes an additional multi-
plicative factor of (−1)𝑠 is introduced on the right-hand side, where 𝑠 is the number of negative eigenvalues
of 𝑔. This convention can be enforced by setting the option minus_eigenvalues_convention.

INPUT:

• nondegenerate_tensor: a non-degenerate bilinear form defined on the same manifold as the cur-
rent differential form; must be an instance of PseudoRiemannianMetric or SymplecticForm.
If none is provided, the ambient domain of self is supposed to be endowed with a default metric and
this metric is then used.

• minus_eigenvalues_convention – if 𝑡𝑟𝑢𝑒, a factor of (−1)𝑠 is
introduced with 𝑠 being the number of negative eigenvalues of the nondegenerate_tensor.

OUTPUT:

• the (𝑛− 𝑝)-form *𝐴

EXAMPLES:

Hodge dual of a 1-form on the 2-sphere equipped with the standard metric: we first construct S2 and its
metric 𝑔:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() # stereographic coord.␣
→˓(North and South)
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: g = M.metric(g)
sage: g[eU,1,1], g[eU,2,2] = 4/(1+x^2+y^2)^2, 4/(1+x^2+y^2)^2
sage: g[eV,1,1], g[eV,2,2] = 4/(1+u^2+v^2)^2, 4/(1+u^2+v^2)^2

We endow 𝑆2 with the orientation defined by the stereographic frame from the North pole, i.e. eU; eV is
then left-handed and in order to define an orientation on the whole manifold, we introduce a vector frame on
V by swapping eV’s vectors:

sage: f = V.vector_frame(f , (eV[2], eV[1]))
sage: M.set_orientation([eU, f])

Then we construct the 1-form and take its Hodge dual w.r.t. 𝑔:

sage: a = M.one_form({eU: [-y, x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = -y dx + x dy
sage: a.display(eV)
a = -v/(u^4 + 2*u^2*v^2 + v^4) du + u/(u^4 + 2*u^2*v^2 + v^4) dv

(continues on next page)

710 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: sa = a.hodge_dual(g); sa
1-form *a on the 2-dimensional differentiable manifold S^2
sage: sa.display(eU)
*a = -x dx - y dy
sage: sa.display(eV)
*a = u/(u^4 + 2*u^2*v^2 + v^4) du + v/(u^4 + 2*u^2*v^2 + v^4) dv

Instead of calling the method hodge_dual() on the differential form, one can invoke the method
hodge_star() of the metric:

sage: a.hodge_dual(g) == g.hodge_star(a)
True

For a 1-form and a Riemannian metric in dimension 2, the Hodge dual applied twice is minus the identity:

sage: ssa = sa.hodge_dual(g); ssa
1-form **a on the 2-dimensional differentiable manifold S^2
sage: ssa == -a
True

The Hodge dual of the metric volume 2-form is the constant scalar field 1 (considered as a 0-form):

sage: eps = g.volume_form(); eps
2-form eps_g on the 2-dimensional differentiable manifold S^2
sage: eps.display(eU)
eps_g = 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dx∧dy
sage: eps.display(eV)
eps_g = -4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du∧dv
sage: seps = eps.hodge_dual(g); seps
Scalar field *eps_g on the 2-dimensional differentiable manifold S^2
sage: seps.display()
*eps_g: S^2 → ℝ
on U: (x, y) ↦ 1
on V: (u, v) ↦ 1

Hodge dual of a 1-form in the Euclidean space 𝑅3:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.metric(g) # the Euclidean metric
sage: g[1,1], g[2,2], g[3,3] = 1, 1, 1
sage: var(Ax Ay Az)
(Ax, Ay, Az)
sage: a = M.one_form(Ax, Ay, Az, name= A)
sage: sa = a.hodge_dual(g) ; sa
2-form *A on the 3-dimensional differentiable manifold M
sage: sa.display()
*A = Az dx∧dy - Ay dx∧dz + Ax dy∧dz
sage: ssa = sa.hodge_dual(g) ; ssa
1-form **A on the 3-dimensional differentiable manifold M
sage: ssa.display()
**A = Ax dx + Ay dy + Az dz
sage: ssa == a # must hold for a Riemannian metric in dimension 3
True

See the documentation of hodge_star() for more examples.

2.9. Differential Forms 711

Manifolds, Release 10.4.rc1

interior_product(qvect)
Interior product with a multivector field.

If self is a differential form𝐴 of degree 𝑝 and𝐵 is a multivector field of degree 𝑞 ≥ 𝑝 on the samemanifold,
the interior product of 𝐴 by 𝐵 is the multivector field 𝜄𝐴𝐵 of degree 𝑞 − 𝑝 defined by

(𝜄𝐴𝐵)𝑖1...𝑖𝑞−𝑝 = 𝐴𝑘1...𝑘𝑝
𝐵𝑘1...𝑘𝑝𝑖1...𝑖𝑞−𝑝

Note: A.interior_product(B) yields the same result as A.contract(0,..., p-1, B, 0,
..., p-1) (cf. contract()), but interior_product is more efficient, the alternating character
of 𝐴 being not used to reduce the computation in contract()

INPUT:

• qvect – multivector field 𝐵 (instance of MultivectorField); the degree of 𝐵 must be at least
equal to the degree of self

OUTPUT:

• scalar field (case 𝑝 = 𝑞) or MultivectorField (case 𝑝 < 𝑞) representing the interior product 𝜄𝐴𝐵,
where 𝐴 is self

See also:

interior_product() for the interior product of a multivector field with a differential form

EXAMPLES:

Interior product of a 1-form with a 2-vector field on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1) # the sphere S^2
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() # stereographic coord. North
sage: c_uv.<u,v> = V.chart() # stereographic coord. South
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
sage: a = M.one_form({e_xy: [y, x]}, name= a)
sage: a.add_comp_by_continuation(e_uv, W, c_uv)
sage: b = M.multivector_field(2, name= b)
sage: b[e_xy,1,2] = x*y
sage: b.add_comp_by_continuation(e_uv, W, c_uv)
sage: s = a.interior_product(b); s
Vector field i_a b on the 2-dimensional differentiable manifold S^2
sage: s.display(e_xy)
i_a b = -x^2*y ∂/∂x + x*y^2 ∂/∂y
sage: s.display(e_uv)
i_a b = (u^4*v - 3*u^2*v^3)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) ∂/∂u
+ (3*u^3*v^2 - u*v^4)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) ∂/∂v

sage: s == a.contract(b)
True

Interior product of a 2-form with a 2-vector field:

712 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: a = M.diff_form(2, name= a)
sage: a[e_xy,1,2] = 4/(x^2+y^2+1)^2 # the standard area 2-form
sage: a.add_comp_by_continuation(e_uv, W, c_uv)
sage: s = a.interior_product(b); s
Scalar field i_a b on the 2-dimensional differentiable manifold S^2
sage: s.display()
i_a b: S^2 → ℝ
on U: (x, y) ↦ 8*x*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1)
on V: (u, v) ↦ 8*u*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1)

Some checks:

sage: s == a.contract(0, 1, b, 0, 1)
True
sage: s.restrict(U) == 2 * a[[e_xy,1,2]] * b[[e_xy,1,2]]
True
sage: s.restrict(V) == 2 * a[[e_uv,1,2]] * b[[e_uv,1,2]]
True

wedge(other)
Exterior product with another differential form.

INPUT:

• other – another differential form (on the same manifold)

OUTPUT:

• instance of DiffForm representing the exterior product self ∧ other

EXAMPLES:

Exterior product of two 1-forms on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() # stereographic coord.␣
→˓(North and South)
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
sage: a = M.one_form({e_xy: [y, x]}, name= a)
sage: a.add_comp_by_continuation(e_uv, W, c_uv)
sage: b = M.one_form({e_xy: [x^2 + y^2, y]}, name= b)
sage: b.add_comp_by_continuation(e_uv, W, c_uv)
sage: c = a.wedge(b); c
2-form a∧b on the 2-dimensional differentiable manifold S^2
sage: c.display(e_xy)
a∧b = (-x^3 - (x - 1)*y^2) dx∧dy
sage: c.display(e_uv)
a∧b = -(v^2 - u)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^8) du∧dv

If one of the two operands is unnamed, the result is unnamed too:

2.9. Differential Forms 713

Manifolds, Release 10.4.rc1

sage: b1 = M.diff_form(1) # no name set
sage: b1[e_xy,:] = x^2 + y^2, y
sage: b1.add_comp_by_continuation(e_uv, W, c_uv)
sage: c1 = a.wedge(b1); c1
2-form on the 2-dimensional differentiable manifold S^2
sage: c1.display(e_xy)
(-x^3 - (x - 1)*y^2) dx∧dy

To give a name to the result, one shall use the method set_name():

sage: c1.set_name(c); c1
2-form c on the 2-dimensional differentiable manifold S^2
sage: c1.display(e_xy)
c = (-x^3 - (x - 1)*y^2) dx∧dy

Wedging with scalar fields yields the multiplication from right:

sage: f = M.scalar_field(x, name= f)
sage: f.add_expr_by_continuation(c_uv, W)
sage: t = a.wedge(f)
sage: t.display()
f*a = x*y dx + x^2 dy

class sage.manifolds.differentiable.diff_form.DiffFormParal(vector_field_module:
VectorFieldModule, degree:
int, name: str | None =
None, latex_name: str |
None = None)

Bases: FreeModuleAltForm, TensorFieldParal, DiffForm

Differential form with values on a parallelizable manifold.

Given a differentiable manifold 𝑈 , a differentiable map Φ : 𝑈 →𝑀 to a parallelizable manifold𝑀 and a positive
integer 𝑝, a differential form of degree 𝑝 (or 𝑝-form) along 𝑈 with values on𝑀 ⊃ Φ(𝑈) is a differentiable map

𝑎 : 𝑈 −→ 𝑇 (0,𝑝)𝑀

(𝑇 (0,𝑝)𝑀 being the tensor bundle of type (0, 𝑝) over𝑀) such that

∀𝑥 ∈ 𝑈, 𝑎(𝑥) ∈ Λ𝑝(𝑇 *
Φ(𝑥)𝑀),

where 𝑇 *
Φ(𝑥)𝑀 is the dual of the tangent space to 𝑀 at Φ(𝑥) and Λ𝑝 stands for the exterior power of degree 𝑝

(cf. ExtPowerDualFreeModule). In other words, 𝑎(𝑥) is an alternating multilinear form of degree 𝑝 of the
tangent vector space 𝑇Φ(𝑥)𝑀 .

The standard case of a differential form on a manifold𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is not parallelizable, the class DiffForm must be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 via the map
Φ

• degree – the degree of the differential form (i.e. its tensor rank)

714 Chapter 2. Differentiable Manifolds

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_alt_form.html#sage.tensor.modules.free_module_alt_form.FreeModuleAltForm
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerDualFreeModule

Manifolds, Release 10.4.rc1

• name – (default: None) name given to the differential form

• latex_name – (default: None) LaTeX symbol to denote the differential form; if none is provided, the
LaTeX symbol is set to name

EXAMPLES:

A 2-form on a 4-dimensional manifold:

sage: M = Manifold(4, M)
sage: c_txyz.<t,x,y,z> = M.chart()
sage: a = M.diff_form(2, name= a) ; a
2-form a on the 4-dimensional differentiable manifold M
sage: a.parent()
Free module Omega^2(M) of 2-forms on the 4-dimensional differentiable
manifold M

A differential form is a tensor field of purely covariant type:

sage: a.tensor_type()
(0, 2)

It is antisymmetric, its components being CompFullyAntiSym:

sage: a.symmetries()
no symmetry; antisymmetry: (0, 1)
sage: a[0,1] = 2
sage: a[1,0]
-2
sage: a.comp()
Fully antisymmetric 2-indices components w.r.t. Coordinate frame (M, (∂/∂t,∂/∂x,∂/
→˓∂y,∂/∂z))
sage: type(a.comp())
<class sage.tensor.modules.comp.CompFullyAntiSym >

Setting a component with repeated indices to a non-zero value results in an error:

sage: a[1,1] = 3
Traceback (most recent call last):
...
ValueError: by antisymmetry, the component cannot have a nonzero value
for the indices (1, 1)
sage: a[1,1] = 0 # OK, albeit useless
sage: a[1,2] = 3 # OK

The expansion of a differential form with respect to a given coframe is displayed via the method display():

sage: a.display() # expansion with respect to the default coframe (dt, dx, dy, dz)
a = 2 dt∧dx + 3 dx∧dy
sage: latex(a.display()) # output for the notebook
a = 2 \mathrm{d} t\wedge \mathrm{d} x
+ 3 \mathrm{d} x\wedge \mathrm{d} y

Differential forms can be added or subtracted:

sage: b = M.diff_form(2)
sage: b[0,1], b[0,2], b[0,3] = (1,2,3)
sage: s = a + b ; s
2-form on the 4-dimensional differentiable manifold M

(continues on next page)

2.9. Differential Forms 715

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompFullyAntiSym
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_alt_form.html#sage.tensor.modules.free_module_alt_form.FreeModuleAltForm.display

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a[:], b[:], s[:]
(
[0 2 0 0] [0 1 2 3] [0 3 2 3]
[-2 0 3 0] [-1 0 0 0] [-3 0 3 0]
[0 -3 0 0] [-2 0 0 0] [-2 -3 0 0]
[0 0 0 0], [-3 0 0 0], [-3 0 0 0]
)
sage: s = a - b ; s
2-form on the 4-dimensional differentiable manifold M
sage: s[:]
[0 1 -2 -3]
[-1 0 3 0]
[2 -3 0 0]
[3 0 0 0]

An example of 3-form is the volume element on R3 in Cartesian coordinates:

sage: M = Manifold(3, R3 , latex_name=r \RR^3 , start_index=1)
sage: c_cart.<x,y,z> = M.chart()
sage: eps = M.diff_form(3, name= epsilon , latex_name=r \epsilon)
sage: eps[1,2,3] = 1 # the only independent component
sage: eps[:] # all the components are set from the previous line:
[[[0, 0, 0], [0, 0, 1], [0, -1, 0]], [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]]
sage: eps.display()
epsilon = dx∧dy∧dz

Spherical components of the volume element from the tensorial change-of-frame formula:

sage: c_spher.<r,th,ph> = M.chart(r r:[0,+oo) th:[0,pi]:\theta ph:[0,2*pi):\phi)
sage: spher_to_cart = c_spher.transition_map(c_cart,
....: [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)])
sage: cart_to_spher = spher_to_cart.set_inverse(sqrt(x^2+y^2+z^2),
....: atan2(sqrt(x^2+y^2),z), atan2(y, x))
Check of the inverse coordinate transformation:
r == r *passed*
th == arctan2(r*sin(th), r*cos(th)) **failed**
ph == arctan2(r*sin(ph)*sin(th), r*cos(ph)*sin(th)) **failed**
x == x *passed*
y == y *passed*
z == z *passed*

NB: a failed report can reflect a mere lack of simplification.
sage: eps.comp(c_spher.frame()) # computation of the components in the spherical␣
→˓frame
Fully antisymmetric 3-indices components w.r.t. Coordinate frame
(R3, (∂/∂r,∂/∂th,∂/∂ph))
sage: eps.comp(c_spher.frame())[1,2,3, c_spher]
r^2*sin(th)
sage: eps.display(c_spher.frame())
epsilon = sqrt(x^2 + y^2 + z^2)*sqrt(x^2 + y^2) dr∧dth∧dph
sage: eps.display(c_spher.frame(), c_spher)
epsilon = r^2*sin(th) dr∧dth∧dph

As a shortcut of the above command, on can pass just the chart c_spher to display, the vector frame being
then assumed to be the coordinate frame associated with the chart:

716 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: eps.display(c_spher)
epsilon = r^2*sin(th) dr∧dth∧dph

The exterior product of two differential forms is performed via the method wedge():

sage: a = M.one_form(x*y*z, -z*x, y*z, name= A)
sage: b = M.one_form(cos(z), sin(x), cos(y), name= B)
sage: ab = a.wedge(b) ; ab
2-form A∧B on the 3-dimensional differentiable manifold R3
sage: ab[:]
[0 x*y*z*sin(x) + x*z*cos(z) x*y*z*cos(y) - y*z*cos(z)]
[-x*y*z*sin(x) - x*z*cos(z) 0 -(x*cos(y) + y*sin(x))*z]
[-x*y*z*cos(y) + y*z*cos(z) (x*cos(y) + y*sin(x))*z 0]
sage: ab.display()
A∧B = (x*y*z*sin(x) + x*z*cos(z)) dx∧dy + (x*y*z*cos(y) - y*z*cos(z)) dx∧dz
- (x*cos(y) + y*sin(x))*z dy∧dz

Let us check the formula relating the exterior product to the tensor product for 1-forms:

sage: a.wedge(b) == a*b - b*a
True

The tensor product of a 1-form and a 2-form is not a 3-form but a tensor field of type (0, 3) with less symmetries:

sage: c = a*ab ; c
Tensor field A⊗(A∧B) of type (0,3) on the 3-dimensional differentiable
manifold R3
sage: c.symmetries() # the antisymmetry is only w.r.t. the last 2 arguments:
no symmetry; antisymmetry: (1, 2)
sage: d = ab*a ; d
Tensor field (A∧B)⊗A of type (0,3) on the 3-dimensional differentiable
manifold R3
sage: d.symmetries() # the antisymmetry is only w.r.t. the first 2 arguments:
no symmetry; antisymmetry: (0, 1)

The exterior derivative of a differential form is obtained by means of the method exterior_derivative():

sage: da = a.exterior_derivative() ; da
2-form dA on the 3-dimensional differentiable manifold R3
sage: da.display()
dA = -(x + 1)*z dx∧dy - x*y dx∧dz + (x + z) dy∧dz
sage: db = b.exterior_derivative() ; db
2-form dB on the 3-dimensional differentiable manifold R3
sage: db.display()
dB = cos(x) dx∧dy + sin(z) dx∧dz - sin(y) dy∧dz
sage: dab = ab.exterior_derivative() ; dab
3-form d(A∧B) on the 3-dimensional differentiable manifold R3

or by applying the function diff to the differential form:

sage: diff(a) is a.exterior_derivative()
True

As a 3-form over a 3-dimensional manifold, d(A∧B) is necessarily proportional to the volume 3-form:

sage: dab == dab[[1,2,3]]/eps[[1,2,3]]*eps
True

2.9. Differential Forms 717

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_alt_form.html#sage.tensor.modules.free_module_alt_form.FreeModuleAltForm.wedge

Manifolds, Release 10.4.rc1

We may also check that the classical anti-derivation formula is fulfilled:

sage: dab == da.wedge(b) - a.wedge(db)
True

The Lie derivative of a 2-form is a 2-form:

sage: v = M.vector_field(y*z, -x*z, x*y, name= v)
sage: ab.lie_der(v) # long time
2-form on the 3-dimensional differentiable manifold R3

Let us check Cartan formula, which expresses the Lie derivative in terms of exterior derivatives:

sage: ab.lie_der(v) == (v.contract(ab.exterior_derivative()) # long time
....: + v.contract(ab).exterior_derivative())
True

A 1-form on a R3:

sage: om = M.one_form(name= omega , latex_name=r \omega); om
1-form omega on the 3-dimensional differentiable manifold R3

A 1-form is of course a differential form:

sage: isinstance(om, sage.manifolds.differentiable.diff_form.DiffFormParal)
True
sage: om.parent()
Free module Omega^1(R3) of 1-forms on the 3-dimensional differentiable
manifold R3
sage: om.tensor_type()
(0, 1)

Setting the components with respect to the manifold’s default frame:

sage: om[:] = (2*z, x, x-y)
sage: om[:]
[2*z, x, x - y]
sage: om.display()
omega = 2*z dx + x dy + (x - y) dz

A 1-form acts on vector fields:

sage: v = M.vector_field(x, 2*y, 3*z, name= V)
sage: om(v)
Scalar field omega(V) on the 3-dimensional differentiable manifold R3
sage: om(v).display()
omega(V): R3 → ℝ

(x, y, z) ↦ 2*x*y + (5*x - 3*y)*z
(r, th, ph) ↦ 2*r^2*cos(ph)*sin(ph)*sin(th)^2 + r^2*(5*cos(ph)

- 3*sin(ph))*cos(th)*sin(th)
sage: latex(om(v))
\omega\left(V\right)

The tensor product of two 1-forms is a tensor field of type (0, 2):

sage: a = M.one_form(1, 2, 3, name= A)
sage: b = M.one_form(6, 5, 4, name= B)
sage: c = a*b ; c

(continues on next page)

718 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Tensor field A⊗B of type (0,2) on the 3-dimensional differentiable
manifold R3
sage: c[:]
[6 5 4]
[12 10 8]
[18 15 12]
sage: c.symmetries() # c has no symmetries:
no symmetry; no antisymmetry

derivative()

Compute the exterior derivative of self.

OUTPUT:

• a DiffFormParal representing the exterior derivative of the differential form

EXAMPLES:

Exterior derivative of a 1-form on a 4-dimensional manifold:

sage: M = Manifold(4, M)
sage: c_txyz.<t,x,y,z> = M.chart()
sage: a = M.one_form(t*x*y*z, z*y**2, x*z**2, x**2 + y**2, name= A)
sage: da = a.exterior_derivative() ; da
2-form dA on the 4-dimensional differentiable manifold M
sage: da.display()
dA = -t*y*z dt∧dx - t*x*z dt∧dy - t*x*y dt∧dz
+ (-2*y*z + z^2) dx∧dy + (-y^2 + 2*x) dx∧dz
+ (-2*x*z + 2*y) dy∧dz

sage: latex(da)
\mathrm{d}A

The result is cached, i.e. is not recomputed unless a is changed:

sage: a.exterior_derivative() is da
True

Instead of invoking the method exterior_derivative(), one may use the global function diff:

sage: diff(a) is a.exterior_derivative()
True

The exterior derivative is nilpotent:

sage: dda = da.exterior_derivative() ; dda
3-form ddA on the 4-dimensional differentiable manifold M
sage: dda.display()
ddA = 0
sage: dda == 0
True

Let us check Cartan’s identity:

sage: v = M.vector_field(-y, x, t, z, name= v)
sage: a.lie_der(v) == v.contract(diff(a)) + diff(a(v)) # long time
True

2.9. Differential Forms 719

Manifolds, Release 10.4.rc1

exterior_derivative()

Compute the exterior derivative of self.

OUTPUT:

• a DiffFormParal representing the exterior derivative of the differential form

EXAMPLES:

Exterior derivative of a 1-form on a 4-dimensional manifold:

sage: M = Manifold(4, M)
sage: c_txyz.<t,x,y,z> = M.chart()
sage: a = M.one_form(t*x*y*z, z*y**2, x*z**2, x**2 + y**2, name= A)
sage: da = a.exterior_derivative() ; da
2-form dA on the 4-dimensional differentiable manifold M
sage: da.display()
dA = -t*y*z dt∧dx - t*x*z dt∧dy - t*x*y dt∧dz
+ (-2*y*z + z^2) dx∧dy + (-y^2 + 2*x) dx∧dz
+ (-2*x*z + 2*y) dy∧dz

sage: latex(da)
\mathrm{d}A

The result is cached, i.e. is not recomputed unless a is changed:

sage: a.exterior_derivative() is da
True

Instead of invoking the method exterior_derivative(), one may use the global function diff:

sage: diff(a) is a.exterior_derivative()
True

The exterior derivative is nilpotent:

sage: dda = da.exterior_derivative() ; dda
3-form ddA on the 4-dimensional differentiable manifold M
sage: dda.display()
ddA = 0
sage: dda == 0
True

Let us check Cartan’s identity:

sage: v = M.vector_field(-y, x, t, z, name= v)
sage: a.lie_der(v) == v.contract(diff(a)) + diff(a(v)) # long time
True

interior_product(qvect)
Interior product with a multivector field.

If self is a differential form𝐴 of degree 𝑝 and𝐵 is a multivector field of degree 𝑞 ≥ 𝑝 on the samemanifold,
the interior product of 𝐴 by 𝐵 is the multivector field 𝜄𝐴𝐵 of degree 𝑞 − 𝑝 defined by

(𝜄𝐴𝐵)𝑖1...𝑖𝑞−𝑝 = 𝐴𝑘1...𝑘𝑝
𝐵𝑘1...𝑘𝑝𝑖1...𝑖𝑞−𝑝

Note: A.interior_product(B) yields the same result as A.contract(0,..., p-1, B, 0,
..., p-1) (cf. contract()), but interior_product is more efficient, the alternating character

720 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

of 𝐴 being not used to reduce the computation in contract()

INPUT:

• qvect – multivector field 𝐵 (instance of MultivectorFieldParal); the degree of 𝐵 must be at
least equal to the degree of self

OUTPUT:

• scalar field (case 𝑝 = 𝑞) or MultivectorFieldParal (case 𝑝 < 𝑞) representing the interior
product 𝜄𝐴𝐵, where 𝐴 is self

See also:

interior_product() for the interior product of a multivector field with a differential form

EXAMPLES:

Interior product of a 1-form with a 2-vector field on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: a = M.one_form(2, 1+x, y*z, name= a)
sage: b = M.multivector_field(2, name= b)
sage: b[1,2], b[1,3], b[2,3] = y^2, z+x, -z^2
sage: s = a.interior_product(b); s
Vector field i_a b on the 3-dimensional differentiable
manifold M

sage: s.display()
i_a b = (-(x + 1)*y^2 - x*y*z - y*z^2) ∂/∂x
+ (y*z^3 + 2*y^2) ∂/∂y + (-(x + 1)*z^2 + 2*x + 2*z) ∂/∂z

sage: s == a.contract(b)
True

Interior product of a 2-form with a 2-vector field:

sage: a = M.diff_form(2, name= a)
sage: a[1,2], a[1,3], a[2,3] = x*y, -3, z
sage: s = a.interior_product(b); s
Scalar field i_a b on the 3-dimensional differentiable manifold M
sage: s.display()
i_a b: M → ℝ

(x, y, z) ↦ 2*x*y^3 - 2*z^3 - 6*x - 6*z
sage: s == a.contract(0,1,b,0,1)
True

wedge(other)
Exterior product of self with another differential form.

INPUT:

• other – another differential form

OUTPUT:

• instance of DiffFormParal representing the exterior product self ∧ other

EXAMPLES:

Exterior product of a 1-form and a 2-form on a 3-dimensional manifold:

2.9. Differential Forms 721

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: a = M.one_form(2, 1+x, y*z, name= a)
sage: b = M.diff_form(2, name= b)
sage: b[1,2], b[1,3], b[2,3] = y^2, z+x, z^2
sage: a.display()
a = 2 dx + (x + 1) dy + y*z dz
sage: b.display()
b = y^2 dx∧dy + (x + z) dx∧dz + z^2 dy∧dz
sage: s = a.wedge(b); s
3-form a∧b on the 3-dimensional differentiable manifold M
sage: s.display()
a∧b = (-x^2 + (y^3 - x - 1)*z + 2*z^2 - x) dx∧dy∧dz

Check:

sage: s[1,2,3] == a[1]*b[2,3] + a[2]*b[3,1] + a[3]*b[1,2]
True

Wedging with scalar fields yields the multiplication from right:

sage: f = M.scalar_field(x, name= f)
sage: t = a.wedge(f)
sage: t.display()
f*a = 2*x dx + (x^2 + x) dy + x*y*z dz

2.10 Mixed Differential Forms

2.10.1 Graded Algebra of Mixed Differential Forms

Let 𝑀 and 𝑁 be differentiable manifolds and 𝜙 : 𝑀 → 𝑁 a differentiable map. The space of mixed differential
forms along 𝜙, denoted by Ω*(𝑀,𝜙), is given by the direct sum

⨁︀𝑛
𝑗=0 Ω

𝑗(𝑀,𝜙) of differential form modules, where
𝑛 = dim(𝑁). With the wedge product,Ω*(𝑀,𝜙) inherits the structure of a graded algebra. See MixedFormAlgebra
for details.

This algebra is endowed with a natural chain complex structure induced by the exterior derivative. The corresponding
homology is called de Rham cohomology. See DeRhamCohomologyRing for details.

AUTHORS:

• Michael Jung (2019) : initial version

class sage.manifolds.differentiable.mixed_form_algebra.MixedFormAlgebra(vec-
tor_field_mod-
ule)

Bases: Parent, UniqueRepresentation

An instance of this class represents the graded algebra of mixed forms. That is, if 𝜙 : 𝑀 → 𝑁 is a differentiable
map between two differentiable manifolds 𝑀 and 𝑁 , the graded algebra of mixed forms Ω*(𝑀,𝜙) along 𝜙 is
defined via the direct sum

⨁︀𝑛
𝑗=0 Ω

𝑗(𝑀,𝜙) consisting of differential form modules (cf. DiffFormModule),
where 𝑛 is the dimension of 𝑁 . Hence, Ω*(𝑀,𝜙) is a module over 𝐶𝑘(𝑀) and a vector space over R or C.
Furthermore notice, that

Ω*(𝑀,𝜙) ∼= 𝐶𝑘

⎛⎝ 𝑛⨁︁
𝑗=0

Λ𝑗(𝜙*𝑇 *𝑁)

⎞⎠ ,

722 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

where 𝐶𝑘 denotes the global section functor for differentiable sections of order 𝑘 here.

The wedge product induces a multiplication on Ω*(𝑀,𝜙) and gives it the structure of a graded algebra since

Ω𝑘(𝑀,𝜙) ∧ Ω𝑙(𝑀,𝜙) ⊂ Ω𝑘+𝑙(𝑀,𝜙).

Moreover,Ω*(𝑀,𝜙) inherits the structure of a chain complex, called de Rham complex, with the exterior derivative
as boundary map, that is

0 → Ω0(𝑀,𝜙)
d0−→ Ω1(𝑀,𝜙)

d1−→ . . .
d𝑛−1−−−→ Ω𝑛(𝑀,𝜙)

d𝑛−→ 0.

The induced cohomology is called de Rham cohomology, see cohomology() or DeRhamCohomologyRing
respectively.

INPUT:

• vector_field_module – module X(𝑀,𝜙) of vector fields along𝑀 associated with the map 𝜙 :𝑀 →
𝑁

EXAMPLES:

Graded algebra of mixed forms on a 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: Omega = M.mixed_form_algebra(); Omega
Graded algebra Omega^*(M) of mixed differential forms on the
3-dimensional differentiable manifold M
sage: Omega.category()
Join of Category of graded algebras over Symbolic Ring and Category of
chain complexes over Symbolic Ring
sage: Omega.base_ring()
Symbolic Ring
sage: Omega.vector_field_module()
Free module X(M) of vector fields on the 3-dimensional differentiable
manifold M

Elements can be created from scratch:

sage: A = Omega(0); A
Mixed differential form zero on the 3-dimensional differentiable
manifold M
sage: A is Omega.zero()
True
sage: B = Omega(1); B
Mixed differential form one on the 3-dimensional differentiable
manifold M
sage: B is Omega.one()
True
sage: C = Omega([2,0,0,0]); C
Mixed differential form on the 3-dimensional differentiable manifold M

There are some important coercions implemented:

sage: Omega0 = M.scalar_field_algebra(); Omega0
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: Omega.has_coerce_map_from(Omega0)
True

(continues on next page)

2.10. Mixed Differential Forms 723

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: Omega2 = M.diff_form_module(2); Omega2
Free module Omega^2(M) of 2-forms on the 3-dimensional differentiable
manifold M
sage: Omega.has_coerce_map_from(Omega2)
True

Restrictions induce coercions as well:

sage: U = M.open_subset(U); U
Open subset U of the 3-dimensional differentiable manifold M
sage: OmegaU = U.mixed_form_algebra(); OmegaU
Graded algebra Omega^*(U) of mixed differential forms on the Open
subset U of the 3-dimensional differentiable manifold M
sage: OmegaU.has_coerce_map_from(Omega)
True

Element

alias of MixedForm

cohomology(*args, **kwargs)
Return the de Rham cohomology of the de Rham complex self.

The 𝑘-th de Rham cohomology is given by

𝐻𝑘
dR(𝑀,𝜙) = ker(d𝑘)/im(d𝑘−1) .

The corresponding ring is given by

𝐻*
dR(𝑀,𝜙) =

𝑛⨁︁
𝑘=0

𝐻𝑘
dR(𝑀,𝜙),

endowed with the cup product as multiplication induced by the wedge product.

See also:

See DeRhamCohomologyRing for details.

EXAMPLES:

sage: M = Manifold(3, M , latex_name=r \mathcal{M})
sage: A = M.mixed_form_algebra()
sage: A.cohomology()
De Rham cohomology ring on the 3-dimensional differentiable
manifold M

differential(degree=None)
Return the differential of the de Rham complex self given by the exterior derivative.

INPUT:

• degree – (default: None) degree of the differential operator; if none is provided, the differential
operator on self is returned.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()

(continues on next page)

724 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: d = C.differential(); d
Generic endomorphism of Graded algebra Omega^*(M) of mixed
differential forms on the 2-dimensional differentiable manifold M

sage: d0 = C.differential(0); d0
Generic morphism:

From: Algebra of differentiable scalar fields on the
2-dimensional differentiable manifold M

To: Free module Omega^1(M) of 1-forms on the 2-dimensional
differentiable manifold M

sage: f = M.scalar_field(x, name= f); f.display()
f: M → ℝ

(x, y) ↦ x
sage: d0(f).display()
df = dx

homology(*args, **kwargs)
Return the de Rham cohomology of the de Rham complex self.

The 𝑘-th de Rham cohomology is given by

𝐻𝑘
dR(𝑀,𝜙) = ker(d𝑘)/im(d𝑘−1) .

The corresponding ring is given by

𝐻*
dR(𝑀,𝜙) =

𝑛⨁︁
𝑘=0

𝐻𝑘
dR(𝑀,𝜙),

endowed with the cup product as multiplication induced by the wedge product.

See also:

See DeRhamCohomologyRing for details.

EXAMPLES:

sage: M = Manifold(3, M , latex_name=r \mathcal{M})
sage: A = M.mixed_form_algebra()
sage: A.cohomology()
De Rham cohomology ring on the 3-dimensional differentiable
manifold M

irange(start=None)
Single index generator.

INPUT:

• start – (default: None) initial value 𝑖0 of the index between 0 and 𝑛, where 𝑛 is the manifold’s
dimension; if none is provided, the value 0 is assumed

OUTPUT:

• an iterable index, starting from 𝑖0 and ending at 𝑛, where 𝑛 is the manifold’s dimension

EXAMPLES:

sage: M = Manifold(3, M)
sage: A = M.mixed_form_algebra()
sage: list(A.irange())
[0, 1, 2, 3]

(continues on next page)

2.10. Mixed Differential Forms 725

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: list(A.irange(2))
[2, 3]

lift_from_homology(x)

Lift a cohomology class to the algebra of mixed differential forms.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: alpha = M.diff_form(1, [1,1], name= alpha)
sage: alpha.display()
alpha = dx + dy
sage: a = H(alpha); a
[alpha]
sage: C.lift_from_homology(a)
Mixed differential form alpha on the 2-dimensional differentiable
manifold M

one()

Return the one of self.

EXAMPLES:

sage: M = Manifold(3, M)
sage: A = M.mixed_form_algebra()
sage: A.one()
Mixed differential form one on the 3-dimensional differentiable
manifold M

vector_field_module()

Return the underlying vector field module.

EXAMPLES:

sage: M = Manifold(2, M)
sage: N = Manifold(3, N)
sage: Phi = M.diff_map(N, name= Phi); Phi
Differentiable map Phi from the 2-dimensional differentiable
manifold M to the 3-dimensional differentiable manifold N

sage: A = M.mixed_form_algebra(Phi); A
Graded algebra Omega^*(M,Phi) of mixed differential forms along the
2-dimensional differentiable manifold M mapped into the
3-dimensional differentiable manifold N via Phi

sage: A.vector_field_module()
Module X(M,Phi) of vector fields along the 2-dimensional
differentiable manifold M mapped into the 3-dimensional
differentiable manifold N

zero()

Return the zero of self.

EXAMPLES:

726 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M)
sage: A = M.mixed_form_algebra()
sage: A.zero()
Mixed differential form zero on the 3-dimensional differentiable
manifold M

2.10.2 Mixed Differential Forms

Let 𝑀 and 𝑁 be differentiable manifolds and 𝜙 : 𝑀 −→ 𝑁 a differentiable map. A mixed differential form along 𝜙
is an element of the graded algebra represented by MixedFormAlgebra. Its homogeneous components consist of
differential forms along 𝜙. Mixed forms are useful to represent characteristic classes and perform computations of such.

AUTHORS:

• Michael Jung (2019) : initial version

class sage.manifolds.differentiable.mixed_form.MixedForm(parent, name=None,
latex_name=None)

Bases: AlgebraElement, ModuleElementWithMutability

An instance of this class is a mixed form along some differentiable map 𝜙 : 𝑀 → 𝑁 between two differentiable
manifolds𝑀 and𝑁 . More precisely, a mixed form 𝑎 along 𝜙 :𝑀 → 𝑁 can be considered as a differentiable map

𝑎 :𝑀 −→
𝑛⨁︁

𝑘=0

𝑇 (0,𝑘)𝑁,

where 𝑇 (0,𝑘) denotes the tensor bundle of type (0, 𝑘),
⨁︀

the Whitney sum and 𝑛 the dimension of 𝑁 , such that

∀𝑥 ∈𝑀, 𝑎(𝑥) ∈
𝑛⨁︁

𝑘=0

Λ𝑘
(︁
𝑇 *
𝜙(𝑥)𝑁

)︁
,

where Λ𝑘(𝑇 *
𝜙(𝑥)𝑁) is the 𝑘-th exterior power of the dual of the tangent space 𝑇𝜙(𝑥)𝑁 . Thus, a mixed differential

form 𝑎 consists of homogeneous components 𝑎𝑖, 𝑖 = 0, 1, . . . , 𝑛, where the 𝑖-th homogeneous component rep-
resents a differential form of degree 𝑖.

The standard case of a mixed form on𝑀 corresponds to𝑀 = 𝑁 with 𝜙 = Id𝑀 .

INPUT:

• parent – graded algebra of mixed forms represented by MixedFormAlgebra where the mixed form
self shall belong to

• comp – (default: None) homogeneous components of the mixed form as a list; if none is provided, the
components are set to innocent unnamed differential forms

• name – (default: None) name given to the mixed form

• latex_name – (default: None) LaTeX symbol to denote the mixed form; if none is provided, the LaTeX
symbol is set to name

EXAMPLES:

Initialize a mixed form on a 2-dimensional parallelizable differentiable manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: e_xy = c_xy.frame()
sage: A = M.mixed_form(name= A); A

(continues on next page)

2.10. Mixed Differential Forms 727

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AlgebraElement
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElementWithMutability

Manifolds, Release 10.4.rc1

(continued from previous page)

Mixed differential form A on the 2-dimensional differentiable manifold M
sage: A.parent()
Graded algebra Omega^*(M) of mixed differential forms on the
2-dimensional differentiable manifold M

The default way to specify the 𝑖-th homogeneous component of a mixed form is by accessing it via A[i] or using
set_comp():

sage: A = M.mixed_form(name= A)
sage: A[0].set_expr(x) # scalar field
sage: A.set_comp(1)[0] = y*x
sage: A.set_comp(2)[0,1] = y^2*x
sage: A.display() # display names
A = A_0 + A_1 + A_2
sage: A.display_expansion() # display expansion in basis
A = x + x*y dx + x*y^2 dx∧dy

Another way to define the homogeneous components is using predefined differential forms:

sage: f = M.scalar_field(x, name= f); f
Scalar field f on the 2-dimensional differentiable manifold M
sage: omega = M.diff_form(1, name= omega); omega
1-form omega on the 2-dimensional differentiable manifold M
sage: omega[e_xy,0] = y*x; omega.display()
omega = x*y dx
sage: eta = M.diff_form(2, name= eta); eta
2-form eta on the 2-dimensional differentiable manifold M
sage: eta[e_xy,0,1] = y^2*x; eta.display()
eta = x*y^2 dx∧dy

The components of a mixed form B can then be set as follows:

sage: B = M.mixed_form(name= B)
sage: B[:] = [f, omega, eta]; B.display() # display names
B = f + omega + eta
sage: B.display_expansion() # display in coordinates
B = x + x*y dx + x*y^2 dx∧dy
sage: B[0]
Scalar field f on the 2-dimensional differentiable manifold M
sage: B[1]
1-form omega on the 2-dimensional differentiable manifold M
sage: B[2]
2-form eta on the 2-dimensional differentiable manifold M

As we can see, the names are applied. However note that the differential forms are different instances:

sage: f is B[0]
False

Alternatively, the components can be determined from scratch:

sage: B = M.mixed_form([f, omega, eta], name= B)
sage: B.display()
B = f + omega + eta

Mixed forms are elements of an algebra so they can be added, and multiplied via the wedge product:

728 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: C = x*A; C
Mixed differential form x∧A on the 2-dimensional differentiable
manifold M
sage: C.display_expansion()
x∧A = x^2 + x^2*y dx + x^2*y^2 dx∧dy
sage: D = A+C; D
Mixed differential form A+x∧A on the 2-dimensional differentiable
manifold M
sage: D.display_expansion()
A+x∧A = x^2 + x + (x^2 + x)*y dx + (x^2 + x)*y^2 dx∧dy
sage: E = A*C; E
Mixed differential form A∧(x∧A) on the 2-dimensional differentiable
manifold M
sage: E.display_expansion()
A∧(x∧A) = x^3 + 2*x^3*y dx + 2*x^3*y^2 dx∧dy

Coercions are fully implemented:

sage: F = omega*A
sage: F.display_expansion()
omega∧A = x^2*y dx
sage: G = omega+A
sage: G.display_expansion()
omega+A = x + 2*x*y dx + x*y^2 dx∧dy

Moreover, it is possible to compute the exterior derivative of a mixed form:

sage: dA = A.exterior_derivative(); dA.display()
dA = zero + dA_0 + dA_1
sage: dA.display_expansion()
dA = dx - x dx∧dy

Initialize a mixed form on a 2-dimensional non-parallelizable differentiable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames
sage: A = M.mixed_form(name= A)
sage: A[0].set_expr(x, c_xy)
sage: A[0].display()
A_0: M → ℝ
on U: (x, y) ↦ x
on W: (u, v) ↦ 1/2*u + 1/2*v
sage: A[1][0] = y*x; A[1].display(e_xy)
A_1 = x*y dx
sage: A[2][e_uv,0,1] = u*v^2; A[2].display(e_uv)
A_2 = u*v^2 du∧dv
sage: A.add_comp_by_continuation(e_uv, W, c_uv)
sage: A.display_expansion(e_uv)
A = 1/2*u + 1/2*v + (1/8*u^2 - 1/8*v^2) du + (1/8*u^2 - 1/8*v^2) dv + u*v^2 du∧dv

(continues on next page)

2.10. Mixed Differential Forms 729

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: A.add_comp_by_continuation(e_xy, W, c_xy)
sage: A.display_expansion(e_xy)
A = x + x*y dx + (-2*x^3 + 2*x^2*y + 2*x*y^2 - 2*y^3) dx∧dy

Since zero and one are special elements, their components cannot be changed:

sage: z = M.mixed_form_algebra().zero()
sage: z[0] = 1
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be changed
sage: one = M.mixed_form_algebra().one()
sage: one[0] = 0
Traceback (most recent call last):
...
ValueError: the components of an immutable element cannot be changed

add_comp_by_continuation(frame, subdomain, chart=None)
Set components with respect to a vector frame by continuation of the coordinate expression of the components
in a subframe.

The continuation is performed by demanding that the components have the same coordinate expression as
those on the restriction of the frame to a given subdomain.

INPUT:

• frame – vector frame 𝑒 in which the components are to be set

• subdomain – open subset of 𝑒’s domain in which the components are known or can be evaluated from
other components

• chart – (default: None) coordinate chart on 𝑒’s domain in which the extension of the expression of
the components is to be performed; if None, the default’s chart of 𝑒’s domain is assumed

EXAMPLES:

Mixed form defined by differential forms with components on different parts of the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: F = M.mixed_form(name= F) # No predefined components, here
sage: F[0] = M.scalar_field(x, name= f)
sage: F[1] = M.diff_form(1, {e_xy: [x,0]}, name= omega)
sage: F[2].set_name(name= eta)
sage: F[2][e_uv,0,1] = u*v
sage: F.add_comp_by_continuation(e_uv, W, c_uv)
sage: F.add_comp_by_continuation(e_xy, W, c_xy) # Now, F is fully defined
sage: F.display_expansion(e_xy)

(continues on next page)

730 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

F = x + x dx - x*y/(x^8 + 4*x^6*y^2 + 6*x^4*y^4 + 4*x^2*y^6 + y^8) dx∧dy
sage: F.display_expansion(e_uv)
F = u/(u^2 + v^2) - (u^3 - u*v^2)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) du -␣
→˓2*u^2*v/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) dv + u*v du∧dv

copy(name=None, latex_name=None)
Return an exact copy of self.

Note: The name and names of the components are not copied.

INPUT:

• name – (default: None) name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

EXAMPLES:

Initialize a 2-dimensional manifold and differential forms:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
sage: f = M.scalar_field(x, name= f , chart=c_xy)
sage: f.add_expr_by_continuation(c_uv, W)
sage: f.display()
f: M → ℝ
on U: (x, y) ↦ x
on V: (u, v) ↦ 1/2*u + 1/2*v
sage: omega = M.diff_form(1, name= omega)
sage: omega[e_xy,0] = x
sage: omega.add_comp_by_continuation(e_uv, W, c_uv)
sage: omega.display()
omega = x dx
sage: A = M.mixed_form([f, omega, 0], name= A); A.display()
A = f + omega + zero
sage: A.display_expansion(e_uv)
A = 1/2*u + 1/2*v + (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv

An exact copy is made. The copy is an entirely new instance and has a different name, but has the very same
values:

sage: B = A.copy(); B.display()
(unnamed scalar field) + (unnamed 1-form) + (unnamed 2-form)
sage: B.display_expansion(e_uv)
1/2*u + 1/2*v + (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv
sage: A == B
True

(continues on next page)

2.10. Mixed Differential Forms 731

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: A is B
False

derivative()

Compute the exterior derivative of self.

More precisely, the exterior derivative on Ω𝑘(𝑀,𝜙) is a linear map

d𝑘 : Ω𝑘(𝑀,𝜙) → Ω𝑘+1(𝑀,𝜙),

where Ω𝑘(𝑀,𝜙) denotes the space of differential forms of degree 𝑘 along 𝜙 (see exterior_deriva-
tive() for further information). By linear extension, this induces a map on Ω*(𝑀,𝜙):

d : Ω*(𝑀,𝜙) → Ω*(𝑀,𝜙).

OUTPUT:

• a MixedForm representing the exterior derivative of the mixed form

EXAMPLES:

Exterior derivative of a mixed form on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: f = M.scalar_field(z^2, name= f)
sage: f.disp()
f: M → ℝ

(x, y, z) ↦ z^2
sage: a = M.diff_form(2, a)
sage: a[1,2], a[1,3], a[2,3] = z+y^2, z+x, x^2
sage: a.disp()
a = (y^2 + z) dx∧dy + (x + z) dx∧dz + x^2 dy∧dz
sage: F = M.mixed_form([f, 0, a, 0], name= F); F.display()
F = f + zero + a + zero
sage: dF = F.exterior_derivative()
sage: dF.display()
dF = zero + df + dzero + da
sage: dF = F.exterior_derivative()
sage: dF.display_expansion()
dF = 2*z dz + (2*x + 1) dx∧dy∧dz

Due to long calculation times, the result is cached:

sage: F.exterior_derivative() is dF
True

disp()

Display the homogeneous components of the mixed form.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

sage: M = Manifold(2, M)
sage: f = M.scalar_field(name= f)
sage: omega = M.diff_form(1, name= omega)
sage: eta = M.diff_form(2, name= eta)

(continues on next page)

732 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: F = M.mixed_form([f, omega, eta], name= F); F
Mixed differential form F on the 2-dimensional differentiable
manifold M

sage: F.display() # display names of homogeneous components
F = f + omega + eta

disp_exp(frame=None, chart=None, from_chart=None)
Display the expansion in a particular basis and chart of mixed forms.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) vector frame with respect to which the mixed form is expanded; if None,
only the names of the components are displayed

• chart – (default: None) chart with respect to which the components of the mixed form in the selected
frame are expressed; if None, the default chart of the vector frame domain is assumed

EXAMPLES:

Display the expansion of a mixed form on a 2-dimensional non-parallelizable differentiable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x-y, x+y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames
sage: omega = M.diff_form(1, name= omega)
sage: omega[e_xy,0] = x; omega.display(e_xy)
omega = x dx
sage: omega.add_comp_by_continuation(e_uv, W, c_uv) # continuation onto M
sage: eta = M.diff_form(2, name= eta)
sage: eta[e_uv,0,1] = u*v; eta.display(e_uv)
eta = u*v du∧dv
sage: eta.add_comp_by_continuation(e_xy, W, c_xy) # continuation onto M
sage: F = M.mixed_form([0, omega, eta], name= F); F
Mixed differential form F on the 2-dimensional differentiable
manifold M

sage: F.display() # display names of homogeneous components
F = zero + omega + eta
sage: F.display_expansion(e_uv)
F = (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv + u*v du∧dv
sage: F.display_expansion(e_xy)
F = x dx + (2*x^2 - 2*y^2) dx∧dy

display()

Display the homogeneous components of the mixed form.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

2.10. Mixed Differential Forms 733

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: f = M.scalar_field(name= f)
sage: omega = M.diff_form(1, name= omega)
sage: eta = M.diff_form(2, name= eta)
sage: F = M.mixed_form([f, omega, eta], name= F); F
Mixed differential form F on the 2-dimensional differentiable
manifold M

sage: F.display() # display names of homogeneous components
F = f + omega + eta

display_exp(frame=None, chart=None, from_chart=None)
Display the expansion in a particular basis and chart of mixed forms.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) vector frame with respect to which the mixed form is expanded; if None,
only the names of the components are displayed

• chart – (default: None) chart with respect to which the components of the mixed form in the selected
frame are expressed; if None, the default chart of the vector frame domain is assumed

EXAMPLES:

Display the expansion of a mixed form on a 2-dimensional non-parallelizable differentiable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x-y, x+y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames
sage: omega = M.diff_form(1, name= omega)
sage: omega[e_xy,0] = x; omega.display(e_xy)
omega = x dx
sage: omega.add_comp_by_continuation(e_uv, W, c_uv) # continuation onto M
sage: eta = M.diff_form(2, name= eta)
sage: eta[e_uv,0,1] = u*v; eta.display(e_uv)
eta = u*v du∧dv
sage: eta.add_comp_by_continuation(e_xy, W, c_xy) # continuation onto M
sage: F = M.mixed_form([0, omega, eta], name= F); F
Mixed differential form F on the 2-dimensional differentiable
manifold M

sage: F.display() # display names of homogeneous components
F = zero + omega + eta
sage: F.display_expansion(e_uv)
F = (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv + u*v du∧dv
sage: F.display_expansion(e_xy)
F = x dx + (2*x^2 - 2*y^2) dx∧dy

display_expansion(frame=None, chart=None, from_chart=None)
Display the expansion in a particular basis and chart of mixed forms.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

734 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

INPUT:

• frame – (default: None) vector frame with respect to which the mixed form is expanded; if None,
only the names of the components are displayed

• chart – (default: None) chart with respect to which the components of the mixed form in the selected
frame are expressed; if None, the default chart of the vector frame domain is assumed

EXAMPLES:

Display the expansion of a mixed form on a 2-dimensional non-parallelizable differentiable manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x-y, x+y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames
sage: omega = M.diff_form(1, name= omega)
sage: omega[e_xy,0] = x; omega.display(e_xy)
omega = x dx
sage: omega.add_comp_by_continuation(e_uv, W, c_uv) # continuation onto M
sage: eta = M.diff_form(2, name= eta)
sage: eta[e_uv,0,1] = u*v; eta.display(e_uv)
eta = u*v du∧dv
sage: eta.add_comp_by_continuation(e_xy, W, c_xy) # continuation onto M
sage: F = M.mixed_form([0, omega, eta], name= F); F
Mixed differential form F on the 2-dimensional differentiable
manifold M

sage: F.display() # display names of homogeneous components
F = zero + omega + eta
sage: F.display_expansion(e_uv)
F = (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv + u*v du∧dv
sage: F.display_expansion(e_xy)
F = x dx + (2*x^2 - 2*y^2) dx∧dy

exterior_derivative()

Compute the exterior derivative of self.

More precisely, the exterior derivative on Ω𝑘(𝑀,𝜙) is a linear map

d𝑘 : Ω𝑘(𝑀,𝜙) → Ω𝑘+1(𝑀,𝜙),

where Ω𝑘(𝑀,𝜙) denotes the space of differential forms of degree 𝑘 along 𝜙 (see exterior_deriva-
tive() for further information). By linear extension, this induces a map on Ω*(𝑀,𝜙):

d : Ω*(𝑀,𝜙) → Ω*(𝑀,𝜙).

OUTPUT:

• a MixedForm representing the exterior derivative of the mixed form

EXAMPLES:

Exterior derivative of a mixed form on a 3-dimensional manifold:

2.10. Mixed Differential Forms 735

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: f = M.scalar_field(z^2, name= f)
sage: f.disp()
f: M → ℝ

(x, y, z) ↦ z^2
sage: a = M.diff_form(2, a)
sage: a[1,2], a[1,3], a[2,3] = z+y^2, z+x, x^2
sage: a.disp()
a = (y^2 + z) dx∧dy + (x + z) dx∧dz + x^2 dy∧dz
sage: F = M.mixed_form([f, 0, a, 0], name= F); F.display()
F = f + zero + a + zero
sage: dF = F.exterior_derivative()
sage: dF.display()
dF = zero + df + dzero + da
sage: dF = F.exterior_derivative()
sage: dF.display_expansion()
dF = 2*z dz + (2*x + 1) dx∧dy∧dz

Due to long calculation times, the result is cached:

sage: F.exterior_derivative() is dF
True

irange(start=None)
Single index generator.

INPUT:

• start – (default: None) initial value 𝑖0 of the index between 0 and 𝑛, where 𝑛 is the manifold’s
dimension; if none is provided, the value 0 is assumed

OUTPUT:

• an iterable index, starting from 𝑖0 and ending at 𝑛, where 𝑛 is the manifold’s dimension

EXAMPLES:

sage: M = Manifold(3, M)
sage: a = M.mixed_form(name= a)
sage: list(a.irange())
[0, 1, 2, 3]
sage: list(a.irange(2))
[2, 3]

restrict(subdomain, dest_map=None)
Return the restriction of self to some subdomain.

INPUT:

• subdomain – DifferentiableManifold; open subset 𝑈 of the domain of self

• dest_map – DiffMap (default: None); destination map Ψ : 𝑈 → 𝑉 , where 𝑉 is an open subset
of the manifold 𝑁 where the mixed form takes it values; if None, the restriction of Φ to 𝑈 is used, Φ
being the differentiable map 𝑆 →𝑀 associated with the mixed form

OUTPUT:

• MixedForm representing the restriction

736 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

Initialize the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()

And predefine some forms:

sage: f = M.scalar_field(x^2, name= f , chart=c_xy)
sage: f.add_expr_by_continuation(c_uv, W)
sage: omega = M.diff_form(1, name= omega)
sage: omega[e_xy,0] = y^2
sage: omega.add_comp_by_continuation(e_uv, W, c_uv)
sage: eta = M.diff_form(2, name= eta)
sage: eta[e_xy,0,1] = x^2*y^2
sage: eta.add_comp_by_continuation(e_uv, W, c_uv)

Now, a mixed form can be restricted to some subdomain:

sage: F = M.mixed_form([f, omega, eta], name= F)
sage: FV = F.restrict(V); FV
Mixed differential form F on the Open subset V of the 2-dimensional
differentiable manifold M

sage: FV[:]
[Scalar field f on the Open subset V of the 2-dimensional
differentiable manifold M,
1-form omega on the Open subset V of the 2-dimensional
differentiable manifold M,
2-form eta on the Open subset V of the 2-dimensional
differentiable manifold M]

sage: FV.display_expansion(e_uv)
F = u^2/(u^4 + 2*u^2*v^2 + v^4) - (u^2*v^2 - v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^
→˓4 + 4*u^2*v^6 + v^8) du - 2*u*v^3/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6␣
→˓+ v^8) dv - u^2*v^2/(u^12 + 6*u^10*v^2 + 15*u^8*v^4 + 20*u^6*v^6 + 15*u^4*v^
→˓8 + 6*u^2*v^10 + v^12) du∧dv

set_comp(i)
Return the 𝑖-th homogeneous component for assignment.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: A = M.mixed_form(name= A)
sage: A.set_comp(0).set_expr(x^2) # scalar field
sage: A.set_comp(1)[:] = [-y, x]
sage: A.set_comp(2)[0,1] = x-y

(continues on next page)

2.10. Mixed Differential Forms 737

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: A.display()
A = A_0 + A_1 + A_2
sage: A.display_expansion()
A = x^2 - y dx + x dy + (x - y) dx∧dy

set_immutable()

Set self and homogeneous components of self immutable.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field(x^2, name= f)
sage: A = M.mixed_form([f, 0, 0], name= A)
sage: A.set_immutable()
sage: A.is_immutable()
True
sage: A[0].is_immutable()
True
sage: f.is_immutable()
False

set_name(name=None, latex_name=None, apply_to_comp=True)
Redefine the string and LaTeX representation of the object.

INPUT:

• name – (default: None) name given to the mixed form

• latex_name – (default: None) LaTeX symbol to denote the mixed form; if none is provided, the
LaTeX symbol is set to name

• apply_to_comp – (default: True) if True all homogeneous components will be renamed accord-
ingly; if False only the mixed form will be renamed

EXAMPLES:

Rename a mixed form:

sage: M = Manifold(4, M)
sage: F = M.mixed_form(name= dummy , latex_name=r \ugly); F
Mixed differential form dummy on the 4-dimensional differentiable
manifold M

sage: latex(F)
\ugly
sage: F.set_name(name= F , latex_name=r \mathcal{F}); F
Mixed differential form F on the 4-dimensional differentiable
manifold M

sage: latex(F)
\mathcal{F}

If not stated otherwise, all homogeneous components are renamed accordingly:

sage: F.display()
F = F_0 + F_1 + F_2 + F_3 + F_4

Setting the argument set_all to False prevents the renaming in the homogeneous components:

738 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: F.set_name(name= eta , latex_name=r \eta , apply_to_comp=False)
sage: F.display()
eta = F_0 + F_1 + F_2 + F_3 + F_4

To rename a homogeneous component individually, we simply access the homogeneous component and use
its set_name() method:

sage: F[0].set_name(name= g); F.display()
eta = g + F_1 + F_2 + F_3 + F_4

set_restriction(rst)
Set a (component-wise) restriction of self to some subdomain.

INPUT:

• rst – MixedForm of the same type as self, defined on a subdomain of the domain of self

EXAMPLES:

Initialize the 2-sphere:

sage: M = Manifold(2, M) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()

And define some forms on the subset U:

sage: f = U.scalar_field(x, name= f , chart=c_xy)
sage: omega = U.diff_form(1, name= omega)
sage: omega[e_xy,0] = y
sage: AU = U.mixed_form([f, omega, 0], name= A); AU
Mixed differential form A on the Open subset U of the 2-dimensional
differentiable manifold M

sage: AU.display_expansion(e_xy)
A = x + y dx

A mixed form on M can be specified by some mixed form on a subset:

sage: A = M.mixed_form(name= A); A
Mixed differential form A on the 2-dimensional differentiable
manifold M

sage: A.set_restriction(AU)
sage: A.display_expansion(e_xy)
A = x + y dx
sage: A.add_comp_by_continuation(e_uv, W, c_uv)
sage: A.display_expansion(e_uv)
A = u/(u^2 + v^2) - (u^2*v - v^3)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) du -␣
→˓2*u*v^2/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) dv
sage: A.restrict(U) == AU
True

2.10. Mixed Differential Forms 739

Manifolds, Release 10.4.rc1

wedge(other)
Wedge product on the graded algebra of mixed forms.

More precisely, the wedge product is a bilinear map

∧ : Ω𝑘(𝑀,𝜙)× Ω𝑙(𝑀,𝜙) → Ω𝑘+𝑙(𝑀,𝜙),

where Ω𝑘(𝑀,𝜙) denotes the space of differential forms of degree 𝑘 along 𝜙. By bilinear extension, this
induces a map

∧ : Ω*(𝑀,𝜙)× Ω*(𝑀,𝜙) → Ω*(𝑀,𝜙)``

and equips Ω*(𝑀,𝜙) with a multiplication such that it becomes a graded algebra.

INPUT:

• other – mixed form in the same algebra as self

OUTPUT:

• the mixed form resulting from the wedge product of self with other

EXAMPLES:

Initialize a mixed form on a 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: c_xyz.<x,y,z> = M.chart()
sage: f = M.scalar_field(x, name= f)
sage: f.display()
f: M → ℝ

(x, y, z) ↦ x
sage: g = M.scalar_field(y, name= g)
sage: g.display()
g: M → ℝ

(x, y, z) ↦ y
sage: omega = M.diff_form(1, name= omega)
sage: omega[0] = x
sage: omega.display()
omega = x dx
sage: eta = M.diff_form(1, name= eta)
sage: eta[1] = y
sage: eta.display()
eta = y dy
sage: mu = M.diff_form(2, name= mu)
sage: mu[0,2] = z
sage: mu.display()
mu = z dx∧dz
sage: A = M.mixed_form([f, omega, mu, 0], name= A)
sage: A.display_expansion()
A = x + x dx + z dx∧dz
sage: B = M.mixed_form([g, eta, mu, 0], name= B)
sage: B.display_expansion()
B = y + y dy + z dx∧dz

The wedge product of A and B yields:

sage: C = A.wedge(B); C
Mixed differential form A∧B on the 3-dimensional differentiable
manifold M

(continues on next page)

740 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: C.display_expansion()
A∧B = x*y + x*y dx + x*y dy + x*y dx∧dy + (x + y)*z dx∧dz - y*z dx∧dy∧dz
sage: D = B.wedge(A); D # Don t even try, it s not commutative!
Mixed differential form B∧A on the 3-dimensional differentiable
manifold M

sage: D.display_expansion() # I told you so!
B∧A = x*y + x*y dx + x*y dy - x*y dx∧dy + (x + y)*z dx∧dz - y*z dx∧dy∧dz

Alternatively, the multiplication symbol can be used:

sage: A*B
Mixed differential form A∧B on the 3-dimensional differentiable
manifold M

sage: A*B == C
True

Yet, the multiplication includes coercions:

sage: E = x*A; E.display_expansion()
x∧A = x^2 + x^2 dx + x*z dx∧dz
sage: F = A*eta; F.display_expansion()
A∧eta = x*y dy + x*y dx∧dy - y*z dx∧dy∧dz

2.11 De Rham Cohomology

Let𝑀 and𝑁 be differentiable manifolds and𝜙 : 𝑀 → 𝑁 be a differentiable map. Then the associated de Rham complex
is given by

0 → Ω0(𝑀,𝜙)
d0−→ Ω1(𝑀,𝜙)

d1−→ . . .
d𝑛−1−−−→ Ω𝑛(𝑀,𝜙)

d𝑛−→ 0,

where Ω𝑘(𝑀,𝜙) is the module of differential forms of degree 𝑘, and 𝑑𝑘 is the associated exterior derivative. Then the
𝑘-th de Rham cohomology group is given by

𝐻𝑘
dR(𝑀,𝜙) = ker(d𝑘)/im(d𝑘−1) ,

and the corresponding ring is obtained by

𝐻*
dR(𝑀,𝜙) =

𝑛⨁︁
𝑘=0

𝐻𝑘
dR(𝑀,𝜙).

The de Rham cohomology ring is implemented via DeRhamCohomologyRing. Its elements, the cohomology classes,
are represented by DeRhamCohomologyClass.

AUTHORS:

• Michael Jung (2021) : initial version

class sage.manifolds.differentiable.de_rham_cohomology.DeRhamCohomologyClass(par-
ent,
rep-
re-
sen-
ta-
tive)

2.11. De Rham Cohomology 741

Manifolds, Release 10.4.rc1

Bases: AlgebraElement

Define a cohomology class in the de Rham cohomology ring.

INPUT:

• parent – de Rham cohomology ring represented by an instance of DeRhamCohomologyRing

• representative – a closed (mixed) differential form representing the cohomology class

Note: The current implementation only provides basic features. Comparison via exact forms are not supported at
the time being.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: omega = M.diff_form(1, [1,1], name= omega)
sage: u = H(omega); u
[omega]

Cohomology classes can be lifted to the algebra of mixed differential forms:

sage: u.lift()
Mixed differential form omega on the 2-dimensional differentiable
manifold M

However, comparison of two cohomology classes is limited the time being:

sage: eta = M.diff_form(1, [1,1], name= eta)
sage: H(eta) == u
True
sage: H.one() == u
Traceback (most recent call last):
...
NotImplementedError: comparison via exact forms is currently not supported

cup(other)
Cup product of two cohomology classes.

INPUT:

• other – another cohomology class in the de Rham cohomology

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: omega = M.diff_form(1, [1,1], name= omega)
sage: eta = M.diff_form(1, [1,-1], name= eta)
sage: H(omega).cup(H(eta))
[omega∧eta]

742 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AlgebraElement

Manifolds, Release 10.4.rc1

lift()

Return a representative of self in the associated de Rham complex.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: omega = M.diff_form(2, name= omega)
sage: omega[0,1] = x
sage: omega.display()
omega = x dx∧dy
sage: u = H(omega); u
[omega]
sage: u.representative()
Mixed differential form omega on the 2-dimensional differentiable
manifold M

representative()

Return a representative of self in the associated de Rham complex.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: omega = M.diff_form(2, name= omega)
sage: omega[0,1] = x
sage: omega.display()
omega = x dx∧dy
sage: u = H(omega); u
[omega]
sage: u.representative()
Mixed differential form omega on the 2-dimensional differentiable
manifold M

class sage.manifolds.differentiable.de_rham_cohomology.DeRhamCohomologyRing(de_rham_com-
plex)

Bases: Parent, UniqueRepresentation

The de Rham cohomology ring of a de Rham complex.

This ring is naturally endowed with a multiplication induced by the wedge product, called cup product, see
DeRhamCohomologyClass.cup().

Note: The current implementation only provides basic features. Comparison via exact forms are not supported at
the time being.

INPUT:

• de_rham_complex – a de Rham complex, typically an instance of MixedFormAlgebra

EXAMPLES:

We define the de Rham cohomology ring on a parallelizable manifold𝑀 :

2.11. De Rham Cohomology 743

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: C = M.de_rham_complex()
sage: H = C.cohomology(); H
De Rham cohomology ring on the 2-dimensional differentiable manifold M

Its elements are induced by closed differential forms on𝑀 :

sage: beta = M.diff_form(1, [1,0], name= beta)
sage: beta.display()
beta = dx
sage: d1 = C.differential(1)
sage: d1(beta).display()
dbeta = 0
sage: b = H(beta); b
[beta]

Cohomology classes can be lifted to the algebra of mixed differential forms:

sage: b.representative()
Mixed differential form beta on the 2-dimensional differentiable
manifold M

The ring admits a zero and unit element:

sage: H.zero()
[zero]
sage: H.one()
[one]

Element

alias of DeRhamCohomologyClass

one()

Return the one element of self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: H.one()
[one]
sage: H.one().representative()
Mixed differential form one on the 2-dimensional differentiable
manifold M

zero()

Return the zero element of self.

EXAMPLES:

sage: M = Manifold(2, M)
sage: C = M.de_rham_complex()
sage: H = C.cohomology()
sage: H.zero()
[zero]

(continues on next page)

744 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: H.zero().representative()
Mixed differential form zero on the 2-dimensional differentiable
manifold M

2.12 Alternating Multivector Fields

2.12.1 Multivector Field Modules

The set 𝐴𝑝(𝑈,Φ) of 𝑝-vector fields along a differentiable manifold 𝑈 with values on a differentiable manifold𝑀 via a
differentiable map Φ : 𝑈 → 𝑀 (possibly 𝑈 = 𝑀 and Φ = Id𝑀) is a module over the algebra 𝐶𝑘(𝑈) of differentiable
scalar fields on 𝑈 . It is a free module if and only if𝑀 is parallelizable. Accordingly, two classes implement 𝐴𝑝(𝑈,Φ):

• MultivectorModule for 𝑝-vector fields with values on a generic (in practice, not parallelizable) differentiable
manifold𝑀

• MultivectorFreeModule for 𝑝-vector fields with values on a parallelizable manifold𝑀

AUTHORS:

• Eric Gourgoulhon (2017): initial version

REFERENCES:

• R. L. Bishop and S. L. Goldberg (1980) [BG1980]

• C.-M. Marle (1997) [Mar1997]

class sage.manifolds.differentiable.multivector_module.MultivectorFreeModule(vec-
tor_field_mod-
ule,
de-
gree)

Bases: ExtPowerFreeModule

Free module of multivector fields of a given degree 𝑝 (𝑝-vector fields) along a differentiable manifold 𝑈 with values
on a parallelizable manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a parallelizable manifold 𝑀 of
dimension 𝑛, the set 𝐴𝑝(𝑈,Φ) of 𝑝-vector fields (i.e. alternating tensor fields of type (𝑝, 0)) along 𝑈 with values
on𝑀 is a free module of rank

(︀
𝑛
𝑝

)︀
over 𝐶𝑘(𝑈), the commutative algebra of differentiable scalar fields on 𝑈 (see

DiffScalarFieldAlgebra). The standard case of 𝑝-vector fields on a differentiablemanifold𝑀 corresponds
to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then
an open interval of R).

Note: This class implements 𝐴𝑝(𝑈,Φ) in the case where𝑀 is parallelizable; 𝐴𝑝(𝑈,Φ) is then a free module. If
𝑀 is not parallelizable, the class MultivectorModule must be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 associated with the map Φ :
𝑈 → 𝑉

• degree – positive integer; the degree 𝑝 of the multivector fields

2.12. Alternating Multivector Fields 745

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule

Manifolds, Release 10.4.rc1

EXAMPLES:

Free module of 2-vector fields on a parallelizable 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: XM = M.vector_field_module() ; XM
Free module X(M) of vector fields on the 3-dimensional
differentiable manifold M
sage: A = M.multivector_module(2) ; A
Free module A^2(M) of 2-vector fields on the 3-dimensional
differentiable manifold M
sage: latex(A)
A^{2}\left(M\right)

A is nothing but the second exterior power of XM, i.e. we have𝐴2(𝑀) = Λ2(X(𝑀)) (see ExtPowerFreeMod-
ule):

sage: A is XM.exterior_power(2)
True

𝐴2(𝑀) is a module over the algebra 𝐶𝑘(𝑀) of (differentiable) scalar fields on𝑀 :

sage: A.category()
Category of finite dimensional modules over Algebra of
differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: CM = M.scalar_field_algebra() ; CM
Algebra of differentiable scalar fields on the 3-dimensional
differentiable manifold M
sage: A in Modules(CM)
True
sage: A.base_ring()
Algebra of differentiable scalar fields on
the 3-dimensional differentiable manifold M
sage: A.base_module()
Free module X(M) of vector fields on
the 3-dimensional differentiable manifold M
sage: A.base_module() is XM
True
sage: A.rank()
3

Elements can be constructed from 𝐴. In particular, 0 yields the zero element of 𝐴:

sage: A(0)
2-vector field zero on the 3-dimensional differentiable
manifold M
sage: A(0) is A.zero()
True

while non-zero elements are constructed by providing their components in a given vector frame:

sage: comp = [[0,3*x,-z],[-3*x,0,4],[z,-4,0]]
sage: a = A(comp, frame=X.frame(), name= a) ; a
2-vector field a on the 3-dimensional differentiable manifold M
sage: a.display()
a = 3*x ∂/∂x∧∂/∂y - z ∂/∂x∧∂/∂z + 4 ∂/∂y∧∂/∂z

746 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule

Manifolds, Release 10.4.rc1

An alternative is to construct the 2-vector field from an empty list of components and to set the nonzero nonredun-
dant components afterwards:

sage: a = A([], name= a)
sage: a[0,1] = 3*x # component in the manifold s default frame
sage: a[0,2] = -z
sage: a[1,2] = 4
sage: a.display()
a = 3*x ∂/∂x∧∂/∂y - z ∂/∂x∧∂/∂z + 4 ∂/∂y∧∂/∂z

The module 𝐴1(𝑀) is nothing but X(𝑀) (the free module of vector fields on𝑀):

sage: A1 = M.multivector_module(1) ; A1
Free module X(M) of vector fields on the 3-dimensional
differentiable manifold M
sage: A1 is XM
True

There is a coercion map 𝐴𝑝(𝑀) → 𝑇 (𝑝,0)(𝑀):

sage: T20 = M.tensor_field_module((2,0)); T20
Free module T^(2,0)(M) of type-(2,0) tensors fields on the
3-dimensional differentiable manifold M
sage: T20.has_coerce_map_from(A)
True

but of course not in the reverse direction, since not all contravariant tensor field is alternating:

sage: A.has_coerce_map_from(T20)
False

The coercion map 𝐴2(𝑀) → 𝑇 (2,0)(𝑀) in action:

sage: T20 = M.tensor_field_module((2,0)) ; T20
Free module T^(2,0)(M) of type-(2,0) tensors fields on the
3-dimensional differentiable manifold M
sage: ta = T20(a) ; ta
Tensor field a of type (2,0) on the 3-dimensional differentiable
manifold M
sage: ta.display()
a = 3*x ∂/∂x⊗∂/∂y - z ∂/∂x⊗∂/∂z - 3*x ∂/∂y⊗∂/∂x + 4 ∂/∂y⊗∂/∂z
+ z ∂/∂z⊗∂/∂x - 4 ∂/∂z⊗∂/∂y
sage: a.display()
a = 3*x ∂/∂x∧∂/∂y - z ∂/∂x∧∂/∂z + 4 ∂/∂y∧∂/∂z
sage: ta.symmetries() # the antisymmetry is preserved
no symmetry; antisymmetry: (0, 1)

There is also coercion to subdomains, which is nothing but the restriction of the multivector field to some subset of
its domain:

sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1})
sage: B = U.multivector_module(2) ; B
Free module A^2(U) of 2-vector fields on the Open subset U of the
3-dimensional differentiable manifold M
sage: B.has_coerce_map_from(A)
True
sage: a_U = B(a) ; a_U
2-vector field a on the Open subset U of the 3-dimensional

(continues on next page)

2.12. Alternating Multivector Fields 747

Manifolds, Release 10.4.rc1

(continued from previous page)

differentiable manifold M
sage: a_U.display()
a = 3*x ∂/∂x∧∂/∂y - z ∂/∂x∧∂/∂z + 4 ∂/∂y∧∂/∂z

Element

alias of MultivectorFieldParal

class sage.manifolds.differentiable.multivector_module.MultivectorModule(vec-
tor_field_mod-
ule,
degree)

Bases: UniqueRepresentation, Parent

Module of multivector fields of a given degree 𝑝 (𝑝-vector fields) along a differentiable manifold 𝑈 with values on
a differentiable manifold𝑀 .

Given a differentiable manifold 𝑈 and a differentiable map Φ : 𝑈 → 𝑀 to a differentiable manifold𝑀 , the set
𝐴𝑝(𝑈,Φ) of 𝑝-vector fields (i.e. alternating tensor fields of type (𝑝, 0)) along 𝑈 with values on 𝑀 is a module
over 𝐶𝑘(𝑈), the commutative algebra of differentiable scalar fields on 𝑈 (see DiffScalarFieldAlgebra).
The standard case of 𝑝-vector fields on a differentiable manifold𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: This class implements 𝐴𝑝(𝑈,Φ) in the case where 𝑀 is not assumed to be parallelizable; the module
𝐴𝑝(𝑈,Φ) is then not necessarily free. If 𝑀 is parallelizable, the class MultivectorFreeModule must be
used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on 𝑀 via the map
Φ : 𝑈 →𝑀

• degree – positive integer; the degree 𝑝 of the multivector fields

EXAMPLES:

Module of 2-vector fields on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W , restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: XM = M.vector_field_module() ; XM
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: A = M.multivector_module(2) ; A
Module A^2(M) of 2-vector fields on the 2-dimensional
differentiable manifold M
sage: latex(A)
A^{2}\left(M\right)

A is nothing but the second exterior power of XM, i.e. we have 𝐴2(𝑀) = Λ2(X(𝑀)):

748 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Manifolds, Release 10.4.rc1

sage: A is XM.exterior_power(2)
True

Modules of multivector fields are unique:

sage: A is M.multivector_module(2)
True

𝐴2(𝑀) is a module over the algebra 𝐶𝑘(𝑀) of (differentiable) scalar fields on𝑀 :

sage: A.category()
Category of modules over Algebra of differentiable scalar fields
on the 2-dimensional differentiable manifold M
sage: CM = M.scalar_field_algebra() ; CM
Algebra of differentiable scalar fields on the 2-dimensional
differentiable manifold M
sage: A in Modules(CM)
True
sage: A.base_ring() is CM
True
sage: A.base_module()
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: A.base_module() is XM
True

Elements can be constructed from A(). In particular, 0 yields the zero element of A:

sage: z = A(0) ; z
2-vector field zero on the 2-dimensional differentiable
manifold M
sage: z.display(eU)
zero = 0
sage: z.display(eV)
zero = 0
sage: z is A.zero()
True

while non-zero elements are constructed by providing their components in a given vector frame:

sage: a = A([[0,3*x],[-3*x,0]], frame=eU, name= a) ; a
2-vector field a on the 2-dimensional differentiable manifold M
sage: a.add_comp_by_continuation(eV, W, c_uv) # finishes initializ. of a
sage: a.display(eU)
a = 3*x ∂/∂x∧∂/∂y
sage: a.display(eV)
a = (-3*u - 3*v) ∂/∂u∧∂/∂v

An alternative is to construct the 2-vector field from an empty list of components and to set the nonzero nonredun-
dant components afterwards:

sage: a = A([], name= a)
sage: a[eU,0,1] = 3*x
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = 3*x ∂/∂x∧∂/∂y
sage: a.display(eV)
a = (-3*u - 3*v) ∂/∂u∧∂/∂v

2.12. Alternating Multivector Fields 749

Manifolds, Release 10.4.rc1

The module 𝐴1(𝑀) is nothing but the dual of X(𝑀) (the module of vector fields on𝑀):

sage: A1 = M.multivector_module(1) ; A1
Module X(M) of vector fields on the 2-dimensional differentiable
manifold M
sage: A1 is XM
True

There is a coercion map 𝐴𝑝(𝑀) → 𝑇 (𝑝,0)(𝑀):

sage: T20 = M.tensor_field_module((2,0)) ; T20
Module T^(2,0)(M) of type-(2,0) tensors fields on the
2-dimensional differentiable manifold M
sage: T20.has_coerce_map_from(A)
True

but of course not in the reverse direction, since not all contravariant tensor field is alternating:

sage: A.has_coerce_map_from(T20)
False

The coercion map 𝐴2(𝑀) → 𝑇 (2,0)(𝑀) in action:

sage: ta = T20(a) ; ta
Tensor field a of type (2,0) on the 2-dimensional differentiable
manifold M
sage: ta.display(eU)
a = 3*x ∂/∂x⊗∂/∂y - 3*x ∂/∂y⊗∂/∂x
sage: a.display(eU)
a = 3*x ∂/∂x∧∂/∂y
sage: ta.display(eV)
a = (-3*u - 3*v) ∂/∂u⊗∂/∂v + (3*u + 3*v) ∂/∂v⊗∂/∂u
sage: a.display(eV)
a = (-3*u - 3*v) ∂/∂u∧∂/∂v

There is also coercion to subdomains, which is nothing but the restriction of the multivector field to some subset of
its domain:

sage: A2U = U.multivector_module(2) ; A2U
Free module A^2(U) of 2-vector fields on the Open subset U of
the 2-dimensional differentiable manifold M
sage: A2U.has_coerce_map_from(A)
True
sage: a_U = A2U(a) ; a_U
2-vector field a on the Open subset U of the 2-dimensional
differentiable manifold M
sage: a_U.display(eU)
a = 3*x ∂/∂x∧∂/∂y

Element

alias of MultivectorField

base_module()

Return the vector field module on which the multivector field module self is constructed.

OUTPUT:

• a VectorFieldModule representing the module on which self is defined

750 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(3, M)
sage: A2 = M.multivector_module(2) ; A2
Module A^2(M) of 2-vector fields on the 3-dimensional
differentiable manifold M

sage: A2.base_module()
Module X(M) of vector fields on the 3-dimensional
differentiable manifold M

sage: A2.base_module() is M.vector_field_module()
True
sage: U = M.open_subset(U)
sage: A2U = U.multivector_module(2) ; A2U
Module A^2(U) of 2-vector fields on the Open subset U of the
3-dimensional differentiable manifold M

sage: A2U.base_module()
Module X(U) of vector fields on the Open subset U of the
3-dimensional differentiable manifold M

degree()

Return the degree of the multivector fields in self.

OUTPUT:

• integer 𝑝 such that self is a set of 𝑝-vector fields

EXAMPLES:

sage: M = Manifold(3, M)
sage: M.multivector_module(2).degree()
2
sage: M.multivector_module(3).degree()
3

zero()

Return the zero of self.

EXAMPLES:

sage: M = Manifold(3, M)
sage: A2 = M.multivector_module(2)
sage: A2.zero()
2-vector field zero on the 3-dimensional differentiable
manifold M

2.12.2 Multivector Fields

Let 𝑈 and 𝑀 be two differentiable manifolds. Given a positive integer 𝑝 and a differentiable map Φ : 𝑈 → 𝑀 , a
multivector field of degree 𝑝, or 𝑝-vector field, along 𝑈 with values on𝑀 is a field along 𝑈 of alternating contravariant
tensors of rank 𝑝 in the tangent spaces to 𝑀 . The standard case of a multivector field on a differentiable manifold
corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is
then an open interval of R).

Two classes implement multivector fields, depending whether the manifold𝑀 is parallelizable:

• MultivectorFieldParal when𝑀 is parallelizable

• MultivectorField when𝑀 is not assumed parallelizable.

2.12. Alternating Multivector Fields 751

Manifolds, Release 10.4.rc1

AUTHORS:

• Eric Gourgoulhon (2017): initial version

REFERENCES:

• R. L. Bishop and S. L. Goldberg (1980) [BG1980]

• C.-M. Marle (1997) [Mar1997]

class sage.manifolds.differentiable.multivectorfield.MultivectorField(vec-
tor_field_mod-
ule, degree,
name=None,
la-
tex_name=None)

Bases: TensorField

Multivector field with values on a generic (i.e. a priori not parallelizable) differentiable manifold.

Given a differentiable manifold 𝑈 , a differentiable map Φ : 𝑈 →𝑀 to a differentiable manifold𝑀 and a positive
integer 𝑝, a multivector field of degree 𝑝 (or 𝑝-vector field) along 𝑈 with values on𝑀 ⊃ Φ(𝑈) is a differentiable
map

𝑎 : 𝑈 −→ 𝑇 (𝑝,0)𝑀

(𝑇 (𝑝,0)𝑀 being the tensor bundle of type (𝑝, 0) over𝑀) such that

∀𝑥 ∈ 𝑈, 𝑎(𝑥) ∈ Λ𝑝(𝑇Φ(𝑥)𝑀),

where 𝑇Φ(𝑥)𝑀 is the vector space tangent to 𝑀 at Φ(𝑥) and Λ𝑝 stands for the exterior power of degree 𝑝 (cf.
ExtPowerFreeModule). In other words, 𝑎(𝑥) is an alternating contravariant tensor of degree 𝑝 of the tangent
vector space 𝑇Φ(𝑥)𝑀 .

The standard case of a multivector field on a manifold𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is parallelizable, the class MultivectorFieldParal must be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 via the map Φ

• degree – the degree of the multivector field (i.e. its tensor rank)

• name – (default: None) name given to the multivector field

• latex_name – (default: None) LaTeX symbol to denote the multivector field; if none is provided, the
LaTeX symbol is set to name

EXAMPLES:

Multivector field of degree 2 on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W ,

(continues on next page)

752 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule

Manifolds, Release 10.4.rc1

(continued from previous page)

....: restrictions1= x>0, restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: a = M.multivector_field(2, name= a) ; a
2-vector field a on the 2-dimensional differentiable manifold M
sage: a.parent()
Module A^2(M) of 2-vector fields on the 2-dimensional differentiable
manifold M
sage: a.degree()
2

Setting the components of a:

sage: a[eU,0,1] = x*y^2 + 2*x
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = (x*y^2 + 2*x) ∂/∂x∧∂/∂y
sage: a.display(eV)
a = (-1/4*u^3 + 1/4*u*v^2 - 1/4*v^3 + 1/4*(u^2 - 8)*v - 2*u) ∂/∂u∧∂/∂v

It is also possible to set the components while defining the 2-vector field definition, via a dictionary whose keys are
the vector frames:

sage: a1 = M.multivector_field(2, {eU: [[0, x*y^2 + 2*x],
....: [-x*y^2 - 2*x, 0]]}, name= a)
sage: a1.add_comp_by_continuation(eV, W, c_uv)
sage: a1 == a
True

The exterior product of two vector fields is a 2-vector field:

sage: a = M.vector_field({eU: [-y, x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: b = M.vector_field({eU: [1+x*y, x^2]}, name= b)
sage: b.add_comp_by_continuation(eV, W, c_uv)
sage: s = a.wedge(b) ; s
2-vector field a∧b on the 2-dimensional differentiable manifold M
sage: s.display(eU)
a∧b = (-2*x^2*y - x) ∂/∂x∧∂/∂y
sage: s.display(eV)
a∧b = (1/2*u^3 - 1/2*u*v^2 - 1/2*v^3 + 1/2*(u^2 + 2)*v + u) ∂/∂u∧∂/∂v

Multiplying a 2-vector field by a scalar field results in another 2-vector field:

sage: f = M.scalar_field({c_xy: (x+y)^2, c_uv: u^2}, name= f)
sage: s = f*s ; s
2-vector field f*(a∧b) on the 2-dimensional differentiable manifold M
sage: s.display(eU)
f*(a∧b) = (-2*x^2*y^3 - x^3 - (4*x^3 + x)*y^2 - 2*(x^4 + x^2)*y) ∂/∂x∧∂/∂y
sage: s.display(eV)
f*(a∧b) = (1/2*u^5 - 1/2*u^3*v^2 - 1/2*u^2*v^3 + u^3 + 1/2*(u^4 + 2*u^2)*v)
∂/∂u∧∂/∂v

bracket(other)
Return the Schouten-Nijenhuis bracket of self with another multivector field.

2.12. Alternating Multivector Fields 753

Manifolds, Release 10.4.rc1

The Schouten-Nijenhuis bracket extends the Lie bracket of vector fields (cf. bracket()) to multivector
fields.

Denoting by 𝐴𝑝(𝑀) the 𝐶𝑘(𝑀)-module of 𝑝-vector fields on the 𝐶𝑘-differentiable manifold 𝑀 over the
field𝐾 (cf. MultivectorModule), the Schouten-Nijenhuis bracket is a𝐾-bilinear map

𝐴𝑝(𝑀)×𝐴𝑞(𝑀) −→ 𝐴𝑝+𝑞−1(𝑀)
(𝑎, 𝑏) ↦−→ [𝑎, 𝑏]

which obeys the following properties:

• if 𝑝 = 0 and 𝑞 = 0, (i.e. 𝑎 and 𝑏 are two scalar fields), [𝑎, 𝑏] = 0

• if 𝑝 = 0 (i.e. 𝑎 is a scalar field) and 𝑞 ≥ 1, [𝑎, 𝑏] = −𝜄d𝑎𝑏 (minus the interior product of the differential
of 𝑎 by 𝑏)

• if 𝑝 = 1 (i.e. 𝑎 is a vector field), [𝑎, 𝑏] = ℒ𝑎𝑏 (the Lie derivative of 𝑏 along 𝑎)

• [𝑎, 𝑏] = −(−1)(𝑝−1)(𝑞−1)[𝑏, 𝑎]

• for any multivector field 𝑐 and (𝑎, 𝑏) ∈ 𝐴𝑝(𝑀)×𝐴𝑞(𝑀), [𝑎, .] obeys the graded Leibniz rule

[𝑎, 𝑏 ∧ 𝑐] = [𝑎, 𝑏] ∧ 𝑐+ (−1)(𝑝−1)𝑞𝑏 ∧ [𝑎, 𝑐]

• for (𝑎, 𝑏, 𝑐) ∈ 𝐴𝑝(𝑀)×𝐴𝑞(𝑀)×𝐴𝑟(𝑀), the graded Jacobi identity holds:

(−1)(𝑝−1)(𝑟−1)[𝑎, [𝑏, 𝑐]] + (−1)(𝑞−1)(𝑝−1)[𝑏, [𝑐, 𝑎]] + (−1)(𝑟−1)(𝑞−1)[𝑐, [𝑎, 𝑏]] = 0

Note: There are two definitions of the Schouten-Nijenhuis bracket in the literature, which differ from each
other when 𝑝 is even by an overall sign. The definition adopted here is that of [Mar1997], [Kos1985] and
Wikipedia article Schouten-Nijenhuis_bracket. The other definition, adopted e.g. by [Nij1955], [Lic1977]
and [Vai1994], is [𝑎, 𝑏]′ = (−1)𝑝+1[𝑎, 𝑏].

INPUT:

• other – a multivector field

OUTPUT:

• instance of MultivectorField (or of DiffScalarField if 𝑝 = 1 and 𝑞 = 0) representing the
Schouten-Nijenhuis bracket [𝑎, 𝑏], where 𝑎 is self and 𝑏 is other

EXAMPLES:

Bracket of two vector fields on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1) # the sphere S^2
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() # stereographic coord. North
sage: c_uv.<u,v> = V.chart() # stereographic coord. South
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
sage: a = M.vector_field({e_xy: [y, x]}, name= a)
sage: a.add_comp_by_continuation(e_uv, W, c_uv)
sage: b = M.vector_field({e_xy: [x*y, x-y]}, name= b)

(continues on next page)

754 Chapter 2. Differentiable Manifolds

https://en.wikipedia.org/wiki/Schouten-Nijenhuis_bracket

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: b.add_comp_by_continuation(e_uv, W, c_uv)
sage: s = a.bracket(b); s
Vector field [a,b] on the 2-dimensional differentiable manifold S^2
sage: s.display(e_xy)
[a,b] = (x^2 + y^2 - x + y) ∂/∂x + (-(x - 1)*y - x) ∂/∂y

For two vector fields, the bracket coincides with the Lie derivative:

sage: s == b.lie_derivative(a)
True

Schouten-Nijenhuis bracket of a 2-vector field and a 1-vector field:

sage: c = a.wedge(b); c
2-vector field a∧b on the 2-dimensional differentiable
manifold S^2

sage: s = c.bracket(a); s
2-vector field [a∧b,a] on the 2-dimensional differentiable
manifold S^2

sage: s.display(e_xy)
[a∧b,a] = (x^3 + (2*x - 1)*y^2 - x^2 + 2*x*y) ∂/∂x∧∂/∂y

Since 𝑎 is a vector field, we have in this case:

sage: s == - c.lie_derivative(a)
True

See also:

MultivectorFieldParal.bracket() for more examples and check of standards identities involv-
ing the Schouten-Nijenhuis bracket

degree()

Return the degree of self.

OUTPUT:

• integer 𝑝 such that self is a 𝑝-vector field

EXAMPLES:

sage: M = Manifold(3, M)
sage: a = M.multivector_field(2); a
2-vector field on the 3-dimensional differentiable manifold M
sage: a.degree()
2
sage: b = M.vector_field(); b
Vector field on the 3-dimensional differentiable manifold M
sage: b.degree()
1

interior_product(form)
Interior product with a differential form.

If self is a multivector field𝐴 of degree 𝑝 and𝐵 is a differential form of degree 𝑞 ≥ 𝑝 on the samemanifold
as 𝐴, the interior product of 𝐴 by 𝐵 is the differential form 𝜄𝐴𝐵 of degree 𝑞 − 𝑝 defined by

(𝜄𝐴𝐵)𝑖1...𝑖𝑞−𝑝 = 𝐴𝑘1...𝑘𝑝𝐵𝑘1...𝑘𝑝𝑖1...𝑖𝑞−𝑝

2.12. Alternating Multivector Fields 755

Manifolds, Release 10.4.rc1

Note: A.interior_product(B) yields the same result as A.contract(0,..., p-1, B, 0,
..., p-1) (cf. contract()), but interior_product is more efficient, the alternating character
of 𝐴 being not used to reduce the computation in contract()

INPUT:

• form – differential form 𝐵 (instance of DiffForm); the degree of 𝐵 must be at least equal to the
degree of self

OUTPUT:

• scalar field (case 𝑝 = 𝑞) or DiffForm (case 𝑝 < 𝑞) representing the interior product 𝜄𝐴𝐵, where 𝐴 is
self

See also:

interior_product() for the interior product of a differential form with a multivector field

EXAMPLES:

Interior product of a vector field (𝑝 = 1) with a 2-form (𝑞 = 2) on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1) # the sphere S^2
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() # stereographic coord. North
sage: c_uv.<u,v> = V.chart() # stereographic coord. South
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
sage: a = M.vector_field({e_xy: [-y, x]}, name= a)
sage: a.add_comp_by_continuation(e_uv, W, c_uv)
sage: b = M.diff_form(2, name= b)
sage: b[e_xy,1,2] = 4/(x^2+y^2+1)^2 # the standard area 2-form
sage: b.add_comp_by_continuation(e_uv, W, c_uv)
sage: b.display(e_xy)
b = 4/(x^2 + y^2 + 1)^2 dx∧dy
sage: b.display(e_uv)
b = -4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du∧dv
sage: s = a.interior_product(b); s
1-form i_a b on the 2-dimensional differentiable manifold S^2
sage: s.display(e_xy)
i_a b = -4*x/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dx
- 4*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dy

sage: s.display(e_uv)
i_a b = 4*u/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du
+ 4*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) dv

sage: s == a.contract(b)
True

Example with 𝑝 = 2 and 𝑞 = 2:

sage: a = M.multivector_field(2, name= a)
sage: a[e_xy,1,2] = x*y
sage: a.add_comp_by_continuation(e_uv, W, c_uv)

(continues on next page)

756 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a.display(e_xy)
a = x*y ∂/∂x∧∂/∂y
sage: a.display(e_uv)
a = -u*v ∂/∂u∧∂/∂v
sage: s = a.interior_product(b); s
Scalar field i_a b on the 2-dimensional differentiable manifold S^2
sage: s.display()
i_a b: S^2 → ℝ
on U: (x, y) ↦ 8*x*y/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1)
on V: (u, v) ↦ 8*u*v/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1)

Some checks:

sage: s == a.contract(0, 1, b, 0, 1)
True
sage: s.restrict(U) == 2 * a[[e_xy,1,2]] * b[[e_xy,1,2]]
True
sage: s.restrict(V) == 2 * a[[e_uv,1,2]] * b[[e_uv,1,2]]
True

wedge(other)
Exterior product with another multivector field.

INPUT:

• other – another multivector field (on the same manifold)

OUTPUT:

• instance of MultivectorField representing the exterior product self ∧ other

EXAMPLES:

Exterior product of two vector fields on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1) # the sphere S^2
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() # stereographic coord. North
sage: c_uv.<u,v> = V.chart() # stereographic coord. South
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # The complement of the two poles
sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
sage: a = M.vector_field({e_xy: [y, x]}, name= a)
sage: a.add_comp_by_continuation(e_uv, W, c_uv)
sage: b = M.vector_field({e_xy: [x^2 + y^2, y]}, name= b)
sage: b.add_comp_by_continuation(e_uv, W, c_uv)
sage: c = a.wedge(b); c
2-vector field a∧b on the 2-dimensional differentiable
manifold S^2

sage: c.display(e_xy)
a∧b = (-x^3 - (x - 1)*y^2) ∂/∂x∧∂/∂y
sage: c.display(e_uv)
a∧b = (-v^2 + u) ∂/∂u∧∂/∂v

2.12. Alternating Multivector Fields 757

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.multivectorfield.MultivectorFieldParal(vec-
tor_field_mod-
ule,
de-
gree,
name=None,
la-
tex_name=None)

Bases: AlternatingContrTensor, TensorFieldParal

Multivector field with values on a parallelizable manifold.

Given a differentiable manifold 𝑈 , a differentiable map Φ : 𝑈 →𝑀 to a parallelizable manifold𝑀 and a positive
integer 𝑝, a multivector field of degree 𝑝 (or 𝑝-vector field) along 𝑈 with values on𝑀 ⊃ Φ(𝑈) is a differentiable
map

𝑎 : 𝑈 −→ 𝑇 (𝑝,0)𝑀

(𝑇 (𝑝,0)𝑀 being the tensor bundle of type (𝑝, 0) over𝑀) such that

∀𝑥 ∈ 𝑈, 𝑎(𝑥) ∈ Λ𝑝(𝑇Φ(𝑥)𝑀),

where 𝑇Φ(𝑥)𝑀 is the vector space tangent to 𝑀 at Φ(𝑥) and Λ𝑝 stands for the exterior power of degree 𝑝 (cf.
ExtPowerFreeModule). In other words, 𝑎(𝑥) is an alternating contravariant tensor of degree 𝑝 of the tangent
vector space 𝑇Φ(𝑥)𝑀 .

The standard case of a multivector field on a manifold𝑀 corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

Note: If𝑀 is not parallelizable, the class MultivectorField must be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 with values on𝑀 via the map
Φ

• degree – the degree of the multivector field (i.e. its tensor rank)

• name – (default: None) name given to the multivector field

• latex_name – (default: None) LaTeX symbol to denote the multivector field; if none is provided, the
LaTeX symbol is set to name

EXAMPLES:

A 2-vector field on a 4-dimensional manifold:

sage: M = Manifold(4, M)
sage: c_txyz.<t,x,y,z> = M.chart()
sage: a = M.multivector_field(2, name= a) ; a
2-vector field a on the 4-dimensional differentiable manifold M
sage: a.parent()
Free module A^2(M) of 2-vector fields on the 4-dimensional
differentiable manifold M

A multivector field is a tensor field of purely contravariant type:

758 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/alternating_contr_tensor.html#sage.tensor.modules.alternating_contr_tensor.AlternatingContrTensor
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/ext_pow_free_module.html#sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule

Manifolds, Release 10.4.rc1

sage: a.tensor_type()
(2, 0)

It is antisymmetric, its components being CompFullyAntiSym:

sage: a.symmetries()
no symmetry; antisymmetry: (0, 1)
sage: a[0,1] = 2*x
sage: a[1,0]
-2*x
sage: a.comp()
Fully antisymmetric 2-indices components w.r.t. Coordinate frame
(M, (∂/∂t,∂/∂x,∂/∂y,∂/∂z))
sage: type(a.comp())
<class sage.tensor.modules.comp.CompFullyAntiSym >

Setting a component with repeated indices to a non-zero value results in an error:

sage: a[1,1] = 3
Traceback (most recent call last):
...
ValueError: by antisymmetry, the component cannot have a nonzero value
for the indices (1, 1)
sage: a[1,1] = 0 # OK, albeit useless
sage: a[1,2] = 3 # OK

The expansion of a multivector field with respect to a given frame is displayed via the method display():

sage: a.display() # expansion w.r.t. the default frame
a = 2*x ∂/∂t∧∂/∂x + 3 ∂/∂x∧∂/∂y
sage: latex(a.display()) # output for the notebook
a = 2 \, x \frac{\partial}{\partial t }\wedge \frac{\partial}{\partial x }
+ 3 \frac{\partial}{\partial x }\wedge \frac{\partial}{\partial y }

Multivector fields can be added or subtracted:

sage: b = M.multivector_field(2)
sage: b[0,1], b[0,2], b[0,3] = y, 2, x+z
sage: s = a + b ; s
2-vector field on the 4-dimensional differentiable manifold M
sage: s.display()
(2*x + y) ∂/∂t∧∂/∂x + 2 ∂/∂t∧∂/∂y + (x + z) ∂/∂t∧∂/∂z + 3 ∂/∂x∧∂/∂y
sage: s = a - b ; s
2-vector field on the 4-dimensional differentiable manifold M
sage: s.display()
(2*x - y) ∂/∂t∧∂/∂x - 2 ∂/∂t∧∂/∂y + (-x - z) ∂/∂t∧∂/∂z + 3 ∂/∂x∧∂/∂y

An example of 3-vector field in R3 with Cartesian coordinates:

sage: M = Manifold(3, R3 , latex_name=r \RR^3 , start_index=1)
sage: c_cart.<x,y,z> = M.chart()
sage: a = M.multivector_field(3, name= a)
sage: a[1,2,3] = x^2+y^2+z^2 # the only independent component
sage: a[:] # all the components are set from the previous line:
[[[0, 0, 0], [0, 0, x^2 + y^2 + z^2], [0, -x^2 - y^2 - z^2, 0]],
[[0, 0, -x^2 - y^2 - z^2], [0, 0, 0], [x^2 + y^2 + z^2, 0, 0]],
[[0, x^2 + y^2 + z^2, 0], [-x^2 - y^2 - z^2, 0, 0], [0, 0, 0]]]

(continues on next page)

2.12. Alternating Multivector Fields 759

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompFullyAntiSym
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/alternating_contr_tensor.html#sage.tensor.modules.alternating_contr_tensor.AlternatingContrTensor.display

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a.display()
a = (x^2 + y^2 + z^2) ∂/∂x∧∂/∂y∧∂/∂z

Spherical components from the tensorial change-of-frame formula:

sage: c_spher.<r,th,ph> = M.chart(r r:[0,+oo) th:[0,pi]:\theta ph:[0,2*pi):\phi)
sage: spher_to_cart = c_spher.transition_map(c_cart,
....: [r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th)])
sage: cart_to_spher = spher_to_cart.set_inverse(sqrt(x^2+y^2+z^2),
....: atan2(sqrt(x^2+y^2),z), atan2(y, x))
Check of the inverse coordinate transformation:
r == r *passed*
th == arctan2(r*sin(th), r*cos(th)) **failed**
ph == arctan2(r*sin(ph)*sin(th), r*cos(ph)*sin(th)) **failed**
x == x *passed*
y == y *passed*
z == z *passed*

NB: a failed report can reflect a mere lack of simplification.
sage: a.comp(c_spher.frame()) # computation of components w.r.t. spherical frame
Fully antisymmetric 3-indices components w.r.t. Coordinate frame
(R3, (∂/∂r,∂/∂th,∂/∂ph))
sage: a.comp(c_spher.frame())[1,2,3, c_spher]
1/sin(th)
sage: a.display(c_spher.frame())
a = sqrt(x^2 + y^2 + z^2)/sqrt(x^2 + y^2) ∂/∂r∧∂/∂th∧∂/∂ph
sage: a.display(c_spher.frame(), c_spher)
a = 1/sin(th) ∂/∂r∧∂/∂th∧∂/∂ph

As a shortcut of the above command, on can pass just the chart c_spher to display, the vector frame being
then assumed to be the coordinate frame associated with the chart:

sage: a.display(c_spher)
a = 1/sin(th) ∂/∂r∧∂/∂th∧∂/∂ph

The exterior product of two multivector fields is performed via the method wedge():

sage: a = M.vector_field([x*y, -z*x, y], name= A)
sage: b = M.vector_field([y, z+y, x^2-z^2], name= B)
sage: ab = a.wedge(b) ; ab
2-vector field A∧B on the 3-dimensional differentiable manifold R3
sage: ab.display()
A∧B = (x*y^2 + 2*x*y*z) ∂/∂x∧∂/∂y + (x^3*y - x*y*z^2 - y^2) ∂/∂x∧∂/∂z
+ (x*z^3 - y^2 - (x^3 + y)*z) ∂/∂y∧∂/∂z

Let us check the formula relating the exterior product to the tensor product for vector fields:

sage: a.wedge(b) == a*b - b*a
True

The tensor product of a vector field and a 2-vector field is not a 3-vector field but a tensor field of type (3, 0) with
less symmetries:

sage: c = a*ab ; c
Tensor field A⊗(A∧B) of type (3,0) on the 3-dimensional differentiable
manifold R3
sage: c.symmetries() # the antisymmetry is only w.r.t. the last 2 arguments:
no symmetry; antisymmetry: (1, 2)

760 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/alternating_contr_tensor.html#sage.tensor.modules.alternating_contr_tensor.AlternatingContrTensor.wedge

Manifolds, Release 10.4.rc1

The Lie derivative of a 2-vector field is a 2-vector field:

sage: ab.lie_der(a)
2-vector field on the 3-dimensional differentiable manifold R3

bracket(other)
Return the Schouten-Nijenhuis bracket of self with another multivector field.

The Schouten-Nijenhuis bracket extends the Lie bracket of vector fields (cf. bracket()) to multivector
fields.

Denoting by 𝐴𝑝(𝑀) the 𝐶𝑘(𝑀)-module of 𝑝-vector fields on the 𝐶𝑘-differentiable manifold 𝑀 over the
field𝐾 (cf. MultivectorModule), the Schouten-Nijenhuis bracket is a𝐾-bilinear map

𝐴𝑝(𝑀)×𝐴𝑞(𝑀) −→ 𝐴𝑝+𝑞−1(𝑀)
(𝑎, 𝑏) ↦−→ [𝑎, 𝑏]

which obeys the following properties:

• if 𝑝 = 0 and 𝑞 = 0, (i.e. 𝑎 and 𝑏 are two scalar fields), [𝑎, 𝑏] = 0

• if 𝑝 = 0 (i.e. 𝑎 is a scalar field) and 𝑞 ≥ 1, [𝑎, 𝑏] = −𝜄d𝑎𝑏 (minus the interior product of the differential
of 𝑎 by 𝑏)

• if 𝑝 = 1 (i.e. 𝑎 is a vector field), [𝑎, 𝑏] = ℒ𝑎𝑏 (the Lie derivative of 𝑏 along 𝑎)

• [𝑎, 𝑏] = −(−1)(𝑝−1)(𝑞−1)[𝑏, 𝑎]

• for any multivector field 𝑐 and (𝑎, 𝑏) ∈ 𝐴𝑝(𝑀)×𝐴𝑞(𝑀), [𝑎, .] obeys the graded Leibniz rule

[𝑎, 𝑏 ∧ 𝑐] = [𝑎, 𝑏] ∧ 𝑐+ (−1)(𝑝−1)𝑞𝑏 ∧ [𝑎, 𝑐]

• for (𝑎, 𝑏, 𝑐) ∈ 𝐴𝑝(𝑀)×𝐴𝑞(𝑀)×𝐴𝑟(𝑀), the graded Jacobi identity holds:

(−1)(𝑝−1)(𝑟−1)[𝑎, [𝑏, 𝑐]] + (−1)(𝑞−1)(𝑝−1)[𝑏, [𝑐, 𝑎]] + (−1)(𝑟−1)(𝑞−1)[𝑐, [𝑎, 𝑏]] = 0

Note: There are two definitions of the Schouten-Nijenhuis bracket in the literature, which differ from each
other when 𝑝 is even by an overall sign. The definition adopted here is that of [Mar1997], [Kos1985] and
Wikipedia article Schouten-Nijenhuis_bracket. The other definition, adopted e.g. by [Nij1955], [Lic1977]
and [Vai1994], is [𝑎, 𝑏]′ = (−1)𝑝+1[𝑎, 𝑏].

INPUT:

• other – a multivector field

OUTPUT:

• instance of MultivectorFieldParal (or of DiffScalarField if 𝑝 = 1 and 𝑞 = 0) rep-
resenting the Schouten-Nijenhuis bracket [𝑎, 𝑏], where 𝑎 is self and 𝑏 is other

EXAMPLES:

Let us consider two vector fields on a 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: a = M.vector_field([x*y+z, x+y-z, z-2*x+y], name= a)
sage: b = M.vector_field([y+2*z-x, x^2-y+z, z-x], name= b)

and form their Schouten-Nijenhuis bracket:

2.12. Alternating Multivector Fields 761

https://en.wikipedia.org/wiki/Schouten-Nijenhuis_bracket

Manifolds, Release 10.4.rc1

sage: s = a.bracket(b); s
Vector field [a,b] on the 3-dimensional differentiable manifold M
sage: s.display()
[a,b] = (-x^3 + (x + 3)*y - y^2 - (x + 2*y + 1)*z - 2*x) ∂/∂x
+ (2*x^2*y - x^2 + 2*x*z - 3*x) ∂/∂y
+ (-x^2 - (x - 4)*y - 3*x + 2*z) ∂/∂z

Check that [𝑎, 𝑏] is actually the Lie bracket:

sage: f = M.scalar_field({X: x+y*z}, name= f)
sage: s(f) == a(b(f)) - b(a(f))
True

Check that [𝑎, 𝑏] coincides with the Lie derivative of 𝑏 along 𝑎:

sage: s == b.lie_derivative(a)
True

Schouten-Nijenhuis bracket for 𝑝 = 0 and 𝑞 = 1:

sage: s = f.bracket(a); s
Scalar field -i_df a on the 3-dimensional differentiable manifold M
sage: s.display()
-i_df a: M → ℝ

(x, y, z) ↦ x*y - y^2 - (x + 2*y + 1)*z + z^2

Check that [𝑓, 𝑎] = −𝜄d𝑓𝑎 = −d𝑓(𝑎):

sage: s == - f.differential()(a)
True

Schouten-Nijenhuis bracket for 𝑝 = 0 and 𝑞 = 2:

sage: c = M.multivector_field(2, name= c)
sage: c[0,1], c[0,2], c[1,2] = x+z+1, x*y+z, x-y
sage: s = f.bracket(c); s
Vector field -i_df c on the 3-dimensional differentiable manifold M
sage: s.display()
-i_df c = (x*y^2 + (x + y + 1)*z + z^2) ∂/∂x
+ (x*y - y^2 - x - z - 1) ∂/∂y + (-x*y - (x - y + 1)*z) ∂/∂z

Check that [𝑓, 𝑐] = −𝜄d𝑓𝑐:

sage: s == - f.differential().interior_product(c)
True

Schouten-Nijenhuis bracket for 𝑝 = 1 and 𝑞 = 2:

sage: s = a.bracket(c); s
2-vector field [a,c] on the 3-dimensional differentiable manifold M
sage: s.display()
[a,c] = ((x - 1)*y - (y - 2)*z - 2*x - 1) ∂/∂x∧∂/∂y
+ ((x + 1)*y - (x + 1)*z - 3*x - 1) ∂/∂x∧∂/∂z
+ (-5*x + y - z - 2) ∂/∂y∧∂/∂z

Again, since 𝑎 is a vector field, the Schouten-Nijenhuis bracket coincides with the Lie derivative:

762 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: s == c.lie_derivative(a)
True

Schouten-Nijenhuis bracket for 𝑝 = 2 and 𝑞 = 2:

sage: d = M.multivector_field(2, name= d)
sage: d[0,1], d[0,2], d[1,2] = x-y^2, x+z, z-x-1
sage: s = c.bracket(d); s
3-vector field [c,d] on the 3-dimensional differentiable manifold M
sage: s.display()
[c,d] = (-y^3 + (3*x + 1)*y - y^2 - x - z + 2) ∂/∂x∧∂/∂y∧∂/∂z

Let us check the component formula (with respect to the manifold’s default coordinate chart, i.e. X) for
𝑝 = 𝑞 = 2, taking into account the tensor antisymmetries:

sage: s[0,1,2] == - sum(c[i,0]*d[1,2].diff(i)
....: + c[i,1]*d[2,0].diff(i) + c[i,2]*d[0,1].diff(i)
....: + d[i,0]*c[1,2].diff(i) + d[i,1]*c[2,0].diff(i)
....: + d[i,2]*c[0,1].diff(i) for i in M.irange())
True

Schouten-Nijenhuis bracket for 𝑝 = 1 and 𝑞 = 3:

sage: e = M.multivector_field(3, name= e)
sage: e[0,1,2] = x+y*z+1
sage: s = a.bracket(e); s
3-vector field [a,e] on the 3-dimensional differentiable manifold M
sage: s.display()
[a,e] = (-(2*x + 1)*y + y^2 - (y^2 - x - 1)*z - z^2
- 2*x - 2) ∂/∂x∧∂/∂y∧∂/∂z

Again, since 𝑝 = 1, the bracket coincides with the Lie derivative:

sage: s == e.lie_derivative(a)
True

Schouten-Nijenhuis bracket for 𝑝 = 2 and 𝑞 = 3:

sage: s = c.bracket(e); s
4-vector field [c,e] on the 3-dimensional differentiable manifold M

Since on a 3-dimensional manifold, any 4-vector field is zero, we have:

sage: s.display()
[c,e] = 0

Let us check the graded commutation law [𝑎, 𝑏] = −(−1)(𝑝−1)(𝑞−1)[𝑏, 𝑎] for various values of 𝑝 and 𝑞:

sage: f.bracket(a) == - a.bracket(f) # p=0 and q=1
True
sage: f.bracket(c) == c.bracket(f) # p=0 and q=2
True
sage: a.bracket(b) == - b.bracket(a) # p=1 and q=1
True
sage: a.bracket(c) == - c.bracket(a) # p=1 and q=2
True
sage: c.bracket(d) == d.bracket(c) # p=2 and q=2
True

2.12. Alternating Multivector Fields 763

Manifolds, Release 10.4.rc1

Let us check the graded Leibniz rule for 𝑝 = 1 and 𝑞 = 1:

sage: a.bracket(b.wedge(c)) == a.bracket(b).wedge(c) + b.wedge(a.bracket(c))
→˓# long time
True

as well as for 𝑝 = 2 and 𝑞 = 1:

sage: c.bracket(a.wedge(b)) == c.bracket(a).wedge(b) - a.wedge(c.bracket(b))
→˓# long time
True

Finally let us check the graded Jacobi identity for 𝑝 = 1, 𝑞 = 1 and 𝑟 = 2:

sage: # long time
sage: a_bc = a.bracket(b.bracket(c))
sage: b_ca = b.bracket(c.bracket(a))
sage: c_ab = c.bracket(a.bracket(b))
sage: a_bc + b_ca + c_ab == 0
True

as well as for 𝑝 = 1, 𝑞 = 2 and 𝑟 = 2:

sage: # long time
sage: a_cd = a.bracket(c.bracket(d))
sage: c_da = c.bracket(d.bracket(a))
sage: d_ac = d.bracket(a.bracket(c))
sage: a_cd + c_da - d_ac == 0
True

interior_product(form)
Interior product with a differential form.

If self is a multivector field𝐴 of degree 𝑝 and𝐵 is a differential form of degree 𝑞 ≥ 𝑝 on the samemanifold
as 𝐴, the interior product of 𝐴 by 𝐵 is the differential form 𝜄𝐴𝐵 of degree 𝑞 − 𝑝 defined by

(𝜄𝐴𝐵)𝑖1...𝑖𝑞−𝑝 = 𝐴𝑘1...𝑘𝑝𝐵𝑘1...𝑘𝑝𝑖1...𝑖𝑞−𝑝

Note: A.interior_product(B) yields the same result as A.contract(0,..., p-1, B, 0,
..., p-1) (cf. contract()), but interior_product is more efficient, the alternating character
of 𝐴 being not used to reduce the computation in contract()

INPUT:

• form – differential form 𝐵 (instance of DiffFormParal); the degree of 𝐵 must be at least equal to
the degree of self

OUTPUT:

• scalar field (case 𝑝 = 𝑞) or DiffFormParal (case 𝑝 < 𝑞) representing the interior product 𝜄𝐴𝐵,
where 𝐴 is self

See also:

interior_product() for the interior product of a differential form with a multivector field

EXAMPLES:

Interior product with 𝑝 = 1 and 𝑞 = 1 on 4-dimensional manifold:

764 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(4, M)
sage: X.<t,x,y,z> = M.chart()
sage: a = M.vector_field([x, 1+t^2, x*z, y-3], name= a)
sage: b = M.one_form([-z^2, 2, x, x-y], name= b)
sage: s = a.interior_product(b); s
Scalar field i_a b on the 4-dimensional differentiable manifold M
sage: s.display()
i_a b: M → ℝ

(t, x, y, z) ↦ x^2*z - x*z^2 + 2*t^2 + (x + 3)*y - y^2
- 3*x + 2

In this case, we have 𝜄𝑎𝑏 = 𝑎𝑖𝑏𝑖 = 𝑎(𝑏) = 𝑏(𝑎):

sage: all([s == a.contract(b), s == a(b), s == b(a)])
True

Case 𝑝 = 1 and 𝑞 = 3:

sage: c = M.diff_form(3, name= c)
sage: c[0,1,2], c[0,1,3] = x*y - z, -3*t
sage: c[0,2,3], c[1,2,3] = t+x, y
sage: s = a.interior_product(c); s
2-form i_a c on the 4-dimensional differentiable manifold M
sage: s.display()
i_a c = (x^2*y*z - x*z^2 - 3*t*y + 9*t) dt∧dx
+ (-(t^2*x - t)*y + (t^2 + 1)*z - 3*t - 3*x) dt∧dy
+ (3*t^3 - (t*x + x^2)*z + 3*t) dt∧dz
+ ((x^2 - 3)*y + y^2 - x*z) dx∧dy
+ (-x*y*z - 3*t*x) dx∧dz + (t*x + x^2 + (t^2 + 1)*y) dy∧dz

sage: s == a.contract(c)
True

Case 𝑝 = 2 and 𝑞 = 3:

sage: d = M.multivector_field(2, name= d)
sage: d[0,1], d[0,2], d[0,3] = t-x, 2*z, y-1
sage: d[1,2], d[1,3], d[2,3] = z, y+t, 4
sage: s = d.interior_product(c); s
1-form i_d c on the 4-dimensional differentiable manifold M
sage: s.display()
i_d c = (2*x*y*z - 6*t^2 - 6*t*y - 2*z^2 + 8*t + 8*x) dt
+ (-4*x*y*z + 2*(3*t + 4)*y + 4*z^2 - 6*t) dx
+ (2*((t - 1)*x - x^2 - 2*t)*y - 2*y^2 - 2*(t - x)*z + 2*t
+ 2*x) dy + (-6*t^2 + 6*t*x + 2*(2*t + 2*x + y)*z) dz

sage: s == d.contract(0, 1, c, 0, 1)
True

wedge(other)
Exterior product of self with another multivector field.

INPUT:

• other – another multivector field

OUTPUT:

• instance of MultivectorFieldParal representing the exterior product self ∧ other

EXAMPLES:

2.12. Alternating Multivector Fields 765

Manifolds, Release 10.4.rc1

Exterior product of a vector field and a 2-vector field on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: a = M.vector_field([2, 1+x, y*z], name= a)
sage: b = M.multivector_field(2, name= b)
sage: b[1,2], b[1,3], b[2,3] = y^2, z+x, z^2
sage: a.display()
a = 2 ∂/∂x + (x + 1) ∂/∂y + y*z ∂/∂z
sage: b.display()
b = y^2 ∂/∂x∧∂/∂y + (x + z) ∂/∂x∧∂/∂z + z^2 ∂/∂y∧∂/∂z
sage: s = a.wedge(b); s
3-vector field a∧b on the 3-dimensional differentiable manifold M
sage: s.display()
a∧b = (-x^2 + (y^3 - x - 1)*z + 2*z^2 - x) ∂/∂x∧∂/∂y∧∂/∂z

Check:

sage: s[1,2,3] == a[1]*b[2,3] + a[2]*b[3,1] + a[3]*b[1,2]
True

Exterior product with a scalar field:

sage: f = M.scalar_field(x, name= f)
sage: s = b.wedge(f); s
2-vector field f*b on the 3-dimensional differentiable manifold M
sage: s.display()
f*b = x*y^2 ∂/∂x∧∂/∂y + (x^2 + x*z) ∂/∂x∧∂/∂z + x*z^2 ∂/∂y∧∂/∂z
sage: s == f*b
True
sage: s == f.wedge(b)
True

2.13 Affine Connections

The class AffineConnection implements affine connections on smooth manifolds.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Marco Mancini (2015) : parallelization of some computations

• Florentin Jaffredo (2018) : series expansion with respect to a given parameter

REFERENCES:

• [Lee1997]

• [KN1963]

• [ONe1983]

class sage.manifolds.differentiable.affine_connection.AffineConnection(domain,
name, la-
tex_name=None)

Bases: SageObject

Affine connection on a smooth manifold.

766 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Manifolds, Release 10.4.rc1

Let 𝑀 be a differentiable manifold of class 𝐶∞ (smooth manifold) over a non-discrete topological field 𝐾 (in
most applications 𝐾 = R or 𝐾 = C), let 𝐶∞(𝑀) be the algebra of smooth functions 𝑀 → 𝐾 (cf. DiffS-
calarFieldAlgebra) and let X(𝑀) be the 𝐶∞(𝑀)-module of vector fields on 𝑀 (cf. VectorField-
Module). An affine connection on𝑀 is an operator

∇ : X(𝑀)× X(𝑀) −→ X(𝑀)
(𝑢, 𝑣) ↦−→ ∇𝑢𝑣

that

• is𝐾-bilinear, i.e. is bilinear when considering X(𝑀) as a vector space over𝐾

• is 𝐶∞(𝑀)-linear w.r.t. the first argument: ∀𝑓 ∈ 𝐶∞(𝑀), ∇𝑓𝑢𝑣 = 𝑓∇𝑢𝑣

• obeys Leibniz rule w.r.t. the second argument: ∀𝑓 ∈ 𝐶∞(𝑀), ∇𝑢(𝑓𝑣) = d𝑓(𝑢) 𝑣 + 𝑓∇𝑢𝑣

The affine connection∇ gives birth to the covariant derivative operator acting on tensor fields, denoted by the same
symbol:

∇ : 𝑇 (𝑘,𝑙)(𝑀) −→ 𝑇 (𝑘,𝑙+1)(𝑀)
𝑡 ↦−→ ∇𝑡

where 𝑇 (𝑘,𝑙)(𝑀) stands for the 𝐶∞(𝑀)-module of tensor fields of type (𝑘, 𝑙) on𝑀 (cf. TensorFieldMod-
ule), with the convention 𝑇 (0,0)(𝑀) := 𝐶∞(𝑀). For a vector field 𝑣, the covariant derivative∇𝑣 is a type-(1,1)
tensor field such that

∀𝑢 ∈ X(𝑀), ∇𝑢𝑣 = ∇𝑣(., 𝑢)

More generally for any tensor field 𝑡 ∈ 𝑇 (𝑘,𝑙)(𝑀), we have

∀𝑢 ∈ X(𝑀), ∇𝑢𝑡 = ∇𝑡(. . . , 𝑢)

Note: The above convention means that, in terms of index notation, the “derivation index” in ∇𝑡 is the last one:

∇𝑐𝑡
𝑎1...𝑎𝑘

𝑏1...𝑏𝑙
= (∇𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑙𝑐

INPUT:

• domain – the manifold on which the connection is defined (must be an instance of class Differen-
tiableManifold)

• name – name given to the affine connection

• latex_name – (default: None) LaTeX symbol to denote the affine connection; if None, it is set to name.

EXAMPLES:

Affine connection on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla) ; nab
Affine connection nabla on the 3-dimensional differentiable manifold M

A just-created connection has no connection coefficients:

2.13. Affine Connections 767

Manifolds, Release 10.4.rc1

sage: nab._coefficients
{}

The connection coefficients relative to the manifold’s default frame [here (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧)], are created by
providing the relevant indices inside square brackets:

sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} = yz
sage: nab._coefficients
{Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z)): 3-indices components w.r.t.
Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))}

If not the default one, the vector frame w.r.t. which the connection coefficients are defined can be specified as the
first argument inside the square brackets; hence the above definition is equivalent to:

sage: nab[c_xyz.frame(), 1,1,2], nab[c_xyz.frame(),3,2,3] = x^2, y*z
sage: nab._coefficients
{Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z)): 3-indices components w.r.t.
Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))}

Unset components are initialized to zero:

sage: nab[:] # list of coefficients relative to the manifold s default vector␣
→˓frame
[[[0, x^2, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, y*z], [0, 0, 0]]]

The treatment of connection coefficients in a given vector frame is similar to that of tensor components; see there-
fore the class TensorField for the documentation. In particular, the square brackets return the connection
coefficients as instances of ChartFunction, while the double square brackets return a scalar field:

sage: nab[1,1,2]
x^2
sage: nab[1,1,2].display()
(x, y, z) ↦ x^2
sage: type(nab[1,1,2])
<class sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class >
sage: nab[[1,1,2]]
Scalar field on the 3-dimensional differentiable manifold M
sage: nab[[1,1,2]].display()
M → ℝ
(x, y, z) ↦ x^2
sage: nab[[1,1,2]].coord_function() is nab[1,1,2]
True

Action on a scalar field:

sage: f = M.scalar_field(x^2 - y^2, name= f)
sage: Df = nab(f) ; Df
1-form df on the 3-dimensional differentiable manifold M
sage: Df[:]
[2*x, -2*y, 0]

The action of an affine connection on a scalar field must coincide with the differential:

sage: Df == f.differential()
True

768 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

A generic affine connection has some torsion:

sage: DDf = nab(Df) ; DDf
Tensor field nabla(df) of type (0,2) on the 3-dimensional
differentiable manifold M
sage: DDf.antisymmetrize()[:] # nabla does not commute on scalar fields:
[0 -x^3 0]
[x^3 0 0]
[0 0 0]

Let us check the standard formula

∇𝑗∇𝑖 𝑓 −∇𝑖∇𝑗 𝑓 = 𝑇 𝑘
𝑖𝑗∇𝑘 𝑓,

where the 𝑇 𝑘
𝑖𝑗 ’s are the components of the connection’s torsion tensor:

sage: 2*DDf.antisymmetrize() == nab.torsion().contract(0,Df)
True

The connection acting on a vector field:

sage: v = M.vector_field(y*z, x*z, x*y, name= v)
sage: Dv = nab(v) ; Dv
Tensor field nabla(v) of type (1,1) on the 3-dimensional differentiable
manifold M
sage: Dv[:]
[0 (x^2*y + 1)*z y]
[z 0 x]
[y x x*y*z^2]

Another example: connection on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: c_xyW = c_xy.restrict(W) ; c_uvW = c_uv.restrict(W)
sage: eUW = c_xyW.frame() ; eVW = c_uvW.frame()
sage: nab = M.affine_connection(nabla , r \nabla)

The connection is first defined on the open subset U by means of its coefficients w.r.t. the frame eU (the manifold’s
default frame):

sage: nab[0,0,0], nab[1,0,1] = x, x*y

The coefficients w.r.t the frame eV are deduced by continuation of the coefficients w.r.t. the frame eVW on the
open subset𝑊 = 𝑈 ∩ 𝑉 :

sage: for i in M.irange():
....: for j in M.irange():
....: for k in M.irange():
....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr()

At this stage, the connection is fully defined on all the manifold:

2.13. Affine Connections 769

Manifolds, Release 10.4.rc1

sage: nab.coef(eU)[:]
[[[x, 0], [0, 0]], [[0, x*y], [0, 0]]]
sage: nab.coef(eV)[:]
[[[1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v, -1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v],
[1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v, -1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v]],

[[-1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v, 1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v],
[-1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v, 1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v]]]

We may let it act on a vector field defined globally on𝑀 :

sage: a = M.vector_field({eU: [-y,x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = -y ∂/∂x + x ∂/∂y
sage: a.display(eV)
a = v ∂/∂u - u ∂/∂v
sage: da = nab(a) ; da
Tensor field nabla(a) of type (1,1) on the 2-dimensional differentiable
manifold M
sage: da.display(eU)
nabla(a) = -x*y ∂/∂x⊗dx - ∂/∂x⊗dy + ∂/∂y⊗dx - x*y^2 ∂/∂y⊗dy
sage: da.display(eV)
nabla(a) = (-1/16*u^3 + 1/16*u^2*v + 1/16*(u + 2)*v^2 - 1/16*v^3 - 1/8*u^2) ∂/
→˓∂u⊗du
+ (1/16*u^3 - 1/16*u^2*v - 1/16*(u - 2)*v^2 + 1/16*v^3 - 1/8*u^2 + 1) ∂/∂u⊗dv
+ (1/16*u^3 - 1/16*u^2*v - 1/16*(u - 2)*v^2 + 1/16*v^3 - 1/8*u^2 - 1) ∂/∂v⊗du
+ (-1/16*u^3 + 1/16*u^2*v + 1/16*(u + 2)*v^2 - 1/16*v^3 - 1/8*u^2) ∂/∂v⊗dv

A few tests:

sage: nab(a.restrict(V)) == da.restrict(V)
True
sage: nab.restrict(V)(a) == da.restrict(V)
True
sage: nab.restrict(V)(a.restrict(U)) == da.restrict(W)
True
sage: nab.restrict(U)(a.restrict(V)) == da.restrict(W) # long time
True

Same examples with SymPy as the engine for symbolic calculus:

sage: M.set_calculus_method(sympy)
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[0,0,0], nab[1,0,1] = x, x*y
sage: for i in M.irange():
....: for j in M.irange():
....: for k in M.irange():
....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr()

At this stage, the connection is fully defined on all the manifold:

sage: nab.coef(eU)[:]
[[[x, 0], [0, 0]], [[0, x*y], [0, 0]]]
sage: nab.coef(eV)[:]
[[[u**2/16 + u/8 - v**2/16 + v/8, -u**2/16 + u/8 + v**2/16 + v/8],
[u**2/16 + u/8 - v**2/16 + v/8, -u**2/16 + u/8 + v**2/16 + v/8]],
[[-u**2/16 + u/8 + v**2/16 + v/8, u**2/16 + u/8 - v**2/16 + v/8],
[-u**2/16 + u/8 + v**2/16 + v/8, u**2/16 + u/8 - v**2/16 + v/8]]]

770 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

We may let it act on a vector field defined globally on𝑀 :

sage: a = M.vector_field({eU: [-y,x]}, name= a)
sage: a.add_comp_by_continuation(eV, W, c_uv)
sage: a.display(eU)
a = -y ∂/∂x + x ∂/∂y
sage: a.display(eV)
a = v ∂/∂u - u ∂/∂v
sage: da = nab(a) ; da
Tensor field nabla(a) of type (1,1) on the 2-dimensional differentiable
manifold M
sage: da.display(eU)
nabla(a) = -x*y ∂/∂x⊗dx - ∂/∂x⊗dy + ∂/∂y⊗dx - x*y**2 ∂/∂y⊗dy
sage: da.display(eV)
nabla(a) = (-u**3/16 + u**2*v/16 - u**2/8 + u*v**2/16 - v**3/16 + v**2/8) ∂/∂u⊗du
+ (u**3/16 - u**2*v/16 - u**2/8 - u*v**2/16 + v**3/16 + v**2/8 + 1) ∂/∂u⊗dv
+ (u**3/16 - u**2*v/16 - u**2/8 - u*v**2/16 + v**3/16 + v**2/8 - 1) ∂/∂v⊗du
+ (-u**3/16 + u**2*v/16 - u**2/8 + u*v**2/16 - v**3/16 + v**2/8) ∂/∂v⊗dv

To make affine connections hashable, they have to be set immutable before:

sage: nab.is_immutable()
False
sage: nab.set_immutable()
sage: nab.is_immutable()
True

Immutable connections cannot be changed anymore:

sage: nab.set_coef(eU)
Traceback (most recent call last):
...
ValueError: the coefficients of an immutable element cannot be
changed

However, they can now be used as keys for dictionaries:

sage: {nab: 1}[nab]
1

The immutability process cannot be made undone. If a connection is needed to be changed again, a copy has to be
created:

sage: nab_copy = nab.copy(nablo); nab_copy
Affine connection nablo on the 2-dimensional differentiable manifold M
sage: nab_copy is nab
False
sage: nab_copy == nab
True
sage: nab_copy.is_immutable()
False

add_coef(frame=None)
Return the connection coefficients in a given frame for assignment, keeping the coefficients in other frames.

See method coef() for details about the definition of the connection coefficients.

To delete the connection coefficients in other frames, use the method set_coef() instead.

2.13. Affine Connections 771

Manifolds, Release 10.4.rc1

INPUT:

• frame – (default: None) vector frame in which the connection coefficients are defined; if None, the
default frame of the connection’s domain is assumed.

Warning: If the connection has already coefficients in other frames, it is the user’s responsibility to make
sure that the coefficients to be added are consistent with them.

OUTPUT:

• connection coefficients in the given frame, as an instance of the class Components; if such connection
coefficients did not exist previously, they are created. See method coef() for the storage convention
of the connection coefficients.

EXAMPLES:

Setting the coefficients of an affine connection w.r.t. some coordinate frame:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: eX = X.frame(); eX
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: nab.add_coef(eX)
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: nab.add_coef(eX)[1,2,1] = x*y
sage: nab.display(eX)
Gam^x_yx = x*y

Since eX is the manifold’s default vector frame, its mention may be omitted:

sage: nab.add_coef()[1,2,1] = x*y
sage: nab.add_coef()
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: nab.add_coef()[1,2,1] = x*y
sage: nab.display()
Gam^x_yx = x*y

Adding connection coefficients w.r.t. to another vector frame:

sage: e = M.vector_frame(e)
sage: nab.add_coef(e)
3-indices components w.r.t. Vector frame (M, (e_1,e_2))
sage: nab.add_coef(e)[2,1,1] = x+y
sage: nab.add_coef(e)[2,1,2] = x-y
sage: nab.display(e)
Gam^2_11 = x + y
Gam^2_12 = x - y

The coefficients w.r.t. the frame eX have been kept:

sage: nab.display(eX)
Gam^x_yx = x*y

To delete them, use the method set_coef() instead.

coef(frame=None)
Return the connection coefficients relative to the given frame.

772 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

𝑛 being the manifold’s dimension, the connection coefficients relative to the vector frame (𝑒𝑖) are the 𝑛3
scalar fields Γ𝑘

𝑖𝑗 defined by

∇𝑒𝑗𝑒𝑖 = Γ𝑘
𝑖𝑗𝑒𝑘

If the connection coefficients are not known already, they are computed from the above formula.

INPUT:

• frame – (default: None) vector frame relative to which the connection coefficients are required; if none
is provided, the domain’s default frame is assumed

OUTPUT:

• connection coefficients relative to the frame frame, as an instance of the class Components with 3
indices ordered as (𝑘, 𝑖, 𝑗)

EXAMPLES:

Connection coefficient of an affine connection on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} =␣
→˓yz
sage: nab.coef()
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))
sage: type(nab.coef())
<class sage.tensor.modules.comp.Components >
sage: M.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y,∂/∂z))
sage: nab.coef() is nab.coef(c_xyz.frame())
True
sage: nab.coef()[:] # full list of coefficients:
[[[0, x^2, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, y*z], [0, 0, 0]]]

connection_form(i, j, frame=None)
Return the connection 1-form corresponding to the given index and vector frame.

The connection 1-forms with respect to the frame (𝑒𝑖) are the 𝑛2 1-forms 𝜔𝑖
𝑗 defined by

∇𝑣𝑒𝑗 = ⟨𝜔𝑖
𝑗 , 𝑣⟩ 𝑒𝑖

for any vector 𝑣.

The components of 𝜔𝑖
𝑗 in the coframe (𝑒𝑖) dual to (𝑒𝑖) are nothing but the connection coefficients Γ𝑖

𝑗𝑘

relative to the frame (𝑒𝑖):

𝜔𝑖
𝑗 = Γ𝑖

𝑗𝑘𝑒
𝑘

INPUT:

• i, j – indices identifying the 1-form 𝜔𝑖
𝑗

• frame – (default: None) vector frame relative to which the connection 1-forms are defined; if None,
the default frame of the connection’s domain is assumed.

OUTPUT:

2.13. Affine Connections 773

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

• the 1-form 𝜔𝑖
𝑗 , as an instance of DiffForm

EXAMPLES:

Connection 1-forms on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,1], nab[1,1,2], nab[1,1,3] = x*y*z, x^2, -y*z
sage: nab[1,2,3], nab[1,3,1], nab[1,3,2] = -x^3, y^2*z, y^2-x^2
sage: nab[2,1,1], nab[2,1,2], nab[2,2,1] = z^2, x*y*z^2, -x^2
sage: nab[2,3,1], nab[2,3,3], nab[3,1,2] = x^2+y^2+z^2, y^2-z^2, x*y+z^2
sage: nab[3,2,1], nab[3,2,2], nab[3,3,3] = x*y+z, z^3 -y^2, x*z^2 - z*y^2
sage: nab.connection_form(1,1) # connection 1-form (i,j)=(1,1) w.r.t. M s␣
→˓default frame
1-form nabla connection 1-form (1,1) on the 3-dimensional
differentiable manifold M

sage: nab.connection_form(1,1)[:]
[x*y*z, x^2, -y*z]

The result is cached (until the connection is modified via set_coef() or add_coef()):

sage: nab.connection_form(1,1) is nab.connection_form(1,1)
True

Connection 1-forms w.r.t. a non-holonomic frame:

sage: ch_basis = M.automorphism_field()
sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = y, z, x
sage: e = M.default_frame().new_frame(ch_basis, e)
sage: e[1][:], e[2][:], e[3][:]
([y, 0, 0], [0, z, 0], [0, 0, x])
sage: nab.connection_form(1,1,e)
1-form nabla connection 1-form (1,1) on the 3-dimensional
differentiable manifold M

sage: nab.connection_form(1,1,e).comp(e)[:]
[x*y^2*z, (x^2*y + 1)*z/y, -x*y*z]

Check of the formula 𝜔𝑖
𝑗 = Γ𝑖

𝑗𝑘𝑒
𝑘:

First on the manifold’s default frame (∂/∂x, ∂/∂y, d:dz):

sage: dx = M.default_frame().coframe() ; dx
Coordinate coframe (M, (dx,dy,dz))
sage: check = []
sage: for i in M.irange():
....: for j in M.irange():
....: check.append(nab.connection_form(i,j) == \
....: sum(nab[[i,j,k]]*dx[k] for k in M.irange()))
sage: check
[True, True, True, True, True, True, True, True, True]

Then on the frame e:

sage: ef = e.coframe() ; ef
Coframe (M, (e^1,e^2,e^3))
sage: check = []
sage: for i in M.irange():

(continues on next page)

774 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: for j in M.irange():

....: s = nab.connection_form(i,j,e).comp(c_xyz.frame(), from_basis=e)

....: check.append(nab.connection_form(i,j,e) == sum(nab.coef(e)[[i,
→˓j,k]]*ef[k] for k in M.irange()))
sage: check
[True, True, True, True, True, True, True, True, True]

Check of the formula ∇𝑣𝑒𝑗 = ⟨𝜔𝑖
𝑗 , 𝑣⟩𝑒𝑖:

sage: v = M.vector_field()
sage: v[:] = (x*y, z^2-3*x, z+2*y)
sage: b = M.default_frame()
sage: for j in M.irange(): # check on M s default frame # long time
....: nab(b[j]).contract(v) == \
....: sum(nab.connection_form(i,j)(v)*b[i] for i in M.irange())
True
True
True
sage: for j in M.irange(): # check on frame e # long time
....: nab(e[j]).contract(v) == \
....: sum(nab.connection_form(i,j,e)(v)*e[i] for i in M.irange())
True
True
True

copy(name, latex_name=None)
Return an exact copy of self.

INPUT:

• name – name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

Note: The name and the derived quantities are not copied.

EXAMPLES:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: eX = X.frame()
sage: nab.set_coef(eX)[1,2,1] = x*y
sage: nab.set_coef(eX)[1,2,2] = x+y
sage: nab.display()
Gam^x_yx = x*y
Gam^x_yy = x + y
sage: nab_copy = nab.copy(name= nabla_1 , latex_name=r \nabla_1)
sage: nab is nab_copy
False
sage: nab == nab_copy
True
sage: nab_copy.display()
Gam^x_yx = x*y
Gam^x_yy = x + y

2.13. Affine Connections 775

Manifolds, Release 10.4.rc1

curvature_form(i, j, frame=None)
Return the curvature 2-form corresponding to the given index and vector frame.

The curvature 2-forms with respect to the frame (𝑒𝑖) are the 𝑛2 2-forms Ω𝑖
𝑗 defined by

Ω𝑖
𝑗(𝑢, 𝑣) = 𝑅(𝑒𝑖, 𝑒𝑗 , 𝑢, 𝑣)

where 𝑅 is the connection’s Riemann curvature tensor (cf. riemann()), (𝑒𝑖) is the coframe dual to (𝑒𝑖)
and (𝑢, 𝑣) is a generic pair of vectors.

INPUT:

• i, j – indices identifying the 2-form Ω𝑖
𝑗

• frame – (default: None) vector frame relative to which the curvature 2-forms are defined; if None,
the default frame of the connection’s domain is assumed.

OUTPUT:

• the 2-form Ω𝑖
𝑗 , as an instance of DiffForm

EXAMPLES:

Curvature 2-forms on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,1], nab[1,1,2], nab[1,1,3] = x*y*z, x^2, -y*z
sage: nab[1,2,3], nab[1,3,1], nab[1,3,2] = -x^3, y^2*z, y^2-x^2
sage: nab[2,1,1], nab[2,1,2], nab[2,2,1] = z^2, x*y*z^2, -x^2
sage: nab[2,3,1], nab[2,3,3], nab[3,1,2] = x^2+y^2+z^2, y^2-z^2, x*y+z^2
sage: nab[3,2,1], nab[3,2,2], nab[3,3,3] = x*y+z, z^3 -y^2, x*z^2 - z*y^2
sage: nab.curvature_form(1,1) # long time
2-form curvature (1,1) of connection nabla w.r.t. Coordinate frame
(M, (∂/∂x,∂/∂y,∂/∂z)) on the 3-dimensional differentiable manifold M

sage: nab.curvature_form(1,1).display() # long time (if above is skipped)
curvature (1,1) of connection nabla w.r.t. Coordinate frame
(M, (∂/∂x,∂/∂y,∂/∂z)) = (y^2*z^3 + (x*y^3 - x)*z + 2*x) dx∧dy
+ (x^3*z^2 - x*y) dx∧dz + (x^4*y*z^2 - z) dy∧dz

Curvature 2-forms w.r.t. a non-holonomic frame:

sage: ch_basis = M.automorphism_field()
sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = y, z, x
sage: e = M.default_frame().new_frame(ch_basis, e)
sage: e[1].display(), e[2].display(), e[3].display()
(e_1 = y ∂/∂x, e_2 = z ∂/∂y, e_3 = x ∂/∂z)
sage: ef = e.coframe()
sage: ef[1].display(), ef[2].display(), ef[3].display()
(e^1 = 1/y dx, e^2 = 1/z dy, e^3 = 1/x dz)
sage: nab.curvature_form(1,1,e) # long time
2-form curvature (1,1) of connection nabla w.r.t. Vector frame
(M, (e_1,e_2,e_3)) on the 3-dimensional differentiable manifold M

sage: nab.curvature_form(1,1,e).display(e) # long time (if above is skipped)
curvature (1,1) of connection nabla w.r.t. Vector frame
(M, (e_1,e_2,e_3)) =
(y^3*z^4 + 2*x*y*z + (x*y^4 - x*y)*z^2) e^1∧e^2
+ (x^4*y*z^2 - x^2*y^2) e^1∧e^3 + (x^5*y*z^3 - x*z^2) e^2∧e^3

776 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Cartan’s second structure equation is

Ω𝑖
𝑗 = d𝜔𝑖

𝑗 + 𝜔𝑖
𝑘 ∧ 𝜔𝑘

𝑗

where the 𝜔𝑖
𝑗 ’s are the connection 1-forms (cf. connection_form()). Let us check it on the frame e:

sage: omega = nab.connection_form
sage: check = []
sage: for i in M.irange(): # long time
....: for j in M.irange():
....: check.append(nab.curvature_form(i,j,e) == \
....: omega(i,j,e).exterior_derivative() + \
....: sum(omega(i,k,e).wedge(omega(k,j,e)) for k in M.irange()))
sage: check # long time
[True, True, True, True, True, True, True, True, True]

del_other_coef(frame=None)
Delete all the coefficients but those corresponding to frame.

INPUT:

• frame – (default: None) vector frame, the connection coefficients w.r.t. which are to be kept; if None,
the default frame of the connection’s domain is assumed.

EXAMPLES:

We first create two sets of connection coefficients:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: eX = X.frame()
sage: nab.set_coef(eX)[1,2,1] = x*y
sage: e = M.vector_frame(e)
sage: nab.add_coef(e)[2,1,1] = x+y
sage: nab.display(eX)
Gam^x_yx = x*y
sage: nab.display(e)
Gam^2_11 = x + y

Let us delete the connection coefficients w.r.t. all frames except for frame eX:

sage: nab.del_other_coef(eX)
sage: nab.display(eX)
Gam^x_yx = x*y

The connection coefficients w.r.t. frame e have indeed been deleted:

sage: nab.display(e)
Traceback (most recent call last):
...
ValueError: no common frame found for the computation

display(frame=None, chart=None, symbol=None, latex_symbol=None, index_labels=None,
index_latex_labels=None, coordinate_labels=True, only_nonzero=True, only_nonredundant=False)

Display all the connection coefficients w.r.t. to a given frame, one per line.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

2.13. Affine Connections 777

Manifolds, Release 10.4.rc1

• frame – (default: None) vector frame relative to which the connection coefficients are defined; ifNone,
the default frame of the connection’s domain is used

• chart – (default: None) chart specifying the coordinate expression of the connection coefficients; if
None, the default chart of the domain of frame is used

• symbol – (default: None) string specifying the symbol of the connection coefficients; if None, ‘Gam’
is used

• latex_symbol – (default: None) string specifying the LaTeX symbol for the components; if None,
‘\Gamma’ is used

• index_labels – (default: None) list of strings representing the labels of each index; if None, integer
labels are used, except if frame is a coordinate frame and coordinate_symbols is set to True,
in which case the coordinate symbols are used

• index_latex_labels – (default: None) list of strings representing the LaTeX labels of each index;
if None, integer labels are used, except if frame is a coordinate frame and coordinate_symbols
is set to True, in which case the coordinate LaTeX symbols are used

• coordinate_labels – (default: True) boolean; if True, coordinate symbols are used by default
(instead of integers) as index labels whenever frame is a coordinate frame

• only_nonzero – (default: True) boolean; if True, only nonzero connection coefficients are dis-
played

• only_nonredundant – (default: False) boolean; if True, only nonredundant connection coef-
ficients are displayed in case of symmetries

EXAMPLES:

Coefficients of a connection on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,2], nab[3,2,3] = x^2, y*z

By default, only the nonzero connection coefficients are displayed:

sage: nab.display()
Gam^x_xy = x^2
Gam^z_yz = y*z
sage: latex(nab.display())
\begin{array}{lcl} \Gamma_{ \, x \, y }^{ \, x \
→˓phantom{\, y} }
& = & x^{2} \\
\Gamma_{ \, y \, z }^{ \, z }
& = & y z \end{array}

By default, the displayed connection coefficients are those w.r.t. to the default frame of the connection’s
domain, so the above is equivalent to:

sage: nab.display(frame=M.default_frame())
Gam^x_xy = x^2
Gam^z_yz = y*z

Since the default frame is a coordinate frame, coordinate symbols are used to label the indices, but one may
ask for integers instead:

778 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M.default_frame() is c_xyz.frame()
True
sage: nab.display(coordinate_labels=False)
Gam^1_12 = x^2
Gam^3_23 = y*z

The index labels can also be customized:

sage: nab.display(index_labels=[(1) , (2) , (3)])
Gam^(1)_(1),(2) = x^2
Gam^(3)_(2),(3) = y*z

The symbol ‘Gam’ can be changed:

sage: nab.display(symbol= C , latex_symbol= C)
C^x_xy = x^2
C^z_yz = y*z
sage: latex(nab.display(symbol= C , latex_symbol= C))
\begin{array}{lcl} C_{ \, x \, y }^{ \, x \
→˓phantom{\, y} }
& = & x^{2} \\
C_{ \, y \, z }^{ \, z }
& = & y z \end{array}

Display of Christoffel symbols, skipping the redundancy associated with the symmetry of the last two indices:

sage: M = Manifold(3, R^3 , start_index=1)
sage: c_spher.<r,th,ph> = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: g = M.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2 , (r*sin(th))^2
sage: g.display()
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: g.connection().display(only_nonredundant=True)
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)

By default, the parameter only_nonredundant is set to False:

sage: g.connection().display()
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_th,r = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)
Gam^ph_ph,r = 1/r
Gam^ph_ph,th = cos(th)/sin(th)

domain()

Return the manifold subset on which the affine connection is defined.

OUTPUT:

2.13. Affine Connections 779

Manifolds, Release 10.4.rc1

• instance of class DifferentiableManifold representing the manifold on which self is defined.

EXAMPLES:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab.domain()
3-dimensional differentiable manifold M
sage: U = M.open_subset(U , coord_def={c_xyz: x>0})
sage: nabU = U.affine_connection(D)
sage: nabU.domain()
Open subset U of the 3-dimensional differentiable manifold M

is_immutable()

Return True if this object is immutable, i.e. its coefficients cannot be chanced, and False if it is not.

To set an affine connection immutable, use set_immutable().

EXAMPLES:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: nab.is_immutable()
False
sage: nab.set_immutable()
sage: nab.is_immutable()
True

is_mutable()

Return True if this object is mutable, i.e. its coefficients can be changed, and False if it is not.

EXAMPLES:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: nab.is_mutable()
True
sage: nab.set_immutable()
sage: nab.is_mutable()
False

restrict(subdomain)
Return the restriction of the connection to some subdomain.

If such restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset𝑈 of the connection’s domain (must be an instance ofDifferentiable-
Manifold)

OUTPUT:

• instance of AffineConnection representing the restriction.

EXAMPLES:

Restriction of a connection on a 2-dimensional manifold:

780 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,2], nab[2,1,1] = x^2, x+y
sage: nab[:]
[[[0, x^2], [0, 0]], [[x + y, 0], [0, 0]]]
sage: U = M.open_subset(U , coord_def={c_xy: x>0})
sage: nabU = nab.restrict(U) ; nabU
Affine connection nabla on the Open subset U of the 2-dimensional
differentiable manifold M

sage: nabU.domain()
Open subset U of the 2-dimensional differentiable manifold M
sage: nabU[:]
[[[0, x^2], [0, 0]], [[x + y, 0], [0, 0]]]

The result is cached:

sage: nab.restrict(U) is nabU
True

until the connection is modified:

sage: nab[1,2,2] = -y
sage: nab.restrict(U) is nabU
False
sage: nab.restrict(U)[:]
[[[0, x^2], [0, -y]], [[x + y, 0], [0, 0]]]

ricci()

Return the connection’s Ricci tensor.

The Ricci tensor is the tensor field 𝑅𝑖𝑐 of type (0,2) defined from the Riemann curvature tensor 𝑅 by

𝑅𝑖𝑐(𝑢, 𝑣) = 𝑅(𝑒𝑖, 𝑢, 𝑒𝑖, 𝑣)

for any vector fields 𝑢 and 𝑣, (𝑒𝑖) being any vector frame and (𝑒𝑖) the dual coframe.

OUTPUT:

• the Ricci tensor 𝑅𝑖𝑐, as an instance of TensorField

EXAMPLES:

Ricci tensor of an affine connection on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla) ; nab
Affine connection nabla on the 3-dimensional differentiable
manifold M

sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} =␣
→˓yz
sage: r = nab.ricci() ; r
Tensor field of type (0,2) on the 3-dimensional differentiable
manifold M

sage: r[:]
[0 2*x 0]
[0 -z 0]
[0 0 0]

2.13. Affine Connections 781

Manifolds, Release 10.4.rc1

The result is cached (until the connection is modified via set_coef() or add_coef()):

sage: nab.ricci() is r
True

riemann()

Return the connection’s Riemann curvature tensor.

The Riemann curvature tensor is the tensor field 𝑅 of type (1,3) defined by

𝑅(𝜔,𝑤, 𝑢, 𝑣) =
⟨︀
𝜔,∇𝑢∇𝑣𝑤 −∇𝑣∇𝑢𝑤 −∇[𝑢,𝑣]𝑤

⟩︀
for any 1-form 𝜔 and any vector fields 𝑢, 𝑣 and 𝑤.

OUTPUT:

• the Riemann curvature tensor 𝑅, as an instance of TensorField

EXAMPLES:

Curvature of an affine connection on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla) ; nab
Affine connection nabla on the 3-dimensional differentiable
manifold M

sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} =␣
→˓yz
sage: r = nab.riemann() ; r
Tensor field of type (1,3) on the 3-dimensional differentiable
manifold M

sage: r.parent()
Free module T^(1,3)(M) of type-(1,3) tensors fields on the
3-dimensional differentiable manifold M

By construction, the Riemann tensor is antisymmetric with respect to its last two arguments (denoted 𝑢 and
𝑣 in the definition above), which are at positions 2 and 3 (the first argument being at position 0):

sage: r.symmetries()
no symmetry; antisymmetry: (2, 3)

The components:

sage: r[:]
[[[[0, 2*x, 0], [-2*x, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]],
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]],
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, z], [0, -z, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]]

The result is cached (until the connection is modified via set_coef() or add_coef()):

sage: nab.riemann() is r
True

782 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Another example: Riemann curvature tensor of some connection on a non-parallelizable 2-dimensional man-
ifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: c_xyW = c_xy.restrict(W) ; c_uvW = c_uv.restrict(W)
sage: eUW = c_xyW.frame() ; eVW = c_uvW.frame()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[0,0,0], nab[0,1,0], nab[1,0,1] = x, x-y, x*y
sage: for i in M.irange():
....: for j in M.irange():
....: for k in M.irange():
....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr()
sage: r = nab.riemann() ; r # long time
Tensor field of type (1,3) on the 2-dimensional differentiable
manifold M

sage: r.parent() # long time
Module T^(1,3)(M) of type-(1,3) tensors fields on the 2-dimensional
differentiable manifold M

sage: r.display(eU) # long time
(x^2*y - x*y^2) ∂/∂x⊗dx⊗dx⊗dy + (-x^2*y + x*y^2) ∂/∂x⊗dx⊗dy⊗dx + ∂/∂x⊗dy⊗dx⊗dy
- ∂/∂x⊗dy⊗dy⊗dx - (x^2 - 1)*y ∂/∂y⊗dx⊗dx⊗dy + (x^2 - 1)*y ∂/∂y⊗dx⊗dy⊗dx
+ (-x^2*y + x*y^2) ∂/∂y⊗dy⊗dx⊗dy + (x^2*y - x*y^2) ∂/∂y⊗dy⊗dy⊗dx

sage: r.display(eV) # long time
(1/32*u^3 - 1/32*u*v^2 - 1/32*v^3 + 1/32*(u^2 + 4)*v - 1/8*u - 1/4) ∂/
→˓∂u⊗du⊗du⊗dv
+ (-1/32*u^3 + 1/32*u*v^2 + 1/32*v^3 - 1/32*(u^2 + 4)*v + 1/8*u + 1/4) ∂/
→˓∂u⊗du⊗dv⊗du
+ (1/32*u^3 - 1/32*u*v^2 + 3/32*v^3 - 1/32*(3*u^2 - 4)*v - 1/8*u + 1/4) ∂/
→˓∂u⊗dv⊗du⊗dv
+ (-1/32*u^3 + 1/32*u*v^2 - 3/32*v^3 + 1/32*(3*u^2 - 4)*v + 1/8*u - 1/4) ∂/
→˓∂u⊗dv⊗dv⊗du
+ (-1/32*u^3 + 1/32*u*v^2 + 5/32*v^3 - 1/32*(5*u^2 + 4)*v + 1/8*u - 1/4) ∂/
→˓∂v⊗du⊗du⊗dv
+ (1/32*u^3 - 1/32*u*v^2 - 5/32*v^3 + 1/32*(5*u^2 + 4)*v - 1/8*u + 1/4) ∂/
→˓∂v⊗du⊗dv⊗du
+ (-1/32*u^3 + 1/32*u*v^2 + 1/32*v^3 - 1/32*(u^2 + 4)*v + 1/8*u + 1/4) ∂/
→˓∂v⊗dv⊗du⊗dv
+ (1/32*u^3 - 1/32*u*v^2 - 1/32*v^3 + 1/32*(u^2 + 4)*v - 1/8*u - 1/4) ∂/
→˓∂v⊗dv⊗dv⊗du

The same computation parallelized on 2 cores:

sage: Parallelism().set(nproc=2)
sage: r_backup = r # long time
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[0,0,0], nab[0,1,0], nab[1,0,1] = x, x-y, x*y
sage: for i in M.irange():
....: for j in M.irange():
....: for k in M.irange():
....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr()

(continues on next page)

2.13. Affine Connections 783

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: r = nab.riemann() ; r # long time
Tensor field of type (1,3) on the 2-dimensional differentiable
manifold M

sage: r.parent() # long time
Module T^(1,3)(M) of type-(1,3) tensors fields on the 2-dimensional
differentiable manifold M

sage: r == r_backup # long time
True
sage: Parallelism().set(nproc=1) # switch off parallelization

set_calc_order(symbol, order, truncate=False)
Trigger a series expansion with respect to a small parameter in computations involving self.

This property is propagated by usual operations. The internal representation must be SR for this to take effect.

INPUT:

• symbol – symbolic variable (the “small parameter” 𝜖) with respect to which the connection coefficients
are expanded in power series

• order – integer; the order 𝑛 of the expansion, defined as the degree of the polynomial representing the
truncated power series in symbol

• truncate – (default: False) determines whether the connection coefficients are replaced by their
expansions to the given order

EXAMPLES:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: C.<t,x,y,z> = M.chart()
sage: e = var(e)
sage: g = M.metric()
sage: h = M.tensor_field(0, 2, sym=(0,1))
sage: g[0, 0], g[1, 1], g[2, 2], g[3, 3] = -1, 1, 1, 1
sage: h[0, 1] = x
sage: g.set(g + e*h)
sage: g[:]
[-1 e*x 0 0]
[e*x 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: nab = g.connection()
sage: nab[0, 1, 1]
-e/(e^2*x^2 + 1)
sage: nab.set_calc_order(e, 1, truncate=True)
sage: nab[0, 1, 1]
-e

set_coef(frame=None)
Return the connection coefficients in a given frame for assignment.

See method coef() for details about the definition of the connection coefficients.

The connection coefficients with respect to other frames are deleted, in order to avoid any inconsistency. To
keep them, use the method add_coef() instead.

INPUT:

• frame – (default: None) vector frame in which the connection coefficients are defined; if None, the
default frame of the connection’s domain is assumed.

784 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• connection coefficients in the given frame, as an instance of the class Components; if such connection
coefficients did not exist previously, they are created. See method coef() for the storage convention
of the connection coefficients.

EXAMPLES:

Setting the coefficients of an affine connection w.r.t. some coordinate frame:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: eX = X.frame(); eX
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: nab.set_coef(eX)
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: nab.set_coef(eX)[1,2,1] = x*y
sage: nab.display(eX)
Gam^x_yx = x*y

Since eX is the manifold’s default vector frame, its mention may be omitted:

sage: nab.set_coef()[1,2,1] = x*y
sage: nab.set_coef()
3-indices components w.r.t. Coordinate frame (M, (∂/∂x,∂/∂y))
sage: nab.set_coef()[1,2,1] = x*y
sage: nab.display()
Gam^x_yx = x*y

To set the coefficients in the default frame, one can even bypass the method set_coef() and call directly
the operator [] on the connection object:

sage: nab[1,2,1] = x*y
sage: nab.display()

Gam^x_yx = x*y

Setting the connection coefficients w.r.t. to another vector frame:

sage: e = M.vector_frame(e)
sage: nab.set_coef(e)
3-indices components w.r.t. Vector frame (M, (e_1,e_2))
sage: nab.set_coef(e)[2,1,1] = x+y
sage: nab.set_coef(e)[2,1,2] = x-y
sage: nab.display(e)
Gam^2_11 = x + y
Gam^2_12 = x - y

The coefficients w.r.t. the frame eX have been deleted:

sage: nab.display(eX)
Traceback (most recent call last):
...
ValueError: no common frame found for the computation

To keep them, use the method add_coef() instead.

set_immutable()

Set self and all restrictions of self immutable.

2.13. Affine Connections 785

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components

Manifolds, Release 10.4.rc1

EXAMPLES:

An affine connection can be set immutable:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U , coord_def={X: x^2+y^2<1})
sage: nab = M.affine_connection(nabla , latex_name=r \nabla)
sage: eX = X.frame()
sage: nab.set_coef(eX)[1,2,1] = x*y
sage: nab.is_immutable()
False
sage: nab.set_immutable()
sage: nab.is_immutable()
True

The coefficients of immutable elements cannot be changed:

sage: nab.add_coef(eX)[2,1,1] = x+y
Traceback (most recent call last):
...
ValueError: the coefficients of an immutable element cannot
be changed

The restriction are set immutable as well:

sage: nabU = nab.restrict(U)
sage: nabU.is_immutable()
True

torsion()

Return the connection’s torsion tensor.

The torsion tensor is the tensor field 𝑇 of type (1,2) defined by

𝑇 (𝜔, 𝑢, 𝑣) = ⟨𝜔,∇𝑢𝑣 −∇𝑣𝑢− [𝑢, 𝑣]⟩

for any 1-form 𝜔 and any vector fields 𝑢 and 𝑣.

OUTPUT:

• the torsion tensor 𝑇 , as an instance of TensorField

EXAMPLES:

Torsion of an affine connection on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} =␣
→˓yz
sage: t = nab.torsion() ; t
Tensor field of type (1,2) on the 3-dimensional differentiable
manifold M

sage: t.symmetries()
no symmetry; antisymmetry: (1, 2)
sage: t[:]
[[[0, -x^2, 0], [x^2, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, -y*z], [0, y*z, 0]]]

786 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The torsion expresses the lack of commutativity of two successive derivatives of a scalar field:

sage: f = M.scalar_field(x*z^2 + y^2 - z^2, name= f)
sage: DDf = nab(nab(f)) ; DDf
Tensor field nabla(df) of type (0,2) on the 3-dimensional
differentiable manifold M

sage: DDf.antisymmetrize()[:] # two successive derivatives do not commute:
[0 -1/2*x^2*z^2 0]
[1/2*x^2*z^2 0 -(x - 1)*y*z^2]
[0 (x - 1)*y*z^2 0]
sage: 2*DDf.antisymmetrize() == nab.torsion().contract(0,nab(f))
True

The above identity is the standard formula

∇𝑗∇𝑖 𝑓 −∇𝑖∇𝑗 𝑓 = 𝑇 𝑘
𝑖𝑗∇𝑘 𝑓,

where the 𝑇 𝑘
𝑖𝑗 ’s are the components of the torsion tensor.

The result is cached:

sage: nab.torsion() is t
True

as long as the connection remains unchanged:

sage: nab[2,1,3] = 1+x # changing the connection
sage: nab.torsion() is t # a new computation of the torsion has been made
False
sage: (nab.torsion() - t).display()
(-x - 1) ∂/∂y⊗dx⊗dz + (x + 1) ∂/∂y⊗dz⊗dx

Another example: torsion of some connection on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: c_xyW = c_xy.restrict(W) ; c_uvW = c_uv.restrict(W)
sage: eUW = c_xyW.frame() ; eVW = c_uvW.frame()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[0,0,0], nab[0,1,0], nab[1,0,1] = x, x-y, x*y
sage: for i in M.irange():
....: for j in M.irange():
....: for k in M.irange():
....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr()
sage: t = nab.torsion() ; t
Tensor field of type (1,2) on the 2-dimensional differentiable
manifold M

sage: t.parent()
Module T^(1,2)(M) of type-(1,2) tensors fields on the 2-dimensional
differentiable manifold M

sage: t[eU,:]

(continues on next page)

2.13. Affine Connections 787

Manifolds, Release 10.4.rc1

(continued from previous page)

[[[0, x - y], [-x + y, 0]], [[0, -x*y], [x*y, 0]]]
sage: t[eV,:]
[[[0, 1/8*u^2 - 1/8*v^2 - 1/2*v], [-1/8*u^2 + 1/8*v^2 + 1/2*v, 0]],
[[0, -1/8*u^2 + 1/8*v^2 - 1/2*v], [1/8*u^2 - 1/8*v^2 + 1/2*v, 0]]]

Check of the torsion formula:

sage: f = M.scalar_field({c_xy: (x+y)^2, c_uv: u^2}, name= f)
sage: DDf = nab(nab(f)) ; DDf
Tensor field nabla(df) of type (0,2) on the 2-dimensional
differentiable manifold M

sage: DDf.antisymmetrize().display(eU)
(-x^2*y - (x + 1)*y^2 + x^2) dx∧dy
sage: DDf.antisymmetrize().display(eV)
(1/8*u^3 - 1/8*u*v^2 - 1/2*u*v) du∧dv
sage: 2*DDf.antisymmetrize() == nab(f).contract(nab.torsion())
True

torsion_form(i, frame=None)
Return the torsion 2-form corresponding to the given index and vector frame.

The torsion 2-forms with respect to the frame (𝑒𝑖) are the 𝑛 2-forms 𝜃𝑖 defined by

𝜃𝑖(𝑢, 𝑣) = 𝑇 (𝑒𝑖, 𝑢, 𝑣)

where 𝑇 is the connection’s torsion tensor (cf. torsion()), (𝑒𝑖) is the coframe dual to (𝑒𝑖) and (𝑢, 𝑣) is a
generic pair of vectors.

INPUT:

• i – index identifying the 2-form 𝜃𝑖

• frame – (default: None) vector frame relative to which the torsion 2-forms are defined; if None, the
default frame of the connection’s domain is assumed.

OUTPUT:

• the 2-form 𝜃𝑖, as an instance of DiffForm

EXAMPLES:

Torsion 2-forms on a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: nab = M.affine_connection(nabla , r \nabla)
sage: nab[1,1,1], nab[1,1,2], nab[1,1,3] = x*y*z, x^2, -y*z
sage: nab[1,2,3], nab[1,3,1], nab[1,3,2] = -x^3, y^2*z, y^2-x^2
sage: nab[2,1,1], nab[2,1,2], nab[2,2,1] = z^2, x*y*z^2, -x^2
sage: nab[2,3,1], nab[2,3,3], nab[3,1,2] = x^2+y^2+z^2, y^2-z^2, x*y+z^2
sage: nab[3,2,1], nab[3,2,2], nab[3,3,3] = x*y+z, z^3 -y^2, x*z^2 - z*y^2
sage: nab.torsion_form(1)
2-form torsion (1) of connection nabla w.r.t. Coordinate frame
(M, (∂/∂x,∂/∂y,∂/∂z)) on the 3-dimensional differentiable manifold M

sage: nab.torsion_form(1)[:]
[0 -x^2 (y^2 + y)*z]
[x^2 0 x^3 - x^2 + y^2]
[-(y^2 + y)*z -x^3 + x^2 - y^2 0]

Torsion 2-forms w.r.t. a non-holonomic frame:

788 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: ch_basis = M.automorphism_field()
sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = y, z, x
sage: e = M.default_frame().new_frame(ch_basis, e)
sage: e[1][:], e[2][:], e[3][:]
([y, 0, 0], [0, z, 0], [0, 0, x])
sage: ef = e.coframe()
sage: ef[1][:], ef[2][:], ef[3][:]
([1/y, 0, 0], [0, 1/z, 0], [0, 0, 1/x])
sage: nab.torsion_form(1, e) # long time
2-form torsion (1) of connection nabla w.r.t. Vector frame
(M, (e_1,e_2,e_3)) on the 3-dimensional differentiable manifold M

sage: nab.torsion_form(1, e).comp(e)[:] # long time
[0 -x^2*z (x*y^2 + x*y)*z]
[x^2*z 0 (x^4 - x^3 + x*y^2)*z/y]
[-(x*y^2 + x*y)*z -(x^4 - x^3 + x*y^2)*z/y 0]

Cartan’s first structure equation is

𝜃𝑖 = d𝑒𝑖 + 𝜔𝑖
𝑗 ∧ 𝑒𝑗

where the 𝜔𝑖
𝑗 ’s are the connection 1-forms (cf. connection_form()). Let us check it on the frame e:

sage: for i in M.irange(): # long time
....: nab.torsion_form(i, e) == ef[i].exterior_derivative() + \
....: sum(nab.connection_form(i,j,e).wedge(ef[j]) for j in M.irange())
True
True
True

2.14 Submanifolds of differentiable manifolds

Given two differentiable manifolds 𝑁 and 𝑀 , an immersion 𝜑 is a differentiable map 𝑁 → 𝑀 whose differential is
everywhere injective. One then says that 𝑁 is an immersed submanifold of𝑀 , via 𝜑.

If in addition, 𝜑 is a differentiable embedding (i.e. 𝜑 is an immersion that is a homeomorphism onto its image), then 𝑁
is called an embedded submanifold of𝑀 (or simply a submanifold).

𝜑 can also depend on one or multiple parameters. As long as the differential of 𝜑 remains injective in these parameters,
it represents a foliation. The dimension of the foliation is defined as the number of parameters.

AUTHORS:

• Florentin Jaffredo (2018): initial version

• Eric Gourgoulhon (2018-2019): add documentation

• Matthias Koeppe (2021): open subsets of submanifolds

REFERENCES:

• J. M. Lee: Introduction to Smooth Manifolds [Lee2013]

2.14. Submanifolds of differentiable manifolds 789

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.differentiable_submanifold.DifferentiableSubmanifold(n,
name,
field,
struc-
ture,
am-
bi-
ent=None,
base_man-
i-
fold=None,
diff_de-
gree=+In-
fin-
ity,
la-
tex_name=None,
start_in-
dex=0,
cat-
e-
gory=None,
unique_tag=None)

Bases: DifferentiableManifold, TopologicalSubmanifold

Submanifold of a differentiable manifold.

Given two differentiable manifolds 𝑁 and𝑀 , an immersion 𝜑 is a differentiable map 𝑁 → 𝑀 whose differential
is everywhere injective. One then says that 𝑁 is an immersed submanifold of𝑀 , via 𝜑.

If in addition, 𝜑 is a differentiable embedding (i.e. 𝜑 is an immersion that is a homeomorphism onto its image),
then 𝑁 is called an embedded submanifold of𝑀 (or simply a submanifold).

𝜑 can also depend on one or multiple parameters. As long as the differential of 𝜑 remains injective in these
parameters, it represents a foliation. The dimension of the foliation is defined as the number of parameters.

INPUT:

• n – positive integer; dimension of the submanifold

• name – string; name (symbol) given to the submanifold

• field – field𝐾 on which the sub manifold is defined; allowed values are

– real or an object of type RealField (e.g., RR) for a manifold over R

– complex or an object of type ComplexField (e.g., CC) for a manifold over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of manifolds

• structure – manifold structure (see TopologicalStructure or RealTopologicalStruc-
ture)

• ambient – (default: None) codomain𝑀 of the immersion 𝜑; must be a differentiable manifold. If None,
it is set to self

• base_manifold – (default: None) if not None, must be a differentiable manifold; the created object is
then an open subset of base_manifold

• diff_degree – (default: infinity) degree of differentiability

790 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces

Manifolds, Release 10.4.rc1

• latex_name – (default: None) string; LaTeX symbol to denote the submanifold; if none are provided, it
is set to name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
submanifold, e.g., coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(field).
Differentiable() (or Manifolds(field).Smooth() if diff_degree = infinity)
is assumed (see the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other
arguments have been used previously (without unique_tag, the UniqueRepresentation behavior
inherited from ManifoldSubset via DifferentiableManifold would return the previously con-
structed object corresponding to these arguments)

EXAMPLES:

Let 𝑁 be a 2-dimensional submanifold of a 3-dimensional manifold𝑀 :

sage: M = Manifold(3, M)
sage: N = Manifold(2, N , ambient=M)
sage: N
2-dimensional differentiable submanifold N immersed in the
3-dimensional differentiable manifold M
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()

Let us define a 1-dimensional foliation indexed by 𝑡:

sage: t = var(t)
sage: phi = N.continuous_map(M, {(CN,CM): [u, v, t+u^2+v^2]})
sage: phi.display()
N → M

(u, v) ↦ (x, y, z) = (u, v, u^2 + v^2 + t)

The foliation inverse maps are needed for computing the adapted chart on the ambient manifold:

sage: phi_inv = M.continuous_map(N, {(CM, CN): [x, y]})
sage: phi_inv.display()
M → N

(x, y, z) ↦ (u, v) = (x, y)
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})
sage: phi_inv_t.display()
M → ℝ

(x, y, z) ↦ -x^2 - y^2 + z

𝜑 can then be declared as an embedding 𝑁 →𝑀 :

sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})

The foliation can also be used to find new charts on the ambient manifold that are adapted to the foliation, ie in which
the expression of the immersion is trivial. At the same time, the appropriate coordinate changes are computed:

sage: N.adapted_chart()
[Chart (M, (u_M, v_M, t_M))]
sage: M.atlas()
[Chart (M, (x, y, z)), Chart (M, (u_M, v_M, t_M))]

(continues on next page)

2.14. Submanifolds of differentiable manifolds 791

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: len(M.coord_changes())
2

See also:

manifold and topological_submanifold

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of the manifold.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.
It is a differentiable manifold by itself.

As self is a submanifold of its ambient manifold, the new open subset is also considered a submanifold of
that. Hence the returned object is an instance of DifferentiableSubmanifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none is provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_def must a be
dictionary with keys charts in the manifold’s atlas and values the symbolic expressions formed by the
coordinates to define the subset.

• supersets – (default: only self) list of sets that the new open subset is a subset of

OUTPUT:

• the open subset, as an instance of DifferentiableSubmanifold

EXAMPLES:

sage: M = Manifold(3, M , structure="differentiable")
sage: N = Manifold(2, N , ambient=M, structure="differentiable"); N
2-dimensional differentiable submanifold N immersed in the
3-dimensional differentiable manifold M

sage: S = N.subset(S); S
Subset S of the
2-dimensional differentiable submanifold N immersed in the
3-dimensional differentiable manifold M

sage: O = N.subset(O , is_open=True); O # indirect doctest
Open subset O of the
2-dimensional differentiable submanifold N immersed in the
3-dimensional differentiable manifold M

sage: phi = N.diff_map(M)
sage: N.set_embedding(phi)
sage: N
2-dimensional differentiable submanifold N embedded in the
3-dimensional differentiable manifold M

sage: S = N.subset(S); S
Subset S of the
2-dimensional differentiable submanifold N embedded in the
3-dimensional differentiable manifold M

sage: O = N.subset(O , is_open=True); O # indirect doctest
Open subset O of the
2-dimensional differentiable submanifold N embedded in the
3-dimensional differentiable manifold M

792 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.15 Differentiable Vector Bundles

2.15.1 Differentiable Vector Bundles

Let 𝐾 be a topological field. A 𝐶𝑘-differentiable vector bundle of rank 𝑛 over the field 𝐾 and over a 𝐶𝑘-differentiable
manifold𝑀 (base space) is a 𝐶𝑘-differentiable manifold 𝐸 (total space) together with a 𝐶𝑘 differentiable and surjective
map 𝜋 : 𝐸 →𝑀 such that for every point 𝑥 ∈𝑀 :

• the set 𝐸𝑥 = 𝜋−1(𝑥) has the vector space structure of𝐾𝑛,

• there is a neighborhood 𝑈 ⊂𝑀 of 𝑥 and a 𝐶𝑘-diffeomorphism 𝜙 : 𝜋−1(𝑥) → 𝑈 ×𝐾𝑛 such that 𝑣 ↦→ 𝜙−1(𝑦, 𝑣)
is a linear isomorphism for any 𝑦 ∈ 𝑈 .

An important case of a differentiable vector bundle over a differentiable manifold is the tensor bundle (see Tensor-
Bundle)

AUTHORS:

• Michael Jung (2019) : initial version

class sage.manifolds.differentiable.vector_bundle.DifferentiableVectorBundle(rank,
name,
base_space,
field='real',
la-
tex_name=None,
cat-
e-
gory=None,
unique_tag=None)

Bases: TopologicalVectorBundle

An instance of this class represents a differentiable vector bundle 𝐸 →𝑀

INPUT:

• rank – positive integer; rank of the vector bundle

• name – string representation given to the total space

• base_space – the base space (differentiable manifold)𝑀 over which the vector bundle is defined

• field – field𝐾 which gives the fibers the structure of a vector space over𝐾; allowed values are

– real or an object of type RealField (e.g., RR) for a vector bundle over R

– complex or an object of type ComplexField (e.g., CC) for a vector bundle over C

– an object in the category of topological fields (see Fields and TopologicalSpaces) for other
types of topological fields

• latex_name – (default: None) LaTeX representation given to the total space

• category – (default: None) to specify the category; if None, VectorBundles(base_space,
c_field).Differentiable() is assumed (see the category VectorBundles)

EXAMPLES:

A differentiable vector bundle of rank 2 over a 3-dimensional differentiable manifold:

2.15. Differentiable Vector Bundles 793

../../../../../../../html/en/reference/categories/sage/categories/fields.html#sage.categories.fields.Fields
../../../../../../../html/en/reference/categories/sage/categories/topological_spaces.html#sage.categories.topological_spaces.TopologicalSpaces
../../../../../../../html/en/reference/categories/sage/categories/vector_bundles.html#sage.categories.vector_bundles.VectorBundles

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M)
sage: E = M.vector_bundle(2, E , field= complex); E
Differentiable complex vector bundle E -> M of rank 2 over the base
space 3-dimensional differentiable manifold M
sage: E.category()
Category of smooth vector bundles over Complex Field with 53 bits of
precision with base space 3-dimensional differentiable manifold M

At this stage, the differentiable vector bundle has the same differentiability degree as the base manifold:

sage: M.diff_degree() == E.diff_degree()
True

bundle_connection(name, latex_name=None)
Return a bundle connection on self.

OUTPUT:

• a bundle connection on self as an instance of BundleConnection

EXAMPLES:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # standard frame for E
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla); nab
Bundle connection nabla on the Differentiable real vector bundle
E -> M of rank 2 over the base space 3-dimensional differentiable
manifold M

See also:

Further examples can be found in BundleConnection.

characteristic_class(*args, **kwds)
Deprecated: Use characteristic_cohomology_class() instead. See Issue #29581 for details.

characteristic_cohomology_class(*args, **kwargs)
Return a characteristic cohomology class associated with the input data.

INPUT:

• val – the input data associated with the characteristic class using the Chern-Weil homomorphism; this
argument can be either a symbolic expression, a polynomial or one of the following predefined classes:

– Chern – total Chern class,

– ChernChar – Chern character,

– Todd – Todd class,

– Pontryagin – total Pontryagin class,

– Hirzebruch – Hirzebruch class,

– AHat – 𝐴 class,

– Euler – Euler class.

• base_ring – (default: QQ) base ring over which the characteristic cohomology class ring shall be
defined

794 Chapter 2. Differentiable Manifolds

https://github.com/sagemath/sage/issues/29581

Manifolds, Release 10.4.rc1

• name – (default: None) string representation given to the characteristic cohomology class; if None the
default algebra representation or predefined name is used

• latex_name – (default: None) LaTeX name given to the characteristic class; if None the value of
name is used

• class_type – (default: None) class type of the characteristic cohomology class; the following options
are possible:

– multiplicative – returns a class of multiplicative type

– additive – returns a class of additive type

– Pfaffian – returns a class of Pfaffian type

This argument must be stated if val is a polynomial or symbolic expression.

EXAMPLES:

Pontryagin class on the Minkowski space:

sage: M = Manifold(4, M , structure= Lorentzian , start_index=1)
sage: X.<t,x,y,z> = M.chart()
sage: g = M.metric()
sage: g[1,1] = -1
sage: g[2,2] = 1
sage: g[3,3] = 1
sage: g[4,4] = 1
sage: g.display()
g = -dt⊗dt + dx⊗dx + dy⊗dy + dz⊗dz

Let us introduce the corresponding Levi-Civita connection:

sage: nab = g.connection(); nab
Levi-Civita connection nabla_g associated with the Lorentzian
metric g on the 4-dimensional Lorentzian manifold M

sage: nab.set_immutable() # make nab immutable

Of course, ∇𝑔 is flat:

sage: nab.display()

Let us check the total Pontryagin class which must be the one element in the corresponding cohomology ring
in this case:

sage: TM = M.tangent_bundle(); TM
Tangent bundle TM over the 4-dimensional Lorentzian manifold M
sage: p = TM.characteristic_cohomology_class(Pontryagin); p
Characteristic cohomology class p(TM) of the Tangent bundle TM over
the 4-dimensional Lorentzian manifold M

sage: p_form = p.get_form(nab); p_form.display_expansion()
p(TM, nabla_g) = 1

See also:

More examples can be found in CharacteristicClass.

characteristic_cohomology_class_ring(base=Rational Field)

Return the characteristic cohomology class ring of self over a given base.

INPUT:

2.15. Differentiable Vector Bundles 795

Manifolds, Release 10.4.rc1

• base – (default: QQ) base over which the ring should be constructed; typically that would be , , R
or the symbolic ring

EXAMPLES:

sage: M = Manifold(4, M , start_index=1)
sage: R = M.tangent_bundle().characteristic_cohomology_class_ring()
sage: R
Algebra of characteristic cohomology classes of the Tangent bundle
TM over the 4-dimensional differentiable manifold M

sage: p1 = R.gen(0); p1
Characteristic cohomology class (p_1)(TM) of the Tangent bundle TM
over the 4-dimensional differentiable manifold M

sage: 1 + p1
Characteristic cohomology class (1 + p_1)(TM) of the Tangent bundle
TM over the 4-dimensional differentiable manifold M

diff_degree()

Return the vector bundle’s degree of differentiability.

The degree of differentiability is the integer 𝑘 (possibly 𝑘 = ∞) such that the vector bundle is of class 𝐶𝑘

over its base field. The degree always corresponds to the degree of differentiability of it’s base space.

EXAMPLES:

sage: M = Manifold(2, M)
sage: E = M.vector_bundle(2, E)
sage: E.diff_degree()
+Infinity
sage: M = Manifold(2, M , structure= differentiable ,
....: diff_degree=3)
sage: E = M.vector_bundle(2, E)
sage: E.diff_degree()
3

total_space()

Return the total space of self.

Note: At this stage, the total space does not come with induced charts.

OUTPUT:

• the total space of self as an instance of DifferentiableManifold

EXAMPLES:

sage: M = Manifold(3, M)
sage: E = M.vector_bundle(2, E)
sage: E.total_space()
6-dimensional differentiable manifold E

class sage.manifolds.differentiable.vector_bundle.TensorBundle(base_space, k, l,
dest_map=None)

Bases: DifferentiableVectorBundle

Tensor bundle over a differentiable manifold along a differentiable map.

796 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

An instance of this class represents the pullback tensor bundle Φ*𝑇 (𝑘,𝑙)𝑁 along a differentiable map (called desti-
nation map)

Φ :𝑀 −→ 𝑁

between two differentiable manifolds𝑀 and 𝑁 over the topological field𝐾.

More precisely,Φ*𝑇 (𝑘,𝑙)𝑁 consists of all pairs (𝑝, 𝑡) ∈𝑀×𝑇 (𝑘,𝑙)𝑁 such that 𝑡 ∈ 𝑇
(𝑘,𝑙)
𝑞 𝑁 for 𝑞 = Φ(𝑝), namely

𝑡 : 𝑇 *
𝑞𝑁 × · · · × 𝑇 *

𝑞𝑁⏟ ⏞
𝑘 times

×𝑇𝑞𝑁 × · · · × 𝑇𝑞𝑁⏟ ⏞
𝑙 times

−→ 𝐾

(𝑘 is called the contravariant and 𝑙 the covariant rank of the tensor bundle).

The trivializations are directly given by charts on the codomain (called ambient domain) of Φ. In particular, let
(𝑉, 𝜙) be a chart of 𝑁 with components (𝑥1, . . . , 𝑥𝑛) such that 𝑞 = Φ(𝑝) ∈ 𝑉 . Then, the matrix entries of
𝑡 ∈ 𝑇

(𝑘,𝑙)
𝑞 𝑁 are given by

𝑡𝑎1...𝑎𝑘

𝑏1...𝑏𝑙
= 𝑡

(︃
𝜕

𝜕𝑥𝑎1

⃒⃒⃒⃒
𝑞

, . . . ,
𝜕

𝜕𝑥𝑎𝑘

⃒⃒⃒⃒
𝑞

, d𝑥𝑏1
⃒⃒
𝑞
, . . . , d𝑥𝑏𝑙

⃒⃒
𝑞

)︃
∈ 𝐾

and a trivialization over 𝑈 = Φ−1(𝑉) ⊂𝑀 is obtained via

(𝑝, 𝑡) ↦→
(︀
𝑝, 𝑡1...1 1...1, . . . , 𝑡

𝑛...𝑛
𝑛...𝑛

)︀
∈ 𝑈 ×𝐾𝑛(𝑘+𝑙)

.

The standard case of a tensor bundle over a differentiable manifold corresponds to𝑀 = 𝑁 and Φ = Id𝑀 . Other
common cases are Φ being an immersion and Φ being a curve in 𝑁 (𝑀 is then an open interval of R).

INPUT:

• base_space – the base space (differentiable manifold)𝑀 over which the tensor bundle is defined

• k – the contravariant rank of the corresponding tensor bundle

• l – the covariant rank of the corresponding tensor bundle

• dest_map – (default: None) destination map Φ : 𝑀 → 𝑁 (type: DiffMap); if None, it is assumed that
𝑀 =𝑀 and Φ is the identity map of𝑀 (case of the standard tensor bundle over𝑀)

EXAMPLES:

Pullback tangent bundle of 𝑅2 along a curve Φ:

sage: M = Manifold(2, M)
sage: c_cart.<x,y> = M.chart()
sage: R = Manifold(1, R)
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, [cos(t), sin(t)], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable manifold R
to the 2-dimensional differentiable manifold M
sage: Phi.display()
Phi: R → M

t ↦ (x, y) = (cos(t), sin(t))
sage: PhiTM = R.tangent_bundle(dest_map=Phi); PhiTM
Tangent bundle Phi^*TM over the 1-dimensional differentiable manifold R
along the Differentiable map Phi from the 1-dimensional differentiable
manifold R to the 2-dimensional differentiable manifold M

The section module is the corresponding tensor field module:

2.15. Differentiable Vector Bundles 797

Manifolds, Release 10.4.rc1

sage: R_tensor_module = R.tensor_field_module((1,0), dest_map=Phi)
sage: R_tensor_module is PhiTM.section_module()
True

ambient_domain()

Return the codomain of the destination map.

OUTPUT:

• a DifferentiableManifold representing the codomain of the destination map

EXAMPLES:

sage: M = Manifold(2, M)
sage: c_cart.<x,y> = M.chart()
sage: e_cart = c_cart.frame() # standard basis
sage: R = Manifold(1, R)
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, [cos(t), sin(t)], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable
manifold R to the 2-dimensional differentiable manifold M

sage: Phi.display()
Phi: R → M

t ↦ (x, y) = (cos(t), sin(t))
sage: PhiT11 = R.tensor_bundle(1, 1, dest_map=Phi)
sage: PhiT11.ambient_domain()
2-dimensional differentiable manifold M

atlas()

Return the list of charts that have been defined on the codomain of the destination map.

Note: Since an atlas of charts gives rise to an atlas of trivializations, this method directly invokes atlas()
of the class TopologicalManifold.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: TM = M.tangent_bundle()
sage: TM.atlas()
[Chart (M, (x, y)), Chart (M, (u, v))]

change_of_frame(frame1, frame2)
Return a change of vector frames defined on the base space of self.

See also:

For further details on frames on self see local_frame().

Note: Since frames on self are directly induced by vector frames on the base space, this method directly
invokes change_of_frame() of the class DifferentiableManifold.

INPUT:

• frame1 – local frame 1

798 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• frame2 – local frame 2

OUTPUT:

• a FreeModuleAutomorphism representing, at each point, the vector space automorphism 𝑃 that
relates frame 1, (𝑒𝑖) say, to frame 2, (𝑓𝑖) say, according to 𝑓𝑖 = 𝑃 (𝑒𝑖)

EXAMPLES:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: c_xy.transition_map(c_uv, (x+y, x-y))
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: TM = M.tangent_bundle()
sage: TM.change_of_frame(c_xy.frame(), c_uv.frame())
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M

sage: TM.change_of_frame(c_xy.frame(), c_uv.frame())[:]
[1/2 1/2]
[1/2 -1/2]
sage: TM.change_of_frame(c_uv.frame(), c_xy.frame())
Field of tangent-space automorphisms on the 2-dimensional
differentiable manifold M

sage: TM.change_of_frame(c_uv.frame(), c_xy.frame())[:]
[1 1]
[1 -1]
sage: TM.change_of_frame(c_uv.frame(), c_xy.frame()) == \
....: M.change_of_frame(c_xy.frame(), c_uv.frame()).inverse()
True

changes_of_frame()

Return the changes of vector frames defined on the base space of self with respect to the destination map.

See also:

For further details on frames on self see local_frame().

OUTPUT:

• dictionary of automorphisms on the tangent bundle representing the changes of frames, the keys being
the pair of frames

EXAMPLES:

Let us consider a first vector frame on a 2-dimensional differentiable manifold:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: TM = M.tangent_bundle()
sage: e = X.frame(); e
Coordinate frame (M, (∂/∂x,∂/∂y))

At this stage, the dictionary of changes of frame is empty:

sage: TM.changes_of_frame()
{}

We introduce a second frame on themanifold, relating it to frame e by a field of tangent space automorphisms:

2.15. Differentiable Vector Bundles 799

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

sage: a = M.automorphism_field(name= a)
sage: a[:] = [[-y, x], [1, 2]]
sage: f = e.new_frame(a, f); f
Vector frame (M, (f_0,f_1))

Then we have:

sage: TM.changes_of_frame() # random (dictionary output)
{(Coordinate frame (M, (∂/∂x,∂/∂y)),

Vector frame (M, (f_0,f_1))): Field of tangent-space
automorphisms on the 2-dimensional differentiable manifold M,

(Vector frame (M, (f_0,f_1)),
Coordinate frame (M, (∂/∂x,∂/∂y))): Field of tangent-space
automorphisms on the 2-dimensional differentiable manifold M}

Some checks:

sage: TM.changes_of_frame()[(e,f)] == a
True
sage: TM.changes_of_frame()[(f,e)] == a^(-1)
True

coframes()

Return the list of coframes defined on the base manifold of self with respect to the destination map.

See also:

For further details on frames on self see local_frame().

OUTPUT:

• list of coframes defined on self

EXAMPLES:

Coframes on subsets of R2:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: TM = M.tangent_bundle()
sage: TM.coframes()
[Coordinate coframe (R^2, (dx,dy))]
sage: e = TM.vector_frame(e)
sage: M.coframes()
[Coordinate coframe (R^2, (dx,dy)), Coframe (R^2, (e^0,e^1))]
sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1})
sage: TU = U.tangent_bundle()
sage: TU.coframes()
[Coordinate coframe (U, (dx,dy))]
sage: e.restrict(U)
Vector frame (U, (e_0,e_1))
sage: TU.coframes()
[Coordinate coframe (U, (dx,dy)), Coframe (U, (e^0,e^1))]
sage: TM.coframes()
[Coordinate coframe (R^2, (dx,dy)),
Coframe (R^2, (e^0,e^1)),
Coordinate coframe (U, (dx,dy)),
Coframe (U, (e^0,e^1))]

800 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

default_frame()

Return the default vector frame defined on self.

By vector frame, it is meant a field on the manifold that provides, at each point 𝑝, a vector basis of the pulled
back tangent space at 𝑝.

If the destination map is the identity map, the default frame is the the first one defined on the manifold, usually
the coordinate frame, unless it is changed via set_default_frame().

If the destination map is non-trivial, the default frame usually must be set via set_default_frame().

OUTPUT:

• a VectorFrame representing the default vector frame

EXAMPLES:

The default vector frame is often the coordinate frame associated with the first chart defined on the manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: TM = M.tangent_bundle()
sage: TM.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y))

destination_map()

Return the destination map.

OUTPUT:

• a DifferentialMap representing the destination map

EXAMPLES:

sage: M = Manifold(2, M)
sage: c_cart.<x,y> = M.chart()
sage: e_cart = c_cart.frame() # standard basis
sage: R = Manifold(1, R)
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, [cos(t), sin(t)], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable
manifold R to the 2-dimensional differentiable manifold M

sage: Phi.display()
Phi: R → M

t ↦ (x, y) = (cos(t), sin(t))
sage: PhiT11 = R.tensor_bundle(1, 1, dest_map=Phi)
sage: PhiT11.destination_map()
Differentiable map Phi from the 1-dimensional differentiable
manifold R to the 2-dimensional differentiable manifold M

fiber(point)
Return the tensor bundle fiber over a point.

INPUT:

• point – ManifoldPoint; point 𝑝 of the base manifold of self

OUTPUT:

• an instance of FiniteRankFreeModule representing the tensor bundle fiber over 𝑝

EXAMPLES:

2.15. Differentiable Vector Bundles 801

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: p = M((0,2,1), name= p); p
Point p on the 3-dimensional differentiable manifold M
sage: TM = M.tangent_bundle(); TM
Tangent bundle TM over the 3-dimensional differentiable manifold M
sage: TM.fiber(p)
Tangent space at Point p on the 3-dimensional differentiable
manifold M

sage: TM.fiber(p) is M.tangent_space(p)
True

sage: T11M = M.tensor_bundle(1,1); T11M
Tensor bundle T^(1,1)M over the 3-dimensional differentiable
manifold M

sage: T11M.fiber(p)
Free module of type-(1,1) tensors on the Tangent space at Point p
on the 3-dimensional differentiable manifold M

sage: T11M.fiber(p) is M.tangent_space(p).tensor_module(1,1)
True

frames()

Return the list of all vector frames defined on the base space of self with respect to the destination map.

See also:

For further details on frames on self see local_frame().

OUTPUT:

• list of local frames defined on self

EXAMPLES:

Vector frames on subsets of R2:

sage: M = Manifold(2, R^2)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: TM = M.tangent_bundle()
sage: TM.frames()
[Coordinate frame (R^2, (∂/∂x,∂/∂y))]
sage: e = TM.vector_frame(e)
sage: TM.frames()
[Coordinate frame (R^2, (∂/∂x,∂/∂y)),
Vector frame (R^2, (e_0,e_1))]

sage: U = M.open_subset(U , coord_def={c_cart: x^2+y^2<1})
sage: TU = U.tangent_bundle()
sage: TU.frames()
[Coordinate frame (U, (∂/∂x,∂/∂y))]
sage: TM.frames()
[Coordinate frame (R^2, (∂/∂x,∂/∂y)),
Vector frame (R^2, (e_0,e_1)),
Coordinate frame (U, (∂/∂x,∂/∂y))]

List of vector frames of a tensor bundle of type (1, 1) along a curve:

sage: M = Manifold(2, M)
sage: c_cart.<x,y> = M.chart()
sage: e_cart = c_cart.frame() # standard basis

(continues on next page)

802 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: R = Manifold(1, R)
sage: T.<t> = R.chart() # canonical chart on R
sage: Phi = R.diff_map(M, [cos(t), sin(t)], name= Phi) ; Phi
Differentiable map Phi from the 1-dimensional differentiable
manifold R to the 2-dimensional differentiable manifold M

sage: Phi.display()
Phi: R → M

t ↦ (x, y) = (cos(t), sin(t))
sage: PhiT11 = R.tensor_bundle(1, 1, dest_map=Phi); PhiT11
Tensor bundle Phi^*T^(1,1)M over the 1-dimensional differentiable
manifold R along the Differentiable map Phi from the 1-dimensional
differentiable manifold R to the 2-dimensional differentiable
manifold M

sage: f = PhiT11.local_frame(); f
Vector frame (R, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold M

sage: PhiT11.frames()
[Vector frame (R, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold M]

is_manifestly_trivial()

Return True if self is known to be a trivial and False otherwise.

If False is returned, either the tensor bundle is not trivial or no vector frame has been defined on it yet.

EXAMPLES:

A just created manifold has a priori no manifestly trivial tangent bundle:

sage: M = Manifold(2, M)
sage: TM = M.tangent_bundle()
sage: TM.is_manifestly_trivial()
False

Defining a vector frame on it makes it trivial:

sage: e = TM.vector_frame(e)
sage: TM.is_manifestly_trivial()
True

Defining a coordinate chart on the whole manifold also makes it trivial:

sage: N = Manifold(4, N)
sage: X.<t,x,y,z> = N.chart()
sage: TN = N.tangent_bundle()
sage: TN.is_manifestly_trivial()
True

The situation is not so clear anymore when a destination map to a non-parallelizable manifold is stated:

sage: M = Manifold(2, S^2) # the 2-dimensional sphere S^2
sage: U = M.open_subset(U) # complement of the North pole
sage: c_xy.<x,y> = U.chart() # stereo coord from the North pole
sage: V = M.open_subset(V) # complement of the South pole
sage: c_uv.<u,v> = V.chart() # stereo coord from the South pole
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2),

(continues on next page)

2.15. Differentiable Vector Bundles 803

Manifolds, Release 10.4.rc1

(continued from previous page)

....: y/(x^2+y^2)),

....: intersection_name= W ,

....: restrictions1= x^2+y^2!=0,

....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: Phi = U.diff_map(M, {(c_xy, c_xy): [x, y]},
....: name= Phi) # inclusion map
sage: PhiTU = U.tangent_bundle(dest_map=Phi); PhiTU
Tangent bundle Phi^*TS^2 over the Open subset U of the
2-dimensional differentiable manifold S^2 along the
Differentiable map Phi from the Open subset U of the
2-dimensional differentiable manifold S^2 to the 2-dimensional
differentiable manifold S^2

A priori, the pullback tangent bundle is not trivial:

sage: PhiTU.is_manifestly_trivial()
False

But certainly, this bundle must be trivial since 𝑈 is parallelizable. To ensure this, we need to define a local
frame on 𝑈 with values in Φ*𝑇𝑆2:

sage: PhiTU.local_frame(e , from_frame=c_xy.frame())
Vector frame (U, (e_0,e_1)) with values on the 2-dimensional
differentiable manifold S^2

sage: PhiTU.is_manifestly_trivial()
True

local_frame(*args, **kwargs)
Define a vector frame on domain, possibly with values in the tangent bundle of the ambient domain.

If the basis specified by the given symbol already exists, it is simply returned. If no argument is provided the
vector field module’s default frame is returned.

Notice, that a vector frame automatically induces a local frame on the tensor bundle self. More precisely,
if 𝑒 : 𝑈 → Φ*𝑇𝑁 is a vector frame on 𝑈 ⊂𝑀 with values in Φ*𝑇𝑁 along the destination map

Φ :𝑀 −→ 𝑁

then the map

𝑝 ↦→
(︁
𝑒*(𝑝), . . . , 𝑒*(𝑝)⏟ ⏞

𝑘 times

, 𝑒(𝑝), . . . , 𝑒(𝑝)⏟ ⏞
𝑙 times

)︁
∈ 𝑇 (𝑘,𝑙)

𝑞 𝑁,

with 𝑞 = Φ(𝑝), defines a basis at each point 𝑝 ∈ 𝑈 and therefore gives rise to a local frame on Φ*𝑇 (𝑘,𝑙)𝑁
on the domain 𝑈 .

See also:

VectorFrame for complete documentation.

INPUT:

• symbol – (default: None) either a string, to be used as a common base for the symbols of the vector
fields constituting the vector frame, or a list/tuple of strings, representing the individual symbols of the
vector fields; can be None only if from_frame is not None (see below)

804 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• vector_fields – tuple or list of 𝑛 linearly independent vector fields on domain (𝑛 being the di-
mension of domain) defining the vector frame; can be omitted if the vector frame is created from
scratch or if from_frame is not None

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the vector fields constituting the vector frame, or a list/tuple of strings, representing the individual
LaTeX symbols of the vector fields; if None, symbol is used in place of latex_symbol

• from_frame – (default: None) vector frame 𝑒 on the codomain 𝑁 of the destination map Φ; the
returned frame 𝑒 is then such that for all 𝑝 ∈ 𝑈 , we have 𝑒(𝑝) = 𝑒(Φ(𝑝))

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the vector fields of the frame; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the vector fields; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbolmust
be a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

• domain – (default: None) domain on which the local frame is defined; if None is provided, the base
space of self is assumed

OUTPUT:

• the vector frame corresponding to the above specifications; this is an instance of VectorFrame.

EXAMPLES:

Defining a local frame for the tangent bundle of a 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: TM = M.tangent_bundle()
sage: e = TM.local_frame(e); e
Vector frame (M, (e_0,e_1,e_2))
sage: e[0]
Vector field e_0 on the 3-dimensional differentiable manifold M

Specifying the domain of the vector frame:

sage: U = M.open_subset(U)
sage: f = TM.local_frame(f , domain=U); f
Vector frame (U, (f_0,f_1,f_2))
sage: f[0]
Vector field f_0 on the Open subset U of the 3-dimensional
differentiable manifold M

See also:

For more options, in particular for the choice of symbols and indices, see VectorFrame.

orientation()

Get the preferred orientation of self if available.

See orientation() for details regarding orientations on vector bundles.

The tensor bundle Φ*𝑇 (𝑘,𝑙)𝑁 of a manifold is orientable if the manifold Φ(𝑀) is orientable. The converse
does not necessarily hold true. The usual case corresponds to Φ being the identity map, where the tensor
bundle 𝑇 (𝑘,𝑙)𝑀 is orientable if and only if the manifold𝑀 is orientable.

2.15. Differentiable Vector Bundles 805

Manifolds, Release 10.4.rc1

Note: Notice that the orientation of a general tensor bundle Φ*𝑇 (𝑘,𝑙)𝑁 is canonically induced by the ori-
entation of the tensor bundle Φ*𝑇 (1,0)𝑁 as each local frame there induces the frames on Φ*𝑇 (𝑘,𝑙)𝑁 in a
canonical way.

If no preferred orientation has been set before, and if the ambient space already admits a preferred orientation,
the corresponding orientation is returned and henceforth fixed for the tensor bundle.

EXAMPLES:

In the trivial case, i.e. if the destination map is the identitiy and the tangent bundle is covered by one frame,
the orientation is easily obtained:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: T11 = M.tensor_bundle(1, 1)
sage: T11.orientation()
[Coordinate frame (M, (∂/∂x,∂/∂y))]

The same holds true if the ambient domain admits a trivial orientation:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: R = Manifold(1, R)
sage: c_t.<t> = R.chart()
sage: Phi = R.diff_map(M, name= Phi)
sage: PhiT22 = R.tensor_bundle(2, 2, dest_map=Phi); PhiT22
Tensor bundle Phi^*T^(2,2)M over the 1-dimensional differentiable
manifold R along the Differentiable map Phi from the 1-dimensional
differentiable manifold R to the 2-dimensional differentiable
manifold M

sage: PhiT22.local_frame() # initialize frame
Vector frame (R, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold M

sage: PhiT22.orientation()
[Vector frame (R, (∂/∂x,∂/∂y)) with values on the 2-dimensional
differentiable manifold M]

sage: PhiT22.local_frame() is PhiT22.orientation()[0]
True

In the non-trivial case, however, the orientation must be set manually by the user:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: T11 = M.tensor_bundle(1, 1); T11
Tensor bundle T^(1,1)M over the 2-dimensional differentiable
manifold M

sage: T11.orientation()
[]
sage: T11.set_orientation([c_xy.frame(), c_uv.frame()])
sage: T11.orientation()
[Coordinate frame (U, (∂/∂x,∂/∂y)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

If the destination map is the identity, the orientation is automatically set for the manifold, too:

806 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M.orientation()
[Coordinate frame (U, (∂/∂x,∂/∂y)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

Conversely, if one sets an orientation on the manifold, the orientation on its tensor bundles is set accordingly:

sage: c_tz.<t,z> = U.chart()
sage: M.set_orientation([c_tz, c_uv])
sage: T11.orientation()
[Coordinate frame (U, (∂/∂t,∂/∂z)),
Coordinate frame (V, (∂/∂u,∂/∂v))]

section(*args, **kwargs)
Return a section of self on domain, namely a tensor field on the subset domain of the base space.

Note: This method directly invokes tensor_field() of the class DifferentiableManifold.

INPUT:

• comp – (optional) either the components of the tensor field with respect to the vector frame specified by
the argument frame or a dictionary of components, the keys of which are vector frames or pairs (f,
c) where f is a vector frame and c the chart in which the components are expressed

• frame – (default: None; unused if comp is not given or is a dictionary) vector frame in which the
components are given; if None, the default vector frame of self is assumed

• chart – (default: None; unused if comp is not given or is a dictionary) coordinate chart in which the
components are expressed; if None, the default chart on the domain of frame is assumed

• domain – (default: None) domain of the section; if None, self.base_space() is assumed

• name – (default: None) name given to the tensor field

• latex_name – (default: None) LaTeX symbol to denote the tensor field; if None, the LaTeX symbol
is set to name

• sym – (default: None) a symmetry or a list of symmetries among the tensor arguments: each sym-
metry is described by a tuple containing the positions of the involved arguments, with the convention
position=0 for the first argument; for instance:

– sym = (0,1) for a symmetry between the 1st and 2nd arguments

– sym = [(0,2), (1,3,4)] for a symmetry between the 1st and 3rd arguments and a symmetry
between the 2nd, 4th and 5th arguments

• antisym – (default: None) antisymmetry or list of antisymmetries among the arguments, with the
same convention as for sym

OUTPUT:

• a TensorField (or if𝑁 is parallelizable, a TensorFieldParal) representing the defined tensor
field on the domain 𝑈 ⊂𝑀

EXAMPLES:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()

(continues on next page)

2.15. Differentiable Vector Bundles 807

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: transf = c_xy.transition_map(c_uv, (x+y, x-y),
....: intersection_name= W ,
....: restrictions1= x>0,
....: restrictions2= u+v>0)
sage: inv = transf.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: T11M = M.tensor_bundle(1, 1); T11M
Tensor bundle T^(1,1)M over the 2-dimensional differentiable
manifold M

sage: t = T11M.section({eU: [[1, x], [0, 2]]}, name= t); t
Tensor field t of type (1,1) on the 2-dimensional differentiable
manifold M

sage: t.display()
t = ∂/∂x⊗dx + x ∂/∂x⊗dy + 2 ∂/∂y⊗dy

An example of use with the arguments comp and domain:

sage: TM = M.tangent_bundle()
sage: w = TM.section([-y, x], domain=U); w
Vector field on the Open subset U of the 2-dimensional
differentiable manifold M

sage: w.display()
-y ∂/∂x + x ∂/∂y

section_module(domain=None)
Return the section module on domain, namely the corresponding tensor field module, of self on domain.

Note: This method directly invokes tensor_field_module() of the class Differentiable-
Manifold.

INPUT:

• domain – (default: None) the domain of the corresponding section module; if None, the base space
is assumed

OUTPUT:

• a TensorFieldModule (or if 𝑁 is parallelizable, a TensorFieldFreeModule) representing
the module 𝒯 (𝑘,𝑙)(𝑈,Φ) of type-(𝑘, 𝑙) tensor fields on the domain 𝑈 ⊂𝑀 taking values on Φ(𝑈) ⊂ 𝑁

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U)
sage: TM = M.tangent_bundle()
sage: TUM = TM.section_module(domain=U); TUM
Module X(U) of vector fields on the Open subset U of the
2-dimensional differentiable manifold M

sage: TUM is U.tensor_field_module((1,0))
True

set_change_of_frame(frame1, frame2, change_of_frame, compute_inverse=True)
Relate two vector frames by an automorphism.

This updates the internal dictionary self._frame_changes of the base space𝑀 .

808 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

See also:

For further details on frames on self see local_frame().

Note: Since frames on self are directly induced by vector frames on the base space, this method directly
invokes set_change_of_frame() of the class DifferentiableManifold.

INPUT:

• frame1 – frame 1, denoted (𝑒𝑖) below

• frame2 – frame 2, denoted (𝑓𝑖) below

• change_of_frame – instance of class FreeModuleAutomorphism describing the automor-
phism 𝑃 that relates the basis (𝑒𝑖) to the basis (𝑓𝑖) according to 𝑓𝑖 = 𝑃 (𝑒𝑖)

• compute_inverse (default: True) – if set to True, the inverse automorphism is computed and
the change from basis (𝑓𝑖) to (𝑒𝑖) is set to it in the internal dictionary self._frame_changes

EXAMPLES:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: e = M.vector_frame(e)
sage: f = M.vector_frame(f)
sage: a = M.automorphism_field()
sage: a[e,:] = [[1,2],[0,3]]
sage: TM = M.tangent_bundle()
sage: TM.set_change_of_frame(e, f, a)
sage: f[0].display(e)
f_0 = e_0
sage: f[1].display(e)
f_1 = 2 e_0 + 3 e_1
sage: e[0].display(f)
e_0 = f_0
sage: e[1].display(f)
e_1 = -2/3 f_0 + 1/3 f_1
sage: TM.change_of_frame(e,f)[e,:]
[1 2]
[0 3]

set_default_frame(frame)
Changing the default vector frame on self.

Note: If the destination map is the identity, the default frame of the base manifold gets changed here as well.

INPUT:

• frame – VectorFrame a vector frame defined on the base manifold

EXAMPLES:

Changing the default frame on the tangent bundle of a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: TM = M.tangent_bundle()
sage: e = TM.vector_frame(e)

(continues on next page)

2.15. Differentiable Vector Bundles 809

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_automorphism.html#sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: TM.default_frame()
Coordinate frame (M, (∂/∂x,∂/∂y))
sage: TM.set_default_frame(e)
sage: TM.default_frame()
Vector frame (M, (e_0,e_1))
sage: M.default_frame()
Vector frame (M, (e_0,e_1))

set_orientation(orientation)
Set the preferred orientation of self.

INPUT:

• orientation – a vector frame or a list of vector frames, covering the base space of self

Note: If the destination map is the identity, the preferred orientation of the base manifold gets changed here
as well.

Warning: It is the user’s responsibility that the orientation set here is indeed an orientation. There is no
check going on in the background. See orientation() for the definition of an orientation.

EXAMPLES:

Set an orientation on a tensor bundle:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: T11 = M.tensor_bundle(1, 1)
sage: e = T11.local_frame(e); e
Vector frame (M, (e_0,e_1))
sage: T11.set_orientation(e)
sage: T11.orientation()
[Vector frame (M, (e_0,e_1))]

Set an orientation in the non-trivial case:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart(); c_uv.<u,v> = V.chart()
sage: T12 = M.tensor_bundle(1, 2)
sage: e = T12.local_frame(e , domain=U)
sage: f = T12.local_frame(f , domain=V)
sage: T12.set_orientation([e, f])
sage: T12.orientation()
[Vector frame (U, (e_0,e_1)), Vector frame (V, (f_0,f_1))]

transition(chart1, chart2)
Return the change of trivializations in terms of a coordinate change between two differentiable charts defined
on the codomain of the destination map.

The differentiable chart must have been defined previously, for instance by the method transi-
tion_map().

810 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Note: Since a chart gives direct rise to a trivialization, this method is nothing but an invocation of co-
ord_change() of the class TopologicalManifold.

INPUT:

• chart1 – chart 1

• chart2 – chart 2

OUTPUT:

• instance of CoordChange representing the transition map from chart 1 to chart 2

EXAMPLES:

Change of coordinates on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: c_xy.transition_map(c_uv, (x+y, x-y)) # defines coord. change
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: TM = M.tangent_bundle()
sage: TM.transition(c_xy, c_uv) # returns the coord. change above
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))

transitions()

Return the transition maps between trivialization maps in terms of coordinate changes defined via charts on
the codomain of the destination map.

Note: Since a chart gives direct rise to a trivialization, this method is nothing but an invocation of co-
ord_changes() of the class TopologicalManifold.

EXAMPLES:

Various changes of coordinates on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, [x+y, x-y])
sage: TM = M.tangent_bundle()
sage: TM.transitions()
{(Chart (M, (x, y)),

Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y))
to Chart (M, (u, v))}

sage: uv_to_xy = xy_to_uv.inverse()
sage: TM.transitions() # random (dictionary output)
{(Chart (M, (u, v)),

Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v))
to Chart (M, (x, y)),

(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y))
to Chart (M, (u, v))}

sage: c_rs.<r,s> = M.chart()
sage: uv_to_rs = c_uv.transition_map(c_rs, [-u+2*v, 3*u-v])
sage: TM.transitions() # random (dictionary output)

(continues on next page)

2.15. Differentiable Vector Bundles 811

Manifolds, Release 10.4.rc1

(continued from previous page)

{(Chart (M, (u, v)),
Chart (M, (r, s))): Change of coordinates from Chart (M, (u, v))
to Chart (M, (r, s)),

(Chart (M, (u, v)),
Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v))
to Chart (M, (x, y)),

(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y))
to Chart (M, (u, v))}

sage: xy_to_rs = uv_to_rs * xy_to_uv
sage: TM.transitions() # random (dictionary output)
{(Chart (M, (u, v)),

Chart (M, (r, s))): Change of coordinates from Chart (M, (u, v))
to Chart (M, (r, s)),

(Chart (M, (u, v)),
Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v))
to Chart (M, (x, y)),

(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y))
to Chart (M, (u, v)),

(Chart (M, (x, y)),
Chart (M, (r, s))): Change of coordinates from Chart (M, (x, y))
to Chart (M, (r, s))}

trivialization(coordinates='', names=None, calc_method=None)
Return a trivialization of self in terms of a chart on the codomain of the destination map.

Note: Since a chart gives direct rise to a trivialization, this method is nothing but an invocation of chart()
of the class TopologicalManifold.

INPUT:

• coordinates – (default: (empty string)) string defining the coordinate symbols, ranges and pos-
sible periodicities, see below

• names – (default: None) unused argument, except if coordinates is not provided; it must then be
a tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

• calc_method – (default: None) string defining the calculus method to be used on this chart; must be
one of

– SR : Sage’s default symbolic engine (Symbolic Ring)

– sympy : SymPy

– None: the current calculus method defined on the manifold is used (cf. set_calcu-
lus_method())

The coordinates declared in the string coordinates are separated by (whitespace) and each coordi-
nate has at most four fields, separated by a colon (:):

1. The coordinate symbol (a letter or a few letters).

2. (optional, only for manifolds over R) The interval 𝐼 defining the coordinate range: if not provided, the
coordinate is assumed to span all R; otherwise 𝐼 must be provided in the form (a,b) (or equivalently
]a,b[) The bounds a and b can be +/-Infinity, Inf, infinity, inf or oo. For singular
coordinates, non-open intervals such as [a,b] and (a,b] (or equivalently]a,b]) are allowed. Note
that the interval declaration must not contain any space character.

812 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

3. (optional) Indicator of the periodic character of the coordinate, either as period=T, where T is the
period, or, for manifolds overR only, as the keywordperiodic (the value of the period is then deduced
from the interval 𝐼 declared in field 2; see the example below)

4. (optional) The LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first
field will be used.

The order of fields 2 to 4 does notmatter and each of them can be omitted. If it contains any LaTeX expression,
the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of
the backslash character (see examples below). If no interval range, no period and no LaTeX spelling is to be
set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is used
to declare the trivialization.

OUTPUT:

• the created chart, as an instance of Chart or one of its subclasses, like RealDiffChart for dif-
ferentiable manifolds over R.

EXAMPLES:

Chart on a 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: TM = M.tangent_bundle()
sage: X = TM.trivialization(x y); X
Chart (M, (x, y))
sage: X[0]
x
sage: X[1]
y
sage: X[:]
(x, y)

vector_frame(*args, **kwargs)
Define a vector frame on domain, possibly with values in the tangent bundle of the ambient domain.

If the basis specified by the given symbol already exists, it is simply returned. If no argument is provided the
vector field module’s default frame is returned.

Notice, that a vector frame automatically induces a local frame on the tensor bundle self. More precisely,
if 𝑒 : 𝑈 → Φ*𝑇𝑁 is a vector frame on 𝑈 ⊂𝑀 with values in Φ*𝑇𝑁 along the destination map

Φ :𝑀 −→ 𝑁

then the map

𝑝 ↦→
(︁
𝑒*(𝑝), . . . , 𝑒*(𝑝)⏟ ⏞

𝑘 times

, 𝑒(𝑝), . . . , 𝑒(𝑝)⏟ ⏞
𝑙 times

)︁
∈ 𝑇 (𝑘,𝑙)

𝑞 𝑁,

with 𝑞 = Φ(𝑝), defines a basis at each point 𝑝 ∈ 𝑈 and therefore gives rise to a local frame on Φ*𝑇 (𝑘,𝑙)𝑁
on the domain 𝑈 .

See also:

VectorFrame for complete documentation.

INPUT:

• symbol – (default: None) either a string, to be used as a common base for the symbols of the vector
fields constituting the vector frame, or a list/tuple of strings, representing the individual symbols of the
vector fields; can be None only if from_frame is not None (see below)

2.15. Differentiable Vector Bundles 813

Manifolds, Release 10.4.rc1

• vector_fields – tuple or list of 𝑛 linearly independent vector fields on domain (𝑛 being the di-
mension of domain) defining the vector frame; can be omitted if the vector frame is created from
scratch or if from_frame is not None

• latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols
of the vector fields constituting the vector frame, or a list/tuple of strings, representing the individual
LaTeX symbols of the vector fields; if None, symbol is used in place of latex_symbol

• from_frame – (default: None) vector frame 𝑒 on the codomain 𝑁 of the destination map Φ; the
returned frame 𝑒 is then such that for all 𝑝 ∈ 𝑈 , we have 𝑒(𝑝) = 𝑒(Φ(𝑝))

• indices – (default: None; used only if symbol is a single string) tuple of strings representing the
indices labelling the vector fields of the frame; if None, the indices will be generated as integers within
the range declared on self

• latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols
of the vector fields; if None, indices is used instead

• symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbolmust
be a string and is used for the common base of the symbols of the elements of the dual coframe

• latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

• domain – (default: None) domain on which the local frame is defined; if None is provided, the base
space of self is assumed

OUTPUT:

• the vector frame corresponding to the above specifications; this is an instance of VectorFrame.

EXAMPLES:

Defining a local frame for the tangent bundle of a 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: TM = M.tangent_bundle()
sage: e = TM.local_frame(e); e
Vector frame (M, (e_0,e_1,e_2))
sage: e[0]
Vector field e_0 on the 3-dimensional differentiable manifold M

Specifying the domain of the vector frame:

sage: U = M.open_subset(U)
sage: f = TM.local_frame(f , domain=U); f
Vector frame (U, (f_0,f_1,f_2))
sage: f[0]
Vector field f_0 on the Open subset U of the 3-dimensional
differentiable manifold M

See also:

For more options, in particular for the choice of symbols and indices, see VectorFrame.

814 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

2.15.2 Bundle Connections

Let 𝐸 → 𝑀 be a smooth vector bundle of rank 𝑛 over a smooth manifold𝑀 and over a non-discrete topological field
𝐾 (typically𝐾 = R or𝐾 = C). A bundle connection on this vector bundle is a𝐾-linear map

∇ : 𝐶∞(𝑀 ;𝐸) → 𝐶∞(𝑀 ;𝐸 ⊗ 𝑇 *𝑀)

such that the Leibniz rule applies for each scalar field 𝑓 ∈ 𝐶∞(𝑀) and section 𝑠 ∈ 𝐶∞(𝑀 ;𝐸):

∇(𝑓 𝑠) = 𝑓 · ∇𝑠+ 𝑠⊗ d𝑓.

If 𝑒 is a local frame on 𝐸, we have

∇𝑒𝑖 =
𝑛∑︁

𝑗=1

𝑒𝑗 ⊗ 𝜔𝑗
𝑖 ,

and the corresponding 𝑛× 𝑛-matrix (𝜔𝑗
𝑖)𝑖,𝑗 consisting of one forms is called connection matrix of ∇ with respect to 𝑒.

AUTHORS:

• Michael Jung (2019) : initial version

class sage.manifolds.differentiable.bundle_connection.BundleConnection(vbundle,
name, la-
tex_name=None)

Bases: SageObject, Mutability

An instance of this class represents a bundle connection∇ on a smooth vector bundle 𝐸 →𝑀 .

INPUT:

• vbundle – the vector bundle on which the connection is defined (must be an instance of class Differ-
entiableVectorBundle)

• name – name given to the bundle connection

• latex_name – (default: None) LaTeX symbol to denote the bundle connection; if None, it is set to name

EXAMPLES:

Define a bundle connection on a rank 2 vector bundle over some 3-dimensional smooth manifold:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # standard frame for E
sage: nab = E.bundle_connection(nabla); nab
Bundle connection nabla on the Differentiable real vector bundle E -> M
of rank 2 over the base space 3-dimensional differentiable manifold M

First, let us initialize all connection 1-forms w.r.t. the frame e to zero:

sage: nab[e, :] = [[0, 0], [0, 0]]

This line can be shortened by the following:

sage: nab[e, :] = 0 # initialize to zero

The connection 1-forms are now initialized being differential 1-forms:

2.15. Differentiable Vector Bundles 815

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/mutability.html#sage.structure.mutability.Mutability

Manifolds, Release 10.4.rc1

sage: nab[e, 1, 1].parent()
Free module Omega^1(M) of 1-forms on the 3-dimensional differentiable
manifold M
sage: nab[e, 1, 1].display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = 0

Now, we want to specify some non-zero entries:

sage: nab[e, 1, 2][:] = [x*z, y*z, z^2]
sage: nab[e, 2, 1][:] = [x, x^2, x^3]
sage: nab[e, 1, 1][:] = [x+z, y-z, x*y*z]
sage: nab.display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = (x + z) dx + (y - z) dy + x*y*z dz
connection (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x*z dx + y*z dy + z^2 dz
connection (2,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x dx + x^2 dy + x^3 dz

Notice, when we omit the frame, the default frame of the vector bundle is assumed (in this case e):

sage: nab[2, 2].display()
connection (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = 0

The same holds for the assignment:

sage: nab[1, 2] = 0
sage: nab[e, 1, 2].display()
connection (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = 0

Keep noticed that item assignments for bundle connections only copy the right-hand-side and never create a binding
to the original instance:

sage: omega = M.one_form(omega)
sage: omega[:] = [x*z, y*z, z^2]
sage: nab[1, 2] = omega
sage: nab[1, 2] == omega
True
sage: nab[1, 2] is omega
False

Hence, this is therefore equivalent to:

sage: nab[2, 2].copy_from(omega)

Preferably, we use set_connection_form() to specify the connection 1-forms:

sage: nab[:] = 0 # re-initialize to zero
sage: nab.set_connection_form(1, 2)[:] = [x*z, y*z, z^2]
sage: nab.set_connection_form(2, 1)[:] = [x, x^2, x^3]
sage: nab[1, 2].display()
connection (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x*z dx + y*z dy + z^2 dz
sage: nab[2, 1].display()

(continues on next page)

816 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

connection (2,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x dx + x^2 dy + x^3 dz

Note: Notice that item assignments and set_connection_form() delete the connection 1-forms w.r.t.
other frames for consistency reasons. To avoid this behavior, add_connection_form()must be used instead.

In conclusion, the connection 1-forms of a bundle connection are mutable until the connection itself is set im-
mutable:

sage: nab.set_immutable()
sage: nab[1, 2] = omega
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead

By definition, a bundle connection acts on vector fields and sections:

sage: v = M.vector_field((x^2,y^2,z^2), name= v); v.display()
v = x^2 ∂/∂x + y^2 ∂/∂y + z^2 ∂/∂z
sage: s = E.section((x-y^2, -z), name= s); s.display()
s = (-y^2 + x) e_1 - z e_2
sage: nab_vs = nab(v, s); nab_vs
Section nabla_v(s) on the 3-dimensional differentiable manifold M with
values in the real vector bundle E of rank 2
sage: nab_vs.display()
nabla_v(s) = (-x^3*z^3 - 2*y^3 + x^2 - (x^2*y^2 + x^3)*z) e_1 +
(-(y^2 - x)*z^4 - (x^3*y^2 + y^5 - x^4 - x*y^3)*z - z^2) e_2

The bundle connection action certainly obeys the defining formula for the connection 1-forms:

sage: vframe = X.frame()
sage: all(nab(vframe[k], e[i]) == sum(nab[e, i, j](vframe[k])*e[j]
....: for j in E.irange())
....: for i in E.irange() for k in M.irange())
True

The connection 1-forms are computed automatically for different frames:

sage: f = E.local_frame(f , ((1+x^2)*e[1], e[1]-e[2]))
sage: nab.display(frame=f)
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_1,f_2)) = ((x^3 + x)*z + 2*x)/(x^2 + 1) dx + y*z dy + z^2 dz
connection (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_1,f_2)) = -(x^3 + x)*z dx - (x^2 + 1)*y*z dy -
(x^2 + 1)*z^2 dz

connection (2,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_1,f_2)) = (x*z - x)/(x^2 + 1) dx -
(x^2 - y*z)/(x^2 + 1) dy - (x^3 - z^2)/(x^2 + 1) dz

connection (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_1,f_2)) = -x*z dx - y*z dy - z^2 dz

The new connection 1-forms obey the defining formula, too:

sage: all(nab(vframe[k], f[i]) == sum(nab[f, i, j](vframe[k])*f[j]
....: for j in E.irange())

(continues on next page)

2.15. Differentiable Vector Bundles 817

Manifolds, Release 10.4.rc1

(continued from previous page)

....: for i in E.irange() for k in M.irange())
True

After the connection has been specified, the curvature 2-forms can be derived:

sage: Omega = nab.curvature_form
sage: for i in E.irange():
....: for j in E.irange():
....: print(Omega(i ,j, e).display())
curvature (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = -(x^3 - x*y)*z dx∧dy + (-x^4*z + x*z^2) dx∧dz +
(-x^3*y*z + x^2*z^2) dy∧dz

curvature (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = -x dx∧dz - y dy∧dz
curvature (2,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = 2*x dx∧dy + 3*x^2 dx∧dz
curvature (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = (x^3 - x*y)*z dx∧dy + (x^4*z - x*z^2) dx∧dz +
(x^3*y*z - x^2*z^2) dy∧dz

The derived forms certainly obey the structure equations, see curvature_form() for details:

sage: omega = nab.connection_form
sage: check = []
sage: for i in E.irange(): # long time
....: for j in E.irange():
....: check.append(Omega(i,j,e) == \
....: omega(i,j,e).exterior_derivative() + \
....: sum(omega(k,j,e).wedge(omega(i,k,e))
....: for k in E.irange()))
sage: check # long time
[True, True, True, True]

add_connection_form(i, j, frame=None)

Return the connection form 𝜔𝑗
𝑖 in a given frame for assignment.

See method connection_forms() for details about the definition of the connection forms.

To delete the connection forms in other frames, use the method set_connection_form() instead.

INPUT:

• i, j – indices identifying the 1-form 𝜔𝑗
𝑖

• frame – (default: None) local frame in which the connection 1-form is defined; if None, the default
frame of the vector bundle is assumed.

Warning: If the connection has already forms in other frames, it is the user’s responsibility to make sure
that the 1-forms to be added are consistent with them.

OUTPUT:

• connection 1-form 𝜔𝑗
𝑖 in the given frame, as an instance of the class DiffForm; if such connection

1-form did not exist previously, it is created. See method connection_forms() for the storage
convention of the connection 1-forms.

EXAMPLES:

818 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # standard frame for E
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla)
sage: nab.add_connection_form(0, 1, frame=e)[:] = [x^2, x]
sage: nab[e, 0, 1].display()
connection (0,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = x^2 dx + x dy

Since e is the vector bundle’s default local frame, its mention may be omitted:

sage: nab.add_connection_form(1, 0)[:] = [y^2, y]
sage: nab[1, 0].display()
connection (1,0) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = y^2 dx + y dy

Adding connection 1-forms w.r.t. to another local frame:

sage: f = E.local_frame(f)
sage: nab.add_connection_form(1, 1, frame=f)[:] = [x, y]
sage: nab[f, 1, 1].display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_0,f_1)) = x dx + y dy

The forms w.r.t. the frame e have been kept:

sage: nab[e, 0, 1].display()
connection (0,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = x^2 dx + x dy

To delete them, use the method set_connection_form() instead.

connection_form(i, j, frame=None)
Return the connection 1-form corresponding to the given index and local frame.

See also:

Consult connection_forms() for detailed information.

INPUT:

• i, j – indices identifying the 1-form 𝜔𝑗
𝑖

• frame – (default: None) local frame relative to which the connection 1-forms are defined; if None,
the default frame of the vector bundle’s corresponding section module is assumed.

OUTPUT:

• the 1-form 𝜔𝑗
𝑖 , as an instance of DiffForm

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # standard frame for E
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla)
sage: nab.set_connection_form(0, 1)[:] = [x^2, x]
sage: nab.set_connection_form(1, 0)[:] = [y^2, y]

(continues on next page)

2.15. Differentiable Vector Bundles 819

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: nab.connection_form(0, 1).display()
connection (0,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = x^2 dx + x dy

sage: nab.connection_form(1, 0).display()
connection (1,0) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = y^2 dx + y dy

connection_forms(frame=None)

Return the connection forms relative to the given frame.

If 𝑒 is a local frame on 𝐸, we have

∇𝑒𝑖 =
𝑛∑︁

𝑗=1

𝑒𝑗 ⊗ 𝜔𝑗
𝑖 ,

and the corresponding 𝑛 × 𝑛-matrix (𝜔𝑗
𝑖)𝑖,𝑗 consisting of one forms is called connection matrix of ∇ with

respect to 𝑒.

If the connection coefficients are not known already, they are computed from the above formula.

INPUT:

• frame – (default: None) local frame relative to which the connection forms are required; if none is
provided, the vector bundle’s default frame is assumed

OUTPUT:

• connection forms relative to the frame frame, as a dictionary with tuples (𝑖, 𝑗) as key and one forms as
instances of diff_form as value representing the matrix entries.

EXAMPLES:

Connection forms of a bundle connection on a rank 2 vector bundle over a 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: nab = E.bundle_connection(nabla , r \nabla)
sage: nab[:] = 0 # initialize curvature forms
sage: forms = nab.connection_forms()
sage: [forms[k] for k in sorted(forms)]
[1-form connection (1,1) of bundle connection nabla w.r.t. Local
frame (E|_M, (e_1,e_2)) on the 3-dimensional differentiable
manifold M,

1-form connection (1,2) of bundle connection nabla w.r.t. Local
frame (E|_M, (e_1,e_2)) on the 3-dimensional differentiable
manifold M,

1-form connection (2,1) of bundle connection nabla w.r.t. Local
frame (E|_M, (e_1,e_2)) on the 3-dimensional differentiable
manifold M,

1-form connection (2,2) of bundle connection nabla w.r.t. Local
frame (E|_M, (e_1,e_2)) on the 3-dimensional differentiable
manifold M]

copy(name, latex_name=None)
Return an exact copy of self.

INPUT:

820 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• name – name given to the copy

• latex_name – (default: None) LaTeX symbol to denote the copy; if none is provided, the LaTeX
symbol is set to name

Note: The name and the derived quantities are not copied.

EXAMPLES:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: nab = E.bundle_connection(nabla)
sage: nab.set_connection_form(1, 1)[:] = [x^2, x-z, y^3]
sage: nab.set_connection_form(1, 2)[:] = [1, x, z*y^3]
sage: nab.set_connection_form(2, 1)[:] = [1, 2, 3]
sage: nab.set_connection_form(2, 2)[:] = [0, 0, 0]
sage: nab.display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + (x - z) dy + y^3 dz

connection (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = dx + x dy + y^3*z dz

connection (2,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = dx + 2 dy + 3 dz

sage: nab_copy = nab.copy(nablo); nab_copy
Bundle connection nablo on the Differentiable real vector bundle
E -> M of rank 2 over the base space 3-dimensional differentiable
manifold M

sage: nab is nab_copy
False
sage: nab == nab_copy
True
sage: nab_copy.display()
connection (1,1) of bundle connection nablo w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + (x - z) dy + y^3 dz

connection (1,2) of bundle connection nablo w.r.t. Local frame
(E|_M, (e_1,e_2)) = dx + x dy + y^3*z dz

connection (2,1) of bundle connection nablo w.r.t. Local frame
(E|_M, (e_1,e_2)) = dx + 2 dy + 3 dz

curvature_form(i, j, frame=None)
Return the curvature 2-form corresponding to the given index and local frame.

The curvature 2-forms with respect to the frame 𝑒 are the 2-forms Ω𝑗
𝑖 given by the formula

Ω𝑗
𝑖 = d𝜔𝑗

𝑖 +

𝑛∑︁
𝑘=1

𝜔𝑗
𝑘 ∧ 𝜔𝑘

𝑖

INPUT:

• i, j – indices identifying the 2-form Ω𝑗
𝑖

• frame – (default: None) local frame relative to which the curvature 2-forms are defined; if None, the
default frame of the vector bundle is assumed.

OUTPUT:

• the 2-form Ω𝑗
𝑖 , as an instance of DiffForm

2.15. Differentiable Vector Bundles 821

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(1, E)
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla)
sage: e = E.local_frame(e)
sage: nab.set_connection_form(1, 1)[:] = [x^2, x]
sage: curv = nab.curvature_form(1, 1); curv
2-form curvature (1,1) of bundle connection nabla w.r.t. Local
frame (E|_M, (e_1)) on the 2-dimensional differentiable manifold M

sage: curv.display()
curvature (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1)) = dx∧dy

del_other_forms(frame=None)
Delete all the connection forms but those corresponding to frame.

INPUT:

• frame – (default: None) local frame, the connection forms w.r.t. which are to be kept; if None, the
default frame of the vector bundle is assumed.

EXAMPLES:

We first create two sets of connection forms:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla)
sage: e = E.local_frame(e)
sage: nab.set_connection_form(1, 1, frame=e)[:] = [x^2, x]
sage: f = E.local_frame(f)
sage: nab.add_connection_form(1, 1, frame=f)[:] = [y^2, y]
sage: nab[e, 1, 1].display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + x dy

sage: nab[f, 1, 1].display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_1,f_2)) = y^2 dx + y dy

Let us delete the connection forms w.r.t. all frames except for frame e:

sage: nab.del_other_forms(e)
sage: nab[e, 1, 1].display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + x dy

The connection forms w.r.t. frame e have indeed been deleted:

sage: nab[f, :]
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components in
the Local frame (E|_M, (e_1,e_2))

display(frame=None, vector_frame=None, chart=None, only_nonzero=True)
Display all the connection 1-forms w.r.t. to a given local frame, one per line.

822 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• frame – (default: None) local frame of the vector bundle relative to which the connection 1-forms are
defined; if None, the default frame of the bundle is used

• vector_frame – (default: None) vector frame of the manifold relative to which the connection
1-forms should be displayed; if None, the default frame of the local frame’s domain is used

• chart – (default: None) chart specifying the coordinate expression of the connection 1-forms; ifNone,
the default chart of the domain of frame is used

• only_nonzero – (default: True) boolean; if True, only nonzero connection coefficients are dis-
played

EXAMPLES:

Set connection 1-forms:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # standard frame for E
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla); nab
Bundle connection nabla on the Differentiable real vector bundle
E -> M of rank 2 over the base space 3-dimensional differentiable
manifold M

sage: nab[:] = 0
sage: nab[1, 1][:] = [x, y, z]
sage: nab[2, 2][:] = [x^2, y^2, z^2]

By default, only the nonzero connection coefficients are displayed:

sage: nab.display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x dx + y dy + z dz

connection (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + y^2 dy + z^2 dz

sage: latex(nab.display())
\begin{array}{lcl} \omega^1_{\ \, 1} = x \mathrm{d} x +
y \mathrm{d} y + z \mathrm{d} z \\ \omega^2_{\ \, 2} = x^{2}
\mathrm{d} x + y^{2} \mathrm{d} y + z^{2} \mathrm{d} z \end{array}

By default, the displayed connection 1-forms are those w.r.t. the default frame of the vector bundle. The
aforementioned is therefore equivalent to:

sage: nab.display(frame=E.default_frame())
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x dx + y dy + z dz

connection (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + y^2 dy + z^2 dz

Moreover, the connection 1-forms are displayed w.r.t. the default vector frame on the local frame’s domain,
i.e.:

sage: domain = e.domain()
sage: nab.display(vector_frame=domain.default_frame())
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x dx + y dy + z dz

(continues on next page)

2.15. Differentiable Vector Bundles 823

Manifolds, Release 10.4.rc1

(continued from previous page)

connection (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + y^2 dy + z^2 dz

By default, the parameter only_nonzero is set to True. Otherwise, the connection 1-forms being zero
are shown as well:

sage: nab.display(only_nonzero=False)
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x dx + y dy + z dz

connection (1,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = 0

connection (2,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = 0

connection (2,2) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_1,e_2)) = x^2 dx + y^2 dy + z^2 dz

set_connection_form(i, j, frame=None)

Return the connection form 𝜔𝑗
𝑖 in a given frame for assignment.

See method connection_forms() for details about the definition of the connection forms.

The connection forms with respect to other frames are deleted, in order to avoid any inconsistency. To keep
them, use the method add_connection_form() instead.

INPUT:

• i, j – indices identifying the 1-form 𝜔𝑗
𝑖

• frame – (default: None) local frame in which the connection 1-form is defined; if None, the default
frame of the vector bundle is assumed.

OUTPUT:

• connection 1-form 𝜔𝑗
𝑖 in the given frame, as an instance of the class DiffForm; if such connection

1-form did not exist previously, it is created. See method connection_forms() for the storage
convention of the connection 1-forms.

EXAMPLES:

Setting the connection forms of a bundle connection w.r.t. some local frame:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e) # standard frame for E
sage: nab = E.bundle_connection(nabla , latex_name=r \nabla)
sage: nab.set_connection_form(0, 1)[:] = [x^2, x]
sage: nab[0, 1].display()
connection (0,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = x^2 dx + x dy

Since e is the vector bundle’s default local frame, its mention may be omitted:

sage: nab.set_connection_form(1, 0)[:] = [y^2, y]
sage: nab[1, 0].display()
connection (1,0) of bundle connection nabla w.r.t. Local frame
(E|_M, (e_0,e_1)) = y^2 dx + y dy

Setting connection 1-forms w.r.t. to another local frame:

824 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

sage: f = E.local_frame(f)
sage: nab.set_connection_form(1, 1, frame=f)[:] = [x, y]
sage: nab[f, 1, 1].display()
connection (1,1) of bundle connection nabla w.r.t. Local frame
(E|_M, (f_0,f_1)) = x dx + y dy

The forms w.r.t. the frame e have been deleted:

sage: nab[e, 0, 1].display()
Traceback (most recent call last):
...
ValueError: no basis could be found for computing the components in
the Local frame (E|_M, (f_0,f_1))

To keep them, use the method add_connection_form() instead.

set_immutable()

Set self and all restrictions of self immutable.

EXAMPLES:

An affine connection can be set immutable:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)
sage: e = E.local_frame(e)
sage: nab = E.bundle_connection(nabla)
sage: nab.set_connection_form(1, 1)[:] = [x^2, x-z, y^3]
sage: nab.set_connection_form(1, 2)[:] = [1, x, z*y^3]
sage: nab.set_connection_form(2, 1)[:] = [1, 2, 3]
sage: nab.set_connection_form(2, 2)[:] = [0, 0, 0]
sage: nab.is_immutable()
False
sage: nab.set_immutable()
sage: nab.is_immutable()
True

The coefficients of immutable elements cannot be changed:

sage: f = E.local_frame(f)
sage: nab.add_connection_form(1, 1, frame=f)[:] = [x, y, z]
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead

vector_bundle()

Return the vector bundle on which the bundle connection is defined.

OUTPUT:

• instance of class DifferentiableVectorBundle representing the vector bundle on which self
is defined.

EXAMPLES:

sage: M = Manifold(3, M , start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: E = M.vector_bundle(2, E)

(continues on next page)

2.15. Differentiable Vector Bundles 825

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: nab = E.bundle_connection(nabla , r \nabla)
sage: nab.vector_bundle()
Differentiable real vector bundle E -> M of rank 2 over the base
space 3-dimensional differentiable manifold M

2.15.3 Characteristic cohomology classes

A characteristic class 𝜅 is a natural transformation that associates with each vector bundle 𝐸 → 𝑀 a cohomology class
𝜅(𝐸) ∈ 𝐻*(𝑀 ;𝑅) such that for any continuous map 𝑓 : 𝑁 → 𝑀 from another topological manifold 𝑁 , the naturality
condition is satisfied:

𝑓*𝜅(𝐸) = 𝜅(𝑓*𝐸) ∈ 𝐻*(𝑁 ;𝑅)

The cohomology class 𝜅(𝐸) is called characteristic cohomology class. Roughly speaking, characteristic cohomology
classes measure the non-triviality of vector bundles.

One way to obtain and compute characteristic classes in the de Rham cohomology with coefficients in the ring C is via
the so-called Chern-Weil theory using the curvature of a differentiable vector bundle.

For that let ∇ be a connection on 𝐸, 𝑒 a local frame on 𝐸 and Ω be the corresponding curvature matrix (see: curva-
ture_form()).

Namely, if 𝑃 : Mat𝑛×𝑛(C) → C is an invariant polynomial, the object

[𝑃 (Ω)] ∈ 𝐻2*
dR (𝑀,C)

is well-defined, independent of the choice of ∇ (the proof can be found in [Roe1988] pp. 31) and fulfills the naturality
condition. This is the foundation of the Chern-Weil theory and the following definitions.

Note: This documentation is rich of examples, but sparse in explanations. Please consult the references for more details.

AUTHORS:

• Michael Jung (2019) : initial version

• Michael Jung (2021) : new algorithm; complete refactoring

REFERENCES:

• [Mil1974]

• [Roe1988]

Contents

We consider the following three types of classes:

• Additive Classes

• Multiplicative Classes

• Pfaffian Classes

826 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Additive Classes

In the complex case, let 𝑓 be a holomorphic function around zero. Then we call[︂
tr
(︂
𝑓

(︂
Ω

2𝜋𝑖

)︂)︂]︂
∈ 𝐻2*

dR (𝑀,C)

the additive characteristic class associated to 𝑓 of the complex vector bundle 𝐸.

Important and predefined additive classes are:

• Chern Character with 𝑓(𝑥) = exp(𝑥)

In the real case, let 𝑔 be a holomorphic function around zero with 𝑔(0) = 0. Then we call[︂
tr
(︂
1

2
𝑔

(︂
− Ω2

4𝜋2

)︂)︂]︂
∈ 𝐻4*

dR (𝑀,C)

the additive characteristic class associated to 𝑔 of the real vector bundle 𝐸.

EXAMPLES:

Consider the Chern character on some 2-dimensional spacetime:

sage: M = Manifold(2, M , structure= Lorentzian)
sage: X.<t,x> = M.chart()
sage: E = M.vector_bundle(1, E , field= complex); E
Differentiable complex vector bundle E -> M of rank 1 over the base space
2-dimensional Lorentzian manifold M

sage: e = E.local_frame(e)

Let us define the connection∇𝐸 in terms of an electro-magnetic potential 𝐴(𝑡):

sage: nab = E.bundle_connection(nabla^E , latex_name=r \nabla^E)
sage: omega = M.one_form(name= omega)
sage: A = function(A)
sage: nab.set_connection_form(0, 0)[1] = I*A(t)
sage: nab[0, 0].display()
connection (0,0) of bundle connection nabla^E w.r.t. Local frame
(E|_M, (e_0)) = I*A(t) dx

sage: nab.set_immutable()

The Chern character is then given by:

sage: ch = E.characteristic_cohomology_class(ChernChar); ch
Characteristic cohomology class ch(E) of the Differentiable complex vector
bundle E -> M of rank 1 over the base space 2-dimensional Lorentzian
manifold M

The corresponding characteristic form w.r.t. the bundle connection can be obtained via get_form():

sage: ch_form = ch.get_form(nab); ch_form.display_expansion()
ch(E, nabla^E) = 1 + 1/2*d(A)/dt/pi dt∧dx

2.15. Differentiable Vector Bundles 827

Manifolds, Release 10.4.rc1

Multiplicative Classes

In the complex case, let 𝑓 be a holomorphic function around zero. Then we call[︂
det
(︂
𝑓

(︂
Ω

2𝜋𝑖

)︂)︂]︂
∈ 𝐻2*

dR (𝑀,C)

the multiplicative characteristic class associated to 𝑓 of the complex vector bundle 𝐸.

Important and predefined multiplicative classes on complex vector bundles are:

• Chern class with 𝑓(𝑥) = 1 + 𝑥

• Todd class with 𝑓(𝑥) = 𝑥
1−exp(−𝑥)

In the real case, let 𝑔 be a holomorphic function around zero with 𝑔(0) = 1. Then we call[︃
det

(︃√︃
𝑔

(︂
− Ω2

4𝜋2

)︂)︃]︃
∈ 𝐻4*

dR (𝑀,C)

the multiplicative characteristic class associated to 𝑔 on the real vector bundle 𝐸.

Important and predefined multiplicative classes on real vector bundles are:

• Pontryagin class with 𝑔(𝑥) = 1 + 𝑥

• 𝐴 class with 𝑔(𝑥) =
√
𝑥/2

sinh(
√
𝑥/2)

• Hirzebruch class with 𝑔(𝑥) =
√
𝑥

tanh(
√
𝑥)

EXAMPLES:

We consider the Chern class of the tautological line bundle 𝛾1 over CP1:

sage: M = Manifold(2, CP^1 , start_index=1)
sage: U = M.open_subset(U)
sage: c_cart.<x,y> = U.chart() # homogeneous coordinates in real terms
sage: c_comp.<z, zbar> = U.chart(r z:z zbar:\bar{z}) # complexification
sage: cart_to_comp = c_cart.transition_map(c_comp, (x+I*y, x-I*y))
sage: comp_to_cart = cart_to_comp.inverse()
sage: E = M.vector_bundle(1, gamma^1 , field= complex)
sage: e = E.local_frame(e , domain=U)

To apply the Chern-Weil approach, we need a bundle connection in terms of a connection one form. To achieve this,
we take the connection induced from the hermitian metric on the trivial bundle C2 × CP1 ⊃ 𝛾1. In this the frame 𝑒
corresponds to the section [𝑧 : 1] ↦→ (𝑧, 1) and its magnitude-squared is given by 1 + |𝑧|2:

sage: nab = E.bundle_connection(nabla)
sage: omega = U.one_form(name= omega)
sage: omega[c_comp.frame(),1,c_comp] = zbar/(1+z*zbar)
sage: nab[e, 1, 1] = omega
sage: nab.set_immutable()

Now, the Chern class can be constructed:

sage: c = E.characteristic_cohomology_class(Chern); c
Characteristic cohomology class c(gamma^1) of the Differentiable complex
vector bundle gamma^1 -> CP^1 of rank 1 over the base space 2-dimensional
differentiable manifold CP^1

sage: c_form = c.get_form(nab)

(continues on next page)

828 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: c_form.display_expansion(c_comp.frame(), chart=c_comp)
c(gamma^1, nabla) = 1 + 1/2*I/(pi + pi*z^2*zbar^2 + 2*pi*z*zbar) dz∧dzbar

Since 𝑈 and CP1 differ only by a point and therefore a null set, it is enough to integrate the top form over the domain 𝑈 :

sage: integrate(integrate(c_form[2][[1,2]].expr(c_cart), x, -infinity, infinity).full_
→˓simplify(),
....: y, -infinity, infinity)
1

The result shows that 𝑐1(𝛾1) generates the second integer cohomology of CP1.

Pfaffian Classes

Usually, there is no such thing as “Pfaffian classes” in literature. However, using the matrix’ Pfaffian and inspired by the
aforementioned definitions, such classes can be defined as follows.

Let 𝐸 be a real vector bundle of rank 2𝑛 and 𝑓 an odd real function being analytic at zero. Furthermore, let Ω be
skew-symmetric, which certainly will be true if ∇ is metric and 𝑒 is orthonormal. Then we call[︂

Pf
(︂
𝑓

(︂
Ω

2𝜋

)︂)︂]︂
∈ 𝐻2𝑛*(𝑀,R)

the Pfaffian class associated to f.

The most important Pfaffian class is the Euler class which is simply given by 𝑓(𝑥) = 𝑥.

EXAMPLES:

We consider the Euler class of 𝑆2:

sage: M.<x,y> = manifolds.Sphere(2, coordinates= stereographic)
sage: TM = M.tangent_bundle()
sage: e_class = TM.characteristic_cohomology_class(Euler); e_class
Characteristic cohomology class e(TS^2) of the Tangent bundle TS^2 over the
2-sphere S^2 of radius 1 smoothly embedded in the Euclidean space E^3

To compute a particular representative of the Euler class, we need to determine a connection, which is in this case given
by the standard metric:

sage: g = M.metric(g) # standard metric on S2, long time
sage: nab = g.connection() # long time
sage: nab.set_immutable() # long time

Now the representative of the Euler class with respect to the connection ∇𝑔 induced by the standard metric can be
computed:

sage: e_class_form = e_class.get_form(nab) # long time
sage: e_class_form.display_expansion() # long time
e(TS^2, nabla_g) = 2/(pi + pi*x^4 + pi*y^4 + 2*pi*x^2 + 2*(pi + pi*x^2)*y^2) dx∧dy

Let us check whether this form represents the Euler class correctly:

sage: # long time
sage: expr = e_class_form[2][[1,2]].expr()
sage: expr = integrate(expr, x, -infinity, infinity)

(continues on next page)

2.15. Differentiable Vector Bundles 829

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: expr = expr.simplify_full()
sage: integrate(expr, y, -infinity, infinity)
2

As we can see, the integral coincides with the Euler characteristic of 𝑆2 so that our form actually represents the Euler
class appropriately.

class sage.manifolds.differentiable.characteristic_cohomology_class.
Algorithm_generic

Bases: SageObject

Abstract algorithm class to compute the characteristic forms of the generators.

EXAMPLES:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓Algorithm_generic
sage: algorithm = Algorithm_generic()
sage: algorithm.get
Cached version of <function Algorithm_generic.get at 0x...>
sage: algorithm.get_local
Traceback (most recent call last):
...
NotImplementedError: <abstract method get_local at 0x...>
sage: algorithm.get_gen_pow
Cached version of <function Algorithm_generic.get_gen_pow at 0x...>

get(nab)
Return the global characteristic forms of the generators w.r.t. a given connection.

The result is cached.

OUTPUT:

• a list containing the generator’s global characteristic forms as instances of sage.manifolds.
differentiable.diff_form.DiffForm

EXAMPLES:

sage: M = manifolds.EuclideanSpace(4)
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

sage: p = TM.characteristic_cohomology_class(Pontryagin)
sage: p_form = p.get_form(nab); p_form # long time
Mixed differential form p(TE^4, nabla_g) on the 4-dimensional
Euclidean space E^4

sage: p_form.display_expansion() # long time
p(TE^4, nabla_g) = 1

get_gen_pow(nab, i, n)
Return the 𝑛-th power of the 𝑖-th generator’s characteristic form w.r.t nab.

The result is cached.

EXAMPLES:

830 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Manifolds, Release 10.4.rc1

sage: M = manifolds.EuclideanSpace(8)
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

sage: A = TM.characteristic_cohomology_class(AHat)
sage: A_form = A.get_form(nab); A_form # long time
Mixed differential form A^(TE^8, nabla_g) on the 8-dimensional
Euclidean space E^8

sage: A_form.display_expansion() # long time
A^(TE^8, nabla_g) = 1

get_local(cmat)
Abstract method to get the local forms of the generators w.r.t. a given curvature form matrix cmat.

OUTPUT:

• a list containing the generator’s local characteristic forms

ALGORITHM:

The inherited class determines the algorithm.

EXAMPLES:

4-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(4)
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: e = M.frames()[0] # select standard frame
sage: cmat = [[nab.curvature_form(i, j, e) # long time
....: for j in TM.irange()]
....: for i in TM.irange()]

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import PontryaginAlgorithm
sage: algorithm = PontryaginAlgorithm()
sage: [p1] = algorithm.get_local(cmat) # long time
sage: p1.display() # long time
0

A concrete implementation is given by a sage.misc.fast_methods.Singleton:

sage: algorithm is PontryaginAlgorithm()
True

class sage.manifolds.differentiable.characteristic_cohomology_class.CharacteristicCohomologyClassRing(base,
vbun-
dle)

Bases: FiniteGCAlgebra

Characteristic cohomology class ring.

Let 𝐸 →𝑀 be a real or complex vector bundle of rank 𝑘 and 𝑅 be a torsion-free subring of C.

2.15. Differentiable Vector Bundles 831

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../../html/en/reference/algebras/sage/algebras/finite_gca.html#sage.algebras.finite_gca.FiniteGCAlgebra

Manifolds, Release 10.4.rc1

Let 𝐵𝐺 be the classifying space of the group 𝐺. As for vector bundles, we consider

• 𝐺 = 𝑂(𝑘) if 𝐸 is real,

• 𝐺 = 𝑆𝑂(𝑘) if 𝐸 is real and oriented,

• 𝐺 = 𝑈(𝑘) if 𝐸 is complex.

The cohomology ring 𝐻*(𝐵𝐺;𝑅) can be explicitly expressed for the aforementioned cases:

𝐻*(𝐵𝐺;𝑅) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑅[𝑐1, . . . 𝑐𝑘] if 𝐺 = 𝑈(𝑘),

𝑅[𝑝1, . . . 𝑝⌊ 𝑘
2 ⌋
] if 𝐺 = 𝑂(𝑘),

𝑅[𝑝1, . . . 𝑝𝑘, 𝑒]
⧸︀
(𝑝𝑘 − 𝑒2) if 𝐺 = 𝑆𝑂(2𝑘),

𝑅[𝑝1, . . . 𝑝𝑘, 𝑒] if 𝐺 = 𝑆𝑂(2𝑘 + 1).

The Chern-Weil homomorphism relates the generators in the de Rham cohomology as follows. If Ω is a curvature
form matrix on 𝐸, for the Chern classes we get[︂

det
(︂
1 +

𝑡Ω

2𝜋𝑖

)︂]︂
= 1 +

𝑘∑︁
𝑛=1

𝑐𝑛(𝐸)𝑡𝑛,

for the Pontryagin classes we have

[︂
det
(︂
1− 𝑡Ω

2𝜋

)︂]︂
= 1 +

⌊ 𝑘
2 ⌋∑︁

𝑛=1

𝑝𝑛(𝐸)𝑡𝑛,

and for the Euler class we obtain [︂
Pf
(︂

Ω

2𝜋

)︂]︂
= 𝑒(𝐸).

Consequently, the cohomology ring𝐻*(𝐵𝐺;𝑅) is mapped (not necessarily injectively) to a subring of𝐻*
dR(𝑀,C)

via the Chern-Weil homomorphism. This implementation attempts to represent this subring.

Note: Some generators might have torsion in 𝐻*(𝐵𝐺;𝑅) giving a zero element in the de Rham cohomology.
Those generators are still considered in the implementation. Generators whose degree exceed the dimension of the
base space, however, are ignored.

INPUT:

• base – base ring

• vbundle – vector bundle

EXAMPLES:

Characteristic cohomology class ring over the tangent bundle of an 8-dimensional manifold:

sage: M = Manifold(8, M)
sage: TM = M.tangent_bundle()
sage: CR = TM.characteristic_cohomology_class_ring(); CR
Algebra of characteristic cohomology classes of the Tangent bundle TM
over the 8-dimensional differentiable manifold M
sage: CR.gens()
(Characteristic cohomology class (p_1)(TM) of the Tangent bundle TM over
the 8-dimensional differentiable manifold M,
Characteristic cohomology class (p_2)(TM) of the Tangent bundle TM
over the 8-dimensional differentiable manifold M)

832 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

The default base ring is :

sage: CR.base_ring()
Rational Field

Characteristic cohomology class ring over a complex vector bundle:

sage: M = Manifold(4, M)
sage: E = M.vector_bundle(2, E , field= complex)
sage: CR_E = E.characteristic_cohomology_class_ring(); CR_E
Algebra of characteristic cohomology classes of the Differentiable
complex vector bundle E -> M of rank 2 over the base space
4-dimensional differentiable manifold M
sage: CR_E.gens()
(Characteristic cohomology class (c_1)(E) of the Differentiable complex
vector bundle E -> M of rank 2 over the base space 4-dimensional
differentiable manifold M,
Characteristic cohomology class (c_2)(E) of the Differentiable
complex vector bundle E -> M of rank 2 over the base space
4-dimensional differentiable manifold M)

Characteristic cohomology class ring over an oriented manifold:

sage: S2 = manifolds.Sphere(2, coordinates= stereographic)
sage: TS2 = S2.tangent_bundle()
sage: S2.has_orientation()
True
sage: CR = TS2.characteristic_cohomology_class_ring()
sage: CR.gens()
(Characteristic cohomology class (e)(TS^2) of the Tangent bundle TS^2
over the 2-sphere S^2 of radius 1 smoothly embedded in the Euclidean
space E^3,)

Element

alias of CharacteristicCohomologyClassRingElement

class sage.manifolds.differentiable.characteristic_cohomology_class.CharacteristicCohomologyClassRingElement(par-
ent,
x,
name=None,
la-
tex_name=None)

Bases: IndexedFreeModuleElement

Characteristic cohomology class.

Let 𝐸 → 𝑀 be a real/complex vector bundle of rank 𝑘. A characteristic cohomology class of 𝐸 is generated by
either

• Chern classes if 𝐸 is complex,

• Pontryagin classes if 𝐸 is real,

• Pontryagin classes and the Euler class if 𝐸 is real and orientable,

via the Chern-Weil homomorphism.

For details about the ring structure, see CharacteristicCohomologyClassRing.

To construct a characteristic cohomology class, please use CharacteristicCohomologyClass().

2.15. Differentiable Vector Bundles 833

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Manifolds, Release 10.4.rc1

EXAMPLES:

sage: M = Manifold(12, M)
sage: TM = M.tangent_bundle()
sage: CR = TM.characteristic_cohomology_class_ring()
sage: p1, p2, p3 = CR.gens()
sage: p1*p2+p3
Characteristic cohomology class (p_1⌣p_2 + p_3)(TM) of the Tangent
bundle TM over the 12-dimensional differentiable manifold M
sage: A = TM.characteristic_cohomology_class(AHat); A
Characteristic cohomology class A^(TM) of the Tangent bundle TM over
the 12-dimensional differentiable manifold M
sage: A == 1 - p1/24 + (7*p1^2-4*p2)/5760 + (44*p1*p2-31*p1^3-16*p3)/967680
True

get_form(nab)
Return the characteristic form of self.

INPUT:

• nab – get the characteristic form w.r.t. to the connection nab

OUTPUT:

• an instance of sage.manifolds.differentiable.mixed_form.MixedForm

EXAMPLES:

Trivial characteristic form on Euclidean space:

sage: M = manifolds.EuclideanSpace(4)
sage: TM = M.tangent_bundle()
sage: one = TM.characteristic_cohomology_class_ring().one()
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()
sage: one.get_form(nab)
Mixed differential form one on the 4-dimensional Euclidean space E^4

Pontryagin form on the 4-sphere:

sage: M = manifolds.Sphere(4)
sage: TM = M.tangent_bundle()
sage: p = TM.characteristic_cohomology_class(Pontryagin); p
Characteristic cohomology class p(TS^4) of the Tangent bundle TS^4
over the 4-sphere S^4 of radius 1 smoothly embedded in the
5-dimensional Euclidean space E^5

sage: g = M.metric() # long time
sage: nab = g.connection() # long time
sage: nab.set_immutable() # long time
sage: p_form = p.get_form(nab); p_form # long time
Mixed differential form p(TS^4, nabla_g) on the 4-sphere S^4 of
radius 1 smoothly embedded in the 5-dimensional Euclidean space E^5

sage: p_form.display_expansion() # long time
p(TS^4, nabla_g) = 1

representative(nab=None)

Return any representative of self.

INPUT:

834 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• nab – (default: None) if stated, return the representative w.r.t. to the connection nab; otherwise an
arbitrary already computed representative will be chosen.

OUTPUT:

• an instance of sage.manifolds.differentiable.mixed_form.MixedForm

EXAMPLES:

Define the 4-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(4)
sage: TM = M.tangent_bundle()
sage: one = TM.characteristic_cohomology_class_ring().one()

No characteristic form has been computed so far, thus we get an error:

sage: one.representative()
Traceback (most recent call last):
...
AttributeError: cannot pick a representative

Get a characteristic form:

sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()
sage: one.get_form(nab)
Mixed differential form one on the 4-dimensional Euclidean space E^4

Now, the result is cached and 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 returns a form:

sage: one.representative()
Mixed differential form one on the 4-dimensional Euclidean space E^4

Alternatively, the option nab can be used to return the characteristic form w.r.t. a fixed connection:

sage: one.representative(nab)
Mixed differential form one on the 4-dimensional Euclidean space E^4

See also:

CharacteristicCohomologyClassRingElement.get_form()

set_name(name=None, latex_name=None)
Set (or change) the text name and LaTeX name of the characteristic class.

INPUT:

• name – (string; default: None) name given to the characteristic cohomology class

• latex_name – (string; default: None) LaTeX symbol to denote the characteristic cohomology class;
if None while name is provided, the LaTeX symbol is set to name

EXAMPLES:

sage: M = Manifold(8, M)
sage: TM = M.tangent_bundle()
sage: x = var(x)
sage: k = TM.characteristic_cohomology_class(1+x^2,
....: class_type= multiplicative); k

(continues on next page)

2.15. Differentiable Vector Bundles 835

Manifolds, Release 10.4.rc1

(continued from previous page)

Characteristic cohomology class (1 + p_1^2 - 2*p_2)(TM) of the
Tangent bundle TM over the 8-dimensional differentiable manifold M

sage: k.set_name(name= k , latex_name=r \kappa)
sage: k
Characteristic cohomology class k(TM) of the Tangent bundle TM over
the 8-dimensional differentiable manifold M

sage: latex(k)
\kappa\left(TM\right)

class
sage.manifolds.differentiable.characteristic_cohomology_class.ChernAlgorithm

Bases: Singleton, Algorithm_generic

Algorithm class to generate Chern forms.

EXAMPLES:

Define a complex line bundle over a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= Lorentzian)
sage: X.<t,x> = M.chart()
sage: E = M.vector_bundle(1, E , field= complex); E
Differentiable complex vector bundle E -> M of rank 1 over the base space
2-dimensional Lorentzian manifold M
sage: e = E.local_frame(e)
sage: nab = E.bundle_connection(nabla^E , latex_name=r \nabla^E)
sage: omega = M.one_form(name= omega)
sage: A = function(A)
sage: nab.set_connection_form(0, 0)[1] = I*A(t)
sage: nab[0, 0].display()
connection (0,0) of bundle connection nabla^E w.r.t. Local frame
(E|_M, (e_0)) = I*A(t) dx
sage: nab.set_immutable()

Import the algorithm and apply nab to it:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓ChernAlgorithm
sage: algorithm = ChernAlgorithm()
sage: algorithm.get(nab)
[2-form on the 2-dimensional Lorentzian manifold M]
sage: algorithm.get(nab)[0].display()
1/2*d(A)/dt/pi dt∧dx

Check some equalities:

sage: cmat = [[nab.curvature_form(0, 0, e)]]
sage: algorithm.get(nab)[0] == algorithm.get_local(cmat)[0] # bundle trivial
True
sage: algorithm.get_gen_pow(nab, 0, 1) == algorithm.get(nab)[0]
True

get_local(cmat)
Return the local Chern forms w.r.t. a given curvature form matrix.

OUTPUT:

836 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

• a list containing the local characteristic Chern forms as instances of sage.manifolds.
differentiable.diff_form.DiffForm

ALGORITHM:

The algorithm is based on the Faddeev-LeVerrier algorithm for the
characteristic polynomial.

EXAMPLES:

Define a complex line bundle over a 2-dimensional manifold:

sage: M = Manifold(2, M , structure= Lorentzian)
sage: X.<t,x> = M.chart()
sage: E = M.vector_bundle(1, E , field= complex); E
Differentiable complex vector bundle E -> M of rank 1 over the base
space 2-dimensional Lorentzian manifold M

sage: e = E.local_frame(e)
sage: nab = E.bundle_connection(nabla^E , latex_name=r \nabla^E)
sage: omega = M.one_form(name= omega)
sage: A = function(A)
sage: nab.set_connection_form(0, 0)[1] = I*A(t)
sage: nab[0, 0].display()
connection (0,0) of bundle connection nabla^E w.r.t. Local frame
(E|_M, (e_0)) = I*A(t) dx

sage: cmat = [[nab.curvature_form(i, j, e) for j in E.irange()]
....: for i in E.irange()]

Import the algorithm and apply cmat to it:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import ChernAlgorithm
sage: algorithm = ChernAlgorithm()
sage: algorithm.get_local(cmat)
[2-form on the 2-dimensional Lorentzian manifold M]

class
sage.manifolds.differentiable.characteristic_cohomology_class.EulerAlgorithm

Bases: Singleton, Algorithm_generic

Algorithm class to generate Euler forms.

EXAMPLES:

Consider the 2-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(2)
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

Import the algorithm and apply nab to it:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓EulerAlgorithm
sage: algorithm = EulerAlgorithm()
sage: algorithm.get(nab)
[2-form on the Euclidean plane E^2]
sage: algorithm.get(nab)[0].display()
0

2.15. Differentiable Vector Bundles 837

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

get(nab)
Return the global characteristic forms of the generators w.r.t. a given connection.

INPUT:

• a metric connection ∇

OUTPUT:

• a list containing the global characteristic Euler form

ALGORITHM:

Assume that ∇ is compatible with the metric 𝑔, and let (𝑠1, . . . , 𝑠𝑛) be any oriented frame. Denote by
𝐺𝑠 = (𝑔(𝑠𝑖, 𝑠𝑗))𝑖𝑗 the metric tensor and let Ω𝑠 be the curvature form matrix of ∇ w.r.t. 𝑠. Then, we get:

(𝐺𝑠 · Ω𝑠)𝑖𝑗 = 𝑔(𝑅(., .)𝑠𝑖, 𝑠𝑗) ,

where 𝑅 is the Riemannian curvature tensor w.r.t. ∇.

The characteristic Euler form is now obtained by the expression

1√︀
|det(𝐺𝑠)|

Pf
(︂
𝐺𝑠 ·

Ω𝑠

2𝜋

)︂
.

EXAMPLES:

Consider the 2-sphere:

sage: M.<x,y> = manifolds.Sphere(2, coordinates= stereographic)
sage: g = M.metric() # long time
sage: nab = g.connection() # long time
sage: nab.set_immutable() # long time

Import the algorithm and apply nab to it:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import EulerAlgorithm
sage: algorithm = EulerAlgorithm()
sage: algorithm.get(nab) # long time
[2-form on the 2-sphere S^2 of radius 1 smoothly embedded in the
Euclidean space E^3]

sage: algorithm.get(nab)[0].display() # long time
2/(pi + pi*x^4 + pi*y^4 + 2*pi*x^2 + 2*(pi + pi*x^2)*y^2) dx∧dy

REFERENCES:

• [Che1944]

• [Baer2020]

get_local(cmat)

Return the normalized Pfaffian w.r.t. a given curvature form matrix.

The normalization is given by the factor
(︀

1
2𝜋

)︀ 𝑘
2 , where 𝑘 is the dimension of the curvature matrix.

OUTPUT:

• a list containing the normalized Pfaffian of a given curvature form

838 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

Note: In general, the output does not represent the local characteristic Euler form. The result is only
guaranteed to be the local Euler form if cmat is given w.r.t. an orthonormal oriented frame. See get() for
details.

ALGORITHM:

The algorithm is based on the Bär-Faddeev-LeVerrier algorithm for
the Pfaffian.

EXAMPLES:

Consider the 2-sphere:

sage: M.<th,phi> = manifolds.Sphere(2) # use spherical coordinates
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: e = M.frames()[0] # select frame (opposite orientation!)
sage: cmat = [[nab.curvature_form(i, j, e) for j in TM.irange()]
....: for i in TM.irange()]

We need some preprocessing because the frame is not orthonormal:

sage: gcmat = [[sum(g[[e, i, j]] * nab.curvature_form(j, k, e)
....: for j in TM.irange())
....: for k in TM.irange()] for i in TM.irange()]

Now, gcmat is guaranteed to be skew-symmetric and can be applied to get_local(). Then, the result
must be normalized:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import EulerAlgorithm
sage: algorithm = EulerAlgorithm()
sage: euler = -algorithm.get_local(gcmat)[0] / sqrt(g.det(frame=e))
sage: euler.display()
1/2*sin(th)/pi dth∧dphi

class sage.manifolds.differentiable.characteristic_cohomology_class.
PontryaginAlgorithm

Bases: Singleton, Algorithm_generic

Algorithm class to generate Pontryagin forms.

EXAMPLES:

5-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(5)
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓PontryaginAlgorithm
sage: algorithm = PontryaginAlgorithm()

(continues on next page)

2.15. Differentiable Vector Bundles 839

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: [p1] = algorithm.get(nab) # long time
sage: p1.display() # long time
0

get_local(cmat)
Return the local Pontryagin forms w.r.t. a given curvature form matrix.

OUTPUT:

• a list containing the local characteristic Pontryagin forms

ALGORITHM:

The algorithm is based on the Faddeev-LeVerrier algorithm for the
characteristic polynomial.

EXAMPLES:

5-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(5)
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: e = M.frames()[0] # select standard frame
sage: cmat = [[nab.curvature_form(i, j, e) # long time
....: for j in TM.irange()]
....: for i in TM.irange()]

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import PontryaginAlgorithm
sage: algorithm = PontryaginAlgorithm()
sage: [p1] = algorithm.get_local(cmat) # long time
sage: p1.display() # long time
0

class sage.manifolds.differentiable.characteristic_cohomology_class.
PontryaginEulerAlgorithm

Bases: Singleton, Algorithm_generic

Algorithm class to generate Euler and Pontryagin forms.

EXAMPLES:

6-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(6)
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓PontryaginEulerAlgorithm
sage: algorithm = PontryaginEulerAlgorithm()

(continues on next page)

840 Chapter 2. Differentiable Manifolds

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: e_form, p1_form = algorithm.get(nab) # long time
sage: e_form.display() # long time
0
sage: p1_form.display() # long time
0

get(nab)
Return the global characteristic forms of the generators w.r.t. a given connection.

OUTPUT:

• a list containing the global Euler form in the first entry, and the global Pontryagin forms in the remaining
entries.

EXAMPLES:

4-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(4)
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import PontryaginEulerAlgorithm
sage: algorithm = PontryaginEulerAlgorithm()
sage: algorithm.get(nab) # long time
[4-form on the 4-dimensional Euclidean space E^4,
4-form on the 4-dimensional Euclidean space E^4]

get_gen_pow(nab, i, n)
Return the 𝑛-th power of the 𝑖-th generator w.r.t nab.

The result is cached.

EXAMPLES:

4-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(4)
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: nab.set_immutable()

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import PontryaginEulerAlgorithm
sage: algorithm = PontryaginEulerAlgorithm()
sage: e = algorithm.get_gen_pow(nab, 0, 1) # Euler, long time
sage: e.display() # long time
0
sage: p1_pow2 = algorithm.get_gen_pow(nab, 1, 2) # 1st Pontryagin squared,␣
→˓long time
sage: p1_pow2 # long time
8-form zero on the 4-dimensional Euclidean space E^4

2.15. Differentiable Vector Bundles 841

Manifolds, Release 10.4.rc1

get_local(cmat)
Return the local Euler and Pontryagin forms w.r.t. a given curvature form matrix.

Note: Similar as for EulerAlgorithm, the first entry only represents the Euler form if the curvature
form matrix is chosen w.r.t. an orthonormal oriented frame. See EulerAlgorithm.get_local() for
details.

OUTPUT:

• a list containing the local Euler form in the first entry, and the local Pontryagin forms in the remaining
entries.

EXAMPLES:

6-dimensional Euclidean space:

sage: M = manifolds.EuclideanSpace(6)
sage: TM = M.tangent_bundle()
sage: g = M.metric()
sage: nab = g.connection()
sage: e = M.frames()[0] # select the standard frame
sage: cmat = [[nab.curvature_form(i, j, e) # long time
....: for j in TM.irange()]
....: for i in TM.irange()]

Import the algorithm:

sage: from sage.manifolds.differentiable.characteristic_cohomology_class␣
→˓import PontryaginEulerAlgorithm
sage: algorithm = PontryaginEulerAlgorithm()
sage: e, p1 = algorithm.get_local(cmat) # long time
sage: e.display() # long time
0
sage: p1.display() # long time
0

sage.manifolds.differentiable.characteristic_cohomology_class.additive_sequence(q,
k,
n=None)

Turn the polynomial q into its additive sequence.

Let 𝑞 be a polynomial and 𝑥1, . . . 𝑥𝑛 indeterminates. The additive sequence of 𝑞 is then given by the polynomials
𝑄𝑗

𝑛∑︁
𝑗=0

𝑄𝑗(𝜎1, . . . , 𝜎𝑗)𝑧
𝑗 =

𝑘∑︁
𝑖=1

𝑞(𝑧 𝑥𝑖),

where 𝜎𝑖 is the 𝑖-th elementary symmetric polynomial in the indeterminates 𝑥𝑖.

INPUT:

• q – polynomial to turn into its additive sequence.

• k – maximal index 𝑘 of the sum

• n – (default: None) the highest order of the sequence 𝑛; if None, the order of q is assumed.

OUTPUT:

842 Chapter 2. Differentiable Manifolds

Manifolds, Release 10.4.rc1

• A symmetric polynomial representing the additive sequence.

EXAMPLES:

sage: P.<x> = PolynomialRing(QQ)
sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓additive_sequence
sage: f = 1 + x - x^2
sage: sym = additive_sequence(f, 2); sym
2*e[] + e[1] - e[1, 1] + 2*e[2]

The maximal order of the result can be stated with n:

sage: sym_1 = additive_sequence(f, 2, 1); sym_1
2*e[] + e[1]

sage.manifolds.differentiable.characteristic_cohomology_class.fast_wedge_power(form,
n)

Return the wedge product power of 𝑓𝑜𝑟𝑚 using a square-and-wedge algorithm.

INPUT:

• form – a differential form

• n – a non-negative integer

EXAMPLES:

sage: M = Manifold(4, M)
sage: X.<x,y,z,t> = M.chart()
sage: omega = M.diff_form(2, name= omega)
sage: omega[0,1] = t*y^2 + 2*x
sage: omega[0,3] = z - 2*y
sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓fast_wedge_power
sage: fast_wedge_power(omega, 0)
Scalar field 1 on the 4-dimensional differentiable manifold M
sage: fast_wedge_power(omega, 1)
2-form omega on the 4-dimensional differentiable manifold M
sage: fast_wedge_power(omega, 2)
4-form omega∧omega on the 4-dimensional differentiable manifold M

sage.manifolds.differentiable.characteristic_cohomology_class.multiplicative_sequence(q,
n=None)

Turn the polynomial q into its multiplicative sequence.

Let 𝑞 be a polynomial and 𝑥1, . . . 𝑥𝑛 indeterminates. The multiplicative sequence of 𝑞 is then given by the polyno-
mials𝐾𝑗

𝑛∑︁
𝑗=0

𝐾𝑗(𝜎1, . . . , 𝜎𝑗)𝑧
𝑗 =

𝑛∏︁
𝑖=1

𝑞(𝑧 𝑥𝑖),

where 𝜎𝑖 is the 𝑖-th elementary symmetric polynomial in the indeterminates 𝑥𝑖.

INPUT:

• q – polynomial to turn into its multiplicative sequence.

• n – (default: None) the highest order 𝑛 of the sequence; if None, the order of q is assumed.

OUTPUT:

2.15. Differentiable Vector Bundles 843

Manifolds, Release 10.4.rc1

• A symmetric polynomial representing the multiplicative sequence.

EXAMPLES:

sage: P.<x> = PolynomialRing(QQ)
sage: from sage.manifolds.differentiable.characteristic_cohomology_class import␣
→˓multiplicative_sequence
sage: f = 1 + x - x^2
sage: sym = multiplicative_sequence(f); sym
e[] + e[1] - e[1, 1] + 3*e[2]

The maximal order of the result can be stated with n:

sage: sym_5 = multiplicative_sequence(f, n=5); sym_5
e[] + e[1] - e[1, 1] + 3*e[2] - e[2, 1] + e[2, 2] + 4*e[3] - 3*e[3, 1]
+ e[3, 2] + 7*e[4] - 4*e[4, 1] + 11*e[5]

844 Chapter 2. Differentiable Manifolds

CHAPTER

THREE

PSEUDO-RIEMANNIAN MANIFOLDS

3.1 Pseudo-Riemannian Manifolds

A pseudo-Riemannian manifold is a pair (𝑀, 𝑔) where𝑀 is a real differentiable manifold𝑀 (see Differentiable-
Manifold) and 𝑔 is a field of non-degenerate symmetric bilinear forms on𝑀 , which is called themetric tensor, or simply
the metric (see PseudoRiemannianMetric).

Two important subcases are

• Riemannian manifold: the metric 𝑔 is positive definite, i.e. its signature is 𝑛 = dim𝑀 ;

• Lorentzian manifold: the metric 𝑔 has signature 𝑛− 2 (positive convention) or 2− 𝑛 (negative convention).

On a pseudo-Riemannian manifold, one may use various standard operators acting on scalar and tensor fields, like
grad() or div().

All pseudo-Riemannian manifolds, whatever the metric signature, are implemented via the class PseudoRiemanni-
anManifold.

Example 1: the sphere as a Riemannian manifold of dimension 2

We start by declaring 𝑆2 as a 2-dimensional Riemannian manifold:

sage: M = Manifold(2, S^2 , structure= Riemannian)
sage: M
2-dimensional Riemannian manifold S^2

We then cover 𝑆2 by two stereographic charts, from the North pole and from the South pole respectively:

sage: U = M.open_subset(U)
sage: stereoN.<x,y> = U.chart()
sage: V = M.open_subset(V)
sage: stereoS.<u,v> = V.chart()
sage: M.declare_union(U,V)
sage: stereoN_to_S = stereoN.transition_map(stereoS,
....: [x/(x^2+y^2), y/(x^2+y^2)], intersection_name= W ,
....: restrictions1= x^2+y^2!=0, restrictions2= u^2+v^2!=0)
sage: W = U.intersection(V)
sage: stereoN_to_S
Change of coordinates from Chart (W, (x, y)) to Chart (W, (u, v))
sage: stereoN_to_S.display()
u = x/(x^2 + y^2)
v = y/(x^2 + y^2)
sage: stereoN_to_S.inverse().display()

(continues on next page)

845

Manifolds, Release 10.4.rc1

(continued from previous page)

x = u/(u^2 + v^2)
y = v/(u^2 + v^2)

We get the metric defining the Riemannian structure by:

sage: g = M.metric()
sage: g
Riemannian metric g on the 2-dimensional Riemannian manifold S^2

At this stage, the metric 𝑔 is defined as a Python object but there remains to initialize it by setting its components with
respect to the vector frames associated with the stereographic coordinates. Let us begin with the frame of chartstereoN:

sage: eU = stereoN.frame()
sage: g[eU, 0, 0] = 4/(1 + x^2 + y^2)^2
sage: g[eU, 1, 1] = 4/(1 + x^2 + y^2)^2

The metric components in the frame of chart stereoS are obtained by continuation of the expressions found in𝑊 =
𝑈 ∩ 𝑉 from the known change-of-coordinate formulas:

sage: eV = stereoS.frame()
sage: g.add_comp_by_continuation(eV, W)

At this stage, the metric 𝑔 is well defined in all 𝑆2:

sage: g.display(eU)
g = 4/(x^2 + y^2 + 1)^2 dx⊗dx + 4/(x^2 + y^2 + 1)^2 dy⊗dy
sage: g.display(eV)
g = 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du⊗du
+ 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) dv⊗dv

The expression in frame eV can be given a shape similar to that in frame eU, by factorizing the components:

sage: g[eV, 0, 0].factor()
4/(u^2 + v^2 + 1)^2
sage: g[eV, 1, 1].factor()
4/(u^2 + v^2 + 1)^2
sage: g.display(eV)
g = 4/(u^2 + v^2 + 1)^2 du⊗du + 4/(u^2 + v^2 + 1)^2 dv⊗dv

Let us consider a scalar field 𝑓 on 𝑆2:

sage: f = M.scalar_field({stereoN: 1/(1+x^2+y^2)}, name= f)
sage: f.add_expr_by_continuation(stereoS, W)
sage: f.display()
f: S^2 → ℝ
on U: (x, y) ↦ 1/(x^2 + y^2 + 1)
on V: (u, v) ↦ (u^2 + v^2)/(u^2 + v^2 + 1)

The gradient of 𝑓 (with respect to the metric 𝑔) is:

sage: gradf = f.gradient()
sage: gradf
Vector field grad(f) on the 2-dimensional Riemannian manifold S^2
sage: gradf.display(eU)
grad(f) = -1/2*x ∂/∂x - 1/2*y ∂/∂y
sage: gradf.display(eV)
grad(f) = 1/2*u ∂/∂u + 1/2*v ∂/∂v

846 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

It is possible to write grad(f) instead of f.gradient(), by importing the standard differential operators of vector
calculus:

sage: from sage.manifolds.operators import *
sage: grad(f) == gradf
True

The Laplacian of 𝑓 (with respect to the metric 𝑔) is obtained either as f.laplacian() or, thanks to the above import,
as laplacian(f):

sage: Df = laplacian(f)
sage: Df
Scalar field Delta(f) on the 2-dimensional Riemannian manifold S^2
sage: Df.display()
Delta(f): S^2 → ℝ
on U: (x, y) ↦ (x^2 + y^2 - 1)/(x^2 + y^2 + 1)
on V: (u, v) ↦ -(u^2 + v^2 - 1)/(u^2 + v^2 + 1)

Let us check the standard formulaΔ𝑓 = div(grad 𝑓):

sage: Df == div(gradf)
True

Since each open subset of 𝑆2 inherits the structure of a Riemannian manifold, we can get the metric on it via the method
metric():

sage: gU = U.metric()
sage: gU
Riemannian metric g on the Open subset U of the 2-dimensional Riemannian
manifold S^2

sage: gU.display()
g = 4/(x^2 + y^2 + 1)^2 dx⊗dx + 4/(x^2 + y^2 + 1)^2 dy⊗dy

Of course, gU is nothing but the restriction of 𝑔 to 𝑈 :

sage: gU is g.restrict(U)
True

Example 2: Minkowski spacetime as a Lorentzian manifold of dimension 4

We start by declaring a 4-dimensional Lorentzian manifold𝑀 :

sage: M = Manifold(4, M , structure= Lorentzian)
sage: M
4-dimensional Lorentzian manifold M

We define Minkowskian coordinates on𝑀 :

sage: X.<t,x,y,z> = M.chart()

We construct the metric tensor by:

sage: g = M.metric()
sage: g
Lorentzian metric g on the 4-dimensional Lorentzian manifold M

and initialize it to the Minkowskian value:

3.1. Pseudo-Riemannian Manifolds 847

Manifolds, Release 10.4.rc1

sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1, 1, 1, 1
sage: g.display()
g = -dt⊗dt + dx⊗dx + dy⊗dy + dz⊗dz
sage: g[:]
[-1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

We may check that the metric is flat, i.e. has a vanishing Riemann curvature tensor:

sage: g.riemann().display()
Riem(g) = 0

A vector field on𝑀 :

sage: u = M.vector_field(name= u)
sage: u[0] = cosh(t)
sage: u[1] = sinh(t)
sage: u.display()
u = cosh(t) ∂/∂t + sinh(t) ∂/∂x

The scalar square of 𝑢 is:

sage: s = u.dot(u); s
Scalar field u.u on the 4-dimensional Lorentzian manifold M

Scalar products are taken with respect to the metric tensor:

sage: u.dot(u) == g(u,u)
True

𝑢 is a unit timelike vector, i.e. its scalar square is identically −1:

sage: s.display()
u.u: M → ℝ

(t, x, y, z) ↦ -1
sage: s.expr()
-1

Let us consider a unit spacelike vector:

sage: v = M.vector_field(name= v)
sage: v[0] = sinh(t)
sage: v[1] = cosh(t)
sage: v.display()
v = sinh(t) ∂/∂t + cosh(t) ∂/∂x
sage: v.dot(v).display()
v.v: M → ℝ

(t, x, y, z) ↦ 1
sage: v.dot(v).expr()
1

𝑢 and 𝑣 are orthogonal vectors with respect to Minkowski metric:

sage: u.dot(v).display()
u.v: M → ℝ

(continues on next page)

848 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

(t, x, y, z) ↦ 0
sage: u.dot(v).expr()
0

The divergence of 𝑢 is:

sage: s = u.div(); s
Scalar field div(u) on the 4-dimensional Lorentzian manifold M
sage: s.display()
div(u): M → ℝ

(t, x, y, z) ↦ sinh(t)

while its d’Alembertian is:

sage: Du = u.dalembertian(); Du
Vector field Box(u) on the 4-dimensional Lorentzian manifold M
sage: Du.display()
Box(u) = -cosh(t) ∂/∂t - sinh(t) ∂/∂x

AUTHORS:

• Eric Gourgoulhon (2018): initial version

REFERENCES:

• B. O’Neill : Semi-Riemannian Geometry [ONe1983]

• J. M. Lee : Riemannian Manifolds [Lee1997]

class sage.manifolds.differentiable.pseudo_riemannian.PseudoRiemannianManifold(n,
name,
met-
ric_name=None,
sig-
na-
ture=None,
base_man-
i-
fold=None,
diff_de-
gree=+In-
fin-
ity,
la-
tex_name=None,
met-
ric_la-
tex_name=None,
start_in-
dex=0,
cat-
e-
gory=None,
unique_tag=None)

Bases: DifferentiableManifold

PseudoRiemannian manifold.

3.1. Pseudo-Riemannian Manifolds 849

Manifolds, Release 10.4.rc1

A pseudo-Riemannian manifold is a pair (𝑀, 𝑔) where𝑀 is a real differentiable manifold𝑀 (see Differen-
tiableManifold) and 𝑔 is a field of non-degenerate symmetric bilinear forms on𝑀 , which is called themetric
tensor, or simply the metric (see PseudoRiemannianMetric).

Two important subcases are

• Riemannian manifold: the metric 𝑔 is positive definite, i.e. its signature is 𝑛 = dim𝑀 ;

• Lorentzian manifold: the metric 𝑔 has signature 𝑛− 2 (positive convention) or 2− 𝑛 (negative convention).

INPUT:

• n – positive integer; dimension of the manifold

• name – string; name (symbol) given to the manifold

• metric_name – (default: None) string; name (symbol) given to the metric; if None, g is used

• signature – (default: None) signature 𝑆 of the metric as a single integer: 𝑆 = 𝑛+−𝑛−, where 𝑛+ (resp.
𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric
components; if signature is not provided, 𝑆 is set to the manifold’s dimension (Riemannian signature)

• base_manifold – (default: None) if not None, must be a differentiable manifold; the created object is
then an open subset of base_manifold

• diff_degree – (default: infinity) degree 𝑘 of differentiability

• latex_name – (default: None) string; LaTeX symbol to denote the manifold; if none is provided, it is set
to name

• metric_latex_name – (default: None) string; LaTeX symbol to denote the metric; if none is provided,
it is set to metric_name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
manifold, e.g. coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(RR).
Differentiable() (or Manifolds(RR).Smooth() if diff_degree = infinity) is
assumed (see the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other ar-
guments have been used previously (without unique_tag, the UniqueRepresentation behavior in-
herited from ManifoldSubset, via DifferentiableManifold and TopologicalManifold,
would return the previously constructed object corresponding to these arguments).

EXAMPLES:

Pseudo-Riemannianmanifolds are constructed via the generic functionManifold(), using the keywordstruc-
ture:

sage: M = Manifold(4, M , structure= pseudo-Riemannian , signature=0)
sage: M
4-dimensional pseudo-Riemannian manifold M
sage: M.category()
Category of smooth manifolds over Real Field with 53 bits of precision

The metric associated with M is:

sage: M.metric()
Pseudo-Riemannian metric g on the 4-dimensional pseudo-Riemannian
manifold M
sage: M.metric().signature()
0

(continues on next page)

850 Chapter 3. Pseudo-Riemannian Manifolds

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: M.metric().tensor_type()
(0, 2)

Its value has to be initialized either by setting its components in various vector frames (see the above examples
regarding the 2-sphere and Minkowski spacetime) or by making it equal to a given field of symmetric bilinear
forms (see the method set() of the metric class). Both methods are also covered in the documentation of method
metric() below.

The metric object belongs to the class PseudoRiemannianMetric:

sage: isinstance(M.metric(), sage.manifolds.differentiable.metric.
....: PseudoRiemannianMetric)
True

See the documentation of this class for all operations available on metrics.

The default name of the metric is g; it can be customized:

sage: M = Manifold(4, M , structure= pseudo-Riemannian ,
....: metric_name= gam , metric_latex_name=r \gamma)
sage: M.metric()
Riemannian metric gam on the 4-dimensional Riemannian manifold M
sage: latex(M.metric())
\gamma

A Riemannian manifold is constructed by the proper setting of the keyword structure:

sage: M = Manifold(4, M , structure= Riemannian); M
4-dimensional Riemannian manifold M
sage: M.metric()
Riemannian metric g on the 4-dimensional Riemannian manifold M
sage: M.metric().signature()
4

Similarly, a Lorentzian manifold is obtained by:

sage: M = Manifold(4, M , structure= Lorentzian); M
4-dimensional Lorentzian manifold M
sage: M.metric()
Lorentzian metric g on the 4-dimensional Lorentzian manifold M

The default Lorentzian signature is taken to be positive:

sage: M.metric().signature()
2

but one can opt for the negative convention via the keyword signature:

sage: M = Manifold(4, M , structure= Lorentzian , signature= negative)
sage: M.metric()
Lorentzian metric g on the 4-dimensional Lorentzian manifold M
sage: M.metric().signature()
-2

metric(name=None, signature=None, latex_name=None, dest_map=None)
Return the metric giving the pseudo-Riemannian structure to the manifold, or define a new metric tensor on
the manifold.

3.1. Pseudo-Riemannian Manifolds 851

Manifolds, Release 10.4.rc1

INPUT:

• name – (default: None) name given to the metric; if name is None or matches the name of the metric
defining the pseudo-Riemannian structure of self, the latter metric is returned

• signature – (default: None; ignored if name is None) signature 𝑆 of the metric as a single integer:
𝑆 = 𝑛+−𝑛−, where 𝑛+ (resp. 𝑛−) is the number of positive terms (resp. number of negative terms) in
any diagonal writing of the metric components; if signature is not provided, 𝑆 is set to the manifold’s
dimension (Riemannian signature)

• latex_name – (default: None; ignored if name is None) LaTeX symbol to denote the metric; if
None, it is formed from name

• dest_map – (default: None; ignored if name is None) instance of class DiffMap representing the
destination map Φ : 𝑈 → 𝑀 , where 𝑈 is the current manifold; if None, the identity map is assumed
(case of a metric tensor field on 𝑈)

OUTPUT:

• instance of PseudoRiemannianMetric

EXAMPLES:

Metric of a 3-dimensional Riemannian manifold:

sage: M = Manifold(3, M , structure= Riemannian , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.metric(); g
Riemannian metric g on the 3-dimensional Riemannian manifold M

The metric remains to be initialized, for instance by setting its components in the coordinate frame associated
to the chart X:

sage: g[1,1], g[2,2], g[3,3] = 1, 1, 1
sage: g.display()
g = dx⊗dx + dy⊗dy + dz⊗dz

Alternatively, the metric can be initialized from a given field of nondegenerate symmetric bilinear forms; we
may create the former object by:

sage: X.coframe()
Coordinate coframe (M, (dx,dy,dz))
sage: dx, dy, dz = X.coframe()[1], X.coframe()[2], X.coframe()[3]
sage: b = dx*dx + dy*dy + dz*dz
sage: b
Field of symmetric bilinear forms dx⊗dx+dy⊗dy+dz⊗dz on the
3-dimensional Riemannian manifold M

We then use the metric method set() to make g being equal to b as a symmetric tensor field of type (0,2):

sage: g.set(b)
sage: g.display()
g = dx⊗dx + dy⊗dy + dz⊗dz

Another metric can be defined on M by specifying a metric name distinct from that chosen at the creation of
the manifold (which is g by default, but can be changed thanks to the keyword metric_name in Mani-
fold()):

sage: h = M.metric(h); h
Riemannian metric h on the 3-dimensional Riemannian manifold M

(continues on next page)

852 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: h[1,1], h[2,2], h[3,3] = 1+y^2, 1+z^2, 1+x^2
sage: h.display()
h = (y^2 + 1) dx⊗dx + (z^2 + 1) dy⊗dy + (x^2 + 1) dz⊗dz

The metric tensor h is distinct from the metric entering in the definition of the Riemannian manifold M:

sage: h is M.metric()
False

while we have of course:

sage: g is M.metric()
True

Providing the same name as the manifold’s default metric returns the latter:

sage: M.metric(g) is M.metric()
True

In the present case (M is diffeomorphic to R3), we can even create a Lorentzian metric on M:

sage: h = M.metric(h , signature=1); h
Lorentzian metric h on the 3-dimensional Riemannian manifold M

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of self.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topol-
ogy. It is a differentiable manifold by itself. Moreover, equipped with the restriction of the manifold metric
to itself, it is a pseudo-Riemannian manifold. Hence the returned object is an instance of PseudoRieman-
nianManifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none is provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_def must a be
dictionary with keys charts in the manifold’s atlas and values the symbolic expressions formed by the
coordinates to define the subset.

• supersets – (default: only self) list of sets that the new open subset is a subset of

OUTPUT:

• instance of PseudoRiemannianManifold representing the created open subset

EXAMPLES:

Open subset of a 2-dimensional Riemannian manifold:

sage: M = Manifold(2, M , structure= Riemannian)
sage: X.<x,y> = M.chart()
sage: U = M.open_subset(U , coord_def={X: x>0}); U
Open subset U of the 2-dimensional Riemannian manifold M
sage: type(U)
<class sage.manifolds.differentiable.pseudo_riemannian.
→˓PseudoRiemannianManifold_with_category >

3.1. Pseudo-Riemannian Manifolds 853

Manifolds, Release 10.4.rc1

We initialize the metric of M:

sage: g = M.metric()
sage: g[0,0], g[1,1] = 1, 1

Then the metric on U is determined as the restriction of g to U:

sage: gU = U.metric(); gU
Riemannian metric g on the Open subset U of the 2-dimensional Riemannian␣
→˓manifold M
sage: gU.display()
g = dx⊗dx + dy⊗dy
sage: gU is g.restrict(U)
True

volume_form(contra=0)
Volume form (Levi-Civita tensor) 𝜖 associated with self.

This assumes that self is an orientable manifold, with a preferred orientation; see orientation() for
details.

The volume form 𝜖 is a 𝑛-form (𝑛 being the manifold’s dimension) such that, for any vector frame (𝑒𝑖) that
is orthonormal with respect to the metric of the pseudo-Riemannian manifold self,

𝜖(𝑒1, . . . , 𝑒𝑛) = ±1

There are only two such 𝑛-forms, which are opposite of each other. The volume form 𝜖 is selected as the one
that returns +1 for any right-handed vector frame with respect to the chosen orientation of self.

INPUT:

• contra – (default: 0) number of contravariant indices of the returned tensor

OUTPUT:

• if contra = 0 (default value): the volume 𝑛-form 𝜖, as an instance of DiffForm

• if contra = k, with 1 ≤ 𝑘 ≤ 𝑛, the tensor field of type (k,n-k) formed from 𝜖 by raising the first k
indices with the metric (see method up()); the output is then an instance of TensorField, with the
appropriate antisymmetries, or of the subclass MultivectorField if 𝑘 = 𝑛

EXAMPLES:

Volume form of the Euclidean 3-space:

sage: M = Manifold(3, M , structure= Riemannian , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.metric()
sage: g[1,1], g[2,2], g[3,3] = 1, 1, 1
sage: eps = M.volume_form(); eps
3-form eps_g on the 3-dimensional Riemannian manifold M
sage: eps.display()
eps_g = dx∧dy∧dz

Raising the first index:

sage: eps1 = M.volume_form(1); eps1
Tensor field of type (1,2) on the 3-dimensional Riemannian
manifold M

sage: eps1.display()

(continues on next page)

854 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

∂/∂x⊗dy⊗dz - ∂/∂x⊗dz⊗dy - ∂/∂y⊗dx⊗dz + ∂/∂y⊗dz⊗dx + ∂/∂z⊗dx⊗dy
- ∂/∂z⊗dy⊗dx

sage: eps1.symmetries()
no symmetry; antisymmetry: (1, 2)

Raising the first and second indices:

sage: eps2 = M.volume_form(2); eps2
Tensor field of type (2,1) on the 3-dimensional Riemannian
manifold M

sage: eps2.display()
∂/∂x⊗∂/∂y⊗dz - ∂/∂x⊗∂/∂z⊗dy - ∂/∂y⊗∂/∂x⊗dz + ∂/∂y⊗∂/∂z⊗dx
+ ∂/∂z⊗∂/∂x⊗dy - ∂/∂z⊗∂/∂y⊗dx

sage: eps2.symmetries()
no symmetry; antisymmetry: (0, 1)

Fully contravariant version:

sage: eps3 = M.volume_form(3); eps3
3-vector field on the 3-dimensional Riemannian manifold M
sage: eps3.display()
∂/∂x∧∂/∂y∧∂/∂z

3.2 Euclidean Spaces and Vector Calculus

3.2.1 Euclidean Spaces

An Euclidean space of dimension 𝑛 is an affine space 𝐸, whose associated vector space is a 𝑛-dimensional vector space
overR and is equippedwith a positive definite symmetric bilinear form, called the scalar product or dot product [Ber1987].
An Euclidean space of dimension 𝑛 can also be viewed as a Riemannian manifold that is diffeomorphic to R𝑛 and that
has a flat metric 𝑔. The Euclidean scalar product is then that defined by the Riemannian metric 𝑔.

The current implementation of Euclidean spaces is based on the second point of view. This allows for the introduction of
various coordinate systems in addition to the usual the Cartesian systems. Standard curvilinear systems (planar, spherical
and cylindrical coordinates) are predefined for 2-dimensional and 3-dimensional Euclidean spaces, along with the cor-
responding transition maps between them. Another benefit of such an implementation is the direct use of methods for
vector calculus already implemented at the level of Riemannian manifolds (see, e.g., the methods cross_product()
and curl(), as well as the module operators).

Euclidean spaces are implemented via the following classes:

• EuclideanSpace for generic values 𝑛,

• EuclideanPlane for 𝑛 = 2,

• Euclidean3dimSpace for 𝑛 = 3.

The user interface is provided by EuclideanSpace.

3.2. Euclidean Spaces and Vector Calculus 855

Manifolds, Release 10.4.rc1

Example 1: the Euclidean plane

We start by declaring the Euclidean plane E, with (x, y) as Cartesian coordinates:

sage: E.<x,y> = EuclideanSpace()
sage: E
Euclidean plane E^2
sage: dim(E)
2

E is automatically endowed with the chart of Cartesian coordinates:

sage: E.atlas()
[Chart (E^2, (x, y))]
sage: cartesian = E.default_chart(); cartesian
Chart (E^2, (x, y))

Thanks to the use of <x,y> when declaring E, the coordinates (𝑥, 𝑦) have been injected in the global namespace, i.e.
the Python variables x and y have been created and are available to form symbolic expressions:

sage: y
y
sage: type(y)
<class sage.symbolic.expression.Expression >
sage: assumptions()
[x is real, y is real]

The metric tensor of E is predefined:

sage: g = E.metric(); g
Riemannian metric g on the Euclidean plane E^2
sage: g.display()
g = dx⊗dx + dy⊗dy
sage: g[:]
[1 0]
[0 1]

It is a flat metric, i.e. it has a vanishing Riemann tensor:

sage: g.riemann()
Tensor field Riem(g) of type (1,3) on the Euclidean plane E^2
sage: g.riemann().display()
Riem(g) = 0

Polar coordinates (𝑟, 𝜑) are introduced by:

sage: polar.<r,ph> = E.polar_coordinates()
sage: polar
Chart (E^2, (r, ph))

E is now endowed with two coordinate charts:

sage: E.atlas()
[Chart (E^2, (x, y)), Chart (E^2, (r, ph))]

The ranges of the coordinates introduced so far are:

856 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: cartesian.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
sage: polar.coord_range()
r: (0, +oo); ph: [0, 2*pi] (periodic)

The transition map from polar coordinates to Cartesian ones is:

sage: E.coord_change(polar, cartesian).display()
x = r*cos(ph)
y = r*sin(ph)

while the reverse one is:

sage: E.coord_change(cartesian, polar).display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)

A point of E is constructed from its coordinates (by default in the Cartesian chart):

sage: p = E((-1,1), name= p); p
Point p on the Euclidean plane E^2
sage: p.parent()
Euclidean plane E^2

The coordinates of a point are obtained by letting the corresponding chart act on it:

sage: cartesian(p)
(-1, 1)
sage: polar(p)
(sqrt(2), 3/4*pi)

At this stage, E is endowed with three vector frames:

sage: E.frames()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]

The third one is the standard orthonormal frame associated with polar coordinates, as we can check from the metric
components in it:

sage: polar_frame = E.polar_frame(); polar_frame
Vector frame (E^2, (e_r,e_ph))
sage: g[polar_frame,:]
[1 0]
[0 1]

The expression of the metric tensor in terms of polar coordinates is:

sage: g.display(polar)
g = dr⊗dr + r^2 dph⊗dph

A vector field on E:

sage: v = E.vector_field(-y, x, name= v); v
Vector field v on the Euclidean plane E^2
sage: v.display()

(continues on next page)

3.2. Euclidean Spaces and Vector Calculus 857

Manifolds, Release 10.4.rc1

(continued from previous page)

v = -y e_x + x e_y
sage: v[:]
[-y, x]

By default, the components of v, as returned by display or the bracket operator, refer to the Cartesian frame on E; to
get the components with respect to the orthonormal polar frame, one has to specify it explicitly, generally along with the
polar chart for the coordinate expression of the components:

sage: v.display(polar_frame, polar)
v = r e_ph
sage: v[polar_frame,:,polar]
[0, r]

Note that the default frame for the display of vector fields can be changed thanks to the method set_de-
fault_frame(); in the same vein, the default coordinates can be changed via the method set_de-
fault_chart():

sage: E.set_default_frame(polar_frame)
sage: E.set_default_chart(polar)
sage: v.display()
v = r e_ph
sage: v[:]
[0, r]
sage: E.set_default_frame(E.cartesian_frame()) # revert to Cartesian frame
sage: E.set_default_chart(cartesian) # and chart

When defining a vector field from components relative to a vector frame different from the default one, the vector frame
has to be specified explicitly:

sage: v = E.vector_field(1, 0, frame=polar_frame)
sage: v.display(polar_frame)
e_r
sage: v.display()
x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y

The argument chart must be used to specify in which coordinate chart the components are expressed:

sage: v = E.vector_field(0, r, frame=polar_frame, chart=polar)
sage: v.display(polar_frame, polar)
r e_ph
sage: v.display()
-y e_x + x e_y

It is also possible to pass the components as a dictionary, with a pair (vector frame, chart) as a key:

sage: v = E.vector_field({(polar_frame, polar): (0, r)})
sage: v.display(polar_frame, polar)
r e_ph

The key can be reduced to the vector frame if the chart is the default one:

sage: v = E.vector_field({polar_frame: (0, 1)})
sage: v.display(polar_frame)
e_ph

Finally, it is possible to construct the vector field without initializing any component:

858 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: v = E.vector_field(); v
Vector field on the Euclidean plane E^2

The components can then by set in a second stage, via the square bracket operator, the unset components being assumed
to be zero:

sage: v[1] = -y
sage: v.display() # v[2] is zero
-y e_x
sage: v[2] = x
sage: v.display()
-y e_x + x e_y

The above is equivalent to:

sage: v[:] = -y, x
sage: v.display()
-y e_x + x e_y

The square bracket operator can also be used to set components in a vector frame that is not the default one:

sage: v = E.vector_field(name= v)
sage: v[polar_frame, 2, polar] = r
sage: v.display(polar_frame, polar)
v = r e_ph
sage: v.display()
v = -y e_x + x e_y

The value of the vector field v at point p:

sage: vp = v.at(p); vp
Vector v at Point p on the Euclidean plane E^2
sage: vp.display()
v = -e_x - e_y
sage: vp.display(polar_frame.at(p))
v = sqrt(2) e_ph

A scalar field on E:

sage: f = E.scalar_field(x*y, name= f); f
Scalar field f on the Euclidean plane E^2
sage: f.display()
f: E^2 → ℝ

(x, y) ↦ x*y
(r, ph) ↦ r^2*cos(ph)*sin(ph)

The value of f at point p:

sage: f(p)
-1

The gradient of f:

sage: from sage.manifolds.operators import * # to get grad, div, etc.
sage: w = grad(f); w
Vector field grad(f) on the Euclidean plane E^2
sage: w.display()

(continues on next page)

3.2. Euclidean Spaces and Vector Calculus 859

Manifolds, Release 10.4.rc1

(continued from previous page)

grad(f) = y e_x + x e_y
sage: w.display(polar_frame, polar)
grad(f) = 2*r*cos(ph)*sin(ph) e_r + (2*cos(ph)^2 - 1)*r e_ph

The dot product of two vector fields:

sage: s = v.dot(w); s
Scalar field v.grad(f) on the Euclidean plane E^2
sage: s.display()
v.grad(f): E^2 → ℝ

(x, y) ↦ x^2 - y^2
(r, ph) ↦ (2*cos(ph)^2 - 1)*r^2

sage: s.expr()
x^2 - y^2

The norm is related to the dot product by the standard formula:

sage: norm(v)^2 == v.dot(v)
True

The divergence of the vector field v:

sage: s = div(v); s
Scalar field div(v) on the Euclidean plane E^2
sage: s.display()
div(v): E^2 → ℝ

(x, y) ↦ 0
(r, ph) ↦ 0

Example 2: Vector calculus in the Euclidean 3-space

We start by declaring the 3-dimensional Euclidean space E, with (x,y,z) as Cartesian coordinates:

sage: E.<x,y,z> = EuclideanSpace()
sage: E
Euclidean space E^3

A simple vector field on E:

sage: v = E.vector_field(-y, x, 0, name= v)
sage: v.display()
v = -y e_x + x e_y
sage: v[:]
[-y, x, 0]

The Euclidean norm of v:

sage: s = norm(v); s
Scalar field |v| on the Euclidean space E^3
sage: s.display()
|v|: E^3 → ℝ

(x, y, z) ↦ sqrt(x^2 + y^2)
sage: s.expr()
sqrt(x^2 + y^2)

The divergence of v is zero:

860 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: from sage.manifolds.operators import *
sage: div(v)
Scalar field div(v) on the Euclidean space E^3
sage: div(v).display()
div(v): E^3 → ℝ

(x, y, z) ↦ 0

while its curl is a constant vector field along 𝑒𝑧 :

sage: w = curl(v); w
Vector field curl(v) on the Euclidean space E^3
sage: w.display()
curl(v) = 2 e_z

The gradient of a scalar field:

sage: f = E.scalar_field(sin(x*y*z), name= f)
sage: u = grad(f); u
Vector field grad(f) on the Euclidean space E^3
sage: u.display()
grad(f) = y*z*cos(x*y*z) e_x + x*z*cos(x*y*z) e_y + x*y*cos(x*y*z) e_z

The curl of a gradient is zero:

sage: curl(u).display()
curl(grad(f)) = 0

The dot product of two vector fields:

sage: s = u.dot(v); s
Scalar field grad(f).v on the Euclidean space E^3
sage: s.expr()
(x^2 - y^2)*z*cos(x*y*z)

The cross product of two vector fields:

sage: a = u.cross(v); a
Vector field grad(f) x v on the Euclidean space E^3
sage: a.display()
grad(f) x v = -x^2*y*cos(x*y*z) e_x - x*y^2*cos(x*y*z) e_y
+ 2*x*y*z*cos(x*y*z) e_z

The scalar triple product of three vector fields:

sage: triple_product = E.scalar_triple_product()
sage: s = triple_product(u, v, w); s
Scalar field epsilon(grad(f),v,curl(v)) on the Euclidean space E^3
sage: s.expr()
4*x*y*z*cos(x*y*z)

Let us check that the scalar triple product of 𝑢, 𝑣 and 𝑤 is 𝑢 · (𝑣 × 𝑤):

sage: s == u.dot(v.cross(w))
True

AUTHORS:

• Eric Gourgoulhon (2018): initial version

3.2. Euclidean Spaces and Vector Calculus 861

Manifolds, Release 10.4.rc1

REFERENCES:

• M. Berger: Geometry I [Ber1987]

class sage.manifolds.differentiable.examples.euclidean.Euclidean3dimSpace(name=None,
la-
tex_name=None,
coor-
di-
nates='Carte-
sian',
sym-
bols=None,
met-
ric_name='g',
met-
ric_la-
tex_name=None,
start_in-
dex=1,
base_man-
i-
fold=None,
cate-
gory=None,
unique_tag=None)

Bases: EuclideanSpace

3-dimensional Euclidean space.

A 3-dimensional Euclidean space is an affine space 𝐸, whose associated vector space is a 3-dimensional vector
space over R and is equipped with a positive definite symmetric bilinear form, called the scalar product or dot
product.

The class Euclidean3dimSpace inherits from PseudoRiemannianManifold (via Eu-
clideanSpace) since a 3-dimensional Euclidean space can be viewed as a Riemannian manifold that is
diffeomorphic to R3 and that has a flat metric 𝑔. The Euclidean scalar product is the one defined by the
Riemannian metric 𝑔.

INPUT:

• name – (default: None) string; name (symbol) given to the Euclidean 3-space; if None, the name will be
set to E^3

• latex_name – (default: None) string; LaTeX symbol to denote the Euclidean 3-space; if None, it is set
to \mathbb{E}^{3} if name is None and to name otherwise

• coordinates – (default: Cartesian) string describing the type of coordinates to be initial-
ized at the Euclidean 3-space creation; allowed values are Cartesian (see cartesian_co-
ordinates()), spherical (see spherical_coordinates()) and cylindrical (see
cylindrical_coordinates())

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with the same
conventions as the argument coordinates in RealDiffChart, namely symbols is a string of coordi-
nate fields separated by a blank space, where each field contains the coordinate’s text symbol and possibly the
coordinate’s LaTeX symbol (when the latter is different from the text symbol), both symbols being separated
by a colon (:); if None, the symbols will be automatically generated according to the value of coordi-
nates

862 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• metric_name – (default: g) string; name (symbol) given to the Euclidean metric tensor

• metric_latex_name – (default: None) string; LaTeX symbol to denote the Euclidean metric tensor; if
none is provided, it is set to metric_name

• start_index – (default: 1) integer; lower value of the range of indices used for “indexed objects” in the
Euclidean 3-space, e.g. coordinates of a chart

• base_manifold – (default: None) if not None, must be an Euclidean 3-space; the created object is then
an open subset of base_manifold

• category – (default: None) to specify the category; if None, Manifolds(RR).Smooth() &
MetricSpaces().Complete() is assumed

• names – (default: None) unused argument, except if symbols is not provided; it must then be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

• init_coord_methods – (default: None) dictionary of methods to initialize the various type of coordi-
nates, with each key being a string describing the type of coordinates; to be used by derived classes only

• unique_tag – (default: None) tag used to force the construction of a new object when all the other argu-
ments have been used previously (without unique_tag, the UniqueRepresentation behavior inher-
ited from PseudoRiemannianManifold would return the previously constructed object corresponding
to these arguments)

EXAMPLES:

A 3-dimensional Euclidean space:

sage: E = EuclideanSpace(3); E
Euclidean space E^3
sage: latex(E)
\mathbb{E}^{3}

E belongs to the class Euclidean3dimSpace (actually to a dynamically generated subclass of it via SageMath’s
category framework):

sage: type(E)
<class sage.manifolds.differentiable.examples.euclidean.Euclidean3dimSpace_with_
→˓category >

E is both a real smooth manifold of dimension 3 and a complete metric space:

sage: E.category()
Join of Category of smooth manifolds over Real Field with 53 bits of
precision and Category of connected manifolds over Real Field with
53 bits of precision and Category of complete metric spaces
sage: dim(E)
3

It is endowed with a default coordinate chart, which is that of Cartesian coordinates (𝑥, 𝑦, 𝑧):

sage: E.atlas()
[Chart (E^3, (x, y, z))]
sage: E.default_chart()
Chart (E^3, (x, y, z))
sage: cartesian = E.cartesian_coordinates()
sage: cartesian is E.default_chart()
True

A point of E:

3.2. Euclidean Spaces and Vector Calculus 863

../../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

sage: p = E((3,-2,1)); p
Point on the Euclidean space E^3
sage: cartesian(p)
(3, -2, 1)
sage: p in E
True
sage: p.parent() is E
True

E is endowed with a default metric tensor, which defines the Euclidean scalar product:

sage: g = E.metric(); g
Riemannian metric g on the Euclidean space E^3
sage: g.display()
g = dx⊗dx + dy⊗dy + dz⊗dz

Curvilinear coordinates can be introduced onE: seespherical_coordinates() andcylindrical_co-
ordinates().

See also:

Example 2: Vector calculus in the Euclidean 3-space

cartesian_coordinates(symbols=None, names=None)
Return the chart of Cartesian coordinates, possibly creating it if it does not already exist.

INPUT:

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with
the same conventions as the argument coordinates in RealDiffChart; this is used only if the
Cartesian chart has not been already defined; if None the symbols are generated as (𝑥, 𝑦, 𝑧).

• names – (default: None) unused argument, except if symbols is not provided; it must be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

OUTPUT:

• the chart of Cartesian coordinates, as an instance of RealDiffChart

EXAMPLES:

sage: E = EuclideanSpace(3)
sage: E.cartesian_coordinates()
Chart (E^3, (x, y, z))
sage: E.cartesian_coordinates().coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)

An example where the Cartesian coordinates have not been previously created:

sage: E = EuclideanSpace(3, coordinates= spherical)
sage: E.atlas() # only spherical coordinates have been initialized
[Chart (E^3, (r, th, ph))]
sage: E.cartesian_coordinates(symbols= X Y Z)
Chart (E^3, (X, Y, Z))
sage: E.atlas() # the Cartesian chart has been added to the atlas
[Chart (E^3, (r, th, ph)), Chart (E^3, (X, Y, Z))]

The coordinate variables are returned by the square bracket operator:

864 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: E.cartesian_coordinates()[1]
X
sage: E.cartesian_coordinates()[3]
Z
sage: E.cartesian_coordinates()[:]
(X, Y, Z)

It is also possible to use the operator <,> to set symbolic variable containing the coordinates:

sage: E = EuclideanSpace(3, coordinates= spherical)
sage: cartesian.<u,v,w> = E.cartesian_coordinates()
sage: cartesian
Chart (E^3, (u, v, w))
sage: u, v, w
(u, v, w)

The command cartesian.<u,v,w> = E.cartesian_coordinates() is actually a shortcut for:

sage: cartesian = E.cartesian_coordinates(symbols= u v w)
sage: u, v, w = cartesian[:]

cylindrical_coordinates(symbols=None, names=None)
Return the chart of cylindrical coordinates, possibly creating it if it does not already exist.

INPUT:

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with
the same conventions as the argument coordinates in RealDiffChart; this is used only if the
cylindrical chart has not been already defined; if None the symbols are generated as (𝜌, 𝜑, 𝑧).

• names – (default: None) unused argument, except if symbols is not provided; it must be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

OUTPUT:

• the chart of cylindrical coordinates, as an instance of RealDiffChart

EXAMPLES:

sage: E = EuclideanSpace(3)
sage: E.cylindrical_coordinates()
Chart (E^3, (rh, ph, z))
sage: latex(_)
\left(\mathbb{E}^{3},({\rho}, {\phi}, z)\right)
sage: E.cylindrical_coordinates().coord_range()
rh: (0, +oo); ph: [0, 2*pi] (periodic); z: (-oo, +oo)

The relation to Cartesian coordinates is:

sage: E.coord_change(E.cylindrical_coordinates(),
....: E.cartesian_coordinates()).display()
x = rh*cos(ph)
y = rh*sin(ph)
z = z
sage: E.coord_change(E.cartesian_coordinates(),
....: E.cylindrical_coordinates()).display()
rh = sqrt(x^2 + y^2)
ph = arctan2(y, x)
z = z

3.2. Euclidean Spaces and Vector Calculus 865

Manifolds, Release 10.4.rc1

The coordinate variables are returned by the square bracket operator:

sage: E.cylindrical_coordinates()[1]
rh
sage: E.cylindrical_coordinates()[3]
z
sage: E.cylindrical_coordinates()[:]
(rh, ph, z)

They can also be obtained via the operator <,>:

sage: cylindrical.<rh,ph,z> = E.cylindrical_coordinates()
sage: cylindrical
Chart (E^3, (rh, ph, z))
sage: rh, ph, z
(rh, ph, z)

Actually, cylindrical.<rh,ph,z> = E.cylindrical_coordinates() is a shortcut for:

sage: cylindrical = E.cylindrical_coordinates()
sage: rh, ph, z = cylindrical[:]

The coordinate symbols can be customized:

sage: E = EuclideanSpace(3)
sage: E.cylindrical_coordinates(symbols=r"R Phi:\Phi Z")
Chart (E^3, (R, Phi, Z))
sage: latex(E.cylindrical_coordinates())
\left(\mathbb{E}^{3},(R, {\Phi}, Z)\right)

Note that if the cylindrical coordinates have been already initialized, the argument symbols has no effect:

sage: E.cylindrical_coordinates(symbols=r"rh:\rho ph:\phi z")
Chart (E^3, (R, Phi, Z))

cylindrical_frame()

Return the orthonormal vector frame associated with cylindrical coordinates.

OUTPUT:

• VectorFrame

EXAMPLES:

sage: E = EuclideanSpace(3)
sage: E.cylindrical_frame()
Vector frame (E^3, (e_rh,e_ph,e_z))
sage: E.cylindrical_frame()[1]
Vector field e_rh on the Euclidean space E^3
sage: E.cylindrical_frame()[:]
(Vector field e_rh on the Euclidean space E^3,
Vector field e_ph on the Euclidean space E^3,
Vector field e_z on the Euclidean space E^3)

The cylindrical frame expressed in terms of the Cartesian one:

sage: for e in E.cylindrical_frame():
....: e.display(E.cartesian_frame(), E.cylindrical_coordinates())

(continues on next page)

866 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

e_rh = cos(ph) e_x + sin(ph) e_y
e_ph = -sin(ph) e_x + cos(ph) e_y
e_z = e_z

The orthonormal frame (𝑒𝑟, 𝑒𝜑, 𝑒𝑧) expressed in terms of the coordinate frame
(︁

𝜕
𝜕𝑟 ,

𝜕
𝜕𝜑 ,

𝜕
𝜕𝑧

)︁
:

sage: for e in E.cylindrical_frame():
....: e.display(E.cylindrical_coordinates())
e_rh = ∂/∂rh
e_ph = 1/rh ∂/∂ph
e_z = ∂/∂z

scalar_triple_product(name=None, latex_name=None)
Return the scalar triple product operator, as a 3-form.

The scalar triple product (also called mixed product) of three vector fields 𝑢, 𝑣 and 𝑤 defined on an Euclidean
space 𝐸 is the scalar field

𝜖(𝑢, 𝑣, 𝑤) = 𝑢 · (𝑣 × 𝑤).

The scalar triple product operator 𝜖 is a 3-form, i.e. a field of fully antisymmetric trilinear forms; it is also
called the volume form of 𝐸 or the Levi-Civita tensor of 𝐸.

INPUT:

• name – (default: None) string; name given to the scalar triple product operator; if None, epsilon
is used

• latex_name – (default: None) string; LaTeX symbol to denote the scalar triple product; if None, it
is set to r \epsilon if name is None and to name otherwise.

OUTPUT:

• the scalar triple product operator 𝜖, as an instance of DiffFormParal

EXAMPLES:

sage: E.<x,y,z> = EuclideanSpace()
sage: triple_product = E.scalar_triple_product()
sage: triple_product
3-form epsilon on the Euclidean space E^3
sage: latex(triple_product)
\epsilon
sage: u = E.vector_field(x, y, z, name= u)
sage: v = E.vector_field(-y, x, 0, name= v)
sage: w = E.vector_field(y*z, x*z, x*y, name= w)
sage: s = triple_product(u, v, w); s
Scalar field epsilon(u,v,w) on the Euclidean space E^3
sage: s.display()
epsilon(u,v,w): E^3 → ℝ

(x, y, z) ↦ x^3*y + x*y^3 - 2*x*y*z^2
sage: s.expr()
x^3*y + x*y^3 - 2*x*y*z^2
sage: latex(s)
\epsilon\left(u,v,w\right)
sage: s == - triple_product(w, v, u)
True

Check of the identity 𝜖(𝑢, 𝑣, 𝑤) = 𝑢 · (𝑣 × 𝑤):

3.2. Euclidean Spaces and Vector Calculus 867

Manifolds, Release 10.4.rc1

sage: s == u.dot(v.cross(w))
True

Customizing the name:

sage: E.scalar_triple_product(name= S)
3-form S on the Euclidean space E^3
sage: latex(_)
S
sage: E.scalar_triple_product(name= Omega , latex_name=r \Omega)
3-form Omega on the Euclidean space E^3
sage: latex(_)
\Omega

spherical_coordinates(symbols=None, names=None)
Return the chart of spherical coordinates, possibly creating it if it does not already exist.

INPUT:

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with
the same conventions as the argument coordinates in RealDiffChart; this is used only if the
spherical chart has not been already defined; if None the symbols are generated as (𝑟, 𝜃, 𝜑).

• names – (default: None) unused argument, except if symbols is not provided; it must be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

OUTPUT:

• the chart of spherical coordinates, as an instance of RealDiffChart

EXAMPLES:

sage: E = EuclideanSpace(3)
sage: E.spherical_coordinates()
Chart (E^3, (r, th, ph))
sage: latex(_)
\left(\mathbb{E}^{3},(r, {\theta}, {\phi})\right)
sage: E.spherical_coordinates().coord_range()
r: (0, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)

The relation to Cartesian coordinates is:

sage: E.coord_change(E.spherical_coordinates(),
....: E.cartesian_coordinates()).display()
x = r*cos(ph)*sin(th)
y = r*sin(ph)*sin(th)
z = r*cos(th)
sage: E.coord_change(E.cartesian_coordinates(),
....: E.spherical_coordinates()).display()
r = sqrt(x^2 + y^2 + z^2)
th = arctan2(sqrt(x^2 + y^2), z)
ph = arctan2(y, x)

The coordinate variables are returned by the square bracket operator:

sage: E.spherical_coordinates()[1]
r
sage: E.spherical_coordinates()[3]
ph

(continues on next page)

868 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: E.spherical_coordinates()[:]
(r, th, ph)

They can also be obtained via the operator <,>:

sage: spherical.<r,th,ph> = E.spherical_coordinates()
sage: spherical
Chart (E^3, (r, th, ph))
sage: r, th, ph
(r, th, ph)

Actually, spherical.<r,th,ph> = E.spherical_coordinates() is a shortcut for:

sage: spherical = E.spherical_coordinates()
sage: r, th, ph = spherical[:]

The coordinate symbols can be customized:

sage: E = EuclideanSpace(3)
sage: E.spherical_coordinates(symbols=r"R T:\Theta F:\Phi")
Chart (E^3, (R, T, F))
sage: latex(E.spherical_coordinates())
\left(\mathbb{E}^{3},(R, {\Theta}, {\Phi})\right)

Note that if the spherical coordinates have been already initialized, the argument symbols has no effect:

sage: E.spherical_coordinates(symbols=r"r th:\theta ph:\phi")
Chart (E^3, (R, T, F))

spherical_frame()

Return the orthonormal vector frame associated with spherical coordinates.

OUTPUT:

• VectorFrame

EXAMPLES:

sage: E = EuclideanSpace(3)
sage: E.spherical_frame()
Vector frame (E^3, (e_r,e_th,e_ph))
sage: E.spherical_frame()[1]
Vector field e_r on the Euclidean space E^3
sage: E.spherical_frame()[:]
(Vector field e_r on the Euclidean space E^3,
Vector field e_th on the Euclidean space E^3,
Vector field e_ph on the Euclidean space E^3)

The spherical frame expressed in terms of the Cartesian one:

sage: for e in E.spherical_frame():
....: e.display(E.cartesian_frame(), E.spherical_coordinates())
e_r = cos(ph)*sin(th) e_x + sin(ph)*sin(th) e_y + cos(th) e_z
e_th = cos(ph)*cos(th) e_x + cos(th)*sin(ph) e_y - sin(th) e_z
e_ph = -sin(ph) e_x + cos(ph) e_y

The orthonormal frame (𝑒𝑟, 𝑒𝜃, 𝑒𝜑) expressed in terms of the coordinate frame
(︁

𝜕
𝜕𝑟 ,

𝜕
𝜕𝜃 ,

𝜕
𝜕𝜑

)︁
:

3.2. Euclidean Spaces and Vector Calculus 869

Manifolds, Release 10.4.rc1

sage: for e in E.spherical_frame():
....: e.display(E.spherical_coordinates())
e_r = ∂/∂r
e_th = 1/r ∂/∂th
e_ph = 1/(r*sin(th)) ∂/∂ph

class sage.manifolds.differentiable.examples.euclidean.EuclideanPlane(name=None,
la-
tex_name=None,
coordi-
nates='Carte-
sian',
sym-
bols=None,
met-
ric_name='g',
metric_la-
tex_name=None,
start_in-
dex=1,
base_mani-
fold=None,
cate-
gory=None,
unique_tag=None)

Bases: EuclideanSpace

Euclidean plane.

An Euclidean plane is an affine space 𝐸, whose associated vector space is a 2-dimensional vector space over R and
is equipped with a positive definite symmetric bilinear form, called the scalar product or dot product.

The class EuclideanPlane inherits from PseudoRiemannianManifold (via EuclideanSpace)
since an Euclidean plane can be viewed as a Riemannian manifold that is diffeomorphic to R2 and that has a
flat metric 𝑔. The Euclidean scalar product is the one defined by the Riemannian metric 𝑔.

INPUT:

• name – (default: None) string; name (symbol) given to the Euclidean plane; if None, the name will be set
to E^2

• latex_name – (default: None) string; LaTeX symbol to denote the Euclidean plane; if None, it is set to
\mathbb{E}^{2} if name is None and to name otherwise

• coordinates – (default: Cartesian) string describing the type of coordinates to be initialized at
the Euclidean plane creation; allowed values are Cartesian (see cartesian_coordinates())
and polar (see polar_coordinates())

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with the same
conventions as the argument coordinates in RealDiffChart, namely symbols is a string of coordi-
nate fields separated by a blank space, where each field contains the coordinate’s text symbol and possibly the
coordinate’s LaTeX symbol (when the latter is different from the text symbol), both symbols being separated
by a colon (:); if None, the symbols will be automatically generated according to the value of coordi-
nates

• metric_name – (default: g) string; name (symbol) given to the Euclidean metric tensor

870 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• metric_latex_name – (default: None) string; LaTeX symbol to denote the Euclidean metric tensor; if
none is provided, it is set to metric_name

• start_index – (default: 1) integer; lower value of the range of indices used for “indexed objects” in the
Euclidean plane, e.g. coordinates of a chart

• base_manifold – (default: None) if not None, must be an Euclidean plane; the created object is then
an open subset of base_manifold

• category – (default: None) to specify the category; if None, Manifolds(RR).Smooth() &
MetricSpaces().Complete() is assumed

• names – (default: None) unused argument, except if symbols is not provided; it must then be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

• init_coord_methods – (default: None) dictionary of methods to initialize the various type of coordi-
nates, with each key being a string describing the type of coordinates; to be used by derived classes only

• unique_tag – (default: None) tag used to force the construction of a new object when all the other argu-
ments have been used previously (without unique_tag, the UniqueRepresentation behavior inher-
ited from PseudoRiemannianManifold would return the previously constructed object corresponding
to these arguments)

EXAMPLES:

One creates an Euclidean plane E with:

sage: E.<x,y> = EuclideanSpace(); E
Euclidean plane E^2

E is both a real smooth manifold of dimension 2 and a complete metric space:

sage: E.category()
Join of Category of smooth manifolds over Real Field with 53 bits of
precision and Category of connected manifolds over Real Field with
53 bits of precision and Category of complete metric spaces
sage: dim(E)
2

It is endowed with a default coordinate chart, which is that of Cartesian coordinates (𝑥, 𝑦):

sage: E.atlas()
[Chart (E^2, (x, y))]
sage: E.default_chart()
Chart (E^2, (x, y))
sage: cartesian = E.cartesian_coordinates()
sage: cartesian is E.default_chart()
True

A point of E:

sage: p = E((3,-2)); p
Point on the Euclidean plane E^2
sage: cartesian(p)
(3, -2)
sage: p in E
True
sage: p.parent() is E
True

E is endowed with a default metric tensor, which defines the Euclidean scalar product:

3.2. Euclidean Spaces and Vector Calculus 871

../../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

sage: g = E.metric(); g
Riemannian metric g on the Euclidean plane E^2
sage: g.display()
g = dx⊗dx + dy⊗dy

Curvilinear coordinates can be introduced on E: see polar_coordinates().

See also:

Example 1: the Euclidean plane

cartesian_coordinates(symbols=None, names=None)
Return the chart of Cartesian coordinates, possibly creating it if it does not already exist.

INPUT:

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with
the same conventions as the argument coordinates in RealDiffChart; this is used only if the
Cartesian chart has not been already defined; if None the symbols are generated as (𝑥, 𝑦).

• names – (default: None) unused argument, except if symbols is not provided; it must be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

OUTPUT:

• the chart of Cartesian coordinates, as an instance of RealDiffChart

EXAMPLES:

sage: E = EuclideanSpace(2)
sage: E.cartesian_coordinates()
Chart (E^2, (x, y))
sage: E.cartesian_coordinates().coord_range()
x: (-oo, +oo); y: (-oo, +oo)

An example where the Cartesian coordinates have not been previously created:

sage: E = EuclideanSpace(2, coordinates= polar)
sage: E.atlas() # only polar coordinates have been initialized
[Chart (E^2, (r, ph))]
sage: E.cartesian_coordinates(symbols= X Y)
Chart (E^2, (X, Y))
sage: E.atlas() # the Cartesian chart has been added to the atlas
[Chart (E^2, (r, ph)), Chart (E^2, (X, Y))]

Note that if the Cartesian coordinates have been already initialized, the argument symbols has no effect:

sage: E.cartesian_coordinates(symbols= x y)
Chart (E^2, (X, Y))

The coordinate variables are returned by the square bracket operator:

sage: E.cartesian_coordinates()[1]
X
sage: E.cartesian_coordinates()[2]
Y
sage: E.cartesian_coordinates()[:]
(X, Y)

It is also possible to use the operator <,> to set symbolic variable containing the coordinates:

872 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: E = EuclideanSpace(2, coordinates= polar)
sage: cartesian.<u,v> = E.cartesian_coordinates()
sage: cartesian
Chart (E^2, (u, v))
sage: u,v
(u, v)

The command cartesian.<u,v> = E.cartesian_coordinates() is actually a shortcut for:

sage: cartesian = E.cartesian_coordinates(symbols= u v)
sage: u, v = cartesian[:]

polar_coordinates(symbols=None, names=None)
Return the chart of polar coordinates, possibly creating it if it does not already exist.

INPUT:

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with the
same conventions as the argument coordinates in RealDiffChart; this is used only if the polar
chart has not been already defined; if None the symbols are generated as (𝑟, 𝜑).

• names – (default: None) unused argument, except if symbols is not provided; it must be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

OUTPUT:

• the chart of polar coordinates, as an instance of RealDiffChart

EXAMPLES:

sage: E = EuclideanSpace(2)
sage: E.polar_coordinates()
Chart (E^2, (r, ph))
sage: latex(_)
\left(\mathbb{E}^{2},(r, {\phi})\right)
sage: E.polar_coordinates().coord_range()
r: (0, +oo); ph: [0, 2*pi] (periodic)

The relation to Cartesian coordinates is:

sage: E.coord_change(E.polar_coordinates(),
....: E.cartesian_coordinates()).display()
x = r*cos(ph)
y = r*sin(ph)
sage: E.coord_change(E.cartesian_coordinates(),
....: E.polar_coordinates()).display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)

The coordinate variables are returned by the square bracket operator:

sage: E.polar_coordinates()[1]
r
sage: E.polar_coordinates()[2]
ph
sage: E.polar_coordinates()[:]
(r, ph)

They can also be obtained via the operator <,>:

3.2. Euclidean Spaces and Vector Calculus 873

Manifolds, Release 10.4.rc1

sage: polar.<r,ph> = E.polar_coordinates(); polar
Chart (E^2, (r, ph))
sage: r, ph
(r, ph)

Actually, polar.<r,ph> = E.polar_coordinates() is a shortcut for:

sage: polar = E.polar_coordinates()
sage: r, ph = polar[:]

The coordinate symbols can be customized:

sage: E = EuclideanSpace(2)
sage: E.polar_coordinates(symbols=r"r th:\theta")
Chart (E^2, (r, th))
sage: latex(E.polar_coordinates())
\left(\mathbb{E}^{2},(r, {\theta})\right)

Note that if the polar coordinates have been already initialized, the argument symbols has no effect:

sage: E.polar_coordinates(symbols=r"R Th:\Theta")
Chart (E^2, (r, th))

polar_frame()

Return the orthonormal vector frame associated with polar coordinates.

OUTPUT:

• instance of VectorFrame

EXAMPLES:

sage: E = EuclideanSpace(2)
sage: E.polar_frame()
Vector frame (E^2, (e_r,e_ph))
sage: E.polar_frame()[1]
Vector field e_r on the Euclidean plane E^2
sage: E.polar_frame()[:]
(Vector field e_r on the Euclidean plane E^2,
Vector field e_ph on the Euclidean plane E^2)

The orthonormal polar frame expressed in terms of the Cartesian one:

sage: for e in E.polar_frame():
....: e.display(E.cartesian_frame(), E.polar_coordinates())
e_r = cos(ph) e_x + sin(ph) e_y
e_ph = -sin(ph) e_x + cos(ph) e_y

The orthonormal frame (𝑒𝑟, 𝑒𝜑) expressed in terms of the coordinate frame
(︁

𝜕
𝜕𝑟 ,

𝜕
𝜕𝜑

)︁
:

sage: for e in E.polar_frame():
....: e.display(E.polar_coordinates())
e_r = ∂/∂r
e_ph = 1/r ∂/∂ph

874 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.examples.euclidean.EuclideanSpace(n,
name=None,
la-
tex_name=None,
coordi-
nates='Carte-
sian',
sym-
bols=None,
met-
ric_name='g',
metric_la-
tex_name=None,
start_in-
dex=1,
base_mani-
fold=None,
cate-
gory=None,
init_co-
ord_meth-
ods=None,
unique_tag=None)

Bases: PseudoRiemannianManifold

Euclidean space.

An Euclidean space of dimension 𝑛 is an affine space 𝐸, whose associated vector space is a 𝑛-dimensional vector
space over R and is equipped with a positive definite symmetric bilinear form, called the scalar product or dot
product.

Euclidean space of dimension 𝑛 can be viewed as a Riemannian manifold that is diffeomorphic to R𝑛 and that has
a flat metric 𝑔. The Euclidean scalar product is the one defined by the Riemannian metric 𝑔.

INPUT:

• n – positive integer; dimension of the space over the real field

• name – (default: None) string; name (symbol) given to the Euclidean space; if None, the name will be set
to E^n

• latex_name – (default: None) string; LaTeX symbol to denote the space; if None, it is set to \
mathbb{E}^{n} if name is None and to name otherwise

• coordinates – (default: Cartesian) string describing the type of coordinates to be initialized at
the Euclidean space creation; allowed values are

– Cartesian (canonical coordinates on R𝑛)

– polar for n=2 only (see polar_coordinates())

– spherical for n=3 only (see spherical_coordinates())

– cylindrical for n=3 only (see cylindrical_coordinates())

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with the same
conventions as the argument coordinates in RealDiffChart, namely symbols is a string of coordi-
nate fields separated by a blank space, where each field contains the coordinate’s text symbol and possibly the
coordinate’s LaTeX symbol (when the latter is different from the text symbol), both symbols being separated

3.2. Euclidean Spaces and Vector Calculus 875

Manifolds, Release 10.4.rc1

by a colon (:); if None, the symbols will be automatically generated according to the value of coordi-
nates

• metric_name – (default: g) string; name (symbol) given to the Euclidean metric tensor

• metric_latex_name – (default: None) string; LaTeX symbol to denote the Euclidean metric tensor; if
none is provided, it is set to metric_name

• start_index – (default: 1) integer; lower value of the range of indices used for “indexed objects” in the
Euclidean space, e.g. coordinates of a chart

• names – (default: None) unused argument, except if symbols is not provided; it must then be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

If names is specified, then n does not have to be specified.

EXAMPLES:

Constructing a 2-dimensional Euclidean space:

sage: E = EuclideanSpace(2); E
Euclidean plane E^2

Each call to EuclideanSpace creates a different object:

sage: E1 = EuclideanSpace(2)
sage: E1 is E
False
sage: E1 == E
False

The LaTeX symbol of the Euclidean space is by default E𝑛, where 𝑛 is the dimension:

sage: latex(E)
\mathbb{E}^{2}

But both the name and LaTeX names of the Euclidean space can be customized:

sage: F = EuclideanSpace(2, name= F , latex_name=r \mathcal{F}); F
Euclidean plane F
sage: latex(F)
\mathcal{F}

By default, an Euclidean space is created with a single coordinate chart: that of Cartesian coordinates:

sage: E.atlas()
[Chart (E^2, (x, y))]
sage: E.cartesian_coordinates()
Chart (E^2, (x, y))
sage: E.default_chart() is E.cartesian_coordinates()
True

The coordinate variables can be initialized, as the Python variables x and y, by:

sage: x, y = E.cartesian_coordinates()[:]

However, it is possible to both construct the Euclidean space and initialize the coordinate variables in a single stage,
thanks to SageMath operator <,>:

876 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: E.<x,y> = EuclideanSpace()

Note that providing the dimension as an argument of EuclideanSpace is not necessary in that case, since it
can be deduced from the number of coordinates within <,>. Besides, the coordinate symbols can be customized:

sage: E.<X,Y> = EuclideanSpace()
sage: E.cartesian_coordinates()
Chart (E^2, (X, Y))

By default, the LaTeX symbols of the coordinates coincide with the text ones:

sage: latex(X+Y)
X + Y

However, it is possible to customize them, via the argument symbols, which must be a string, usually prefixed
by r (for raw string, in order to allow for the backslash character of LaTeX expressions). This string contains
the coordinate fields separated by a blank space; each field contains the coordinate’s text symbol and possibly the
coordinate’s LaTeX symbol (when the latter is different from the text symbol), both symbols being separated by a
colon (:):

sage: E.<xi,ze> = EuclideanSpace(symbols=r"xi:\xi ze:\zeta")
sage: E.cartesian_coordinates()
Chart (E^2, (xi, ze))
sage: latex(xi+ze)
{\xi} + {\zeta}

Thanks to the argument coordinates, an Euclidean space can be constructed with curvilinear coordinates
initialized instead of the Cartesian ones:

sage: E.<r,ph> = EuclideanSpace(coordinates= polar)
sage: E.atlas() # no Cartesian coordinates have been constructed
[Chart (E^2, (r, ph))]
sage: polar = E.polar_coordinates(); polar
Chart (E^2, (r, ph))
sage: E.default_chart() is polar
True
sage: latex(r+ph)
{\phi} + r

The Cartesian coordinates, along with the transition maps to and from the curvilinear coordinates, can be con-
structed at any time by:

sage: cartesian.<x,y> = E.cartesian_coordinates()
sage: E.atlas() # both polar and Cartesian coordinates now exist
[Chart (E^2, (r, ph)), Chart (E^2, (x, y))]

The transition maps have been initialized by the command E.cartesian_coordinates():

sage: E.coord_change(polar, cartesian).display()
x = r*cos(ph)
y = r*sin(ph)
sage: E.coord_change(cartesian, polar).display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)

The default name of the Euclidean metric tensor is 𝑔:

3.2. Euclidean Spaces and Vector Calculus 877

Manifolds, Release 10.4.rc1

sage: E.metric()
Riemannian metric g on the Euclidean plane E^2
sage: latex(_)
g

But this can be customized:

sage: E = EuclideanSpace(2, metric_name= h)
sage: E.metric()
Riemannian metric h on the Euclidean plane E^2
sage: latex(_)
h
sage: E = EuclideanSpace(2, metric_latex_name=r \mathbf{g})
sage: E.metric()
Riemannian metric g on the Euclidean plane E^2
sage: latex(_)
\mathbf{g}

A 4-dimensional Euclidean space:

sage: E = EuclideanSpace(4); E
4-dimensional Euclidean space E^4
sage: latex(E)
\mathbb{E}^{4}

E is both a real smooth manifold of dimension 4 and a complete metric space:

sage: E.category()
Join of Category of smooth manifolds over Real Field with 53 bits of
precision and Category of connected manifolds over Real Field with
53 bits of precision and Category of complete metric spaces
sage: dim(E)
4

It is endowed with a default coordinate chart, which is that of Cartesian coordinates (𝑥1, 𝑥2, 𝑥3, 𝑥4):

sage: E.atlas()
[Chart (E^4, (x1, x2, x3, x4))]
sage: E.default_chart()
Chart (E^4, (x1, x2, x3, x4))
sage: E.default_chart() is E.cartesian_coordinates()
True

E is also endowed with a default metric tensor, which defines the Euclidean scalar product:

sage: g = E.metric(); g
Riemannian metric g on the 4-dimensional Euclidean space E^4
sage: g.display()
g = dx1⊗dx1 + dx2⊗dx2 + dx3⊗dx3 + dx4⊗dx4

cartesian_coordinates(symbols=None, names=None)
Return the chart of Cartesian coordinates, possibly creating it if it does not already exist.

INPUT:

• symbols – (default: None) string defining the coordinate text symbols and LaTeX symbols, with
the same conventions as the argument coordinates in RealDiffChart; this is used only if the
Cartesian chart has not been already defined; if None the symbols are generated as (𝑥1, . . . , 𝑥𝑛).

878 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• names – (default: None) unused argument, except if symbols is not provided; it must be a tuple
containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)

OUTPUT:

• the chart of Cartesian coordinates, as an instance of RealDiffChart

EXAMPLES:

sage: E = EuclideanSpace(4)
sage: X = E.cartesian_coordinates(); X
Chart (E^4, (x1, x2, x3, x4))
sage: X.coord_range()
x1: (-oo, +oo); x2: (-oo, +oo); x3: (-oo, +oo); x4: (-oo, +oo)
sage: X[2]
x2
sage: X[:]
(x1, x2, x3, x4)
sage: latex(X[:])
\left({x_{1}}, {x_{2}}, {x_{3}}, {x_{4}}\right)

cartesian_frame()

Return the orthonormal vector frame associated with Cartesian coordinates.

OUTPUT:

• CoordFrame

EXAMPLES:

sage: E = EuclideanSpace(2)
sage: E.cartesian_frame()
Coordinate frame (E^2, (e_x,e_y))
sage: E.cartesian_frame()[1]
Vector field e_x on the Euclidean plane E^2
sage: E.cartesian_frame()[:]
(Vector field e_x on the Euclidean plane E^2,
Vector field e_y on the Euclidean plane E^2)

For Cartesian coordinates, the orthonormal frame coincides with the coordinate frame:

sage: E.cartesian_frame() is E.cartesian_coordinates().frame()
True

dist(p, q)
Euclidean distance between two points.

INPUT:

• p – an element of self

• q – an element of self

OUTPUT:

• the Euclidean distance 𝑑(𝑝, 𝑞)

EXAMPLES:

sage: E.<x,y> = EuclideanSpace()
sage: p = E((1,0))

(continues on next page)

3.2. Euclidean Spaces and Vector Calculus 879

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: q = E((0,2))
sage: E.dist(p, q)
sqrt(5)
sage: p.dist(q) # indirect doctest
sqrt(5)

sphere(radius=1, center=None, name=None, latex_name=None, coordinates='spherical', names=None)
Return an (𝑛− 1)-sphere smoothly embedded in self.

INPUT:

• radius – (default: 1) the radius greater than 1 of the sphere

• center – (default: None) point on self representing the barycenter of the sphere

• name – (default: None) string; name (symbol) given to the sphere; if None, the name will be generated
according to the input

• latex_name – (default: None) string; LaTeX symbol to denote the sphere; if None, the symbol will
be generated according to the input

• coordinates – (default: spherical) string describing the type of coordinates to be initialized
at the sphere’s creation; allowed values are

– spherical spherical coordinates (see spherical_coordinates()))

– stereographic stereographic coordinates given by the stereographic projection (see
stereographic_coordinates())

• names – (default: None) must be a tuple containing the coordinate symbols (this guarantees the shortcut
operator <,> to function); if None, the usual conventions are used (see examples in Sphere for details)

EXAMPLES:

Define a 2-sphere with radius 2 centered at (1, 2, 3) in Cartesian coordinates:

sage: E3 = EuclideanSpace(3)
sage: c = E3.point((1,2,3), name= c); c
Point c on the Euclidean space E^3
sage: S2_2 = E3.sphere(radius=2, center=c); S2_2
2-sphere S^2_2(c) of radius 2 smoothly embedded in the Euclidean
space E^3 centered at the Point c

The ambient space is precisely our previously defined Euclidean space:

sage: S2_2.ambient() is E3
True

The embedding into Euclidean space:

sage: S2_2.embedding().display()
iota: S^2_2(c) → E^3
on A: (theta, phi) ↦ (x, y, z) = (2*cos(phi)*sin(theta) + 1,

2*sin(phi)*sin(theta) + 2,
2*cos(theta) + 3)

See Sphere for more examples.

880 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

3.2.2 Spheres smoothly embedded in Euclidean Space

Let 𝐸𝑛+1 be a Euclidean space of dimension 𝑛+ 1 and 𝑐 ∈ 𝐸𝑛+1. An 𝑛-sphere with radius 𝑟 and centered at 𝑐, usually
denoted by S𝑛𝑟 (𝑐), smoothly embedded in the Euclidean space 𝐸𝑛+1 is an 𝑛-dimensional smooth manifold together with
a smooth embedding

𝜄 : S𝑛𝑟 → 𝐸𝑛+1

whose image consists of all points having the same Euclidean distance to the fixed point 𝑐. If we choose Cartesian
coordinates (𝑥1, . . . , 𝑥𝑛+1) on 𝐸𝑛+1 with 𝑥(𝑐) = 0 then the above translates to

𝜄(S𝑛𝑟 (𝑐)) =
{︀
𝑝 ∈ 𝐸𝑛+1 : ‖𝑥(𝑝)‖ = 𝑟

}︀
.

This corresponds to the standard 𝑛-sphere of radius 𝑟 centered at 𝑐.

AUTHORS:

• Michael Jung (2020): initial version

REFERENCES:

• M. Berger: Geometry I&II [Ber1987], [Ber1987a]

• J. Lee: Introduction to Smooth Manifolds [Lee2013]

EXAMPLES:

We start by defining a 2-sphere of unspecified radius 𝑟:

sage: r = var(r)
sage: S2_r = manifolds.Sphere(2, radius=r); S2_r
2-sphere S^2_r of radius r smoothly embedded in the Euclidean space E^3

The embedding 𝜄 is constructed from scratch and can be returned by the following command:

sage: i = S2_r.embedding(); i
Differentiable map iota from the 2-sphere S^2_r of radius r smoothly
embedded in the Euclidean space E^3 to the Euclidean space E^3

sage: i.display()
iota: S^2_r → E^3
on A: (theta, phi) ↦ (x, y, z) = (r*cos(phi)*sin(theta),

r*sin(phi)*sin(theta),
r*cos(theta))

As a submanifold of a Riemannian manifold, namely the Euclidean space, the 2-sphere admits an induced metric:

sage: g = S2_r.induced_metric()
sage: g.display()
g = r^2 dtheta⊗dtheta + r^2*sin(theta)^2 dphi⊗dphi

The induced metric is also known as the first fundamental form (see first_fundamental_form()):

sage: g is S2_r.first_fundamental_form()
True

The second fundamental form encodes the extrinsic curvature of the 2-sphere as hypersurface of Euclidean space (see
second_fundamental_form()):

3.2. Euclidean Spaces and Vector Calculus 881

Manifolds, Release 10.4.rc1

sage: K = S2_r.second_fundamental_form(); K
Field of symmetric bilinear forms K on the 2-sphere S^2_r of radius r
smoothly embedded in the Euclidean space E^3

sage: K.display()
K = r dtheta⊗dtheta + r*sin(theta)^2 dphi⊗dphi

One quantity that can be derived from the second fundamental form is the Gaussian curvature:

sage: K = S2_r.gauss_curvature()
sage: K.display()
S^2_r → ℝ
on A: (theta, phi) ↦ r^(-2)

As we have seen, spherical coordinates are initialized by default. To initialize stereographic coordinates retrospectively,
we can use the following command:

sage: S2_r.stereographic_coordinates()
Chart (S^2_r-{NP}, (y1, y2))

To get all charts corresponding to stereographic coordinates, we can use the coordinate_charts():

sage: stereoN, stereoS = S2_r.coordinate_charts(stereographic)
sage: stereoN, stereoS
(Chart (S^2_r-{NP}, (y1, y2)), Chart (S^2_r-{SP}, (yp1, yp2)))

See also:

See stereographic_coordinates() and spherical_coordinates() for details.

Note: Notice that the derived quantities such as the embedding as well as the first and second fundamental forms must
be computed from scratch again when new coordinates have been initialized. That makes the usage of previously declared
objects obsolete.

Consider now a 1-sphere with barycenter (1, 0) in Cartesian coordinates:

sage: E2 = EuclideanSpace(2)
sage: c = E2.point((1,0), name= c)
sage: S1c.<chi> = E2.sphere(center=c); S1c
1-sphere S^1(c) of radius 1 smoothly embedded in the Euclidean plane
E^2 centered at the Point c

sage: S1c.spherical_coordinates()
Chart (A, (chi,))

Get stereographic coordinates:

sage: stereoN, stereoS = S1c.coordinate_charts(stereographic)
sage: stereoN, stereoS
(Chart (S^1(c)-{NP}, (y1,)), Chart (S^1(c)-{SP}, (yp1,)))

The embedding takes now the following form in all coordinates:

sage: S1c.embedding().display()
iota: S^1(c) → E^2
on A: chi ↦ (x, y) = (cos(chi) + 1, sin(chi))
on S^1(c)-{NP}: y1 ↦ (x, y) = (2*y1/(y1^2 + 1) + 1, (y1^2 - 1)/(y1^2 + 1))
on S^1(c)-{SP}: yp1 ↦ (x, y) = (2*yp1/(yp1^2 + 1) + 1, -(yp1^2 - 1)/(yp1^2 + 1))

882 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

Since the sphere is a hypersurface, we can get a normal vector field by using normal:

sage: n = S1c.normal(); n
Vector field n along the 1-sphere S^1(c) of radius 1 smoothly embedded in
the Euclidean plane E^2 centered at the Point c with values on the
Euclidean plane E^2

sage: n.display()
n = -cos(chi) e_x - sin(chi) e_y

Notice that this is just one normal field with arbitrary direction, in this particular case 𝑛 points inwards whereas−𝑛 points
outwards. However, the vector field 𝑛 is indeed non-vanishing and hence the sphere admits an orientation (as all spheres
do):

sage: orient = S1c.orientation(); orient
[Coordinate frame (S^1(c)-{SP}, (∂/∂yp1)), Vector frame (S^1(c)-{NP}, (f_1))]
sage: f = orient[1]
sage: f[1].display()
f_1 = -∂/∂y1

Notice that the orientation is chosen is such a way that (𝜄*(𝑓1),−𝑛) is oriented in the ambient Euclidean space, i.e. the
last entry is the normal vector field pointing outwards. Henceforth, the manifold admits a volume form:

sage: g = S1c.induced_metric()
sage: g.display()
g = dchi⊗dchi
sage: eps = g.volume_form()
sage: eps.display()
eps_g = -dchi

class sage.manifolds.differentiable.examples.sphere.Sphere(n, radius=1,
ambient_space=None,
center=None, name=None,
latex_name=None,
coordinates='spherical',
names=None,
category=None,
init_coord_methods=None,
unique_tag=None)

Bases: PseudoRiemannianSubmanifold

Sphere smoothly embedded in Euclidean Space.

An 𝑛-sphere of radius 𝑟`𝑠𝑚𝑜𝑜𝑡ℎ𝑙𝑦𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝑖𝑛𝑎𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝑠𝑝𝑎𝑐𝑒`𝐸𝑛+1 is a smooth 𝑛-dimensional manifold
smoothly embedded into 𝐸𝑛+1, such that the embedding constitutes a standard 𝑛-sphere of radius 𝑟 in that Eu-
clidean space (possibly shifted by a point).

• n – positive integer representing dimension of the sphere

• radius – (default: 1) positive number that states the radius of the sphere

• name – (default: None) string; name (symbol) given to the sphere; if None, the name will be set according
to the input (see convention above)

• ambient_space – (default: None) Euclidean space in which the sphere should be embedded; if None, a
new instance of Euclidean space is created

• center – (default: None) the barycenter of the sphere as point of the ambient Euclidean space; if None
the barycenter is set to the origin of the ambient space’s standard Cartesian coordinates

3.2. Euclidean Spaces and Vector Calculus 883

Manifolds, Release 10.4.rc1

• latex_name – (default: None) string; LaTeX symbol to denote the space; if None, it will be set according
to the input (see convention above)

• coordinates – (default: spherical) string describing the type of coordinates to be initialized at
the sphere’s creation; allowed values are

– spherical spherical coordinates (see spherical_coordinates()))

– stereographic stereographic coordinates given by the stereographic projection (see stereo-
graphic_coordinates())

• names – (default: None) must be a tuple containing the coordinate symbols (this guarantees the shortcut
operator <,> to function); if None, the usual conventions are used (see examples below for details)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other argu-
ments have been used previously (without unique_tag, the UniqueRepresentation behavior inher-
ited from PseudoRiemannianManifold would return the previously constructed object corresponding
to these arguments)

EXAMPLES:

A 2-sphere embedded in Euclidean space:

sage: S2 = manifolds.Sphere(2); S2
2-sphere S^2 of radius 1 smoothly embedded in the Euclidean space E^3
sage: latex(S2)
\mathbb{S}^{2}

The ambient Euclidean space is constructed incidentally:

sage: S2.ambient()
Euclidean space E^3

Another call creates another sphere and hence another Euclidean space:

sage: S2 is manifolds.Sphere(2)
False
sage: S2.ambient() is manifolds.Sphere(2).ambient()
False

By default, the barycenter is set to the coordinate origin of the standard Cartesian coordinates in the ambient
Euclidean space:

sage: c = S2.center(); c
Point on the Euclidean space E^3
sage: c.coord()
(0, 0, 0)

Each 𝑛-sphere is a compact manifold and a complete metric space:

sage: S2.category()
Join of Category of compact topological spaces and Category of smooth
manifolds over Real Field with 53 bits of precision and Category of
connected manifolds over Real Field with 53 bits of precision and
Category of complete metric spaces

If not stated otherwise, each 𝑛-sphere is automatically endowed with spherical coordinates:

884 Chapter 3. Pseudo-Riemannian Manifolds

../../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

sage: S2.atlas()
[Chart (A, (theta, phi))]
sage: S2.default_chart()
Chart (A, (theta, phi))
sage: spher = S2.spherical_coordinates()
sage: spher is S2.default_chart()
True

Notice that the spherical coordinates do not cover the whole sphere. To cover the entire sphere with charts, use
stereographic coordinates instead:

sage: stereoN, stereoS = S2.coordinate_charts(stereographic)
sage: stereoN, stereoS
(Chart (S^2-{NP}, (y1, y2)), Chart (S^2-{SP}, (yp1, yp2)))
sage: list(S2.open_covers())
[Set {S^2} of open subsets of the 2-sphere S^2 of radius 1 smoothly embedded in␣
→˓the Euclidean space E^3,
Set {S^2-{NP}, S^2-{SP}} of open subsets of the 2-sphere S^2 of radius 1␣
→˓smoothly embedded in the Euclidean space E^3]

Note: Keep in mind that the initialization process of stereographic coordinates and their transition maps is compu-
tational complex in higher dimensions. Henceforth, high computation times are expectedwith increasing dimension.

center()

Return the barycenter of self in the ambient Euclidean space.

EXAMPLES:

2-sphere embedded in Euclidean space centered at (1, 2, 3) in Cartesian coordinates:

sage: E3 = EuclideanSpace(3)
sage: c = E3.point((1,2,3), name= c)
sage: S2c = manifolds.Sphere(2, ambient_space=E3, center=c); S2c
2-sphere S^2(c) of radius 1 smoothly embedded in the Euclidean space
E^3 centered at the Point c

sage: S2c.center()
Point c on the Euclidean space E^3

We can see that the embedding is shifted accordingly:

sage: S2c.embedding().display()
iota: S^2(c) → E^3
on A: (theta, phi) ↦ (x, y, z) = (cos(phi)*sin(theta) + 1,

sin(phi)*sin(theta) + 2,
cos(theta) + 3)

coordinate_charts(coord_name, names=None)
Return a list of all charts belonging to the coordinates coord_name.

INPUT:

• coord_name – string describing the type of coordinates

• names – (default: None) must be a tuple containing the coordinate symbols for the first chart in the
list; if None, the standard convention is used

EXAMPLES:

3.2. Euclidean Spaces and Vector Calculus 885

Manifolds, Release 10.4.rc1

Spherical coordinates on 𝑆1:

sage: S1 = manifolds.Sphere(1)
sage: S1.coordinate_charts(spherical)
[Chart (A, (phi,))]

Stereographic coordinates on 𝑆1:

sage: stereo_charts = S1.coordinate_charts(stereographic , names=[a])
sage: stereo_charts
[Chart (S^1-{NP}, (a,)), Chart (S^1-{SP}, (ap,))]

dist(p, q)
Return the great circle distance between the points p and q on self.

INPUT:

• p – an element of self

• q – an element of self

OUTPUT:

• the great circle distance 𝑑(𝑝, 𝑞) on self

The great circle distance 𝑑(𝑝, 𝑞) of the points 𝑝, 𝑞 ∈ S𝑛𝑟 (𝑐) is the length of the shortest great circle segment on
S𝑛𝑟 (𝑐) that joins 𝑝 and 𝑞. If we choose Cartesian coordinates (𝑥1, . . . , 𝑥𝑛+1) of the ambient Euclidean space
such that the center lies in the coordinate origin, i.e. 𝑥(𝑐) = 0, the great circle distance can be expressed in
terms of the following formula:

𝑑(𝑝, 𝑞) = 𝑟 arccos
(︂
𝑥(𝜄(𝑝)) · 𝑥(𝜄(𝑞))

𝑟2

)︂
.

EXAMPLES:

Define a 2-sphere with unspecified radius:

sage: r = var(r)
sage: S2_r = manifolds.Sphere(2, radius=r); S2_r
2-sphere S^2_r of radius r smoothly embedded in the Euclidean space E^3

Given two antipodal points in spherical coordinates:

sage: p = S2_r.point((pi/2, pi/2), name= p); p
Point p on the 2-sphere S^2_r of radius r smoothly embedded in the
Euclidean space E^3

sage: q = S2_r.point((pi/2, -pi/2), name= q); q
Point q on the 2-sphere S^2_r of radius r smoothly embedded in the
Euclidean space E^3

The distance is determined as the length of the half great circle:

sage: S2_r.dist(p, q)
pi*r

minimal_triangulation()

Return the minimal triangulation of self as a simplicial complex.

EXAMPLES:

Minimal triangulation of the 2-sphere:

886 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: S2 = manifolds.Sphere(2)
sage: S = S2.minimal_triangulation(); S
Minimal triangulation of the 2-sphere

The Euler characteristic of a 2-sphere:

sage: S.euler_characteristic()
2

radius()

Return the radius of self.

EXAMPLES:

3-sphere with radius 3:

sage: S3_2 = manifolds.Sphere(3, radius=2); S3_2
3-sphere S^3_2 of radius 2 smoothly embedded in the 4-dimensional
Euclidean space E^4

sage: S3_2.radius()
2

2-sphere with unspecified radius:

sage: r = var(r)
sage: S2_r = manifolds.Sphere(3, radius=r); S2_r
3-sphere S^3_r of radius r smoothly embedded in the 4-dimensional
Euclidean space E^4

sage: S2_r.radius()
r

spherical_coordinates(names=None)
Return the spherical coordinates of self.

INPUT:

• names – (default: None) must be a tuple containing the coordinate symbols (this guarantees the usage
of the shortcut operator <,>)

OUTPUT:

• the chart of spherical coordinates, as an instance of RealDiffChart

Let S𝑛𝑟 (𝑐) be an 𝑛-sphere of radius 𝑟 smoothly embedded in the Euclidean space𝐸𝑛+1 centered at 𝑐 ∈ 𝐸𝑛+1.
We say that (𝜙1, . . . , 𝜙𝑛) define spherical coordinates on the open subset 𝐴 ⊂ S𝑛𝑟 (𝑐) for the Cartesian
coordinates (𝑥1, . . . , 𝑥𝑛+1) on 𝐸𝑛+1 (not necessarily centered at 𝑐) if

𝑥1 ∘ 𝜄|𝐴 = 𝑟 cos(𝜙𝑛) sin(𝜙𝑛−1) · · · sin(𝜙1) + 𝑥1(𝑐),

𝑥1 ∘ 𝜄|𝐴 = 𝑟 sin(𝜙𝑛) sin(𝜙𝑛−1) · · · sin(𝜙1) + 𝑥1(𝑐),

𝑥2 ∘ 𝜄|𝐴 = 𝑟 cos(𝜙𝑛−1) sin(𝜙𝑛−2) · · · sin(𝜙1) + 𝑥2(𝑐),

𝑥3 ∘ 𝜄|𝐴 = 𝑟 cos(𝜙𝑛−2) sin(𝜙𝑛−3) · · · sin(𝜙1) + 𝑥3(𝑐),

...
𝑥𝑛+1 ∘ 𝜄|𝐴 = 𝑟 cos(𝜙1) + 𝑥𝑛+1(𝑐),

where 𝜙𝑖 has range (0, 𝜋) for 𝑖 = 1, . . . , 𝑛 − 1 and 𝜙𝑛 lies in (−𝜋, 𝜋). Notice that the above expressions
together with the ranges of the 𝜙𝑖 fully determine the open set 𝐴.

3.2. Euclidean Spaces and Vector Calculus 887

Manifolds, Release 10.4.rc1

Note: Notice that our convention slightly differs from the one given on the Wikipedia article
N-sphere#Spherical_coordinates. The definition above ensures that the conventions for the most common
cases 𝑛 = 1 and 𝑛 = 2 are maintained.

EXAMPLES:

The spherical coordinates on a 2-sphere follow the common conventions:

sage: S2 = manifolds.Sphere(2)
sage: spher = S2.spherical_coordinates(); spher
Chart (A, (theta, phi))

The coordinate range of spherical coordinates:

sage: spher.coord_range()
theta: (0, pi); phi: [-pi, pi] (periodic)

Spherical coordinates do not cover the 2-sphere entirely:

sage: A = spher.domain(); A
Open subset A of the 2-sphere S^2 of radius 1 smoothly embedded in
the Euclidean space E^3

The embedding of a 2-sphere in Euclidean space via spherical coordinates:

sage: S2.embedding().display()
iota: S^2 → E^3
on A: (theta, phi) ↦ (x, y, z) =

(cos(phi)*sin(theta),
sin(phi)*sin(theta),
cos(theta))

Now, consider spherical coordinates on a 3-sphere:

sage: S3 = manifolds.Sphere(3)
sage: spher = S3.spherical_coordinates(); spher
Chart (A, (chi, theta, phi))
sage: S3.embedding().display()
iota: S^3 → E^4
on A: (chi, theta, phi) ↦ (x1, x2, x3, x4) =

(cos(phi)*sin(chi)*sin(theta),
sin(chi)*sin(phi)*sin(theta),
cos(theta)*sin(chi),
cos(chi))

By convention, the last coordinate is periodic:

sage: spher.coord_range()
chi: (0, pi); theta: (0, pi); phi: [-pi, pi] (periodic)

stereographic_coordinates(pole='north', names=None)
Return stereographic coordinates given by the stereographic projection of self w.r.t. to a given pole.

INPUT:

• pole – (default: north) the pole determining the stereographic projection; possible options are
north and south

888 Chapter 3. Pseudo-Riemannian Manifolds

https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates
https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

Manifolds, Release 10.4.rc1

• names – (default: None) must be a tuple containing the coordinate symbols (this guarantees the usage
of the shortcut operator <,>)

OUTPUT:

• the chart of stereographic coordinates w.r.t. to the given pole, as an instance of RealDiffChart

Let S𝑛𝑟 (𝑐) be an 𝑛-sphere of radius 𝑟 smoothly embedded in the Euclidean space𝐸𝑛+1 centered at 𝑐 ∈ 𝐸𝑛+1.
We denote the north pole of S𝑛𝑟 (𝑐) by NP and the south pole by SP. These poles are uniquely determined by
the requirement

𝑥(𝜄(NP)) = (0, . . . , 0, 𝑟) + 𝑥(𝑐),

𝑥(𝜄(SP)) = (0, . . . , 0,−𝑟) + 𝑥(𝑐).

The coordinates (𝑦1, . . . , 𝑦𝑛) ((𝑦′1, . . . , 𝑦′𝑛) respectively) define stereographic coordinates on S𝑛𝑟 (𝑐) for the
Cartesian coordinates (𝑥1, . . . , 𝑥𝑛+1) on 𝐸𝑛+1 if they arise from the stereographic projection from 𝜄(NP)
(𝜄(SP)) to the hypersurface 𝑥𝑛 = 𝑥𝑛(𝑐). In concrete formulas, this means:

𝑥 ∘ 𝜄|S𝑛𝑟 (𝑐)∖{NP} =

(︂
2𝑦1𝑟

2

𝑟2 +
∑︀𝑛

𝑖=1 𝑦
2
𝑖

, . . . ,
2𝑦𝑛𝑟

2

𝑟2 +
∑︀𝑛

𝑖=1 𝑦
2
𝑖

,
𝑟
∑︀𝑛

𝑖=1 𝑦
2
𝑖 − 𝑟3

𝑟2 +
∑︀𝑛

𝑖=1 𝑦
2
𝑖

)︂
+ 𝑥(𝑐),

𝑥 ∘ 𝜄|S𝑛𝑟 (𝑐)∖{SP} =

(︂
2𝑦′1𝑟

2

𝑟2 +
∑︀𝑛

𝑖=1 𝑦
′2
𝑖

, . . . ,
2𝑦′𝑛𝑟

2

𝑟2 +
∑︀𝑛

𝑖=1 𝑦
′2
𝑖

,
𝑟3 − 𝑟

∑︀𝑛
𝑖=1 𝑦

′2
𝑖

𝑟2 +
∑︀𝑛

𝑖=1 𝑦
′2
𝑖

)︂
+ 𝑥(𝑐).

EXAMPLES:

Initialize a 1-sphere centered at (1, 0) in the Euclidean plane using the shortcut operator:

sage: E2 = EuclideanSpace(2)
sage: c = E2.point((1,0), name= c)
sage: S1.<a> = E2.sphere(center=c, coordinates= stereographic); S1
1-sphere S^1(c) of radius 1 smoothly embedded in the Euclidean plane
E^2 centered at the Point c

By default, the shortcut variables belong to the stereographic projection from the north pole:

sage: S1.coordinate_charts(stereographic)
[Chart (S^1(c)-{NP}, (a,)), Chart (S^1(c)-{SP}, (ap,))]
sage: S1.embedding().display()
iota: S^1(c) → E^2
on S^1(c)-{NP}: a ↦ (x, y) = (2*a/(a^2 + 1) + 1, (a^2 - 1)/(a^2 + 1))
on S^1(c)-{SP}: ap ↦ (x, y) = (2*ap/(ap^2 + 1) + 1, -(ap^2 - 1)/(ap^2 + 1))

Initialize a 2-sphere from scratch:

sage: S2 = manifolds.Sphere(2)
sage: S2.atlas()
[Chart (A, (theta, phi))]

In the previous block, the stereographic coordinates have not been initialized. This happens subsequently
with the invocation of stereographic_coordinates:

sage: stereoS.<u,v> = S2.stereographic_coordinates(pole= south)
sage: S2.coordinate_charts(stereographic)
[Chart (S^2-{NP}, (up, vp)), Chart (S^2-{SP}, (u, v))]

If not specified by the user, the default coordinate names are given by (𝑦1, . . . , 𝑦𝑛) and (𝑦′1, . . . , 𝑦′𝑛) respec-
tively:

3.2. Euclidean Spaces and Vector Calculus 889

Manifolds, Release 10.4.rc1

sage: S3 = manifolds.Sphere(3, coordinates= stereographic)
sage: S3.stereographic_coordinates(pole= north)
Chart (S^3-{NP}, (y1, y2, y3))
sage: S3.stereographic_coordinates(pole= south)
Chart (S^3-{SP}, (yp1, yp2, yp3))

3.2.3 Operators for vector calculus

This module defines the following operators for scalar, vector and tensor fields on any pseudo-Riemannian manifold (see
pseudo_riemannian), and in particular on Euclidean spaces (see euclidean):

• grad(): gradient of a scalar field

• div(): divergence of a vector field, and more generally of a tensor field

• curl(): curl of a vector field (3-dimensional case only)

• laplacian(): Laplace-Beltrami operator acting on a scalar field, a vector field, or more generally a tensor field

• dalembertian(): d’Alembert operator acting on a scalar field, a vector field, or more generally a tensor field,
on a Lorentzian manifold

All these operators are implemented as functions that call the appropriate method on their argument. The purpose is to
allow one to use standard mathematical notations, e.g. to write curl(v) instead of v.curl().

Note that the norm() operator is defined in the module functional.

See also:

Examples 1 and 2 in euclidean for examples involving these operators in the Euclidean plane and in the Euclidean
3-space.

AUTHORS:

• Eric Gourgoulhon (2018): initial version

sage.manifolds.operators.curl(vector)
Curl operator.

The curl of a vector field 𝑣 on an orientable pseudo-Riemannian manifold (𝑀, 𝑔) of dimension 3 is the vector field
defined by

curl 𝑣 = (*(d𝑣♭))♯

where 𝑣♭ is the 1-form associated to 𝑣 by the metric 𝑔 (see down()), *(d𝑣♭) is the Hodge dual with respect to 𝑔
of the 2-form d𝑣♭ (exterior derivative of 𝑣♭) (see hodge_dual()) and (*(d𝑣♭))♯ is corresponding vector field
by 𝑔-duality (see up()).

An alternative expression of the curl is

(curl 𝑣)𝑖 = 𝜖𝑖𝑗𝑘∇𝑗𝑣𝑘

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection) and 𝜖 the volume 3-form
(Levi-Civita tensor) of 𝑔 (cf. volume_form())

INPUT:

• vector – vector field on an orientable 3-dimensional pseudo-Riemannian manifold, as an instance of Vec-
torField

OUTPUT:

890 Chapter 3. Pseudo-Riemannian Manifolds

../../../../../../html/en/reference/misc/sage/misc/functional.html#sage.misc.functional.norm
../../../../../../html/en/reference/misc/sage/misc/functional.html#module-sage.misc.functional

Manifolds, Release 10.4.rc1

• instance of VectorField representing the curl of vector

EXAMPLES:

Curl of a vector field in the Euclidean 3-space:

sage: E.<x,y,z> = EuclideanSpace()
sage: v = E.vector_field(sin(y), sin(x), 0, name= v)
sage: v.display()
v = sin(y) e_x + sin(x) e_y
sage: from sage.manifolds.operators import curl
sage: s = curl(v); s
Vector field curl(v) on the Euclidean space E^3
sage: s.display()
curl(v) = (cos(x) - cos(y)) e_z
sage: s[:]
[0, 0, cos(x) - cos(y)]

See the method curl() of VectorField for more details and examples.

sage.manifolds.operators.dalembertian(field)
d’Alembert operator.

The d’Alembert operator or d’Alembertian on a Lorentzian manifold (𝑀, 𝑔) is nothing but the Laplace-Beltrami
operator:

� = ∇𝑖∇𝑖 = 𝑔𝑖𝑗∇𝑖∇𝑗

where ∇ is the Levi-Civita connection of the metric 𝑔 (cf. LeviCivitaConnection) and∇𝑖 := 𝑔𝑖𝑗∇𝑗

INPUT:

• field – a scalar field 𝑓 (instance ofDiffScalarField) or a tensor field 𝑓 (instance ofTensorField)
on a pseudo-Riemannian manifold

OUTPUT:

• �𝑓 , as an instance of DiffScalarField or of TensorField

EXAMPLES:

d’Alembertian of a scalar field in the 2-dimensional Minkowski spacetime:

sage: M = Manifold(2, M , structure= Lorentzian)
sage: X.<t,x> = M.chart()
sage: g = M.metric()
sage: g[0,0], g[1,1] = -1, 1
sage: f = M.scalar_field((x-t)^3 + (x+t)^2, name= f)
sage: from sage.manifolds.operators import dalembertian
sage: Df = dalembertian(f); Df
Scalar field Box(f) on the 2-dimensional Lorentzian manifold M
sage: Df.display()
Box(f): M → ℝ

(t, x) ↦ 0

See the method dalembertian() of DiffScalarField and the method dalembertian() of Ten-
sorField for more details and examples.

sage.manifolds.operators.div(tensor)
Divergence operator.

3.2. Euclidean Spaces and Vector Calculus 891

Manifolds, Release 10.4.rc1

Let 𝑡 be a tensor field of type (𝑘, 0) with 𝑘 ≥ 1 on a pseudo-Riemannian manifold (𝑀, 𝑔). The divergence of 𝑡 is
the tensor field of type (𝑘 − 1, 0) defined by

(div 𝑡)𝑎1...𝑎𝑘−1 = ∇𝑖𝑡
𝑎1...𝑎𝑘−1𝑖 = (∇𝑡)𝑎1...𝑎𝑘−1𝑖

𝑖

where ∇ is the Levi-Civita connection of 𝑔 (cf. LeviCivitaConnection).

Note that the divergence is taken on the last index of the tensor field. This definition is extended to tensor fields of
type (𝑘, 𝑙) with 𝑘 ≥ 0 and 𝑙 ≥ 1, by raising the last index with the metric 𝑔: div 𝑡 is then the tensor field of type
(𝑘, 𝑙 − 1) defined by

(div 𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑙−1
= ∇𝑖(𝑔

𝑖𝑗𝑡𝑎1...𝑎𝑘

𝑏1...𝑏𝑙−1𝑗
) = (∇𝑡♯)𝑎1...𝑎𝑘𝑖

𝑏1...𝑏𝑙−1𝑖

where 𝑡♯ is the tensor field deduced from 𝑡 by raising the last index with the metric 𝑔 (see up()).

INPUT:

• tensor – tensor field 𝑡 on a pseudo-Riemannian manifold (𝑀, 𝑔), as an instance of TensorField (pos-
sibly via one of its derived classes, like VectorField)

OUTPUT:

• the divergence of tensor as an instance of either DiffScalarField if (𝑘, 𝑙) = (1, 0) (tensor is a
vector field) or (𝑘, 𝑙) = (0, 1) (tensor is a 1-form) or of TensorField if 𝑘 + 𝑙 ≥ 2

EXAMPLES:

Divergence of a vector field in the Euclidean plane:

sage: E.<x,y> = EuclideanSpace()
sage: v = E.vector_field(cos(x*y), sin(x*y), name= v)
sage: v.display()
v = cos(x*y) e_x + sin(x*y) e_y
sage: from sage.manifolds.operators import div
sage: s = div(v); s
Scalar field div(v) on the Euclidean plane E^2
sage: s.display()
div(v): E^2 → ℝ

(x, y) ↦ x*cos(x*y) - y*sin(x*y)
sage: s.expr()
x*cos(x*y) - y*sin(x*y)

See the method divergence() of TensorField for more details and examples.

sage.manifolds.operators.grad(scalar)
Gradient operator.

The gradient of a scalar field 𝑓 on a pseudo-Riemannian manifold (𝑀, 𝑔) is the vector field grad 𝑓 whose compo-
nents in any coordinate frame are

(grad 𝑓)𝑖 = 𝑔𝑖𝑗
𝜕𝐹

𝜕𝑥𝑗

where the 𝑥𝑗 ’s are the coordinates with respect to which the frame is defined and𝐹 is the chart function representing
𝑓 in these coordinates: 𝑓(𝑝) = 𝐹 (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) for any point 𝑝 in the chart domain. In other words, the
gradient of 𝑓 is the vector field that is the 𝑔-dual of the differential of 𝑓 .

INPUT:

• scalar – scalar field 𝑓 , as an instance of DiffScalarField

OUTPUT:

892 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• instance of VectorField representing grad 𝑓

EXAMPLES:

Gradient of a scalar field in the Euclidean plane:

sage: E.<x,y> = EuclideanSpace()
sage: f = E.scalar_field(sin(x*y), name= f)
sage: from sage.manifolds.operators import grad
sage: grad(f)
Vector field grad(f) on the Euclidean plane E^2
sage: grad(f).display()
grad(f) = y*cos(x*y) e_x + x*cos(x*y) e_y
sage: grad(f)[:]
[y*cos(x*y), x*cos(x*y)]

See the method gradient() of DiffScalarField for more details and examples.

sage.manifolds.operators.laplacian(field)
Laplace-Beltrami operator.

The Laplace-Beltrami operator on a pseudo-Riemannian manifold (𝑀, 𝑔) is the operator

Δ = ∇𝑖∇𝑖 = 𝑔𝑖𝑗∇𝑖∇𝑗

where ∇ is the Levi-Civita connection of the metric 𝑔 (cf. LeviCivitaConnection) and∇𝑖 := 𝑔𝑖𝑗∇𝑗

INPUT:

• field – a scalar field 𝑓 (instance ofDiffScalarField) or a tensor field 𝑓 (instance ofTensorField)
on a pseudo-Riemannian manifold

OUTPUT:

• Δ𝑓 , as an instance of DiffScalarField or of TensorField

EXAMPLES:

Laplacian of a scalar field on the Euclidean plane:

sage: E.<x,y> = EuclideanSpace()
sage: f = E.scalar_field(sin(x*y), name= f)
sage: from sage.manifolds.operators import laplacian
sage: Df = laplacian(f); Df
Scalar field Delta(f) on the Euclidean plane E^2
sage: Df.display()
Delta(f): E^2 → ℝ

(x, y) ↦ -(x^2 + y^2)*sin(x*y)
sage: Df.expr()
-(x^2 + y^2)*sin(x*y)

The Laplacian of a scalar field is the divergence of its gradient:

sage: from sage.manifolds.operators import div, grad
sage: Df == div(grad(f))
True

See the method laplacian() of DiffScalarField and the method laplacian() of TensorField
for more details and examples.

3.2. Euclidean Spaces and Vector Calculus 893

Manifolds, Release 10.4.rc1

3.3 Pseudo-Riemannian Metrics and Degenerate Metrics

The class PseudoRiemannianMetric implements pseudo-Riemannian metrics on differentiable manifolds over R.
The derived class PseudoRiemannianMetricParal is devoted to metrics with values on a parallelizable manifold.

The class DegenerateMetric implements degenerate (or null or lightlike) metrics on differentiable manifolds over
R. The derived class DegenerateMetricParal is devoted to metrics with values on a parallelizable manifold.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Pablo Angulo (2016) : Schouten, Cotton and Cotton-York tensors

• Florentin Jaffredo (2018) : series expansion for the inverse metric

• Hans Fotsing Tetsing (2019) : degenerate metrics

• Marius Gerbershagen (2022) : compute volume forms with contravariant indices only as needed

REFERENCES:

• [KN1963]

• [Lee1997]

• [ONe1983]

• [DB1996]

• [DS2010]

class sage.manifolds.differentiable.metric.DegenerateMetric(vector_field_module, name,
signature=None,
latex_name=None)

Bases: TensorField

Degenerate (or null or lightlike) metric with values on an open subset of a differentiable manifold.

An instance of this class is a field of degenerate symmetric bilinear forms (metric field) along a differentiable
manifold 𝑈 with values on a differentiable manifold 𝑀 over R, via a differentiable mapping Φ : 𝑈 → 𝑀 . The
standard case of a degenerate metric field on a manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

A degenerate metric 𝑔 is a field on 𝑈 , such that at each point 𝑝 ∈ 𝑈 , 𝑔(𝑝) is a bilinear map of the type:

𝑔(𝑝) : 𝑇𝑞𝑀 × 𝑇𝑞𝑀 −→ R

where 𝑇𝑞𝑀 stands for the tangent space to the manifold𝑀 at the point 𝑞 = Φ(𝑝), such that 𝑔(𝑝) is symmetric:
∀(𝑢, 𝑣) ∈ 𝑇𝑞𝑀 × 𝑇𝑞𝑀, 𝑔(𝑝)(𝑣, 𝑢) = 𝑔(𝑝)(𝑢, 𝑣) and degenerate: ∃𝑣 ∈ 𝑇𝑞𝑀 ; 𝑔(𝑝)(𝑢, 𝑣) = 0 ∀𝑢 ∈ 𝑇𝑞𝑀 .

Note: If𝑀 is parallelizable, the class DegenerateMetricParal should be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on Φ(𝑈) ⊂𝑀

• name – name given to the metric

• signature – (default: None) signature 𝑆 of the metric as a tuple: 𝑆 = (𝑛+, 𝑛−, 𝑛0), where 𝑛+ (resp.
𝑛−, resp. 𝑛0) is the number of positive terms (resp. negative terms, resp. zero tems) in any diagonal writing
of the metric components; if signature is not provided, 𝑆 is set to (𝑛𝑑𝑖𝑚 − 1, 0, 1), being 𝑛𝑑𝑖𝑚 the
manifold’s dimension

894 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

EXAMPLES:

Lightlike cone:

sage: M = Manifold(3, M); X.<x,y,z> = M.chart()
sage: g = M.metric(g , signature=(2,0,1)); g
degenerate metric g on the 3-dimensional differentiable manifold M
sage: det(g)
Scalar field zero on the 3-dimensional differentiable manifold M
sage: g.parent()
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
3-dimensional differentiable manifold M
sage: g[0,0], g[0,1], g[0,2] = (y^2 + z^2)/(x^2 + y^2 + z^2), \
....: - x*y/(x^2 + y^2 + z^2), - x*z/(x^2 + y^2 + z^2)
sage: g[1,1], g[1,2], g[2,2] = (x^2 + z^2)/(x^2 + y^2 + z^2), \
....: - y*z/(x^2 + y^2 + z^2), (x^2 + y^2)/(x^2 + y^2 + z^2)
sage: g.disp()
g = (y^2 + z^2)/(x^2 + y^2 + z^2) dx⊗dx - x*y/(x^2 + y^2 + z^2) dx⊗dy
- x*z/(x^2 + y^2 + z^2) dx⊗dz - x*y/(x^2 + y^2 + z^2) dy⊗dx
+ (x^2 + z^2)/(x^2 + y^2 + z^2) dy⊗dy - y*z/(x^2 + y^2 + z^2) dy⊗dz
- x*z/(x^2 + y^2 + z^2) dz⊗dx - y*z/(x^2 + y^2 + z^2) dz⊗dy
+ (x^2 + y^2)/(x^2 + y^2 + z^2) dz⊗dz

The position vector is a lightlike vector field:

sage: v = M.vector_field()
sage: v[0], v[1], v[2] = x , y, z
sage: g(v, v).disp()
M → ℝ
(x, y, z) ↦ 0

det()

Determinant of a degenerate metric is always ‘0’

EXAMPLES:

sage: S = Manifold(2, S)
sage: g = S.metric(g , signature=([0,1,1]))
sage: g.determinant()
Scalar field zero on the 2-dimensional differentiable manifold S

determinant()

Determinant of a degenerate metric is always ‘0’

EXAMPLES:

sage: S = Manifold(2, S)
sage: g = S.metric(g , signature=([0,1,1]))
sage: g.determinant()
Scalar field zero on the 2-dimensional differentiable manifold S

restrict(subdomain, dest_map=None)
Return the restriction of the metric to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 895

Manifolds, Release 10.4.rc1

• subdomain – open subset 𝑈 of the metric’s domain (must be an instance of Differentiable-
Manifold)

• dest_map – (default: None) destination map Φ : 𝑈 → 𝑉 , where 𝑉 is a subdomain of self.
_codomain (type: DiffMap) If None, the restriction of self._vmodule._dest_map to 𝑈 is
used.

OUTPUT:

• instance of DegenerateMetric representing the restriction.

EXAMPLES:

sage: M = Manifold(5, M)
sage: g = M.metric(g , signature=(3,1,1))
sage: U = M.open_subset(U)
sage: g.restrict(U)
degenerate metric g on the Open subset U of the 5-dimensional
differentiable manifold M
sage: g.restrict(U).signature()
(3, 1, 1)

See the top documentation of DegenerateMetric for more examples.

set(symbiform)
Defines the metric from a field of symmetric bilinear forms

INPUT:

• symbiform – instance of TensorField representing a field of symmetric bilinear forms

EXAMPLES:

Metric defined from a field of symmetric bilinear forms on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: h = M.sym_bilin_form_field(name= h)
sage: h[eU,0,0], h[eU,0,1], h[eU,1,1] = 1+x, x*y, 1-y
sage: h.add_comp_by_continuation(eV, W, c_uv)
sage: h.display(eU)
h = (x + 1) dx⊗dx + x*y dx⊗dy + x*y dy⊗dx + (-y + 1) dy⊗dy
sage: h.display(eV)
h = (1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2) du⊗du + 1/4*u du⊗dv
+ 1/4*u dv⊗du + (-1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2) dv⊗dv

sage: g = M.metric(g)
sage: g.set(h)
sage: g.display(eU)
g = (x + 1) dx⊗dx + x*y dx⊗dy + x*y dy⊗dx + (-y + 1) dy⊗dy
sage: g.display(eV)
g = (1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2) du⊗du + 1/4*u du⊗dv
+ 1/4*u dv⊗du + (-1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2) dv⊗dv

896 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

signature()

Signature of the metric.

OUTPUT:

• signature of a degenerate metric is defined as the tuple (𝑛+, 𝑛−, 𝑛0), where 𝑛+ (resp. 𝑛−, resp. 𝑛0) is
the number of positive terms (resp. negative terms, resp. zero terms) eigenvalues

EXAMPLES:

Signatures on a 3-dimensional manifold:

sage: M = Manifold(3, M)
sage: g = M.metric(g , signature=(1,1,1))
sage: g.signature()
(1, 1, 1)
sage: M = Manifold(3, M , structure= degenerate_metric)
sage: g = M.metric()
sage: g.signature()
(0, 2, 1)

class sage.manifolds.differentiable.metric.DegenerateMetricParal(vector_field_mod-
ule, name,
signature=None,
latex_name=None)

Bases: DegenerateMetric, TensorFieldParal

Degenerate (or null or lightlike) metric with values on an open subset of a differentiable manifold.

An instance of this class is a field of degenerate symmetric bilinear forms (metric field) along a differentiable
manifold 𝑈 with values on a differentiable manifold 𝑀 over R, via a differentiable mapping Φ : 𝑈 → 𝑀 . The
standard case of a degenerate metric field on a manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common
cases are Φ being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

A degenerate metric 𝑔 is a field on 𝑈 , such that at each point 𝑝 ∈ 𝑈 , 𝑔(𝑝) is a bilinear map of the type:

𝑔(𝑝) : 𝑇𝑞𝑀 × 𝑇𝑞𝑀 −→ R

where 𝑇𝑞𝑀 stands for the tangent space to the manifold𝑀 at the point 𝑞 = Φ(𝑝), such that 𝑔(𝑝) is symmetric:
∀(𝑢, 𝑣) ∈ 𝑇𝑞𝑀 × 𝑇𝑞𝑀, 𝑔(𝑝)(𝑣, 𝑢) = 𝑔(𝑝)(𝑢, 𝑣) and degenerate: ∃𝑣 ∈ 𝑇𝑞𝑀 ; 𝑔(𝑝)(𝑢, 𝑣) = 0 ∀𝑢 ∈ 𝑇𝑞𝑀 .

Note: If𝑀 is not parallelizable, the class DegenerateMetric should be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on Φ(𝑈) ⊂𝑀

• name – name given to the metric

• signature – (default: None) signature 𝑆 of the metric as a tuple: 𝑆 = (𝑛+, 𝑛−, 𝑛0), where 𝑛+ (resp.
𝑛−, resp. 𝑛0) is the number of positive terms (resp. negative terms, resp. zero tems) in any diagonal writing
of the metric components; if signature is not provided, 𝑆 is set to (𝑛𝑑𝑖𝑚 − 1, 0, 1), being 𝑛𝑑𝑖𝑚 the
manifold’s dimension

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

EXAMPLES:

Lightlike cone:

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 897

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M); X.<x,y,z> = M.chart()
sage: g = M.metric(g , signature=(2,0,1)); g
degenerate metric g on the 3-dimensional differentiable manifold M
sage: det(g)
Scalar field zero on the 3-dimensional differentiable manifold M
sage: g.parent()
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
3-dimensional differentiable manifold M
sage: g[0,0], g[0,1], g[0,2] = (y^2 + z^2)/(x^2 + y^2 + z^2), \
....: - x*y/(x^2 + y^2 + z^2), - x*z/(x^2 + y^2 + z^2)
sage: g[1,1], g[1,2], g[2,2] = (x^2 + z^2)/(x^2 + y^2 + z^2), \
....: - y*z/(x^2 + y^2 + z^2), (x^2 + y^2)/(x^2 + y^2 + z^2)
sage: g.disp()
g = (y^2 + z^2)/(x^2 + y^2 + z^2) dx⊗dx - x*y/(x^2 + y^2 + z^2) dx⊗dy
- x*z/(x^2 + y^2 + z^2) dx⊗dz - x*y/(x^2 + y^2 + z^2) dy⊗dx
+ (x^2 + z^2)/(x^2 + y^2 + z^2) dy⊗dy - y*z/(x^2 + y^2 + z^2) dy⊗dz
- x*z/(x^2 + y^2 + z^2) dz⊗dx - y*z/(x^2 + y^2 + z^2) dz⊗dy
+ (x^2 + y^2)/(x^2 + y^2 + z^2) dz⊗dz

The position vector is a lightlike vector field:

sage: v = M.vector_field()
sage: v[0], v[1], v[2] = x , y, z
sage: g(v, v).disp()
M → ℝ
(x, y, z) ↦ 0

restrict(subdomain, dest_map=None)
Return the restriction of the metric to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset 𝑈 of the metric’s domain (must be an instance of Differentiable-
Manifold)

• dest_map – (default: None) destination map Φ : 𝑈 → 𝑉 , where 𝑉 is a subdomain of self.
_codomain (type: DiffMap) If None, the restriction of self._vmodule._dest_map to 𝑈 is
used.

OUTPUT:

• instance of DegenerateMetric representing the restriction.

EXAMPLES:

sage: M = Manifold(5, M)
sage: g = M.metric(g , signature=(3,1,1))
sage: U = M.open_subset(U)
sage: g.restrict(U)
degenerate metric g on the Open subset U of the 5-dimensional differentiable␣
→˓manifold M
sage: g.restrict(U).signature()
(3, 1, 1)

See the top documentation of DegenerateMetric for more examples.

set(symbiform)

Defines the metric from a field of symmetric bilinear forms

898 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

INPUT:

• symbiform – instance of TensorField representing a field of symmetric bilinear forms

EXAMPLES:

Metric defined from a field of symmetric bilinear forms on a parallelizable 3-dimensional manifold:

sage: M = Manifold(3, M , start_index=1);
sage: X.<x,y,z> = M.chart()
sage: dx, dy = X.coframe()[1], X.coframe()[2]
sage: b = dx*dx + dy*dy
sage: g = M.metric(g , signature=(1,1,1)); g
degenerate metric g on the 3-dimensional differentiable manifold M
sage: g.set(b)
sage: g.display()
g = dx⊗dx + dy⊗dy

class sage.manifolds.differentiable.metric.PseudoRiemannianMetric(vector_field_mod-
ule, name,
signature=None,
la-
tex_name=None)

Bases: TensorField

Pseudo-Riemannian metric with values on an open subset of a differentiable manifold.

An instance of this class is a field of nondegenerate symmetric bilinear forms (metric field) along a differentiable
manifold 𝑈 with values on a differentiable manifold 𝑀 over R, via a differentiable mapping Φ : 𝑈 → 𝑀 . The
standard case of a metric field on a manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ
being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

A metric 𝑔 is a field on 𝑈 , such that at each point 𝑝 ∈ 𝑈 , 𝑔(𝑝) is a bilinear map of the type:

𝑔(𝑝) : 𝑇𝑞𝑀 × 𝑇𝑞𝑀 −→ R

where 𝑇𝑞𝑀 stands for the tangent space to the manifold𝑀 at the point 𝑞 = Φ(𝑝), such that 𝑔(𝑝) is symmetric:
∀(𝑢, 𝑣) ∈ 𝑇𝑞𝑀 ×𝑇𝑞𝑀, 𝑔(𝑝)(𝑣, 𝑢) = 𝑔(𝑝)(𝑢, 𝑣) and nondegenerate: (∀𝑣 ∈ 𝑇𝑞𝑀, 𝑔(𝑝)(𝑢, 𝑣) = 0) =⇒ 𝑢 = 0.

Note: If𝑀 is parallelizable, the class PseudoRiemannianMetricParal should be used instead.

INPUT:

• vector_field_module – module X(𝑈,Φ) of vector fields along 𝑈 with values on Φ(𝑈) ⊂𝑀

• name – name given to the metric

• signature – (default: None) signature 𝑆 of the metric as a single integer: 𝑆 = 𝑛+−𝑛−, where 𝑛+ (resp.
𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric
components; if signature is None, 𝑆 is set to the dimension of manifold𝑀 (Riemannian signature)

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

EXAMPLES:

Let us construct the standard metric on the sphere 𝑆2, described in terms of stereographic coordinates, from the
North pole (open subset 𝑈) and from the South pole (open subset 𝑉):

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 899

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() # stereographic coord
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: g = M.metric(g) ; g
Riemannian metric g on the 2-dimensional differentiable manifold S^2

The metric is considered as a tensor field of type (0,2) on 𝑆2:

sage: g.parent()
Module T^(0,2)(S^2) of type-(0,2) tensors fields on the 2-dimensional
differentiable manifold S^2

We define 𝑔 by its components on domain 𝑈 :

sage: g[eU,1,1], g[eU,2,2] = 4/(1+x^2+y^2)^2, 4/(1+x^2+y^2)^2
sage: g.display(eU)
g = 4/(x^2 + y^2 + 1)^2 dx⊗dx + 4/(x^2 + y^2 + 1)^2 dy⊗dy

A matrix view of the components:

sage: g[eU,:]
[4/(x^2 + y^2 + 1)^2 0]
[0 4/(x^2 + y^2 + 1)^2]

The components of 𝑔 on domain 𝑉 expressed in terms of coordinates (𝑢, 𝑣) are obtained by applying (i) the tensor
transformation law on𝑊 = 𝑈 ∩ 𝑉 and (ii) some analytical continuation:

sage: W = U.intersection(V)
sage: g.add_comp_by_continuation(eV, W, chart=c_uv)
sage: g.apply_map(factor, frame=eV, keep_other_components=True) # for a nicer␣
→˓display
sage: g.display(eV)
g = 4/(u^2 + v^2 + 1)^2 du⊗du + 4/(u^2 + v^2 + 1)^2 dv⊗dv

At this stage, the metric is fully defined on the whole sphere. Its restriction to some subdomain is itself a metric
(by default, it bears the same symbol):

sage: g.restrict(U)
Riemannian metric g on the Open subset U of the 2-dimensional
differentiable manifold S^2
sage: g.restrict(U).parent()
Free module T^(0,2)(U) of type-(0,2) tensors fields on the Open subset
U of the 2-dimensional differentiable manifold S^2

The parent of 𝑔|𝑈 is a free module because is 𝑈 is a parallelizable domain, contrary to 𝑆2. Actually, 𝑔 and 𝑔|𝑈
have different Python type:

sage: type(g)
<class sage.manifolds.differentiable.metric.PseudoRiemannianMetric >
sage: type(g.restrict(U))
<class sage.manifolds.differentiable.metric.PseudoRiemannianMetricParal >

900 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

As a field of bilinear forms, the metric acts on pairs of vector fields, yielding a scalar field:

sage: a = M.vector_field({eU: [x, 2+y]}, name= a)
sage: a.add_comp_by_continuation(eV, W, chart=c_uv)
sage: b = M.vector_field({eU: [-y, x]}, name= b)
sage: b.add_comp_by_continuation(eV, W, chart=c_uv)
sage: s = g(a,b) ; s
Scalar field g(a,b) on the 2-dimensional differentiable manifold S^2
sage: s.display()
g(a,b): S^2 → ℝ
on U: (x, y) ↦ 8*x/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1)
on V: (u, v) ↦ 8*(u^3 + u*v^2)/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1)

The inverse metric is:

sage: ginv = g.inverse() ; ginv
Tensor field inv_g of type (2,0) on the 2-dimensional differentiable
manifold S^2
sage: ginv.parent()
Module T^(2,0)(S^2) of type-(2,0) tensors fields on the 2-dimensional
differentiable manifold S^2
sage: latex(ginv)
g^{-1}
sage: ginv.display(eU)
inv_g = (1/4*x^4 + 1/4*y^4 + 1/2*(x^2 + 1)*y^2 + 1/2*x^2 + 1/4) ∂/∂x⊗∂/∂x
+ (1/4*x^4 + 1/4*y^4 + 1/2*(x^2 + 1)*y^2 + 1/2*x^2 + 1/4) ∂/∂y⊗∂/∂y
sage: ginv.display(eV)
inv_g = (1/4*u^4 + 1/4*v^4 + 1/2*(u^2 + 1)*v^2 + 1/2*u^2 + 1/4) ∂/∂u⊗∂/∂u
+ (1/4*u^4 + 1/4*v^4 + 1/2*(u^2 + 1)*v^2 + 1/2*u^2 + 1/4) ∂/∂v⊗∂/∂v

We have:

sage: ginv.restrict(U) is g.restrict(U).inverse()
True
sage: ginv.restrict(V) is g.restrict(V).inverse()
True
sage: ginv.restrict(W) is g.restrict(W).inverse()
True

To get the volume form (Levi-Civita tensor) associated with 𝑔, we have first to define an orientation on 𝑆2. The
standard orientation is that in which eV is right-handed; indeed, once supplemented by the outward unit normal, eV
give birth to a right-handed frame with respect to the standard orientation of the ambient Euclidean space𝐸3. With
such an orientation, eU is then left-handed and in order to define an orientation on the whole of 𝑆2, we introduce
a vector frame on 𝑈 by swapping eU’s vectors:

sage: f = U.vector_frame(f , (eU[2], eU[1]))
sage: M.set_orientation([eV, f])

We have then, factorizing the components for a nicer display:

sage: eps = g.volume_form() ; eps
2-form eps_g on the 2-dimensional differentiable manifold S^2
sage: eps.apply_map(factor, frame=eU, keep_other_components=True)
sage: eps.apply_map(factor, frame=eV, keep_other_components=True)
sage: eps.display(eU)
eps_g = -4/(x^2 + y^2 + 1)^2 dx∧dy
sage: eps.display(eV)
eps_g = 4/(u^2 + v^2 + 1)^2 du∧dv

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 901

Manifolds, Release 10.4.rc1

The unique non-trivial component of the volume form is, up to a sign depending of the chosen orientation, nothing
but the square root of the determinant of 𝑔 in the corresponding frame:

sage: eps[[eU,1,2]] == -g.sqrt_abs_det(eU)
True
sage: eps[[eV,1,2]] == g.sqrt_abs_det(eV)
True

The Levi-Civita connection associated with the metric 𝑔:

sage: nabla = g.connection() ; nabla
Levi-Civita connection nabla_g associated with the Riemannian metric g
on the 2-dimensional differentiable manifold S^2
sage: latex(nabla)
\nabla_{g}

The Christoffel symbols Γ𝑖
𝑗𝑘 associated with some coordinates:

sage: g.christoffel_symbols(c_xy)
3-indices components w.r.t. Coordinate frame (U, (∂/∂x,∂/∂y)), with
symmetry on the index positions (1, 2)
sage: g.christoffel_symbols(c_xy)[:]
[[[-2*x/(x^2 + y^2 + 1), -2*y/(x^2 + y^2 + 1)],
[-2*y/(x^2 + y^2 + 1), 2*x/(x^2 + y^2 + 1)]],

[[2*y/(x^2 + y^2 + 1), -2*x/(x^2 + y^2 + 1)],
[-2*x/(x^2 + y^2 + 1), -2*y/(x^2 + y^2 + 1)]]]

sage: g.christoffel_symbols(c_uv)[:]
[[[-2*u/(u^2 + v^2 + 1), -2*v/(u^2 + v^2 + 1)],
[-2*v/(u^2 + v^2 + 1), 2*u/(u^2 + v^2 + 1)]],

[[2*v/(u^2 + v^2 + 1), -2*u/(u^2 + v^2 + 1)],
[-2*u/(u^2 + v^2 + 1), -2*v/(u^2 + v^2 + 1)]]]

The Christoffel symbols are nothing but the connection coefficients w.r.t. the coordinate frame:

sage: g.christoffel_symbols(c_xy) is nabla.coef(c_xy.frame())
True
sage: g.christoffel_symbols(c_uv) is nabla.coef(c_uv.frame())
True

Test that∇ is the connection compatible with 𝑔:

sage: t = nabla(g) ; t
Tensor field nabla_g(g) of type (0,3) on the 2-dimensional
differentiable manifold S^2
sage: t.display(eU)
nabla_g(g) = 0
sage: t.display(eV)
nabla_g(g) = 0
sage: t == 0
True

The Riemann curvature tensor of 𝑔:

sage: riem = g.riemann() ; riem
Tensor field Riem(g) of type (1,3) on the 2-dimensional differentiable
manifold S^2
sage: riem.display(eU)
Riem(g) = 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) ∂/∂x⊗dy⊗dx⊗dy

(continues on next page)

902 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

- 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) ∂/∂x⊗dy⊗dy⊗dx
- 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) ∂/∂y⊗dx⊗dx⊗dy
+ 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) ∂/∂y⊗dx⊗dy⊗dx
sage: riem.display(eV)
Riem(g) = 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) ∂/∂u⊗dv⊗du⊗dv
- 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) ∂/∂u⊗dv⊗dv⊗du
- 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) ∂/∂v⊗du⊗du⊗dv
+ 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) ∂/∂v⊗du⊗dv⊗du

The Ricci tensor of 𝑔:

sage: ric = g.ricci() ; ric
Field of symmetric bilinear forms Ric(g) on the 2-dimensional
differentiable manifold S^2
sage: ric.display(eU)
Ric(g) = 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dx⊗dx
+ 4/(x^4 + y^4 + 2*(x^2 + 1)*y^2 + 2*x^2 + 1) dy⊗dy
sage: ric.display(eV)
Ric(g) = 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) du⊗du
+ 4/(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 1) dv⊗dv
sage: ric == g
True

The Ricci scalar of 𝑔:

sage: r = g.ricci_scalar() ; r
Scalar field r(g) on the 2-dimensional differentiable manifold S^2
sage: r.display()
r(g): S^2 → ℝ
on U: (x, y) ↦ 2
on V: (u, v) ↦ 2

In dimension 2, the Riemann tensor can be expressed entirely in terms of the Ricci scalar 𝑟:

𝑅𝑖
𝑗𝑙𝑘 =

𝑟

2

(︀
𝛿𝑖𝑘𝑔𝑗𝑙 − 𝛿𝑖𝑙𝑔𝑗𝑘

)︀
This formula can be checked here, with the r.h.s. rewritten as −𝑟𝑔𝑗[𝑘𝛿𝑖𝑙]:

sage: delta = M.tangent_identity_field()
sage: riem == - r*(g*delta).antisymmetrize(2,3)
True

christoffel_symbols(chart=None)
Christoffel symbols of self with respect to a chart.

INPUT:

• chart – (default: None) chart with respect to which the Christoffel symbols are required; if none is
provided, the default chart of the metric’s domain is assumed.

OUTPUT:

• the set of Christoffel symbols in the given chart, as an instance of CompWithSym

EXAMPLES:

Christoffel symbols of the flat metric on R3 with respect to spherical coordinates:

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 903

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompWithSym

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, R3 , r \RR^3 , start_index=1)
sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: X.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: g = U.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2, r^2*sin(th)^2
sage: g.display() # the standard flat metric expressed in spherical␣
→˓coordinates
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: Gam = g.christoffel_symbols() ; Gam
3-indices components w.r.t. Coordinate frame (U, (∂/∂r,∂/∂th,∂/∂ph)),
with symmetry on the index positions (1, 2)

sage: type(Gam)
<class sage.tensor.modules.comp.CompWithSym >
sage: Gam[:]
[[[0, 0, 0], [0, -r, 0], [0, 0, -r*sin(th)^2]],
[[0, 1/r, 0], [1/r, 0, 0], [0, 0, -cos(th)*sin(th)]],
[[0, 0, 1/r], [0, 0, cos(th)/sin(th)], [1/r, cos(th)/sin(th), 0]]]
sage: Gam[1,2,2]
-r
sage: Gam[2,1,2]
1/r
sage: Gam[3,1,3]
1/r
sage: Gam[3,2,3]
cos(th)/sin(th)
sage: Gam[2,3,3]
-cos(th)*sin(th)

Note that a better display of the Christoffel symbols is provided by the method christoffel_sym-
bols_display():

sage: g.christoffel_symbols_display()
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)

christoffel_symbols_display(chart=None, symbol=None, latex_symbol=None, index_labels=None,
index_latex_labels=None, coordinate_labels=True,
only_nonzero=True, only_nonredundant=True)

Display the Christoffel symbols w.r.t. to a given chart, one per line.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

• chart – (default: None) chart with respect to which the Christoffel symbols are defined; if none is
provided, the default chart of the metric’s domain is assumed.

• symbol – (default: None) string specifying the symbol of the connection coefficients; if None, ‘Gam’
is used

• latex_symbol – (default: None) string specifying the LaTeX symbol for the components; if None,
‘\Gamma’ is used

• index_labels – (default: None) list of strings representing the labels of each index; if None, co-
ordinate symbols are used except if coordinate_symbols is set to False, in which case integer

904 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

labels are used

• index_latex_labels – (default: None) list of strings representing the LaTeX labels of each index;
if None, coordinate LaTeX symbols are used, except if coordinate_symbols is set to False, in
which case integer labels are used

• coordinate_labels – (default: True) boolean; if True, coordinate symbols are used by default
(instead of integers)

• only_nonzero – (default: True) boolean; if True, only nonzero connection coefficients are dis-
played

• only_nonredundant – (default: True) boolean; if True, only nonredundant (w.r.t. the symmetry
of the last two indices) connection coefficients are displayed

EXAMPLES:

Christoffel symbols of the flat metric on R3 with respect to spherical coordinates:

sage: M = Manifold(3, R3 , r \RR^3 , start_index=1)
sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: X.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: g = U.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2, r^2*sin(th)^2
sage: g.display() # the standard flat metric expressed in spherical␣
→˓coordinates
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: g.christoffel_symbols_display()
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)

To list all nonzero Christoffel symbols, including those that can be deduced by symmetry, useonly_nonre-
dundant=False:

sage: g.christoffel_symbols_display(only_nonredundant=False)
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_th,r = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)
Gam^ph_ph,r = 1/r
Gam^ph_ph,th = cos(th)/sin(th)

Listing all Christoffel symbols (except those that can be deduced by symmetry), including the vanishing one:

sage: g.christoffel_symbols_display(only_nonzero=False)
Gam^r_r,r = 0
Gam^r_r,th = 0
Gam^r_r,ph = 0
Gam^r_th,th = -r
Gam^r_th,ph = 0
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,r = 0
Gam^th_r,th = 1/r

(continues on next page)

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 905

Manifolds, Release 10.4.rc1

(continued from previous page)

Gam^th_r,ph = 0
Gam^th_th,th = 0
Gam^th_th,ph = 0
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,r = 0
Gam^ph_r,th = 0
Gam^ph_r,ph = 1/r
Gam^ph_th,th = 0
Gam^ph_th,ph = cos(th)/sin(th)
Gam^ph_ph,ph = 0

Using integer labels:

sage: g.christoffel_symbols_display(coordinate_labels=False)
Gam^1_22 = -r
Gam^1_33 = -r*sin(th)^2
Gam^2_12 = 1/r
Gam^2_33 = -cos(th)*sin(th)
Gam^3_13 = 1/r
Gam^3_23 = cos(th)/sin(th)

connection(name=None, latex_name=None, init_coef=True)
Return the unique torsion-free affine connection compatible with self.

This is the so-called Levi-Civita connection.

INPUT:

• name – (default: None) name given to the Levi-Civita connection; if None, it is formed from the metric
name

• latex_name – (default: None) LaTeX symbol to denote the Levi-Civita connection; if None, it is
set to name, or if the latter is None as well, it formed from the symbol ∇ and the metric symbol

• init_coef – (default: True) determines whether the connection coefficients are initialized, as
Christoffel symbols in the top charts of the domain of self (i.e. disregarding the subcharts)

OUTPUT:

• the Levi-Civita connection, as an instance of LeviCivitaConnection

EXAMPLES:

Levi-Civita connection associated with the Euclidean metric on R3:

sage: M = Manifold(3, R^3 , start_index=1)

Let us use spherical coordinates on R3:

sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: c_spher.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: g = U.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2 , (r*sin(th))^2 # the Euclidean metric
sage: g.connection()
Levi-Civita connection nabla_g associated with the Riemannian
metric g on the Open subset U of the 3-dimensional differentiable
manifold R^3

sage: g.connection().display() # Nonzero connection coefficients

(continues on next page)

906 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_th,r = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)
Gam^ph_ph,r = 1/r
Gam^ph_ph,th = cos(th)/sin(th)

Test of compatibility with the metric:

sage: Dg = g.connection()(g) ; Dg
Tensor field nabla_g(g) of type (0,3) on the Open subset U of the
3-dimensional differentiable manifold R^3

sage: Dg == 0
True
sage: Dig = g.connection()(g.inverse()) ; Dig
Tensor field nabla_g(inv_g) of type (2,1) on the Open subset U of
the 3-dimensional differentiable manifold R^3

sage: Dig == 0
True

cotton(name=None, latex_name=None)
Return the Cotton conformal tensor associated with the metric. The tensor has type (0,3) and is defined in
terms of the Schouten tensor 𝑆 (see schouten()):

𝐶𝑖𝑗𝑘 = (𝑛− 2) (∇𝑘𝑆𝑖𝑗 −∇𝑗𝑆𝑖𝑘)

INPUT:

• name – (default: None) name given to the Cotton conformal tensor; if None, it is set to “Cot(g)”, where
“g” is the metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Cotton conformal tensor; if None, it is
set to “\mathrm{Cot}(g)”, where “g” is the metric’s name

OUTPUT:

• the Cotton conformal tensor 𝐶𝑜𝑡, as an instance of TensorField

EXAMPLES:

Checking that the Cotton tensor identically vanishes on a conformally flat 3-dimensional manifold, for instance
the hyperbolic space 𝐻3:

sage: M = Manifold(3, H^3 , start_index=1)
sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: X.<rh,th,ph> = U.chart(r rh:(0,+oo):\rho th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: g = U.metric(g)
sage: b = var(b)
sage: g[1,1], g[2,2], g[3,3] = b^2, (b*sinh(rh))^2, (b*sinh(rh)*sin(th))^2
sage: g.display() # standard metric on H^3:
g = b^2 drh⊗drh + b^2*sinh(rh)^2 dth⊗dth
+ b^2*sin(th)^2*sinh(rh)^2 dph⊗dph

sage: Cot = g.cotton() ; Cot # long time
Tensor field Cot(g) of type (0,3) on the Open subset U of the

(continues on next page)

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 907

Manifolds, Release 10.4.rc1

(continued from previous page)

3-dimensional differentiable manifold H^3
sage: Cot == 0 # long time
True

cotton_york(name=None, latex_name=None)
Return the Cotton-York conformal tensor associated with the metric. The tensor has type (0,2) and is only
defined for manifolds of dimension 3. It is defined in terms of the Cotton tensor 𝐶 (see cotton()) or the
Schouten tensor 𝑆 (see schouten()):

𝐶𝑌𝑖𝑗 =
1

2
𝜖𝑘𝑙𝑖𝐶𝑗𝑙𝑘 = 𝜖𝑘𝑙𝑖∇𝑘𝑆𝑙𝑗

INPUT:

• name – (default: None) name given to the Cotton-York tensor; if None, it is set to “CY(g)”, where “g”
is the metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Cotton-York tensor; if None, it is set to
“\mathrm{CY}(g)”, where “g” is the metric’s name

OUTPUT:

• the Cotton-York conformal tensor 𝐶𝑌 , as an instance of TensorField

EXAMPLES:

Compute the determinant of the Cotton-York tensor for the Heisenberg group with the left invariant metric:

sage: M = Manifold(3, Nil , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.riemannian_metric(g)
sage: g[1,1], g[2,2], g[2,3], g[3,3] = 1, 1+x^2, -x, 1
sage: g.display()
g = dx⊗dx + (x^2 + 1) dy⊗dy - x dy⊗dz - x dz⊗dy + dz⊗dz
sage: CY = g.cotton_york() ; CY # long time
Tensor field CY(g) of type (0,2) on the 3-dimensional
differentiable manifold Nil

sage: CY.display() # long time
CY(g) = 1/2 dx⊗dx + (-x^2 + 1/2) dy⊗dy + x dy⊗dz + x dz⊗dy - dz⊗dz
sage: det(CY[:]) # long time
-1/4

det(frame=None)
Determinant of the metric components in the specified frame.

INPUT:

• frame – (default: None) vector frame with respect to which the components 𝑔𝑖𝑗 of the metric are
defined; if None, the default frame of the metric’s domain is used. If a chart is provided instead of a
frame, the associated coordinate frame is used

OUTPUT:

• the determinant det(𝑔𝑖𝑗), as an instance of DiffScalarField

EXAMPLES:

Metric determinant on a 2-dimensional manifold:

908 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[1, 2], g[2, 2] = 1+x, x*y , 1-y
sage: g[:]
[x + 1 x*y]
[x*y -y + 1]
sage: s = g.determinant() # determinant in M s default frame
sage: s.expr()
-x^2*y^2 - (x + 1)*y + x + 1

A shortcut is det():

sage: g.det() == g.determinant()
True

The notation det(g) can be used:

sage: det(g) == g.determinant()
True

Determinant in a frame different from the default’s one:

sage: Y.<u,v> = M.chart()
sage: ch_X_Y = X.transition_map(Y, [x+y, x-y])
sage: ch_X_Y.inverse()
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: g.comp(Y.frame())[:, Y]
[1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2 1/4*u]
[1/4*u -1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2]
sage: g.determinant(Y.frame()).expr()
-1/4*x^2*y^2 - 1/4*(x + 1)*y + 1/4*x + 1/4
sage: g.determinant(Y.frame()).expr(Y)
-1/64*u^4 - 1/64*v^4 + 1/32*(u^2 + 2)*v^2 - 1/16*u^2 + 1/4*v + 1/4

A chart can be passed instead of a frame:

sage: g.determinant(X) is g.determinant(X.frame())
True
sage: g.determinant(Y) is g.determinant(Y.frame())
True

The metric determinant depends on the frame:

sage: g.determinant(X.frame()) == g.determinant(Y.frame())
False

Using SymPy as symbolic engine:

sage: M.set_calculus_method(sympy)
sage: g = M.metric(g)
sage: g[1,1], g[1, 2], g[2, 2] = 1+x, x*y , 1-y
sage: s = g.determinant() # determinant in M s default frame
sage: s.expr()
-x**2*y**2 + x - y*(x + 1) + 1

determinant(frame=None)
Determinant of the metric components in the specified frame.

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 909

Manifolds, Release 10.4.rc1

INPUT:

• frame – (default: None) vector frame with respect to which the components 𝑔𝑖𝑗 of the metric are
defined; if None, the default frame of the metric’s domain is used. If a chart is provided instead of a
frame, the associated coordinate frame is used

OUTPUT:

• the determinant det(𝑔𝑖𝑗), as an instance of DiffScalarField

EXAMPLES:

Metric determinant on a 2-dimensional manifold:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[1, 2], g[2, 2] = 1+x, x*y , 1-y
sage: g[:]
[x + 1 x*y]
[x*y -y + 1]
sage: s = g.determinant() # determinant in M s default frame
sage: s.expr()
-x^2*y^2 - (x + 1)*y + x + 1

A shortcut is det():

sage: g.det() == g.determinant()
True

The notation det(g) can be used:

sage: det(g) == g.determinant()
True

Determinant in a frame different from the default’s one:

sage: Y.<u,v> = M.chart()
sage: ch_X_Y = X.transition_map(Y, [x+y, x-y])
sage: ch_X_Y.inverse()
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: g.comp(Y.frame())[:, Y]
[1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2 1/4*u]
[1/4*u -1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2]
sage: g.determinant(Y.frame()).expr()
-1/4*x^2*y^2 - 1/4*(x + 1)*y + 1/4*x + 1/4
sage: g.determinant(Y.frame()).expr(Y)
-1/64*u^4 - 1/64*v^4 + 1/32*(u^2 + 2)*v^2 - 1/16*u^2 + 1/4*v + 1/4

A chart can be passed instead of a frame:

sage: g.determinant(X) is g.determinant(X.frame())
True
sage: g.determinant(Y) is g.determinant(Y.frame())
True

The metric determinant depends on the frame:

sage: g.determinant(X.frame()) == g.determinant(Y.frame())
False

910 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

Using SymPy as symbolic engine:

sage: M.set_calculus_method(sympy)
sage: g = M.metric(g)
sage: g[1,1], g[1, 2], g[2, 2] = 1+x, x*y , 1-y
sage: s = g.determinant() # determinant in M s default frame
sage: s.expr()
-x**2*y**2 + x - y*(x + 1) + 1

hodge_star(pform)
Compute the Hodge dual of a differential form with respect to the metric.

If the differential form is a 𝑝-form 𝐴, its Hodge dual with respect to the metric 𝑔 is the (𝑛 − 𝑝)-form *𝐴
defined by

*𝐴𝑖1...𝑖𝑛−𝑝 =
1

𝑝!
𝐴𝑘1...𝑘𝑝𝜖

𝑘1...𝑘𝑝

𝑖1...𝑖𝑛−𝑝

where 𝑛 is the manifold’s dimension, 𝜖 is the volume 𝑛-form associated with 𝑔 (see volume_form()) and
the indices 𝑘1, . . . , 𝑘𝑝 are raised with 𝑔.

Notice that the hodge star dual requires an orientable manifold with a preferred orientation, see orienta-
tion() for details.

INPUT:

• pform: a 𝑝-form 𝐴; must be an instance of DiffScalarField for 𝑝 = 0 and of DiffForm or
DiffFormParal for 𝑝 ≥ 1.

OUTPUT:

• the (𝑛− 𝑝)-form *𝐴

EXAMPLES:

Hodge dual of a 1-form in the Euclidean space 𝑅3:

sage: M = Manifold(3, M , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, 1, 1
sage: var(Ax Ay Az)
(Ax, Ay, Az)
sage: a = M.one_form(Ax, Ay, Az, name= A)
sage: sa = g.hodge_star(a) ; sa
2-form *A on the 3-dimensional differentiable manifold M
sage: sa.display()
*A = Az dx∧dy - Ay dx∧dz + Ax dy∧dz
sage: ssa = g.hodge_star(sa) ; ssa
1-form **A on the 3-dimensional differentiable manifold M
sage: ssa.display()
**A = Ax dx + Ay dy + Az dz
sage: ssa == a # must hold for a Riemannian metric in dimension 3
True

Hodge dual of a 0-form (scalar field) in 𝑅3:

sage: f = M.scalar_field(function(F)(x,y,z), name= f)
sage: sf = g.hodge_star(f) ; sf
3-form *f on the 3-dimensional differentiable manifold M

(continues on next page)

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 911

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: sf.display()
*f = F(x, y, z) dx∧dy∧dz
sage: ssf = g.hodge_star(sf) ; ssf
Scalar field **f on the 3-dimensional differentiable manifold M
sage: ssf.display()
**f: M → ℝ

(x, y, z) ↦ F(x, y, z)
sage: ssf == f # must hold for a Riemannian metric
True

Hodge dual of a 0-form in Minkowski spacetime:

sage: M = Manifold(4, M)
sage: X.<t,x,y,z> = M.chart()
sage: g = M.lorentzian_metric(g)
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1, 1, 1, 1
sage: g.display() # Minkowski metric
g = -dt⊗dt + dx⊗dx + dy⊗dy + dz⊗dz
sage: var(f0)
f0
sage: f = M.scalar_field(f0, name= f)
sage: sf = g.hodge_star(f) ; sf
4-form *f on the 4-dimensional differentiable manifold M
sage: sf.display()
*f = f0 dt∧dx∧dy∧dz
sage: ssf = g.hodge_star(sf) ; ssf
Scalar field **f on the 4-dimensional differentiable manifold M
sage: ssf.display()
**f: M → ℝ

(t, x, y, z) ↦ -f0
sage: ssf == -f # must hold for a Lorentzian metric
True

Hodge dual of a 1-form in Minkowski spacetime:

sage: var(At Ax Ay Az)
(At, Ax, Ay, Az)
sage: a = M.one_form(At, Ax, Ay, Az, name= A)
sage: a.display()
A = At dt + Ax dx + Ay dy + Az dz
sage: sa = g.hodge_star(a) ; sa
3-form *A on the 4-dimensional differentiable manifold M
sage: sa.display()
*A = -Az dt∧dx∧dy + Ay dt∧dx∧dz - Ax dt∧dy∧dz - At dx∧dy∧dz
sage: ssa = g.hodge_star(sa) ; ssa
1-form **A on the 4-dimensional differentiable manifold M
sage: ssa.display()
**A = At dt + Ax dx + Ay dy + Az dz
sage: ssa == a # must hold for a Lorentzian metric in dimension 4
True

Hodge dual of a 2-form in Minkowski spacetime:

sage: F = M.diff_form(2, name= F)
sage: var(Ex Ey Ez Bx By Bz)
(Ex, Ey, Ez, Bx, By, Bz)
sage: F[0,1], F[0,2], F[0,3] = -Ex, -Ey, -Ez

(continues on next page)

912 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: F[1,2], F[1,3], F[2,3] = Bz, -By, Bx
sage: F[:]
[0 -Ex -Ey -Ez]
[Ex 0 Bz -By]
[Ey -Bz 0 Bx]
[Ez By -Bx 0]
sage: sF = g.hodge_star(F) ; sF
2-form *F on the 4-dimensional differentiable manifold M
sage: sF[:]
[0 Bx By Bz]
[-Bx 0 Ez -Ey]
[-By -Ez 0 Ex]
[-Bz Ey -Ex 0]
sage: ssF = g.hodge_star(sF) ; ssF
2-form **F on the 4-dimensional differentiable manifold M
sage: ssF[:]
[0 Ex Ey Ez]
[-Ex 0 -Bz By]
[-Ey Bz 0 -Bx]
[-Ez -By Bx 0]
sage: ssF.display()
**F = Ex dt∧dx + Ey dt∧dy + Ez dt∧dz - Bz dx∧dy + By dx∧dz
- Bx dy∧dz

sage: F.display()
F = -Ex dt∧dx - Ey dt∧dy - Ez dt∧dz + Bz dx∧dy - By dx∧dz
+ Bx dy∧dz

sage: ssF == -F # must hold for a Lorentzian metric in dimension 4
True

Test of the standard identity

*(𝐴 ∧𝐵) = 𝜖(𝐴♯, 𝐵♯, ., .)

where𝐴 and𝐵 are any 1-forms and𝐴♯ and𝐵♯ the vectors associated to them by the metric 𝑔 (index raising):

sage: var(Bt Bx By Bz)
(Bt, Bx, By, Bz)
sage: b = M.one_form(Bt, Bx, By, Bz, name= B)
sage: b.display()
B = Bt dt + Bx dx + By dy + Bz dz
sage: epsilon = g.volume_form()
sage: g.hodge_star(a.wedge(b)) == epsilon.contract(0,a.up(g)).contract(0,b.
→˓up(g))
True

inverse(expansion_symbol=None, order=1)
Return the inverse metric.

INPUT:

• expansion_symbol – (default: None) symbolic variable; if specified, the inverse will be expanded
in power series with respect to this variable (around its zero value)

• order – integer (default: 1); the order of the expansion if expansion_symbol is not None; the
order is defined as the degree of the polynomial representing the truncated power series in expan-
sion_symbol; currently only first order inverse is supported

If expansion_symbol is set, then the zeroth order metric must be invertible. Moreover, subsequent calls

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 913

Manifolds, Release 10.4.rc1

to this method will return a cached value, even when called with the default value (to enable computation of
derived quantities). To reset, use _del_derived().

OUTPUT:

• instance of TensorField with tensor_type = (2,0) representing the inverse metric

EXAMPLES:

Inverse of the standard metric on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # S^2 is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() # stereographic coord.
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V) # the complement of the two poles
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: g = M.metric(g)
sage: g[eU,1,1], g[eU,2,2] = 4/(1+x^2+y^2)^2, 4/(1+x^2+y^2)^2
sage: g.add_comp_by_continuation(eV, W, c_uv)
sage: ginv = g.inverse(); ginv
Tensor field inv_g of type (2,0) on the 2-dimensional differentiable manifold␣
→˓S^2
sage: ginv.display(eU)
inv_g = (1/4*x^4 + 1/4*y^4 + 1/2*(x^2 + 1)*y^2 + 1/2*x^2 + 1/4) ∂/∂x⊗∂/∂x
+ (1/4*x^4 + 1/4*y^4 + 1/2*(x^2 + 1)*y^2 + 1/2*x^2 + 1/4) ∂/∂y⊗∂/∂y

sage: ginv.display(eV)
inv_g = (1/4*u^4 + 1/4*v^4 + 1/2*(u^2 + 1)*v^2 + 1/2*u^2 + 1/4) ∂/∂u⊗∂/∂u
+ (1/4*u^4 + 1/4*v^4 + 1/2*(u^2 + 1)*v^2 + 1/2*u^2 + 1/4) ∂/∂v⊗∂/∂v

Let us check that ginv is indeed the inverse of g:

sage: s = g.contract(ginv); s # contraction of last index of g with first␣
→˓index of ginv
Tensor field of type (1,1) on the 2-dimensional differentiable manifold S^2
sage: s == M.tangent_identity_field()
True

restrict(subdomain, dest_map=None)
Return the restriction of the metric to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset 𝑈 of the metric’s domain (must be an instance of Differentiable-
Manifold)

• dest_map – (default: None) destination map Φ : 𝑈 → 𝑉 , where 𝑉 is a subdomain of self.
_codomain (type: DiffMap) If None, the restriction of self._vmodule._dest_map to 𝑈 is
used.

OUTPUT:

• instance of PseudoRiemannianMetric representing the restriction.

EXAMPLES:

914 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(5, M)
sage: g = M.metric(g , signature=3)
sage: U = M.open_subset(U)
sage: g.restrict(U)
Lorentzian metric g on the Open subset U of the
5-dimensional differentiable manifold M

sage: g.restrict(U).signature()
3

See the top documentation of PseudoRiemannianMetric for more examples.

ricci(name=None, latex_name=None)
Return the Ricci tensor associated with the metric.

This method is actually a shortcut for self.connection().ricci()

The Ricci tensor is the tensor field 𝑅𝑖𝑐 of type (0,2) defined from the Riemann curvature tensor 𝑅 by

𝑅𝑖𝑐(𝑢, 𝑣) = 𝑅(𝑒𝑖, 𝑢, 𝑒𝑖, 𝑣)

for any vector fields 𝑢 and 𝑣, (𝑒𝑖) being any vector frame and (𝑒𝑖) the dual coframe.

INPUT:

• name – (default: None) name given to the Ricci tensor; if none, it is set to “Ric(g)”, where “g” is the
metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Ricci tensor; if none, it is set to
“\mathrm{Ric}(g)”, where “g” is the metric’s name

OUTPUT:

• the Ricci tensor 𝑅𝑖𝑐, as an instance of TensorField of tensor type (0,2) and symmetric

EXAMPLES:

Ricci tensor of the standard metric on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of a meridian (domain of␣
→˓spherical coordinates)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: a = var(a) # the sphere radius
sage: g = U.metric(g)
sage: g[1,1], g[2,2] = a^2, a^2*sin(th)^2
sage: g.display() # standard metric on the 2-sphere of radius a:
g = a^2 dth⊗dth + a^2*sin(th)^2 dph⊗dph
sage: g.ricci()
Field of symmetric bilinear forms Ric(g) on the Open subset U of
the 2-dimensional differentiable manifold S^2

sage: g.ricci()[:]
[1 0]
[0 sin(th)^2]
sage: g.ricci() == a^(-2) * g
True

ricci_scalar(name=None, latex_name=None)
Return the Ricci scalar associated with the metric.

The Ricci scalar is the scalar field 𝑟 defined from the Ricci tensor 𝑅𝑖𝑐 and the metric tensor 𝑔 by

𝑟 = 𝑔𝑖𝑗𝑅𝑖𝑐𝑖𝑗

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 915

Manifolds, Release 10.4.rc1

INPUT:

• name – (default: None) name given to the Ricci scalar; if none, it is set to “r(g)”, where “g” is the
metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Ricci scalar; if none, it is set to
“\mathrm{r}(g)”, where “g” is the metric’s name

OUTPUT:

• the Ricci scalar 𝑟, as an instance of DiffScalarField

EXAMPLES:

Ricci scalar of the standard metric on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of a meridian (domain of␣
→˓spherical coordinates)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: a = var(a) # the sphere radius
sage: g = U.metric(g)
sage: g[1,1], g[2,2] = a^2, a^2*sin(th)^2
sage: g.display() # standard metric on the 2-sphere of radius a:
g = a^2 dth⊗dth + a^2*sin(th)^2 dph⊗dph
sage: g.ricci_scalar()
Scalar field r(g) on the Open subset U of the 2-dimensional
differentiable manifold S^2

sage: g.ricci_scalar().display() # The Ricci scalar is constant:
r(g): U → ℝ

(th, ph) ↦ 2/a^2

riemann(name=None, latex_name=None)
Return the Riemann curvature tensor associated with the metric.

This method is actually a shortcut for self.connection().riemann()

The Riemann curvature tensor is the tensor field 𝑅 of type (1,3) defined by

𝑅(𝜔, 𝑢, 𝑣, 𝑤) =
⟨︀
𝜔,∇𝑢∇𝑣𝑤 −∇𝑣∇𝑢𝑤 −∇[𝑢,𝑣]𝑤

⟩︀
for any 1-form 𝜔 and any vector fields 𝑢, 𝑣 and 𝑤.

INPUT:

• name – (default: None) name given to the Riemann tensor; if none, it is set to “Riem(g)”, where “g” is
the metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Riemann tensor; if none, it is set to
“\mathrm{Riem}(g)”, where “g” is the metric’s name

OUTPUT:

• the Riemann curvature tensor 𝑅, as an instance of TensorField

EXAMPLES:

Riemann tensor of the standard metric on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of a meridian (domain of␣
→˓spherical coordinates)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)

(continues on next page)

916 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: a = var(a) # the sphere radius
sage: g = U.metric(g)
sage: g[1,1], g[2,2] = a^2, a^2*sin(th)^2
sage: g.display() # standard metric on the 2-sphere of radius a:
g = a^2 dth⊗dth + a^2*sin(th)^2 dph⊗dph
sage: g.riemann()
Tensor field Riem(g) of type (1,3) on the Open subset U of the
2-dimensional differentiable manifold S^2

sage: g.riemann()[:]
[[[[0, 0], [0, 0]], [[0, sin(th)^2], [-sin(th)^2, 0]]],
[[[0, -1], [1, 0]], [[0, 0], [0, 0]]]]

In dimension 2, the Riemann tensor can be expressed entirely in terms of the Ricci scalar 𝑟:

𝑅𝑖
𝑗𝑙𝑘 =

𝑟

2

(︀
𝛿𝑖𝑘𝑔𝑗𝑙 − 𝛿𝑖𝑙𝑔𝑗𝑘

)︀
This formula can be checked here, with the r.h.s. rewritten as −𝑟𝑔𝑗[𝑘𝛿𝑖𝑙]:

sage: g.riemann() == \
....: -g.ricci_scalar()*(g*U.tangent_identity_field()).antisymmetrize(2,3)
True

Using SymPy as symbolic engine:

sage: M.set_calculus_method(sympy)
sage: g = U.metric(g)
sage: g[1,1], g[2,2] = a**2, a**2*sin(th)**2
sage: g.riemann()[:]
[[[[0, 0], [0, 0]],

[[0, sin(2*th)/(2*tan(th)) - cos(2*th)],
[-sin(2*th)/(2*tan(th)) + cos(2*th), 0]]],

[[[0, -1], [1, 0]], [[0, 0], [0, 0]]]]

schouten(name=None, latex_name=None)
Return the Schouten tensor associated with the metric.

The Schouten tensor is the tensor field 𝑆𝑐 of type (0,2) defined from the Ricci curvature tensor 𝑅𝑖𝑐 (see
ricci()) and the scalar curvature 𝑟 (see ricci_scalar()) and the metric 𝑔 by

𝑆𝑐(𝑢, 𝑣) =
1

𝑛− 2

(︂
𝑅𝑖𝑐(𝑢, 𝑣) +

𝑟

2(𝑛− 1)
𝑔(𝑢, 𝑣)

)︂
for any vector fields 𝑢 and 𝑣.

INPUT:

• name – (default: None) name given to the Schouten tensor; if none, it is set to “Schouten(g)”, where
“g” is the metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Schouten tensor; if none, it is set to
“\mathrm{Schouten}(g)”, where “g” is the metric’s name

OUTPUT:

• the Schouten tensor 𝑆𝑐, as an instance of TensorField of tensor type (0,2) and symmetric

EXAMPLES:

Schouten tensor of the left invariant metric of Heisenberg’s Nil group:

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 917

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, Nil , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.riemannian_metric(g)
sage: g[1,1], g[2,2], g[2,3], g[3,3] = 1, 1+x^2, -x, 1
sage: g.display()
g = dx⊗dx + (x^2 + 1) dy⊗dy - x dy⊗dz - x dz⊗dy + dz⊗dz
sage: g.schouten()
Field of symmetric bilinear forms Schouten(g) on the 3-dimensional
differentiable manifold Nil

sage: g.schouten().display()
Schouten(g) = -3/8 dx⊗dx + (5/8*x^2 - 3/8) dy⊗dy - 5/8*x dy⊗dz
- 5/8*x dz⊗dy + 5/8 dz⊗dz

set(symbiform)

Defines the metric from a field of symmetric bilinear forms

INPUT:

• symbiform – instance of TensorField representing a field of symmetric bilinear forms

EXAMPLES:

Metric defined from a field of symmetric bilinear forms on a non-parallelizable 2-dimensional manifold:

sage: M = Manifold(2, M)
sage: U = M.open_subset(U) ; V = M.open_subset(V)
sage: M.declare_union(U,V) # M is the union of U and V
sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name= W ,
....: restrictions1= x>0, restrictions2= u+v>0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: W = U.intersection(V)
sage: eU = c_xy.frame() ; eV = c_uv.frame()
sage: h = M.sym_bilin_form_field(name= h)
sage: h[eU,0,0], h[eU,0,1], h[eU,1,1] = 1+x, x*y, 1-y
sage: h.add_comp_by_continuation(eV, W, c_uv)
sage: h.display(eU)
h = (x + 1) dx⊗dx + x*y dx⊗dy + x*y dy⊗dx + (-y + 1) dy⊗dy
sage: h.display(eV)
h = (1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2) du⊗du + 1/4*u du⊗dv
+ 1/4*u dv⊗du + (-1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2) dv⊗dv

sage: g = M.metric(g)
sage: g.set(h)
sage: g.display(eU)
g = (x + 1) dx⊗dx + x*y dx⊗dy + x*y dy⊗dx + (-y + 1) dy⊗dy
sage: g.display(eV)
g = (1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2) du⊗du + 1/4*u du⊗dv
+ 1/4*u dv⊗du + (-1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2) dv⊗dv

signature()

Signature of the metric.

OUTPUT:

• signature 𝑆 of the metric, defined as the integer 𝑆 = 𝑛+ − 𝑛−, where 𝑛+ (resp. 𝑛−) is the number of
positive terms (resp. number of negative terms) in any diagonal writing of the metric components

EXAMPLES:

Signatures on a 2-dimensional manifold:

918 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M)
sage: g = M.metric(g) # if not specified, the signature is Riemannian
sage: g.signature()
2
sage: h = M.metric(h , signature=0)
sage: h.signature()
0

sqrt_abs_det(frame=None)
Square root of the absolute value of the determinant of the metric components in the specified frame.

INPUT:

• frame – (default: None) vector frame with respect to which the components 𝑔𝑖𝑗 of self are defined;
if None, the domain’s default frame is used. If a chart is provided, the associated coordinate frame is
used

OUTPUT:

•
√︀

| det(𝑔𝑖𝑗)|, as an instance of DiffScalarField

EXAMPLES:

Standard metric in the Euclidean space R3 with spherical coordinates:

sage: M = Manifold(3, M , start_index=1)
sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: c_spher.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: g = U.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2, (r*sin(th))^2
sage: g.display()
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: g.sqrt_abs_det().expr()
r^2*sin(th)

Metric determinant on a 2-dimensional manifold:

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[1, 2], g[2, 2] = 1+x, x*y , 1-y
sage: g[:]
[x + 1 x*y]
[x*y -y + 1]
sage: s = g.sqrt_abs_det() ; s
Scalar field on the 2-dimensional differentiable manifold M
sage: s.expr()
sqrt(-x^2*y^2 - (x + 1)*y + x + 1)

Determinant in a frame different from the default’s one:

sage: Y.<u,v> = M.chart()
sage: ch_X_Y = X.transition_map(Y, [x+y, x-y])
sage: ch_X_Y.inverse()
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: g[Y.frame(),:,Y]
[1/8*u^2 - 1/8*v^2 + 1/4*v + 1/2 1/4*u]
[1/4*u -1/8*u^2 + 1/8*v^2 + 1/4*v + 1/2]

(continues on next page)

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 919

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: g.sqrt_abs_det(Y.frame()).expr()
1/2*sqrt(-x^2*y^2 - (x + 1)*y + x + 1)
sage: g.sqrt_abs_det(Y.frame()).expr(Y)
1/8*sqrt(-u^4 - v^4 + 2*(u^2 + 2)*v^2 - 4*u^2 + 16*v + 16)

A chart can be passed instead of a frame:

sage: g.sqrt_abs_det(Y) is g.sqrt_abs_det(Y.frame())
True

The metric determinant depends on the frame:

sage: g.sqrt_abs_det(X.frame()) == g.sqrt_abs_det(Y.frame())
False

Using SymPy as symbolic engine:

sage: M.set_calculus_method(sympy)
sage: g = M.metric(g)
sage: g[1,1], g[1, 2], g[2, 2] = 1+x, x*y , 1-y
sage: g.sqrt_abs_det().expr()
sqrt(-x**2*y**2 - x*y + x - y + 1)
sage: g.sqrt_abs_det(Y.frame()).expr()
sqrt(-x**2*y**2 - x*y + x - y + 1)/2
sage: g.sqrt_abs_det(Y.frame()).expr(Y)
sqrt(-u**4 + 2*u**2*v**2 - 4*u**2 - v**4 + 4*v**2 + 16*v + 16)/8

volume_form(contra=0)
Volume form (Levi-Civita tensor) 𝜖 associated with the metric.

The volume form 𝜖 is an 𝑛-form (𝑛 being the manifold’s dimension) such that for any oriented vector basis
(𝑒𝑖) which is orthonormal with respect to the metric, the condition

𝜖(𝑒1, . . . , 𝑒𝑛) = 1

holds.

Notice that a volume form requires an orientable manifold with a preferred orientation, see orienta-
tion() for details.

INPUT:

• contra – (default: 0) number of contravariant indices of the returned tensor

OUTPUT:

• if contra = 0 (default value): the volume 𝑛-form 𝜖, as an instance of DiffForm

• if contra = k, with 1 ≤ 𝑘 ≤ 𝑛, the tensor field of type (k,n-k) formed from 𝜖 by raising the first k
indices with the metric (see method up()); the output is then an instance of TensorField, with the
appropriate antisymmetries, or of the subclass MultivectorField if 𝑘 = 𝑛

EXAMPLES:

Volume form on R3 with spherical coordinates, using the standard orientation, which is predefined:

sage: M = Manifold(3, M , start_index=1)
sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: c_spher.<r,th,ph> = U.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\

(continues on next page)

920 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓phi)
sage: g = U.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2, (r*sin(th))^2
sage: g.display()
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: eps = g.volume_form() ; eps
3-form eps_g on the Open subset U of the 3-dimensional
differentiable manifold M

sage: eps.display()
eps_g = r^2*sin(th) dr∧dth∧dph
sage: eps[[1,2,3]] == g.sqrt_abs_det()
True
sage: latex(eps)
\epsilon_{g}

The tensor field of components 𝜖𝑖 𝑗𝑘 (contra=1):

sage: eps1 = g.volume_form(1) ; eps1
Tensor field of type (1,2) on the Open subset U of the
3-dimensional differentiable manifold M

sage: eps1.symmetries()
no symmetry; antisymmetry: (1, 2)
sage: eps1[:]
[[[0, 0, 0], [0, 0, r^2*sin(th)], [0, -r^2*sin(th), 0]],
[[0, 0, -sin(th)], [0, 0, 0], [sin(th), 0, 0]],
[[0, 1/sin(th), 0], [-1/sin(th), 0, 0], [0, 0, 0]]]

The tensor field of components 𝜖𝑖𝑗𝑘 (contra=2):

sage: eps2 = g.volume_form(2) ; eps2
Tensor field of type (2,1) on the Open subset U of the
3-dimensional differentiable manifold M

sage: eps2.symmetries()
no symmetry; antisymmetry: (0, 1)
sage: eps2[:]
[[[0, 0, 0], [0, 0, sin(th)], [0, -1/sin(th), 0]],
[[0, 0, -sin(th)], [0, 0, 0], [1/(r^2*sin(th)), 0, 0]],
[[0, 1/sin(th), 0], [-1/(r^2*sin(th)), 0, 0], [0, 0, 0]]]

The tensor field of components 𝜖𝑖𝑗𝑘 (contra=3):

sage: eps3 = g.volume_form(3) ; eps3
3-vector field on the Open subset U of the 3-dimensional
differentiable manifold M

sage: eps3.tensor_type()
(3, 0)
sage: eps3.symmetries()
no symmetry; antisymmetry: (0, 1, 2)
sage: eps3[:]
[[[0, 0, 0], [0, 0, 1/(r^2*sin(th))], [0, -1/(r^2*sin(th)), 0]],
[[0, 0, -1/(r^2*sin(th))], [0, 0, 0], [1/(r^2*sin(th)), 0, 0]],
[[0, 1/(r^2*sin(th)), 0], [-1/(r^2*sin(th)), 0, 0], [0, 0, 0]]]

sage: eps3[1,2,3]
1/(r^2*sin(th))
sage: eps3[[1,2,3]] * g.sqrt_abs_det() == 1
True

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 921

Manifolds, Release 10.4.rc1

If the manifold has no predefined orientation, an orientation must be set before invoking volume_form().
For instance let consider the 2-sphere described by the stereographic charts from the North and South pole:

sage: M = Manifold(2, M , structure= Riemannian)
sage: U = M.open_subset(U); V = M.open_subset(V)
sage: M.declare_union(U, V)
sage: c_xy.<x,y> = U.chart() # stereographic chart from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic chart from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....: intersection_name= W , restrictions1= x^2+y^2!=0,
....: restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: eU = c_xy.frame(); eV = c_uv.frame()
sage: g = M.metric()
sage: g[eU,0,0], g[eU,1,1] = 4/(1+x^2+y^2)^2, 4/(1+x^2+y^2)^2
sage: g.add_comp_by_continuation(eV, U.intersection(V), chart=c_uv)
sage: eps = g.volume_form()
Traceback (most recent call last):
...
ValueError: 2-dimensional Riemannian manifold M must admit an
orientation

Let us define the orientation of M such that eU is right-handed; eV is then left-handed and in order to define
an orientation on the whole of M, we introduce a vector frame on V by swapping eV’s vectors:

sage: f = V.vector_frame(f , (eV[1], eV[0]))
sage: M.set_orientation([eU, f])

We have then, factorizing the components for a nicer display:

sage: eps = g.volume_form()
sage: eps.apply_map(factor, frame=eU, keep_other_components=True)
sage: eps.apply_map(factor, frame=eV, keep_other_components=True)
sage: eps.display(eU)
eps_g = 4/(x^2 + y^2 + 1)^2 dx∧dy
sage: eps.display(eV)
eps_g = -4/(u^2 + v^2 + 1)^2 du∧dv

Note the minus sign in the above expression, reflecting the fact that eV is left-handed with respect to the
chosen orientation.

weyl(name=None, latex_name=None)
Return the Weyl conformal tensor associated with the metric.

The Weyl conformal tensor is the tensor field 𝐶 of type (1,3) defined as the trace-free part of the Riemann
curvature tensor 𝑅

INPUT:

• name – (default: None) name given to the Weyl conformal tensor; if None, it is set to “C(g)”, where
“g” is the metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Weyl conformal tensor; if None, it is
set to “\mathrm{C}(g)”, where “g” is the metric’s name

OUTPUT:

• the Weyl conformal tensor 𝐶, as an instance of TensorField

EXAMPLES:

922 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

Checking that the Weyl tensor identically vanishes on a 3-dimensional manifold, for instance the hyperbolic
space 𝐻3:

sage: M = Manifold(3, H^3 , start_index=1)
sage: U = M.open_subset(U) # the complement of the half-plane (y=0, x>=0)
sage: X.<rh,th,ph> = U.chart(r rh:(0,+oo):\rho th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: g = U.metric(g)
sage: b = var(b)
sage: g[1,1], g[2,2], g[3,3] = b^2, (b*sinh(rh))^2, (b*sinh(rh)*sin(th))^2
sage: g.display() # standard metric on H^3:
g = b^2 drh⊗drh + b^2*sinh(rh)^2 dth⊗dth
+ b^2*sin(th)^2*sinh(rh)^2 dph⊗dph

sage: C = g.weyl() ; C
Tensor field C(g) of type (1,3) on the Open subset U of the
3-dimensional differentiable manifold H^3

sage: C == 0
True

class sage.manifolds.differentiable.metric.PseudoRiemannianMetricParal(vec-
tor_field_mod-
ule, name,
signa-
ture=None,
la-
tex_name=None)

Bases: PseudoRiemannianMetric, TensorFieldParal

Pseudo-Riemannian metric with values on a parallelizable manifold.

An instance of this class is a field of nondegenerate symmetric bilinear forms (metric field) along a differentiable
manifold 𝑈 with values in a parallelizable manifold 𝑀 over R, via a differentiable mapping Φ : 𝑈 → 𝑀 . The
standard case of a metric field on a manifold corresponds to 𝑈 = 𝑀 and Φ = Id𝑀 . Other common cases are Φ
being an immersion and Φ being a curve in𝑀 (𝑈 is then an open interval of R).

A metric 𝑔 is a field on 𝑈 , such that at each point 𝑝 ∈ 𝑈 , 𝑔(𝑝) is a bilinear map of the type:

𝑔(𝑝) : 𝑇𝑞𝑀 × 𝑇𝑞𝑀 −→ R

where 𝑇𝑞𝑀 stands for the tangent space to manifold 𝑀 at the point 𝑞 = Φ(𝑝), such that 𝑔(𝑝) is symmetric:
∀(𝑢, 𝑣) ∈ 𝑇𝑞𝑀 ×𝑇𝑞𝑀, 𝑔(𝑝)(𝑣, 𝑢) = 𝑔(𝑝)(𝑢, 𝑣) and nondegenerate: (∀𝑣 ∈ 𝑇𝑞𝑀, 𝑔(𝑝)(𝑢, 𝑣) = 0) =⇒ 𝑢 = 0.

Note: If𝑀 is not parallelizable, the class PseudoRiemannianMetric should be used instead.

INPUT:

• vector_field_module – free module X(𝑈,Φ) of vector fields along 𝑈 with values on Φ(𝑈) ⊂𝑀

• name – name given to the metric

• signature – (default: None) signature 𝑆 of the metric as a single integer: 𝑆 = 𝑛+−𝑛−, where 𝑛+ (resp.
𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric
components; if signature is None, 𝑆 is set to the dimension of manifold𝑀 (Riemannian signature)

• latex_name – (default: None) LaTeX symbol to denote the metric; if None, it is formed from name

EXAMPLES:

Metric on a 2-dimensional manifold:

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 923

Manifolds, Release 10.4.rc1

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: g = M.metric(g) ; g
Riemannian metric g on the 2-dimensional differentiable manifold M
sage: latex(g)
g

A metric is a special kind of tensor field and therefore inheritates all the properties from class TensorField:

sage: g.parent()
Free module T^(0,2)(M) of type-(0,2) tensors fields on the
2-dimensional differentiable manifold M
sage: g.tensor_type()
(0, 2)
sage: g.symmetries() # g is symmetric:
symmetry: (0, 1); no antisymmetry

Setting the metric components in the manifold’s default frame:

sage: g[1,1], g[1,2], g[2,2] = 1+x, x*y, 1-x
sage: g[:]
[x + 1 x*y]
[x*y -x + 1]
sage: g.display()
g = (x + 1) dx⊗dx + x*y dx⊗dy + x*y dy⊗dx + (-x + 1) dy⊗dy

Metric components in a frame different from the manifold’s default one:

sage: c_uv.<u,v> = M.chart() # new chart on M
sage: xy_to_uv = c_xy.transition_map(c_uv, [x+y, x-y]) ; xy_to_uv
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: uv_to_xy = xy_to_uv.inverse() ; uv_to_xy
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: M.atlas()
[Chart (M, (x, y)), Chart (M, (u, v))]
sage: M.frames()
[Coordinate frame (M, (∂/∂x,∂/∂y)), Coordinate frame (M, (∂/∂u,∂/∂v))]
sage: g[c_uv.frame(),:] # metric components in frame c_uv.frame() expressed in M
→˓ s default chart (x,y)
[1/2*x*y + 1/2 1/2*x]
[1/2*x -1/2*x*y + 1/2]
sage: g.display(c_uv.frame())
g = (1/2*x*y + 1/2) du⊗du + 1/2*x du⊗dv + 1/2*x dv⊗du
+ (-1/2*x*y + 1/2) dv⊗dv
sage: g[c_uv.frame(),:,c_uv] # metric components in frame c_uv.frame()␣
→˓expressed in chart (u,v)
[1/8*u^2 - 1/8*v^2 + 1/2 1/4*u + 1/4*v]
[1/4*u + 1/4*v -1/8*u^2 + 1/8*v^2 + 1/2]
sage: g.display(c_uv.frame(), c_uv)
g = (1/8*u^2 - 1/8*v^2 + 1/2) du⊗du + (1/4*u + 1/4*v) du⊗dv
+ (1/4*u + 1/4*v) dv⊗du + (-1/8*u^2 + 1/8*v^2 + 1/2) dv⊗dv

As a shortcut of the above command, on can pass just the chart c_uv to display, the vector frame being then
assumed to be the coordinate frame associated with the chart:

sage: g.display(c_uv)
g = (1/8*u^2 - 1/8*v^2 + 1/2) du⊗du + (1/4*u + 1/4*v) du⊗dv
+ (1/4*u + 1/4*v) dv⊗du + (-1/8*u^2 + 1/8*v^2 + 1/2) dv⊗dv

924 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

The inverse metric is obtained via inverse():

sage: ig = g.inverse() ; ig
Tensor field inv_g of type (2,0) on the 2-dimensional differentiable
manifold M
sage: ig[:]
[(x - 1)/(x^2*y^2 + x^2 - 1) x*y/(x^2*y^2 + x^2 - 1)]
[x*y/(x^2*y^2 + x^2 - 1) -(x + 1)/(x^2*y^2 + x^2 - 1)]
sage: ig.display()
inv_g = (x - 1)/(x^2*y^2 + x^2 - 1) ∂/∂x⊗∂/∂x
+ x*y/(x^2*y^2 + x^2 - 1) ∂/∂x⊗∂/∂y + x*y/(x^2*y^2 + x^2 - 1) ∂/∂y⊗∂/∂x
- (x + 1)/(x^2*y^2 + x^2 - 1) ∂/∂y⊗∂/∂y

inverse(expansion_symbol=None, order=1)
Return the inverse metric.

INPUT:

• expansion_symbol – (default: None) symbolic variable; if specified, the inverse will be expanded
in power series with respect to this variable (around its zero value)

• order – integer (default: 1); the order of the expansion if expansion_symbol is not None; the
order is defined as the degree of the polynomial representing the truncated power series in expan-
sion_symbol; currently only first order inverse is supported

If expansion_symbol is set, then the zeroth order metric must be invertible. Moreover, subsequent calls
to this method will return a cached value, even when called with the default value (to enable computation of
derived quantities). To reset, use _del_derived().

OUTPUT:

• instance of TensorFieldParal with tensor_type = (2,0) representing the inverse metric

EXAMPLES:

Inverse metric on a 2-dimensional manifold:

sage: M = Manifold(2, M , start_index=1)
sage: c_xy.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[1,1], g[1,2], g[2,2] = 1+x, x*y, 1-x
sage: g[:] # components in the manifold s default frame
[x + 1 x*y]
[x*y -x + 1]
sage: ig = g.inverse() ; ig
Tensor field inv_g of type (2,0) on the 2-dimensional

differentiable manifold M
sage: ig[:]
[(x - 1)/(x^2*y^2 + x^2 - 1) x*y/(x^2*y^2 + x^2 - 1)]
[x*y/(x^2*y^2 + x^2 - 1) -(x + 1)/(x^2*y^2 + x^2 - 1)]

If the metric is modified, the inverse metric is automatically updated:

sage: g[1,2] = 0 ; g[:]
[x + 1 0]
[0 -x + 1]
sage: g.inverse()[:]
[1/(x + 1) 0]
[0 -1/(x - 1)]

Using SymPy as symbolic engine:

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 925

Manifolds, Release 10.4.rc1

sage: M.set_calculus_method(sympy)
sage: g[1,1], g[1,2], g[2,2] = 1+x, x*y, 1-x
sage: g[:] # components in the manifold s default frame
[x + 1 x*y]
[x*y 1 - x]
sage: g.inverse()[:]
[(x - 1)/(x**2*y**2 + x**2 - 1) x*y/(x**2*y**2 + x**2 - 1)]
[x*y/(x**2*y**2 + x**2 - 1) -(x + 1)/(x**2*y**2 + x**2 - 1)]

Demonstration of the series expansion capabilities:

sage: M = Manifold(4, M , structure= Lorentzian)
sage: C.<t,x,y,z> = M.chart()
sage: e = var(e)
sage: g = M.metric()
sage: h = M.tensor_field(0, 2, sym=(0,1))
sage: g[0, 0], g[1, 1], g[2, 2], g[3, 3] = -1, 1, 1, 1
sage: h[0, 1], h[1, 2], h[2, 3] = 1, 1, 1
sage: g.set(g + e*h)

If e is a small parameter, g is a tridiagonal approximation of the Minkowski metric:

sage: g[:]
[-1 e 0 0]
[e 1 e 0]
[0 e 1 e]
[0 0 e 1]

The inverse, truncated to first order in e, is:

sage: g.inverse(expansion_symbol=e)[:]
[-1 e 0 0]
[e 1 -e 0]
[0 -e 1 -e]
[0 0 -e 1]

If inverse() is called subsequently, the result will be the same. This allows for all computations to be
made to first order:

sage: g.inverse()[:]
[-1 e 0 0]
[e 1 -e 0]
[0 -e 1 -e]
[0 0 -e 1]

restrict(subdomain, dest_map=None)
Return the restriction of the metric to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset𝑈 of self._domain (must be an instance of DifferentiableMan-
ifold)

• dest_map – (default: None) destination map Φ : 𝑈 → 𝑉 , where 𝑉 is a subdomain of self.
_codomain (type: DiffMap) If None, the restriction of self._vmodule._dest_map to 𝑈 is
used.

926 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• instance of PseudoRiemannianMetricParal representing the restriction.

EXAMPLES:

Restriction of a Lorentzian metric on R2 to the upper half plane:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: g = M.lorentzian_metric(g)
sage: g[0,0], g[1,1] = -1, 1
sage: U = M.open_subset(U , coord_def={X: y>0})
sage: gU = g.restrict(U); gU
Lorentzian metric g on the Open subset U of the 2-dimensional
differentiable manifold M

sage: gU.signature()
0
sage: gU.display()
g = -dx⊗dx + dy⊗dy

ricci_scalar(name=None, latex_name=None)
Return the metric’s Ricci scalar.

The Ricci scalar is the scalar field 𝑟 defined from the Ricci tensor 𝑅𝑖𝑐 and the metric tensor 𝑔 by

𝑟 = 𝑔𝑖𝑗𝑅𝑖𝑐𝑖𝑗

INPUT:

• name – (default: None) name given to the Ricci scalar; if none, it is set to “r(g)”, where “g” is the
metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Ricci scalar; if none, it is set to
“\mathrm{r}(g)”, where “g” is the metric’s name

OUTPUT:

• the Ricci scalar 𝑟, as an instance of DiffScalarField

EXAMPLES:

Ricci scalar of the standard metric on the 2-sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: U = M.open_subset(U) # the complement of a meridian (domain of␣
→˓spherical coordinates)
sage: c_spher.<th,ph> = U.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: a = var(a) # the sphere radius
sage: g = U.metric(g)
sage: g[1,1], g[2,2] = a^2, a^2*sin(th)^2
sage: g.display() # standard metric on the 2-sphere of radius a:
g = a^2 dth⊗dth + a^2*sin(th)^2 dph⊗dph
sage: g.ricci_scalar()
Scalar field r(g) on the Open subset U of the 2-dimensional
differentiable manifold S^2

sage: g.ricci_scalar().display() # The Ricci scalar is constant:
r(g): U → ℝ

(th, ph) ↦ 2/a^2

3.3. Pseudo-Riemannian Metrics and Degenerate Metrics 927

Manifolds, Release 10.4.rc1

set(symbiform)
Define the metric from a field of symmetric bilinear forms.

INPUT:

• symbiform – instance of TensorFieldParal representing a field of symmetric bilinear forms

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: s = M.sym_bilin_form_field(name= s)
sage: s[0,0], s[0,1], s[1,1] = 1+x^2, x*y, 1+y^2
sage: g = M.metric(g)
sage: g.set(s)
sage: g.display()
g = (x^2 + 1) dx⊗dx + x*y dx⊗dy + x*y dy⊗dx + (y^2 + 1) dy⊗dy

3.4 Levi-Civita Connections

The class LeviCivitaConnection implements the Levi-Civita connection associated with some
pseudo-Riemannian metric on a smooth manifold.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version

• Marco Mancini (2015) : parallelization of some computations

• Marius Gerbershagen (2022) : use the first Bianchi identity in the computation of the Riemann tensor

REFERENCES:

• [KN1963]

• [Lee1997]

• [ONe1983]

class sage.manifolds.differentiable.levi_civita_connection.LeviCivitaConnection(met-
ric,
name,
la-
tex_name=None,
init_coef=True)

Bases: AffineConnection

Levi-Civita connection on a pseudo-Riemannian manifold.

Let 𝑀 be a differentiable manifold of class 𝐶∞ (smooth manifold) over R endowed with a pseudo-Riemannian
metric 𝑔. Let 𝐶∞(𝑀) be the algebra of smooth functions𝑀 → R (cf. DiffScalarFieldAlgebra) and let
X(𝑀) be the 𝐶∞(𝑀)-module of vector fields on𝑀 (cf. VectorFieldModule). The Levi-Civita connection
associated with 𝑔 is the unique operator

∇ : X(𝑀)× X(𝑀) −→ X(𝑀)
(𝑢, 𝑣) ↦−→ ∇𝑢𝑣

that

• is R-bilinear, i.e. is bilinear when considering X(𝑀) as a vector space over R

928 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• is 𝐶∞(𝑀)-linear w.r.t. the first argument: ∀𝑓 ∈ 𝐶∞(𝑀), ∇𝑓𝑢𝑣 = 𝑓∇𝑢𝑣

• obeys Leibniz rule w.r.t. the second argument: ∀𝑓 ∈ 𝐶∞(𝑀), ∇𝑢(𝑓𝑣) = d𝑓(𝑢) 𝑣 + 𝑓∇𝑢𝑣

• is torsion-free

• is compatible with 𝑔: ∀(𝑢, 𝑣, 𝑤) ∈ X(𝑀)3, 𝑢(𝑔(𝑣, 𝑤)) = 𝑔(∇𝑢𝑣, 𝑤) + 𝑔(𝑣,∇𝑢𝑤)

The Levi-Civita connection ∇ gives birth to the covariant derivative operator acting on tensor fields, denoted by
the same symbol:

∇ : 𝑇 (𝑘,𝑙)(𝑀) −→ 𝑇 (𝑘,𝑙+1)(𝑀)
𝑡 ↦−→ ∇𝑡

where 𝑇 (𝑘,𝑙)(𝑀) stands for the 𝐶∞(𝑀)-module of tensor fields of type (𝑘, 𝑙) on𝑀 (cf. TensorFieldMod-
ule), with the convention 𝑇 (0,0)(𝑀) := 𝐶∞(𝑀). For a vector field 𝑣, the covariant derivative∇𝑣 is a type-(1,1)
tensor field such that

∀𝑢 ∈ X(𝑀), ∇𝑢𝑣 = ∇𝑣(., 𝑢)

More generally for any tensor field 𝑡 ∈ 𝑇 (𝑘,𝑙)(𝑀), we have

∀𝑢 ∈ X(𝑀), ∇𝑢𝑡 = ∇𝑡(. . . , 𝑢)

Note: The above convention means that, in terms of index notation, the “derivation index” in ∇𝑡 is the last one:

∇𝑐𝑡
𝑎1...𝑎𝑘

𝑏1...𝑏𝑙
= (∇𝑡)𝑎1...𝑎𝑘

𝑏1...𝑏𝑙𝑐

INPUT:

• metric – the metric 𝑔 defining the Levi-Civita connection, as an instance of class PseudoRiemanni-
anMetric

• name – name given to the connection

• latex_name – (default: None) LaTeX symbol to denote the connection

• init_coef – (default: True) determines whether the Christoffel symbols are initialized (in the top charts
on the domain, i.e. disregarding the subcharts)

EXAMPLES:

Levi-Civita connection associated with the Euclidean metric on R3 expressed in spherical coordinates:

sage: forget() # for doctests only
sage: M = Manifold(3, R^3 , start_index=1)
sage: c_spher.<r,th,ph> = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: g = M.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2 , (r*sin(th))^2
sage: g.display()
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: nab = g.connection(name= nabla , latex_name=r \nabla) ; nab
Levi-Civita connection nabla associated with the Riemannian metric g on
the 3-dimensional differentiable manifold R^3

Let us check that the connection is compatible with the metric:

3.4. Levi-Civita Connections 929

Manifolds, Release 10.4.rc1

sage: Dg = nab(g) ; Dg
Tensor field nabla(g) of type (0,3) on the 3-dimensional
differentiable manifold R^3
sage: Dg == 0
True

and that it is torsionless:

sage: nab.torsion() == 0
True

As a check, let us enforce the computation of the torsion:

sage: sage.manifolds.differentiable.affine_connection.AffineConnection.
→˓torsion(nab) == 0
True

The connection coefficients in the manifold’s default frame are Christoffel symbols, since the default frame is a
coordinate frame:

sage: M.default_frame()
Coordinate frame (R^3, (∂/∂r,∂/∂th,∂/∂ph))
sage: nab.coef()
3-indices components w.r.t. Coordinate frame (R^3, (∂/∂r,∂/∂th,∂/∂ph)),
with symmetry on the index positions (1, 2)

We note that the Christoffel symbols are symmetric with respect to their last two indices (positions (1,2)); their
expression is:

sage: nab.coef()[:] # display as a array
[[[0, 0, 0], [0, -r, 0], [0, 0, -r*sin(th)^2]],
[[0, 1/r, 0], [1/r, 0, 0], [0, 0, -cos(th)*sin(th)]],
[[0, 0, 1/r], [0, 0, cos(th)/sin(th)], [1/r, cos(th)/sin(th), 0]]]
sage: nab.display() # display only the non-vanishing symbols
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_th,r = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)
Gam^ph_ph,r = 1/r
Gam^ph_ph,th = cos(th)/sin(th)
sage: nab.display(only_nonredundant=True) # skip redundancy due to symmetry
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)

The same display can be obtained via the function christoffel_symbols_display() acting on the met-
ric:

sage: g.christoffel_symbols_display(chart=c_spher)
Gam^r_th,th = -r
Gam^r_ph,ph = -r*sin(th)^2

(continues on next page)

930 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Gam^th_r,th = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)

coef(frame=None)
Return the connection coefficients relative to the given frame.

𝑛 being the manifold’s dimension, the connection coefficients relative to the vector frame (𝑒𝑖) are the 𝑛3
scalar fields Γ𝑘

𝑖𝑗 defined by

∇𝑒𝑗𝑒𝑖 = Γ𝑘
𝑖𝑗𝑒𝑘

If the connection coefficients are not known already, they are computed

• as Christoffel symbols if the frame (𝑒𝑖) is a coordinate frame

• from the above formula otherwise

INPUT:

• frame – (default: None) vector frame relative to which the connection coefficients are required; if none
is provided, the domain’s default frame is assumed

OUTPUT:

• connection coefficients relative to the frame frame, as an instance of the class Components with
3 indices ordered as (𝑘, 𝑖, 𝑗); for Christoffel symbols, an instance of the subclass CompWithSym is
returned.

EXAMPLES:

Christoffel symbols of the Levi-Civita connection associated to the Euclidean metric on R3 expressed in
spherical coordinates:

sage: M = Manifold(3, R^3 , start_index=1)
sage: c_spher.<r,th,ph> = M.chart(r r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi)
sage: g = M.metric(g)
sage: g[1,1], g[2,2], g[3,3] = 1, r^2 , (r*sin(th))^2
sage: g.display()
g = dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: nab = g.connection()
sage: gam = nab.coef() ; gam
3-indices components w.r.t. Coordinate frame (R^3, (∂/∂r,∂/∂th,∂/∂ph)),
with symmetry on the index positions (1, 2)

sage: gam[:]
[[[0, 0, 0], [0, -r, 0], [0, 0, -r*sin(th)^2]],
[[0, 1/r, 0], [1/r, 0, 0], [0, 0, -cos(th)*sin(th)]],
[[0, 0, 1/r], [0, 0, cos(th)/sin(th)], [1/r, cos(th)/sin(th), 0]]]

The only non-zero Christoffel symbols:

sage: gam[1,2,2], gam[1,3,3]
(-r, -r*sin(th)^2)
sage: gam[2,1,2], gam[2,3,3]
(1/r, -cos(th)*sin(th))
sage: gam[3,1,3], gam[3,2,3]
(1/r, cos(th)/sin(th))

3.4. Levi-Civita Connections 931

../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components
../../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.CompWithSym

Manifolds, Release 10.4.rc1

Connection coefficients of the same connection with respect to the orthonormal frame associated to spherical
coordinates:

sage: ch_basis = M.automorphism_field()
sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = 1, 1/r, 1/(r*sin(th))
sage: e = c_spher.frame().new_frame(ch_basis, e)
sage: gam_e = nab.coef(e) ; gam_e
3-indices components w.r.t. Vector frame (R^3, (e_1,e_2,e_3))
sage: gam_e[:]
[[[0, 0, 0], [0, -1/r, 0], [0, 0, -1/r]],
[[0, 1/r, 0], [0, 0, 0], [0, 0, -cos(th)/(r*sin(th))]],
[[0, 0, 1/r], [0, 0, cos(th)/(r*sin(th))], [0, 0, 0]]]

The only non-zero connection coefficients:

sage: gam_e[1,2,2], gam_e[2,1,2]
(-1/r, 1/r)
sage: gam_e[1,3,3], gam_e[3,1,3]
(-1/r, 1/r)
sage: gam_e[2,3,3], gam_e[3,2,3]
(-cos(th)/(r*sin(th)), cos(th)/(r*sin(th)))

restrict(subdomain)
Return the restriction of the connection to some subdomain.

If such restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset𝑈 of the connection’s domain (must be an instance ofDifferentiable-
Manifold)

OUTPUT:

• instance of LeviCivitaConnection representing the restriction.

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[0,0], g[1,1] = 1+y^2, 1+x^2
sage: nab = g.connection()
sage: nab[:]
[[[0, y/(y^2 + 1)], [y/(y^2 + 1), -x/(y^2 + 1)]],
[[-y/(x^2 + 1), x/(x^2 + 1)], [x/(x^2 + 1), 0]]]

sage: U = M.open_subset(U , coord_def={X: x>0})
sage: nabU = nab.restrict(U); nabU
Levi-Civita connection nabla_g associated with the Riemannian
metric g on the Open subset U of the 2-dimensional differentiable
manifold M

sage: nabU[:]
[[[0, y/(y^2 + 1)], [y/(y^2 + 1), -x/(y^2 + 1)]],
[[-y/(x^2 + 1), x/(x^2 + 1)], [x/(x^2 + 1), 0]]]

Let us check that the restriction is the connection compatible with the restriction of the metric:

sage: nabU(g.restrict(U)).display()
nabla_g(g) = 0

932 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

ricci(name=None, latex_name=None)
Return the connection’s Ricci tensor.

This method redefines sage.manifolds.differentiable.affine_connection.
AffineConnection.ricci() to take into account the symmetry of the Ricci tensor for a Levi-Civita
connection.

The Ricci tensor is the tensor field 𝑅𝑖𝑐 of type (0,2) defined from the Riemann curvature tensor 𝑅 by

𝑅𝑖𝑐(𝑢, 𝑣) = 𝑅(𝑒𝑖, 𝑢, 𝑒𝑖, 𝑣)

for any vector fields 𝑢 and 𝑣, (𝑒𝑖) being any vector frame and (𝑒𝑖) the dual coframe.

INPUT:

• name – (default: None) name given to the Ricci tensor; if none, it is set to “Ric(g)”, where “g” is the
metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Ricci tensor; if none, it is set to
“\mathrm{Ric}(g)”, where “g” is the metric’s name

OUTPUT:

• the Ricci tensor 𝑅𝑖𝑐, as an instance of TensorField of tensor type (0,2) and symmetric

EXAMPLES:

Ricci tensor of the standard connection on the 2-dimensional sphere:

sage: M = Manifold(2, S^2 , start_index=1)
sage: c_spher.<th,ph> = M.chart(r th:(0,pi):\theta ph:(0,2*pi):\phi)
sage: g = M.metric(g)
sage: g[1,1], g[2,2] = 1, sin(th)^2
sage: g.display() # standard metric on S^2:
g = dth⊗dth + sin(th)^2 dph⊗dph
sage: nab = g.connection() ; nab
Levi-Civita connection nabla_g associated with the Riemannian
metric g on the 2-dimensional differentiable manifold S^2

sage: ric = nab.ricci() ; ric
Field of symmetric bilinear forms Ric(g) on the 2-dimensional
differentiable manifold S^2

sage: ric.display()
Ric(g) = dth⊗dth + sin(th)^2 dph⊗dph

Checking that the Ricci tensor of the Levi-Civita connection associated to Schwarzschild metric is identically
zero (as a solution of the Einstein equation):

sage: M = Manifold(4, M)
sage: c_BL.<t,r,th,ph> = M.chart(r t r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\
→˓phi) # Schwarzschild-Droste coordinates
sage: g = M.lorentzian_metric(g)
sage: m = var(m) # mass in Schwarzschild metric
sage: g[0,0], g[1,1] = -(1-2*m/r), 1/(1-2*m/r)
sage: g[2,2], g[3,3] = r^2, (r*sin(th))^2
sage: g.display()
g = (2*m/r - 1) dt⊗dt - 1/(2*m/r - 1) dr⊗dr + r^2 dth⊗dth
+ r^2*sin(th)^2 dph⊗dph

sage: nab = g.connection() ; nab
Levi-Civita connection nabla_g associated with the Lorentzian
metric g on the 4-dimensional differentiable manifold M

(continues on next page)

3.4. Levi-Civita Connections 933

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: ric = nab.ricci() ; ric
Field of symmetric bilinear forms Ric(g) on the 4-dimensional
differentiable manifold M

sage: ric == 0
True

riemann(name=None, latex_name=None)
Return the Riemann curvature tensor of the connection.

This method redefines sage.manifolds.differentiable.affine_connection.
AffineConnection.riemann() to take into account the symmetry of the Riemann tensor for
a Levi-Civita connection.

The Riemann curvature tensor is the tensor field 𝑅 of type (1,3) defined by

𝑅(𝜔,𝑤, 𝑢, 𝑣) =
⟨︀
𝜔,∇𝑢∇𝑣𝑤 −∇𝑣∇𝑢𝑤 −∇[𝑢,𝑣]𝑤

⟩︀
for any 1-form 𝜔 and any vector fields 𝑢, 𝑣 and 𝑤.

INPUT:

• name – (default: None) name given to the Riemann tensor; if none, it is set to “Riem(g)”, where “g” is
the metric’s name

• latex_name – (default: None) LaTeX symbol to denote the Riemann tensor; if none, it is set to
“\mathrm{Riem}(g)”, where “g” is the metric’s name

OUTPUT:

• the Riemann curvature tensor 𝑅, as an instance of TensorField

EXAMPLES:

Riemann tensor of the Levi-Civita connection associated with the metric of the hyperbolic plane (Poincaré
disk model):

sage: M = Manifold(2, M , start_index=1)
sage: X.<x,y> = M.chart(x:(-1,1) y:(-1,1) , coord_restrictions=lambda x,y: x^
→˓2+y^2<1)
....: # Cartesian coord. on the Poincaré disk
sage: g = M.metric(g)
sage: g[1,1], g[2,2] = 4/(1-x^2-y^2)^2, 4/(1-x^2-y^2)^2
sage: nab = g.connection()
sage: riem = nab.riemann(); riem
Tensor field Riem(g) of type (1,3) on the 2-dimensional
differentiable manifold M

sage: riem.display_comp()
Riem(g)^x_yxy = -4/(x^4 + y^4 + 2*(x^2 - 1)*y^2 - 2*x^2 + 1)
Riem(g)^x_yyx = 4/(x^4 + y^4 + 2*(x^2 - 1)*y^2 - 2*x^2 + 1)
Riem(g)^y_xxy = 4/(x^4 + y^4 + 2*(x^2 - 1)*y^2 - 2*x^2 + 1)
Riem(g)^y_xyx = -4/(x^4 + y^4 + 2*(x^2 - 1)*y^2 - 2*x^2 + 1)

The same computation parallelized on 2 cores:

sage: Parallelism().set(nproc=2)
sage: riem_backup = riem
sage: g = M.metric(g)
sage: g[1,1], g[2,2] = 4/(1-x^2-y^2)^2, 4/(1-x^2-y^2)^2
sage: nab = g.connection()

(continues on next page)

934 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: riem = nab.riemann(); riem
Tensor field Riem(g) of type (1,3) on the 2-dimensional
differentiable manifold M

sage: riem == riem_backup
True
sage: Parallelism().set(nproc=1) # switch off parallelization

torsion()

Return the connection’s torsion tensor (identically zero for a Levi-Civita connection).

See sage.manifolds.differentiable.affine_connection.AffineConnection.
torsion() for the general definition of the torsion tensor.

OUTPUT:

• the torsion tensor 𝑇 , as a vanishing instance of TensorField

EXAMPLES:

sage: M = Manifold(2, M)
sage: X.<x,y> = M.chart()
sage: g = M.metric(g)
sage: g[0,0], g[1,1] = 1+y^2, 1+x^2
sage: nab = g.connection()
sage: t = nab.torsion(); t
Tensor field of type (1,2) on the 2-dimensional differentiable
manifold M

The torsion of a Levi-Civita connection is always zero:

sage: t.display()
0

3.5 Pseudo-Riemannian submanifolds

An embedded (resp. immersed) submanifold of a pseudo-Riemannian manifold (𝑀, 𝑔) is an embedded (resp. immersed)
submanifold𝑁 of𝑀 as a differentiable manifold (see differentiable_submanifold) such that pull back of the
metric tensor 𝑔 via the embedding (resp. immersion) endows 𝑁 with the structure of a pseudo-Riemannian manifold.

The following example shows how to compute the various quantities related to the intrinsic and extrinsic geometries of a
hyperbolic slicing of the 3-dimensional Minkowski space.

We start by declaring the ambient manifold𝑀 and the submanifold 𝑁 :

sage: M = Manifold(3, M , structure="Lorentzian")
sage: N = Manifold(2, N , ambient=M, structure="Riemannian", start_index=1)

The considered slices being spacelike hypersurfaces, they are Riemannian manifolds.

Let us introduce the Minkowskian coordinates (𝑤, 𝑥, 𝑦) on𝑀 and the polar coordinates (𝜌, 𝜃) on the submanifold 𝑁 :

sage: E.<w,x,y> = M.chart()
sage: C.<rh,th> = N.chart(r rh:(0,+oo):\rho th:(0,2*pi):\theta)

Let 𝑏 be the hyperbola semi-major axis and 𝑡 the parameter of the foliation:

3.5. Pseudo-Riemannian submanifolds 935

Manifolds, Release 10.4.rc1

sage: b = var(b , domain= real)
sage: assume(b>0)
sage: t = var(t , domain= real)

One can then define the embedding 𝜑𝑡:

sage: phi = N.diff_map(M, {(C,E): [b*cosh(rh)+t,
....: b*sinh(rh)*cos(th),
....: b*sinh(rh)*sin(th)]})
sage: phi.display()
N → M

(rh, th) ↦ (w, x, y) = (b*cosh(rh) + t, b*cos(th)*sinh(rh),
b*sin(th)*sinh(rh))

as well as its inverse (when considered as a diffeomorphism onto its image):

sage: phi_inv = M.diff_map(N, {(E,C): [log(sqrt(x^2+y^2+b^2)/b+
....: sqrt((x^2+y^2+b^2)/b^2-1)),
....: atan2(y,x)]})
sage: phi_inv.display()
M → N

(w, x, y) ↦ (rh, th) = (log(sqrt((b^2 + x^2 + y^2)/b^2 - 1)
+ sqrt(b^2 + x^2 + y^2)/b), arctan2(y, x))

and the partial inverse expressing the foliation parameter 𝑡 as a scalar field on𝑀 :

sage: phi_inv_t = M.scalar_field({E: w-sqrt(x^2+y^2+b^2)})
sage: phi_inv_t.display()
M → ℝ
(w, x, y) ↦ w - sqrt(b^2 + x^2 + y^2)

One can check that the inverse is correct with:

sage: (phi*phi_inv).display()
M → M

(w, x, y) ↦ ((b^2 + x^2 + y^2 + sqrt(b^2 + x^2 + y^2)*(t + sqrt(x^2 +
y^2)) + sqrt(x^2 + y^2)*t)/(sqrt(b^2 + x^2 + y^2) + sqrt(x^2 + y^2)), x, y)

The first item of the 3-uple in the right-hand does not appear as 𝑤 because 𝑡 has not been replaced by its value provided
by phi_inv_t. Once this is done, we do get 𝑤:

sage: (phi*phi_inv).expr()[0].subs({t: phi_inv_t.expr()}).simplify_full()
w

The embedding can then be declared:

sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse = {t: phi_inv_t})

This line does not perform any calculation yet. It just check the coherence of the arguments, but not the inverse, the user
is trusted on this point.

Finally, we initialize the metric of𝑀 to be that of Minkowski space:

sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2] = -1, 1, 1
sage: g.display()
g = -dw⊗dw + dx⊗dx + dy⊗dy

936 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

With this, the declaration the ambient manifold and its foliation parametrized by 𝑡 is finished, and calculations can be
performed.

The first step is always to find a chart adapted to the foliation. This is done by the method “adapted_chart”:

sage: T = N.adapted_chart(); T
[Chart (M, (rh_M, th_M, t_M))]

T contains a new chart defined on𝑀 . By default, the coordinate names are constructed from the names of the submanifold
coordinates and the foliation parameter indexed by the name of the ambient manifold. By this can be customized, see
adapted_chart().

One can check that the adapted chart has been added to𝑀 ’s atlas, along with some coordinates changes:

sage: M.atlas()
[Chart (M, (w, x, y)), Chart (M, (rh_M, th_M, t_M))]
sage: len(M.coord_changes())
2

Let us compute the induced metric (or first fundamental form):

sage: # long time
sage: gamma = N.induced_metric()
sage: gamma.display()
gamma = b^2 drh⊗drh + b^2*sinh(rh)^2 dth⊗dth
sage: gamma[:]
[b^2 0]
[0 b^2*sinh(rh)^2]
sage: gamma[1,1]
b^2

the normal vector:

sage: N.normal().display() # long time
n = sqrt(b^2 + x^2 + y^2)/b ∂/∂w + x/b ∂/∂x + y/b ∂/∂y

Check that the hypersurface is indeed spacelike, i.e. that its normal is timelike:

sage: N.ambient_metric()(N.normal(), N.normal()).display() # long time
g(n,n): M → ℝ

(w, x, y) ↦ -1
(rh_M, th_M, t_M) ↦ -1

The lapse function is:

sage: N.lapse().display() # long time
N: M → ℝ

(w, x, y) ↦ sqrt(b^2 + x^2 + y^2)/b
(rh_M, th_M, t_M) ↦ cosh(rh_M)

while the shift vector is:

sage: N.shift().display() # long time
beta = -(x^2 + y^2)/b^2 ∂/∂w - sqrt(b^2 + x^2 + y^2)*x/b^2 ∂/∂x
- sqrt(b^2 + x^2 + y^2)*y/b^2 ∂/∂y

The extrinsic curvature (or second fundamental form) as a tensor field on the ambient manifold:

3.5. Pseudo-Riemannian submanifolds 937

Manifolds, Release 10.4.rc1

sage: N.ambient_extrinsic_curvature()[:] # long time
[-(x^2 + y^2)/b^3 (b^2*x + x^3 + x*y^2)/(sqrt(b^2 +␣
→˓x^2 + y^2)*b^3) (y^3 + (b^2 + x^2)*y)/(sqrt(b^2 + x^2 + y^2)*b^3)]
[sqrt(b^2 + x^2 + y^2)*x/b^3 -
→˓(b^2 + x^2)/b^3 -x*y/b^3]
[sqrt(b^2 + x^2 + y^2)*y/b^3 ␣
→˓ -x*y/b^3 -(b^2 + y^2)/b^3]

The extrinsic curvature as a tensor field on the submanifold:

sage: N.extrinsic_curvature()[:] # long time
[-b 0]
[0 -b*sinh(rh)^2]

AUTHORS:

• Florentin Jaffredo (2018): initial version

• Eric Gourgoulhon (2018-2019): add documentation

• Matthias Koeppe (2021): open subsets of submanifolds

REFERENCES:

• B. O’Neill : Semi-Riemannian Geometry [ONe1983]

• J. M. Lee : Riemannian Manifolds [Lee1997]

class sage.manifolds.differentiable.pseudo_riemannian_submanifold.PseudoRiemannianSubmanifold(n,
name,
am-
bi-
ent=None,
met-
ric_name=None,
sig-
na-
ture=None,
base_man-
i-
fold=None,
diff_de-
gree=+In-
fin-
ity,
la-
tex_name=None,
met-
ric_la-
tex_name=None,
start_in-
dex=0,
cat-
e-
gory=None,
unique_tag=None)

Bases: PseudoRiemannianManifold, DifferentiableSubmanifold

938 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

Pseudo-Riemannian submanifold.

An embedded (resp. immersed) submanifold of a pseudo-Riemannian manifold (𝑀, 𝑔) is an embedded (resp.
immersed) submanifold 𝑁 of 𝑀 as a differentiable manifold such that pull back of the metric tensor 𝑔 via the
embedding (resp. immersion) endows 𝑁 with the structure of a pseudo-Riemannian manifold.

INPUT:

• n – positive integer; dimension of the submanifold

• name – string; name (symbol) given to the submanifold

• ambient – (default: None) pseudo-Riemannian manifold 𝑀 in which the submanifold is embedded (or
immersed). If None, it is set to self

• metric_name – (default: None) string; name (symbol) given to the metric; if None, gamma is used

• signature – (default: None) signature 𝑆 of the metric as a single integer: 𝑆 = 𝑛+−𝑛−, where 𝑛+ (resp.
𝑛−) is the number of positive terms (resp. number of negative terms) in any diagonal writing of the metric
components; if signature is not provided, 𝑆 is set to the submanifold’s dimension (Riemannian signature)

• base_manifold – (default: None) if not None, must be a differentiable manifold; the created object is
then an open subset of base_manifold

• diff_degree – (default: infinity) degree of differentiability

• latex_name – (default: None) string; LaTeX symbol to denote the submanifold; if none is provided, it is
set to name

• metric_latex_name – (default: None) string; LaTeX symbol to denote the metric; if none is provided,
it is set to metric_name if the latter is not None and to r \gamma otherwise

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
submanifold, e.g. coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(RR).
Differentiable() (or Manifolds(RR).Smooth() if diff_degree = infinity) is
assumed (see the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other ar-
guments have been used previously (without unique_tag, the UniqueRepresentation behavior in-
herited from ManifoldSubset, via DifferentiableManifold and TopologicalManifold,
would return the previously constructed object corresponding to these arguments).

EXAMPLES:

Let 𝑁 be a 2-dimensional submanifold of a 3-dimensional Riemannian manifold𝑀 :

sage: M = Manifold(3, M , structure ="Riemannian")
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: N
2-dimensional Riemannian submanifold N immersed in the 3-dimensional
Riemannian manifold M
sage: CM.<x,y,z> = M.chart()
sage: CN.<u,v> = N.chart()

Let us define a 1-dimension foliation indexed by 𝑡. The inverse map is needed in order to compute the adapted
chart in the ambient manifold:

sage: t = var(t)
sage: phi = N.diff_map(M, {(CN,CM):[u, v, t+u^2+v^2]}); phi
Differentiable map from the 2-dimensional Riemannian submanifold N

(continues on next page)

3.5. Pseudo-Riemannian submanifolds 939

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

(continued from previous page)

immersed in the 3-dimensional Riemannian manifold M to the
3-dimensional Riemannian manifold M
sage: phi_inv = M.diff_map(N,{(CM, CN): [x,y]})
sage: phi_inv_t = M.scalar_field({CM: z-x^2-y^2})

𝜑 can then be declared as an embedding 𝑁 →𝑀 :

sage: N.set_embedding(phi, inverse=phi_inv, var=t,
....: t_inverse={t: phi_inv_t})

The foliation can also be used to find new charts on the ambient manifold that are adapted to the foliation, ie in which
the expression of the immersion is trivial. At the same time, the appropriate coordinate changes are computed:

sage: N.adapted_chart()
[Chart (M, (u_M, v_M, t_M))]
sage: len(M.coord_changes())
2

See also:

manifold and differentiable_submanifold

ambient_extrinsic_curvature()

Return the second fundamental form of the submanifold as a tensor field on the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold equal to the second fundamental form once orthogonally pro-
jected onto the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_second_fundamental_form() # long time
Field of symmetric bilinear forms K along the 1-dimensional
Riemannian submanifold N embedded in the Euclidean plane E^2 with
values on the Euclidean plane E^2

sage: N.ambient_second_fundamental_form()[:] # long time
[-x^2/(x^2 + 4) 2*x/(x^2 + 4)]
[2*x/(x^2 + 4) -4/(x^2 + 4)]

940 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

An alias is ambient_extrinsic_curvature:

sage: N.ambient_extrinsic_curvature()[:] # long time
[-x^2/(x^2 + 4) 2*x/(x^2 + 4)]
[2*x/(x^2 + 4) -4/(x^2 + 4)]

ambient_first_fundamental_form()

Return the first fundamental form of the submanifold as a tensor of the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold describing the induced metric before projection on the sub-
manifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_first_fundamental_form()
Tensor field gamma of type (0,2) along the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2 with values on
the Euclidean plane E^2

sage: N.ambient_first_fundamental_form()[:]
[x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4) 4/(x^2 + 4)]

An alias is ambient_induced_metric:

sage: N.ambient_induced_metric()[:]
[x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4) 4/(x^2 + 4)]

ambient_induced_metric()

Return the first fundamental form of the submanifold as a tensor of the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold describing the induced metric before projection on the sub-
manifold

EXAMPLES:

3.5. Pseudo-Riemannian submanifolds 941

Manifolds, Release 10.4.rc1

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_first_fundamental_form()
Tensor field gamma of type (0,2) along the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2 with values on
the Euclidean plane E^2

sage: N.ambient_first_fundamental_form()[:]
[x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4) 4/(x^2 + 4)]

An alias is ambient_induced_metric:

sage: N.ambient_induced_metric()[:]
[x^2/(x^2 + 4) -2*x/(x^2 + 4)]
[-2*x/(x^2 + 4) 4/(x^2 + 4)]

ambient_metric()

Return the metric of the ambient manifold.

OUTPUT:

• the metric of the ambient manifold

EXAMPLES:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: N.ambient_metric()
Riemannian metric g on the Euclidean space E^3
sage: N.ambient_metric().display()
g = dx⊗dx + dy⊗dy + dz⊗dz
sage: N.ambient_metric() is M.metric()
True

ambient_second_fundamental_form()

Return the second fundamental form of the submanifold as a tensor field on the ambient manifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• (0,2) tensor field on the ambient manifold equal to the second fundamental form once orthogonally pro-
jected onto the submanifold

942 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.ambient_second_fundamental_form() # long time
Field of symmetric bilinear forms K along the 1-dimensional
Riemannian submanifold N embedded in the Euclidean plane E^2 with
values on the Euclidean plane E^2

sage: N.ambient_second_fundamental_form()[:] # long time
[-x^2/(x^2 + 4) 2*x/(x^2 + 4)]
[2*x/(x^2 + 4) -4/(x^2 + 4)]

An alias is ambient_extrinsic_curvature:

sage: N.ambient_extrinsic_curvature()[:] # long time
[-x^2/(x^2 + 4) 2*x/(x^2 + 4)]
[2*x/(x^2 + 4) -4/(x^2 + 4)]

clear_cache()

Reset all the cached functions and the derived quantities.

Use this function if you modified the immersion (or embedding) of the submanifold. Note that when calling
a calculus function after clearing, new Python objects will be created.

EXAMPLES:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()
sage: n = N.normal()
sage: n is N.normal()
True

(continues on next page)

3.5. Pseudo-Riemannian submanifolds 943

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: N.clear_cache()
sage: n is N.normal()
False
sage: n == N.normal()
True

difft()

Return the differential of the scalar field on the ambient manifold representing the first parameter of the
foliation associated to self.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• 1-form field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real)
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: N.difft()
1-form dr on the Euclidean space E^3
sage: N.difft().display()
dr = x/sqrt(x^2 + y^2 + z^2) dx + y/sqrt(x^2 + y^2 + z^2) dy +
z/sqrt(x^2 + y^2 + z^2) dz

extrinsic_curvature()

Return the second fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the second fundamental form, as a symmetric tensor field of type (0,2) on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()

(continues on next page)

944 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.second_fundamental_form() # long time
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2

sage: N.second_fundamental_form().display() # long time
K = -4/(x^4 + 8*x^2 + 16) dx⊗dx

An alias is extrinsic_curvature:

sage: N.extrinsic_curvature().display() # long time
K = -4/(x^4 + 8*x^2 + 16) dx⊗dx

An example with a non-Euclidean ambient metric:

sage: M = Manifold(2, M , structure= Riemannian)
sage: N = Manifold(1, N , ambient=M, structure= Riemannian ,
....: start_index=1)
sage: CM.<x,y> = M.chart()
sage: CN.<u> = N.chart()
sage: g = M.metric()
sage: g[0, 0], g[1, 1] = 1, 1/(1 + y^2)^2
sage: phi = N.diff_map(M, (u, u))
sage: N.set_embedding(phi)
sage: N.second_fundamental_form()
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the 2-dimensional Riemannian manifold M

sage: N.second_fundamental_form().display()
K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du⊗du

first_fundamental_form()

Return the first fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the first fundamental form, as an instance of PseudoRiemannianMetric

EXAMPLES:

A sphere embedded in Euclidean space:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure= Riemannian)
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real)
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),

(continues on next page)

3.5. Pseudo-Riemannian submanifolds 945

Manifolds, Release 10.4.rc1

(continued from previous page)

....: r*cos(th)]})
sage: N.set_embedding(phi)
sage: N.first_fundamental_form() # long time
Riemannian metric gamma on the 2-dimensional Riemannian
submanifold N embedded in the Euclidean space E^3

sage: N.first_fundamental_form()[:] # long time
[r^2 0]
[0 r^2*sin(th)^2]

An alias is induced_metric:

sage: N.induced_metric()[:] # long time
[r^2 0]
[0 r^2*sin(th)^2]

By default, the first fundamental form is named gamma, but this can be customized by means of the argument
metric_name when declaring the submanifold:

sage: P = Manifold(1, P , ambient=M, structure= Riemannian ,
....: metric_name= g)
sage: CP.<t> = P.chart()
sage: F = P.diff_map(M, [t, 2*t, 3*t])
sage: P.set_embedding(F)
sage: P.induced_metric()
Riemannian metric g on the 1-dimensional Riemannian submanifold P
embedded in the Euclidean space E^3

sage: P.induced_metric().display()
g = 14 dt⊗dt

gauss_curvature()

Return the Gauss curvature of the submanifold.

The Gauss curvature is the product or the principal curvatures, or equivalently the determinant of the projec-
tion operator.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the Gauss curvature as a scalar field on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,

(continues on next page)

946 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],

....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.gauss_curvature() # long time
Scalar field on the 1-dimensional Riemannian submanifold N embedded
in the Euclidean plane E^2

sage: N.gauss_curvature().display() # long time
N → ℝ
on U: x ↦ -1
on V: y ↦ -1

gradt()

Return the gradient of the scalar field on the ambient manifold representing the first parameter of the foliation
associated to self.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• vector field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real)
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: N.gradt()
Vector field grad(r) on the Euclidean space E^3
sage: N.gradt().display()
grad(r) = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y
+ z/sqrt(x^2 + y^2 + z^2) e_z

induced_metric()

Return the first fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the first fundamental form, as an instance of PseudoRiemannianMetric

EXAMPLES:

A sphere embedded in Euclidean space:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure= Riemannian)

(continues on next page)

3.5. Pseudo-Riemannian submanifolds 947

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real)
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: N.set_embedding(phi)
sage: N.first_fundamental_form() # long time
Riemannian metric gamma on the 2-dimensional Riemannian
submanifold N embedded in the Euclidean space E^3

sage: N.first_fundamental_form()[:] # long time
[r^2 0]
[0 r^2*sin(th)^2]

An alias is induced_metric:

sage: N.induced_metric()[:] # long time
[r^2 0]
[0 r^2*sin(th)^2]

By default, the first fundamental form is named gamma, but this can be customized by means of the argument
metric_name when declaring the submanifold:

sage: P = Manifold(1, P , ambient=M, structure= Riemannian ,
....: metric_name= g)
sage: CP.<t> = P.chart()
sage: F = P.diff_map(M, [t, 2*t, 3*t])
sage: P.set_embedding(F)
sage: P.induced_metric()
Riemannian metric g on the 1-dimensional Riemannian submanifold P
embedded in the Euclidean space E^3

sage: P.induced_metric().display()
g = 14 dt⊗dt

lapse()

Return the lapse function of the foliation.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the lapse function, as a scalar field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})

(continues on next page)

948 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()
sage: N.lapse()
Scalar field N on the Euclidean space E^3
sage: N.lapse().display()
N: E^3 → ℝ

(x, y, z) ↦ 1
(th_E3, ph_E3, r_E3) ↦ 1

mean_curvature()

Return the mean curvature of the submanifold.

The mean curvature is the arithmetic mean of the principal curvatures, or equivalently the trace of the pro-
jection operator.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the mean curvature, as a scalar field on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.mean_curvature() # long time
Scalar field on the 1-dimensional Riemannian submanifold N
embedded in the Euclidean plane E^2

sage: N.mean_curvature().display() # long time
N → ℝ
on U: x ↦ -1
on V: y ↦ -1

metric(name=None, signature=None, latex_name=None, dest_map=None)
Return the induced metric (first fundamental form) or define a new metric tensor on the submanifold.

A new (uninitialized) metric is returned only if the argument name is provided and differs from the metric
name declared at the construction of the submanifold; otherwise, the first fundamental form is returned.

INPUT:

3.5. Pseudo-Riemannian submanifolds 949

Manifolds, Release 10.4.rc1

• name – (default: None) name given to the metric; if name is None or equals the metric name declared
when constructing the submanifold, the first fundamental form is returned (see first_fundamen-
tal_form())

• signature – (default: None; ignored if name is None) signature 𝑆 of the metric as a single inte-
ger: 𝑆 = 𝑛+ − 𝑛−, where 𝑛+ (resp. 𝑛−) is the number of positive terms (resp. number of negative
terms) in any diagonal writing of the metric components; if signature is not provided, 𝑆 is set to the
submanifold’s dimension (Riemannian signature)

• latex_name – (default: None; ignored if name is None) LaTeX symbol to denote the metric; if
None, it is formed from name

• dest_map – (default: None; ignored if name is None) instance of class DiffMap representing the
destination mapΦ : 𝑈 →𝑀 , where𝑈 is the current submanifold; if None, the identity map is assumed
(case of a metric tensor field on 𝑈)

OUTPUT:

• instance of PseudoRiemannianMetric

EXAMPLES:

Induced metric on a straight line of the Euclidean plane:

sage: M.<x,y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure= Riemannian)
sage: CN.<t> = N.chart()
sage: F = N.diff_map(M, [t, 2*t])
sage: N.set_embedding(F)
sage: N.metric()
Riemannian metric gamma on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2

sage: N.metric().display()
gamma = 5 dt⊗dt

Setting the argument name to that declared while constructing the submanifold (default = gamma) yields
the same result:

sage: N.metric(name= gamma) is N.metric()
True

while using a different name allows one to define a new metric on the submanifold:

sage: h = N.metric(name= h); h
Riemannian metric h on the 1-dimensional Riemannian submanifold N
embedded in the Euclidean plane E^2

sage: h[0, 0] = 1 # initialization
sage: h.display()
h = dt⊗dt

mixed_projection(tensor, indices=0)
Return de n+1 decomposition of a tensor on the submanifold and the normal vector.

The n+1 decomposition of a tensor of rank 𝑘 can be obtained by contracting each index either with the normal
vector or the projection operator of the submanifold (see projector()).

INPUT:

• tensor – any tensor field, eventually along the submanifold if no foliation is provided.

950 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• indices – (default: 0) list of integers containing the indices on which the projection is made on the
normal vector. By default, all projections are made on the submanifold. If an integer 𝑛 is provided, the
𝑛 first contractions are made with the normal vector, all the other ones with the orthogonal projection
operator.

OUTPUT:

• tensor field of rank 𝑘-len(indices)

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()

If indices is not specified, the mixed projection of the ambient metric coincides with the first fundamental
form:

sage: g = M.metric()
sage: gpp = N.mixed_projection(g); gpp # long time
Tensor field of type (0,2) on the Euclidean space E^3
sage: gpp == N.ambient_first_fundamental_form() # long time
True

The other non-redundant projections are:

sage: gnp = N.mixed_projection(g, [0]); gnp # long time
1-form on the Euclidean space E^3

and:

sage: gnn = N.mixed_projection(g, [0,1]); gnn
Scalar field on the Euclidean space E^3

which is constant and equal to 1 (the norm of the unit normal vector):

sage: gnn.display()
E^3 → ℝ
(x, y, z) ↦ 1
(th_E3, ph_E3, r_E3) ↦ 1

normal()

Return a normal unit vector to the submanifold.

If a foliation is defined, it is used to compute the gradient of the foliation parameter and then the normal

3.5. Pseudo-Riemannian submanifolds 951

Manifolds, Release 10.4.rc1

vector. If not, the normal vector is computed using the following formula:

𝑛 = *⃗(d𝑥0 ∧ d𝑥1 ∧ · · · ∧ d𝑥𝑛−1)

where the star stands for the Hodge dual operator and the wedge for the exterior product.

This formula does not always define a proper vector field when multiple charts overlap, because of the ar-
bitrariness of the direction of the normal vector. To avoid this problem, the method normal() considers
the graph defined by the atlas of the submanifold and the changes of coordinates, and only calculate the nor-
mal vector once by connected component. The expression is then propagate by restriction, continuation, or
change of coordinates using a breadth-first exploration of the graph.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• vector field on the ambient manifold (case of a foliation) or along the submanifold with values in the
ambient manifold (case of a single submanifold)

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()
sage: N.normal() # long time
Vector field n on the Euclidean space E^3
sage: N.normal().display() # long time
n = x/sqrt(x^2 + y^2 + z^2) e_x + y/sqrt(x^2 + y^2 + z^2) e_y
+ z/sqrt(x^2 + y^2 + z^2) e_z

Or in spherical coordinates:

sage: N.normal().display(T[0].frame(),T[0]) # long time
n = ∂/∂r_E3

Let us now consider a sphere of constant radius, i.e. not assumed to be part of a foliation, in stereographic
coordinates:

sage: M.<X,Y,Z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U, V)
sage: stereoN.<x,y> = U.chart()
sage: stereoS.<xp,yp> = V.chart("xp:x yp:y ")
sage: stereoN_to_S = stereoN.transition_map(stereoS,

(continues on next page)

952 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: (x/(x^2+y^2), y/(x^2+y^2)),

....: intersection_name= W ,

....: restrictions1= x^2+y^2!=0,

....: restrictions2= xp^2+yp^2!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: W = U.intersection(V)
sage: stereoN_W = stereoN.restrict(W)
sage: stereoS_W = stereoS.restrict(W)
sage: A = W.open_subset(A , coord_def={stereoN_W: (y!=0, x<0),
....: stereoS_W: (yp!=0, xp<0)})
sage: spher.<the,phi> = A.chart(r the:(0,pi):\theta phi:(0,2*pi):\phi)
sage: stereoN_A = stereoN_W.restrict(A)
sage: spher_to_stereoN = spher.transition_map(stereoN_A,
....: (sin(the)*cos(phi)/(1-cos(the)),
....: sin(the)*sin(phi)/(1-cos(the))))
sage: spher_to_stereoN.set_inverse(2*atan(1/sqrt(x^2+y^2)),
....: atan2(-y,-x)+pi)
Check of the inverse coordinate transformation:

the == 2*arctan(sqrt(-cos(the) + 1)/sqrt(cos(the) + 1)) **failed**
phi == pi + arctan2(sin(phi)*sin(the)/(cos(the) - 1),

cos(phi)*sin(the)/(cos(the) - 1)) **failed**
x == x *passed*
y == y *passed*

NB: a failed report can reflect a mere lack of simplification.
sage: stereoN_to_S_A = stereoN_to_S.restrict(A)
sage: spher_to_stereoS = stereoN_to_S_A * spher_to_stereoN
sage: stereoS_to_N_A = stereoN_to_S.inverse().restrict(A)
sage: stereoS_to_spher = spher_to_stereoN.inverse() * stereoS_to_N_A
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(stereoN, E): [2*x/(1+x^2+y^2),
....: 2*y/(1+x^2+y^2),
....: (x^2+y^2-1)/(1+x^2+y^2)],
....: (stereoS, E): [2*xp/(1+xp^2+yp^2),
....: 2*yp/(1+xp^2+yp^2),
....: (1-xp^2-yp^2)/(1+xp^2+yp^2)]},
....: name= Phi , latex_name=r \Phi)
sage: N.set_embedding(phi)

The method normal() now returns a tensor field along N:

sage: n = N.normal() # long time
sage: n # long time
Vector field n along the 2-dimensional Riemannian submanifold N
embedded in the Euclidean space E^3 with values on the Euclidean
space E^3

Let us check that the choice of orientation is coherent on the two top frames:

sage: n.restrict(V).display(format_spec=spher) # long time
n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z
sage: n.restrict(U).display(format_spec=spher) # long time
n = -cos(phi)*sin(the) e_X - sin(phi)*sin(the) e_Y - cos(the) e_Z

open_subset(name, latex_name=None, coord_def={}, supersets=None)
Create an open subset of self.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.

3.5. Pseudo-Riemannian submanifolds 953

Manifolds, Release 10.4.rc1

It is a differentiablemanifold by itself. Moreover, equippedwith the restriction of themanifoldmetric to itself,
it is a pseudo-Riemannian manifold.

As self is a submanifold of its ambient manifold, the new open subset is also considered a submanifold of
that. Hence the returned object is an instance of PseudoRiemannianSubmanifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none is provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_def must a be
dictionary with keys charts in the manifold’s atlas and values the symbolic expressions formed by the
coordinates to define the subset.

• supersets – (default: only self) list of sets that the new open subset is a subset of

OUTPUT:

• instance of PseudoRiemannianSubmanifold representing the created open subset

EXAMPLES:

sage: M = Manifold(3, M , structure="Riemannian")
sage: N = Manifold(2, N , ambient=M, structure="Riemannian"); N
2-dimensional Riemannian submanifold N immersed in the
3-dimensional Riemannian manifold M

sage: S = N.subset(S); S
Subset S of the
2-dimensional Riemannian submanifold N immersed in the
3-dimensional Riemannian manifold M

sage: O = N.subset(O , is_open=True); O # indirect doctest
Open subset O of the
2-dimensional Riemannian submanifold N immersed in the
3-dimensional Riemannian manifold M

sage: phi = N.diff_map(M)
sage: N.set_embedding(phi)
sage: N
2-dimensional Riemannian submanifold N embedded in the
3-dimensional Riemannian manifold M

sage: S = N.subset(S); S
Subset S of the
2-dimensional Riemannian submanifold N embedded in the
3-dimensional Riemannian manifold M

sage: O = N.subset(O , is_open=True); O # indirect doctest
Open subset O of the
2-dimensional Riemannian submanifold N embedded in the
3-dimensional Riemannian manifold M

principal_curvatures(chart)
Return the principal curvatures of the submanifold.

The principal curvatures are the eigenvalues of the projection operator. The resulting scalar fields are named
k_i with the index i ranging from 0 to the submanifold dimension minus one.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

INPUT:

• chart – chart in which the principal curvatures are to be computed

954 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• the principal curvatures, as a list of scalar fields on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.principal_curvatures(stereoN) # long time
[Scalar field k_0 on the 1-dimensional Riemannian submanifold N
embedded in the Euclidean plane E^2]

sage: N.principal_curvatures(stereoN)[0].display() # long time
k_0: N → ℝ
on U: x ↦ -1
on W: y ↦ -1

principal_directions(chart)
Return the principal directions of the submanifold.

The principal directions are the eigenvectors of the projection operator. The result is formatted as a list of
pairs (eigenvector, eigenvalue).

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

INPUT:

• chart – chart in which the principal directions are to be computed

OUTPUT:

• list of pairs (vector field, scalar field) representing the principal directions and the associated principal
curvatures

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),

(continues on next page)

3.5. Pseudo-Riemannian submanifolds 955

Manifolds, Release 10.4.rc1

(continued from previous page)

....: intersection_name= W ,

....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)
sage: N.principal_directions(stereoN) # long time
[(Vector field e_0 on the 1-dimensional Riemannian submanifold N

embedded in the Euclidean plane E^2, -1)]
sage: N.principal_directions(stereoN)[0][0].display() # long time
e_0 = ∂/∂x

project(tensor)
Return the orthogonal projection of a tensor field onto the submanifold.

INPUT:

• tensor – any tensor field to be projected onto the submanifold. If no foliation is provided, must be a
tensor field along the submanifold.

OUTPUT:

• orthogonal projection of tensor onto the submanifold, as a tensor field of the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()

Let us perform the projection of the ambient metric and check that it is equal to the first fundamental form:

sage: pg = N.project(M.metric()); pg # long time
Tensor field of type (0,2) on the Euclidean space E^3
sage: pg == N.ambient_first_fundamental_form() # long time
True

Note that the output of project() is not cached.

projector()

Return the orthogonal projector onto the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

956 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• the orthogonal projector onto the submanifold, as tensor field of type (1,1) on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()

The orthogonal projector onto N is a type-(1,1) tensor field on M:

sage: N.projector() # long time
Tensor field gamma of type (1,1) on the Euclidean space E^3

Check that the orthogonal projector applied to the normal vector is zero:

sage: N.projector().contract(N.normal()).display() # long time
0

second_fundamental_form()

Return the second fundamental form of the submanifold.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the second fundamental form, as a symmetric tensor field of type (0,2) on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})
sage: N.set_embedding(phi)

(continues on next page)

3.5. Pseudo-Riemannian submanifolds 957

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: N.second_fundamental_form() # long time
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2

sage: N.second_fundamental_form().display() # long time
K = -4/(x^4 + 8*x^2 + 16) dx⊗dx

An alias is extrinsic_curvature:

sage: N.extrinsic_curvature().display() # long time
K = -4/(x^4 + 8*x^2 + 16) dx⊗dx

An example with a non-Euclidean ambient metric:

sage: M = Manifold(2, M , structure= Riemannian)
sage: N = Manifold(1, N , ambient=M, structure= Riemannian ,
....: start_index=1)
sage: CM.<x,y> = M.chart()
sage: CN.<u> = N.chart()
sage: g = M.metric()
sage: g[0, 0], g[1, 1] = 1, 1/(1 + y^2)^2
sage: phi = N.diff_map(M, (u, u))
sage: N.set_embedding(phi)
sage: N.second_fundamental_form()
Field of symmetric bilinear forms K on the 1-dimensional Riemannian
submanifold N embedded in the 2-dimensional Riemannian manifold M

sage: N.second_fundamental_form().display()
K = 2*sqrt(u^4 + 2*u^2 + 2)*u/(u^6 + 3*u^4 + 4*u^2 + 2) du⊗du

shape_operator()

Return the shape operator of the submanifold.

The shape operator is equal to the second fundamental form with one of the indices upped.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• the shape operator, as a tensor field of type (1,1) on the submanifold

EXAMPLES:

A unit circle embedded in the Euclidean plane:

sage: M.<X,Y> = EuclideanSpace()
sage: N = Manifold(1, N , ambient=M, structure="Riemannian")
sage: U = N.open_subset(U)
sage: V = N.open_subset(V)
sage: N.declare_union(U,V)
sage: stereoN.<x> = U.chart()
sage: stereoS.<y> = V.chart()
sage: stereoN_to_S = stereoN.transition_map(stereoS, (4/x),
....: intersection_name= W ,
....: restrictions1=x!=0, restrictions2=y!=0)
sage: stereoS_to_N = stereoN_to_S.inverse()
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M,
....: {(stereoN, E): [1/sqrt(1+x^2/4), x/2/sqrt(1+x^2/4)],
....: (stereoS, E): [1/sqrt(1+4/y^2), 2/y/sqrt(1+4/y^2)]})

(continues on next page)

958 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: N.set_embedding(phi)
sage: N.shape_operator() # long time
Tensor field of type (1,1) on the 1-dimensional Riemannian
submanifold N embedded in the Euclidean plane E^2

sage: N.shape_operator().display() # long time
-∂/∂x⊗dx

shift()

Return the shift vector associated with the first adapted chart of the foliation.

The result is cached, so calling this method multiple times always returns the same result at no additional cost.

OUTPUT:

• shift vector field on the ambient manifold

EXAMPLES:

Foliation of the Euclidean 3-space by 2-spheres parametrized by their radii:

sage: M.<x,y,z> = EuclideanSpace()
sage: N = Manifold(2, N , ambient=M, structure="Riemannian")
sage: C.<th,ph> = N.chart(r th:(0,pi):\theta ph:(-pi,pi):\phi)
sage: r = var(r , domain= real) # foliation parameter
sage: assume(r>0)
sage: E = M.cartesian_coordinates()
sage: phi = N.diff_map(M, {(C,E): [r*sin(th)*cos(ph),
....: r*sin(th)*sin(ph),
....: r*cos(th)]})
sage: phi_inv = M.diff_map(N, {(E,C): [arccos(z/r), atan2(y,x)]})
sage: phi_inv_r = M.scalar_field({E: sqrt(x^2+y^2+z^2)})
sage: N.set_embedding(phi, inverse=phi_inv, var=r,
....: t_inverse={r: phi_inv_r})
sage: T = N.adapted_chart()
sage: N.shift() # long time
Vector field beta on the Euclidean space E^3
sage: N.shift().display() # long time
beta = 0

3.6 Degenerate Metric Manifolds

3.6.1 Degenerate manifolds

3.6. Degenerate Metric Manifolds 959

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.degenerate.DegenerateManifold(n, name, met-
ric_name=None,
signature=None,
base_mani-
fold=None,
diff_degree=+In-
finity,
la-
tex_name=None,
metric_la-
tex_name=None,
start_index=0,
category=None,
unique_tag=None)

Bases: DifferentiableManifold

Degenerate Manifolds

A degenerate manifold (or a null manifold) is a pair (𝑀, 𝑔) where𝑀 is a real differentiable manifold (see Dif-
ferentiableManifold) and 𝑔 is a field of degenerate symmetric bilinear forms on𝑀 (see Degenerate-
Metric).

INPUT:

• n – positive integer; dimension of the manifold

• name – string; name (symbol) given to the manifold

• metric_name – (default: None) string; name (symbol) given to the metric; if None, g is used

• signature – (default: None) signature 𝑆 of the metric as a tuple: 𝑆 = (𝑛+, 𝑛−, 𝑛0), where 𝑛+ (resp.
𝑛−, resp. 𝑛0) is the number of positive terms (resp. negative terms, resp. zero tems) in any diagonal writing
of the metric components; if signature is not provided, 𝑆 is set to (𝑛𝑑𝑖𝑚 − 1, 0, 1), being 𝑛𝑑𝑖𝑚 the
manifold’s dimension

• ambient – (default: None) if not None, must be a differentiable manifold; the created object is then an
open subset of ambient

• diff_degree – (default: infinity) degree 𝑘 of differentiability

• latex_name – (default: None) string; LaTeX symbol to denote the manifold; if none is provided, it is set
to name

• metric_latex_name – (default: None) string; LaTeX symbol to denote the metric; if none is provided,
it is set to metric_name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on the
manifold, e.g. coordinates in a chart

• category – (default: None) to specify the category; if None, Manifolds(RR).
Differentiable() (or Manifolds(RR).Smooth() if diff_degree = infinity) is
assumed (see the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other ar-
guments have been used previously (without unique_tag, the UniqueRepresentation behavior in-
herited from ManifoldSubset, via DifferentiableManifold and TopologicalManifold,
would return the previously constructed object corresponding to these arguments).

EXAMPLES:

A degenerate manifold is constructed via the generic function Manifold(), using the keyword structure:

960 Chapter 3. Pseudo-Riemannian Manifolds

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure= degenerate_metric)
sage: M
3-dimensional degenerate_metric manifold M
sage: M.parent()
<class sage.manifolds.differentiable.degenerate.DegenerateManifold_with_category
→˓ >

The metric associated with M is:

sage: g = M.metric()
sage: g
degenerate metric g on the 3-dimensional degenerate_metric manifold M
sage: g.signature()
(0, 2, 1)

Its value has to be initialized either by setting its components in various vector frames (see the above examples
regarding the 2-sphere and Minkowski spacetime) or by making it equal to a given field of symmetric bilinear
forms (see the method set() of the metric class). Both methods are also covered in the documentation of method
metric() below.

REFERENCES:

• [DB1996]

• [DS2010]

metric(name=None, signature=None, latex_name=None, dest_map=None)
Return the metric giving the null manifold structure to the manifold, or define a new metric tensor on the
manifold.

INPUT:

• name – (default: None) name given to the metric; if name is None or matches the name of the metric
defining the null manifold structure of self, the latter metric is returned

• signature – (default: None; ignored if name is None) signature 𝑆 of the metric as a tuple: 𝑆 =
(𝑛+, 𝑛−, 𝑛0), where 𝑛+ (resp. 𝑛−, resp. 𝑛0) is the number of positive terms (resp. negative terms, resp.
zero tems) in any diagonal writing of the metric components; if signature is not provided, 𝑆 is set
to (𝑛𝑑𝑖𝑚− 1, 0, 1), being 𝑛𝑑𝑖𝑚 the manifold’s dimension

• latex_name – (default: None; ignored if name is None) LaTeX symbol to denote the metric; if
None, it is formed from name

• dest_map – (default: None; ignored if name is None) instance of class DiffMap representing the
destination map Φ : 𝑈 → 𝑀 , where 𝑈 is the current manifold; if None, the identity map is assumed
(case of a metric tensor field on 𝑈)

OUTPUT:

• instance of DegenerateMetric

EXAMPLES:

Metric of a 3-dimensional degenerate manifold:

sage: M = Manifold(3, M , structure= degenerate_metric , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: g = M.metric(); g
degenerate metric g on the 3-dimensional degenerate_metric manifold M

3.6. Degenerate Metric Manifolds 961

Manifolds, Release 10.4.rc1

The metric remains to be initialized, for instance by setting its components in the coordinate frame associated
to the chart X:

sage: g[1,1], g[2,2] = -1, 1
sage: g.display()
g = -dx⊗dx + dy⊗dy
sage: g[:]
[-1 0 0]
[0 1 0]
[0 0 0]

Alternatively, the metric can be initialized from a given field of degenerate symmetric bilinear forms; we may
create the former object by:

sage: X.coframe()
Coordinate coframe (M, (dx,dy,dz))
sage: dx, dy = X.coframe()[1], X.coframe()[2]
sage: b = dx*dx + dy*dy
sage: b
Field of symmetric bilinear forms dx⊗dx+dy⊗dy on the 3-dimensional
degenerate_metric manifold M

We then use the metric method set() to make g being equal to b as a symmetric tensor field of type (0,2):

sage: g.set(b)
sage: g.display()
g = dx⊗dx + dy⊗dy

Another metric can be defined on M by specifying a metric name distinct from that chosen at the creation of
the manifold (which is g by default, but can be changed thanks to the keyword metric_name in Mani-
fold()):

sage: h = M.metric(h); h
degenerate metric h on the 3-dimensional degenerate_metric manifold M
sage: h[1,1], h[2,2], h[3,3] = 1+y^2, 1+z^2, 1+x^2
sage: h.display()
h = (y^2 + 1) dx⊗dx + (z^2 + 1) dy⊗dy + (x^2 + 1) dz⊗dz

The metric tensor h is distinct from the metric entering in the definition of the degenerate manifold M:

sage: h is M.metric()
False

while we have of course:

sage: g is M.metric()
True

Providing the same name as the manifold’s default metric returns the latter:

sage: M.metric(g) is M.metric()
True

open_subset(name, latex_name=None, coord_def={})
Create an open subset of self.

An open subset is a set that is (i) included in the manifold and (ii) open with respect to the manifold’s topology.
It is a differentiablemanifold by itself. Moreover, equippedwith the restriction of themanifoldmetric to itself,

962 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

it is a null manifold. Hence the returned object is an instance of DegenerateManifold.

INPUT:

• name – name given to the open subset

• latex_name – (default: None) LaTeX symbol to denote the subset; if none is provided, it is set to
name

• coord_def – (default: {}) definition of the subset in terms of coordinates; coord_def must a be
dictionary with keys charts in the manifold’s atlas and values the symbolic expressions formed by the
coordinates to define the subset.

OUTPUT:

• instance of DegenerateManifold representing the created open subset

EXAMPLES:

Open subset of a 3-dimensional degenerate manifold:

sage: M = Manifold(3, M , structure= degenerate_metric , start_index=1)
sage: X.<x,y,z> = M.chart()
sage: U = M.open_subset(U , coord_def={X: [x>0, y>0]}); U
Open subset U of the 3-dimensional degenerate_metric manifold M
sage: type(U)
<class sage.manifolds.differentiable.degenerate.DegenerateManifold_with_
→˓category >

We initialize the metric of M:

sage: g = M.metric()
sage: g[1,1], g[2,2] = -1, 1

Then the metric on U is determined as the restriction of g to U:

sage: gU = U.metric(); gU
degenerate metric g on the Open subset U of the 3-dimensional
degenerate_metric manifold M
sage: gU.display()
g = -dx⊗dx + dy⊗dy
sage: gU is g.restrict(U)
True

class sage.manifolds.differentiable.degenerate.TangentTensor(tensor, embedding,
screen=None)

Bases: TensorFieldParal

Let S be a lightlike submanifold embedded in a pseudo-Riemannian manifold (M,g) with Phi the embedding
map. Let T1 be a tensor on M along S or not. TangentTensor(T1, Phi) returns the restriction T2 of T1
along S that in addition can be applied only on vector fields tangent to S, when T1 has a covariant part.

INPUT:

• tensor – a tensor field on the ambient manifold

• embedding – the embedding map Phi

EXAMPLES:

Section of the lightcone of the Minkowski space with a hyperplane passing through the origin:

3.6. Degenerate Metric Manifolds 963

Manifolds, Release 10.4.rc1

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(2, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [sqrt(u^2+v^2), u, v, 0]},
....: name= Phi , latex_name=r \Phi)
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x, y]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1})
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1, 1, 1, 1
sage: V = M.vector_field(0,0,0,1)
sage: S.set_transverse(rigging=t, normal=V)
sage: xi = M.vector_field(sqrt(x^2+y^2+z^2), x, y, 0)
sage: U = M.vector_field(0, -y, x, 0)
sage: Sc = S.screen(Sc , U, xi);
sage: T1 = M.tensor_field(1,1).along(Phi); T1[0,0] = 1
sage: V1 = M.vector_field().along(Phi); V1[0] = 1; V1[1]=1
sage: T1(V1).display()
∂/∂t
sage: from sage.manifolds.differentiable.degenerate_submanifold import␣
→˓TangentTensor
sage: T2 = TangentTensor(T1, Phi)
sage: T2
Tensor field of type (1,1) along the 2-dimensional degenerate
submanifold S embedded in 4-dimensional differentiable manifold M
with values on the 4-dimensional Lorentzian manifold M

sage: V2 = S.projection(V1)
sage: T2(V2).display()
u/sqrt(u^2 + v^2) ∂/∂t

Of course 𝑇1 and 𝑇2 give the same output on vector fields tangent to S:

sage: T1(xi.along(Phi)).display()
sqrt(u^2 + v^2) ∂/∂t
sage: T2(xi.along(Phi)).display()
sqrt(u^2 + v^2) ∂/∂t

extension()

Return initial tensor

EXAMPLES:

Section of the lightcone of the Minkowski space with a hyperplane passing through the origin:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(2, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [sqrt(u^2+v^2), u, v, 0]},
....: name= Phi , latex_name=r \Phi)
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x, y]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1})
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: V = M.vector_field(); V[3] = 1
sage: S.set_transverse(rigging=t, normal=V)

(continues on next page)

964 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: xi = M.vector_field(); xi[0] = sqrt(x^2+y^2+z^2); xi[1] = x; xi[2] = y
sage: U = M.vector_field(); U[1] = -y; U[2] = x
sage: Sc = S.screen(Sc , U, xi);
sage: T1 = M.tensor_field(1,1).along(Phi); T1[0,0] = 1
sage: from sage.manifolds.differentiable.degenerate_submanifold import␣
→˓TangentTensor
sage: T2 = TangentTensor(T1, Phi); T3 = T2.extension()
sage: T3 is T2
False
sage: T3 is T1
True

3.6.2 Degenerate submanifolds

An embedded (resp. immersed) degenerate submanifold of a proper pseudo-Riemannian manifold (𝑀, 𝑔) is an embedded
(resp. immersed) submanifold 𝐻 of 𝑀 as a differentiable manifold such that pull back of the metric tensor 𝑔 via the
embedding (resp. immersion) endows𝐻 with the structure of a degenerate manifold.

Degenerate submanifolds are study in many fields of mathematics and physics, for instance in Differential Geometry (es-
pecially in geometry of lightlike submanifold) and in General Relativity. In geometry of lightlike submanifolds, according
to the dimension 𝑟 of the radical distribution (see below for definition of radical distribution), degenerate submanifolds
have been classified into 4 subgroups: 𝑟-lightlike submanifolds, Coisotropic submanifolds, Isotropic submanifolds and
Totally lightlike submanifolds. (See the book of Krishan L. Duggal and Aurel Bejancu [DS2010].)

In the present module, you can define any of the 4 types but most of the methods are implemented only for degenerate
hypersurfaces who belong to 𝑟-lightlike submanifolds. However, they might be generalized to 1-lightlike submanifolds.
In the literature there is a new approach (the rigging technique) for studying 1-lightlike submanifolds but here we use the
method of Krishan L. Duggal and Aurel Bejancu based on the screen distribution.

Let 𝐻 be a lightlike hypersurface of a pseudo-Riemannian manifold (𝑀, 𝑔). Then the normal bundle 𝑇𝐻⊥ intersect
the tangent bundle 𝑇𝐻 . The radical distribution is defined as 𝑅𝑎𝑑(𝑇𝐻) = 𝑇𝐻 ∩ 𝑇𝐻⊥. In case of hypersurfaces, and
more generally 1-lightlike submanifolds, this is a rank 1 distribution. A screen distribution 𝑆(𝑇𝐻) is a complementary
of 𝑅𝑎𝑑(𝑇𝐻) in 𝑇𝐻 .

Giving a screen distribution 𝑆(𝑇𝐻) and a null vector field 𝜉 locally defined and spanning𝑅𝑎𝑑(𝑇𝐻), there exists a unique
transversal null vector field ‘N’ locally defined and such that 𝑔(𝑁, 𝜉) = 1. From a transverse vector ‘v’, the null rigging
‘N’ is giving by the formula

𝑁 =
1

𝑔(𝜉, 𝑣)

(︂
𝑣 − 𝑔(𝑣, 𝑣)

2𝑔(𝜉, 𝑣)
𝜉

)︂
Tensors on the ambient manifold 𝑀 are projected on 𝐻 along 𝑁 to obtain induced objects. For instance, induced
connection is the linear connection defined on H through the Levi-Civitta connection of 𝑔 along 𝑁 .

To work on a degenerate submanifold, after defining 𝐻 as an instance of DifferentiableManifold, with the
keyword structure= degenerate_metric , you have to set a transvervector 𝑣 and screen distribution together
with the radical distribution.

An example of degenerate submanifold from General Relativity is the horizon of the Schwarzschild black hole. Allow us
to recall that Schwarzschild black hole is the first non-trivial solution of Einstein’s equations. It describes the metric inside
a star of radius 𝑅 = 2𝑚, being 𝑚 the inertial mass of the star. It can be seen as an open ball in a Lorentzian manifold
structure on R4:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X_M.<t, r, th, ph> = \

(continues on next page)

3.6. Degenerate Metric Manifolds 965

Manifolds, Release 10.4.rc1

(continued from previous page)

....: M.chart(r"t r:(0,oo) th:(0,pi):\theta ph:(0,2*pi):\phi")
sage: var(m); assume(m>0)
m
sage: g = M.metric()
sage: g[0,0], g[0,1], g[1,1], g[2,2], g[3,3] = \
....: -1+2*m/r, 2*m/r, 1+2*m/r, r^2, r^2*sin(th)^2

Let us define the horizon as a degenerate hypersurface:

sage: H = Manifold(3, H , ambient=M, structure= degenerate_metric)
sage: H
degenerate hypersurface H embedded in 4-dimensional differentiable
manifold M

A 2-dimensional degenerate submanifold of a Lorentzian manifold:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(2, S , ambient=M, structure= degenerate_metric)
sage: S
2-dimensional degenerate submanifold S embedded in 4-dimensional
differentiable manifold M
sage: X_S.<u,v> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, u, v]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=[x,y])
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , V, xi)

sage: S.default_screen()
screen distribution Sc along the 2-dimensional degenerate submanifold
S embedded in 4-dimensional differentiable manifold M mapped into
the 4-dimensional Lorentzian manifold M

sage: S.ambient_metric()
Lorentzian metric g on the 4-dimensional Lorentzian manifold M

sage: S.induced_metric()
degenerate metric gamma on the 2-dimensional degenerate submanifold S
embedded in 4-dimensional differentiable manifold M

sage: S.first_fundamental_form()
Field of symmetric bilinear forms g|S along the 2-dimensional
degenerate submanifold S embedded in 4-dimensional differentiable manifold M
with values on the 4-dimensional Lorentzian manifold M

sage: S.adapted_frame()
Vector frame (S, (vv_0,vv_1,vv_2,vv_3)) with values on the 4-dimensional Lorentzian␣
→˓manifold M

sage: S.projection(V)
(continues on next page)

966 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

Tensor field of type (1,0) along the 2-dimensional degenerate submanifold S
embedded in 4-dimensional differentiable manifold M
with values on the 4-dimensional Lorentzian manifold M

sage: S.weingarten_map() # long time
Tensor field nabla_g(xi)|X(S) of type (1,1) along the 2-dimensional
degenerate submanifold S embedded in 4-dimensional differentiable manifold M
with values on the 4-dimensional Lorentzian manifold M

sage: SO = S.shape_operator() # long time
sage: SO.display() # long time
A^* = 0

sage: S.is_tangent(xi.along(Phi))
True
sage: v = M.vector_field(); v[1] = 1
sage: S.is_tangent(v.along(Phi))
False

AUTHORS:

• Hans Fotsing Tetsing (2019) : initial version

REFERENCES:

• [DB1996]

• [DS2010]

• [FNO2019]

3.6. Degenerate Metric Manifolds 967

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.degenerate_submanifold.DegenerateSubmanifold(n,
name,
am-
bi-
ent=None,
met-
ric_name=None,
sig-
na-
ture=None,
base_man-
i-
fold=None,
diff_de-
gree=+In-
fin-
ity,
la-
tex_name=None,
met-
ric_la-
tex_name=None,
start_in-
dex=0,
cat-
e-
gory=None,
unique_tag=None)

Bases: DegenerateManifold, DifferentiableSubmanifold

Degenerate submanifolds

An embedded (resp. immersed) degenerate submanifold of a proper pseudo-Riemannian manifold (𝑀, 𝑔) is an
embedded (resp. immersed) submanifold 𝐻 of 𝑀 as a differentiable manifold such that pull back of the metric
tensor 𝑔 via the embedding (resp. immersion) endows𝐻 with the structure of a degenerate manifold.

INPUT:

• n – positive integer; dimension of the manifold

• name – string; name (symbol) given to the manifold

• ambient – (default: None) pseudo-Riemannian manifold 𝑀 in which the submanifold is embedded (or
immersed). If None, it is set to self

• metric_name – (default: None) string; name (symbol) given to the metric; if None, g is used

• signature – (default: None) signature 𝑆 of the metric as a tuple: 𝑆 = (𝑛+, 𝑛−, 𝑛0), where 𝑛+ (resp.
𝑛−, resp. 𝑛0) is the number of positive terms (resp. negative terms, resp. zero tems) in any diagonal writing
of the metric components; if signature is not provided, 𝑆 is set to (𝑛𝑑𝑖𝑚 − 1, 0, 1), being 𝑛𝑑𝑖𝑚 the
manifold’s dimension

• base_manifold – (default: None) if not None, must be a topological manifold; the created object is
then an open subset of base_manifold

• diff_degree – (default: infinity) degree of differentiability

• latex_name – (default: None) string; LaTeX symbol to denote the manifold; if none are provided, it is
set to name

968 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

• metric_latex_name – (default: None) string; LaTeX symbol to denote the metric; if none is provided,
it is set to metric_name

• start_index – (default: 0) integer; lower value of the range of indices used for “indexed objects” on
the manifold, e.g., coordinates in a chart - category – (default: None) to specify the category; if None,
Manifolds(field) is assumed (see the category Manifolds)

• unique_tag – (default: None) tag used to force the construction of a new object when all the other
arguments have been used previously (without unique_tag, the UniqueRepresentation behavior
inherited from ManifoldSubset would return the previously constructed object corresponding to these
arguments)

See also:

manifold and differentiable_submanifold

adapted_frame(screen=None)

Return a frame (𝑒1, . . . , 𝑒𝑝, 𝜉1, . . . , 𝜉𝑟, 𝑣1, . . . , 𝑣𝑞, 𝑁1, . . . , 𝑁𝑛) of the ambient manifold along the submani-
fold, being 𝑒𝑖 vector fields spanning the giving screen distribution, 𝜉𝑖 vector fields spanning radical distribution,
𝑣𝑖 normal transversal vector fields, 𝑁𝑖 rigging vector fields corresponding to the giving screen.

INPUT:

• screen – (default: None) an instance of Screen. if None default screen is used.

OUTPUT:

• a frame on the ambient manifold along the submanifold

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: T = S.adapted_frame(); T # long time
Vector frame (S, (vv_0,vv_1,vv_2,vv_3)) with values on the 4-dimensional
Lorentzian manifold M

ambient_metric()

Return the metric of the ambient manifold. The submanifold has to be embedded

OUTPUT:

• the metric of the ambient manifold

EXAMPLES:

The lightcone of the 3D Minkowski space:

3.6. Degenerate Metric Manifolds 969

../../../../../../../html/en/reference/categories/sage/categories/manifolds.html#sage.categories.manifolds.Manifolds
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Manifolds, Release 10.4.rc1

sage: M = Manifold(3, M , structure="Lorentzian")
sage: X.<t,x,y> = M.chart()
sage: S = Manifold(2, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [sqrt(u^2+v^2), u, v]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x, y]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: S.ambient_metric()
Lorentzian metric g on the 3-dimensional Lorentzian manifold M

default_screen()

Return the default screen distribution

OUTPUT:

• an instance of Screen

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi) # long time
sage: S.default_screen() # long time
screen distribution Sc along the degenerate hypersurface S embedded
in 4-dimensional differentiable manifold M mapped into the 4-dimensional
Lorentzian manifold M

extrinsic_curvature(screen=None)

This method is implemented only for null hypersurfaces. The method returns a tensor 𝐵 of type (0, 2)
instance of TangentTensor such that for two vector fields 𝑈, 𝑉 on the ambient manifold along the null
hypersurface, one has:

∇𝑈𝑉 = 𝐷(𝑈, 𝑉) +𝐵(𝑈, 𝑉)𝑁

being ∇ the ambient connection, 𝐷 the induced connection and 𝑁 the chosen rigging.

INPUT:

• screen – (default: None) an instance of Screen. If None, the default screen is used

OUTPUT:

• an instance of TangentTensor

970 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: B = S.second_fundamental_form(); # long time
sage: B.display() # long time
B = 0

first_fundamental_form()

Return the restriction of the ambient metric on vector field along the submanifold and tangent to it. It is
difference from induced metric who gives the pullback of the ambient metric on the submanifold.

OUTPUT:

• the first fundamental form, as an instance of TangentTensor

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: h = S.first_fundamental_form() # long time

gauss_curvature(screen=None)

Gauss curvature is the product of all eigenfunctions of the shape operator.

INPUT:

• screen – (default: None) an instance of Screen. If None the default screen is used.

OUTPUT:

3.6. Degenerate Metric Manifolds 971

Manifolds, Release 10.4.rc1

• a scalar function on self

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: K = S.gauss_curvature(); # long time
sage: K.display() # long time
S → ℝ
(u, v, w) ↦ 0

induced_metric()

Return the pullback of the ambient metric.

OUTPUT:

• induced metric, as an instance of DegenerateMetric

EXAMPLES:

Section of the lightcone of the Minkowski space with a hyperplane passing through the origin:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(2, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [sqrt(u^2+v^2), u, v, 0]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x, y]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: h = S.induced_metric(); h # long time
degenerate metric gamma on the 2-dimensional degenerate
submanifold S embedded in 4-dimensional differentiable manifold M

is_tangent(v)
Determine whether a vector field on the ambient manifold along self is tangent to self or not.

INPUT:

• v – field on the ambient manifold along self

OUTPUT:

• True if v is everywhere tangent to self or False if not

972 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: v = M.vector_field(); v[1] = 1
sage: S.set_transverse(rigging=v)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: S.is_tangent(xi.along(Phi)) # long time
True
sage: S.is_tangent(v.along(Phi)) # long time
False

list_of_screens()

Return the default screen distribution.

OUTPUT:

• an instance of Screen

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi)
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1})
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi) # long time
sage: S.list_of_screens() # long time
{ Sc : screen distribution Sc along the degenerate hypersurface S
embedded in 4-dimensional differentiable manifold M mapped into the
4-dimensional Lorentzian manifold M}

mean_curvature(screen=None)

Mean curvature is the sum of principal curvatures. This method is implemented only for hypersurfaces.

INPUT:

3.6. Degenerate Metric Manifolds 973

Manifolds, Release 10.4.rc1

• screen – (default: None) an instance of Screen. If None the default screen is used.

OUTPUT:

• the mean curvature, as a scalar field on the submanifold

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: m = S.mean_curvature(); m # long time
Scalar field on the degenerate hypersurface S embedded in 4-dimensional
differentiable manifold M
sage: m.display() # long time
S → ℝ
(u, v, w) ↦ 0

principal_directions(screen=None)
Principal directions are eigenvectors of the shape operator. This method is implemented only for hypersur-
faces.

INPUT:

• screen – (default: None) an instance of Screen. If None default screen is used.

OUTPUT:

• list of pairs (vector field, scalar field) representing the principal directions and the associated principal
curvatures

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)

(continues on next page)

974 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); T = S.adapted_frame() # long time
sage: PD = S.principal_directions() # long time
sage: PD[2][0].display(T) # long time
e_2 = xi

projection(tensor, screen=None)
For a given tensor 𝑇 of type (𝑟, 1) on the ambient manifold, this method returns the tensor 𝑇 ′ of type (𝑟, 1)
such that for 𝑟 vector fields 𝑣1, . . . , 𝑣𝑟, 𝑇 ′(𝑣1, . . . , 𝑣𝑟) is the projection of 𝑇 (𝑣1, . . . , 𝑣𝑟) on self along the
bundle spanned by the transversal vector fields provided by set_transverse().

INPUT:

• tensor – a tensor of type (𝑟, 1) on the ambient manifold

OUTPUT:

• a tensor of type (𝑟, 1) on the ambient manifold along self

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: U1 = S.projection(U) # long time

screen(name, screen, rad, latex_name=None)
For setting a screen distribution and vector fields of the radical distribution that will be used for computations

INPUT:

• name – string (default: None); name given to the screen

• latex_name – string (default: None); LaTeX symbol to denote the screen; if None, the LaTeX
symbol is set to name

• screen – list or tuple of vector fields of the ambient manifold or chart function; of the ambient manifold
in the latter case, the corresponding gradient vector field with respect to the ambient metric is calculated;
the vectors must be linearly independent, tangent to the submanifold but not normal

• rad – – list or tuple of vector fields of the ambient manifold or chart function; of the ambient manifold
in the latter case, the corresponding gradient vector field with respect to the ambient metric is calculated;
the vectors must be linearly independent, tangent and normal to the submanifold

EXAMPLES:

3.6. Degenerate Metric Manifolds 975

Manifolds, Release 10.4.rc1

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); Sc # long time
screen distribution Sc along the degenerate hypersurface S embedded
in 4-dimensional differentiable manifold M mapped into the 4-dimensional
Lorentzian manifold M

screen_projection(tensor, screen=None)
For a given tensor 𝑇 of type (𝑟, 1) on the ambient manifold, this method returns the tensor 𝑇 ′ of type (𝑟, 1)
such that for 𝑟 vector fields 𝑣1, . . . , 𝑣𝑟, 𝑇 ′(𝑣1, . . . , 𝑣𝑟) is the projection of 𝑇 (𝑣1, . . . , 𝑣𝑟) on the bundle
spanned by screen along the bundle spanned by the transversal plus the radical vector fields provided.

INPUT:

• tensor – a tensor of type (𝑟, 1) on the ambient manifold

OUTPUT:

• a tensor of type (𝑟, 1) on the ambient manifold

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: U1 = S.screen_projection(U); # long time

second_fundamental_form(screen=None)
This method is implemented only for null hypersurfaces. The method returns a tensor 𝐵 of type (0, 2)
instance of TangentTensor such that for two vector fields 𝑈, 𝑉 on the ambient manifold along the null

976 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

hypersurface, one has:

∇𝑈𝑉 = 𝐷(𝑈, 𝑉) +𝐵(𝑈, 𝑉)𝑁

being ∇ the ambient connection, 𝐷 the induced connection and 𝑁 the chosen rigging.

INPUT:

• screen – (default: None) an instance of Screen. If None, the default screen is used

OUTPUT:

• an instance of TangentTensor

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: S.set_transverse(rigging=x)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: B = S.second_fundamental_form(); # long time
sage: B.display() # long time
B = 0

set_transverse(rigging=None, normal=None)
For setting a transversal distribution of the degenerate submanifold.

According to the type of the submanifold among the 4 possible types, one must enter a list of normal transver-
sal vector fields and/or a list of transversal and not normal vector fields spanning a transverse distribution.

INPUT:

• rigging – list or tuple (default: None); list of vector fields of the ambient manifold or chart function;
of the ambient manifold in the latter case, the corresponding gradient vector field with respect to the
ambient metric is calculated; the vectors must be linearly independent, transversal to the submanifold
but not normal

• normal – list or tuple (default: None); list of vector fields of the ambient manifold or chart function;
of the ambient manifold in the latter case, the corresponding gradient vector field with respect to the
ambient metric is calculated; the vectors must be linearly independent, transversal and normal to the
submanifold

EXAMPLES:

The lightcone of the 3-dimensional Minkowski space R3
1:

sage: M = Manifold(3, M , structure="Lorentzian")
sage: X.<t,x,y> = M.chart()

(continues on next page)

3.6. Degenerate Metric Manifolds 977

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: S = Manifold(2, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [sqrt(u^2+v^2), u, v]},
....: name= Phi , latex_name=r \Phi)
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x, y]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1})
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2] = -1,1,1
sage: S.set_transverse(rigging=t)

shape_operator(screen=None)

This method is implemented only for hypersurfaces. shape operator is the projection of the Weingarten map
on the screen distribution along the radical distribution.

INPUT:

• screen – (default: None) an instance of Screen. If None the default screen is used.

OUTPUT:

• tensor of type (1, 1) instance of TangentTensor

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: v = M.vector_field(); v[1] = 1
sage: S.set_transverse(rigging=v)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: SO = S.shape_operator(); # long time
sage: SO.display() # long time
A^* = 0

weingarten_map(screen=None)
This method is implemented only for hypersurfaces. Weigarten map is the 1-form 𝑊 defined for a vector
field 𝑈 tangent to self by

𝑊 (𝑈) = ∇𝑈𝜉

being∇ the Levi-Civita connection of the ambient manifold and 𝜉 the chosen vector field spanning the radical
distribution.

INPUT:

• screen – (default: None) an instance of Screen. If None the default screen is used.

978 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

OUTPUT:

• tensor of type (1, 1) instance of TangentTensor

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: v = M.vector_field(); v[1] = 1
sage: S.set_transverse(rigging=v)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: W = S.weingarten_map(); # long time
sage: W.display() # long time
nabla_g(xi)|X(S) = 0

class sage.manifolds.differentiable.degenerate_submanifold.Screen(submanifold,
name, screen, rad,
la-
tex_name=None)

Bases: VectorFieldModule

Let𝐻 be a lightlike submanifold embedded in a pseudo-Riemannian manifold (𝑀, 𝑔) with Φ the embedding map.
A screen distribution is a complementary 𝑆(𝑇𝐻) of the radical distribution 𝑅𝑎𝑑(𝑇𝑀) = 𝑇𝐻 ∩ 𝑇𝐻⊥ in 𝑇𝐻 .
One then has

𝑇𝐻 = 𝑆(𝑇𝐻)⊕𝑜𝑟𝑡ℎ 𝑅𝑎𝑑(𝑇𝐻)

INPUT:

• submanifold – a lightlike submanifold, as an instance of DegenerateSubmanifold

• name – name given to the screen distribution

• screen – vector fields of the ambient manifold which span the screen distribution

• rad – vector fields of the ambient manifold which span the radical distribution

• latex_name – (default: None) LaTeX symbol to denote the screen distribution; if None, it is formed
from name

EXAMPLES:

The horizon of the Schwarzschild black hole:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X_M.<t, r, th, ph> = \
....: M.chart(r"t r:(0,oo) th:(0,pi):\theta ph:(0,2*pi):\phi")
sage: var(m); assume(m>0)

(continues on next page)

3.6. Degenerate Metric Manifolds 979

Manifolds, Release 10.4.rc1

(continued from previous page)

m
sage: g = M.metric()
sage: g[0,0], g[0,1], g[1,1], g[2,2], g[3,3] = \
....: -1+2*m/r, 2*m/r, 1+2*m/r, r^2, r^2*sin(th)^2
sage: H = Manifold(3, H , ambient=M, structure= degenerate_metric)
sage: X_H.<ht,hth,hph> = \
....: H.chart(r"ht:(-oo,oo):t hth:(0,pi):\theta hph:(0,2*pi):\phi")
sage: Phi = H.diff_map(M, {(X_H, X_M): [ht, 2*m,hth, hph]}, \
....: name= Phi , latex_name=r \Phi)
sage: Phi_inv = M.diff_map(H, {(X_M, X_H): [t,th, ph]}, \
....: name= Phi_inv , latex_name=r \Phi^{-1})
sage: H.set_immersion(Phi, inverse=Phi_inv); H.declare_embedding()
sage: xi = M.vector_field(-1, 0, 0, 0)
sage: v = M.vector_field(r, -r, 0, 0)
sage: e1 = M.vector_field(0, 0, 1, 0)
sage: e2 = M.vector_field(0, 0, 0, 1)

A screen distribution for the Schwarzschild black hole horizon:

sage: H.set_transverse(rigging=v)
sage: S = H.screen(S , [e1, e2], (xi)); S # long time
screen distribution S along the degenerate hypersurface H embedded
in 4-dimensional differentiable manifold M mapped into the
4-dimensional Lorentzian manifold M

The corresponding normal tangent null vector field and null transversal vector field:

sage: xi = S.normal_tangent_vector(); xi.display() # long time
xi = -∂/∂t
sage: N = S.rigging(); N.display() # long time
N = ∂/∂t - ∂/∂r

Those vector fields are normalized by 𝑔(𝜉,𝑁) = 1:

sage: g.along(Phi)(xi, N).display() # long time
g(xi,N): H → ℝ
(ht, hth, hph) ↦ 1

normal_tangent_vector()

Return either a list Rad of vector fields spanning the radical distribution or (in case of a hypersurface) a
normal tangent null vector field spanning the radical distribution.

OUTPUT:

• either a list of vector fields or a single vector field in case of a hypersurface

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,

(continues on next page)

980 Chapter 3. Pseudo-Riemannian Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: v = M.vector_field(); v[1] = 1
sage: S.set_transverse(rigging=v)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: Rad = Sc.normal_tangent_vector(); Rad.display() # long time
xi = ∂/∂t + ∂/∂x

rigging()

Return either a list Rad of vector fields spanning the complementary of the normal distribution 𝑇𝐻⊥ in the
transverse bundle or (when 𝐻 is a null hypersurface) the null transversal vector field defined in [DB1996].

OUTPUT:

• either a list made by vector fields or a vector field in case of hypersurface

EXAMPLES:

A degenerate hyperplane the 4-dimensional Minkowski space R4
1:

sage: M = Manifold(4, M , structure="Lorentzian")
sage: X.<t,x,y,z> = M.chart()
sage: S = Manifold(3, S , ambient=M, structure= degenerate_metric)
sage: X_S.<u,v,w> = S.chart()
sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
....: name= Phi , latex_name=r \Phi);
sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name= Phi_inv ,
....: latex_name=r \Phi^{-1});
sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
sage: g = M.metric()
sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
sage: v = M.vector_field(); v[1] = 1
sage: S.set_transverse(rigging=v)
sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
sage: Sc = S.screen(Sc , (U,V), xi); # long time
sage: rig = Sc.rigging(); rig.display() # long time
N = -1/2 ∂/∂t + 1/2 ∂/∂x

3.6. Degenerate Metric Manifolds 981

Manifolds, Release 10.4.rc1

982 Chapter 3. Pseudo-Riemannian Manifolds

CHAPTER

FOUR

POISSON MANIFOLDS

4.1 Poisson tensors

AUTHORS:

• Tobias Diez (2021): initial version

class sage.manifolds.differentiable.poisson_tensor.PoissonTensorField(manifold:
Dif-
ferentiable-
Manifold |
VectorField-
Module,
name: str |
None =
'varpi',
latex_name:
str | None =
'\\varpi')

Bases: MultivectorField

A Poisson bivector field 𝜛 on a differentiable manifold.

That is, at each point𝑚 ∈𝑀 , 𝜛𝑚 is a bilinear map of the type:

𝜛𝑚 : 𝑇 *
𝑚𝑀 × 𝑇 *

𝑚𝑀 → R

where 𝑇 *
𝑚𝑀 stands for the cotangent space to the manifold𝑀 at the point 𝑚, such that 𝜛𝑚 is skew-symmetric

and the Schouten-Nijenhuis bracket (cf. bracket()) of 𝜛 with itself vanishes.

INPUT:

• manifold – module X(𝑀) of vector fields on the manifold𝑀 , or the manifold𝑀 itself

• name – (default: varpi) name given to the Poisson tensor

• latex_name – (default: \\varpi) LaTeX symbol to denote the Poisson tensor; if None, it is formed
from name

EXAMPLES:

A Poisson tensor on the 2-sphere:

sage: M.<x,y> = manifolds.Sphere(2, coordinates= stereographic)
sage: stereoN = M.stereographic_coordinates(pole= north)
sage: stereoS = M.stereographic_coordinates(pole= south)

(continues on next page)

983

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: varpi = M.poisson_tensor(name= varpi , latex_name=r \varpi)
sage: varpi
2-vector field varpi on the 2-sphere S^2 of radius 1 smoothly embedded
in the Euclidean space E^3

varpi is initialized by providing its single nonvanishing component w.r.t. the vector frame associated to
stereoN, which is the default frame on M:

sage: varpi[1, 2] = 1

The components w.r.t. the vector frame associated to stereoS are obtained thanks to the method
add_comp_by_continuation():

sage: varpi.add_comp_by_continuation(stereoS.frame(),
....: stereoS.domain().intersection(stereoN.domain()))
sage: varpi.display()
varpi = ∂/∂x∧∂/∂y
sage: varpi.display(stereoS)
varpi = (-xp^4 - 2*xp^2*yp^2 - yp^4) ∂/∂xp∧∂/∂yp

The Schouten-Nijenhuis bracket of a Poisson tensor with itself vanishes (this is trivial here, since M is
2-dimensional):

sage: varpi.bracket(varpi).display()
[varpi,varpi] = 0

hamiltonian_vector_field(function)
Return the Hamiltonian vector field 𝑋𝑓 generated by the given function 𝑓 :𝑀 → R.

The Hamiltonian vector field is defined by

𝑋𝑓 = −𝜛♯(𝑑𝑓),

where 𝜛♯ : 𝑇 *𝑀 → 𝑇𝑀 is given by 𝛽(𝜛♯(𝛼)) = 𝜛(𝛼, 𝛽).

INPUT:

• function – the function generating the Hamiltonian vector field

EXAMPLES:

sage: M.<q, p> = EuclideanSpace(2)
sage: poisson = M.poisson_tensor(varpi)
sage: poisson.set_comp()[1,2] = -1
sage: f = M.scalar_field(function(f)(q, p), name= f)
sage: Xf = poisson.hamiltonian_vector_field(f)
sage: Xf.display()
Xf = d(f)/dp e_q - d(f)/dq e_p

poisson_bracket(f , g)
Return the Poisson bracket

{𝑓, 𝑔} = 𝜛(𝑑𝑓, 𝑑𝑔)

of the given functions.

INPUT:

984 Chapter 4. Poisson Manifolds

Manifolds, Release 10.4.rc1

• f – first function

• g – second function

EXAMPLES:

sage: M.<q, p> = EuclideanSpace(2)
sage: poisson = M.poisson_tensor(varpi)
sage: poisson.set_comp()[1,2] = -1
sage: f = M.scalar_field(function(f)(q, p), name= f)
sage: g = M.scalar_field(function(g)(q, p), name= g)
sage: poisson.poisson_bracket(f, g).display()
poisson(f, g): E^2 → ℝ

(q, p) ↦ d(f)/dp*d(g)/dq - d(f)/dq*d(g)/dp

sharp(form)

Return the image of the given differential form under the map 𝜛♯ : 𝑇 *𝑀 → 𝑇𝑀 defined by

𝛽(𝜛♯(𝛼)) = 𝜛(𝛼, 𝛽).

for all 𝛼, 𝛽 ∈ 𝑇 *
𝑚𝑀 .

In indices, 𝛼𝑖 = 𝜛𝑖𝑗𝛼𝑗 .

INPUT:

• form – the differential form to calculate its sharp of

EXAMPLES:

sage: M.<q, p> = EuclideanSpace(2)
sage: poisson = M.poisson_tensor(varpi)
sage: poisson.set_comp()[1,2] = -1
sage: a = M.one_form(1, 0, name= a)
sage: poisson.sharp(a).display()
a_sharp = e_p

4.1. Poisson tensors 985

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.poisson_tensor.PoissonTensorFieldParal(man-
i-
fold:
Dif-
ferentiable-
Man-
ifold
|
Vec-
tor-
Field-
Mod-
ule,
name:
str |
None
=
None,
la-
tex_name:
str |
None
=
None)

Bases: PoissonTensorField, MultivectorFieldParal

A Poisson bivector field 𝜛 on a parallelizable manifold.

INPUT:

• manifold – module X(𝑀) of vector fields on the manifold𝑀 , or the manifold𝑀 itself

• name – (default: varpi) name given to the Poisson tensor

• latex_name – (default: \\varpi) LaTeX symbol to denote the Poisson tensor; if None, it is formed
from name

EXAMPLES:

Standard Poisson tensor on R2:

sage: M.<q, p> = EuclideanSpace(2)
sage: varpi = M.poisson_tensor(name= varpi , latex_name=r \varpi)
sage: varpi[1,2] = -1
sage: varpi
2-vector field varpi on the Euclidean plane E^2
sage: varpi.display()
varpi = -e_q∧e_p

986 Chapter 4. Poisson Manifolds

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None

Manifolds, Release 10.4.rc1

4.2 Symplectic structures

The class SymplecticForm implements symplectic structures on differentiable manifolds over R. The derived class
SymplecticFormParal is devoted to symplectic forms on a parallelizable manifold.

AUTHORS:

• Tobias Diez (2021) : initial version

REFERENCES:

• [AM1990]

• [RS2012]

class sage.manifolds.differentiable.symplectic_form.SymplecticForm(manifold:
Differentiable-
Manifold |
VectorField-
Module, name:
str | None =
None,
latex_name: str |
None = None)

Bases: DiffForm

A symplectic form on a differentiable manifold.

An instance of this class is a closed nondegenerate differential 2-form 𝜔 on a differentiable manifold𝑀 over R.

In particular, at each point𝑚 ∈𝑀 , 𝜔𝑚 is a bilinear map of the type:

𝜔𝑚 : 𝑇𝑚𝑀 × 𝑇𝑚𝑀 → R,

where 𝑇𝑚𝑀 stands for the tangent space to the manifold 𝑀 at the point 𝑚, such that 𝜔𝑚 is skew-symmetric:
∀𝑢, 𝑣 ∈ 𝑇𝑚𝑀, 𝜔𝑚(𝑣, 𝑢) = −𝜔𝑚(𝑢, 𝑣) and nondegenerate: (∀𝑣 ∈ 𝑇𝑚𝑀, 𝜔𝑚(𝑢, 𝑣) = 0) =⇒ 𝑢 = 0.

Note: If𝑀 is parallelizable, the class SymplecticFormParal should be used instead.

INPUT:

• manifold – module X(𝑀) of vector fields on the manifold𝑀 , or the manifold𝑀 itself

• name – (default: omega) name given to the symplectic form

• latex_name – (default: None) LaTeX symbol to denote the symplectic form; if None, it is formed from
name

EXAMPLES:

A symplectic form on the 2-sphere:

sage: M.<x,y> = manifolds.Sphere(2, coordinates= stereographic)
sage: stereoN = M.stereographic_coordinates(pole= north)
sage: stereoS = M.stereographic_coordinates(pole= south)
sage: omega = M.symplectic_form(name= omega , latex_name=r \omega)
sage: omega
Symplectic form omega on the 2-sphere S^2 of radius 1 smoothly embedded
in the Euclidean space E^3

4.2. Symplectic structures 987

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None

Manifolds, Release 10.4.rc1

omega is initialized by providing its single nonvanishing component w.r.t. the vector frame associated to
stereoN, which is the default frame on M:

sage: omega[1, 2] = 1/(1 + x^2 + y^2)^2

The components w.r.t. the vector frame associated to stereoS are obtained thanks to the method
add_comp_by_continuation():

sage: omega.add_comp_by_continuation(stereoS.frame(),
....: stereoS.domain().intersection(stereoN.domain()))
sage: omega.display()
omega = (x^2 + y^2 + 1)^(-2) dx∧dy
sage: omega.display(stereoS)
omega = -1/(xp^4 + yp^4 + 2*(xp^2 + 1)*yp^2 + 2*xp^2 + 1) dxp∧dyp

omega is an exact 2-form (this is trivial here, since M is 2-dimensional):

sage: diff(omega).display()
domega = 0

flat(vector_field)

Return the image of the given differential form under the map 𝜔♭ : 𝑇𝑀 → 𝑇 *𝑀 defined by

< 𝜔♭(𝑋), 𝑌 >= 𝜔𝑚(𝑋,𝑌)

for all 𝑋,𝑌 ∈ 𝑇𝑚𝑀 .

In indices, 𝑋𝑖 = 𝜔𝑗𝑖𝑋
𝑗 .

INPUT:

• vector_field – the vector field to calculate its flat of

EXAMPLES:

sage: M = manifolds.StandardSymplecticSpace(2)
sage: omega = M.symplectic_form()
sage: X = M.vector_field_module().an_element()
sage: X.set_name(X)
sage: X.display()
X = 2 e_q + 2 e_p
sage: omega.flat(X).display()
X_flat = 2 dq - 2 dp

hamiltonian_vector_field(function)

The Hamiltonian vector field 𝑋𝑓 generated by a function 𝑓 :𝑀 → R.

The Hamiltonian vector field is defined by

𝑋𝑓y𝜔 + 𝑑𝑓 = 0.

INPUT:

• function – the function generating the Hamiltonian vector field

EXAMPLES:

988 Chapter 4. Poisson Manifolds

Manifolds, Release 10.4.rc1

sage: M = manifolds.StandardSymplecticSpace(2)
sage: omega = M.symplectic_form()
sage: f = M.scalar_field({ chart: function(f)(*chart[:]) for chart in M.
→˓atlas() }, name= f)
sage: f.display()
f: R2 → ℝ

(q, p) ↦ f(q, p)
sage: Xf = omega.hamiltonian_vector_field(f)
sage: Xf.display()
Xf = d(f)/dp e_q - d(f)/dq e_p

hodge_star(pform)
Compute the Hodge dual of a differential form with respect to the symplectic form.

See hodge_dual() for the definition and more details.

INPUT:

• pform: a 𝑝-form 𝐴; must be an instance of DiffScalarField for 𝑝 = 0 and of DiffForm or
DiffFormParal for 𝑝 ≥ 1.

OUTPUT:

• the (𝑛− 𝑝)-form *𝐴

EXAMPLES:

Hodge dual of any form on the symplectic vector space 𝑅2:

sage: M = manifolds.StandardSymplecticSpace(2)
sage: omega = M.symplectic_form()
sage: a = M.one_form(1, 0, name= a)
sage: omega.hodge_star(a).display()
*a = dq
sage: b = M.one_form(0, 1, name= b)
sage: omega.hodge_star(b).display()
*b = dp
sage: f = M.scalar_field(1, name= f)
sage: omega.hodge_star(f).display()
*f = -dq∧dp
sage: omega.hodge_star(omega).display()
*omega: R2 → ℝ

(q, p) ↦ 1

on_forms(first, second)
Return the contraction of the two forms with respect to the symplectic form.

The symplectic form 𝜔 gives rise to a bilinear form, also denoted by 𝜔 on the space of 1-forms by

𝜔(𝛼, 𝛽) = 𝜔(𝛼♯, 𝛽♯),

where 𝛼♯ is the dual of 𝛼 with respect to 𝜔, see up(). This bilinear form induces a bilinear form on the
space of all forms determined by its value on decomposable elements as:

𝜔(𝛼1 ∧ . . . ∧ 𝛼𝑝, 𝛽1 ∧ . . . ∧ 𝛽𝑝) = 𝑑𝑒𝑡(𝜔(𝛼𝑖, 𝛽𝑗)).

INPUT:

• first – a 𝑝-form 𝛼

• second – a 𝑝-form 𝛽

4.2. Symplectic structures 989

Manifolds, Release 10.4.rc1

OUTPUT:

• the scalar field 𝜔(𝛼, 𝛽)

EXAMPLES:

sage: M = manifolds.StandardSymplecticSpace(2) sage: omega = M.symplectic_form() sage: a
= M.one_form(1, 0, name=’a’) sage: b = M.one_form(0, 1, name=’b’) sage: omega.on_forms(a,
b).display() R2 → ℝ (q, p) ↦ -1

poisson(expansion_symbol=None, order=1)
Return the Poisson tensor associated with the symplectic form.

INPUT:

• expansion_symbol – (default: None) symbolic variable; if specified, the inverse will be expanded
in power series with respect to this variable (around its zero value)

• order – integer (default: 1); the order of the expansion if expansion_symbol is not None; the
order is defined as the degree of the polynomial representing the truncated power series in expan-
sion_symbol; currently only first order inverse is supported

If expansion_symbol is set, then the zeroth order symplectic form must be invertible. Moreover, sub-
sequent calls to this method will return a cached value, even when called with the default value (to enable
computation of derived quantities). To reset, use _del_derived().

OUTPUT:

• the Poisson tensor, as an instance of PoissonTensorField()

EXAMPLES:

Poisson tensor of 2-dimensional symplectic vector space:

sage: M = manifolds.StandardSymplecticSpace(2)
sage: omega = M.symplectic_form()
sage: poisson = omega.poisson(); poisson
2-vector field poisson_omega on the Standard symplectic space R2
sage: poisson.display()
poisson_omega = -e_q∧e_p

poisson_bracket(f , g)
Return the Poisson bracket

{𝑓, 𝑔} = 𝜔(𝑋𝑓 , 𝑋𝑔)

of the given functions.

INPUT:

• f – function inserted in the first slot

• g – function inserted in the second slot

EXAMPLES:

sage: M.<q, p> = EuclideanSpace(2)
sage: poisson = M.poisson_tensor(varpi)
sage: poisson.set_comp()[1,2] = -1
sage: f = M.scalar_field({ chart: function(f)(*chart[:]) for chart in M.
→˓atlas() }, name= f)
sage: g = M.scalar_field({ chart: function(g)(*chart[:]) for chart in M.

(continues on next page)

990 Chapter 4. Poisson Manifolds

Manifolds, Release 10.4.rc1

(continued from previous page)

→˓atlas() }, name= g)
sage: poisson.poisson_bracket(f, g).display()
poisson(f, g): E^2 → ℝ

(q, p) ↦ d(f)/dp*d(g)/dq - d(f)/dq*d(g)/dp

restrict(subdomain, dest_map=None)
Return the restriction of the symplectic form to some subdomain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

• subdomain – open subset 𝑈 of the symplectic form’s domain

• dest_map – (default: None) smooth destination map Φ : 𝑈 → 𝑉 , where 𝑉 is a subdomain of the
symplectic form’s domain If None, the restriction of the initial vector field module is used.

OUTPUT:

• the restricted symplectic form.

EXAMPLES:

sage: M = Manifold(6, M)
sage: omega = M.symplectic_form()
sage: U = M.open_subset(U)
sage: omega.restrict(U)
2-form omega on the Open subset U of the 6-dimensional differentiable␣
→˓manifold M

sharp(form)

Return the image of the given differential form under the map 𝜔♯ : 𝑇 *𝑀 → 𝑇𝑀 defined by

𝜔(𝜔♯(𝛼), 𝑋) = 𝛼(𝑋)

for all 𝑋 ∈ 𝑇𝑚𝑀 and 𝛼 ∈ 𝑇 *
𝑚𝑀 . The sharp map is inverse to the flat map.

In indices, 𝛼𝑖 = 𝜛𝑖𝑗𝛼𝑗 , where 𝜛 is the Poisson tensor associated with the symplectic form.

INPUT:

• form – the differential form to calculate its sharp of

EXAMPLES:

sage: M = manifolds.StandardSymplecticSpace(2)
sage: omega = M.symplectic_form()
sage: X = M.vector_field_module().an_element()
sage: alpha = omega.flat(X)
sage: alpha.set_name(alpha)
sage: alpha.display()
alpha = 2 dq - 2 dp
sage: omega.sharp(alpha).display()
alpha_sharp = 2 e_q + 2 e_p

volume_form(contra=0)

Liouville volume form 1
𝑛!𝜔

𝑛 associated with the symplectic form 𝜔, where 2𝑛 is the dimension of the mani-
fold.

INPUT:

4.2. Symplectic structures 991

Manifolds, Release 10.4.rc1

• contra – (default: 0) number of contravariant indices of the returned tensor

OUTPUT:

• if contra = 0: volume form associated with the symplectic form

• if contra = k, with 1 ≤ 𝑘 ≤ 𝑛, the tensor field of type (k,n-k) formed from 𝜖 by raising the first k
indices with the symplectic form (see method up())

EXAMPLES:

Volume form on R4:

sage: M = manifolds.StandardSymplecticSpace(4)
sage: omega = M.symplectic_form()
sage: vol = omega.volume_form() ; vol
4-form mu_omega on the Standard symplectic space R4
sage: vol.display()
mu_omega = dq1∧dp1∧dq2∧dp2

static wrap(form, name=None, latex_name=None)
Define the symplectic form from a differential form.

INPUT:

• form – differential 2-form

EXAMPLES:

Volume form on the sphere as a symplectic form:

sage: from sage.manifolds.differentiable.symplectic_form import SymplecticForm
sage: M = manifolds.Sphere(2, coordinates= stereographic)
sage: vol_form = M.induced_metric().volume_form() # long␣
→˓time
sage: omega = SymplecticForm.wrap(vol_form, omega , r \omega) # long␣
→˓time
sage: omega.display() # long␣
→˓time
omega = -4/(y1^4 + y2^4 + 2*(y1^2 + 1)*y2^2 + 2*y1^2 + 1) dy1∧dy2

class sage.manifolds.differentiable.symplectic_form.SymplecticFormParal(manifold:
Vector-
Field-
Module |
Dif-
ferentiable-
Mani-
fold,
name: str
| None,
la-
tex_name:
str | None
= None)

Bases: SymplecticForm, DiffFormParal

A symplectic form on a parallelizable manifold.

992 Chapter 4. Poisson Manifolds

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None

Manifolds, Release 10.4.rc1

Note: If𝑀 is not parallelizable, the class SymplecticForm should be used instead.

INPUT:

• manifold – module X(𝑀) of vector fields on the manifold𝑀 , or the manifold𝑀 itself

• name – (default: omega) name given to the symplectic form

• latex_name – (default: None) LaTeX symbol to denote the symplectic form; if None, it is formed from
name

EXAMPLES:

Standard symplectic form on R2:

sage: M.<q, p> = EuclideanSpace(name="R2", latex_name=r"\mathbb{R}^2")
sage: omega = M.symplectic_form(name= omega , latex_name=r \omega)
sage: omega
Symplectic form omega on the Euclidean plane R2
sage: omega.set_comp()[1,2] = -1
sage: omega.display()
omega = -dq∧dp

poisson(expansion_symbol=None, order=1)
Return the Poisson tensor associated with the symplectic form.

INPUT:

• expansion_symbol – (default: None) symbolic variable; if specified, the inverse will be expanded
in power series with respect to this variable (around its zero value)

• order – integer (default: 1); the order of the expansion if expansion_symbol is not None; the
order is defined as the degree of the polynomial representing the truncated power series in expan-
sion_symbol; currently only first order inverse is supported

If expansion_symbol is set, then the zeroth order symplectic form must be invertible. Moreover, sub-
sequent calls to this method will return a cached value, even when called with the default value (to enable
computation of derived quantities). To reset, use _del_derived().

OUTPUT:

• the Poisson tensor, , as an instance of PoissonTensorFieldParal()

EXAMPLES:

Poisson tensor of 2-dimensional symplectic vector space:

sage: from sage.manifolds.differentiable.symplectic_form import␣
→˓SymplecticFormParal
sage: M.<q, p> = EuclideanSpace(2, "R2", r"\mathbb{R}^2", symbols=r"q:q p:p")
sage: omega = SymplecticFormParal(M, omega , r \omega)
sage: omega[1,2] = -1
sage: poisson = omega.poisson(); poisson
2-vector field poisson_omega on the Euclidean plane R2
sage: poisson.display()
poisson_omega = -e_q∧e_p

restrict(subdomain, dest_map=None)
Return the restriction of the symplectic form to some subdomain.

If the restriction has not been defined yet, it is constructed here.

4.2. Symplectic structures 993

Manifolds, Release 10.4.rc1

INPUT:

• subdomain – open subset 𝑈 of the symplectic form’s domain

• dest_map – (default: None) smooth destination map Φ : 𝑈 → 𝑉 , where 𝑉 is a subdomain of the
symplectic form’s domain If None, the restriction of the initial vector field module is used.

OUTPUT:

• the restricted symplectic form.

EXAMPLES:

Restriction of the standard symplectic form on R2 to the upper half plane:

sage: from sage.manifolds.differentiable.symplectic_form import␣
→˓SymplecticFormParal
sage: M = EuclideanSpace(2, "R2", r"\mathbb{R}^2", symbols=r"q:q p:p")
sage: X.<q, p> = M.chart()
sage: omega = SymplecticFormParal(M, omega , r \omega)
sage: omega[1,2] = -1
sage: U = M.open_subset(U , coord_def={X: q>0})
sage: omegaU = omega.restrict(U); omegaU
Symplectic form omega on the Open subset U of the Euclidean plane R2
sage: omegaU.display()
omega = -dq∧dp

4.3 Symplectic vector spaces

AUTHORS:

• Tobias Diez (2021): initial version

994 Chapter 4. Poisson Manifolds

Manifolds, Release 10.4.rc1

class sage.manifolds.differentiable.examples.symplectic_space.StandardSymplecticSpace(di-
men-
sion:
int,
name:
str
|
None
=
None,
la-
tex_name:
str
|
None
=
None,
co-
or-
di-
nates:
str
=
'Carte-
sian',
sym-
bols:
str
|
None
=
None,
sym-
plec-
tic_name:
str
|
None
=
'omega',
sym-
plec-
tic_la-
tex_name:
str
|
None
=
None,
start_in-
dex:
int
=
1,
base_man-
i-
fold:
Stan-
dard-
Sym-
plec-
tic-
Space
|
None
=
None,
names:
Tu-
ple[str]
|
None
=
None)

4.3. Symplectic vector spaces 995

https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
https://docs.python.org/library/constants.html#None
https://docs.python.org/library/typing.html#typing.Tuple
https://docs.python.org/library/typing.html#typing.Tuple
https://docs.python.org/library/constants.html#None

Manifolds, Release 10.4.rc1

Bases: EuclideanSpace

The vector space R2𝑛 equipped with its standard symplectic form.

symplectic_form()

Return the symplectic form.

EXAMPLES:

Standard symplectic form on R2:

sage: M.<q, p> = manifolds.StandardSymplecticSpace(2, symplectic_name= omega)
sage: omega = M.symplectic_form()
sage: omega.display()
omega = -dq∧dp

996 Chapter 4. Poisson Manifolds

CHAPTER

FIVE

UTILITIES FOR CALCULUS

This module defines helper functions which are used for simplifications and display of symbolic expressions.

AUTHORS:

• Michal Bejger (2015) : class ExpressionNice

• Eric Gourgoulhon (2015, 2017) : simplification functions

• Travis Scrimshaw (2016): review tweaks

• Marius Gerbershagen (2022) : skip simplification of expressions with a single number or symbolic variable

class sage.manifolds.utilities.ExpressionNice(ex)
Bases: Expression

Subclass of Expression for a “human-friendly” display of partial derivatives and the possibility to shorten the
display by skipping the arguments of symbolic functions.

INPUT:

• ex – symbolic expression

EXAMPLES:

An expression formed with callable symbolic expressions:

sage: var(x y z)
(x, y, z)
sage: f = function(f)(x, y)
sage: g = f.diff(y).diff(x)
sage: h = function(h)(y, z)
sage: k = h.diff(z)
sage: fun = x*g + y*(k-z)^2

The standard Pynac display of partial derivatives:

sage: fun
y*(z - diff(h(y, z), z))^2 + x*diff(f(x, y), x, y)
sage: latex(fun)
y {\left(z - \frac{\partial}{\partial z}h\left(y, z\right)\right)}^{2} + x \frac{\
→˓partial^{2}}{\partial x\partial y}f\left(x, y\right)

With ExpressionNice, the Pynac notation D[...] is replaced by textbook-like notation:

sage: from sage.manifolds.utilities import ExpressionNice
sage: ExpressionNice(fun)
y*(z - d(h)/dz)^2 + x*d^2(f)/dxdy

(continues on next page)

997

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: latex(ExpressionNice(fun))
y {\left(z - \frac{\partial\,h}{\partial z}\right)}^{2}
+ x \frac{\partial^2\,f}{\partial x\partial y}

An example when function variables are themselves functions:

sage: f = function(f)(x, y)
sage: g = function(g)(x, f) # the second variable is the function f
sage: fun = (g.diff(x))*x - x^2*f.diff(x,y)
sage: fun
-x^2*diff(f(x, y), x, y) + (diff(f(x, y), x)*D[1](g)(x, f(x, y)) + D[0](g)(x, f(x,
→˓ y)))*x
sage: ExpressionNice(fun)
-x^2*d^2(f)/dxdy + (d(f)/dx*d(g)/d(f(x, y)) + d(g)/dx)*x
sage: latex(ExpressionNice(fun))
-x^{2} \frac{\partial^2\,f}{\partial x\partial y}
+ {\left(\frac{\partial\,f}{\partial x}
\frac{\partial\,g}{\partial \left(f\left(x, y\right) \right)}

+ \frac{\partial\,g}{\partial x}\right)} x

Note that D[1](g)(x, f(x,y)) is rendered as d(g)/d(f(x, y)).

An example with multiple differentiations:

sage: fun = f.diff(x,x,y,y,x)*x
sage: fun
x*diff(f(x, y), x, x, x, y, y)
sage: ExpressionNice(fun)
x*d^5(f)/dx^3dy^2
sage: latex(ExpressionNice(fun))
x \frac{\partial^5\,f}{\partial x ^ 3\partial y ^ 2}

Parentheses are added around powers of partial derivatives to avoid any confusion:

sage: fun = f.diff(y)^2
sage: fun
diff(f(x, y), y)^2
sage: ExpressionNice(fun)
(d(f)/dy)^2
sage: latex(ExpressionNice(fun))
\left(\frac{\partial\,f}{\partial y}\right)^{2}

The explicit mention of function arguments can be omitted for the sake of brevity:

sage: fun = fun*f
sage: ExpressionNice(fun)
f(x, y)*(d(f)/dy)^2
sage: Manifold.options.omit_function_arguments=True
sage: ExpressionNice(fun)
f*(d(f)/dy)^2
sage: latex(ExpressionNice(fun))
f \left(\frac{\partial\,f}{\partial y}\right)^{2}
sage: Manifold.options._reset()
sage: ExpressionNice(fun)
f(x, y)*(d(f)/dy)^2
sage: latex(ExpressionNice(fun))
f\left(x, y\right) \left(\frac{\partial\,f}{\partial y}\right)^{2}

998 Chapter 5. Utilities for Calculus

Manifolds, Release 10.4.rc1

class sage.manifolds.utilities.SimplifyAbsTrig(ex)
Bases: ExpressionTreeWalker

Class for simplifying absolute values of cosines or sines (in the real domain), by walking the expression tree.

The end user interface is the function simplify_abs_trig().

INPUT:

• ex – a symbolic expression

EXAMPLES:

Let us consider the following symbolic expression with some assumption on the range of the variable 𝑥:

sage: assume(pi/2<x, x<pi)
sage: a = abs(cos(x)) + abs(sin(x))

The method simplify_full() is ineffective on such an expression:

sage: a.simplify_full()
abs(cos(x)) + abs(sin(x))

We construct a SimplifyAbsTrig object s from the symbolic expression a:

sage: from sage.manifolds.utilities import SimplifyAbsTrig
sage: s = SimplifyAbsTrig(a)

We use the __call__ method to walk the expression tree and produce a correctly simplified expression, given
that 𝑥 ∈ (𝜋/2, 𝜋):

sage: s()
-cos(x) + sin(x)

Calling the simplifier s with an expression actually simplifies this expression:

sage: s(a) # same as s() since s is built from a
-cos(x) + sin(x)
sage: s(abs(cos(x/2)) + abs(sin(x/2))) # pi/4 < x/2 < pi/2
cos(1/2*x) + sin(1/2*x)
sage: s(abs(cos(2*x)) + abs(sin(2*x))) # pi < 2 x < 2*pi
abs(cos(2*x)) - sin(2*x)
sage: s(abs(sin(2+abs(cos(x))))) # nested abs(sin_or_cos(...))
sin(-cos(x) + 2)

See also:

simplify_abs_trig() for more examples with SimplifyAbsTrig at work.

composition(ex, operator)
This is the only method of the base class ExpressionTreeWalker that is reimplemented, since it man-
ages the composition of abs with cos or sin.

INPUT:

• ex – a symbolic expression

• operator – an operator

OUTPUT:

999

../../../../../../html/en/reference/calculus/sage/symbolic/expression_conversions.html#sage.symbolic.expression_conversions.ExpressionTreeWalker
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_full
../../../../../../html/en/reference/calculus/sage/symbolic/expression_conversions.html#sage.symbolic.expression_conversions.ExpressionTreeWalker

Manifolds, Release 10.4.rc1

• a symbolic expression, equivalent to ex with abs(cos(...)) and abs(sin(...)) simplified,
according to the range of their argument.

EXAMPLES:

sage: from sage.manifolds.utilities import SimplifyAbsTrig
sage: assume(-pi/2 < x, x<0)
sage: a = abs(sin(x))
sage: s = SimplifyAbsTrig(a)
sage: a.operator()
abs
sage: s.composition(a, a.operator())
sin(-x)

sage: a = exp(function(f)(x)) # no abs(sin_or_cos(...))
sage: a.operator()
exp
sage: s.composition(a, a.operator())
e^f(x)

sage: forget() # no longer any assumption on x
sage: a = abs(cos(sin(x))) # simplifiable since -1 <= sin(x) <= 1
sage: s.composition(a, a.operator())
cos(sin(x))
sage: a = abs(sin(cos(x))) # not simplifiable
sage: s.composition(a, a.operator())
abs(sin(cos(x)))

class sage.manifolds.utilities.SimplifySqrtReal(ex)
Bases: ExpressionTreeWalker

Class for simplifying square roots in the real domain, by walking the expression tree.

The end user interface is the function simplify_sqrt_real().

INPUT:

• ex – a symbolic expression

EXAMPLES:

Let us consider the square root of an exact square under some assumption:

sage: assume(x<1)
sage: a = sqrt(x^2-2*x+1)

The method simplify_full() is ineffective on such an expression:

sage: a.simplify_full()
sqrt(x^2 - 2*x + 1)

and the more aggressive method canonicalize_radical() yields a wrong result, given that 𝑥 < 1:

sage: a.canonicalize_radical() # wrong output!
x - 1

We construct a SimplifySqrtReal object s from the symbolic expression a:

sage: from sage.manifolds.utilities import SimplifySqrtReal
sage: s = SimplifySqrtReal(a)

1000 Chapter 5. Utilities for Calculus

../../../../../../html/en/reference/calculus/sage/symbolic/expression_conversions.html#sage.symbolic.expression_conversions.ExpressionTreeWalker
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_full
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.canonicalize_radical

Manifolds, Release 10.4.rc1

We use the __call__ method to walk the expression tree and produce a correctly simplified expression:

sage: s()
-x + 1

Calling the simplifier s with an expression actually simplifies this expression:

sage: s(a) # same as s() since s is built from a
-x + 1
sage: s(sqrt(x^2))
abs(x)
sage: s(sqrt(1+sqrt(x^2-2*x+1))) # nested sqrt s
sqrt(-x + 2)

Another example where both simplify_full() and canonicalize_radical() fail:

sage: b = sqrt((x-1)/(x-2))*sqrt(1-x)
sage: b.simplify_full() # does not simplify
sqrt(-x + 1)*sqrt((x - 1)/(x - 2))
sage: b.canonicalize_radical() # wrong output, given that x<1
(I*x - I)/sqrt(x - 2)
sage: SimplifySqrtReal(b)() # OK, given that x<1
-(x - 1)/sqrt(-x + 2)

See also:

simplify_sqrt_real() for more examples with SimplifySqrtReal at work.

arithmetic(ex, operator)
This is the only method of the base class ExpressionTreeWalker that is reimplemented, since square
roots are considered as arithmetic operations with operator = pow and ex.operands()[1] = 1/2
or -1/2.

INPUT:

• ex – a symbolic expression

• operator – an arithmetic operator

OUTPUT:

• a symbolic expression, equivalent to ex with square roots simplified

EXAMPLES:

sage: from sage.manifolds.utilities import SimplifySqrtReal
sage: a = sqrt(x^2+2*x+1)
sage: s = SimplifySqrtReal(a)
sage: a.operator()
<built-in function pow>
sage: s.arithmetic(a, a.operator())
abs(x + 1)

sage: a = x + 1 # no square root
sage: s.arithmetic(a, a.operator())
x + 1

sage: a = x + 1 + sqrt(function(f)(x)^2)
sage: s.arithmetic(a, a.operator())
x + abs(f(x)) + 1

1001

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_full
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.canonicalize_radical
../../../../../../html/en/reference/calculus/sage/symbolic/expression_conversions.html#sage.symbolic.expression_conversions.ExpressionTreeWalker

Manifolds, Release 10.4.rc1

sage.manifolds.utilities.exterior_derivative(form)
Exterior derivative of a differential form.

INPUT:

• form – a differential form; this must an instance of either

– DiffScalarField for a 0-form (scalar field)

– DiffFormParal for a 𝑝-form (𝑝 ≥ 1) on a parallelizable manifold

– DiffForm for a a 𝑝-form (𝑝 ≥ 1) on a non-parallelizable manifold

OUTPUT:

• the (𝑝+ 1)-form that is the exterior derivative of form

EXAMPLES:

Exterior derivative of a scalar field (0-form):

sage: from sage.manifolds.utilities import exterior_derivative
sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: f = M.scalar_field({X: x+y^2+z^3}, name= f)
sage: df = exterior_derivative(f); df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = dx + 2*y dy + 3*z^2 dz

An alias is xder:

sage: from sage.manifolds.utilities import xder
sage: df == xder(f)
True

Exterior derivative of a 1-form:

sage: a = M.one_form(name= a)
sage: a[:] = [x+y*z, x-y*z, x*y*z]
sage: da = xder(a); da
2-form da on the 3-dimensional differentiable manifold M
sage: da.display()
da = (-z + 1) dx∧dy + (y*z - y) dx∧dz + (x*z + y) dy∧dz
sage: dda = xder(da); dda
3-form dda on the 3-dimensional differentiable manifold M
sage: dda.display()
dda = 0

See also:

sage.manifolds.differentiable.diff_form.DiffFormParal.exterior_derivative
or sage.manifolds.differentiable.diff_form.DiffForm.exterior_derivative for
more examples.

sage.manifolds.utilities.set_axes_labels(graph, xlabel, ylabel, zlabel, **kwds)
Set axes labels for a 3D graphics object graph.

This is a workaround for the lack of axes labels in 3D plots. This sets the labels as text3d() objects at locations
determined from the bounding box of the graphic object graph.

INPUT:

1002 Chapter 5. Utilities for Calculus

../../../../../../html/en/reference/plot3d/sage/plot/plot3d/shapes2.html#sage.plot.plot3d.shapes2.text3d

Manifolds, Release 10.4.rc1

• graph – Graphics3d; a 3D graphic object

• xlabel – string for the x-axis label

• ylabel – string for the y-axis label

• zlabel – string for the z-axis label

• **kwds – options (e.g. color) for text3d

OUTPUT:

• the 3D graphic object with text3d labels added

EXAMPLES:

sage: # needs sage.plot
sage: g = sphere()
sage: g.all
[Graphics3d Object]
sage: from sage.manifolds.utilities import set_axes_labels
sage: ga = set_axes_labels(g, X , Y , Z , color= red)
sage: ga.all # the 3D frame has now axes labels
[Graphics3d Object, Graphics3d Object,
Graphics3d Object, Graphics3d Object]

sage.manifolds.utilities.simplify_abs_trig(expr)
Simplify abs(sin(...)) and abs(cos(...)) in symbolic expressions.

EXAMPLES:

sage: M = Manifold(3, M , structure= topological)
sage: X.<x,y,z> = M.chart(r x y:(0,pi) z:(-pi/3,0))
sage: X.coord_range()
x: (-oo, +oo); y: (0, pi); z: (-1/3*pi, 0)

Since 𝑥 spans all R, no simplification of abs(sin(x)) occurs, while abs(sin(y)) and abs(sin(3*z))
are correctly simplified, given that 𝑦 ∈ (0, 𝜋) and 𝑧 ∈ (−𝜋/3, 0):

sage: from sage.manifolds.utilities import simplify_abs_trig
sage: simplify_abs_trig(abs(sin(x)) + abs(sin(y)) + abs(sin(3*z)))
abs(sin(x)) + sin(y) + sin(-3*z)

Note that neither simplify_trig() nor simplify_full() works in this case:

sage: s = abs(sin(x)) + abs(sin(y)) + abs(sin(3*z))
sage: s.simplify_trig()
abs(4*cos(-z)^2 - 1)*abs(sin(-z)) + abs(sin(x)) + abs(sin(y))
sage: s.simplify_full()
abs(4*cos(-z)^2 - 1)*abs(sin(-z)) + abs(sin(x)) + abs(sin(y))

despite the following assumptions hold:

sage: assumptions()
[x is real, y is real, y > 0, y < pi, z is real, z > -1/3*pi, z < 0]

Additional checks are:

sage: simplify_abs_trig(abs(sin(y/2))) # shall simplify
sin(1/2*y)

(continues on next page)

1003

../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_trig
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_full

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: simplify_abs_trig(abs(sin(2*y))) # must not simplify
abs(sin(2*y))
sage: simplify_abs_trig(abs(sin(z/2))) # shall simplify
sin(-1/2*z)
sage: simplify_abs_trig(abs(sin(4*z))) # must not simplify
abs(sin(-4*z))

Simplification of abs(cos(...)):

sage: forget()
sage: M = Manifold(3, M , structure= topological)
sage: X.<x,y,z> = M.chart(r x y:(0,pi/2) z:(pi/4,3*pi/4))
sage: X.coord_range()
x: (-oo, +oo); y: (0, 1/2*pi); z: (1/4*pi, 3/4*pi)
sage: simplify_abs_trig(abs(cos(x)) + abs(cos(y)) + abs(cos(2*z)))
abs(cos(x)) + cos(y) - cos(2*z)

Additional tests:

sage: simplify_abs_trig(abs(cos(y-pi/2))) # shall simplify
cos(-1/2*pi + y)
sage: simplify_abs_trig(abs(cos(y+pi/2))) # shall simplify
-cos(1/2*pi + y)
sage: simplify_abs_trig(abs(cos(y-pi))) # shall simplify
-cos(-pi + y)
sage: simplify_abs_trig(abs(cos(2*y))) # must not simplify
abs(cos(2*y))
sage: simplify_abs_trig(abs(cos(y/2)) * abs(sin(z))) # shall simplify
cos(1/2*y)*sin(z)

sage.manifolds.utilities.simplify_chain_generic(expr)
Apply a chain of simplifications to a symbolic expression.

This is the simplification chain used in calculus involving coordinate functions on manifolds over fields different
from R, as implemented in ChartFunction.

The chain is formed by the following functions, called successively:

1. simplify_factorial()

2. simplify_rectform()

3. simplify_trig()

4. simplify_rational()

5. expand_sum()

NB: for the time being, this is identical to simplify_full().

EXAMPLES:

We consider variables that are coordinates of a chart on a complex manifold:

sage: M = Manifold(2, M , structure= topological , field= complex)
sage: X.<x,y> = M.chart()

Then neither x nor y is assumed to be real:

1004 Chapter 5. Utilities for Calculus

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_factorial
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_rectform
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_trig
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_rational
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.expand_sum
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_full

Manifolds, Release 10.4.rc1

sage: assumptions()
[]

Accordingly, simplify_chain_generic does not simplify sqrt(x^2) to abs(x):

sage: from sage.manifolds.utilities import simplify_chain_generic
sage: s = sqrt(x^2)
sage: simplify_chain_generic(s)
sqrt(x^2)

This contrasts with the behavior of simplify_chain_real().

Other simplifications:

sage: s = (x+y)^2 - x^2 -2*x*y - y^2
sage: simplify_chain_generic(s)
0
sage: s = (x^2 - 2*x + 1) / (x^2 -1)
sage: simplify_chain_generic(s)
(x - 1)/(x + 1)
sage: s = cos(2*x) - 2*cos(x)^2 + 1
sage: simplify_chain_generic(s)
0

sage.manifolds.utilities.simplify_chain_generic_sympy(expr)
Apply a chain of simplifications to a sympy expression.

This is the simplification chain used in calculus involving coordinate functions on manifolds over fields different
from R, as implemented in ChartFunction.

The chain is formed by the following functions, called successively:

1. combsimp()

2. trigsimp()

3. expand()

4. simplify()

EXAMPLES:

We consider variables that are coordinates of a chart on a complex manifold:

sage: forget() # for doctest only
sage: M = Manifold(2, M , structure= topological , field= complex , calc_method=
→˓ sympy)
sage: X.<x,y> = M.chart()

Then neither x nor y is assumed to be real:

sage: assumptions()
[]

Accordingly, simplify_chain_generic_sympy does not simplify sqrt(x^2) to abs(x):

sage: from sage.manifolds.utilities import simplify_chain_generic_sympy
sage: s = (sqrt(x^2))._sympy_()
sage: simplify_chain_generic_sympy(s)
sqrt(x**2)

1005

Manifolds, Release 10.4.rc1

This contrasts with the behavior of simplify_chain_real_sympy().

Other simplifications:

sage: s = ((x+y)^2 - x^2 -2*x*y - y^2)._sympy_()
sage: simplify_chain_generic_sympy(s)
0
sage: s = ((x^2 - 2*x + 1) / (x^2 -1))._sympy_()
sage: simplify_chain_generic_sympy(s)
(x - 1)/(x + 1)
sage: s = (cos(2*x) - 2*cos(x)^2 + 1)._sympy_()
sage: simplify_chain_generic_sympy(s)
0

sage.manifolds.utilities.simplify_chain_real(expr)

Apply a chain of simplifications to a symbolic expression, assuming the real domain.

This is the simplification chain used in calculus involving coordinate functions on real manifolds, as implemented
in ChartFunction.

The chain is formed by the following functions, called successively:

1. simplify_factorial()

2. simplify_trig()

3. simplify_rational()

4. simplify_sqrt_real()

5. simplify_abs_trig()

6. canonicalize_radical()

7. simplify_log()

8. simplify_rational()

9. simplify_trig()

EXAMPLES:

We consider variables that are coordinates of a chart on a real manifold:

sage: M = Manifold(2, M , structure= topological)
sage: X.<x,y> = M.chart(x:(0,1) y)

The following assumptions then hold:

sage: assumptions()
[x is real, x > 0, x < 1, y is real]

and we have:

sage: from sage.manifolds.utilities import simplify_chain_real
sage: s = sqrt(y^2)
sage: simplify_chain_real(s)
abs(y)

The above result is correct since y is real. It is obtained by simplify_real() as well:

1006 Chapter 5. Utilities for Calculus

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_factorial
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_trig
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_rational
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.canonicalize_radical
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_log
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_rational
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_trig
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_real

Manifolds, Release 10.4.rc1

sage: s.simplify_real()
abs(y)
sage: s.simplify_full()
abs(y)

Furthermore, we have:

sage: s = sqrt(x^2-2*x+1)
sage: simplify_chain_real(s)
-x + 1

which is correct since 𝑥 ∈ (0, 1). On this example, neither simplify_real() nor simplify_full(), nor
canonicalize_radical() give satisfactory results:

sage: s.simplify_real() # unsimplified output
sqrt(x^2 - 2*x + 1)
sage: s.simplify_full() # unsimplified output
sqrt(x^2 - 2*x + 1)
sage: s.canonicalize_radical() # wrong output since x in (0,1)
x - 1

Other simplifications:

sage: s = abs(sin(pi*x))
sage: simplify_chain_real(s) # correct output since x in (0,1)
sin(pi*x)
sage: s.simplify_real() # unsimplified output
abs(sin(pi*x))
sage: s.simplify_full() # unsimplified output
abs(sin(pi*x))

sage: s = cos(y)^2 + sin(y)^2
sage: simplify_chain_real(s)
1
sage: s.simplify_real() # unsimplified output
cos(y)^2 + sin(y)^2
sage: s.simplify_full() # OK
1

sage.manifolds.utilities.simplify_chain_real_sympy(expr)

Apply a chain of simplifications to a sympy expression, assuming the real domain.

This is the simplification chain used in calculus involving coordinate functions on real manifolds, as implemented
in ChartFunction.

The chain is formed by the following functions, called successively:

1. combsimp()

2. trigsimp()

3. simplify_sqrt_real()

4. simplify_abs_trig()

5. expand()

6. simplify()

EXAMPLES:

1007

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_real
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.simplify_full
../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.canonicalize_radical

Manifolds, Release 10.4.rc1

We consider variables that are coordinates of a chart on a real manifold:

sage: forget() # for doctest only
sage: M = Manifold(2, M , structure= topological ,calc_method= sympy)
sage: X.<x,y> = M.chart(x:(0,1) y)

The following assumptions then hold:

sage: assumptions()
[x is real, x > 0, x < 1, y is real]

and we have:

sage: from sage.manifolds.utilities import simplify_chain_real_sympy
sage: s = (sqrt(y^2))._sympy_()
sage: simplify_chain_real_sympy(s)
Abs(y)

Furthermore, we have:

sage: s = (sqrt(x^2-2*x+1))._sympy_()
sage: simplify_chain_real_sympy(s)
1 - x

Other simplifications:

sage: s = (abs(sin(pi*x)))._sympy_()
sage: simplify_chain_real_sympy(s) # correct output since x in (0,1)
sin(pi*x)

sage: s = (cos(y)^2 + sin(y)^2)._sympy_()
sage: simplify_chain_real_sympy(s)
1

sage.manifolds.utilities.simplify_sqrt_real(expr)
Simplify sqrt in symbolic expressions in the real domain.

EXAMPLES:

Simplifications of basic expressions:

sage: from sage.manifolds.utilities import simplify_sqrt_real
sage: simplify_sqrt_real(sqrt(x^2))
abs(x)
sage: assume(x<0)
sage: simplify_sqrt_real(sqrt(x^2))
-x
sage: simplify_sqrt_real(sqrt(x^2-2*x+1))
-x + 1
sage: simplify_sqrt_real(sqrt(x^2) + sqrt(x^2-2*x+1))
-2*x + 1

This improves over canonicalize_radical(), which yields incorrect results when x < 0:

sage: forget() # removes the assumption x<0
sage: sqrt(x^2).canonicalize_radical()
x
sage: assume(x<0)

(continues on next page)

1008 Chapter 5. Utilities for Calculus

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.canonicalize_radical

Manifolds, Release 10.4.rc1

(continued from previous page)

sage: sqrt(x^2).canonicalize_radical()
-x
sage: sqrt(x^2-2*x+1).canonicalize_radical() # wrong output
x - 1
sage: (sqrt(x^2) + sqrt(x^2-2*x+1)).canonicalize_radical() # wrong output
-1

Simplification of nested sqrt’s:

sage: forget() # removes the assumption x<0
sage: simplify_sqrt_real(sqrt(1 + sqrt(x^2)))
sqrt(abs(x) + 1)
sage: assume(x<0)
sage: simplify_sqrt_real(sqrt(1 + sqrt(x^2)))
sqrt(-x + 1)
sage: simplify_sqrt_real(sqrt(x^2 + sqrt(4*x^2) + 1))
-x + 1

Again, canonicalize_radical() fails on the last one:

sage: (sqrt(x^2 + sqrt(4*x^2) + 1)).canonicalize_radical()
x - 1

sage.manifolds.utilities.xder(form)
Exterior derivative of a differential form.

INPUT:

• form – a differential form; this must an instance of either

– DiffScalarField for a 0-form (scalar field)

– DiffFormParal for a 𝑝-form (𝑝 ≥ 1) on a parallelizable manifold

– DiffForm for a a 𝑝-form (𝑝 ≥ 1) on a non-parallelizable manifold

OUTPUT:

• the (𝑝+ 1)-form that is the exterior derivative of form

EXAMPLES:

Exterior derivative of a scalar field (0-form):

sage: from sage.manifolds.utilities import exterior_derivative
sage: M = Manifold(3, M)
sage: X.<x,y,z> = M.chart()
sage: f = M.scalar_field({X: x+y^2+z^3}, name= f)
sage: df = exterior_derivative(f); df
1-form df on the 3-dimensional differentiable manifold M
sage: df.display()
df = dx + 2*y dy + 3*z^2 dz

An alias is xder:

sage: from sage.manifolds.utilities import xder
sage: df == xder(f)
True

Exterior derivative of a 1-form:

1009

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.canonicalize_radical

Manifolds, Release 10.4.rc1

sage: a = M.one_form(name= a)
sage: a[:] = [x+y*z, x-y*z, x*y*z]
sage: da = xder(a); da
2-form da on the 3-dimensional differentiable manifold M
sage: da.display()
da = (-z + 1) dx∧dy + (y*z - y) dx∧dz + (x*z + y) dy∧dz
sage: dda = xder(da); dda
3-form dda on the 3-dimensional differentiable manifold M
sage: dda.display()
dda = 0

See also:

sage.manifolds.differentiable.diff_form.DiffFormParal.exterior_derivative
or sage.manifolds.differentiable.diff_form.DiffForm.exterior_derivative for
more examples.

1010 Chapter 5. Utilities for Calculus

CHAPTER

SIX

MANIFOLDS CATALOG

A catalog of manifolds to rapidly create various simple manifolds.

The current entries to the catalog are obtained by typing manifolds.<tab>, where <tab> indicates pressing the
Tab key. They are:

• EuclideanSpace: Euclidean space

• RealLine: real line

• OpenInterval: open interval on the real line

• Sphere: sphere embedded in Euclidean space

• Torus(): torus embedded in Euclidean space

• Minkowski(): 4-dimensional Minkowski space

• Kerr(): Kerr spacetime

• RealProjectiveSpace(): 𝑛-dimensional real projective space

AUTHORS:

• Florentin Jaffredo (2018) : initial version

• Trevor K. Karn (2022) : projective space

sage.manifolds.catalog.Kerr(m=1, a=0, coordinates='BL', names=None)
Generate a Kerr spacetime.

A Kerr spacetime is a 4 dimensional manifold describing a rotating black hole. Two coordinate systems are imple-
mented: Boyer-Lindquist and Kerr (3+1 version).

The shortcut operator .<,> can be used to specify the coordinates.

INPUT:

• m – (default: 1) mass of the black hole in natural units (𝑐 = 1, 𝐺 = 1)

• a – (default: 0) angular momentum in natural units; if set to 0, the resulting spacetime corresponds to a
Schwarzschild black hole

• coordinates – (default: "BL") either "BL" for Boyer-Lindquist coordinates or "Kerr" for Kerr coor-
dinates (3+1 version)

• names – (default: None) name of the coordinates, automatically set by the shortcut operator

OUTPUT:

• Lorentzian manifold

EXAMPLES:

1011

Manifolds, Release 10.4.rc1

sage: m, a = var(m, a)
sage: K = manifolds.Kerr(m, a)
sage: K
4-dimensional Lorentzian manifold M
sage: K.atlas()
[Chart (M, (t, r, th, ph))]

The Kerr metric in Boyer-Lindquist coordinates (cf. Wikipedia article Kerr_metric):

sage: K.metric().display()
g = (2*m*r/(a^2*cos(th)^2 + r^2) - 1) dt⊗dt
- 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dt⊗dph
+ (a^2*cos(th)^2 + r^2)/(a^2 - 2*m*r + r^2) dr⊗dr
+ (a^2*cos(th)^2 + r^2) dth⊗dth
- 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dph⊗dt
+ (2*a^2*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) + a^2 + r^2)*sin(th)^2 dph⊗dph

The Schwarzschild spacetime with the mass parameter set to 1:

sage: K.<t, r, th, ph> = manifolds.Kerr()
sage: K
4-dimensional Lorentzian manifold M
sage: K.metric().display()
g = (2/r - 1) dt⊗dt + r^2/(r^2 - 2*r) dr⊗dr
+ r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
sage: K.default_chart().coord_range()
t: (-oo, +oo); r: (0, +oo); th: (0, pi); ph: [-pi, pi] (periodic)

The Kerr spacetime in Kerr coordinates:

sage: m, a = var(m, a)
sage: K.<t, r, th, ph> = manifolds.Kerr(m, a, coordinates="Kerr")
sage: K
4-dimensional Lorentzian manifold M
sage: K.atlas()
[Chart (M, (t, r, th, ph))]
sage: K.metric().display()
g = (2*m*r/(a^2*cos(th)^2 + r^2) - 1) dt⊗dt
+ 2*m*r/(a^2*cos(th)^2 + r^2) dt⊗dr
- 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dt⊗dph
+ 2*m*r/(a^2*cos(th)^2 + r^2) dr⊗dt
+ (2*m*r/(a^2*cos(th)^2 + r^2) + 1) dr⊗dr
- a*(2*m*r/(a^2*cos(th)^2 + r^2) + 1)*sin(th)^2 dr⊗dph
+ (a^2*cos(th)^2 + r^2) dth⊗dth
- 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dph⊗dt
- a*(2*m*r/(a^2*cos(th)^2 + r^2) + 1)*sin(th)^2 dph⊗dr
+ (2*a^2*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2)
+ a^2 + r^2)*sin(th)^2 dph⊗dph
sage: K.default_chart().coord_range()
t: (-oo, +oo); r: (0, +oo); th: (0, pi); ph: [-pi, pi] (periodic)

sage.manifolds.catalog.Minkowski(positive_spacelike=True, names=None)
Generate a Minkowski space of dimension 4.

By default the signature is set to (− + ++), but can be changed to (+ − −−) by setting the optional argument
positive_spacelike to False. The shortcut operator .<,> can be used to specify the coordinates.

INPUT:

1012 Chapter 6. Manifolds Catalog

https://en.wikipedia.org/wiki/Kerr_metric

Manifolds, Release 10.4.rc1

• positive_spacelike – (default: True) if False, then the spacelike vectors yield a negative sign (i.e.,
the signature is (+−−−))

• names – (default: None) name of the coordinates, automatically set by the shortcut operator

OUTPUT:

• Lorentzian manifold of dimension 4 with (flat) Minkowskian metric

EXAMPLES:

sage: M.<t, x, y, z> = manifolds.Minkowski()
sage: M.metric()[:]
[-1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage: M.<t, x, y, z> = manifolds.Minkowski(False)
sage: M.metric()[:]
[1 0 0 0]
[0 -1 0 0]
[0 0 -1 0]
[0 0 0 -1]

sage.manifolds.catalog.RealProjectiveSpace(dim=2)
Generate projective space of dimension dim over the reals.

This is the topological space of lines through the origin in R𝑑+1. The standard atlas consists of 𝑑+2 charts, which
sends the set𝑈𝑖 = {[𝑥1, 𝑥2, . . . , 𝑥𝑑+1] : 𝑥𝑖 ̸= 0} to 𝑘𝑑 by dividing by 𝑥𝑖 and omitting the 𝑖`𝑡ℎ𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒`𝑥𝑖/𝑥𝑖 =
1.

INPUT:

• dim – (default: 2) the dimension of projective space

OUTPUT:

• P – the projective space RP𝑑 where 𝑑 = dim.

EXAMPLES:

sage: RP2 = manifolds.RealProjectiveSpace(); RP2
2-dimensional topological manifold RP2
sage: latex(RP2)
\mathbb{RP}^{2}

sage: C0, C1, C2 = RP2.top_charts()
sage: p = RP2.point((2,0), chart = C0)
sage: q = RP2.point((0,3), chart = C0)
sage: p in C0.domain()
True
sage: p in C1.domain()
True
sage: C1(p)
(1/2, 0)
sage: p in C2.domain()
False
sage: q in C0.domain()
True
sage: q in C1.domain()

(continues on next page)

1013

Manifolds, Release 10.4.rc1

(continued from previous page)

False
sage: q in C2.domain()
True
sage: C2(q)
(1/3, 0)

sage: r = RP2.point((2,3))
sage: r in C0.domain() and r in C1.domain() and r in C2.domain()
True
sage: C0(r)
(2, 3)
sage: C1(r)
(1/2, 3/2)
sage: C2(r)
(1/3, 2/3)

sage: p = RP2.point((2,3), chart = C1)
sage: p in C0.domain() and p in C1.domain() and p in C2.domain()
True
sage: C0(p)
(1/2, 3/2)
sage: C2(p)
(2/3, 1/3)

sage: RP1 = manifolds.RealProjectiveSpace(1); RP1
1-dimensional topological manifold RP1
sage: C0, C1 = RP1.top_charts()
sage: p, q = RP1.point((2,)), RP1.point((0,))
sage: p in C0.domain()
True
sage: p in C1.domain()
True
sage: q in C0.domain()
True
sage: q in C1.domain()
False
sage: C1(p)
(1/2,)

sage: p, q = RP1.point((3,), chart = C1), RP1.point((0,), chart = C1)
sage: p in C0.domain()
True
sage: q in C0.domain()
False
sage: C0(p)
(1/3,)

sage.manifolds.catalog.Torus(R=2, r=1, names=None)
Generate a 2-dimensional torus embedded in Euclidean space.

The shortcut operator .<,> can be used to specify the coordinates.

INPUT:

• R – (default: 2) distance form the center to the center of the tube

• r – (default: 1) radius of the tube

• names – (default: None) name of the coordinates, automatically set by the shortcut operator

1014 Chapter 6. Manifolds Catalog

Manifolds, Release 10.4.rc1

OUTPUT:

• Riemannian manifold

EXAMPLES:

sage: T.<theta, phi> = manifolds.Torus(3, 1)
sage: T
2-dimensional Riemannian submanifold T embedded in the Euclidean
space E^3
sage: T.atlas()
[Chart (T, (theta, phi))]
sage: T.embedding().display()
T → E^3

(theta, phi) ↦ (X, Y, Z) = ((cos(theta) + 3)*cos(phi),
(cos(theta) + 3)*sin(phi),
sin(theta))

sage: T.metric().display()
gamma = dtheta⊗dtheta + (cos(theta)^2 + 6*cos(theta) + 9) dphi⊗dphi

1015

Manifolds, Release 10.4.rc1

1016 Chapter 6. Manifolds Catalog

CHAPTER

SEVEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

1017

../genindex.html
../py-modindex.html
../search.html

Manifolds, Release 10.4.rc1

1018 Chapter 7. Indices and Tables

PYTHON MODULE INDEX

m
sage.manifolds.calculus_method, 162
sage.manifolds.catalog, 1011
sage.manifolds.chart, 85
sage.manifolds.chart_func, 130
sage.manifolds.continuous_map, 216
sage.manifolds.continuous_map_image, 243
sage.manifolds.differen-

tiable.affine_connection, 766
sage.manifolds.differentiable.automor-

phismfield, 605
sage.manifolds.differentiable.automor-

phismfield_group, 599
sage.manifolds.differentiable.bun-

dle_connection, 815
sage.manifolds.differentiable.charac-

teristic_cohomology_class, 826
sage.manifolds.differentiable.chart, 388
sage.manifolds.differentiable.curve, 465
sage.manifolds.differen-

tiable.de_rham_cohomology, 741
sage.manifolds.differentiable.degener-

ate, 959
sage.manifolds.differentiable.degener-

ate_submanifold, 965
sage.manifolds.differen-

tiable.diff_form, 703
sage.manifolds.differen-

tiable.diff_form_module, 691
sage.manifolds.differen-

tiable.diff_map, 453
sage.manifolds.differentiable.differ-

entiable_submanifold, 789
sage.manifolds.differentiable.exam-

ples.euclidean, 855
sage.manifolds.differentiable.exam-

ples.real_line, 403
sage.manifolds.differentiable.exam-

ples.sphere, 881
sage.manifolds.differentiable.exam-

ples.symplectic_space, 994
sage.manifolds.differentiable.inte-

grated_curve, 481
sage.manifolds.differen-

tiable.levi_civita_connection,
928

sage.manifolds.differentiable.mani-
fold, 335

sage.manifolds.differentiable.mani-
fold_homset, 440

sage.manifolds.differentiable.metric,
894

sage.manifolds.differen-
tiable.mixed_form, 727

sage.manifolds.differen-
tiable.mixed_form_algebra, 722

sage.manifolds.differentiable.multi-
vector_module, 745

sage.manifolds.differentiable.multi-
vectorfield, 751

sage.manifolds.differentiable.pois-
son_tensor, 983

sage.manifolds.differen-
tiable.pseudo_riemannian, 845

sage.manifolds.differen-
tiable.pseudo_riemannian_sub-
manifold, 935

sage.manifolds.differen-
tiable.scalarfield, 419

sage.manifolds.differen-
tiable.scalarfield_algebra, 414

sage.manifolds.differentiable.symplec-
tic_form, 987

sage.manifolds.differentiable.tan-
gent_space, 515

sage.manifolds.differentiable.tan-
gent_vector, 519

sage.manifolds.differentiable.tensor-
field, 622

sage.manifolds.differentiable.tensor-
field_module, 616

sage.manifolds.differentiable.tensor-
field_paral, 668

sage.manifolds.differentiable.vec-

1019

Manifolds, Release 10.4.rc1

tor_bundle, 793
sage.manifolds.differentiable.vector-

field, 553
sage.manifolds.differentiable.vector-

field_module, 531
sage.manifolds.differentiable.vector-

frame, 580
sage.manifolds.family, 326
sage.manifolds.local_frame, 279
sage.manifolds.manifold, 3
sage.manifolds.manifold_homset, 213
sage.manifolds.operators, 890
sage.manifolds.point, 70
sage.manifolds.scalarfield, 172
sage.manifolds.scalarfield_algebra, 168
sage.manifolds.section, 302
sage.manifolds.section_module, 294
sage.manifolds.structure, 66
sage.manifolds.subset, 37
sage.manifolds.subsets.closure, 328
sage.manifolds.subsets.pullback, 329
sage.manifolds.topological_submani-

fold, 243
sage.manifolds.trivialization, 272
sage.manifolds.utilities, 997
sage.manifolds.vector_bundle, 252
sage.manifolds.vector_bundle_fiber, 268
sage.manifolds.vector_bundle_fiber_el-

ement, 271

1020 Python Module Index

INDEX

Non-alphabetical
__call__() (sage.manifolds.chart_func.ChartFunction

method), 134

A
adapted_chart() (sage.manifolds.topological_sub-

manifold.TopologicalSubmanifold method),
245

adapted_frame() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 969

add_coef() (sage.manifolds.differentiable.affine_con-
nection.AffineConnection method), 771

add_comp() (sage.manifolds.differentiable.automor-
phismfield.AutomorphismField method), 607

add_comp() (sage.manifolds.differentiable.tensor-
field_paral.TensorFieldParal method), 677

add_comp() (sage.manifolds.differentiable.tensor-
field.TensorField method), 628

add_comp() (sage.manifolds.section.Section method),
305

add_comp() (sage.manifolds.section.TrivialSection
method), 321

add_comp_by_continuation() (sage.mani-
folds.differentiable.mixed_form.MixedForm
method), 730

add_comp_by_continuation() (sage.mani-
folds.differentiable.tensorfield.TensorField
method), 629

add_comp_by_continuation() (sage.mani-
folds.section.Section method), 306

add_connection_form() (sage.manifolds.differ-
entiable.bundle_connection.BundleConnection
method), 818

add_coord() (sage.manifolds.point.ManifoldPoint
method), 72

add_coordinates() (sage.manifolds.point.Manifold-
Point method), 73

add_expr() (sage.manifolds.continuous_map.Continu-
ousMap method), 221

add_expr() (sage.manifolds.scalarfield.ScalarField
method), 190

add_expr_by_continuation() (sage.mani-
folds.scalarfield.ScalarField method), 191

add_expr_from_subdomain() (sage.manifolds.dif-
ferentiable.tensorfield.TensorField method), 630

add_expr_from_subdomain() (sage.mani-
folds.section.Section method), 307

add_expression() (sage.manifolds.continu-
ous_map.ContinuousMap method), 223

add_restrictions() (sage.manifolds.chart.Chart
method), 89

add_restrictions() (sage.manifolds.chart.Re-
alChart method), 110

additive_sequence() (in module sage.mani-
folds.differentiable.characteristic_cohomol-
ogy_class), 842

affine_connection() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
344

AffineConnection (class in sage.manifolds.differen-
tiable.affine_connection), 766

Algorithm_generic (class in sage.manifolds.differen-
tiable.characteristic_cohomology_class), 830

along() (sage.manifolds.differentiable.tensor-
field_paral.TensorFieldParal method), 678

along() (sage.manifolds.differentiable.tensorfield.Ten-
sorField method), 632

along() (sage.manifolds.differentiable.vectorframe.Vec-
torFrame method), 591

alternating_contravariant_tensor()
(sage.manifolds.differentiable.vectorfield_mod-
ule.VectorFieldModule method), 544

alternating_form() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldModule
method), 545

ambient() (sage.manifolds.subset.ManifoldSubset
method), 39

ambient() (sage.manifolds.topological_submani-
fold.TopologicalSubmanifold method), 246

ambient_domain() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
798

ambient_domain() (sage.manifolds.differen-

1021

Manifolds, Release 10.4.rc1

tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 535

ambient_domain() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldModule
method), 545

ambient_domain() (sage.manifolds.differen-
tiable.vectorframe.VectorFrame method),
592

ambient_extrinsic_curvature() (sage.mani-
folds.differentiable.pseudo_riemannian_subman-
ifold.PseudoRiemannianSubmanifold method),
940

ambient_first_fundamental_form()
(sage.manifolds.differentiable.pseudo_rie-
mannian_submanifold.PseudoRiemannianSub-
manifold method), 941

ambient_induced_metric() (sage.manifolds.dif-
ferentiable.pseudo_riemannian_submani-
fold.PseudoRiemannianSubmanifold method),
941

ambient_metric() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 969

ambient_metric() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 942

ambient_second_fundamental_form()
(sage.manifolds.differentiable.pseudo_rie-
mannian_submanifold.PseudoRiemannianSub-
manifold method), 942

antisymmetrize() (sage.manifolds.differentiable.ten-
sorfield.TensorField method), 633

apply_map() (sage.manifolds.differentiable.tensor-
field.TensorField method), 634

arccos() (sage.manifolds.chart_func.ChartFunction
method), 135

arccos() (sage.manifolds.scalarfield.ScalarField
method), 192

arccosh() (sage.manifolds.chart_func.ChartFunction
method), 136

arccosh() (sage.manifolds.scalarfield.ScalarField
method), 192

arcsin() (sage.manifolds.chart_func.ChartFunction
method), 136

arcsin() (sage.manifolds.scalarfield.ScalarField
method), 193

arcsinh() (sage.manifolds.chart_func.ChartFunction
method), 137

arcsinh() (sage.manifolds.scalarfield.ScalarField
method), 194

arctan() (sage.manifolds.chart_func.ChartFunction
method), 137

arctan() (sage.manifolds.scalarfield.ScalarField
method), 194

arctanh() (sage.manifolds.chart_func.ChartFunction
method), 138

arctanh() (sage.manifolds.scalarfield.ScalarField
method), 195

arithmetic() (sage.manifolds.utilities.Simpli-
fySqrtReal method), 1001

as_subset() (sage.manifolds.topological_submani-
fold.TopologicalSubmanifold method), 247

at() (sage.manifolds.differentiable.automorphism-
field.AutomorphismFieldParal method), 613

at() (sage.manifolds.differentiable.tensorfield_paral.Ten-
sorFieldParal method), 679

at() (sage.manifolds.differentiable.tensorfield.Tensor-
Field method), 635

at() (sage.manifolds.differentiable.vectorframe.CoFrame
method), 584

at() (sage.manifolds.differentiable.vectorframe.Vector-
Frame method), 593

at() (sage.manifolds.local_frame.LocalCoFrame
method), 282

at() (sage.manifolds.local_frame.LocalFrame method),
286

at() (sage.manifolds.section.Section method), 308
at() (sage.manifolds.section.TrivialSection method), 322
atlas() (sage.manifolds.differentiable.vector_bun-

dle.TensorBundle method), 798
atlas() (sage.manifolds.manifold.TopologicalManifold

method), 14
atlas() (sage.manifolds.vector_bundle.TopologicalVec-

torBundle method), 255
automorphism() (sage.manifolds.differentiable.vector-

field_module.VectorFieldModule method), 545
automorphism() (sage.manifolds.trivialization.Transi-

tionMap method), 272
automorphism_field() (sage.manifolds.differen-

tiable.manifold.DifferentiableManifold method),
345

automorphism_field_group() (sage.mani-
folds.differentiable.manifold.DifferentiableMani-
fold method), 346

AutomorphismField (class in sage.manifolds.differen-
tiable.automorphismfield), 605

AutomorphismFieldGroup (class in sage.mani-
folds.differentiable.automorphismfield_group),
599

AutomorphismFieldParal (class in sage.mani-
folds.differentiable.automorphismfield), 612

AutomorphismFieldParalGroup (class in
sage.manifolds.differentiable.automorphism-
field_group), 602

B
base_field() (sage.manifolds.manifold.Topological-

Manifold method), 15

1022 Index

Manifolds, Release 10.4.rc1

base_field() (sage.manifolds.vector_bundle.Topolog-
icalVectorBundle method), 255

base_field_type() (sage.manifolds.manifold.Topo-
logicalManifold method), 15

base_field_type() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 255

base_module() (sage.manifolds.differentiable.auto-
morphismfield_group.AutomorphismFieldGroup
method), 601

base_module() (sage.manifolds.differen-
tiable.diff_form_module.DiffFormModule
method), 698

base_module() (sage.manifolds.differentiable.mul-
tivector_module.MultivectorModule method),
750

base_module() (sage.manifolds.differentiable.ten-
sorfield_module.TensorFieldModule method),
622

base_module() (sage.manifolds.differentiable.tensor-
field.TensorField method), 636

base_module() (sage.manifolds.section.Section
method), 309

base_point() (sage.manifolds.differentiable.tan-
gent_space.TangentSpace method), 518

base_point() (sage.manifolds.vector_bun-
dle_fiber.VectorBundleFiber method), 270

base_space() (sage.manifolds.local_frame.Local-
Frame method), 288

base_space() (sage.manifolds.section_module.Section-
FreeModule method), 295

base_space() (sage.manifolds.section_module.Section-
Module method), 300

base_space() (sage.manifolds.trivialization.Trivializa-
tion method), 277

base_space() (sage.manifolds.vector_bundle.Topolog-
icalVectorBundle method), 256

basis() (sage.manifolds.differentiable.vectorfield_mod-
ule.VectorFieldFreeModule method), 535

basis() (sage.manifolds.section_module.Section-
FreeModule method), 296

bracket() (sage.manifolds.differentiable.multivector-
field.MultivectorField method), 753

bracket() (sage.manifolds.differentiable.multivector-
field.MultivectorFieldParal method), 761

bracket() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
429

bracket() (sage.manifolds.differentiable.vector-
field.VectorField method), 555

bundle_connection() (sage.manifolds.differen-
tiable.vector_bundle.DifferentiableVectorBundle
method), 794

BundleConnection (class in sage.manifolds.differen-
tiable.bundle_connection), 815

C
calculus_method() (sage.manifolds.chart.Chart

method), 90
CalculusMethod (class in sage.manifolds.calcu-

lus_method), 162
canonical_chart() (sage.manifolds.differen-

tiable.examples.real_line.OpenInterval method),
408

canonical_coordinate() (sage.manifolds.differen-
tiable.examples.real_line.OpenInterval method),
408

cartesian_coordinates() (sage.mani-
folds.differentiable.examples.euclidean.Eu-
clidean3dimSpace method), 864

cartesian_coordinates() (sage.manifolds.dif-
ferentiable.examples.euclidean.EuclideanPlane
method), 872

cartesian_coordinates() (sage.manifolds.dif-
ferentiable.examples.euclidean.EuclideanSpace
method), 878

cartesian_frame() (sage.manifolds.differen-
tiable.examples.euclidean.EuclideanSpace
method), 879

center() (sage.manifolds.differentiable.exam-
ples.sphere.Sphere method), 885

change_of_frame() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
347

change_of_frame() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
798

change_of_frame() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 256

changes_of_frame() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
347

changes_of_frame() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
799

changes_of_frame() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 256

characteristic_class() (sage.manifolds.differen-
tiable.vector_bundle.DifferentiableVectorBundle
method), 794

characteristic_cohomology_class()
(sage.manifolds.differentiable.vector_bun-
dle.DifferentiableVectorBundle method), 794

characteristic_cohomology_class_ring()
(sage.manifolds.differentiable.vector_bundle.Dif-
ferentiableVectorBundle method), 795

CharacteristicCohomologyClassRing (class
in sage.manifolds.differentiable.characteris-
tic_cohomology_class), 831

CharacteristicCohomologyClassRingEle-

Index 1023

Manifolds, Release 10.4.rc1

ment (class in sage.manifolds.differen-
tiable.characteristic_cohomology_class), 833

Chart (class in sage.manifolds.chart), 85
chart (sage.manifolds.structure.DegenerateStructure at-

tribute), 66
chart (sage.manifolds.structure.DifferentialStructure at-

tribute), 67
chart (sage.manifolds.structure.LorentzianStructure at-

tribute), 67
chart (sage.manifolds.structure.PseudoRiemannianStruc-

ture attribute), 68
chart (sage.manifolds.structure.RealDifferentialStructure

attribute), 68
chart (sage.manifolds.structure.RealTopologicalStructure

attribute), 69
chart (sage.manifolds.structure.RiemannianStructure at-

tribute), 69
chart (sage.manifolds.structure.TopologicalStructure at-

tribute), 69
chart() (sage.manifolds.chart_func.ChartFunction

method), 138
chart() (sage.manifolds.chart_func.MultiCoordFunc-

tion method), 158
chart() (sage.manifolds.differentiable.vectorframe.Co-

ordFrame method), 588
chart() (sage.manifolds.manifold.TopologicalManifold

method), 16
ChartFunction (class in sage.manifolds.chart_func),

130
ChartFunctionRing (class in sage.mani-

folds.chart_func), 155
ChernAlgorithm (class in sage.manifolds.differen-

tiable.characteristic_cohomology_class), 836
christoffel_symbols() (sage.manifolds.differen-

tiable.metric.PseudoRiemannianMetric method),
903

christoffel_symbols_display() (sage.man-
ifolds.differentiable.metric.PseudoRiemannian-
Metric method), 904

clear_cache() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 943

closure() (sage.manifolds.subset.ManifoldSubset
method), 39

closure() (sage.manifolds.subsets.pullback.Manifold-
SubsetPullback method), 331

codomain() (sage.manifolds.chart.Chart method), 91
codomain() (sage.manifolds.chart.RealChart method),

111
codomain() (sage.manifolds.scalarfield.ScalarField

method), 195
coef() (sage.manifolds.differentiable.affine_connec-

tion.AffineConnection method), 772
coef() (sage.manifolds.differentiable.levi_civita_connec-

tion.LeviCivitaConnection method), 931
CoFrame (class in sage.manifolds.differentiable.vector-

frame), 583
coframe() (sage.manifolds.differentiable.chart.Dif-

fChart method), 392
coframe() (sage.manifolds.differentiable.vector-

frame.VectorFrame method), 594
coframe() (sage.manifolds.local_frame.LocalFrame

method), 288
coframe() (sage.manifolds.trivialization.Trivialization

method), 277
coframes() (sage.manifolds.differentiable.mani-

fold.DifferentiableManifold method), 348
coframes() (sage.manifolds.differentiable.vector_bun-

dle.TensorBundle method), 800
coframes() (sage.manifolds.vector_bundle.Topologi-

calVectorBundle method), 257
cohomology() (sage.manifolds.differen-

tiable.mixed_form_algebra.MixedFormAlgebra
method), 724

collect() (sage.manifolds.chart_func.ChartFunction
method), 139

collect_common_factors() (sage.mani-
folds.chart_func.ChartFunction method),
139

common_charts() (sage.mani-
folds.scalarfield.ScalarField method), 196

comp() (sage.manifolds.differentiable.tensor-
field_paral.TensorFieldParal method), 681

comp() (sage.manifolds.differentiable.tensorfield.Tensor-
Field method), 637

comp() (sage.manifolds.section.Section method), 309
comp() (sage.manifolds.section.TrivialSection method),

323
complement() (sage.manifolds.subset.ManifoldSubset

method), 40
composition() (sage.manifolds.utilities.SimplifyAb-

sTrig method), 999
connection() (sage.manifolds.differentiable.met-

ric.PseudoRiemannianMetric method), 906
connection_form() (sage.manifolds.differen-

tiable.affine_connection.AffineConnection
method), 773

connection_form() (sage.manifolds.differen-
tiable.bundle_connection.BundleConnection
method), 819

connection_forms() (sage.manifolds.differen-
tiable.bundle_connection.BundleConnection
method), 820

constant_scalar_field() (sage.manifolds.mani-
fold.TopologicalManifold method), 18

construction() (sage.manifolds.differentiable.tan-
gent_space.TangentSpace method), 518

construction() (sage.manifolds.vector_bun-

1024 Index

Manifolds, Release 10.4.rc1

dle_fiber.VectorBundleFiber method), 270
continuous_map() (sage.manifolds.manifold.Topo-

logicalManifold method), 19
ContinuousMap (class in sage.manifolds.continu-

ous_map), 216
contract() (sage.manifolds.differentiable.tensor-

field_paral.TensorFieldParal method), 681
contract() (sage.manifolds.differentiable.tensor-

field.TensorField method), 638
coord() (sage.manifolds.point.ManifoldPoint method),

74
coord_bounds() (sage.manifolds.chart.RealChart

method), 112
coord_change() (sage.manifolds.manifold.Topologi-

calManifold method), 20
coord_changes() (sage.manifolds.manifold.Topologi-

calManifold method), 21
coord_expr() (sage.manifolds.differentiable.curve.Dif-

ferentiableCurve method), 471
coord_function() (sage.mani-

folds.scalarfield.ScalarField method), 197
coord_functions() (sage.manifolds.continu-

ous_map.ContinuousMap method), 225
coord_range() (sage.manifolds.chart.RealChart

method), 112
CoordChange (class in sage.manifolds.chart), 102
CoordCoFrame (class in sage.manifolds.differen-

tiable.vectorframe), 586
CoordFrame (class in sage.manifolds.differentiable.vec-

torframe), 587
coordinate_charts() (sage.manifolds.differen-

tiable.examples.sphere.Sphere method), 885
coordinates() (sage.manifolds.point.ManifoldPoint

method), 76
copy() (sage.manifolds.chart_func.ChartFunction

method), 140
copy() (sage.manifolds.differentiable.affine_connec-

tion.AffineConnection method), 775
copy() (sage.manifolds.differentiable.automorphism-

field.AutomorphismField method), 608
copy() (sage.manifolds.differentiable.bundle_connec-

tion.BundleConnection method), 820
copy() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 731
copy() (sage.manifolds.differentiable.tensorfield.Tensor-

Field method), 641
copy() (sage.manifolds.scalarfield.ScalarField method),

198
copy() (sage.manifolds.section.Section method), 310
copy_from() (sage.manifolds.differentiable.tensor-

field.TensorField method), 641
copy_from() (sage.manifolds.scalarfield.ScalarField

method), 199
copy_from() (sage.manifolds.section.Section method),

311
cos() (sage.manifolds.chart_func.ChartFunction

method), 140
cos() (sage.manifolds.scalarfield.ScalarField method),

199
cosh() (sage.manifolds.chart_func.ChartFunction

method), 141
cosh() (sage.manifolds.scalarfield.ScalarField method),

200
cotangent_bundle() (sage.manifolds.differen-

tiable.manifold.DifferentiableManifold method),
349

cotton() (sage.manifolds.differentiable.metric.Pseu-
doRiemannianMetric method), 907

cotton_york() (sage.manifolds.differentiable.met-
ric.PseudoRiemannianMetric method), 908

cross() (sage.manifolds.differentiable.vectorfield.Vec-
torField method), 556

cross_product() (sage.manifolds.differentiable.vec-
torfield.VectorField method), 557

cup() (sage.manifolds.differentiable.de_rham_cohomol-
ogy.DeRhamCohomologyClass method), 742

curl() (in module sage.manifolds.operators), 890
curl() (sage.manifolds.differentiable.vectorfield.Vector-

Field method), 559
current() (sage.manifolds.calculus_method.Calculus-

Method method), 163
curvature_form() (sage.manifolds.differen-

tiable.affine_connection.AffineConnection
method), 775

curvature_form() (sage.manifolds.differen-
tiable.bundle_connection.BundleConnection
method), 821

curve() (sage.manifolds.differentiable.manifold.Differ-
entiableManifold method), 349

cylindrical_coordinates() (sage.mani-
folds.differentiable.examples.euclidean.Eu-
clidean3dimSpace method), 865

cylindrical_frame() (sage.manifolds.differen-
tiable.examples.euclidean.Euclidean3dimSpace
method), 866

D
dalembertian() (in module sage.manifolds.opera-

tors), 891
dalembertian() (sage.manifolds.differen-

tiable.scalarfield.DiffScalarField method),
430

dalembertian() (sage.manifolds.differentiable.tensor-
field.TensorField method), 642

de_rham_complex() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
350

Index 1025

Manifolds, Release 10.4.rc1

declare_closed() (sage.manifolds.subset.Manifold-
Subset method), 41

declare_embedding() (sage.manifolds.topolog-
ical_submanifold.TopologicalSubmanifold
method), 247

declare_empty() (sage.manifolds.subset.Manifold-
Subset method), 41

declare_equal() (sage.manifolds.subset.Manifold-
Subset method), 42

declare_nonempty() (sage.manifolds.subset.Mani-
foldSubset method), 43

declare_subset() (sage.manifolds.subset.Manifold-
Subset method), 44

declare_superset() (sage.manifolds.subset.Mani-
foldSubset method), 45

declare_union() (sage.manifolds.subset.Manifold-
Subset method), 46

default_chart() (sage.manifolds.manifold.Topologi-
calManifold method), 22

default_frame() (sage.manifolds.differentiable.man-
ifold.DifferentiableManifold method), 351

default_frame() (sage.manifolds.differentiable.vec-
tor_bundle.TensorBundle method), 800

default_frame() (sage.manifolds.section_mod-
ule.SectionFreeModule method), 296

default_frame() (sage.manifolds.section_mod-
ule.SectionModule method), 300

default_frame() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 257

default_screen() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 970

degenerate_metric() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
351

DegenerateManifold (class in sage.manifolds.differ-
entiable.degenerate), 959

DegenerateMetric (class in sage.manifolds.differen-
tiable.metric), 894

DegenerateMetricParal (class in sage.mani-
folds.differentiable.metric), 897

DegenerateStructure (class in sage.manifolds.struc-
ture), 66

DegenerateSubmanifold (class in sage.mani-
folds.differentiable.degenerate_submanifold),
967

degree() (sage.manifolds.differentiable.diff_form_mod-
ule.DiffFormModule method), 698

degree() (sage.manifolds.differentiable.diff_form.Diff-
Form method), 707

degree() (sage.manifolds.differentiable.multivec-
tor_module.MultivectorModule method), 751

degree() (sage.manifolds.differentiable.multivector-
field.MultivectorField method), 755

degree() (sage.manifolds.differentiable.scalarfield.Diff-
ScalarField method), 431

del_other_coef() (sage.manifolds.differen-
tiable.affine_connection.AffineConnection
method), 777

del_other_forms() (sage.manifolds.differen-
tiable.bundle_connection.BundleConnection
method), 822

DeRhamCohomologyClass (class in sage.mani-
folds.differentiable.de_rham_cohomology),
741

DeRhamCohomologyRing (class in sage.manifolds.dif-
ferentiable.de_rham_cohomology), 743

derivative() (sage.manifolds.chart_func.ChartFunc-
tion method), 141

derivative() (sage.manifolds.differen-
tiable.diff_form.DiffForm method), 707

derivative() (sage.manifolds.differen-
tiable.diff_form.DiffFormParal method),
719

derivative() (sage.manifolds.differen-
tiable.mixed_form.MixedForm method), 732

derivative() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
431

destination_map() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
801

destination_map() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 536

destination_map() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldModule
method), 546

destination_map() (sage.manifolds.differen-
tiable.vectorframe.VectorFrame method), 594

det() (sage.manifolds.differentiable.metric.Degenerate-
Metric method), 895

det() (sage.manifolds.differentiable.metric.PseudoRie-
mannianMetric method), 908

det() (sage.manifolds.trivialization.TransitionMap
method), 273

determinant() (sage.manifolds.differentiable.met-
ric.DegenerateMetric method), 895

determinant() (sage.manifolds.differentiable.met-
ric.PseudoRiemannianMetric method), 909

diff() (sage.manifolds.chart_func.ChartFunction
method), 143

diff_degree() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 352

diff_degree() (sage.manifolds.differentiable.vec-
tor_bundle.DifferentiableVectorBundle method),
796

diff_form() (sage.manifolds.differentiable.mani-

1026 Index

Manifolds, Release 10.4.rc1

fold.DifferentiableManifold method), 352
diff_form_module() (sage.manifolds.differen-

tiable.manifold.DifferentiableManifold method),
353

diff_map() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 354

DiffChart (class in sage.manifolds.differentiable.chart),
388

DiffCoordChange (class in sage.manifolds.differen-
tiable.chart), 396

diffeomorphism() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
355

difference() (sage.manifolds.subset.ManifoldSubset
method), 47

DifferentiableCurve (class in sage.manifolds.dif-
ferentiable.curve), 465

DifferentiableCurveSet (class in sage.mani-
folds.differentiable.manifold_homset), 441

DifferentiableManifold (class in sage.mani-
folds.differentiable.manifold), 342

DifferentiableManifoldHomset (class in
sage.manifolds.differentiable.manifold_homset),
443

DifferentiableSubmanifold (class in sage.mani-
folds.differentiable.differentiable_submanifold),
789

DifferentiableVectorBundle (class in sage.man-
ifolds.differentiable.vector_bundle), 793

differential() (sage.manifolds.differen-
tiable.diff_map.DiffMap method), 459

differential() (sage.manifolds.differen-
tiable.mixed_form_algebra.MixedFormAlgebra
method), 724

differential() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
432

differential_functions() (sage.manifolds.dif-
ferentiable.diff_map.DiffMap method), 460

DifferentialStructure (class in sage.mani-
folds.structure), 67

DiffForm (class in sage.manifolds.differen-
tiable.diff_form), 703

DiffFormFreeModule (class in sage.manifolds.differ-
entiable.diff_form_module), 692

DiffFormModule (class in sage.manifolds.differen-
tiable.diff_form_module), 694

DiffFormParal (class in sage.manifolds.differen-
tiable.diff_form), 714

DiffMap (class in sage.manifolds.differen-
tiable.diff_map), 453

DiffScalarField (class in sage.manifolds.differen-
tiable.scalarfield), 420

DiffScalarFieldAlgebra (class in sage.mani-

folds.differentiable.scalarfield_algebra), 414
difft() (sage.manifolds.differentiable.pseudo_rieman-

nian_submanifold.PseudoRiemannianSubmani-
fold method), 944

dim() (sage.manifolds.differentiable.tangent_space.Tan-
gentSpace method), 518

dim() (sage.manifolds.manifold.TopologicalManifold
method), 22

dim() (sage.manifolds.vector_bundle_fiber.Vector-
BundleFiber method), 270

dimension() (sage.manifolds.differentiable.tan-
gent_space.TangentSpace method), 519

dimension() (sage.manifolds.manifold.Topological-
Manifold method), 22

dimension() (sage.manifolds.vector_bundle_fiber.Vec-
torBundleFiber method), 270

disp() (sage.manifolds.chart_func.ChartFunction
method), 144

disp() (sage.manifolds.chart.CoordChangemethod), 102
disp() (sage.manifolds.continuous_map.ContinuousMap

method), 227
disp() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 732
disp() (sage.manifolds.differentiable.tensorfield.Tensor-

Field method), 643
disp() (sage.manifolds.scalarfield.ScalarField method),

200
disp() (sage.manifolds.section.Section method), 312
disp_exp() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 733
display() (sage.manifolds.chart_func.ChartFunction

method), 144
display() (sage.manifolds.chart.CoordChange

method), 103
display() (sage.manifolds.continuous_map.Continu-

ousMap method), 229
display() (sage.manifolds.differentiable.affine_connec-

tion.AffineConnection method), 777
display() (sage.manifolds.differentiable.bundle_con-

nection.BundleConnection method), 822
display() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 733
display() (sage.manifolds.differentiable.tensor-

field.TensorField method), 645
display() (sage.manifolds.scalarfield.ScalarField

method), 201
display() (sage.manifolds.section.Section method), 313
display_comp() (sage.manifolds.differentiable.tensor-

field_paral.TensorFieldParal method), 682
display_comp() (sage.manifolds.differentiable.tensor-

field.TensorField method), 647
display_comp() (sage.manifolds.section.Section

method), 315
display_comp() (sage.manifolds.section.TrivialSec-

Index 1027

Manifolds, Release 10.4.rc1

tion method), 323
display_exp() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 734
display_expansion() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 734
dist() (sage.manifolds.differentiable.examples.eu-

clidean.EuclideanSpace method), 879
dist() (sage.manifolds.differentiable.exam-

ples.sphere.Sphere method), 886
div() (in module sage.manifolds.operators), 891
div() (sage.manifolds.differentiable.tensorfield.Tensor-

Field method), 648
divergence() (sage.manifolds.differentiable.tensor-

field.TensorField method), 649
domain() (sage.manifolds.chart.Chart method), 91
domain() (sage.manifolds.differentiable.affine_connec-

tion.AffineConnection method), 779
domain() (sage.manifolds.differentiable.tensorfield.Ten-

sorField method), 651
domain() (sage.manifolds.differentiable.vector-

field_module.VectorFieldFreeModule method),
537

domain() (sage.manifolds.differentiable.vector-
field_module.VectorFieldModule method),
546

domain() (sage.manifolds.differentiable.vector-
frame.VectorFrame method), 595

domain() (sage.manifolds.local_frame.LocalFrame
method), 288

domain() (sage.manifolds.scalarfield.ScalarField
method), 202

domain() (sage.manifolds.section_module.Section-
FreeModule method), 297

domain() (sage.manifolds.section_module.SectionMod-
ule method), 300

domain() (sage.manifolds.section.Section method), 316
domain() (sage.manifolds.trivialization.Trivialization

method), 277
dot() (sage.manifolds.differentiable.vectorfield.Vector-

Field method), 560
dot_product() (sage.manifolds.differentiable.vector-

field.VectorField method), 561
down() (sage.manifolds.differentiable.tensorfield.Tensor-

Field method), 651
dual() (sage.manifolds.differentiable.vectorfield_mod-

ule.VectorFieldModule method), 547
dual_exterior_power() (sage.manifolds.differen-

tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 537

dual_exterior_power() (sage.manifolds.differ-
entiable.vectorfield_module.VectorFieldModule
method), 547

E
Element (sage.manifolds.chart_func.ChartFunctionRing

attribute), 156
Element (sage.manifolds.differentiable.automorphism-

field_group.AutomorphismFieldGroup attribute),
601

Element (sage.manifolds.differentiable.automorphism-
field_group.AutomorphismFieldParalGroup
attribute), 605

Element (sage.manifolds.differentiable.characteristic_co-
homology_class.CharacteristicCohomologyClass-
Ring attribute), 833

Element (sage.manifolds.differentiable.de_rham_co-
homology.DeRhamCohomologyRing attribute),
744

Element (sage.manifolds.differentiable.diff_form_mod-
ule.DiffFormFreeModule attribute), 694

Element (sage.manifolds.differentiable.diff_form_mod-
ule.DiffFormModule attribute), 698

Element (sage.manifolds.differentiable.manifold_hom-
set.DifferentiableCurveSet attribute), 443

Element (sage.manifolds.differentiable.manifold_hom-
set.DifferentiableManifoldHomset attribute),
445

Element (sage.manifolds.differentiable.manifold_hom-
set.IntegratedAutoparallelCurveSet attribute),
447

Element (sage.manifolds.differentiable.manifold_hom-
set.IntegratedCurveSet attribute), 450

Element (sage.manifolds.differentiable.manifold_hom-
set.IntegratedGeodesicSet attribute), 453

Element (sage.manifolds.differentiable.mixed_form_al-
gebra.MixedFormAlgebra attribute), 724

Element (sage.manifolds.differentiable.multivector_mod-
ule.MultivectorFreeModule attribute), 748

Element (sage.manifolds.differentiable.multivector_mod-
ule.MultivectorModule attribute), 750

Element (sage.manifolds.differentiable.scalarfield_alge-
bra.DiffScalarFieldAlgebra attribute), 419

Element (sage.manifolds.differentiable.tan-
gent_space.TangentSpace attribute), 518

Element (sage.manifolds.differentiable.tensorfield_mod-
ule.TensorFieldFreeModule attribute), 619

Element (sage.manifolds.differentiable.tensorfield_mod-
ule.TensorFieldModule attribute), 622

Element (sage.manifolds.differentiable.vectorfield_mod-
ule.VectorFieldFreeModule attribute), 535

Element (sage.manifolds.differentiable.vectorfield_mod-
ule.VectorFieldModule attribute), 544

Element (sage.manifolds.manifold_homset.Topological-
ManifoldHomset attribute), 215

Element (sage.manifolds.scalarfield_algebra.ScalarFiel-
dAlgebra attribute), 171

Element (sage.manifolds.section_module.Section-

1028 Index

Manifolds, Release 10.4.rc1

FreeModule attribute), 295
Element (sage.manifolds.section_module.SectionModule

attribute), 300
Element (sage.manifolds.subset.ManifoldSubset at-

tribute), 39
Element (sage.manifolds.vector_bundle_fiber.Vector-

BundleFiber attribute), 270
embedding() (sage.manifolds.topological_submani-

fold.TopologicalSubmanifold method), 247
equal_subset_family() (sage.manifolds.sub-

set.ManifoldSubset method), 48
equal_subsets() (sage.manifolds.subset.Manifold-

Subset method), 48
Euclidean3dimSpace (class in sage.manifolds.differ-

entiable.examples.euclidean), 862
EuclideanPlane (class in sage.manifolds.differen-

tiable.examples.euclidean), 870
EuclideanSpace (class in sage.manifolds.differen-

tiable.examples.euclidean), 874
EulerAlgorithm (class in sage.manifolds.differen-

tiable.characteristic_cohomology_class), 837
exp() (sage.manifolds.chart_func.ChartFunction

method), 145
exp() (sage.manifolds.scalarfield.ScalarField method),

202
expand() (sage.manifolds.chart_func.ChartFunction

method), 145
expr() (sage.manifolds.chart_func.ChartFunction

method), 146
expr() (sage.manifolds.chart_func.MultiCoordFunction

method), 159
expr() (sage.manifolds.continuous_map.ContinuousMap

method), 231
expr() (sage.manifolds.scalarfield.ScalarField method),

203
expression() (sage.manifolds.continuous_map.Con-

tinuousMap method), 233
ExpressionNice (class in sage.manifolds.utilities), 997
extension() (sage.manifolds.differentiable.degener-

ate.TangentTensor method), 964
exterior_derivative() (in module sage.mani-

folds.utilities), 1001
exterior_derivative() (sage.manifolds.differen-

tiable.diff_form.DiffForm method), 708
exterior_derivative() (sage.manifolds.differen-

tiable.diff_form.DiffFormParal method), 719
exterior_derivative() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 735
exterior_derivative() (sage.manifolds.differen-

tiable.scalarfield.DiffScalarField method), 433
exterior_power() (sage.manifolds.differen-

tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 538

exterior_power() (sage.manifolds.differen-

tiable.vectorfield_module.VectorFieldModule
method), 548

extrinsic_curvature() (sage.manifolds.differen-
tiable.degenerate_submanifold.DegenerateSub-
manifold method), 970

extrinsic_curvature() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 944

F
factor() (sage.manifolds.chart_func.ChartFunction

method), 147
fast_wedge_power() (in module sage.manifolds.dif-

ferentiable.characteristic_cohomology_class),
843

fiber() (sage.manifolds.differentiable.vector_bun-
dle.TensorBundle method), 801

fiber() (sage.manifolds.vector_bundle.TopologicalVec-
torBundle method), 257

first_fundamental_form() (sage.manifolds.dif-
ferentiable.degenerate_submanifold.Degenerate-
Submanifold method), 971

first_fundamental_form() (sage.manifolds.dif-
ferentiable.pseudo_riemannian_submani-
fold.PseudoRiemannianSubmanifold method),
945

flat() (sage.manifolds.differentiable.symplec-
tic_form.SymplecticForm method), 988

frame() (sage.manifolds.differentiable.chart.DiffChart
method), 392

frame() (sage.manifolds.trivialization.Trivialization
method), 277

frames() (sage.manifolds.differentiable.manifold.Differ-
entiableManifold method), 356

frames() (sage.manifolds.differentiable.vector_bun-
dle.TensorBundle method), 802

frames() (sage.manifolds.vector_bundle.Topologi-
calVectorBundle method), 258

from_subsets_or_families() (sage.mani-
folds.family.ManifoldSubsetFiniteFamily class
method), 328

function() (sage.manifolds.chart.Chart method), 91
function_ring() (sage.manifolds.chart.Chart

method), 92

G
gauss_curvature() (sage.manifolds.differen-

tiable.degenerate_submanifold.DegenerateSub-
manifold method), 971

gauss_curvature() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 946

general_linear_group() (sage.manifolds.dif-
ferentiable.vectorfield_module.VectorField-

Index 1029

Manifolds, Release 10.4.rc1

FreeModule method), 538
general_linear_group() (sage.manifolds.differ-

entiable.vectorfield_module.VectorFieldModule
method), 548

get() (sage.manifolds.differentiable.characteristic_coho-
mology_class.Algorithm_generic method), 830

get() (sage.manifolds.differentiable.characteristic_coho-
mology_class.EulerAlgorithm method), 837

get() (sage.manifolds.differentiable.characteristic_co-
homology_class.PontryaginEulerAlgorithm
method), 841

get_chart() (sage.manifolds.manifold.Topological-
Manifold method), 23

get_form() (sage.manifolds.differentiable.characteris-
tic_cohomology_class.CharacteristicCohomolo-
gyClassRingElement method), 834

get_gen_pow() (sage.manifolds.differentiable.char-
acteristic_cohomology_class.Algorithm_generic
method), 830

get_gen_pow() (sage.manifolds.differentiable.charac-
teristic_cohomology_class.PontryaginEulerAlgo-
rithm method), 841

get_local() (sage.manifolds.differentiable.charac-
teristic_cohomology_class.Algorithm_generic
method), 831

get_local() (sage.manifolds.differentiable.characteris-
tic_cohomology_class.ChernAlgorithm method),
836

get_local() (sage.manifolds.differentiable.character-
istic_cohomology_class.EulerAlgorithm method),
838

get_local() (sage.manifolds.differentiable.charac-
teristic_cohomology_class.PontryaginAlgorithm
method), 840

get_local() (sage.manifolds.differentiable.characteris-
tic_cohomology_class.PontryaginEulerAlgorithm
method), 841

get_subset() (sage.manifolds.subset.ManifoldSubset
method), 49

grad() (in module sage.manifolds.operators), 892
gradient() (sage.manifolds.differen-

tiable.scalarfield.DiffScalarField method),
435

gradt() (sage.manifolds.differentiable.pseudo_rieman-
nian_submanifold.PseudoRiemannianSubmani-
fold method), 947

H
hamiltonian_vector_field() (sage.mani-

folds.differentiable.poisson_tensor.Poisson-
TensorField method), 984

hamiltonian_vector_field() (sage.mani-
folds.differentiable.symplectic_form.Symplectic-
Form method), 988

has_defined_points() (sage.manifolds.sub-
set.ManifoldSubset method), 49

has_orientation() (sage.manifolds.manifold.Topo-
logicalManifold method), 23

has_orientation() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 258

hodge_dual() (sage.manifolds.differen-
tiable.diff_form.DiffForm method), 709

hodge_dual() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
436

hodge_star() (sage.manifolds.differentiable.met-
ric.PseudoRiemannianMetric method), 911

hodge_star() (sage.manifolds.differentiable.symplec-
tic_form.SymplecticForm method), 989

homeomorphism() (sage.manifolds.manifold.Topologi-
calManifold method), 24

homology() (sage.manifolds.differen-
tiable.mixed_form_algebra.MixedFormAlgebra
method), 725

homset (sage.manifolds.structure.DegenerateStructure at-
tribute), 66

homset (sage.manifolds.structure.DifferentialStructure at-
tribute), 67

homset (sage.manifolds.structure.LorentzianStructure at-
tribute), 67

homset (sage.manifolds.structure.PseudoRiemanni-
anStructure attribute), 68

homset (sage.manifolds.structure.RealDifferentialStruc-
ture attribute), 68

homset (sage.manifolds.structure.RealTopologicalStruc-
ture attribute), 69

homset (sage.manifolds.structure.RiemannianStructure
attribute), 69

homset (sage.manifolds.structure.TopologicalStructure at-
tribute), 69

I
identity_map() (sage.manifolds.differentiable.vector-

field_module.VectorFieldModule method), 549
identity_map() (sage.manifolds.manifold.Topologi-

calManifold method), 25
image() (sage.manifolds.continuous_map.Continu-

ousMap method), 234
ImageManifoldSubset (class in sage.manifolds.con-

tinuous_map_image), 243
immersion() (sage.manifolds.topological_submani-

fold.TopologicalSubmanifold method), 248
index_generator() (sage.manifolds.manifold.Topo-

logicalManifold method), 26
induced_metric() (sage.manifolds.differentiable.de-

generate_submanifold.DegenerateSubmanifold
method), 972

1030 Index

Manifolds, Release 10.4.rc1

induced_metric() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 947

inf() (sage.manifolds.differentiable.exam-
ples.real_line.OpenInterval method), 409

integrated_autoparallel_curve()
(sage.manifolds.differentiable.manifold.Dif-
ferentiableManifold method), 357

integrated_curve() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
359

integrated_geodesic() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
360

IntegratedAutoparallelCurve (class in
sage.manifolds.differentiable.integrated_curve),
483

IntegratedAutoparallelCurveSet (class in
sage.manifolds.differentiable.manifold_homset),
445

IntegratedCurve (class in sage.manifolds.differen-
tiable.integrated_curve), 493

IntegratedCurveSet (class in sage.manifolds.differ-
entiable.manifold_homset), 447

IntegratedGeodesic (class in sage.manifolds.differ-
entiable.integrated_curve), 511

IntegratedGeodesicSet (class in sage.mani-
folds.differentiable.manifold_homset), 450

interior_product() (sage.manifolds.differen-
tiable.diff_form.DiffForm method), 711

interior_product() (sage.manifolds.differen-
tiable.diff_form.DiffFormParal method), 720

interior_product() (sage.manifolds.differen-
tiable.multivectorfield.MultivectorField method),
755

interior_product() (sage.manifolds.differen-
tiable.multivectorfield.MultivectorFieldParal
method), 764

interpolate() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedCurve method), 496

interpolation() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedCurve method), 499

intersection() (sage.manifolds.subset.ManifoldSub-
set method), 50

inverse() (sage.manifolds.chart.CoordChange
method), 103

inverse() (sage.manifolds.continuous_map.Continu-
ousMap method), 235

inverse() (sage.manifolds.differentiable.automor-
phismfield.AutomorphismField method), 608

inverse() (sage.manifolds.differentiable.automor-
phismfield.AutomorphismFieldParal method),
614

inverse() (sage.manifolds.differentiable.metric.Pseu-

doRiemannianMetric method), 913
inverse() (sage.manifolds.differentiable.metric.Pseu-

doRiemannianMetricParal method), 925
inverse() (sage.manifolds.trivialization.TransitionMap

method), 274
irange() (sage.manifolds.differentiable.mixed_form_al-

gebra.MixedFormAlgebra method), 725
irange() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 736
irange() (sage.manifolds.manifold.TopologicalMani-

fold method), 26
irange() (sage.manifolds.vector_bundle.Topologi-

calVectorBundle method), 259
is_closed() (sage.manifolds.subset.ManifoldSubset

method), 51
is_closed() (sage.manifolds.subsets.closure.Manifold-

SubsetClosure method), 329
is_closed() (sage.manifolds.subsets.pullback.Mani-

foldSubsetPullback method), 331
is_empty() (sage.manifolds.subset.ManifoldSubset

method), 51
is_field() (sage.manifolds.chart_func.ChartFunction-

Ring method), 156
is_identity() (sage.manifolds.continuous_map.Con-

tinuousMap method), 236
is_immutable() (sage.manifolds.differen-

tiable.affine_connection.AffineConnection
method), 780

is_integral_domain() (sage.mani-
folds.chart_func.ChartFunctionRing method),
156

is_manifestly_coordinate_domain()
(sage.manifolds.manifold.TopologicalMani-
fold method), 27

is_manifestly_parallelizable() (sage.mani-
folds.differentiable.manifold.DifferentiableMani-
fold method), 362

is_manifestly_trivial() (sage.manifolds.differ-
entiable.vector_bundle.TensorBundle method),
803

is_manifestly_trivial() (sage.manifolds.vec-
tor_bundle.TopologicalVectorBundle method),
259

is_mutable() (sage.manifolds.differen-
tiable.affine_connection.AffineConnection
method), 780

is_open() (sage.manifolds.manifold.TopologicalMani-
fold method), 27

is_open() (sage.manifolds.subset.ManifoldSubset
method), 52

is_open() (sage.manifolds.subsets.pullback.Manifold-
SubsetPullback method), 332

is_subset() (sage.manifolds.subset.ManifoldSubset
method), 52

Index 1031

Manifolds, Release 10.4.rc1

is_tangent() (sage.manifolds.differentiable.degen-
erate_submanifold.DegenerateSubmanifold
method), 972

is_trivial_one() (sage.mani-
folds.chart_func.ChartFunction method),
148

is_trivial_one() (sage.mani-
folds.scalarfield.ScalarField method), 204

is_trivial_zero() (sage.manifolds.calcu-
lus_method.CalculusMethod method), 163

is_trivial_zero() (sage.mani-
folds.chart_func.ChartFunction method),
148

is_trivial_zero() (sage.mani-
folds.scalarfield.ScalarField method), 205

is_unit() (sage.manifolds.chart_func.ChartFunction
method), 149

is_unit() (sage.manifolds.scalarfield.ScalarField
method), 206

J
jacobian() (sage.manifolds.chart_func.MultiCoord-

Function method), 159
jacobian() (sage.manifolds.differentiable.chart.Diff-

CoordChange method), 397
jacobian_det() (sage.manifolds.chart_func.MultiCo-

ordFunction method), 160
jacobian_det() (sage.manifolds.differen-

tiable.chart.DiffCoordChange method), 397
jacobian_matrix() (sage.manifolds.differen-

tiable.diff_map.DiffMap method), 462

K
Kerr() (in module sage.manifolds.catalog), 1011

L
laplacian() (in module sage.manifolds.operators), 893
laplacian() (sage.manifolds.differen-

tiable.scalarfield.DiffScalarField method),
437

laplacian() (sage.manifolds.differentiable.tensor-
field.TensorField method), 653

lapse() (sage.manifolds.differentiable.pseudo_rieman-
nian_submanifold.PseudoRiemannianSubmani-
fold method), 948

LeviCivitaConnection (class in sage.manifolds.dif-
ferentiable.levi_civita_connection), 928

lie_der() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
438

lie_der() (sage.manifolds.differentiable.tensor-
field_paral.TensorFieldParal method), 684

lie_der() (sage.manifolds.differentiable.tensor-
field.TensorField method), 654

lie_derivative() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
438

lie_derivative() (sage.manifolds.differentiable.ten-
sorfield_paral.TensorFieldParal method), 686

lie_derivative() (sage.manifolds.differentiable.ten-
sorfield.TensorField method), 656

lift() (sage.manifolds.differentiable.de_rham_coho-
mology.DeRhamCohomologyClass method),
742

lift() (sage.manifolds.subset.ManifoldSubset method),
52

lift_from_homology() (sage.manifolds.differen-
tiable.mixed_form_algebra.MixedFormAlgebra
method), 726

linear_form() (sage.manifolds.differentiable.vec-
torfield_module.VectorFieldModule method),
549

list_of_screens() (sage.manifolds.differen-
tiable.degenerate_submanifold.DegenerateSub-
manifold method), 973

list_of_subsets() (sage.manifolds.subset.Mani-
foldSubset method), 53

local_frame() (sage.manifolds.differentiable.vec-
tor_bundle.TensorBundle method), 804

local_frame() (sage.manifolds.vector_bundle.Topo-
logicalVectorBundle method), 260

LocalCoFrame (class in sage.manifolds.local_frame),
281

LocalFrame (class in sage.manifolds.local_frame), 284
log() (sage.manifolds.chart_func.ChartFunction

method), 149
log() (sage.manifolds.scalarfield.ScalarField method),

206
lorentzian_metric() (sage.manifolds.differen-

tiable.manifold.DifferentiableManifold method),
362

LorentzianStructure (class in sage.manifolds.struc-
ture), 67

lower_bound() (sage.manifolds.differentiable.exam-
ples.real_line.OpenInterval method), 409

M
Manifold() (in module sage.manifolds.manifold), 8
manifold() (sage.manifolds.chart.Chart method), 92
manifold() (sage.manifolds.subset.ManifoldSubset

method), 53
ManifoldObjectFiniteFamily (class in sage.man-

ifolds.family), 326
ManifoldPoint (class in sage.manifolds.point), 71
ManifoldSubset (class in sage.manifolds.subset), 38
ManifoldSubsetClosure (class in sage.mani-

folds.subsets.closure), 328

1032 Index

Manifolds, Release 10.4.rc1

ManifoldSubsetFiniteFamily (class in sage.man-
ifolds.family), 327

ManifoldSubsetPullback (class in sage.mani-
folds.subsets.pullback), 329

matrix() (sage.manifolds.trivialization.TransitionMap
method), 274

mean_curvature() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 973

mean_curvature() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 949

metric() (sage.manifolds.differentiable.degenerate.De-
generateManifold method), 961

metric() (sage.manifolds.differentiable.manifold.Differ-
entiableManifold method), 363

metric() (sage.manifolds.differentiable.pseudo_rieman-
nian_submanifold.PseudoRiemannianSubmani-
fold method), 949

metric() (sage.manifolds.differentiable.pseudo_rieman-
nian.PseudoRiemannianManifold method), 851

metric() (sage.manifolds.differentiable.vector-
field_module.VectorFieldFreeModule method),
539

metric() (sage.manifolds.differentiable.vector-
field_module.VectorFieldModule method),
550

minimal_triangulation() (sage.manifolds.differ-
entiable.examples.sphere.Sphere method), 886

Minkowski() (in module sage.manifolds.catalog), 1012
mixed_form() (sage.manifolds.differentiable.mani-

fold.DifferentiableManifold method), 363
mixed_form_algebra() (sage.manifolds.differen-

tiable.manifold.DifferentiableManifold method),
364

mixed_projection() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 950

MixedForm (class in sage.manifolds.differen-
tiable.mixed_form), 727

MixedFormAlgebra (class in sage.manifolds.differen-
tiable.mixed_form_algebra), 722

module
sage.manifolds.calculus_method, 162
sage.manifolds.catalog, 1011
sage.manifolds.chart, 85
sage.manifolds.chart_func, 130
sage.manifolds.continuous_map, 216
sage.manifolds.continuous_map_im-

age, 243
sage.manifolds.differen-

tiable.affine_connection, 766
sage.manifolds.differentiable.au-

tomorphismfield, 605

sage.manifolds.differentiable.au-
tomorphismfield_group, 599

sage.manifolds.differentiable.bun-
dle_connection, 815

sage.manifolds.differen-
tiable.characteristic_coho-
mology_class, 826

sage.manifolds.differen-
tiable.chart, 388

sage.manifolds.differen-
tiable.curve, 465

sage.manifolds.differen-
tiable.de_rham_cohomology, 741

sage.manifolds.differentiable.de-
generate, 959

sage.manifolds.differentiable.de-
generate_submanifold, 965

sage.manifolds.differen-
tiable.diff_form, 703

sage.manifolds.differen-
tiable.diff_form_module, 691

sage.manifolds.differen-
tiable.diff_map, 453

sage.manifolds.differentiable.dif-
ferentiable_submanifold, 789

sage.manifolds.differentiable.ex-
amples.euclidean, 855

sage.manifolds.differentiable.ex-
amples.real_line, 403

sage.manifolds.differentiable.ex-
amples.sphere, 881

sage.manifolds.differentiable.ex-
amples.symplectic_space, 994

sage.manifolds.differentiable.in-
tegrated_curve, 481

sage.manifolds.differen-
tiable.levi_civita_connection,
928

sage.manifolds.differentiable.man-
ifold, 335

sage.manifolds.differentiable.man-
ifold_homset, 440

sage.manifolds.differentiable.met-
ric, 894

sage.manifolds.differen-
tiable.mixed_form, 727

sage.manifolds.differen-
tiable.mixed_form_algebra, 722

sage.manifolds.differentiable.mul-
tivector_module, 745

sage.manifolds.differentiable.mul-
tivectorfield, 751

sage.manifolds.differen-
tiable.poisson_tensor, 983

Index 1033

Manifolds, Release 10.4.rc1

sage.manifolds.differen-
tiable.pseudo_riemannian, 845

sage.manifolds.differen-
tiable.pseudo_riemannian_sub-
manifold, 935

sage.manifolds.differen-
tiable.scalarfield, 419

sage.manifolds.differen-
tiable.scalarfield_algebra, 414

sage.manifolds.differentiable.sym-
plectic_form, 987

sage.manifolds.differentiable.tan-
gent_space, 515

sage.manifolds.differentiable.tan-
gent_vector, 519

sage.manifolds.differentiable.ten-
sorfield, 622

sage.manifolds.differentiable.ten-
sorfield_module, 616

sage.manifolds.differentiable.ten-
sorfield_paral, 668

sage.manifolds.differentiable.vec-
tor_bundle, 793

sage.manifolds.differentiable.vec-
torfield, 553

sage.manifolds.differentiable.vec-
torfield_module, 531

sage.manifolds.differentiable.vec-
torframe, 580

sage.manifolds.family, 326
sage.manifolds.local_frame, 279
sage.manifolds.manifold, 3
sage.manifolds.manifold_homset, 213
sage.manifolds.operators, 890
sage.manifolds.point, 70
sage.manifolds.scalarfield, 172
sage.manifolds.scalarfield_algebra,

168
sage.manifolds.section, 302
sage.manifolds.section_module, 294
sage.manifolds.structure, 66
sage.manifolds.subset, 37
sage.manifolds.subsets.closure, 328
sage.manifolds.subsets.pullback, 329
sage.manifolds.topological_subman-

ifold, 243
sage.manifolds.trivialization, 272
sage.manifolds.utilities, 997
sage.manifolds.vector_bundle, 252
sage.manifolds.vector_bundle_fiber,

268
sage.manifolds.vector_bun-

dle_fiber_element, 271
MultiCoordFunction (class in sage.mani-

folds.chart_func), 157
multifunction() (sage.manifolds.chart.Chart

method), 93
multiplicative_sequence() (in module

sage.manifolds.differentiable.characteristic_co-
homology_class), 843

multivector_field() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
365

multivector_module() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
366

MultivectorField (class in sage.manifolds.differen-
tiable.multivectorfield), 752

MultivectorFieldParal (class in sage.mani-
folds.differentiable.multivectorfield), 757

MultivectorFreeModule (class in sage.mani-
folds.differentiable.multivector_module), 745

MultivectorModule (class in sage.manifolds.differen-
tiable.multivector_module), 748

N
name (sage.manifolds.structure.DegenerateStructure

attribute), 66
name (sage.manifolds.structure.DifferentialStructure

attribute), 67
name (sage.manifolds.structure.LorentzianStructure

attribute), 67
name (sage.manifolds.structure.PseudoRiemannianStruc-

ture attribute), 68
name (sage.manifolds.structure.RealDifferentialStructure

attribute), 68
name (sage.manifolds.structure.RealTopologicalStructure

attribute), 69
name (sage.manifolds.structure.RiemannianStructure at-

tribute), 69
name (sage.manifolds.structure.TopologicalStructure

attribute), 70
new_frame() (sage.manifolds.differentiable.vector-

frame.VectorFrame method), 595
new_frame() (sage.manifolds.local_frame.LocalFrame

method), 288
norm() (sage.manifolds.differentiable.vectorfield.Vector-

Field method), 563
normal() (sage.manifolds.differentiable.pseudo_rieman-

nian_submanifold.PseudoRiemannianSubmani-
fold method), 951

normal_tangent_vector() (sage.manifolds.dif-
ferentiable.degenerate_submanifold.Screen
method), 980

O
on_forms() (sage.manifolds.differentiable.symplec-

tic_form.SymplecticForm method), 989

1034 Index

Manifolds, Release 10.4.rc1

one() (sage.manifolds.chart_func.ChartFunctionRing
method), 156

one() (sage.manifolds.differentiable.automorphism-
field_group.AutomorphismFieldGroup method),
601

one() (sage.manifolds.differentiable.de_rham_cohomol-
ogy.DeRhamCohomologyRing method), 744

one() (sage.manifolds.differentiable.manifold_homset.In-
tegratedCurveSet method), 450

one() (sage.manifolds.differentiable.mixed_form_alge-
bra.MixedFormAlgebra method), 726

one() (sage.manifolds.manifold_homset.Topological-
ManifoldHomset method), 215

one() (sage.manifolds.scalarfield_algebra.ScalarFieldAl-
gebra method), 172

one_form() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 367

one_function() (sage.manifolds.chart.Chart
method), 93

one_scalar_field() (sage.manifolds.mani-
fold.TopologicalManifold method), 27

open_cover_family() (sage.manifolds.subset.Mani-
foldSubset method), 54

open_covers() (sage.manifolds.subset.ManifoldSubset
method), 55

open_interval() (sage.manifolds.differentiable.ex-
amples.real_line.OpenInterval method), 410

open_subset() (sage.manifolds.differentiable.degener-
ate.DegenerateManifold method), 962

open_subset() (sage.manifolds.differentiable.differ-
entiable_submanifold.DifferentiableSubmanifold
method), 792

open_subset() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 368

open_subset() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 953

open_subset() (sage.manifolds.differen-
tiable.pseudo_riemannian.PseudoRiemanni-
anManifold method), 853

open_subset() (sage.manifolds.manifold.Topological-
Manifold method), 28

open_subset() (sage.manifolds.subset.ManifoldSubset
method), 55

open_subset() (sage.manifolds.topological_submani-
fold.TopologicalSubmanifold method), 248

open_superset_family() (sage.manifolds.sub-
set.ManifoldSubset method), 56

open_supersets() (sage.manifolds.subset.Manifold-
Subset method), 57

OpenInterval (class in sage.manifolds.differen-
tiable.examples.real_line), 403

options (sage.manifolds.manifold.TopologicalManifold
attribute), 29

orientation() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 369

orientation() (sage.manifolds.differentiable.vec-
tor_bundle.TensorBundle method), 805

orientation() (sage.manifolds.manifold.Topological-
Manifold method), 29

orientation() (sage.manifolds.vector_bundle.Topo-
logicalVectorBundle method), 261

P
periods() (sage.manifolds.chart.Chart method), 94
plot() (sage.manifolds.chart.RealChart method), 113
plot() (sage.manifolds.differentiable.curve.Differen-

tiableCurve method), 472
plot() (sage.manifolds.differentiable.tangent_vec-

tor.TangentVector method), 521
plot() (sage.manifolds.differentiable.vectorfield.Vector-

Field method), 564
plot() (sage.manifolds.point.ManifoldPoint method), 77
plot() (sage.manifolds.topological_submanifold.Topo-

logicalSubmanifold method), 249
plot_integrated() (sage.manifolds.differen-

tiable.integrated_curve.IntegratedCurve method),
500

point() (sage.manifolds.subset.ManifoldSubset method),
57

poisson() (sage.manifolds.differentiable.symplec-
tic_form.SymplecticForm method), 990

poisson() (sage.manifolds.differentiable.symplec-
tic_form.SymplecticFormParal method), 993

poisson_bracket() (sage.manifolds.differen-
tiable.poisson_tensor.PoissonTensorField
method), 984

poisson_bracket() (sage.manifolds.differen-
tiable.symplectic_form.SymplecticForm method),
990

poisson_tensor() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
370

poisson_tensor() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 539

poisson_tensor() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldModule
method), 550

PoissonTensorField (class in sage.manifolds.differ-
entiable.poisson_tensor), 983

PoissonTensorFieldParal (class in sage.mani-
folds.differentiable.poisson_tensor), 985

polar_coordinates() (sage.manifolds.differ-
entiable.examples.euclidean.EuclideanPlane
method), 873

polar_frame() (sage.manifolds.differentiable.ex-
amples.euclidean.EuclideanPlane method),

Index 1035

Manifolds, Release 10.4.rc1

874
PontryaginAlgorithm (class in sage.manifolds.dif-

ferentiable.characteristic_cohomology_class),
839

PontryaginEulerAlgorithm (class in sage.man-
ifolds.differentiable.characteristic_cohomol-
ogy_class), 840

preimage() (sage.manifolds.chart.Chart method), 94
preimage() (sage.manifolds.continuous_map.Continu-

ousMap method), 237
preimage() (sage.manifolds.scalarfield.ScalarField

method), 206
principal_curvatures() (sage.manifolds.differ-

entiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 954

principal_directions() (sage.manifolds.differ-
entiable.degenerate_submanifold.DegenerateSub-
manifold method), 974

principal_directions() (sage.manifolds.differ-
entiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 955

project() (sage.manifolds.differentiable.pseudo_rie-
mannian_submanifold.PseudoRiemannianSub-
manifold method), 956

projection() (sage.manifolds.differentiable.degen-
erate_submanifold.DegenerateSubmanifold
method), 975

projector() (sage.manifolds.differentiable.pseudo_rie-
mannian_submanifold.PseudoRiemannianSub-
manifold method), 956

PseudoRiemannianManifold (class in sage.mani-
folds.differentiable.pseudo_riemannian), 849

PseudoRiemannianMetric (class in sage.mani-
folds.differentiable.metric), 899

PseudoRiemannianMetricParal (class in
sage.manifolds.differentiable.metric), 923

PseudoRiemannianStructure (class in sage.mani-
folds.structure), 68

PseudoRiemannianSubmanifold (class in
sage.manifolds.differentiable.pseudo_rieman-
nian_submanifold), 938

pullback() (sage.manifolds.chart.Chart method), 96
pullback() (sage.manifolds.continuous_map.Continu-

ousMap method), 238
pullback() (sage.manifolds.differen-

tiable.diff_map.DiffMap method), 462
pullback() (sage.manifolds.scalarfield.ScalarField

method), 207
pushforward() (sage.manifolds.differen-

tiable.diff_map.DiffMap method), 464

R
radius() (sage.manifolds.differentiable.exam-

ples.sphere.Sphere method), 887

rank() (sage.manifolds.vector_bundle.TopologicalVec-
torBundle method), 262

RealChart (class in sage.manifolds.chart), 106
RealDiffChart (class in sage.manifolds.differen-

tiable.chart), 398
RealDifferentialStructure (class in sage.mani-

folds.structure), 68
RealLine (class in sage.manifolds.differentiable.exam-

ples.real_line), 411
RealProjectiveSpace() (in module sage.mani-

folds.catalog), 1013
RealTopologicalStructure (class in sage.mani-

folds.structure), 68
representative() (sage.manifolds.differen-

tiable.characteristic_cohomology_class.Charac-
teristicCohomologyClassRingElement method),
834

representative() (sage.manifolds.differen-
tiable.de_rham_cohomology.DeRhamCoho-
mologyClass method), 743

reset() (sage.manifolds.calculus_method.Calculus-
Method method), 164

restrict() (sage.manifolds.chart.Chart method), 98
restrict() (sage.manifolds.chart.CoordChange

method), 104
restrict() (sage.manifolds.chart.RealChart method),

127
restrict() (sage.manifolds.continuous_map.Continu-

ousMap method), 239
restrict() (sage.manifolds.differentiable.affine_con-

nection.AffineConnection method), 780
restrict() (sage.manifolds.differentiable.automor-

phismfield.AutomorphismField method), 609
restrict() (sage.manifolds.differentiable.automor-

phismfield.AutomorphismFieldParal method),
615

restrict() (sage.manifolds.differentiable.chart.Dif-
fChart method), 393

restrict() (sage.manifolds.differentiable.chart.RealD-
iffChart method), 402

restrict() (sage.manifolds.differen-
tiable.levi_civita_connection.LeviCivitaCon-
nection method), 932

restrict() (sage.manifolds.differentiable.metric.De-
generateMetric method), 895

restrict() (sage.manifolds.differentiable.metric.De-
generateMetricParal method), 898

restrict() (sage.manifolds.differentiable.metric.Pseu-
doRiemannianMetric method), 914

restrict() (sage.manifolds.differentiable.metric.Pseu-
doRiemannianMetricParal method), 926

restrict() (sage.manifolds.differen-
tiable.mixed_form.MixedForm method), 736

restrict() (sage.manifolds.differentiable.symplec-

1036 Index

Manifolds, Release 10.4.rc1

tic_form.SymplecticForm method), 991
restrict() (sage.manifolds.differentiable.symplec-

tic_form.SymplecticFormParal method), 993
restrict() (sage.manifolds.differentiable.tensor-

field_paral.TensorFieldParal method), 687
restrict() (sage.manifolds.differentiable.tensor-

field.TensorField method), 657
restrict() (sage.manifolds.differentiable.vector-

frame.VectorFrame method), 596
restrict() (sage.manifolds.local_frame.LocalFrame

method), 290
restrict() (sage.manifolds.scalarfield.ScalarField

method), 207
restrict() (sage.manifolds.section.Section method),

316
restrict() (sage.manifolds.section.TrivialSection

method), 324
retract() (sage.manifolds.subset.ManifoldSubset

method), 58
ricci() (sage.manifolds.differentiable.affine_connec-

tion.AffineConnection method), 781
ricci() (sage.manifolds.differentiable.levi_civita_con-

nection.LeviCivitaConnection method), 932
ricci() (sage.manifolds.differentiable.metric.PseudoRie-

mannianMetric method), 915
ricci_scalar() (sage.manifolds.differentiable.met-

ric.PseudoRiemannianMetric method), 915
ricci_scalar() (sage.manifolds.differentiable.met-

ric.PseudoRiemannianMetricParal method),
927

riemann() (sage.manifolds.differentiable.affine_connec-
tion.AffineConnection method), 782

riemann() (sage.manifolds.differen-
tiable.levi_civita_connection.LeviCivitaCon-
nection method), 934

riemann() (sage.manifolds.differentiable.metric.Pseu-
doRiemannianMetric method), 916

riemannian_metric() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
370

RiemannianStructure (class in sage.manifolds.struc-
ture), 69

rigging() (sage.manifolds.differentiable.degener-
ate_submanifold.Screen method), 981

S
sage.manifolds.calculus_method

module, 162
sage.manifolds.catalog

module, 1011
sage.manifolds.chart

module, 85
sage.manifolds.chart_func

module, 130

sage.manifolds.continuous_map
module, 216

sage.manifolds.continuous_map_image
module, 243

sage.manifolds.differen-
tiable.affine_connection

module, 766
sage.manifolds.differentiable.automor-

phismfield
module, 605

sage.manifolds.differentiable.automor-
phismfield_group

module, 599
sage.manifolds.differentiable.bun-

dle_connection
module, 815

sage.manifolds.differentiable.charac-
teristic_cohomology_class

module, 826
sage.manifolds.differentiable.chart

module, 388
sage.manifolds.differentiable.curve

module, 465
sage.manifolds.differen-

tiable.de_rham_cohomology
module, 741

sage.manifolds.differentiable.degener-
ate

module, 959
sage.manifolds.differentiable.degener-

ate_submanifold
module, 965

sage.manifolds.differen-
tiable.diff_form

module, 703
sage.manifolds.differen-

tiable.diff_form_module
module, 691

sage.manifolds.differentiable.diff_map
module, 453

sage.manifolds.differentiable.differ-
entiable_submanifold

module, 789
sage.manifolds.differentiable.exam-

ples.euclidean
module, 855

sage.manifolds.differentiable.exam-
ples.real_line

module, 403
sage.manifolds.differentiable.exam-

ples.sphere
module, 881

sage.manifolds.differentiable.exam-
ples.symplectic_space

Index 1037

Manifolds, Release 10.4.rc1

module, 994
sage.manifolds.differentiable.inte-

grated_curve
module, 481

sage.manifolds.differen-
tiable.levi_civita_connection

module, 928
sage.manifolds.differentiable.manifold

module, 335
sage.manifolds.differentiable.mani-

fold_homset
module, 440

sage.manifolds.differentiable.metric
module, 894

sage.manifolds.differen-
tiable.mixed_form

module, 727
sage.manifolds.differen-

tiable.mixed_form_algebra
module, 722

sage.manifolds.differentiable.multi-
vector_module

module, 745
sage.manifolds.differentiable.multi-

vectorfield
module, 751

sage.manifolds.differentiable.pois-
son_tensor

module, 983
sage.manifolds.differen-

tiable.pseudo_riemannian
module, 845

sage.manifolds.differen-
tiable.pseudo_riemannian_sub-
manifold

module, 935
sage.manifolds.differen-

tiable.scalarfield
module, 419

sage.manifolds.differen-
tiable.scalarfield_algebra

module, 414
sage.manifolds.differentiable.symplec-

tic_form
module, 987

sage.manifolds.differentiable.tan-
gent_space

module, 515
sage.manifolds.differentiable.tan-

gent_vector
module, 519

sage.manifolds.differentiable.tensor-
field

module, 622

sage.manifolds.differentiable.tensor-
field_module

module, 616
sage.manifolds.differentiable.tensor-

field_paral
module, 668

sage.manifolds.differentiable.vec-
tor_bundle

module, 793
sage.manifolds.differentiable.vector-

field
module, 553

sage.manifolds.differentiable.vector-
field_module

module, 531
sage.manifolds.differentiable.vector-

frame
module, 580

sage.manifolds.family
module, 326

sage.manifolds.local_frame
module, 279

sage.manifolds.manifold
module, 3

sage.manifolds.manifold_homset
module, 213

sage.manifolds.operators
module, 890

sage.manifolds.point
module, 70

sage.manifolds.scalarfield
module, 172

sage.manifolds.scalarfield_algebra
module, 168

sage.manifolds.section
module, 302

sage.manifolds.section_module
module, 294

sage.manifolds.structure
module, 66

sage.manifolds.subset
module, 37

sage.manifolds.subsets.closure
module, 328

sage.manifolds.subsets.pullback
module, 329

sage.manifolds.topological_submanifold
module, 243

sage.manifolds.trivialization
module, 272

sage.manifolds.utilities
module, 997

sage.manifolds.vector_bundle
module, 252

1038 Index

Manifolds, Release 10.4.rc1

sage.manifolds.vector_bundle_fiber
module, 268

sage.manifolds.vector_bundle_fiber_el-
ement

module, 271
scalar_field() (sage.manifolds.chart_func.Chart-

Function method), 150
scalar_field() (sage.manifolds.manifold.Topologi-

calManifold method), 30
scalar_field_algebra (sage.manifolds.struc-

ture.DegenerateStructure attribute), 66
scalar_field_algebra (sage.manifolds.struc-

ture.DifferentialStructure attribute), 67
scalar_field_algebra (sage.manifolds.struc-

ture.LorentzianStructure attribute), 67
scalar_field_algebra (sage.manifolds.struc-

ture.PseudoRiemannianStructure attribute),
68

scalar_field_algebra (sage.manifolds.struc-
ture.RealDifferentialStructure attribute), 68

scalar_field_algebra (sage.manifolds.struc-
ture.RealTopologicalStructure attribute), 69

scalar_field_algebra (sage.manifolds.struc-
ture.RiemannianStructure attribute), 69

scalar_field_algebra (sage.manifolds.struc-
ture.TopologicalStructure attribute), 70

scalar_field_algebra() (sage.manifolds.mani-
fold.TopologicalManifold method), 31

scalar_triple_product() (sage.mani-
folds.differentiable.examples.euclidean.Eu-
clidean3dimSpace method), 867

ScalarField (class in sage.manifolds.scalarfield), 173
ScalarFieldAlgebra (class in sage.mani-

folds.scalarfield_algebra), 168
schouten() (sage.manifolds.differentiable.metric.Pseu-

doRiemannianMetric method), 917
Screen (class in sage.manifolds.differentiable.degener-

ate_submanifold), 979
screen() (sage.manifolds.differentiable.degenerate_sub-

manifold.DegenerateSubmanifold method), 975
screen_projection() (sage.manifolds.differen-

tiable.degenerate_submanifold.DegenerateSub-
manifold method), 976

second_fundamental_form() (sage.manifolds.dif-
ferentiable.degenerate_submanifold.Degenerate-
Submanifold method), 976

second_fundamental_form() (sage.manifolds.dif-
ferentiable.pseudo_riemannian_submani-
fold.PseudoRiemannianSubmanifold method),
957

Section (class in sage.manifolds.section), 302
section() (sage.manifolds.differentiable.vector_bun-

dle.TensorBundle method), 807
section() (sage.manifolds.vector_bundle.Topologi-

calVectorBundle method), 262
section_module() (sage.manifolds.differen-

tiable.vector_bundle.TensorBundle method),
808

section_module() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 263

SectionFreeModule (class in sage.manifolds.sec-
tion_module), 294

SectionModule (class in sage.manifolds.section_mod-
ule), 298

series_expansion() (sage.manifolds.differ-
entiable.tensorfield_paral.TensorFieldParal
method), 688

set() (sage.manifolds.calculus_method.CalculusMethod
method), 164

set() (sage.manifolds.differentiable.metric.Degenerate-
Metric method), 896

set() (sage.manifolds.differentiable.metric.Degenerate-
MetricParal method), 898

set() (sage.manifolds.differentiable.metric.PseudoRie-
mannianMetric method), 918

set() (sage.manifolds.differentiable.metric.PseudoRie-
mannianMetricParal method), 927

set_axes_labels() (in module sage.manifolds.utili-
ties), 1002

set_calc_order() (sage.manifolds.differen-
tiable.affine_connection.AffineConnection
method), 784

set_calc_order() (sage.manifolds.differentiable.ten-
sorfield_paral.TensorFieldParal method), 689

set_calc_order() (sage.manifolds.differentiable.ten-
sorfield.TensorField method), 658

set_calc_order() (sage.mani-
folds.scalarfield.ScalarField method), 208

set_calculus_method() (sage.manifolds.mani-
fold.TopologicalManifold method), 32

set_change_of_frame() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
371

set_change_of_frame() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method), 808

set_change_of_frame() (sage.manifolds.vec-
tor_bundle.TopologicalVectorBundle method),
264

set_coef() (sage.manifolds.differentiable.affine_con-
nection.AffineConnection method), 784

set_comp() (sage.manifolds.differentiable.automor-
phismfield.AutomorphismField method), 611

set_comp() (sage.manifolds.differen-
tiable.mixed_form.MixedForm method), 737

set_comp() (sage.manifolds.differentiable.tensor-
field_paral.TensorFieldParal method), 689

set_comp() (sage.manifolds.differentiable.tensor-
field.TensorField method), 659

Index 1039

Manifolds, Release 10.4.rc1

set_comp() (sage.manifolds.section.Section method),
317

set_comp() (sage.manifolds.section.TrivialSection
method), 325

set_connection_form() (sage.manifolds.differ-
entiable.bundle_connection.BundleConnection
method), 824

set_coord() (sage.manifolds.point.ManifoldPoint
method), 82

set_coordinates() (sage.manifolds.point.Manifold-
Point method), 84

set_default_chart() (sage.manifolds.mani-
fold.TopologicalManifold method), 33

set_default_frame() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
372

set_default_frame() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
809

set_default_frame() (sage.manifolds.sec-
tion_module.SectionFreeModule method),
297

set_default_frame() (sage.manifolds.sec-
tion_module.SectionModule method), 301

set_default_frame() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 265

set_embedding() (sage.manifolds.topological_sub-
manifold.TopologicalSubmanifold method),
250

set_expr() (sage.manifolds.chart_func.ChartFunction
method), 151

set_expr() (sage.manifolds.continuous_map.Continu-
ousMap method), 240

set_expr() (sage.manifolds.scalarfield.ScalarField
method), 209

set_expression() (sage.manifolds.continu-
ous_map.ContinuousMap method), 241

set_immersion() (sage.manifolds.topological_sub-
manifold.TopologicalSubmanifold method),
251

set_immutable() (sage.manifolds.chart_func.Multi-
CoordFunction method), 161

set_immutable() (sage.manifolds.differen-
tiable.affine_connection.AffineConnection
method), 785

set_immutable() (sage.manifolds.differentiable.bun-
dle_connection.BundleConnection method), 825

set_immutable() (sage.manifolds.differen-
tiable.mixed_form.MixedForm method), 738

set_immutable() (sage.manifolds.differentiable.ten-
sorfield.TensorField method), 660

set_immutable() (sage.mani-
folds.scalarfield.ScalarField method), 209

set_immutable() (sage.manifolds.section.Section

method), 318
set_inverse() (sage.manifolds.chart.CoordChange

method), 104
set_name() (sage.manifolds.differentiable.characteris-

tic_cohomology_class.CharacteristicCohomolo-
gyClassRingElement method), 835

set_name() (sage.manifolds.differen-
tiable.mixed_form.MixedForm method), 738

set_name() (sage.manifolds.differentiable.tensor-
field.TensorField method), 660

set_name() (sage.manifolds.differentiable.vector-
frame.CoFrame method), 585

set_name() (sage.manifolds.differentiable.vector-
frame.VectorFrame method), 597

set_name() (sage.manifolds.local_frame.Local-
CoFrame method), 283

set_name() (sage.manifolds.local_frame.LocalFrame
method), 290

set_name() (sage.manifolds.scalarfield.ScalarField
method), 210

set_name() (sage.manifolds.section.Section method),
319

set_orientation() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
372

set_orientation() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
810

set_orientation() (sage.manifolds.manifold.Topo-
logicalManifold method), 33

set_orientation() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 265

set_restriction() (sage.manifolds.differen-
tiable.mixed_form.MixedForm method), 739

set_restriction() (sage.manifolds.differen-
tiable.tensorfield.TensorField method), 661

set_restriction() (sage.mani-
folds.scalarfield.ScalarField method), 210

set_restriction() (sage.manifolds.section.Section
method), 319

set_simplify_function() (sage.manifolds.calcu-
lus_method.CalculusMethod method), 164

set_simplify_function() (sage.manifolds.mani-
fold.TopologicalManifold method), 34

set_transverse() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 977

shape_operator() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 978

shape_operator() (sage.manifolds.differen-
tiable.pseudo_riemannian_submanifold.Pseu-
doRiemannianSubmanifold method), 958

sharp() (sage.manifolds.differentiable.poisson_ten-

1040 Index

Manifolds, Release 10.4.rc1

sor.PoissonTensorField method), 985
sharp() (sage.manifolds.differentiable.symplec-

tic_form.SymplecticForm method), 991
shift() (sage.manifolds.differentiable.pseudo_rieman-

nian_submanifold.PseudoRiemannianSubmani-
fold method), 959

signature() (sage.manifolds.differentiable.metric.De-
generateMetric method), 896

signature() (sage.manifolds.differentiable.met-
ric.PseudoRiemannianMetric method), 918

simplify() (sage.manifolds.calculus_method.Calculus-
Method method), 165

simplify() (sage.manifolds.chart_func.ChartFunction
method), 151

simplify_abs_trig() (in module sage.mani-
folds.utilities), 1003

simplify_chain_generic() (in module sage.man-
ifolds.utilities), 1004

simplify_chain_generic_sympy() (in module
sage.manifolds.utilities), 1005

simplify_chain_real() (in module sage.mani-
folds.utilities), 1006

simplify_chain_real_sympy() (in module
sage.manifolds.utilities), 1007

simplify_function() (sage.manifolds.calcu-
lus_method.CalculusMethod method), 166

simplify_sqrt_real() (in module sage.mani-
folds.utilities), 1008

SimplifyAbsTrig (class in sage.manifolds.utilities),
998

SimplifySqrtReal (class in sage.manifolds.utilities),
1000

sin() (sage.manifolds.chart_func.ChartFunction
method), 153

sin() (sage.manifolds.scalarfield.ScalarField method),
211

sinh() (sage.manifolds.chart_func.ChartFunction
method), 153

sinh() (sage.manifolds.scalarfield.ScalarField method),
211

solution() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedCurve method), 501

solve() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedCurve method), 503

solve_across_charts() (sage.manifolds.differen-
tiable.integrated_curve.IntegratedCurve method),
505

solve_analytical() (sage.manifolds.differen-
tiable.integrated_curve.IntegratedCurve method),
507

some_elements() (sage.manifolds.subsets.pull-
back.ManifoldSubsetPullback method), 333

Sphere (class in sage.manifolds.differentiable.exam-
ples.sphere), 883

sphere() (sage.manifolds.differentiable.examples.eu-
clidean.EuclideanSpace method), 880

spherical_coordinates() (sage.mani-
folds.differentiable.examples.euclidean.Eu-
clidean3dimSpace method), 868

spherical_coordinates() (sage.manifolds.differ-
entiable.examples.sphere.Sphere method), 887

spherical_frame() (sage.manifolds.differen-
tiable.examples.euclidean.Euclidean3dimSpace
method), 869

sqrt() (sage.manifolds.chart_func.ChartFunction
method), 154

sqrt() (sage.manifolds.scalarfield.ScalarField method),
211

sqrt_abs_det() (sage.manifolds.differentiable.met-
ric.PseudoRiemannianMetric method), 919

StandardSymplecticSpace (class in sage.mani-
folds.differentiable.examples.symplectic_space),
994

start_index() (sage.manifolds.manifold.Topological-
Manifold method), 35

stereographic_coordinates() (sage.man-
ifolds.differentiable.examples.sphere.Sphere
method), 888

structure_coeff() (sage.manifolds.differen-
tiable.vectorframe.CoordFrame method), 588

structure_coeff() (sage.manifolds.differen-
tiable.vectorframe.VectorFrame method), 598

subcategory() (sage.manifolds.structure.Degenerat-
eStructure method), 67

subcategory() (sage.manifolds.structure.Differential-
Structure method), 67

subcategory() (sage.manifolds.struc-
ture.LorentzianStructure method), 67

subcategory() (sage.manifolds.structure.PseudoRie-
mannianStructure method), 68

subcategory() (sage.manifolds.structure.RealDiffer-
entialStructure method), 68

subcategory() (sage.manifolds.structure.RealTopo-
logicalStructure method), 69

subcategory() (sage.manifolds.structure.Riemanni-
anStructure method), 69

subcategory() (sage.manifolds.structure.Topological-
Structure method), 70

subset() (sage.manifolds.subset.ManifoldSubset
method), 58

subset_digraph() (sage.manifolds.subset.Manifold-
Subset method), 59

subset_family() (sage.manifolds.subset.Manifold-
Subset method), 60

subset_poset() (sage.manifolds.subset.ManifoldSub-
set method), 61

subsets() (sage.manifolds.subset.ManifoldSubset
method), 62

Index 1041

Manifolds, Release 10.4.rc1

sup() (sage.manifolds.differentiable.exam-
ples.real_line.OpenInterval method), 410

superset() (sage.manifolds.subset.ManifoldSubset
method), 63

superset_digraph() (sage.manifolds.subset.Mani-
foldSubset method), 63

superset_family() (sage.manifolds.subset.Mani-
foldSubset method), 64

superset_poset() (sage.manifolds.subset.Manifold-
Subset method), 64

supersets() (sage.manifolds.subset.ManifoldSubset
method), 65

sym_bilin_form_field() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
373

sym_bilinear_form() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 540

symbolic_velocities() (sage.manifolds.differen-
tiable.chart.DiffChart method), 394

symmetries() (sage.manifolds.differentiable.tensor-
field.TensorField method), 661

symmetrize() (sage.manifolds.differentiable.tensor-
field.TensorField method), 662

symplectic_form() (sage.manifolds.differen-
tiable.examples.symplectic_space.StandardSym-
plecticSpace method), 996

symplectic_form() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
375

symplectic_form() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 540

symplectic_form() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldModule
method), 551

SymplecticForm (class in sage.manifolds.differen-
tiable.symplectic_form), 987

SymplecticFormParal (class in sage.manifolds.dif-
ferentiable.symplectic_form), 992

system() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedAutoparallelCurve
method), 490

system() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedCurve method), 509

system() (sage.manifolds.differentiable.inte-
grated_curve.IntegratedGeodesic method),
513

T
tan() (sage.manifolds.chart_func.ChartFunction

method), 154
tan() (sage.manifolds.scalarfield.ScalarField method),

212

tangent_bundle() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
375

tangent_identity_field() (sage.manifolds.dif-
ferentiable.manifold.DifferentiableManifold
method), 376

tangent_space() (sage.manifolds.differentiable.man-
ifold.DifferentiableManifold method), 376

tangent_vector() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
377

tangent_vector_eval_at() (sage.manifolds.dif-
ferentiable.integrated_curve.IntegratedCurve
method), 510

tangent_vector_field() (sage.manifolds.differen-
tiable.curve.DifferentiableCurve method), 478

TangentSpace (class in sage.manifolds.differen-
tiable.tangent_space), 515

TangentTensor (class in sage.manifolds.differen-
tiable.degenerate), 963

TangentVector (class in sage.manifolds.differen-
tiable.tangent_vector), 519

tanh() (sage.manifolds.chart_func.ChartFunction
method), 155

tanh() (sage.manifolds.scalarfield.ScalarField method),
212

tensor() (sage.manifolds.differentiable.diff_form_mod-
ule.DiffFormModule method), 698

tensor() (sage.manifolds.differentiable.vector-
field_module.VectorFieldModule method),
551

tensor_bundle() (sage.manifolds.differentiable.man-
ifold.DifferentiableManifold method), 378

tensor_field() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 379

tensor_field_module() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
380

tensor_from_comp() (sage.manifolds.differen-
tiable.vectorfield_module.VectorFieldFreeMod-
ule method), 540

tensor_module() (sage.manifolds.differentiable.vec-
torfield_module.VectorFieldFreeModule
method), 541

tensor_module() (sage.manifolds.differentiable.vec-
torfield_module.VectorFieldModule method),
552

tensor_product() (sage.manifolds.differen-
tiable.diff_form_module.DiffFormModule
method), 699

tensor_rank() (sage.manifolds.differentiable.tensor-
field.TensorField method), 663

tensor_type() (sage.manifolds.differen-
tiable.diff_form_module.DiffFormModule

1042 Index

Manifolds, Release 10.4.rc1

method), 700
tensor_type() (sage.manifolds.differen-

tiable.diff_form_module.VectorFieldDual-
FreeModule method), 703

tensor_type() (sage.manifolds.differen-
tiable.scalarfield.DiffScalarField method),
439

tensor_type() (sage.manifolds.differentiable.ten-
sorfield_module.TensorFieldModule method),
622

tensor_type() (sage.manifolds.differentiable.tensor-
field.TensorField method), 663

TensorBundle (class in sage.manifolds.differen-
tiable.vector_bundle), 796

TensorField (class in sage.manifolds.differentiable.ten-
sorfield), 623

TensorFieldFreeModule (class in sage.mani-
folds.differentiable.tensorfield_module), 616

TensorFieldModule (class in sage.manifolds.differen-
tiable.tensorfield_module), 619

TensorFieldParal (class in sage.manifolds.differen-
tiable.tensorfield_paral), 672

top_charts() (sage.manifolds.manifold.Topological-
Manifold method), 36

TopologicalManifold (class in sage.manifolds.man-
ifold), 12

TopologicalManifoldHomset (class in sage.mani-
folds.manifold_homset), 213

TopologicalStructure (class in sage.mani-
folds.structure), 69

TopologicalSubmanifold (class in sage.mani-
folds.topological_submanifold), 243

TopologicalVectorBundle (class in sage.mani-
folds.vector_bundle), 252

torsion() (sage.manifolds.differentiable.affine_connec-
tion.AffineConnection method), 786

torsion() (sage.manifolds.differen-
tiable.levi_civita_connection.LeviCivitaCon-
nection method), 935

torsion_form() (sage.manifolds.differen-
tiable.affine_connection.AffineConnection
method), 788

Torus() (in module sage.manifolds.catalog), 1014
total_space() (sage.manifolds.differentiable.vec-

tor_bundle.DifferentiableVectorBundle method),
796

total_space() (sage.manifolds.vector_bundle.Topo-
logicalVectorBundle method), 266

trace() (sage.manifolds.differentiable.tensorfield.Ten-
sorField method), 663

transition() (sage.manifolds.differentiable.vec-
tor_bundle.TensorBundle method), 810

transition() (sage.manifolds.vector_bundle.Topolog-
icalVectorBundle method), 266

transition_map() (sage.manifolds.chart.Chart
method), 98

transition_map() (sage.manifolds.differen-
tiable.chart.DiffChart method), 394

transition_map() (sage.manifolds.trivializa-
tion.Trivialization method), 278

TransitionMap (class in sage.manifolds.trivialization),
272

transitions() (sage.manifolds.differentiable.vec-
tor_bundle.TensorBundle method), 811

transitions() (sage.manifolds.vector_bundle.Topo-
logicalVectorBundle method), 267

Trivialization (class in sage.manifolds.trivializa-
tion), 275

trivialization() (sage.manifolds.differen-
tiable.vector_bundle.TensorBundle method),
812

trivialization() (sage.manifolds.lo-
cal_frame.TrivializationFrame method), 293

trivialization() (sage.manifolds.vector_bun-
dle.TopologicalVectorBundle method), 267

TrivializationCoFrame (class in sage.mani-
folds.local_frame), 292

TrivializationFrame (class in sage.manifolds.lo-
cal_frame), 293

TrivialSection (class in sage.manifolds.section), 320
truncate() (sage.manifolds.differentiable.tensor-

field_paral.TensorFieldParal method), 690

U
union() (sage.manifolds.subset.ManifoldSubset method),

65
up() (sage.manifolds.differentiable.tensorfield.Tensor-

Field method), 665
upper_bound() (sage.manifolds.differentiable.exam-

ples.real_line.OpenInterval method), 411

V
valid_coordinates() (sage.manifolds.chart.Chart

method), 100
valid_coordinates() (sage.manifolds.chart.Re-

alChart method), 128
valid_coordinates_numerical() (sage.mani-

folds.chart.RealChart method), 129
vector() (sage.manifolds.differentiable.manifold.Differ-

entiableManifold method), 381
vector_bundle() (sage.manifolds.differentiable.bun-

dle_connection.BundleConnection method), 825
vector_bundle() (sage.manifolds.differentiable.man-

ifold.DifferentiableManifold method), 382
vector_bundle() (sage.manifolds.local_frame.Lo-

calFrame method), 291
vector_bundle() (sage.manifolds.manifold.Topologi-

calManifold method), 36

Index 1043

Manifolds, Release 10.4.rc1

vector_bundle() (sage.manifolds.section_mod-
ule.SectionFreeModule method), 298

vector_bundle() (sage.manifolds.section_mod-
ule.SectionModule method), 301

vector_bundle() (sage.manifolds.trivialization.Trivi-
alization method), 278

vector_field() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 382

vector_field_module() (sage.manifolds.differen-
tiable.manifold.DifferentiableManifold method),
384

vector_field_module() (sage.manifolds.differen-
tiable.mixed_form_algebra.MixedFormAlgebra
method), 726

vector_frame() (sage.manifolds.differentiable.mani-
fold.DifferentiableManifold method), 386

vector_frame() (sage.manifolds.differentiable.vec-
tor_bundle.TensorBundle method), 813

VectorBundleFiber (class in sage.manifolds.vec-
tor_bundle_fiber), 268

VectorBundleFiberElement (class in sage.mani-
folds.vector_bundle_fiber_element), 271

VectorField (class in sage.manifolds.differentiable.vec-
torfield), 553

VectorFieldDualFreeModule (class in sage.mani-
folds.differentiable.diff_form_module), 701

VectorFieldFreeModule (class in sage.mani-
folds.differentiable.vectorfield_module), 531

VectorFieldModule (class in sage.manifolds.differen-
tiable.vectorfield_module), 542

VectorFieldParal (class in sage.manifolds.differen-
tiable.vectorfield), 576

VectorFrame (class in sage.manifolds.differentiable.vec-
torframe), 588

volume_form() (sage.manifolds.differentiable.met-
ric.PseudoRiemannianMetric method), 920

volume_form() (sage.manifolds.differen-
tiable.pseudo_riemannian.PseudoRiemanni-
anManifold method), 854

volume_form() (sage.manifolds.differentiable.sym-
plectic_form.SymplecticForm method), 991

W
wedge() (sage.manifolds.differentiable.diff_form.Diff-

Form method), 713
wedge() (sage.manifolds.differentiable.diff_form.Diff-

FormParal method), 721
wedge() (sage.manifolds.differen-

tiable.mixed_form.MixedForm method), 739
wedge() (sage.manifolds.differentiable.multivector-

field.MultivectorField method), 757
wedge() (sage.manifolds.differentiable.multivector-

field.MultivectorFieldParal method), 765

wedge() (sage.manifolds.differentiable.scalarfield.DiffS-
calarField method), 440

weingarten_map() (sage.manifolds.differentiable.de-
generate_submanifold.DegenerateSubmanifold
method), 978

weyl() (sage.manifolds.differentiable.metric.PseudoRie-
mannianMetric method), 922

wrap() (sage.manifolds.differentiable.symplec-
tic_form.SymplecticForm static method), 992

X
xder() (in module sage.manifolds.utilities), 1009

Z
zero() (sage.manifolds.chart_func.ChartFunctionRing

method), 157
zero() (sage.manifolds.differentiable.de_rham_coho-

mology.DeRhamCohomologyRing method),
744

zero() (sage.manifolds.differentiable.diff_form_mod-
ule.DiffFormModule method), 700

zero() (sage.manifolds.differentiable.mixed_form_alge-
bra.MixedFormAlgebra method), 726

zero() (sage.manifolds.differentiable.multivector_mod-
ule.MultivectorModule method), 751

zero() (sage.manifolds.differentiable.tensorfield_mod-
ule.TensorFieldModule method), 622

zero() (sage.manifolds.differentiable.vectorfield_mod-
ule.VectorFieldModule method), 553

zero() (sage.manifolds.scalarfield_algebra.ScalarField-
Algebra method), 172

zero() (sage.manifolds.section_module.SectionModule
method), 301

zero_function() (sage.manifolds.chart.Chart
method), 101

zero_scalar_field() (sage.manifolds.mani-
fold.TopologicalManifold method), 37

1044 Index

	Topological Manifolds
	Topological Manifolds
	Subsets of Topological Manifolds
	Manifold Structures
	Points of Topological Manifolds
	Coordinate Charts
	Coordinate Charts
	Chart Functions
	Coordinate calculus methods

	Scalar Fields
	Algebra of Scalar Fields
	Scalar Fields

	Continuous Maps
	Sets of Morphisms between Topological Manifolds
	Continuous Maps Between Topological Manifolds
	Images of Manifold Subsets under Continuous Maps as Subsets of the Codomain

	Submanifolds of topological manifolds
	Topological Vector Bundles
	Topological Vector Bundle
	Vector Bundle Fibers
	Vector Bundle Fiber Elements
	Trivializations
	Local Frames
	Section Modules
	Sections

	Families of Manifold Objects
	Topological Closures of Manifold Subsets
	Manifold Subsets Defined as Pullbacks of Subsets under Continuous Maps

	Differentiable Manifolds
	Differentiable Manifolds
	Coordinate Charts on Differentiable Manifolds
	The Real Line and Open Intervals
	Scalar Fields
	Algebra of Differentiable Scalar Fields
	Differentiable Scalar Fields

	Differentiable Maps and Curves
	Sets of Morphisms between Differentiable Manifolds
	Differentiable Maps between Differentiable Manifolds
	Curves in Manifolds
	Integrated Curves and Geodesics in Manifolds

	Tangent Spaces
	Tangent Spaces
	Tangent Vectors

	Vector Fields
	Vector Field Modules
	Vector Fields
	Vector Frames
	Group of Tangent-Space Automorphism Fields
	Tangent-Space Automorphism Fields

	Tensor Fields
	Tensor Field Modules
	Tensor Fields
	Tensor Fields with Values on a Parallelizable Manifold

	Differential Forms
	Differential Form Modules
	Differential Forms

	Mixed Differential Forms
	Graded Algebra of Mixed Differential Forms
	Mixed Differential Forms

	De Rham Cohomology
	Alternating Multivector Fields
	Multivector Field Modules
	Multivector Fields

	Affine Connections
	Submanifolds of differentiable manifolds
	Differentiable Vector Bundles
	Differentiable Vector Bundles
	Bundle Connections
	Characteristic cohomology classes
	Contents
	Additive Classes
	Multiplicative Classes
	Pfaffian Classes

	Pseudo-Riemannian Manifolds
	Pseudo-Riemannian Manifolds
	Euclidean Spaces and Vector Calculus
	Euclidean Spaces
	Spheres smoothly embedded in Euclidean Space
	Operators for vector calculus

	Pseudo-Riemannian Metrics and Degenerate Metrics
	Levi-Civita Connections
	Pseudo-Riemannian submanifolds
	Degenerate Metric Manifolds
	Degenerate manifolds
	Degenerate submanifolds

	Poisson Manifolds
	Poisson tensors
	Symplectic structures
	Symplectic vector spaces

	Utilities for Calculus
	Manifolds Catalog
	Indices and Tables
	Python Module Index
	Index

