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Sage includes classes for hyperplane arrangements, polyhedra, toric varieties (including polyhedral cones and fans), tri-
angulations and some other helper classes and functions.
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CHAPTER

ONE

HYPERPLANE ARRANGEMENTS

1.1 Hyperplane Arrangements

Before talking about hyperplane arrangements, let us start with individual hyperplanes. This package uses certain linear
expressions to represent hyperplanes, that is, a linear expression 3𝑥 + 3𝑦 − 5𝑧 − 7 stands for the hyperplane with the
equation 3𝑥 + 3𝑦 − 5𝑧 = 7. To create it in Sage, you first have to create a HyperplaneArrangements object to
define the variables 𝑥, 𝑦, 𝑧:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: h.normal()
(3, 2, -5)
sage: h.constant_term()
-7

The individual hyperplanes behave like the linear expression with regard to addition and scalar multiplication, which is
why you can do linear combinations of the coordinates:

sage: -2*h
Hyperplane -6*x - 4*y + 10*z + 14
sage: x, y, z
(Hyperplane x + 0*y + 0*z + 0,
Hyperplane 0*x + y + 0*z + 0,
Hyperplane 0*x + 0*y + z + 0)

See sage.geometry.hyperplane_arrangement.hyperplane for more functionality of the individual hy-
perplanes.

1.1.1 Arrangements

There are several ways to create hyperplane arrangements:

Notation (i): by passing individual hyperplanes to the HyperplaneArrangements object:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: box = x | y | x-1 | y-1; box
Arrangement <y - 1 | y | x - 1 | x>
sage: box == H(x, y, x-1, y-1) # alternative syntax
True

Notation (ii): by passing anything that defines a hyperplane, for example a coefficient vector and constant term:
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sage: H = HyperplaneArrangements(QQ, ( x , y ))
sage: triangle = H([(1, 0), 0], [(0, 1), 0], [(1,1), -1]); triangle
Arrangement <y | x | x + y - 1>

sage: H.inject_variables()
Defining x, y
sage: triangle == x | y | x+y-1
True

The default base field is , the rational numbers. Finite fields are also supported:

sage: H.<x,y,z> = HyperplaneArrangements(GF(5))
sage: a = H([(1,2,3), 4], [(5,6,7), 8]); a
Arrangement <y + 2*z + 3 | x + 2*y + 3*z + 4>

Number fields are also possible:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ, x )
sage: NF.<a> = NumberField(x**4 - 5*x**2 + 5, embedding=1.90)
sage: H.<y,z> = HyperplaneArrangements(NF)
sage: A = H([[(-a**3 + 3*a, -a**2 + 4), 1], [(a**3 - 4*a, -1), 1],
....: [(0, 2*a**2 - 6), 1], [(-a**3 + 4*a, -1), 1],
....: [(a**3 - 3*a, -a**2 + 4), 1]])
sage: A
Arrangement of 5 hyperplanes of dimension 2 and rank 2
sage: A.base_ring()
Number Field in a with defining polynomial x^4 - 5*x^2 + 5
with a = 1.902113032590308?

Notation (iii): a list or tuple of hyperplanes:

sage: H.<x,y,z> = HyperplaneArrangements(GF(5))
sage: k = [x+i for i in range(4)]; k
[Hyperplane x + 0*y + 0*z + 0, Hyperplane x + 0*y + 0*z + 1,
Hyperplane x + 0*y + 0*z + 2, Hyperplane x + 0*y + 0*z + 3]

sage: H(k)
Arrangement <x | x + 1 | x + 2 | x + 3>

Notation (iv): using the library of arrangements:

sage: hyperplane_arrangements.braid(4) #␣
→˓needs sage.graphs
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.semiorder(3)
Arrangement of 6 hyperplanes of dimension 3 and rank 2
sage: hyperplane_arrangements.graphical(graphs.PetersenGraph()) #␣
→˓needs sage.graphs
Arrangement of 15 hyperplanes of dimension 10 and rank 9
sage: hyperplane_arrangements.Ish(5)
Arrangement of 20 hyperplanes of dimension 5 and rank 4

Notation (v): from the bounding hyperplanes of a polyhedron:

sage: a = polytopes.cube().hyperplane_arrangement(); a
Arrangement of 6 hyperplanes of dimension 3 and rank 3
sage: a.n_regions()
27
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New arrangements from old:

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: b = a.add_hyperplane([4, 1, 2, 3])
sage: b
Arrangement <t1 - t2 | t0 - t1 | t0 - t2 | t0 + 2*t1 + 3*t2 + 4>
sage: c = b.deletion([4, 1, 2, 3])
sage: a == c
True

sage: # needs sage.combinat sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: b = a.union(hyperplane_arrangements.semiorder(3))
sage: b == a | hyperplane_arrangements.semiorder(3) # alternate syntax
True
sage: b == hyperplane_arrangements.Catalan(3)
True
sage: a
Arrangement <t1 - t2 | t0 - t1 | t0 - t2>

sage: a = hyperplane_arrangements.coordinate(4)
sage: h = a.hyperplanes()[0]
sage: b = a.restriction(h)
sage: b == hyperplane_arrangements.coordinate(3)
True

1.1.2 Properties of Arrangements

A hyperplane arrangement is essential if the normals to its hyperplanes span the ambient space. Otherwise, it is inessential.
The essentialization is formed by intersecting the hyperplanes by this normal space (actually, it is a bit more complicated
over finite fields):

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(4); a
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: a.is_essential()
False
sage: a.rank() < a.dimension() # double-check
True
sage: a.essentialization()
Arrangement of 6 hyperplanes of dimension 3 and rank 3

The connected components of the complement of the hyperplanes of an arrangement in R𝑛 are called the regions of the
arrangement:

sage: a = hyperplane_arrangements.semiorder(3)
sage: b = a.essentialization(); b
Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: b.n_regions()
19
sage: b.regions()
(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1␣

(continues on next page)
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(continued from previous page)

→˓ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1␣
→˓ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1␣
→˓ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1␣
→˓ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1␣
→˓ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1␣
→˓ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays)

sage: b.bounded_regions()
(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices)

sage: b.n_bounded_regions()
7
sage: a.unbounded_regions()
(A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1␣
→˓line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray,␣
→˓1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1␣
→˓line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray,␣
→˓1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1␣
→˓line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray,␣
→˓1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray,␣
→˓1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1␣
→˓line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray,␣
→˓1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1␣
→˓line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray,␣
→˓1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1␣
→˓line)

6 Chapter 1. Hyperplane arrangements
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The distance between regions is defined as the number of hyperplanes separating them. For example:

sage: # needs sage.combinat
sage: r1 = b.regions()[0]
sage: r2 = b.regions()[1]
sage: b.distance_between_regions(r1, r2)
1
sage: [hyp for hyp in b if b.is_separating_hyperplane(r1, r2, hyp)]
[Hyperplane 2*t1 + t2 + 1]
sage: b.distance_enumerator(r1) # generating function for distances from r1
6*x^3 + 6*x^2 + 6*x + 1

Note: bounded region really mean relatively bounded here. A region is relatively bounded if its intersection with space
spanned by the normals of the hyperplanes in the arrangement is bounded.

The intersection poset of a hyperplane arrangement is the collection of all nonempty intersections of hyperplanes in the
arrangement, ordered by reverse inclusion. It includes the ambient space of the arrangement (as the intersection over the
empty set):

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: p = a.intersection_poset()
sage: p.is_ranked()
True
sage: p.order_polytope()
A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 10 vertices

The characteristic polynomial is a basic invariant of a hyperplane arrangement. It is defined as

𝜒(𝑥) :=
∑︁
𝑤∈𝑃

𝜇(𝑤)𝑥𝑑𝑖𝑚(𝑤)

where 𝑃 is the intersection_poset() of the arrangement and 𝜇 is the Möbius function of 𝑃 :

sage: # long time
sage: a = hyperplane_arrangements.semiorder(5)
sage: a.characteristic_polynomial() # about a second on Core i7
x^5 - 20*x^4 + 180*x^3 - 790*x^2 + 1380*x
sage: a.poincare_polynomial()
1380*x^4 + 790*x^3 + 180*x^2 + 20*x + 1
sage: a.n_regions()
2371
sage: charpoly = a.characteristic_polynomial()
sage: charpoly(-1)
-2371
sage: a.n_bounded_regions()
751
sage: charpoly(1)
751

For finer invariants derived from the intersection poset, see whitney_number() and doubly_indexed_whit-
ney_number().

Miscellaneous methods (see documentation for an explanation):

1.1. Hyperplane Arrangements 7
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sage: a = hyperplane_arrangements.semiorder(3)
sage: a.has_good_reduction(5) #␣
→˓needs sage.rings.finite_rings
True
sage: b = a.change_ring(GF(5))
sage: pa = a.intersection_poset() #␣
→˓needs sage.graphs
sage: pb = b.intersection_poset() #␣
→˓needs sage.rings.finite_rings
sage: pa.is_isomorphic(pb) #␣
→˓needs sage.graphs sage.rings.finite_rings
True
sage: a.face_vector() #␣
→˓needs sage.graphs
(0, 12, 30, 19)
sage: a.face_vector() #␣
→˓needs sage.graphs
(0, 12, 30, 19)
sage: a.is_central()
False
sage: a.is_linear()
False
sage: a.sign_vector((1,1,1))
(-1, 1, -1, 1, -1, 1)
sage: a.varchenko_matrix()[:6, :6]
[ 1 h2 h2*h4 h2*h3 h2*h3*h4 h2*h3*h4*h5]
[ h2 1 h4 h3 h3*h4 h3*h4*h5]
[ h2*h4 h4 1 h3*h4 h3 h3*h5]
[ h2*h3 h3 h3*h4 1 h4 h4*h5]
[ h2*h3*h4 h3*h4 h3 h4 1 h5]
[h2*h3*h4*h5 h3*h4*h5 h3*h5 h4*h5 h5 1]

There are extensive methods for visualizing hyperplane arrangements in low dimensions. See plot() for details.

AUTHORS:

• David Perkinson (2013-06): initial version

• Qiaoyu Yang (2013-07)

• Kuai Yu (2013-07)

• Volker Braun (2013-10): Better Sage integration, major code refactoring.

This module implements hyperplane arrangements defined over the rationals or over finite fields. The original motivation
was to make a companion to Richard Stanley’s notes [Sta2007] on hyperplane arrangements.

class sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement(par-
ent,
hy-
per-
planes,
check=True,
back-
end=None)

Bases: Element

A hyperplane arrangement.

8 Chapter 1. Hyperplane arrangements
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Warning: You should never create HyperplaneArrangementElement instances directly, always use
the parent.

add_hyperplane(other)
The union of self with other.

INPUT:

• other – a hyperplane arrangement or something that can be converted into a hyperplane arrangement

OUTPUT:

A new hyperplane arrangement.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,2,3], [0,1,1], [0,1,-1], [1,-1,0], [1,1,0])
sage: B = H([1,1,1], [1,-1,1], [1,0,-1])
sage: C = A.union(B); C
Arrangement of 8 hyperplanes of dimension 2 and rank 2
sage: C == A | B # syntactic sugar
True

A single hyperplane is coerced into a hyperplane arrangement if necessary:

sage: A.union(x+y-1)
Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: A.add_hyperplane(x+y-1) # alias
Arrangement of 6 hyperplanes of dimension 2 and rank 2

sage: P.<x,y> = HyperplaneArrangements(RR)
sage: C = P(2*x + 4*y + 5)
sage: C.union(A)
Arrangement of 6 hyperplanes of dimension 2 and rank 2

backend()

Return the backend used for polyhedral objects

OUTPUT:

A string giving the backend or None if none is specified.

EXAMPLES:

By default, no backend is specified:

sage: H = HyperplaneArrangements(QQ)
sage: A = H()
sage: A.backend()

Otherwise, one may specify a polyhedral backend:

sage: A = H(backend= ppl )
sage: A.backend()
ppl

sage: A = H(backend= normaliz )
sage: A.backend()
normaliz

1.1. Hyperplane Arrangements 9
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bounded_regions()

Return the relatively bounded regions of the arrangement.

A region is relatively bounded if its intersection with the space spanned by the normals to the hyperplanes is
bounded. This is the same as being bounded in the case that the hyperplane arrangement is essential. It is
assumed that the arrangement is defined over the rationals.

OUTPUT:

Tuple of polyhedra. The relatively bounded regions of the arrangement.

See also:

unbounded_regions()

EXAMPLES:

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.semiorder(3)
sage: A.bounded_regions()
(A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 6 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 3 vertices and 1 line)
sage: A.bounded_regions()[0].is_compact() # the regions are only␣
→˓*relatively* bounded
False
sage: A.is_essential()
False

center()

Return the center of the hyperplane arrangement.

The polyhedron defined to be the set of all points in the ambient space of the arrangement that lie on all of
the hyperplanes.

OUTPUT:

A polyhedron.

EXAMPLES:

The empty hyperplane arrangement has the entire ambient space as its center:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H()
sage: A.center()
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and␣
→˓2 lines

The Shi arrangement in dimension 3 has an empty center:

10 Chapter 1. Hyperplane arrangements
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sage: A = hyperplane_arrangements.Shi(3)
sage: A.center()
The empty polyhedron in QQ^3

The Braid arrangement in dimension 3 has a center that is neither empty nor full-dimensional:

sage: A = hyperplane_arrangements.braid(3) #␣
→˓needs sage.combinat
sage: A.center() #␣
→˓needs sage.combinat
A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and␣
→˓1 line

change_ring(base_ring)

Return hyperplane arrangement over the new base ring.

INPUT:

• base_ring – the new base ring; must be a field for hyperplane arrangements

OUTPUT:

The hyperplane arrangement obtained by changing the base field, as a new hyperplane arrangement.

Warning: While there is often a one-to-one correspondence between the hyperplanes of self and those
of self.change_ring(base_ring), there is no guarantee that the order in which they appear
in self.hyperplanes() will match the order in which their counterparts in self.cone() will
appear in self.change_ring(base_ring).hyperplanes()!

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([(1,1), 0], [(2,3), -1])
sage: A.change_ring(FiniteField(2))
Arrangement <y + 1 | x + y>

characteristic_polynomial()

Return the characteristic polynomial of the hyperplane arrangement.

OUTPUT:

The characteristic polynomial in [𝑥].

EXAMPLES:

sage: a = hyperplane_arrangements.coordinate(2)
sage: a.characteristic_polynomial()
x^2 - 2*x + 1

closed_faces(labelled=True)
Return the closed faces of the hyperplane arrangement self (provided that self is defined over a totally
ordered field).

Let 𝒜 be a hyperplane arrangement in the vector space 𝐾𝑛, whose hyperplanes are the zero sets of the
affine-linear functions 𝑢1, 𝑢2, . . . , 𝑢𝑁 . (We consider these functions 𝑢1, 𝑢2, . . . , 𝑢𝑁 , and not just the hyper-
planes, as given. We also assume the field 𝐾 to be totally ordered.) For any point 𝑥 ∈ 𝐾𝑛, we define the
sign vector of 𝑥 to be the vector (𝑣1, 𝑣2, . . . , 𝑣𝑁 ) ∈ {−1, 0, 1}𝑁 such that (for each 𝑖) the number 𝑣𝑖 is the

1.1. Hyperplane Arrangements 11
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sign of 𝑢𝑖(𝑥). For any 𝑣 ∈ {−1, 0, 1}𝑁 , we let 𝐹𝑣 be the set of all 𝑥 ∈ 𝐾𝑛 which have sign vector 𝑣. The
nonempty ones among all these subsets 𝐹𝑣 are called the open faces of 𝒜. They form a partition of the set
𝐾𝑛.

Furthermore, for any 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑁 ) ∈ {−1, 0, 1}𝑁 , we let𝐺𝑣 be the set of all 𝑥 ∈ 𝐾𝑛 such that, for
every 𝑖, the sign of 𝑢𝑖(𝑥) is either 0 or 𝑣𝑖. Then, 𝐺𝑣 is a polyhedron. The nonempty ones among all these
polyhedra 𝐺𝑣 are called the closed faces of 𝒜. While several sign vectors 𝑣 can lead to one and the same
closed face 𝐺𝑣 , we can assign to every closed face a canonical choice of a sign vector: Namely, if 𝐺 is a
closed face of𝒜, then the sign vector of𝐺 is defined to be the vector (𝑣1, 𝑣2, . . . , 𝑣𝑁 ) ∈ {−1, 0, 1}𝑁 where
𝑥 is any point in the relative interior of 𝐺 and where, for each 𝑖, the number 𝑣𝑖 is the sign of 𝑢𝑖(𝑥). (This
does not depend on the choice of 𝑥.)

There is a one-to-one correspondence between the closed faces and the open faces of 𝒜. It sends a closed
face 𝐺 to the open face 𝐹𝑣 , where 𝑣 is the sign vector of 𝐺; this 𝐹𝑣 is also the relative interior of 𝐺𝑣 . The
inverse map sends any open face 𝑂 to the closure of 𝑂.

INPUT:

• labelled – boolean (default: True); if True, then this method returns not the faces itself but rather
pairs (𝑣, 𝐹 ) where 𝐹 is a closed face and 𝑣 is its sign vector (here, the order and the orientation of the
𝑢1, 𝑢2, . . . , 𝑢𝑁 is as given by self.hyperplanes()).

OUTPUT:

A tuple containing the closed faces as polyhedra, or (if labelled is set to True) the pairs of sign vectors
and corresponding closed faces.

Todo: Should the output rather be a dictionary where the keys are the sign vectors and the values are the
faces?

EXAMPLES:

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(2)
sage: a.hyperplanes()
(Hyperplane t0 - t1 + 0,)
sage: a.closed_faces()
(((0,), A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 line),
((1,), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line),
((-1,), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line))
sage: a.closed_faces(labelled=False)
(A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 line,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line)
sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((0,), A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 line, (0, 0)),
((1,), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (0, -1)),
((-1,), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (-1, 0))]

(continues on next page)
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(continued from previous page)

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: a = H(x, y+1)
sage: a.hyperplanes()
(Hyperplane 0*x + y + 1, Hyperplane x + 0*y + 0)
sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((0, 0), A 0-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, (0, -1)),
((0, 1), A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 ray, (1, -1)),
((0, -1), A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 ray, (-1, -1)),
((1, 0), A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 ray, (0, 0)),
((1, 1), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays, (1, 0)),
((1, -1), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays, (-1, 0)),
((-1, 0), A 1-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 1 ray, (0, -2)),
((-1, 1), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays, (1, -2)),
((-1, -1), A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays, (-1, -2))]

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: a.hyperplanes()
(Hyperplane 0*t0 + t1 - t2 + 0,
Hyperplane t0 - t1 + 0*t2 + 0,
Hyperplane t0 + 0*t1 - t2 + 0)

sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((0, 0, 0), A 1-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex and 1 line, (0, 0, 0)),
((0, 1, 1), A 2-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (0, -1, -1)),
((0, -1, -1), A 2-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (-1, 0, 0)),
((1, 0, 1), A 2-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (1, 1, 0)),
((1, 1, 1), A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (0, -1, -2)),
((1, -1, 0), A 2-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (-1, 0, -1)),
((1, -1, 1), A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (1, 2, 0)),
((1, -1, -1), A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (-2, 0, -1)),
((-1, 0, -1), A 2-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (0, 0, 1)),
((-1, 1, 0), A 2-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (1, 0, 1)),
((-1, 1, 1), A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (0, -2, -1)),
((-1, 1, -1), A 3-dimensional polyhedron in QQ^3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (1, 0, 2)),
((-1, -1, -1), A 3-dimensional polyhedron in QQ^3 defined

(continues on next page)
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(continued from previous page)

as the convex hull of 1 vertex, 2 rays, 1 line, (-1, 0, 1))]

Let us check that the number of closed faces with a given dimension computed using self.
closed_faces() equals the one computed using face_vector():

sage: def test_number(a):
....: Qx = PolynomialRing(QQ, x ); x = Qx.gen()
....: RHS = Qx.sum(vi * x ** i for i, vi in enumerate(a.face_vector()))
....: LHS = Qx.sum(x ** F[1].dim() for F in a.closed_faces())
....: return LHS == RHS
sage: a = hyperplane_arrangements.Catalan(2)
sage: test_number(a) #␣
→˓needs sage.combinat
True
sage: a = hyperplane_arrangements.Shi(3)
sage: test_number(a) # long time #␣
→˓needs sage.combinat
True

cocharacteristic_polynomial()

Return the cocharacteristic polynomial of self.

The cocharacteristic polynomial of a hyperplane arrangement 𝐴 is defined by

Ψ𝐴(𝑧) :=
∑︁
𝑋∈𝐿

|𝜇(𝐵,𝑋)|𝑧dim𝑋 ,

where 𝐿 is the intersection poset of 𝐴, 𝐵 is the minimal element of 𝐿 (here, the 0 dimensional subspace),
and 𝜇 is the Möbius function of 𝐿.

OUTPUT:

The cocharacteristic polynomial in [𝑧].

EXAMPLES:

sage: A = hyperplane_arrangements.coordinate(2)
sage: A.cocharacteristic_polynomial() #␣
→˓needs sage.graphs
z^2 + 2*z + 1
sage: B = hyperplane_arrangements.braid(3)
sage: B.cocharacteristic_polynomial() #␣
→˓needs sage.graphs
2*z^3 + 3*z^2 + z

cone(variable='t')

Return the cone over the hyperplane arrangement.

INPUT:

• variable – string; the name of the additional variable

OUTPUT:

A new hyperplane arrangement 𝐿. Its equations consist of [0,−𝑑, 𝑎1, . . . , 𝑎𝑛] for each [𝑑, 𝑎1, . . . , 𝑎𝑛] in the
original arrangement and the equation [0, 1, 0, . . . , 0] (maybe not in this order).
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Warning: While there is an almost-one-to-one correspondence between the hyperplanes of self
and those of self.cone(), there is no guarantee that the order in which they appear in self.
hyperplanes() will match the order in which their counterparts in self.cone() will appear in
self.cone().hyperplanes()! This warning does not apply to ordered hyperplane arrangements.

EXAMPLES:

sage: # needs sage.combinat
sage: a.<x,y,z> = hyperplane_arrangements.semiorder(3)
sage: b = a.cone()
sage: a.characteristic_polynomial().factor()
x * (x^2 - 6*x + 12)
sage: b.characteristic_polynomial().factor()
(x - 1) * x * (x^2 - 6*x + 12)
sage: a.hyperplanes()
(Hyperplane 0*x + y - z - 1,
Hyperplane 0*x + y - z + 1,
Hyperplane x - y + 0*z - 1,
Hyperplane x - y + 0*z + 1,
Hyperplane x + 0*y - z - 1,
Hyperplane x + 0*y - z + 1)

sage: b.hyperplanes()
(Hyperplane -t + 0*x + y - z + 0,
Hyperplane -t + x - y + 0*z + 0,
Hyperplane -t + x + 0*y - z + 0,
Hyperplane t + 0*x + 0*y + 0*z + 0,
Hyperplane t + 0*x + y - z + 0,
Hyperplane t + x - y + 0*z + 0,
Hyperplane t + x + 0*y - z + 0)

defining_polynomial()

Return the defining polynomial of A.

Let 𝐴 = (𝐻𝑖)𝑖 be a hyperplane arrangement in a vector space 𝑉 corresponding to the null spaces of 𝛼𝐻𝑖
∈

𝑉 *. Then the defining polynomial of 𝐴 is given by

𝑄(𝐴) =
∏︁
𝑖

𝛼𝐻𝑖 ∈ 𝑆(𝑉 *).

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([2*x + y - z, -x - 2*y + z])
sage: p = A.defining_polynomial(); p
-2*x^2 - 5*x*y - 2*y^2 + 3*x*z + 3*y*z - z^2
sage: p.factor()
(-1) * (x + 2*y - z) * (2*x + y - z)

deletion(hyperplanes)

Return the hyperplane arrangement obtained by removing h.

INPUT:

• h – a hyperplane or hyperplane arrangement

OUTPUT:

A new hyperplane arrangement with the given hyperplane(s) h removed.
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See also:

restriction()

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([0,1,0], [1,0,1], [-1,0,1], [0,1,-1], [0,1,1]); A
Arrangement of 5 hyperplanes of dimension 2 and rank 2
sage: A.deletion(x)
Arrangement <y - 1 | y + 1 | x - y | x + y>
sage: h = H([0,1,0], [0,1,1])
sage: A.deletion(h)
Arrangement <y - 1 | y + 1 | x - y>

derivation_module_basis(algorithm='singular')

Return a basis for the derivation module of self if one exists, otherwise return None.

See also:

derivation_module_free_chain(), is_free()

INPUT:

• algorithm – (default: "singular") can be one of the following:

– "singular" – use Singular’s minimal free resolution

– "BC" – use the algorithm given by Barakat and Cuntz in [BC2012] (much slower than using Sin-
gular)

OUTPUT:

A basis for the derivation module (over 𝑆, the symmetric space) as vectors of a free module over 𝑆.

ALGORITHM:

Singular

This gets the reduced syzygy module of the Jacobian ideal of the defining polynomial 𝑓 of self. It then
checks Saito’s criterion that the determinant of the basis matrix is a scalar multiple of 𝑓 . If the basis matrix
is not square or it fails Saito’s criterion, then we check if the arrangement is free. If it is free, then we fall
back to the Barakat-Cuntz algorithm.

BC

Return the product of the derivation module free chain matrices. See Section 6 of [BC2012].

EXAMPLES:

sage: # needs sage.combinat sage.groups
sage: W = WeylGroup([ A , 2], prefix= s )
sage: A = W.long_element().inversion_arrangement()
sage: A.derivation_module_basis()
[(a1, a2), (0, a1*a2 + a2^2)]
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derivation_module_free_chain()

Return a free chain for the derivation module if one exists, otherwise return None.

See also:

is_free()

EXAMPLES:

sage: # needs sage.combinat sage.groups
sage: W = WeylGroup([ A ,3], prefix= s )
sage: A = W.long_element().inversion_arrangement()
sage: for M in A.derivation_module_free_chain(): print("%s\n"%M)
[ 1 0 0]
[ 0 1 0]
[ 0 0 a3]

[ 1 0 0]
[ 0 0 1]
[ 0 a2 0]

[ 1 0 0]
[ 0 -1 -1]
[ 0 a2 -a3]

[ 0 1 0]
[ 0 0 1]
[a1 0 0]

[ 1 0 -1]
[a3 -1 0]
[a1 0 a2]

[ 1 0 0]
[ a3 -1 -1]
[ 0 a1 -a2 - a3]

dimension()

Return the ambient space dimension of the arrangement.

OUTPUT:

An integer.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: (x | x-1 | x+1).dimension()
2
sage: H(x).dimension()
2

distance_between_regions(region1, region2)
Return the number of hyperplanes separating the two regions.

INPUT:

• region1, region2 – regions of the arrangement or representative points of regions

OUTPUT:
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An integer. The number of hyperplanes separating the two regions.

EXAMPLES:

sage: c = hyperplane_arrangements.coordinate(2)
sage: r = c.region_containing_point([-1, -1])
sage: s = c.region_containing_point([1, 1])
sage: c.distance_between_regions(r, s)
2
sage: c.distance_between_regions(s, s)
0

distance_enumerator(base_region)
Return the generating function for the number of hyperplanes at given distance.

INPUT:

• base_region – region of arrangement or point in region

OUTPUT:

A polynomial 𝑓(𝑥) for which the coefficient of 𝑥𝑖 is the number of hyperplanes of distance 𝑖 from base_re-
gion, i.e., the number of hyperplanes separated by 𝑖 hyperplanes from base_region.

EXAMPLES:

sage: c = hyperplane_arrangements.coordinate(3)
sage: c.distance_enumerator(c.region_containing_point([1,1,1]))
x^3 + 3*x^2 + 3*x + 1

doubly_indexed_whitney_number(i, j, kind=1)
Return the 𝑖, 𝑗-th doubly-indexed Whitney number.

If kind=1, this number is obtained by adding the Möbius function values 𝑚𝑢(𝑥, 𝑦) over all 𝑥, 𝑦 in the
intersection poset with rank(𝑥) = 𝑖 and rank(𝑦) = 𝑗.

If 𝑘𝑖𝑛𝑑 = 2, this number is the number of elements 𝑥, 𝑦 in the intersection poset such that 𝑥 ≤ 𝑦 with ranks
𝑖 and 𝑗, respectively.

INPUT:

• i, j – integers

• kind – (default: 1) 1 or 2

OUTPUT:

Integer. The (𝑖, 𝑗)-th entry of the kindWhitney number.

See also:

whitney_number(), whitney_data()

EXAMPLES:

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.Shi(3)
sage: A.doubly_indexed_whitney_number(0, 2)
9
sage: A.whitney_number(2)
9
sage: A.doubly_indexed_whitney_number(1, 2)
-15

18 Chapter 1. Hyperplane arrangements



Combinatorial and Discrete Geometry, Release 10.4.rc1

REFERENCES:

• [GZ1983]

essentialization()

Return the essentialization of the hyperplane arrangement.

The essentialization of a hyperplane arrangement whose base field has characteristic 0 is obtained by inter-
secting the hyperplanes by the space spanned by their normal vectors.

OUTPUT:

The essentialization 𝒜′ of 𝒜 as a new hyperplane arrangement.

EXAMPLES:

sage: a = hyperplane_arrangements.braid(3) #␣
→˓needs sage.graphs
sage: a.is_essential() #␣
→˓needs sage.graphs
False
sage: a.essentialization() #␣
→˓needs sage.graphs
Arrangement <t1 - t2 | t1 + 2*t2 | 2*t1 + t2>

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: B = H([(1,0),1], [(1,0),-1])
sage: B.is_essential()
False
sage: B.essentialization()
Arrangement <-x + 1 | x + 1>
sage: B.essentialization().parent()
Hyperplane arrangements in 1-dimensional linear space over
Rational Field with coordinate x

sage: H.<x,y> = HyperplaneArrangements(GF(2))
sage: C = H([(1,1),1], [(1,1),0])
sage: C.essentialization()
Arrangement <y | y + 1>

sage: h = hyperplane_arrangements.semiorder(4)
sage: h.essentialization()
Arrangement of 12 hyperplanes of dimension 3 and rank 3

face_product(F , G, normalize=True)
Return the product 𝐹𝐺 in the face semigroup of self, where 𝐹 and 𝐺 are two closed faces of self.

The face semigroup of a hyperplane arrangement 𝒜 is defined as follows: As a set, it is the set of all open
faces of self (see closed_faces()). Its product is defined by the following rule: If 𝐹 and 𝐺 are two
open faces of 𝒜, then 𝐹𝐺 is an open face of 𝒜, and for every hyperplane 𝐻 ∈ 𝒜, the open face 𝐹𝐺 lies on
the same side of 𝐻 as 𝐹 unless 𝐹 ⊆ 𝐻 , in which case 𝐹𝐺 lies on the same side of 𝐻 as 𝐺. Alternatively,
𝐹𝐺 can be defined as follows: If 𝑓 and 𝑔 are two points in 𝐹 and 𝐺, respectively, then 𝐹𝐺 is the face that
contains the point (𝑓 + 𝜀𝑔)/(1 + 𝜀) for any sufficiently small positive 𝜀.

In our implementation, the face semigroup consists of closed faces rather than open faces (thanks to the 1-to-1
correspondence between open faces and closed faces, this is not really a different semigroup); these closed
faces are given as polyhedra.

The face semigroup of a hyperplane arrangement is always a left-regular band (i.e., a semigroup satisfying
the identities 𝑥2 = 𝑥 and 𝑥𝑦𝑥 = 𝑥𝑦). When the arrangement is central, then this semigroup is a monoid.
See [Br2000] (Appendix A in particular) for further properties.
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INPUT:

• F, G – two faces of self (as polyhedra)

• normalize – Boolean (default: True); if True, then this method returns the precise instance of 𝐹𝐺
in the list returned by self.closed_faces(), rather than creating a new instance

EXAMPLES:

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: a.hyperplanes()
(Hyperplane 0*t0 + t1 - t2 + 0,
Hyperplane t0 - t1 + 0*t2 + 0,
Hyperplane t0 + 0*t1 - t2 + 0)

sage: faces = {F0: F1 for F0, F1 in a.closed_faces()}
sage: xGyEz = faces[(0, 1, 1)] # closed face x >= y = z
sage: xGyEz.representative_point()
(0, -1, -1)
sage: xGyEz = faces[(0, 1, 1)] # closed face x >= y = z
sage: xGyEz.representative_point()
(0, -1, -1)
sage: yGxGz = faces[(1, -1, 1)] # closed face y >= x >= z
sage: xGyGz = faces[(1, 1, 1)] # closed face x >= y >= z
sage: a.face_product(xGyEz, yGxGz) == xGyGz
True
sage: a.face_product(yGxGz, xGyEz) == yGxGz
True
sage: xEzGy = faces[(-1, 1, 0)] # closed face x = z >= y
sage: xGzGy = faces[(-1, 1, 1)] # closed face x >= z >= y
sage: a.face_product(xEzGy, yGxGz) == xGzGy
True

face_semigroup_algebra(field=None, names='e')
Return the face semigroup algebra of self.

This is the semigroup algebra of the face semigroup of self (see face_product() for the definition of
the semigroup).

Due to limitations of the current Sage codebase (e.g., semigroup algebras do not profit from the func-
tionality of the FiniteDimensionalAlgebra class), this is implemented not as a semigroup al-
gebra, but as a FiniteDimensionalAlgebra. The closed faces of self (in the order in which the
closed_faces() method outputs them) are identified with the vectors (0, 0, . . . , 0, 1, 0, 0, . . . , 0) (with
the 1 moving from left to right).

INPUT:

• field – a field (default: ), to be used as the base ring for the algebra (can also be a commutative ring,
but then certain representation-theoretical methods might misbehave)

• names – (default: e ) string; names for the basis elements of the algebra

Todo: Also implement it as an actual semigroup algebra?

EXAMPLES:

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)

(continues on next page)
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(continued from previous page)

sage: [(i, F[0]) for i, F in enumerate(a.closed_faces())]
[(0, (0, 0, 0)),
(1, (0, 1, 1)),
(2, (0, -1, -1)),
(3, (1, 0, 1)),
(4, (1, 1, 1)),
(5, (1, -1, 0)),
(6, (1, -1, 1)),
(7, (1, -1, -1)),
(8, (-1, 0, -1)),
(9, (-1, 1, 0)),
(10, (-1, 1, 1)),
(11, (-1, 1, -1)),
(12, (-1, -1, -1))]

sage: U = a.face_semigroup_algebra(); U
Finite-dimensional algebra of degree 13 over Rational Field
sage: e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12 = U.basis()
sage: e0 * e1
e1
sage: e0 * e5
e5
sage: e5 * e0
e5
sage: e3 * e2
e6
sage: e7 * e12
e7
sage: e3 * e12
e6
sage: e4 * e8
e4
sage: e8 * e4
e11
sage: e8 * e1
e11
sage: e5 * e12
e7
sage: (e3 + 2*e4) * (e1 - e7)
e4 - e6

sage: U3 = a.face_semigroup_algebra(field=GF(3)); U3 #␣
→˓needs sage.graphs sage.rings.finite_rings
Finite-dimensional algebra of degree 13 over Finite Field of size 3

face_vector()

Return the face vector.

OUTPUT:

A vector of integers.

The 𝑑-th entry is the number of faces of dimension 𝑑. A face is the intersection of a region with a hyperplane
of the arrangement.

EXAMPLES:

sage: A = hyperplane_arrangements.Shi(3)
sage: A.face_vector() #␣

(continues on next page)
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(continued from previous page)

→˓needs sage.combinat
(0, 6, 21, 16)

has_good_reduction(p)

Return whether the hyperplane arrangement has good reduction mod 𝑝.

Let 𝐴 be a hyperplane arrangement with equations defined over the integers, and let 𝐵 be the hyperplane
arrangement defined by reducing these equations modulo a prime 𝑝. Then 𝐴 has good reduction modulo 𝑝 if
the intersection posets of 𝐴 and 𝐵 are isomorphic.

INPUT:

• p – prime number

OUTPUT:

A boolean.

EXAMPLES:

sage: # needs sage.combinat
sage: a = hyperplane_arrangements.semiorder(3)
sage: a.has_good_reduction(5)
True
sage: a.has_good_reduction(3)
False
sage: b = a.change_ring(GF(3))
sage: a.characteristic_polynomial()
x^3 - 6*x^2 + 12*x
sage: b.characteristic_polynomial() # not equal to that for a
x^3 - 6*x^2 + 10*x

hyperplanes()

Return the hyperplanes in the arrangement as a tuple.

OUTPUT:

A tuple

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,1,0], [2,3,-1], [4,5,3])
sage: A.hyperplanes()
(Hyperplane x + 0*y + 1, Hyperplane 3*x - y + 2, Hyperplane 5*x + 3*y + 4)

Note that the hyperplanes can be indexed as if they were a list:

sage: A[0]
Hyperplane x + 0*y + 1

intersection_poset(element_label='int')
Return the intersection poset of the hyperplane arrangement.

INPUT:

• element_label – (default: "int") specify how an intersection should be represented; must be one
of the following:

– "subspace" – as a subspace
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– "subset" – as a subset of the defining hyperplanes

– "int" – as an integer

OUTPUT:

The poset of non-empty intersections of hyperplanes, with intersections represented by integers, subsets of
integers or subspaces (see the examples for more details).

EXAMPLES:

By default, the elements of the poset are the integers from 0 through the cardinality of the poset minus one.
The element labelled 0 always corresponds to the ambient vector space, and the hyperplanes themselves are
labelled 1, 2, . . . , 𝑛, where 𝑛 is the number of hyperplanes of the arrangement.

sage: A = hyperplane_arrangements.coordinate(2)
sage: L = A.intersection_poset(); L #␣
→˓needs sage.combinat
Finite poset containing 4 elements
sage: sorted(L) #␣
→˓needs sage.combinat
[0, 1, 2, 3]
sage: L.level_sets() #␣
→˓needs sage.combinat
[[0], [1, 2], [3]]

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.semiorder(3)
sage: L = A.intersection_poset(); L
Finite poset containing 19 elements
sage: sorted(L)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
sage: [sorted(level_set) for level_set in L.level_sets()]
[[0], [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]

By passing the argument element_label="subset", each element of the intesection poset is labelled
by the set of indices of the hyperplanes whose intersection is said element. The index of a hyperplane is its
index in self.hyperplanes().

sage: A = hyperplane_arrangements.semiorder(3)
sage: L = A.intersection_poset(element_label= subset ) #␣
→˓needs sage.combinat
sage: [sorted(level, key=sorted) for level in L.level_sets()] #␣
→˓needs sage.combinat
[[{}],
[{0}, {1}, {2}, {3}, {4}, {5}],
[{0, 2}, {0, 3}, {0, 4}, {0, 5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2,␣
→˓5}, {3, 4}, {3, 5}]]

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H((y, y-1, y+1, x-y, x+y))
sage: L = A.intersection_poset(element_label= subset ) #␣
→˓needs sage.combinat
sage: sorted(L, key=sorted) #␣
→˓needs sage.combinat
[{}, {0}, {0, 3}, {0, 4}, {1}, {1, 3, 4}, {2}, {2, 3}, {2, 4}, {3}, {4}]

One can instead use affine subspaces as elements, which is what is used to compute the poset in the first place:
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sage: A = hyperplane_arrangements.coordinate(2)
sage: L = A.intersection_poset(element_label= subspace ); L #␣
→˓needs sage.combinat
Finite poset containing 4 elements
sage: sorted(L, key=lambda S: (S.dimension(), #␣
→˓needs sage.combinat
....: S.linear_part().basis_matrix()))
[Affine space p + W where:

p = (0, 0)
W = Vector space of degree 2 and dimension 0 over Rational Field

Basis matrix: [],
Affine space p + W where:

p = (0, 0)
W = Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix: [0 1],
Affine space p + W where:

p = (0, 0)
W = Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix: [1 0],
Affine space p + W where:

p = (0, 0)
W = Vector space of dimension 2 over Rational Field]

is_central(certificate=False)
Test whether the intersection of all the hyperplanes is nonempty.

A hyperplane arrangement is central if the intersection of all the hyperplanes in the arrangement is nonempty.

INPUT:

• certificate – boolean (default: False); specifies whether to return the center as a polyhedron
(possibly empty) as part of the output

OUTPUT:

If certificate is True, returns a tuple containing:

1. A boolean

2. The polyhedron defined to be the intersection of all the hyperplanes

If certificate is False, returns a boolean.

EXAMPLES:

sage: a = hyperplane_arrangements.braid(2) #␣
→˓needs sage.graphs
sage: a.is_central() #␣
→˓needs sage.graphs
True

The Catalan arrangement in dimension 3 is not central:

sage: b = hyperplane_arrangements.Catalan(3)
sage: b.is_central(certificate=True)
(False, The empty polyhedron in QQ^3)

The empty arrangement in dimension 5 is central:

24 Chapter 1. Hyperplane arrangements



Combinatorial and Discrete Geometry, Release 10.4.rc1

sage: H = HyperplaneArrangements(QQ, names=tuple([ x +str(i) for i in␣
→˓range(7)]))
sage: c = H()
sage: c.is_central(certificate=True)
(True, A 7-dimensional polyhedron in QQ^7 defined

as the convex hull of 1 vertex and 7 lines)

is_essential()

Test whether the hyperplane arrangement is essential.

A hyperplane arrangement is essential if the span of the normals of its hyperplanes spans the ambient space.

See also:

essentialization()

OUTPUT:

A boolean indicating whether the hyperplane arrangement is essential.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: H(x, x+1).is_essential()
False
sage: H(x, y).is_essential()
True

is_formal()

Return if self is formal.

A hyperplane arrangement is formal if it is 3-generated [Yuz1993], where 𝑘-generated is defined in mini-
mal_generated_number().

EXAMPLES:

sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, 3*x+5*z,␣
→˓3*x+4*y+5*z)
sage: B = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, x+3*z, x+2*y+3*z)
sage: A.is_formal()
True
sage: B.is_formal()
False

is_free(algorithm='singular')

Return if self is free.

A hyperplane arrangement 𝐴 is free if the module of derivations Der(𝐴) is a free 𝑆-module, where 𝑆 is the
corresponding symmetric space.

INPUT:

• algorithm – (default: "singular") can be one of the following:

– "singular" – use Singular’s minimal free resolution

– "BC" – use the algorithm given by Barakat and Cuntz in [BC2012] (much slower than using Sin-
gular)

ALGORITHM:
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singular

Check that the minimal free resolution has length at most 2 by using Singular.

BC

This implementation follows [BC2012] by constructing a chain of free modules

𝐷(𝐴) = 𝐷(𝐴𝑛) < 𝐷(𝐴𝑛−1) < · · · < 𝐷(𝐴1) < 𝐷(𝐴0)

corresponding to some ordering of the arrangements 𝐴0 ⊂ 𝐴1 ⊂ · · · ⊂ 𝐴𝑛−1 ⊂ 𝐴𝑛 = 𝐴. Such a chain is
found by using a backtracking algorithm.

EXAMPLES:

For type 𝐴 arrangements, chordality is equivalent to freeness. We verify that in type 𝐴3:

sage: W = WeylGroup([ A , 3], prefix= s ) #␣
→˓needs sage.combinat sage.groups
sage: for x in W: #␣
→˓needs sage.combinat sage.groups
....: A = x.inversion_arrangement()
....: assert A.matroid().is_chordal() == A.is_free()

is_linear()

Test whether all hyperplanes pass through the origin.

OUTPUT:

A boolean. Whether all the hyperplanes pass through the origin.

EXAMPLES:

sage: a = hyperplane_arrangements.semiorder(3)
sage: a.is_linear()
False
sage: b = hyperplane_arrangements.braid(3) #␣
→˓needs sage.graphs
sage: b.is_linear() #␣
→˓needs sage.graphs
True

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: c = H(x+1, y+1)
sage: c.is_linear()
False
sage: c.is_central()
True

is_separating_hyperplane(region1, region2, hyperplane)
Test whether the hyperplane separates the given regions.

INPUT:

• region1, region2 – polyhedra or list/tuple/iterable of coordinates which are regions of the arrange-
ment or an interior point of a region

• hyperplane – a hyperplane
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OUTPUT:

A boolean. Whether the hyperplane hyperplane separate the given regions.

EXAMPLES:

sage: A.<x,y> = hyperplane_arrangements.coordinate(2)
sage: A.is_separating_hyperplane([1,1], [2,1], y)
False
sage: A.is_separating_hyperplane([1,1], [-1,1], x)
True
sage: r = A.region_containing_point([1,1])
sage: s = A.region_containing_point([-1,1])
sage: A.is_separating_hyperplane(r, s, x)
True

is_simplicial()

Test whether the arrangement is simplicial.

A region is simplicial if the normal vectors of its bounding hyperplanes are linearly independent. A hyperplane
arrangement is said to be simplicial if every region is simplicial.

OUTPUT:

A boolean whether the hyperplane arrangement is simplicial.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([[0,1,1,1], [0,1,2,3]])
sage: A.is_simplicial()
True
sage: A = H([[0,1,1,1], [0,1,2,3], [0,1,3,2]])
sage: A.is_simplicial()
True
sage: A = H([[0,1,1,1], [0,1,2,3], [0,1,3,2], [0,2,1,3]])
sage: A.is_simplicial()
False
sage: hyperplane_arrangements.braid(3).is_simplicial() #␣
→˓needs sage.graphs
True

matroid()

Return the matroid associated to self.

Let 𝐴 denote a central hyperplane arrangement and 𝑛𝐻 the normal vector of some hyperplane 𝐻 ∈ 𝐴. We
define a matroid𝑀𝐴 as the linear matroid spanned by {𝑛𝐻 |𝐻 ∈ 𝐴}. The matroid𝑀𝐴 is such that the lattice
of flats of𝑀 is isomorphic to the intersection lattice of 𝐴 (Proposition 3.6 in [Sta2007]).

EXAMPLES:

sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z)
sage: M = A.matroid(); M
Linear matroid of rank 3 on 7 elements represented over the Rational Field

We check the lattice of flats is isomorphic to the intersection lattice:

sage: f = sum([list(M.flats(i)) for i in range(M.rank() + 1)], [])
sage: PF = Poset([f, lambda x, y: x < y]) #␣

(continues on next page)
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→˓needs sage.combinat
sage: PF.is_isomorphic(A.intersection_poset()) #␣
→˓needs sage.combinat
True

minimal_generated_number()

Return the minimum 𝑘 such that self is 𝑘-generated.

Let 𝐴 be a central hyperplane arrangement. Let 𝑊𝑘 denote the solution space of the linear system corre-
sponding to the linear dependencies among the hyperplanes of𝐴 of length at most 𝑘. We say𝐴 is 𝑘-generated
if dim𝑊𝑘 = rank𝐴.

Equivalently this says all dependencies forming the Orlik-Terao ideal are generated by at most 𝑘 hyperplanes.

EXAMPLES:

We construct Example 2.2 from [Yuz1993]:

sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, 3*x+5*z,␣
→˓3*x+4*y+5*z)
sage: B = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, x+3*z, x+2*y+3*z)
sage: A.minimal_generated_number()
3
sage: B.minimal_generated_number()
4

n_bounded_regions()

Return the number of (relatively) bounded regions.

OUTPUT:

An integer. The number of relatively bounded regions of the hyperplane arrangement.

EXAMPLES:

sage: A = hyperplane_arrangements.semiorder(3)
sage: A.n_bounded_regions()
7

n_hyperplanes()

Return the number of hyperplanes in the arrangement.

OUTPUT:

An integer.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,1,0], [2,3,-1], [4,5,3])
sage: A.n_hyperplanes()
3
sage: len(A) # equivalent
3

n_regions()

The number of regions of the hyperplane arrangement.

OUTPUT:
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An integer.

EXAMPLES:

sage: A = hyperplane_arrangements.semiorder(3)
sage: A.n_regions()
19

orlik_solomon_algebra(base_ring=None, ordering=None, **kwds)
Return the Orlik-Solomon algebra of self.

INPUT:

• base_ring – (default: the base field of self) the ring over which the Orlik-Solomon algebra will be
defined

• ordering – (optional) an ordering of the ground set

EXAMPLES:

sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z)
sage: A.orlik_solomon_algebra()
Orlik-Solomon algebra of Linear matroid of rank 3 on 7 elements
represented over the Rational Field

sage: A.orlik_solomon_algebra(base_ring=ZZ)
Orlik-Solomon algebra of Linear matroid of rank 3 on 7 elements
represented over the Rational Field

orlik_terao_algebra(base_ring=None, ordering=None, **kwds)
Return the Orlik-Terao algebra of self.

INPUT:

• base_ring – (default: the base field of self) the ring over which the Orlik-Terao algebra will be
defined

• ordering – (optional) an ordering of the ground set

EXAMPLES:

sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z)
sage: A.orlik_terao_algebra()
Orlik-Terao algebra of Linear matroid of rank 3 on 7 elements
represented over the Rational Field over Rational Field

sage: A.orlik_terao_algebra(base_ring=QQ[ t ])
Orlik-Terao algebra of Linear matroid of rank 3 on 7 elements
represented over the Rational Field
over Univariate Polynomial Ring in t over Rational Field

plot(**kwds)

Plot the hyperplane arrangement.

OUTPUT:

A graphics object.

EXAMPLES:
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sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: L(x, y, x+y-2).plot() #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives

poincare_polynomial()

Return the Poincaré polynomial of the hyperplane arrangement.

OUTPUT:

The Poincaré polynomial in [𝑥].

EXAMPLES:

sage: a = hyperplane_arrangements.coordinate(2)
sage: a.poincare_polynomial()
x^2 + 2*x + 1

poset_of_regions(B=None, numbered_labels=True)
Return the poset of regions for a central hyperplane arrangement.

The poset of regions is a partial order on the set of regions where the regions are ordered by 𝑅 ≤ 𝑅′ if and
only if 𝑆(𝑅) ⊆ 𝑆(𝑅′) where 𝑆(𝑅) is the set of hyperplanes which separate the region 𝑅 from the base
region 𝐵.

INPUT:

• B – a region (optional); if None, then an arbitrary region is chosen as the base region.

• numbered_labels – bool (default: True); if True, then the elements of the poset are numbered.
Else they are labelled with the regions themselves.

OUTPUT:

A Poset object containing the poset of regions.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([[0,1,1,1], [0,1,2,3]])
sage: A.poset_of_regions() #␣
→˓needs sage.combinat
Finite poset containing 4 elements

sage: # needs sage.combinat sage.graphs
sage: A = hyperplane_arrangements.braid(3)
sage: A.poset_of_regions()
Finite poset containing 6 elements
sage: A.poset_of_regions(numbered_labels=False)
Finite poset containing 6 elements
sage: A = hyperplane_arrangements.braid(4)
sage: A.poset_of_regions()
Finite poset containing 24 elements

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([[0,1,1,1], [0,1,2,3], [0,1,3,2], [0,2,1,3]])
sage: R = A.regions()
sage: base_region = R[3]
sage: A.poset_of_regions(B=base_region) #␣

(continues on next page)
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→˓needs sage.combinat
Finite poset containing 14 elements

primitive_eulerian_polynomial()

Return the primitive Eulerian polynomial of self.

The primitive Eulerian polynomial of a hyperplane arrangement 𝐴 is defined [BHS2023] by

𝑃𝐴(𝑧) :=
∑︁
𝑋∈𝐿

|𝜇(𝐵,𝑋)|(𝑧 − 1)codim𝑋 ,

where 𝐿 is the intersection poset of 𝐴, 𝐵 is the minimal element of 𝐿 (here, the 0 dimensional subspace),
and 𝜇 is the Möbius function of 𝐿.

OUTPUT:

The primitive Eulerian polynomial in [𝑧].

EXAMPLES:

sage: A = hyperplane_arrangements.coordinate(2)
sage: A.primitive_eulerian_polynomial() #␣
→˓needs sage.graphs
z^2
sage: B = hyperplane_arrangements.braid(3)
sage: B.primitive_eulerian_polynomial() #␣
→˓needs sage.graphs
z^2 + z

sage: H = hyperplane_arrangements.Shi([ B ,2]).cone()
sage: H.is_simplicial()
False
sage: H.primitive_eulerian_polynomial() #␣
→˓needs sage.graphs
z^3 + 11*z^2 + 4*z

sage: H = hyperplane_arrangements.graphical(graphs.CycleGraph(4))
sage: H.primitive_eulerian_polynomial() #␣
→˓needs sage.graphs
z^3 + 3*z^2 - z

We verify Example 2.4 in [BHS2023] for 𝑘 = 2, 3, 4, 5:

sage: R.<x,y> = HyperplaneArrangements(QQ)
sage: for k in range(2,6): #␣
→˓needs sage.graphs
....: H = R([x+j*y for j in range(k)])
....: H.primitive_eulerian_polynomial()
z^2
z^2 + z
z^2 + 2*z
z^2 + 3*z

We verify Equation (4) in [BHS2023] on some examples:

sage: # needs sage.graphs
sage: R.<x> = ZZ[]
sage: Arr = [hyperplane_arrangements.braid(n) for n in range(2,6)]

(continues on next page)
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sage: all(R(A.cocharacteristic_polynomial()(1/(x-1)) * (x-1)^A.dimension())
....: == R(A.primitive_eulerian_polynomial()) for A in Arr)
True

We compute types 𝐻3 and 𝐹4 in Table 1 of [BHS2023]:

sage: # needs sage.libs.gap
sage: W = CoxeterGroup([ H ,3], implementation="matrix")
sage: A = HyperplaneArrangements(W.base_ring(), tuple(f x{s} for s in␣
→˓range(W.rank())))
sage: H = A([[0] + list(r) for r in W.positive_roots()])
sage: H.is_simplicial() #␣
→˓needs sage.graphs
True
sage: H.primitive_eulerian_polynomial()
z^3 + 28*z^2 + 16*z

sage: W = CoxeterGroup([ F ,4], implementation="permutation")
sage: A = HyperplaneArrangements(QQ, tuple(f x{s} for s in range(W.rank())))
sage: H = A([[0] + list(r) for r in W.positive_roots()])
sage: H.primitive_eulerian_polynomial() # long time #␣
→˓needs sage.graphs
z^4 + 116*z^3 + 220*z^2 + 48*z

We verify Proposition 2.5 in [BHS2023] on the braid arrangement 𝐵𝑘 for 𝑘 = 2, 3, 4, 5:

sage: B = [hyperplane_arrangements.braid(k) for k in range(2,6)]
sage: all(H.is_simplicial() for H in B)
True
sage: all(c > 0 for H in B #␣
→˓needs sage.graphs
....: for c in H.primitive_eulerian_polynomial().coefficients())
True

We verify Example 9.4 in [BHS2023] showing a hyperplane arrangement whose primitive Eulerian poly-
nomial does not have real roots (in general, the graphical arrangement of a cycle graph corresponds to the
arrangements in Example 9.4):

sage: # needs sage.graphs
sage: H = hyperplane_arrangements.graphical(graphs.CycleGraph(5))
sage: pep = H.primitive_eulerian_polynomial(); pep
z^4 + 6*z^3 - 4*z^2 + z
sage: pep.roots(QQbar)
[(-6.626418492719221?, 1),
(0, 1),
(0.3132092463596102? - 0.2298065541510677?*I, 1),
(0.3132092463596102? + 0.2298065541510677?*I, 1)]

sage: pep.roots(AA)
[(-6.626418492719221?, 1), (0, 1)]

rank()

Return the rank.

OUTPUT:

The dimension of the span of the normals to the hyperplanes in the arrangement.

EXAMPLES:
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sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([[0, 1, 2, 3],[-3, 4, 5, 6]])
sage: A.dimension()
3
sage: A.rank()
2

sage: # needs sage.graphs
sage: B = hyperplane_arrangements.braid(3)
sage: B.hyperplanes()
(Hyperplane 0*t0 + t1 - t2 + 0,
Hyperplane t0 - t1 + 0*t2 + 0,
Hyperplane t0 + 0*t1 - t2 + 0)

sage: B.dimension()
3
sage: B.rank()
2

sage: p = polytopes.simplex(5, project=True)
sage: H = p.hyperplane_arrangement()
sage: H.rank()
5

region_containing_point(p)
The region in the hyperplane arrangement containing a given point.

The base field must have characteristic zero.

INPUT:

• p – point

OUTPUT:

A polyhedron. A ValueError is raised if the point is not interior to a region, that is, sits on a hyperplane.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([(1,0), 0], [(0,1), 1], [(0,1), -1], [(1,-1), 0], [(1,1), 0])
sage: A.region_containing_point([1,2])
A 2-dimensional polyhedron in QQ^2 defined
as the convex hull of 2 vertices and 2 rays

regions()

Return the regions of the hyperplane arrangement.

The base field must have characteristic zero.

OUTPUT:

A tuple containing the regions as polyhedra.

The regions are the connected components of the complement of the union of the hyperplanes as a subset of
R𝑛.

EXAMPLES:

sage: a = hyperplane_arrangements.braid(2) #␣
→˓needs sage.graphs

(continues on next page)
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sage: a.regions() #␣
→˓needs sage.graphs
(A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex, 1 ray, 1 line)

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H(x, y+1)
sage: A.regions()
(A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays)

sage: chessboard = []
sage: N = 8
sage: for x0 in range(N + 1):
....: for y0 in range(N + 1):
....: chessboard.extend([x-x0, y-y0])
sage: chessboard = H(chessboard)
sage: len(chessboard.bounded_regions()) # long time, 359 ms on a Core i7
64

Example 6 of [KP2020]:

sage: from itertools import product
sage: def zero_one(d):
....: for x in product([0,1], repeat=d):
....: if any(x):
....: yield [0] + list(x)

sage: K.<x,y> = HyperplaneArrangements(QQ)
sage: A = K(*zero_one(2))
sage: len(A.regions())
6
sage: K.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = K(*zero_one(3))
sage: len(A.regions())
32
sage: K.<x,y,z,w> = HyperplaneArrangements(QQ)
sage: A = K(*zero_one(4))
sage: len(A.regions())
370
sage: K.<x,y,z,w,r> = HyperplaneArrangements(QQ)
sage: A = K(*zero_one(5))
sage: len(A.regions()) # not tested (~25s)
11292

It is possible to specify the backend:

sage: # needs sage.rings.number_field
sage: K.<q> = CyclotomicField(9)

(continues on next page)
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sage: L.<r9> = NumberField((q + q**(-1)).minpoly(),
....: embedding=AA(q + q**-1))
sage: norms = [[1, 1/3*(-2*r9**2-r9+1), 0],
....: [1, -r9**2 - r9, 0],
....: [1, -r9**2 + 1, 0],
....: [1, -r9**2, 0],
....: [1, r9**2 - 4, -r9**2+3]]
sage: H.<x,y,z> = HyperplaneArrangements(L)
sage: A = H(backend= normaliz )
sage: for v in norms:
....: a,b,c = v
....: A = A.add_hyperplane(a*x + b*y + c*z)
sage: R = A.regions() # optional -␣
→˓pynormaliz
sage: R[0].backend() # optional -␣
→˓pynormaliz
normaliz

restriction(hyperplane, repetitions=False)
Return the restriction to a hyperplane.

INPUT:

• hyperplane – a hyperplane of the hyperplane arrangement

• repetitions – boolean (default: False); eliminate repetitions for ordered arrangements

OUTPUT:

The restriction 𝒜𝐻 of the hyperplane arrangement 𝒜 to the given hyperplane 𝐻 .

EXAMPLES:

sage: # needs sage.graphs
sage: A.<u,x,y,z> = hyperplane_arrangements.braid(4); A
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: H = A[0]; H
Hyperplane 0*u + 0*x + y - z + 0
sage: R = A.restriction(H); R
Arrangement <x - z | u - x | u - z>
sage: A.add_hyperplane(z).restriction(z)
Arrangement of 6 hyperplanes of dimension 3 and rank 3
sage: A.add_hyperplane(u).restriction(u)
Arrangement of 6 hyperplanes of dimension 3 and rank 3
sage: D = A.deletion(H); D
Arrangement of 5 hyperplanes of dimension 4 and rank 3
sage: ca = A.characteristic_polynomial()
sage: cr = R.characteristic_polynomial()
sage: cd = D.characteristic_polynomial()
sage: ca
x^4 - 6*x^3 + 11*x^2 - 6*x
sage: cd - cr
x^4 - 6*x^3 + 11*x^2 - 6*x

See also:

deletion()

sign_vector(p)
Indicates on which side of each hyperplane the given point 𝑝 lies.
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The base field must have characteristic zero.

INPUT:

• p – point as a list/tuple/iterable

OUTPUT:

A vector whose entries are in [−1, 0,+1].

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([(1,0), 0], [(0,1), 1]); A
Arrangement <y + 1 | x>
sage: A.sign_vector([2, -2])
(-1, 1)
sage: A.sign_vector((-1, -1))
(0, -1)

unbounded_regions()

Return the relatively bounded regions of the arrangement.

OUTPUT:

Tuple of polyhedra. The regions of the arrangement that are not relatively bounded. It is assumed that the
arrangement is defined over the rationals.

See also:

bounded_regions()

EXAMPLES:

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.semiorder(3)
sage: B = A.essentialization()
sage: B.n_regions() - B.n_bounded_regions()
12
sage: B.unbounded_regions()
(A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined

(continues on next page)
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as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined

as the convex hull of 1 vertex and 2 rays)

union(other)
The union of self with other.

INPUT:

• other – a hyperplane arrangement or something that can be converted into a hyperplane arrangement

OUTPUT:

A new hyperplane arrangement.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,2,3], [0,1,1], [0,1,-1], [1,-1,0], [1,1,0])
sage: B = H([1,1,1], [1,-1,1], [1,0,-1])
sage: C = A.union(B); C
Arrangement of 8 hyperplanes of dimension 2 and rank 2
sage: C == A | B # syntactic sugar
True

A single hyperplane is coerced into a hyperplane arrangement if necessary:

sage: A.union(x+y-1)
Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: A.add_hyperplane(x+y-1) # alias
Arrangement of 6 hyperplanes of dimension 2 and rank 2

sage: P.<x,y> = HyperplaneArrangements(RR)
sage: C = P(2*x + 4*y + 5)
sage: C.union(A)
Arrangement of 6 hyperplanes of dimension 2 and rank 2

varchenko_matrix(names='h')
Return the Varchenko matrix of the arrangement.

Let 𝐻1, . . . , 𝐻𝑠 and 𝑅1, . . . , 𝑅𝑡 denote the hyperplanes and regions, respectively, of the arrangement. Let
𝑆 = [ℎ1, . . . , ℎ𝑠], a polynomial ringwith indeterminateℎ𝑖 corresponding to hyperplane𝐻𝑖. TheVarchenko
matrix is the 𝑡× 𝑡 matrix with 𝑖, 𝑗-th entry the product of those ℎ𝑘 such that 𝐻𝑘 separates 𝑅𝑖 and 𝑅𝑗 .

INPUT:

• names – string or list/tuple/iterable of strings. The variable names for the polynomial ring 𝑆.

OUTPUT:

The Varchenko matrix.

EXAMPLES:

sage: a = hyperplane_arrangements.coordinate(3)
sage: v = a.varchenko_matrix(); v
[ 1 h2 h1 h1*h2 h0*h1*h2 h0*h1 h0*h2 h0]
[ h2 1 h1*h2 h1 h0*h1 h0*h1*h2 h0 h0*h2]
[ h1 h1*h2 1 h2 h0*h2 h0 h0*h1*h2 h0*h1]
[ h1*h2 h1 h2 1 h0 h0*h2 h0*h1 h0*h1*h2]

(continues on next page)
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[h0*h1*h2 h0*h1 h0*h2 h0 1 h2 h1 h1*h2]
[ h0*h1 h0*h1*h2 h0 h0*h2 h2 1 h1*h2 h1]
[ h0*h2 h0 h0*h1*h2 h0*h1 h1 h1*h2 1 h2]
[ h0 h0*h2 h0*h1 h0*h1*h2 h1*h2 h1 h2 1]
sage: factor(det(v))
(h2 - 1)^4 * (h2 + 1)^4 * (h1 - 1)^4 * (h1 + 1)^4 * (h0 - 1)^4 * (h0 + 1)^4

vertices(exclude_sandwiched=False)

Return the vertices.

The vertices are the zero-dimensional faces, see face_vector().

INPUT:

• exclude_sandwiched – boolean (default: False). Whether to exclude hyperplanes that are sand-
wiched between parallel hyperplanes. Useful if you only need the convex hull.

OUTPUT:

The vertices in a sorted tuple. Each vertex is returned as a vector in the ambient vector space.

EXAMPLES:

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.Shi(3).essentialization()
sage: A.dimension()
2
sage: A.face_vector()
(6, 21, 16)
sage: A.vertices()
((-2/3, 1/3), (-1/3, -1/3), (0, -1), (0, 0), (1/3, -2/3), (2/3, -1/3))
sage: point2d(A.vertices(), size=20) + A.plot() #␣
→˓needs sage.plot
Graphics object consisting of 7 graphics primitives

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: chessboard = []
sage: N = 8
sage: for x0 in range(N + 1):
....: for y0 in range(N + 1):
....: chessboard.extend([x-x0, y-y0])
sage: chessboard = H(chessboard)
sage: len(chessboard.vertices())
81
sage: chessboard.vertices(exclude_sandwiched=True)
((0, 0), (0, 8), (8, 0), (8, 8))

whitney_data()

Return the Whitney numbers.

See also:

whitney_number(), doubly_indexed_whitney_number()

OUTPUT:

A pair of integer matrices. The two matrices are the doubly-indexed Whitney numbers of the first or second
kind, respectively. The 𝑖, 𝑗-th entry is the 𝑖, 𝑗-th doubly-indexed Whitney number.

EXAMPLES:
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sage: # needs sage.combinat
sage: A = hyperplane_arrangements.Shi(3)
sage: A.whitney_data()
(
[ 1 -6 9] [ 1 6 6]
[ 0 6 -15] [ 0 6 15]
[ 0 0 6], [ 0 0 6]
)

whitney_number(k, kind=1)
Return the k-th Whitney number.

If kind=1, this number is obtained by summing the Möbius function values 𝑚𝑢(0, 𝑥) over all 𝑥 in the
intersection poset with rank(𝑥) = 𝑘.

If kind=2, this number is the number of elements 𝑥, 𝑦 in the intersection poset such that 𝑥 ≤ 𝑦 with ranks
𝑖 and 𝑗, respectively.

See [GZ1983] for more details.

INPUT:

• k – integer

• kind – 1 or 2 (default: 1)

OUTPUT:

Integer. The k-th Whitney number.

See also:

doubly_indexed_whitney_number() whitney_data()

EXAMPLES:

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.Shi(3)
sage: A.whitney_number(0)
1
sage: A.whitney_number(1)
-6
sage: A.whitney_number(2)
9
sage: A.characteristic_polynomial()
x^3 - 6*x^2 + 9*x
sage: A.whitney_number(1, kind=2)
6
sage: p = A.intersection_poset()
sage: r = p.rank_function()
sage: len([i for i in p if r(i) == 1])
6

class sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangements(base_ring,
names=())

Bases: Parent, UniqueRepresentation

Hyperplane arrangements.

For more information on hyperplane arrangements, see sage.geometry.hyperplane_arrangement.
arrangement.
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INPUT:

• base_ring – ring; the base ring

• names – tuple of strings; the variable names

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: x
Hyperplane x + 0*y + 0
sage: x + y
Hyperplane x + y + 0
sage: H(x, y, x-1, y-1)
Arrangement <y - 1 | y | x - 1 | x>

Element

alias of HyperplaneArrangementElement

ambient_space()

Return the ambient space.

The ambient space is the parent of hyperplanes. That is, new hyperplanes are always constructed internally
from the ambient space instance.

EXAMPLES:

sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: L.ambient_space()([(1,0), 0])
Hyperplane x + 0*y + 0
sage: L.ambient_space()([(1,0), 0]) == x
True

base_ring()

Return the base ring.

OUTPUT:

The base ring of the hyperplane arrangement.

EXAMPLES:

sage: L.<x,y> = HyperplaneArrangements(QQ)
sage: L.base_ring()
Rational Field

change_ring(base_ring)

Return hyperplane arrangements over a different base ring.

INPUT:

• base_ring – a ring; the new base ring.

OUTPUT:

A new HyperplaneArrangements instance over the new base ring.

EXAMPLES:
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sage: L.<x,y> = HyperplaneArrangements(QQ)
sage: L.gen(0)
Hyperplane x + 0*y + 0
sage: L.change_ring(RR).gen(0)
Hyperplane 1.00000000000000*x + 0.000000000000000*y + 0.000000000000000

gen(i)

Return the 𝑖-th coordinate hyperplane.

INPUT:

• i – integer

OUTPUT:

A linear expression.

EXAMPLES:

sage: L.<x, y, z> = HyperplaneArrangements(QQ); L
Hyperplane arrangements in
3-dimensional linear space over Rational Field with coordinates x, y, z

sage: L.gen(0)
Hyperplane x + 0*y + 0*z + 0

gens()

Return the coordinate hyperplanes.

OUTPUT:

A tuple of linear expressions, one for each linear variable.

EXAMPLES:

sage: L = HyperplaneArrangements(QQ, ( x , y , z ))
sage: L.gens()
(Hyperplane x + 0*y + 0*z + 0,
Hyperplane 0*x + y + 0*z + 0,
Hyperplane 0*x + 0*y + z + 0)

ngens()

Return the number of linear variables.

OUTPUT:

An integer.

EXAMPLES:

sage: L.<x, y, z> = HyperplaneArrangements(QQ); L
Hyperplane arrangements in 3-dimensional linear space
over Rational Field with coordinates x, y, z

sage: L.ngens()
3
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1.2 Ordered Hyperplane Arrangements

The HyperplaneArrangements orders the hyperplanes in a arrangement independently of the way the hyperplanes
are introduced. The class OrderedHyperplaneArrangements fixes an order specified by the user. This can
be needed for certain properties, e.g., fundamental group with information about meridians, braid monodromy with
information about the strands; in the future, it may be useful for combinatorial properties. There are no other differences
with usual hyperplane arrangements.

An ordered arrangement is an arrangement where the hyperplanes are sorted by the user:

sage: H0.<t0, t1, t2> = HyperplaneArrangements(QQ)
sage: H0(t0 - t1, t1 - t2, t0 - t2)
Arrangement <t1 - t2 | t0 - t1 | t0 - t2>
sage: H.<t0, t1, t2> = OrderedHyperplaneArrangements(QQ)
sage: H(t0 - t1, t1 - t2, t0 - t2)
Arrangement <t0 - t1 | t1 - t2 | t0 - t2>

Some methods are adapted, e.g., hyperplanes(), and some new ones are created, regarding hyperplane sections and
fundamental groups:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: H1.<x,y> = OrderedHyperplaneArrangements(QQ)
sage: A1 = H1(x, y); A = H(A1)
sage: A.hyperplanes()
(Hyperplane 0*x + y + 0, Hyperplane x + 0*y + 0)
sage: A1.hyperplanes()
(Hyperplane x + 0*y + 0, Hyperplane 0*x + y + 0)

We see the differences in union():

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: H1.<x,y> = OrderedHyperplaneArrangements(QQ)
sage: A = H([1,2,3], [0,1,1], [0,1,-1], [1,-1,0], [1,1,0])
sage: B = H([1,1,1], [1,-1,1], [1,0,-1])
sage: C = A.union(B)
sage: A1 = H1(A); B1 = H1(B); C1 = A1.union(B1)
sage: [C1.hyperplanes().index(h) for h in C.hyperplanes()]
[0, 5, 6, 1, 2, 3, 7, 4]

Also inmeth: 𝑠𝑎𝑔𝑒.𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦.ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡.𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡.𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑒:

sage: # needs sage.combinat
sage: a.<x,y,z> = hyperplane_arrangements.semiorder(3)
sage: H.<x,y,z> = OrderedHyperplaneArrangements(QQ)
sage: a1 = H(a)
sage: b = a.cone(); b1 = a1.cone()
sage: [b1.hyperplanes().index(h) for h in b.hyperplanes()]
[0, 2, 4, 6, 1, 3, 5]

And in restriction():

sage: # needs sage.graphs
sage: A.<u, x, y, z> = hyperplane_arrangements.braid(4)
sage: L.<u, x, y, z> = OrderedHyperplaneArrangements(QQ)
sage: A1 = L(A)
sage: H = A[0]; H
Hyperplane 0*u + 0*x + y - z + 0

(continues on next page)
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sage: A.restriction(H)
Arrangement <x - z | u - x | u - z>
sage: A1.restriction(H)
Arrangement <x - z | u - x | u - z>
sage: A1.restriction(H, repetitions=True)
Arrangement of 5 hyperplanes of dimension 3 and rank 2

AUTHORS:

• Enrique Artal (2023-12): initial version

This module adds some features to the unordered one for some properties which depend on the order.

class sage.geometry.hyperplane_arrangement.ordered_arrangement.OrderedHyperplaneArrangementElement(par-
ent,
hy-
per-
planes,
check=True,
back-
end=None)

Bases: HyperplaneArrangementElement

An ordered hyperplane arrangement.

Warning: You should never create OrderedHyperplaneArrangementElement instances directly,
always use the parent.

affine_fundamental_group()

Return the fundamental group of the complement of an affine hyperplane arrangement inC𝑛 whose equations
have coefficients in a subfield of .

OUTPUT:

A finitely presented fundamental group.

Note: This functionality requires the sirocco package to be installed.

EXAMPLES:

sage: # needs sirocco
sage: A.<x, y> = OrderedHyperplaneArrangements(QQ)
sage: L = [y + x, y + x - 1]
sage: H = A(L)
sage: H.affine_fundamental_group()
Finitely presented group < x0, x1 | >
sage: L = [x, y, x + 1, y + 1, x - y]
sage: A(L).affine_fundamental_group()
Finitely presented group
< x0, x1, x2, x3, x4 | x4*x0*x4^-1*x0^-1,

x0*x2*x3*x2^-1*x0^-1*x3^-1,
x1*x2*x4*x2^-1*x1^-1*x4^-1,
x2*x3*x0*x2^-1*x0^-1*x3^-1,
x2*x4*x1*x2^-1*x1^-1*x4^-1,

(continues on next page)
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x4*x1*x4^-1*x3^-1*x2^-1*x1^-1*x2*x3 >
sage: H = A(x, y, x + y)
sage: H.affine_fundamental_group()
Finitely presented group
< x0, x1, x2 | x0*x1*x2*x1^-1*x0^-1*x2^-1, x1*x2*x0*x1^-1*x0^-1*x2^-1 >
sage: H.affine_fundamental_group() # repeat to use the attribute
Finitely presented group
< x0, x1, x2 | x0*x1*x2*x1^-1*x0^-1*x2^-1, x1*x2*x0*x1^-1*x0^-1*x2^-1 >
sage: T.<t> = QQ[]
sage: K.<a> = NumberField(t^3 + t + 1)
sage: L.<x, y> = OrderedHyperplaneArrangements(K)
sage: H = L(a*x + y -1, x + a*y + 1, x - 1, y - 1)
sage: H.affine_fundamental_group()
Traceback (most recent call last):
...
TypeError: the base field is not in QQbar
sage: L.<t> = OrderedHyperplaneArrangements(QQ)
sage: L([t - j for j in range(4)]).affine_fundamental_group()
Finitely presented group < x0, x1, x2, x3 | >
sage: L.<x, y, z> = OrderedHyperplaneArrangements(QQ)
sage: L(L.gens() + (x + y + z + 1,)).affine_fundamental_group().sorted_
→˓presentation()
Finitely presented group
< x0, x1, x2, x3 | x3^-1*x2^-1*x3*x2, x3^-1*x1^-1*x3*x1,

x3^-1*x0^-1*x3*x0, x2^-1*x1^-1*x2*x1,
x2^-1*x0^-1*x2*x0, x1^-1*x0^-1*x1*x0 >

sage: A = OrderedHyperplaneArrangements(QQ, names=())
sage: H = A(); H
Empty hyperplane arrangement of dimension 0
sage: H.affine_fundamental_group()
Finitely presented group < | >

affine_meridians()

Return the meridians of each hyperplane (including the one at infinity).

OUTPUT:

A dictionary

Note: This functionality requires the sirocco package to be installed.

EXAMPLES:

sage: # needs sirocco
sage: A.<x, y> = OrderedHyperplaneArrangements(QQ)
sage: L = [y + x, y + x - 1]
sage: H = A(L)
sage: g = H.affine_fundamental_group()
sage: g
Finitely presented group < x0, x1 | >
sage: H.affine_meridians()
{0: [x0], 1: [x1], 2: [x1^-1*x0^-1]}
sage: H1 = H.add_hyperplane(y - x)
sage: H1.affine_meridians()
{0: [x0], 1: [x1], 2: [x2], 3: [x2^-1*x1^-1*x0^-1]}
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hyperplane_section(proj=True)
Compute a generic hyperplane section of self.

INPUT:

• proj – (default: True); if the ambient space is affine or projective

OUTPUT:

An arrangement 𝒜 obtained by intersecting with a generic hyperplane

EXAMPLES:

sage: L.<x, y, z> = OrderedHyperplaneArrangements(QQ)
sage: L(x, y - 1, z).hyperplane_section()
Traceback (most recent call last):
...
TypeError: the arrangement is not projective

sage: # needs sage.graphs
sage: A0.<u,x,y,z> = hyperplane_arrangements.braid(4); A0
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: L.<u,x,y,z> = OrderedHyperplaneArrangements(QQ)
sage: A = L(A0)
sage: M = A.matroid()
sage: A1 = A.hyperplane_section()
sage: A1
Arrangement of 6 hyperplanes of dimension 3 and rank 3
sage: M1 = A1.matroid()
sage: A2 = A1.hyperplane_section(); A2
Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: M2 = A2.matroid()
sage: T1 = M1.truncation()
sage: T1.is_isomorphic(M2)
True
sage: T1.isomorphism(M2)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5}

sage: # needs sage.combinat
sage: a0 = hyperplane_arrangements.semiorder(3); a0
Arrangement of 6 hyperplanes of dimension 3 and rank 2
sage: L.<t0, t1, t2> = OrderedHyperplaneArrangements(QQ)
sage: a = L(a0)
sage: ca = a.cone()
sage: m = ca.matroid()
sage: a1 = a.hyperplane_section(proj=False)
sage: a1
Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: ca1 = a1.cone()
sage: m1 = ca1.matroid()
sage: m.isomorphism(m1)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}
sage: p0 = hyperplane_arrangements.Shi(4)
sage: L.<t0, t1, t2, t3> = OrderedHyperplaneArrangements(QQ)
sage: p = L(p0)
sage: a = p.hyperplane_section(proj=False); a
Arrangement of 12 hyperplanes of dimension 3 and rank 3
sage: ca = a.cone()
sage: m = ca.matroid().truncation()
sage: a1 = a.hyperplane_section(proj=False); a1

(continues on next page)
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Arrangement of 12 hyperplanes of dimension 2 and rank 2
sage: ca1 = a1.cone()
sage: m1 = ca1.matroid()
sage: m1.is_isomorphism(m, {j: j for j in range(13)})
True

projective_fundamental_group()

Return the fundamental group of the complement of a projective hyperplane arrangement.

OUTPUT:

The finitely presented group of the complement in the projective space whose equations have coefficients in
a subfield of .

Note: This functionality requires the sirocco package to be installed.

EXAMPLES:

sage: # needs sirocco
sage: A.<x, y> = OrderedHyperplaneArrangements(QQ)
sage: H = A(x, y, x + y)
sage: H.projective_fundamental_group()
Finitely presented group < x0, x1 | >

sage: # needs sirocco sage.graphs
sage: A3.<x, y, z> = OrderedHyperplaneArrangements(QQ)
sage: H = A3(hyperplane_arrangements.braid(4).essentialization())
sage: G3 = H.projective_fundamental_group(); G3.sorted_presentation()
Finitely presented group
< x0, x1, x2, x3, x4 | x4^-1*x3^-1*x2^-1*x3*x4*x0*x2*x0^-1,

x4^-1*x2^-1*x4*x2, x4^-1*x1^-1*x0^-1*x1*x4*x0,
x4^-1*x1^-1*x0^-1*x4*x0*x1,
x4^-1*x1^-1*x3*x0*x1*x3^-1*x2^-1*x4*x0^-1*x2,
x3^-1*x2^-1*x1^-1*x0^-1*x3*x0*x1*x2,
x3^-1*x1^-1*x3*x1 >

sage: G3.abelian_invariants()
(0, 0, 0, 0, 0)
sage: A4.<t1, t2, t3, t4> = OrderedHyperplaneArrangements(QQ)
sage: H = A4(hyperplane_arrangements.braid(4))
sage: G4 = H.projective_fundamental_group(); G4.sorted_presentation()
Finitely presented group
< x0, x1, x2, x3, x4 | x4^-1*x3^-1*x2^-1*x3*x4*x0*x2*x0^-1,

x4^-1*x2^-1*x4*x2, x4^-1*x1^-1*x0^-1*x1*x4*x0,
x4^-1*x1^-1*x0^-1*x4*x0*x1,
x4^-1*x1^-1*x3*x0*x1*x3^-1*x2^-1*x4*x0^-1*x2,
x3^-1*x2^-1*x1^-1*x0^-1*x3*x0*x1*x2,
x3^-1*x1^-1*x3*x1 >

sage: G4.abelian_invariants()
(0, 0, 0, 0, 0)

sage: # needs sirocco
sage: L.<t0, t1, t2, t3, t4> = OrderedHyperplaneArrangements(QQ)
sage: H = hyperplane_arrangements.coordinate(5)
sage: H = L(H)
sage: g = H.projective_fundamental_group()
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sage: g.is_abelian(), g.abelian_invariants()
(True, (0, 0, 0, 0))
sage: L(t0, t1, t2, t3, t4, t0 - 1).projective_fundamental_group()
Traceback (most recent call last):
...
TypeError: the arrangement is not projective
sage: T.<t> = QQ[]
sage: K.<a> = NumberField(t^3 + t + 1)
sage: L.<x, y, z> = OrderedHyperplaneArrangements(K)
sage: H = L(a*x + y - z, x + a*y + z, x - z, y - z)
sage: H.projective_fundamental_group()
Traceback (most recent call last):
...
TypeError: the base field is not in QQbar
sage: A.<x> = OrderedHyperplaneArrangements(QQ)
sage: H = A(); H
Empty hyperplane arrangement of dimension 1
sage: H.projective_fundamental_group()
Finitely presented group < | >

projective_meridians()

Return the meridian of each hyperplane.

OUTPUT:

A dictionary

Note: This functionality requires the sirocco package to be installed.

EXAMPLES:

sage: # needs sirocco
sage: A.<x, y> = OrderedHyperplaneArrangements(QQ)
sage: H = A(x, y, x + y)
sage: H.projective_meridians()
{0: x0, 1: x1, 2: [x1^-1*x0^-1]}

sage: # needs sirocco sage.graphs
sage: A3.<x, y, z> = OrderedHyperplaneArrangements(QQ)
sage: H = A3(hyperplane_arrangements.braid(4).essentialization())
sage: H.projective_meridians()
{0: [x2^-1*x0^-1*x4^-1*x3^-1*x1^-1],
1: [x3], 2: [x4], 3: [x1], 4: [x2], 5: [x0]}

sage: A4.<t1, t2, t3, t4> = OrderedHyperplaneArrangements(QQ)
sage: H = A4(hyperplane_arrangements.braid(4))
sage: H.projective_meridians()
{0: [x2^-1*x0^-1*x4^-1*x3^-1*x1^-1], 1: [x3],
2: [x4], 3: [x0], 4: [x2], 5: [x1]}

sage: # needs sirocco
sage: L.<t0, t1, t2, t3, t4> = OrderedHyperplaneArrangements(QQ)
sage: H = hyperplane_arrangements.coordinate(5)
sage: H = L(H)
sage: H.projective_meridians()
{0: [x2], 1: [x3], 2: [x0], 3: [x3^-1*x2^-1*x1^-1*x0^-1], 4: [x1]}
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class sage.geometry.hyperplane_arrangement.ordered_arrangement.OrderedHyperplaneArrangements(base_ring,
names=())

Bases: HyperplaneArrangements

Ordered Hyperplane arrangements.

For more information on hyperplane arrangements, see sage.geometry.hyperplane_arrangement.
arrangement.

INPUT:

• base_ring – ring; the base ring

• names – tuple of strings; the variable names

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: x
Hyperplane x + 0*y + 0
sage: x + y
Hyperplane x + y + 0
sage: H(x, y, x-1, y-1)
Arrangement <y - 1 | y | x - 1 | x>

Element

alias of OrderedHyperplaneArrangementElement

1.3 Library of Hyperplane Arrangements

A collection of useful or interesting hyperplane arrangements. See sage.geometry.
hyperplane_arrangement.arrangement for details about how to construct your own hyperplane ar-
rangements.

class
sage.geometry.hyperplane_arrangement.library.HyperplaneArrangementLibrary

Bases: object

The library of hyperplane arrangements.

Catalan(n, K=Rational Field, names=None)
Return the Catalan arrangement.

INPUT:

• n – integer

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The arrangement of 3𝑛(𝑛− 1)/2 hyperplanes {𝑥𝑖 − 𝑥𝑗 = −1, 0, 1 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}.

EXAMPLES:

sage: hyperplane_arrangements.Catalan(5)
Arrangement of 30 hyperplanes of dimension 5 and rank 4
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Coxeter(data, K=Rational Field, names=None)
Return the Coxeter arrangement.

This generalizes the braid arrangements to crystallographic root systems.

INPUT:

• data – either an integer or a Cartan type (or coercible into; see “CartanType”)

• K – field (default:QQ)

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

• Ifdata is an integer𝑛, return the braid arrangement in dimension𝑛, i.e. the set of𝑛(𝑛−1) hyperplanes:
{𝑥𝑖 − 𝑥𝑗 = 0, 1 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}. This corresponds to the Coxeter arrangement of Cartan type 𝐴𝑛−1.

• If data is a Cartan type, return the Coxeter arrangement of given type.

The Coxeter arrangement of a given crystallographic Cartan type is defined by the inner products ⟨𝑎, 𝑥⟩ = 0
where 𝑎 ∈ Φ+ runs over positive roots of the root system Φ.

EXAMPLES:

sage: # needs sage.combinat
sage: hyperplane_arrangements.Coxeter(4)
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Coxeter("B4")
Arrangement of 16 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Coxeter("A3")
Arrangement of 6 hyperplanes of dimension 4 and rank 3

If the Cartan type is not crystallographic, the Coxeter arrangement is not implemented yet:

sage: hyperplane_arrangements.Coxeter("H3") #␣
→˓needs sage.libs.gap
Traceback (most recent call last):
...
NotImplementedError: Coxeter arrangements are not implemented
for non crystallographic Cartan types

The characteristic polynomial is pre-computed using the results of Terao, see [Ath2000]:

sage: # needs sage.combinat
sage: hyperplane_arrangements.Coxeter("A3").characteristic_polynomial()
x^3 - 6*x^2 + 11*x - 6

G_Shi(G, K=Rational Field, names=None)
Return the Shi hyperplane arrangement of a graph 𝐺.

INPUT:

• G – graph

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The Shi hyperplane arrangement of the given graph G.

EXAMPLES:
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sage: # needs sage.graphs
sage: G = graphs.CompleteGraph(5)
sage: hyperplane_arrangements.G_Shi(G)
Arrangement of 20 hyperplanes of dimension 5 and rank 4
sage: g = graphs.HouseGraph()
sage: hyperplane_arrangements.G_Shi(g)
Arrangement of 12 hyperplanes of dimension 5 and rank 4
sage: a = hyperplane_arrangements.G_Shi(graphs.WheelGraph(4)); a
Arrangement of 12 hyperplanes of dimension 4 and rank 3

G_semiorder(G, K=Rational Field, names=None)
Return the semiorder hyperplane arrangement of a graph.

INPUT:

• G – graph

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The semiorder hyperplane arrangement of a graph G is the arrangement {𝑥𝑖 − 𝑥𝑗 = −1, 1} where 𝑖𝑗 is an
edge of G.

EXAMPLES:

sage: # needs sage.graphs
sage: G = graphs.CompleteGraph(5)
sage: hyperplane_arrangements.G_semiorder(G)
Arrangement of 20 hyperplanes of dimension 5 and rank 4
sage: g = graphs.HouseGraph()
sage: hyperplane_arrangements.G_semiorder(g)
Arrangement of 12 hyperplanes of dimension 5 and rank 4

Ish(n, K=Rational Field, names=None)
Return the Ish arrangement.

INPUT:

• n – integer

• K – field (default:QQ)

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The Ish arrangement, which is the set of 𝑛(𝑛− 1) hyperplanes.

{𝑥𝑖 − 𝑥𝑗 = 0 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} ∪ {𝑥1 − 𝑥𝑗 = 𝑖 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}.

EXAMPLES:

sage: # needs sage.combinat
sage: a = hyperplane_arrangements.Ish(3); a
Arrangement of 6 hyperplanes of dimension 3 and rank 2
sage: a.characteristic_polynomial()
x^3 - 6*x^2 + 9*x
sage: b = hyperplane_arrangements.Shi(3)

(continues on next page)
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sage: b.characteristic_polynomial()
x^3 - 6*x^2 + 9*x

REFERENCES:

• [AR2012]

IshB(n, K=Rational Field, names=None)
Return the type B Ish arrangement.

INPUT:

• n – integer

• K – field (default:QQ)

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The type 𝐵 Ish arrangement, which is the set of 2𝑛2 hyperplanes

{𝑥𝑖 ± 𝑥𝑗 = 0 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} ∪ {𝑥𝑖 = 𝑎 : 1 ≤ 𝑖 ≤ 𝑛, 𝑖− 𝑛 ≤ 𝑎 ≤ 𝑛− 𝑖+ 1}.

EXAMPLES:

sage: a = hyperplane_arrangements.IshB(2)
sage: a
Arrangement of 8 hyperplanes of dimension 2 and rank 2
sage: a.hyperplanes()
(Hyperplane 0*t0 + t1 - 1,
Hyperplane 0*t0 + t1 + 0,
Hyperplane t0 - t1 + 0,
Hyperplane t0 + 0*t1 - 2,
Hyperplane t0 + 0*t1 - 1,
Hyperplane t0 + 0*t1 + 0,
Hyperplane t0 + 0*t1 + 1,
Hyperplane t0 + t1 + 0)

sage: a.cone().is_free() #␣
→˓needs sage.libs.singular
True

sage: a = hyperplane_arrangements.IshB(3); a
Arrangement of 18 hyperplanes of dimension 3 and rank 3
sage: a.characteristic_polynomial()
x^3 - 18*x^2 + 108*x - 216
sage: b = hyperplane_arrangements.Shi([ B , 3])
sage: b.characteristic_polynomial()
x^3 - 18*x^2 + 108*x - 216

REFERENCES:

• [TT2023]

Shi(data, K=Rational Field, names=None, m=1)
Return the Shi arrangement.

INPUT:

• data – either an integer or a Cartan type (or coercible into; see “CartanType”)
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• K – field (default:QQ)

• names – tuple of strings or None (default); the variable names for the ambient space

• m – integer (default: 1)

OUTPUT:

• If data is an integer 𝑛, return the Shi arrangement in dimension 𝑛, i.e. the set of 𝑛(𝑛−1) hyperplanes:
{𝑥𝑖 − 𝑥𝑗 = 0, 1 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}. This corresponds to the Shi arrangement of Cartan type 𝐴𝑛−1.

• If data is a Cartan type, return the Shi arrangement of given type.

• If𝑚 > 1, return the𝑚-extended Shi arrangement of given type.

The 𝑚-extended Shi arrangement of a given crystallographic Cartan type is defined by the inner product
⟨𝑎, 𝑥⟩ = 𝑘 for −𝑚 < 𝑘 ≤ 𝑚 and 𝑎 ∈ Φ+ is a positive root of the root system Φ.

EXAMPLES:

sage: # needs sage.combinat
sage: hyperplane_arrangements.Shi(4)
Arrangement of 12 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Shi("A3")
Arrangement of 12 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Shi("A3", m=2)
Arrangement of 24 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Shi("B4")
Arrangement of 32 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Shi("B4", m=3)
Arrangement of 96 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Shi("C3")
Arrangement of 18 hyperplanes of dimension 3 and rank 3

(continues on next page)
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sage: hyperplane_arrangements.Shi("D4", m=3)
Arrangement of 72 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Shi("E6")
Arrangement of 72 hyperplanes of dimension 8 and rank 6
sage: hyperplane_arrangements.Shi("E6", m=2)
Arrangement of 144 hyperplanes of dimension 8 and rank 6

If the Cartan type is not crystallographic, the Shi arrangement is not defined:

sage: hyperplane_arrangements.Shi("H4")
Traceback (most recent call last):
...
NotImplementedError: Shi arrangements are not defined for non␣
→˓crystallographic Cartan types

The characteristic polynomial is pre-computed using the results of [Ath1996]:

sage: # needs sage.combinat
sage: hyperplane_arrangements.Shi("A3").characteristic_polynomial()
x^4 - 12*x^3 + 48*x^2 - 64*x
sage: hyperplane_arrangements.Shi("A3", m=2).characteristic_polynomial()
x^4 - 24*x^3 + 192*x^2 - 512*x
sage: hyperplane_arrangements.Shi("C3").characteristic_polynomial()
x^3 - 18*x^2 + 108*x - 216
sage: hyperplane_arrangements.Shi("E6").characteristic_polynomial()
x^8 - 72*x^7 + 2160*x^6 - 34560*x^5 + 311040*x^4 - 1492992*x^3 + 2985984*x^2
sage: hyperplane_arrangements.Shi("B4", m=3).characteristic_polynomial()
x^4 - 96*x^3 + 3456*x^2 - 55296*x + 331776

bigraphical(G, A=None, K=Rational Field, names=None)
Return a bigraphical hyperplane arrangement.

INPUT:

• G – graph

• A – list, matrix, dictionary (default: None gives semiorder), or the string ‘generic’

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The hyperplane arrangement with hyperplanes 𝑥𝑖 − 𝑥𝑗 = 𝐴[𝑖, 𝑗] and 𝑥𝑗 − 𝑥𝑖 = 𝐴[𝑗, 𝑖] for each edge 𝑣𝑖, 𝑣𝑗
of G. The indices 𝑖, 𝑗 are the indices of elements of G.vertices().

EXAMPLES:

sage: # needs sage.graphs
sage: G = graphs.CycleGraph(4)
sage: G.edges(sort=True)
[(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 3), (1, 2), (2, 3)]
sage: A = {0:{1:1, 3:2}, 1:{0:3, 2:0}, 2:{1:2, 3:1}, 3:{2:0, 0:2}}
sage: HA = hyperplane_arrangements.bigraphical(G, A)
sage: HA.n_regions()
63

(continues on next page)
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sage: hyperplane_arrangements.bigraphical(G, generic ).n_regions()
65
sage: hyperplane_arrangements.bigraphical(G).n_regions()
59

REFERENCES:

• [HP2016]

braid(n, K=Rational Field, names=None)
The braid arrangement.

INPUT:

• n – integer

• K – field (default: QQ)

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The hyperplane arrangement consisting of the 𝑛(𝑛− 1)/2 hyperplanes {𝑥𝑖 − 𝑥𝑗 = 0 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}.

EXAMPLES:

sage: hyperplane_arrangements.braid(4) #␣
→˓needs sage.graphs
Arrangement of 6 hyperplanes of dimension 4 and rank 3

coordinate(n, K=Rational Field, names=None)
Return the coordinate hyperplane arrangement.

INPUT:

• n – integer

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The coordinate hyperplane arrangement, which is the central hyperplane arrangement consisting of the coor-
dinate hyperplanes 𝑥𝑖 = 0.

EXAMPLES:

sage: hyperplane_arrangements.coordinate(5)
Arrangement of 5 hyperplanes of dimension 5 and rank 5

graphical(G, K=Rational Field, names=None)
Return the graphical hyperplane arrangement of a graph G.

INPUT:

• G – graph

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space
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OUTPUT:

The graphical hyperplane arrangement of a graph G, which is the arrangement {𝑥𝑖 − 𝑥𝑗 = 0} for all edges
𝑖𝑗 of the graph G.

EXAMPLES:

sage: # needs sage.graphs
sage: G = graphs.CompleteGraph(5)
sage: hyperplane_arrangements.graphical(G)
Arrangement of 10 hyperplanes of dimension 5 and rank 4
sage: g = graphs.HouseGraph()
sage: hyperplane_arrangements.graphical(g)
Arrangement of 6 hyperplanes of dimension 5 and rank 4

linial(n, K=Rational Field, names=None)
Return the linial hyperplane arrangement.

INPUT:

• n – integer

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The linial hyperplane arrangement is the set of hyperplanes {𝑥𝑖 − 𝑥𝑗 = 1 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

EXAMPLES:

sage: a = hyperplane_arrangements.linial(4); a
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: a.characteristic_polynomial()
x^4 - 6*x^3 + 15*x^2 - 14*x

semiorder(n, K=Rational Field, names=None)
Return the semiorder arrangement.

INPUT:

• n – integer

• K – field (default: )

• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:

The semiorder arrangement, which is the set of 𝑛(𝑛− 1) hyperplanes {𝑥𝑖 − 𝑥𝑗 = −1, 1 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}.

EXAMPLES:

sage: hyperplane_arrangements.semiorder(4)
Arrangement of 12 hyperplanes of dimension 4 and rank 3

sage.geometry.hyperplane_arrangement.library.make_parent(base_ring, dimension,
names=None)

Construct the parent for the hyperplane arrangements.

For internal use only.

INPUT:
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• base_ring – a ring

• dimension – integer

• names – None (default) or a list/tuple/iterable of strings

OUTPUT:

A new HyperplaneArrangements instance.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.library import make_parent
sage: make_parent(QQ, 3)
Hyperplane arrangements in 3-dimensional linear space over
Rational Field with coordinates t0, t1, t2

1.4 Hyperplanes

Note: If you want to learn about Sage’s hyperplane arrangements then you should start with sage.geometry.
hyperplane_arrangement.arrangement. This module is used to represent the individual hyperplanes, but
you should never construct the classes from this module directly (but only via the HyperplaneArrangements.

A linear expression, for example, 3𝑥 + 3𝑦 − 5𝑧 − 7 stands for the hyperplane with the equation 𝑥 + 3𝑦 − 5𝑧 = 7. To
create it in Sage, you first have to create a HyperplaneArrangements object to define the variables 𝑥, 𝑦, 𝑧:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: h.coefficients()
[-7, 3, 2, -5]
sage: h.normal()
(3, 2, -5)
sage: h.constant_term()
-7
sage: h.change_ring(GF(3))
Hyperplane 0*x + 2*y + z + 2
sage: h.point()
(21/38, 7/19, -35/38)
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 3/5]
[ 0 1 2/5]

Another syntax to create hyperplanes is to specify coefficients and a constant term:

sage: V = H.ambient_space(); V
3-dimensional linear space over Rational Field with coordinates x, y, z
sage: h in V
True
sage: V([3, 2, -5], -7)
Hyperplane 3*x + 2*y - 5*z - 7

Or constant term and coefficients together in one list/tuple/iterable:
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sage: V([-7, 3, 2, -5])
Hyperplane 3*x + 2*y - 5*z - 7
sage: v = vector([-7, 3, 2, -5]); v
(-7, 3, 2, -5)
sage: V(v)
Hyperplane 3*x + 2*y - 5*z - 7

Note that the constant term comes first, which matches the notation for Sage’s Polyhedron()

sage: Polyhedron(ieqs=[(4,1,2,3)]).Hrepresentation()
(An inequality (1, 2, 3) x + 4 >= 0,)

The difference between hyperplanes as implemented in this module and hyperplane arrangements is that:

• hyperplane arrangements contain multiple hyperplanes (of course),

• linear expressions are a module over the base ring, and these module structure is inherited by the hyperplanes.

The latter means that you can add and multiply by a scalar:

sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: -h
Hyperplane -3*x - 2*y + 5*z + 7
sage: h + x
Hyperplane 4*x + 2*y - 5*z - 7
sage: h + 7
Hyperplane 3*x + 2*y - 5*z + 0
sage: 3*h
Hyperplane 9*x + 6*y - 15*z - 21
sage: h * RDF(3)
Hyperplane 9.0*x + 6.0*y - 15.0*z - 21.0

Which you can’t do with hyperplane arrangements:

sage: arrangement = H(h, x, y, x+y-1); arrangement
Arrangement <y | x | x + y - 1 | 3*x + 2*y - 5*z - 7>
sage: arrangement + x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
Hyperplane arrangements in 3-dimensional linear space

over Rational Field with coordinates x, y, z and
Hyperplane arrangements in 3-dimensional linear space

over Rational Field with coordinates x, y, z

class sage.geometry.hyperplane_arrangement.hyperplane.AmbientVectorSpace(base_ring,
names=())

Bases: LinearExpressionModule

The ambient space for hyperplanes.

This class is the parent for the Hyperplane instances.

Element

alias of Hyperplane

change_ring(base_ring)
Return a ambient vector space with a changed base ring.
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INPUT:

• base_ring – a ring; the new base ring

OUTPUT:

A new AmbientVectorSpace.

EXAMPLES:

sage: M.<y> = HyperplaneArrangements(QQ)
sage: V = M.ambient_space()
sage: V.change_ring(RR)
1-dimensional linear space over Real Field with 53 bits of precision with␣
→˓coordinate y

dimension()

Return the ambient space dimension.

OUTPUT:

An integer.

EXAMPLES:

sage: M.<x,y> = HyperplaneArrangements(QQ)
sage: x.parent().dimension()
2
sage: x.parent() is M.ambient_space()
True
sage: x.dimension()
1

symmetric_space()

Construct the symmetric space of self.

Consider a hyperplane arrangement 𝐴 in the vector space 𝑉 = 𝑘𝑛, for some field 𝑘. The symmetric space is
the symmetric algebra 𝑆(𝑉 *) as the polynomial ring 𝑘[𝑥1, 𝑥2, . . . , 𝑥𝑛] where (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a basis for
𝑉 .

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H.ambient_space()
sage: A.symmetric_space()
Multivariate Polynomial Ring in x, y, z over Rational Field

class sage.geometry.hyperplane_arrangement.hyperplane.Hyperplane(parent, coefficients,
constant)

Bases: LinearExpression

A hyperplane.

You should always use AmbientVectorSpace to construct instances of this class.

INPUT:

• parent – the parent AmbientVectorSpace

• coefficients – a vector of coefficients of the linear variables

• constant – the constant term for the linear expression
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EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: x+y-1
Hyperplane x + y - 1

sage: ambient = H.ambient_space()
sage: ambient._element_constructor_(x+y-1)
Hyperplane x + y - 1

For technical reasons, we must allow the degenerate cases of an empty space and of a full space:

sage: 0*x
Hyperplane 0*x + 0*y + 0
sage: 0*x + 1
Hyperplane 0*x + 0*y + 1
sage: x + 0 == x + ambient(0) # because coercion requires them
True

dimension()

The dimension of the hyperplane.

OUTPUT:

An integer.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + y + z - 1
sage: h.dimension()
2

intersection(other)
The intersection of self with other.

INPUT:

• other – a hyperplane, a polyhedron, or something that defines a polyhedron

OUTPUT:

A polyhedron.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + y + z - 1
sage: h.intersection(x - y)
A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and␣
→˓1 line
sage: h.intersection(polytopes.cube())
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices

linear_part()

The linear part of the affine space.

OUTPUT:

Vector subspace of the ambient vector space, parallel to the hyperplane.

EXAMPLES:
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sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 1
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1/3]
[ 0 1 -2/3]

linear_part_projection(point)
Orthogonal projection onto the linear part.

INPUT:

• point – vector of the ambient space, or anything that can be converted into one; not necessarily on the
hyperplane

OUTPUT:

Coordinate vector of the projection of point with respect to the basis of linear_part(). In particular,
the length of this vector is one less than the ambient space dimension.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1/3]
[ 0 1 -2/3]
sage: p1 = h.linear_part_projection(0); p1
(0, 0)
sage: p2 = h.linear_part_projection([3,4,5]); p2
(8/7, 2/7)
sage: h.linear_part().basis()
[
(1, 0, -1/3),
(0, 1, -2/3)
]
sage: p3 = h.linear_part_projection([1,1,1]); p3
(4/7, 1/7)

normal()

Return the normal vector.

OUTPUT:

A vector over the base ring.

EXAMPLES:

sage: H.<x, y, z> = HyperplaneArrangements(QQ)
sage: x.normal()
(1, 0, 0)
sage: x.A(), x.b()
((1, 0, 0), 0)
sage: (x + 2*y + 3*z + 4).normal()
(1, 2, 3)
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orthogonal_projection(point)
Return the orthogonal projection of a point.

INPUT:

• point – vector of the ambient space, or anything that can be converted into one; not necessarily on the
hyperplane

OUTPUT:

A vector in the ambient vector space that lies on the hyperplane.

In finite characteristic, a ValueError is raised if the the norm of the hyperplane normal is zero.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: p1 = h.orthogonal_projection(0); p1
(2/7, 4/7, 6/7)
sage: p1 in h
True
sage: p2 = h.orthogonal_projection([3,4,5]); p2
(10/7, 6/7, 2/7)
sage: p1 in h
True
sage: p3 = h.orthogonal_projection([1,1,1]); p3
(6/7, 5/7, 4/7)
sage: p3 in h
True

plot(**kwds)
Plot the hyperplane.

OUTPUT:

A graphics object.

EXAMPLES:

sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: (x + y - 2).plot() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

point()

Return the point closest to the origin.

OUTPUT:

A vector of the ambient vector space. The closest point to the origin in the 𝐿2-norm.

In finite characteristic a random point will be returned if the norm of the hyperplane normal vector is zero.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: h.point()
(2/7, 4/7, 6/7)
sage: h.point() in h

(continues on next page)
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True

sage: # needs sage.rings.finite_rings
sage: H.<x,y,z> = HyperplaneArrangements(GF(3))
sage: h = 2*x + y + z + 1
sage: h.point()
(1, 0, 0)
sage: h.point().base_ring()
Finite Field of size 3

sage: H.<x,y,z> = HyperplaneArrangements(GF(3))
sage: h = x + y + z + 1
sage: h.point()
(2, 0, 0)

polyhedron(**kwds)

Return the hyperplane as a polyhedron.

OUTPUT:

A Polyhedron() instance.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: P = h.polyhedron(); P
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and␣
→˓2 lines
sage: P.Hrepresentation()
(An equation (1, 2, 3) x - 4 == 0,)
sage: P.Vrepresentation()
(A line in the direction (0, 3, -2),
A line in the direction (3, 0, -1),
A vertex at (0, 0, 4/3))

primitive(signed=True)
Return hyperplane defined by primitive equation.

INPUT:

• signed – boolean (default: True); whether to preserve the overall sign

OUTPUT:

Hyperplane whose linear expression has common factors and denominators cleared. That is, the same hy-
perplane (with the same sign) but defined by a rescaled equation. Note that different linear expressions must
define different hyperplanes as comparison is used in caching.

If signed, the overall rescaling is by a positive constant only.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: h = -1/3*x + 1/2*y - 1; h
Hyperplane -1/3*x + 1/2*y - 1
sage: h.primitive()
Hyperplane -2*x + 3*y - 6
sage: h == h.primitive()

(continues on next page)
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False
sage: (4*x + 8).primitive()
Hyperplane x + 0*y + 2

sage: (4*x - y - 8).primitive(signed=True) # default
Hyperplane 4*x - y - 8
sage: (4*x - y - 8).primitive(signed=False)
Hyperplane -4*x + y + 8

to_symmetric_space()

Return self considered as an element in the corresponding symmetric space.

EXAMPLES:

sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: h = -1/3*x + 1/2*y
sage: h.to_symmetric_space()
-1/3*x + 1/2*y

sage: hp = -1/3*x + 1/2*y - 1
sage: hp.to_symmetric_space()
Traceback (most recent call last):
...
ValueError: the hyperplane must pass through the origin

1.5 Affine Subspaces of a Vector Space

An affine subspace of a vector space is a translation of a linear subspace. The affine subspaces here are only used internally
in hyperplane arrangements. You should not use them for interactive work or return them to the user.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: a = AffineSubspace([1,0,0,0], QQ^4)
sage: a.dimension()
4
sage: a.point()
(1, 0, 0, 0)
sage: a.linear_part()
Vector space of dimension 4 over Rational Field
sage: a
Affine space p + W where:

p = (1, 0, 0, 0)
W = Vector space of dimension 4 over Rational Field

sage: b = AffineSubspace((1,0,0,0), matrix(QQ, [[1,2,3,4]]).right_kernel())
sage: c = AffineSubspace((0,2,0,0), matrix(QQ, [[0,0,1,2]]).right_kernel())
sage: b.intersection(c)
Affine space p + W where:

p = (-3, 2, 0, 0)
W = Vector space of degree 4 and dimension 2 over Rational Field

Basis matrix:
[ 1 0 -1 1/2]
[ 0 1 -2 1]
sage: b < a

(continues on next page)
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True
sage: c < b
False
sage: A = AffineSubspace([8,38,21,250], VectorSpace(GF(19),4))
sage: A
Affine space p + W where:

p = (8, 0, 2, 3)
W = Vector space of dimension 4 over Finite Field of size 19

class sage.geometry.hyperplane_arrangement.affine_subspace.AffineSubspace(p, V)
Bases: SageObject

An affine subspace.

INPUT:

• p – list/tuple/iterable representing a point on the affine space

• V – vector subspace

OUTPUT:

Affine subspace parallel to V and passing through p.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.affine_subspace import␣
→˓AffineSubspace
sage: a = AffineSubspace([1,0,0,0], VectorSpace(QQ,4))
sage: a
Affine space p + W where:
p = (1, 0, 0, 0)
W = Vector space of dimension 4 over Rational Field

dimension()

Return the dimension of the affine space.

OUTPUT:

An integer.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.affine_subspace import␣
→˓AffineSubspace
sage: a = AffineSubspace([1,0,0,0],VectorSpace(QQ,4))
sage: a.dimension()
4

intersection(other)
Return the intersection of self with other.

INPUT:

• other – an AffineSubspace

OUTPUT:

A new affine subspace, (or None if the intersection is empty).

EXAMPLES:
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sage: from sage.geometry.hyperplane_arrangement.affine_subspace import␣
→˓AffineSubspace
sage: V = VectorSpace(QQ,3)
sage: U = V.subspace([(1,0,0), (0,1,0)])
sage: W = V.subspace([(0,1,0), (0,0,1)])
sage: A = AffineSubspace((0,0,0), U)
sage: B = AffineSubspace((1,1,1), W)
sage: A.intersection(B)
Affine space p + W where:

p = (1, 1, 0)
W = Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:
[0 1 0]
sage: C = AffineSubspace((0,0,1), U)
sage: A.intersection(C)
sage: C = AffineSubspace((7,8,9), U.complement())
sage: A.intersection(C)
Affine space p + W where:

p = (7, 8, 0)
W = Vector space of degree 3 and dimension 0 over Rational Field

Basis matrix:
[]
sage: A.intersection(C).intersection(B)

sage: D = AffineSubspace([1,2,3], VectorSpace(GF(5),3))
sage: E = AffineSubspace([3,4,5], VectorSpace(GF(5),3))
sage: D.intersection(E)
Affine space p + W where:

p = (3, 4, 0)
W = Vector space of dimension 3 over Finite Field of size 5

linear_part()

Return the linear part of the affine space.

OUTPUT:

A vector subspace of the ambient space.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.affine_subspace import␣
→˓AffineSubspace
sage: A = AffineSubspace([2,3,1], matrix(QQ, [[1,2,3]]).right_kernel())
sage: A.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1/3]
[ 0 1 -2/3]
sage: A.linear_part().ambient_vector_space()
Vector space of dimension 3 over Rational Field

point()

Return a point p in the affine space.

OUTPUT:

A point of the affine space as a vector in the ambient space.

EXAMPLES:
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sage: from sage.geometry.hyperplane_arrangement.affine_subspace import␣
→˓AffineSubspace
sage: A = AffineSubspace([2,3,1], VectorSpace(QQ,3))
sage: A.point()
(2, 3, 1)

1.6 Plotting of Hyperplane Arrangements

PLOT OPTIONS:

Beside the usual plot options (enter plot?), the plot command for hyperplane arrangements includes the following:

• hyperplane_colors – Color or list of colors, one for each hyperplane (default: equally spread range of hues).

• hyperplane_labels – Boolean, short , long (default: False). If False, no labels are shown; if
‘short’ or ‘long’, the hyperplanes are given short or long labels, respectively. If True, the hyperplanes are given
long labels.

• label_colors – Color or list of colors, one for each hyperplane (default: black).

• label_fontsize – Size for hyperplane_label font (default: 14). This does not work for 3d plots.

• label_offsets – Amount be which labels are offset from h.point() for each hyperplane h. The format is
different for each dimension: if the hyperplanes have dimension 0, the offset can be a single number or a list of
numbers, one for each hyperplane; if the hyperplanes have dimension 1, the offset can be a single 2-tuple, or a list
of 2-tuples, one for each hyperplane; if the hyperplanes have dimension 2, the offset can be a single 3-tuple or a
list of 3-tuples, one for each hyperplane. (Defaults: 0-dim: 0.1, 1-dim: (0,1), 2-dim: (0,0,0.2)).

• hyperplane_legend – Boolean, short , long (default: long ; in 3-d: False). If False, no
legend is shown; if True, short , or long , the legend is shown with the default, long, or short labeling,
respectively. (For arrangements of lines or planes, only.)

• hyperplane_opacities – A number or list of numbers, one for each hyperplane, between 0 and 1. Only
applies to 3d plots.

• point_sizes – Number or list of numbers, one for each hyperplane giving the sizes of points in a
zero-dimensional arrangement (default: 50).

• ranges – Range for the parameters or a list of ranges of parameters, one for each hyperplane, for the parametric
plots of the hyperplanes. If a single positive number 𝑟 is given for ranges, then all parameters run from -r to r.
Otherwise, for a line in the plane, the range has the form [a,b] (default: [-3,3]), and for a plane in 3-space,
the range has the form [[a,b],[c,d]] (default: [[-3,3],[-3,3]]). The ranges are centered around
hyperplane_arrangement.point().

EXAMPLES:

sage: H3.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H3([(1,0,0), 0], [(0,0,1), 5])
sage: A.plot(hyperplane_opacities=0.5, hyperplane_labels=True, #␣
→˓needs sage.plot
....: hyperplane_legend=False)
Graphics3d Object

sage: c = H3([(1,0,0),0], [(0,0,1),5])
sage: c.plot(ranges=10) #␣
→˓needs sage.plot
Graphics3d Object
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sage: c.plot(ranges=[[9.5,10], [-3,3]]) #␣
→˓needs sage.plot
Graphics3d Object
sage: c.plot(ranges=[[[9.5,10], [-3,3]], [[-6,6], [-5,5]]]) #␣
→˓needs sage.plot
Graphics3d Object

sage: H2.<s,t> = HyperplaneArrangements(QQ)
sage: h = H2([(1,1),0], [(1,-1),0], [(0,1),2])
sage: h.plot(ranges=20) #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives
sage: h.plot(ranges=[-1, 10]) #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives
sage: h.plot(ranges=[[-1, 1], [-5, 5], [-1, 10]]) #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives

sage: a = hyperplane_arrangements.coordinate(3)
sage: opts = { hyperplane_colors :[ yellow , green , blue ]}
sage: opts[ hyperplane_labels ] = True
sage: opts[ label_offsets ] = [(0,2,2), (2,0,2), (2,2,0)]
sage: opts[ hyperplane_legend ] = False
sage: opts[ hyperplane_opacities ] = 0.7
sage: a.plot(**opts) #␣
→˓needs sage.plot
Graphics3d Object
sage: opts[ hyperplane_labels ] = short
sage: a.plot(**opts) #␣
→˓needs sage.plot
Graphics3d Object

sage: H.<u> = HyperplaneArrangements(QQ)
sage: pts = H(3*u+4, 2*u+5, 7*u+1)
sage: pts.plot(hyperplane_colors=[ yellow , black , blue ]) #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives
sage: pts.plot(point_sizes=[50,100,200], hyperplane_colors= blue ) #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: a = H(x, y+1, y+2)
sage: a.plot(hyperplane_labels=True, label_colors= blue , label_fontsize=18) #␣
→˓needs sage.plot
Graphics3d Object
sage: a.plot(hyperplane_labels=True, label_colors=[ red , green , black ]) #␣
→˓needs sage.plot
Graphics3d Object

sage.geometry.hyperplane_arrangement.plot.legend_3d(hyperplane_arrangement,
hyperplane_colors, length)

Create plot of a 3d legend for an arrangement of planes in 3-space.

The length parameter determines whether short or long labels are used in the legend.
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INPUT:

• hyperplane_arrangement – a hyperplane arrangement

• hyperplane_colors – list of colors

• length – either short or long

OUTPUT:

• A graphics object.

EXAMPLES:

sage: a = hyperplane_arrangements.semiorder(3)
sage: from sage.geometry.hyperplane_arrangement.plot import legend_3d
sage: legend_3d(a, list(colors.values())[:6], length= long ) #␣
→˓needs sage.combinat sage.plot
Graphics object consisting of 6 graphics primitives

sage: b = hyperplane_arrangements.semiorder(4)
sage: c = b.essentialization()
sage: legend_3d(c, list(colors.values())[:12], length= long ) #␣
→˓needs sage.combinat sage.plot
Graphics object consisting of 12 graphics primitives

sage: legend_3d(c, list(colors.values())[:12], length= short ) #␣
→˓needs sage.combinat sage.plot
Graphics object consisting of 12 graphics primitives

sage: p = legend_3d(c, list(colors.values())[:12], length= short ) #␣
→˓needs sage.combinat sage.plot
sage: p.set_legend_options(ncol=4) #␣
→˓needs sage.combinat sage.plot
sage: type(p) #␣
→˓needs sage.combinat sage.plot
<class sage.plot.graphics.Graphics >

sage.geometry.hyperplane_arrangement.plot.plot(hyperplane_arrangement, **kwds)
Return a plot of the hyperplane arrangement.

If the arrangement is in 4 dimensions but inessential, a plot of the essentialization is returned.

Note: This function is available as the plot() method of hyperplane arrangements. You should not call this
function directly, only through the method.

INPUT:

• hyperplane_arrangement – the hyperplane arrangement to plot

• **kwds – plot options: see sage.geometry.hyperplane_arrangement.plot.

OUTPUT:

A graphics object of the plot.

EXAMPLES:

sage: B = hyperplane_arrangements.semiorder(4)
sage: B.plot() #␣

(continues on next page)
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→˓needs sage.combinat sage.plot
Displaying the essentialization.
Graphics3d Object

sage.geometry.hyperplane_arrangement.plot.plot_hyperplane(hyperplane, **kwds)
Return the plot of a single hyperplane.

INPUT:

• **kwds – plot options: see below

OUTPUT:

A graphics object of the plot.

Plot Options

Beside the usual plot options (enter plot?), the plot command for hyperplanes includes the following:

• hyperplane_label – Boolean value or string (default: True). If True, the hyperplane is labeled with
its equation, if a string, it is labeled by that string, otherwise it is not labeled.

• label_color – (Default: black ) Color for hyperplane_label.

• label_fontsize – Size for hyperplane_label font (default: 14) (does not work in 3d, yet).

• label_offset – (Default: 0-dim: 0.1, 1-dim: (0,1), 2-dim: (0,0,0.2)) Amount by which label is offset
from hyperplane.point().

• point_size – (Default: 50) Size of points in a zero-dimensional arrangement or of an arrangement over
a finite field.

• ranges – Range for the parameters for the parametric plot of the hyperplane. If a single positive number r
is given for the value of ranges, then the ranges for all parameters are set to [−𝑟, 𝑟]. Otherwise, for a line
in the plane, ranges has the form [a, b] (default: [-3,3]), and for a plane in 3-space, the ranges has
the form [[a, b], [c, d]] (default: [[-3,3],[-3,3]]). (The ranges are centered around hyperplane.
point().)

EXAMPLES:

sage: H1.<x> = HyperplaneArrangements(QQ)
sage: a = 3*x + 4
sage: a.plot() # indirect doctest #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives
sage: a.plot(point_size=100, hyperplane_label= hello ) #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives

sage: H2.<x,y> = HyperplaneArrangements(QQ)
sage: b = 3*x + 4*y + 5
sage: b.plot() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives
sage: b.plot(ranges=(1,5), label_offset=(2,-1)) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives
sage: opts = { hyperplane_label : True, label_color : green ,

(continues on next page)
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....: label_fontsize : 24, label_offset : (0,1.5)}
sage: b.plot(**opts) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

sage: # needs sage.plot
sage: H3.<x,y,z> = HyperplaneArrangements(QQ)
sage: c = 2*x + 3*y + 4*z + 5
sage: c.plot()
Graphics3d Object
sage: c.plot(label_offset=(1,0,1), color= green , label_color= red ,
....: frame=False)
Graphics3d Object
sage: d = -3*x + 2*y + 2*z + 3
sage: d.plot(opacity=0.8)
Graphics3d Object
sage: e = 4*x + 2*z + 3
sage: e.plot(ranges=[[-1,1],[0,8]], label_offset=(2,2,1), aspect_ratio=1)
Graphics3d Object
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CHAPTER

TWO

POLYHEDRAL COMPUTATIONS

2.1 Polyhedra

2.1.1 Library of commonly used, famous, or interesting polytopes

This module gathers several constructors of polytopes that can be reached through polytopes.<tab>. For example,
here is the hypercube in dimension 5:

sage: polytopes.hypercube(5)
A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 32 vertices

The following constructions are available

Birkhoff_polytope()
associahedron()
bitruncated_six_hundred_cell()
buckyball()
cantellated_one_hundred_twenty_cell()
cantellated_six_hundred_cell()
cantitruncated_one_hundred_twenty_cell()
cantitruncated_six_hundred_cell()
cross_polytope()
cube()
cuboctahedron()
cyclic_polytope()
dodecahedron()
flow_polytope()
Gosset_3_21()
grand_antiprism()
great_rhombicuboctahedron()
hypercube()
hypersimplex()
icosahedron()
icosidodecahedron()
Kirkman_icosahedron()
octahedron()
omnitruncated_one_hundred_twenty_cell()
omnitruncated_six_hundred_cell()
one_hundred_twenty_cell()
parallelotope()

continues on next page
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Table 1 – continued from previous page
pentakis_dodecahedron()
permutahedron()
generalized_permutahedron()
rectified_one_hundred_twenty_cell()
rectified_six_hundred_cell()
regular_polygon()
rhombic_dodecahedron()
rhombicosidodecahedron()
runcinated_one_hundred_twenty_cell()
runcitruncated_one_hundred_twenty_cell()
runcitruncated_six_hundred_cell()
simplex()
six_hundred_cell()
small_rhombicuboctahedron()
snub_cube()
snub_dodecahedron()
tetrahedron()
truncated_cube()
truncated_dodecahedron()
truncated_icosidodecahedron()
truncated_tetrahedron()
truncated_octahedron()
truncated_one_hundred_twenty_cell()
truncated_six_hundred_cell()
twenty_four_cell()

class sage.geometry.polyhedron.library.Polytopes

Bases: object

A class of constructors for commonly used, famous, or interesting polytopes.

Birkhoff_polytope(n, backend=None)
Return the Birkhoff polytope with 𝑛! vertices.

The vertices of this polyhedron are the (flattened) 𝑛 by 𝑛 permutation matrices. So the ambient vector space
has dimension 𝑛2 but the dimension of the polyhedron is (𝑛− 1)2.

INPUT:

• n – a positive integer giving the size of the permutation matrices.

• backend – the backend to use to create the polytope.

See also:

sage.matrix.matrix2.Matrix.as_sum_of_permutations() – return the current matrix as
a sum of permutation matrices

EXAMPLES:

sage: b3 = polytopes.Birkhoff_polytope(3)
sage: b3.f_vector()
(1, 6, 15, 18, 9, 1)
sage: b3.ambient_dim(), b3.dim()
(9, 4)
sage: b3.is_lattice_polytope()

(continues on next page)
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(continued from previous page)

True
sage: p3 = b3.ehrhart_polynomial() # optional - latte_int
sage: p3 # optional - latte_int
1/8*t^4 + 3/4*t^3 + 15/8*t^2 + 9/4*t + 1
sage: [p3(i) for i in [1,2,3,4]] # optional - latte_int
[6, 21, 55, 120]
sage: [len((i*b3).integral_points()) for i in [1,2,3,4]]
[6, 21, 55, 120]

sage: b4 = polytopes.Birkhoff_polytope(4)
sage: b4.n_vertices(), b4.ambient_dim(), b4.dim()
(24, 16, 9)

Gosset_3_21(backend=None)
Return the Gosset 321 polytope.

The Gosset 321 polytope is a uniform 7-polytope. It has 56 vertices, and 702 facets: 126 311 and 576
6-simplex. For more information, see the Wikipedia article 3_21_polytope.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: g = polytopes.Gosset_3_21(); g
A 7-dimensional polyhedron in ZZ^8 defined as the convex hull of 56 vertices
sage: g.f_vector() # not tested (~16s)
(1, 56, 756, 4032, 10080, 12096, 6048, 702, 1)

Kirkman_icosahedron(backend=None)
Return the Kirkman icosahedron.

The Kirkman icosahedron is a 3-polytope with integer coordinates: (±9,±6,±6), (±12,±4, 0),
(0,±12,±8), (±6, 0,±12). See [Fe2012] for more information.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: ki = polytopes.Kirkman_icosahedron()
sage: ki.f_vector()
(1, 20, 38, 20, 1)

sage: ki.volume()
6528

sage: vertices = ki.vertices()
sage: edges = [[vector(edge[0]),vector(edge[1])] for edge in ki.bounded_
→˓edges()]
sage: edge_lengths = [norm(edge[0]-edge[1]) for edge in edges]
sage: sorted(set(edge_lengths))
[7, 8, 9, 11, 12, 14, 16]

bitruncated_six_hundred_cell(exact=True, backend=None)
Return the bitruncated 600-cell.
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The bitruncated 600-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 3600 vertices. For
more information see Wikipedia article Bitruncated 600-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.runcinated_six_hundred_cell(exact=True, # not␣
→˓tested - very long time
....: backend= normaliz )
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 3600 vertices

buckyball(exact=True, base_ring=None, backend=None)
Return the bucky ball.

The bucky ball, also known as the truncated icosahedron is an Archimedean solid. It has 32 faces and 60
vertices.

See also:

icosahedron()

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: bb = polytopes.buckyball() # long time #␣
→˓needs sage.groups sage.rings.number_field
sage: bb.f_vector() # long time #␣
→˓needs sage.groups sage.rings.number_field
(1, 60, 90, 32, 1)
sage: bb.base_ring() # long time #␣
→˓needs sage.groups sage.rings.number_field
Number Field in sqrt5 with defining polynomial x^2 - 5
with sqrt5 = 2.236067977499790?

A much faster implementation using floating point approximations:

sage: bb = polytopes.buckyball(exact=False) #␣
→˓needs sage.groups
sage: bb.f_vector() #␣
→˓needs sage.groups
(1, 60, 90, 32, 1)

(continues on next page)
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(continued from previous page)

sage: bb.base_ring() #␣
→˓needs sage.groups
Real Double Field

Its facets are 5 regular pentagons and 6 regular hexagons:

sage: sum(1 for f in bb.facets() if len(f.vertices()) == 5) #␣
→˓needs sage.groups
12
sage: sum(1 for f in bb.facets() if len(f.vertices()) == 6) #␣
→˓needs sage.groups
20

cantellated_one_hundred_twenty_cell(exact=True, backend=None)
Return the cantellated 120-cell.

The cantellated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 3600 vertices. For
more information see Wikipedia article Cantellated 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.cantellated_one_hundred_twenty_cell(backend= normaliz ) #␣
→˓not tested - long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 3600 vertices

cantellated_six_hundred_cell(exact=False, backend=None)
Return the cantellated 600-cell.

The cantellated 600-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 3600 vertices. For
more information see Wikipedia article Cantellated 600-cell.

Warning: The coordinates are inexact by default. The computation with inexact coordinates (using the
backend cdd ) issues a UserWarning on inconsistencies.

INPUT:

• exact – (boolean, default False) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:
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sage: polytopes.cantellated_six_hundred_cell() # not tested - very long␣
→˓time
doctest:warning
...
UserWarning: This polyhedron data is numerically complicated; cdd
could not convert between the inexact V and H representation
without loss of data. The resulting object might show
inconsistencies.
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 3600␣
→˓vertices

It is possible to use the backend normaliz to get an exact representation:

sage: polytopes.cantellated_six_hundred_cell(exact=True, # not tested - long␣
→˓time
....: backend= normaliz )
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 3600 vertices

cantitruncated_one_hundred_twenty_cell(exact=True, backend=None)
Return the cantitruncated 120-cell.

The cantitruncated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 7200 vertices.
For more information see Wikipedia article Cantitruncated 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.cantitruncated_one_hundred_twenty_cell(exact=True, backend=
→˓ normaliz ) # not tested - very long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 7200 vertices

cantitruncated_six_hundred_cell(exact=True, backend=None)
Return the cantitruncated 600-cell.

The cantitruncated 600-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 7200 vertices.
For more information see Wikipedia article Cantitruncated 600-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.
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EXAMPLES:

sage: polytopes.cantitruncated_six_hundred_cell(exact=True, # not␣
→˓tested - very long time
....: backend= normaliz )
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 7200 vertices

cross_polytope(dim, backend=None)
Return a cross-polytope in dimension dim.

A cross-polytope is a higher dimensional generalization of the octahedron. It is the convex hull of the 2𝑑
points (±1, 0, . . . , 0), (0,±1, . . . , 0), ldots, (0, 0, . . . ,±1). See the Wikipedia article Cross-polytope for
more information.

INPUT:

• dim – integer. The dimension of the cross-polytope.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: four_cross = polytopes.cross_polytope(4)
sage: four_cross.f_vector()
(1, 8, 24, 32, 16, 1)
sage: four_cross.is_simple()
False

cube(intervals=None, backend=None)
Return the cube.

The cube is the Platonic solid that is obtained as the convex hull of the eight ±1 vectors of length 3 (by
default). Alternatively, the cube is the product of three intervals from intervals.

See also:

hypercube()

INPUT:

• intervals – list (default=None). It takes the following possible inputs:

– If the input is None (the default), returns the convex hull of the eight ±1 vectors of length three.

– zero_one – (string). Return the 0/1-cube.

– a list of 3 lists of length 2. The cube will be a product of these three intervals.

• backend – the backend to use to create the polytope.

OUTPUT:

A cube as a polyhedron object.

EXAMPLES:

Return the ±1-cube:

sage: c = polytopes.cube()
sage: c
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: c.f_vector()
(1, 8, 12, 6, 1)

(continues on next page)
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sage: c.volume()
8
sage: c.plot() #␣
→˓needs sage.plot
Graphics3d Object

Return the 0/1-cube:

sage: cc = polytopes.cube(intervals = zero_one )
sage: cc.vertices_list()
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1],
[1, 0, 1],
[0, 0, 1],
[0, 0, 0],
[0, 1, 0],
[0, 1, 1]]

cuboctahedron(backend=None)
Return the cuboctahedron.

The cuboctahedron is an Archimedean solid with 12 vertices and 14 faces dual to the rhombic dodecahedron.
It can be defined as the convex hull of the twelve vertices (0,±1,±1), (±1, 0,±1) and (±1,±1, 0). For
more information, see the Wikipedia article Cuboctahedron.

INPUT:

• backend – the backend to use to create the polytope.

See also:

rhombic_dodecahedron()

EXAMPLES:

sage: co = polytopes.cuboctahedron()
sage: co.f_vector()
(1, 12, 24, 14, 1)

Its facets are 8 triangles and 6 squares:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
8
sage: sum(1 for f in co.facets() if len(f.vertices()) == 4)
6

Some more computation:

sage: co.volume()
20/3
sage: co.ehrhart_polynomial() # optional - latte_int
20/3*t^3 + 8*t^2 + 10/3*t + 1

cyclic_polytope(dim, n, base_ring=Rational Field, backend=None)
Return a cyclic polytope.

A cyclic polytope of dimension dimwith n vertices is the convex hull of the points (t,t^2,...,t^dim)
with 𝑡 ∈ {0, 1, ..., 𝑛− 1} . For more information, see the Wikipedia article Cyclic_polytope.
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INPUT:

• dim – positive integer. the dimension of the polytope.

• n – positive integer. the number of vertices.

• base_ring – either QQ (default) or RDF.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: c = polytopes.cyclic_polytope(4,10)
sage: c.f_vector()
(1, 10, 45, 70, 35, 1)

dodecahedron(exact=True, base_ring=None, backend=None)
Return a dodecahedron.

The dodecahedron is the Platonic solid dual to the icosahedron().

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – (optional) the ring in which the coordinates will belong to. Note that this ring must
contain

√︀
(5). If it is not provided and exact=True it will be the number field [

√︀
(5)] and if

exact=False it will be the real double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: # needs sage.groups sage.rings.number_field
sage: d12 = polytopes.dodecahedron()
sage: d12.f_vector()
(1, 20, 30, 12, 1)
sage: d12.volume()
-176*sqrt5 + 400
sage: numerical_approx(_)
6.45203596003699

sage: d12 = polytopes.dodecahedron(exact=False) #␣
→˓needs sage.groups
sage: d12.base_ring() #␣
→˓needs sage.groups
Real Double Field

Here is an error with a field that does not contain
√︀
(5):

sage: polytopes.dodecahedron(base_ring=QQ) #␣
→˓needs sage.groups sage.symbolic
Traceback (most recent call last):
...
TypeError: unable to convert 1/4*sqrt(5) + 1/4 to a rational

static edge_polytope(backend=None)
Return the edge polytope of self.

The edge polytope (EP) of a Graph on 𝑛 vertices is the polytope in 𝑛 defined as the convex hull of 𝑒𝑖 + 𝑒𝑗
for each edge (𝑖, 𝑗). Here 𝑒1, . . . , 𝑒𝑛 denotes the standard basis.

INPUT:
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• backend – string or None (default); the backend to use; see sage.geometry.polyhedron.
constructor.Polyhedron()

EXAMPLES:

The EP of a 4-cycle is a square:

sage: G = graphs.CycleGraph(4)
sage: P = G.edge_polytope(); P #␣
→˓needs sage.geometry.polyhedron
A 2-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices

The EP of a complete graph on 4 vertices is cross polytope:

sage: G = graphs.CompleteGraph(4)
sage: P = G.edge_polytope(); P #␣
→˓needs sage.geometry.polyhedron
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 6 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cross_polytope(3)) #␣
→˓needs sage.geometry.polyhedron
True

The EP of a graph is isomorphic to the subdirect sum of its connected components EPs:

sage: n = randint(3, 6)
sage: G1 = graphs.RandomGNP(n, 0.2) #␣
→˓needs networkx
sage: n = randint(3, 6)
sage: G2 = graphs.RandomGNP(n, 0.2) #␣
→˓needs networkx
sage: G = G1.disjoint_union(G2) #␣
→˓needs networkx
sage: P = G.edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P1 = G1.edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P2 = G2.edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P.is_combinatorially_isomorphic(P1.subdirect_sum(P2)) #␣
→˓needs networkx sage.geometry.polyhedron
True

All trees on 𝑛 vertices have isomorphic EPs:

sage: n = randint(4, 10)
sage: G1 = graphs.RandomTree(n)
sage: G2 = graphs.RandomTree(n)
sage: P1 = G1.edge_polytope() #␣
→˓needs sage.geometry.polyhedron
sage: P2 = G2.edge_polytope() #␣
→˓needs sage.geometry.polyhedron
sage: P1.is_combinatorially_isomorphic(P2) #␣
→˓needs sage.geometry.polyhedron
True

However, there are still many different EPs:

sage: len(list(graphs(5)))
34

(continues on next page)
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sage: polys = []
sage: for G in graphs(5): #␣
→˓needs sage.geometry.polyhedron
....: P = G.edge_polytope()
....: for P1 in polys:
....: if P.is_combinatorially_isomorphic(P1):
....: break
....: else:
....: polys.append(P)
sage: len(polys) #␣
→˓needs sage.geometry.polyhedron
19

static flow_polytope(edges=None, ends=None, backend=None)
Return the flow polytope of a digraph.

The flow polytope of a directed graph is the polytope consisting of all nonnegative flows on the graph with a
given set 𝑆 of sources and a given set 𝑇 of sinks.

A flow on a directed graph 𝐺 with a given set 𝑆 of sources and a given set 𝑇 of sinks means an assignment
of a nonnegative real to each edge of 𝐺 such that the flow is conserved in each vertex outside of 𝑆 and 𝑇 ,
and there is a unit of flow entering each vertex in 𝑆 and a unit of flow leaving each vertex in 𝑇 . These flows
clearly form a polytope in the space of all assignments of reals to the edges of 𝐺.

The polytope is empty unless the sets 𝑆 and 𝑇 are equinumerous.

By default, 𝑆 is taken to be the set of all sources (i.e., vertices of indegree 0) of𝐺, and 𝑇 is taken to be the set
of all sinks (i.e., vertices of outdegree 0) of 𝐺. If a different choice of 𝑆 and 𝑇 is desired, it can be specified
using the optional ends parameter.

The polytope is returned as a polytope inR𝑚, where𝑚 is the number of edges of the digraph self. The 𝑘-th
coordinate of a point in the polytope is the real assigned to the 𝑘-th edge of self. The order of the edges is
the one returned by self.edges(sort=True). If a different order is desired, it can be specified using
the optional edges parameter.

The faces and volume of these polytopes are of interest. Examples of these polytopes are the
Chan-Robbins-Yuen polytope and the Pitman-Stanley polytope [PS2002].

INPUT:

• edges – list (default: None); a list of edges of self. If not specified, the list of all edges of self is
used with the default ordering of self.edges(sort=True). This determines which coordinate of
a point in the polytope will correspond to which edge of self. It is also possible to specify a list which
contains not all edges of self; this results in a polytope corresponding to the flows which are 0 on all
remaining edges. Notice that the edges entered here must be in the precisely same format as outputted
by self.edges(); so, if self.edges() outputs an edge in the form (1, 3, None), then (1,
3) will not do!

• ends – (default: (self.sources(), self.sinks())) a pair (𝑆, 𝑇 ) of an iterable 𝑆 and an
iterable 𝑇 .

• backend – string or None (default); the backend to use; see sage.geometry.polyhedron.
constructor.Polyhedron()

Note: Flow polytopes can also be built through the polytopes.<tab> object:
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sage: polytopes.flow_polytope(digraphs.Path(5)) #␣
→˓needs sage.geometry.polyhedron
A 0-dimensional polyhedron in QQ^4 defined as the convex hull of 1 vertex

EXAMPLES:

A commutative square:

sage: G = DiGraph({1: [2, 3], 2: [4], 3: [4]})
sage: fl = G.flow_polytope(); fl #␣
→˓needs sage.geometry.polyhedron
A 1-dimensional polyhedron in QQ^4 defined as the convex hull
of 2 vertices
sage: fl.vertices() #␣
→˓needs sage.geometry.polyhedron
(A vertex at (0, 1, 0, 1), A vertex at (1, 0, 1, 0))

Using a different order for the edges of the graph:

sage: ordered_edges = G.edges(sort=True, key=lambda x: x[0] - x[1])
sage: fl = G.flow_polytope(edges=ordered_edges); fl #␣
→˓needs sage.geometry.polyhedron
A 1-dimensional polyhedron in QQ^4 defined as the convex hull of 2 vertices
sage: fl.vertices() #␣
→˓needs sage.geometry.polyhedron
(A vertex at (0, 1, 1, 0), A vertex at (1, 0, 0, 1))

A tournament on 4 vertices:

sage: H = digraphs.TransitiveTournament(4)
sage: fl = H.flow_polytope(); fl #␣
→˓needs sage.geometry.polyhedron
A 3-dimensional polyhedron in QQ^6 defined as the convex hull
of 4 vertices
sage: fl.vertices() #␣
→˓needs sage.geometry.polyhedron
(A vertex at (0, 0, 1, 0, 0, 0),
A vertex at (0, 1, 0, 0, 0, 1),
A vertex at (1, 0, 0, 0, 1, 0),
A vertex at (1, 0, 0, 1, 0, 1))

Restricting to a subset of the edges:

sage: fl = H.flow_polytope(edges=[(0, 1, None), (1, 2, None), #␣
→˓needs sage.geometry.polyhedron
....: (2, 3, None), (0, 3, None)]); fl
A 1-dimensional polyhedron in QQ^4 defined as the convex hull
of 2 vertices
sage: fl.vertices() #␣
→˓needs sage.geometry.polyhedron
(A vertex at (0, 0, 0, 1), A vertex at (1, 1, 1, 0))

Using a different choice of sources and sinks:

sage: # needs sage.geometry.polyhedron
sage: fl = H.flow_polytope(ends=([1], [3])); fl

(continues on next page)
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A 1-dimensional polyhedron in QQ^6 defined as the convex hull
of 2 vertices
sage: fl.vertices()
(A vertex at (0, 0, 0, 1, 0, 1), A vertex at (0, 0, 0, 0, 1, 0))
sage: fl = H.flow_polytope(ends=([0, 1], [3])); fl
The empty polyhedron in QQ^6
sage: fl = H.flow_polytope(ends=([3], [0])); fl
The empty polyhedron in QQ^6
sage: fl = H.flow_polytope(ends=([0, 1], [2, 3])); fl
A 3-dimensional polyhedron in QQ^6 defined as the convex hull
of 5 vertices
sage: fl.vertices()
(A vertex at (0, 0, 1, 1, 0, 0),
A vertex at (0, 1, 0, 0, 1, 0),
A vertex at (1, 0, 0, 2, 0, 1),
A vertex at (1, 0, 0, 1, 1, 0),
A vertex at (0, 1, 0, 1, 0, 1))

sage: fl = H.flow_polytope(edges=[(0, 1, None), (1, 2, None),
....: (2, 3, None), (0, 2, None),
....: (1, 3, None)],
....: ends=([0, 1], [2, 3])); fl
A 2-dimensional polyhedron in QQ^5 defined as the convex hull
of 4 vertices
sage: fl.vertices()
(A vertex at (0, 0, 0, 1, 1),
A vertex at (1, 2, 1, 0, 0),
A vertex at (1, 1, 0, 0, 1),
A vertex at (0, 1, 1, 1, 0))

A digraph with one source and two sinks:

sage: Y = DiGraph({1: [2], 2: [3, 4]})
sage: Y.flow_polytope() #␣
→˓needs sage.geometry.polyhedron
The empty polyhedron in QQ^3

A digraph with one vertex and no edge:

sage: Z = DiGraph({1: []})
sage: Z.flow_polytope() #␣
→˓needs sage.geometry.polyhedron
A 0-dimensional polyhedron in QQ^0 defined as the convex hull
of 1 vertex

A digraph with multiple edges (Issue #28837):

sage: G = DiGraph([(0, 1), (0,1)], multiedges=True); G
Multi-digraph on 2 vertices
sage: P = G.flow_polytope(); P #␣
→˓needs sage.geometry.polyhedron
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices
sage: P.vertices() #␣
→˓needs sage.geometry.polyhedron
(A vertex at (1, 0), A vertex at (0, 1))
sage: P.lines() #␣
→˓needs sage.geometry.polyhedron
()
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generalized_permutahedron(coxeter_type, point=None, exact=True, regular=False, backend=None)
Return the generalized permutahedron of type coxeter_type as the convex hull of the orbit of point
in the fundamental cone.

This generalized permutahedron lies in the vector space used in the geometric representation, that is, in the
default case, the dimension of generalized permutahedron equals the dimension of the space.

INPUT:

• coxeter_type – a Coxeter type; given as a pair [type,rank], where type is a letter and rank is the
number of generators.

• point – a list (default: None); a point given by its coordinates in the weight basis. If None is given,
the point (1, 1, 1, . . .) is used.

• exact – (boolean, default True) if False use floating point approximations instead of exact coordi-
nates

• regular – boolean (default: False); whether to apply a linear transformation making the vertex
figures isometric.

• backend – backend to use to create the polytope; (default: None)

EXAMPLES:

sage: perm_a3 = polytopes.generalized_permutahedron([ A ,3]); perm_a3 #␣
→˓needs sage.combinat
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 24 vertices

You can put the starting point along the hyperplane of the first generator:

sage: # needs sage.combinat
sage: perm_a3_011 = polytopes.generalized_permutahedron([ A ,3], [0,1,1])
sage: perm_a3_011
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 12 vertices
sage: perm_a3_110 = polytopes.generalized_permutahedron([ A ,3], [1,1,0])
sage: perm_a3_110
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 12 vertices
sage: perm_a3_110.is_combinatorially_isomorphic(perm_a3_011)
True
sage: perm_a3_101 = polytopes.generalized_permutahedron([ A ,3], [1,0,1])
sage: perm_a3_101
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 12 vertices
sage: perm_a3_110.is_combinatorially_isomorphic(perm_a3_101)
False
sage: perm_a3_011.f_vector()
(1, 12, 18, 8, 1)
sage: perm_a3_101.f_vector()
(1, 12, 24, 14, 1)

The usual output does not necessarily give a polyhedron with isometric vertex figures:

sage: perm_a2 = polytopes.generalized_permutahedron([ A ,2]) #␣
→˓needs sage.combinat
sage: perm_a2.vertices() #␣
→˓needs sage.combinat
(A vertex at (-1, -1),
A vertex at (-1, 0),
A vertex at (0, -1),
A vertex at (0, 1),

(continues on next page)
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A vertex at (1, 0),
A vertex at (1, 1))

It works also with Coxeter types that lead to non-rational coordinates:

sage: perm_b3 = polytopes.generalized_permutahedron([ B ,3]) # long␣
→˓time, needs sage.combinat sage.rings.number_field
sage: perm_b3 # long␣
→˓time, needs sage.combinat sage.rings.number_field
A 3-dimensional polyhedron in
(Number Field in a with defining polynomial x^2 - 2 with a = 1.
→˓414213562373095?)^3
defined as the convex hull of 48 vertices

Setting regular=True applies a linear transformation to get isometric vertex figures and the result is
inscribed. This cannot be done using rational coordinates. We first do the computations using floating point
approximations (RDF):

sage: perm_a2_inexact = polytopes.generalized_permutahedron( #␣
→˓needs sage.combinat
....: [ A ,2], exact=False)
sage: sorted(perm_a2_inexact.vertices()) #␣
→˓needs sage.combinat
[A vertex at (-1.0, -1.0),
A vertex at (-1.0, 0.0),
A vertex at (0.0, -1.0),
A vertex at (0.0, 1.0),
A vertex at (1.0, 0.0),
A vertex at (1.0, 1.0)]

sage: perm_a2_inexact_reg = polytopes.generalized_permutahedron( #␣
→˓needs sage.combinat
....: [ A ,2], exact=False, regular=True)
sage: sorted(perm_a2_inexact_reg.vertices()) #␣
→˓needs sage.combinat
[A vertex at (-1.0, 0.0),
A vertex at (-0.5, -0.8660254038),
A vertex at (-0.5, 0.8660254038),
A vertex at (0.5, -0.8660254038),
A vertex at (0.5, 0.8660254038),
A vertex at (1.0, 0.0)]

We can do the same computation using exact arithmetic with the field AA:

sage: perm_a2_reg = polytopes.generalized_permutahedron( #␣
→˓needs sage.combinat sage.rings.number_field
....: [ A ,2], regular=True)
sage: V = sorted(perm_a2_reg.vertices()); V # random #␣
→˓needs sage.combinat sage.rings.number_field
[A vertex at (-1, 0),
A vertex at (-1/2, -0.866025403784439?),
A vertex at (-1/2, 0.866025403784439?),
A vertex at (1/2, -0.866025403784439?),
A vertex at (1/2, 0.866025403784439?),
A vertex at (1.000000000000000?, 0.?e-18)]

Even though the numbers look like floating point approximations, the computation is actually exact. We can
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clean up the display a bit using exactify:

sage: for v in V: #␣
→˓needs sage.combinat sage.rings.number_field
....: for x in v:
....: x.exactify()
sage: V #␣
→˓needs sage.combinat sage.rings.number_field
[A vertex at (-1, 0),
A vertex at (-1/2, -0.866025403784439?),
A vertex at (-1/2, 0.866025403784439?),
A vertex at (1/2, -0.866025403784439?),
A vertex at (1/2, 0.866025403784439?),
A vertex at (1, 0)]

sage: perm_a2_reg.is_inscribed() #␣
→˓needs sage.combinat sage.rings.number_field
True

Larger examples take longer:

sage: # needs sage.combinat sage.rings.number_field
sage: perm_a3_reg = polytopes.generalized_permutahedron( # long time
....: [ A ,3], regular=True); perm_a3_reg
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 24 vertices
sage: perm_a3_reg.is_inscribed() # long time
True
sage: perm_b3_reg = polytopes.generalized_permutahedron( # long time␣
→˓(12sec on 64 bits), not tested
....: [ B ,3], regular=True); perm_b3_reg
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 48 vertices

It is faster with the backend number_field , which internally uses an embedded number field instead
of doing the computations directly with the base ring (AA):

sage: # needs sage.combinat sage.rings.number_field
sage: perm_a3_reg_nf = polytopes.generalized_permutahedron(
....: [ A ,3], regular=True, backend= number_field ); perm_a3_reg_nf
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 24 vertices
sage: perm_a3_reg_nf.is_inscribed()
True
sage: perm_b3_reg_nf = polytopes.generalized_permutahedron( # long␣
→˓time
....: [ B ,3], regular=True, backend= number_field ); perm_b3_reg_nf
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 48 vertices

It is even faster with the backend normaliz :

sage: # optional - pynormaliz, needs sage.combinat sage.rings.number_field
sage: perm_a3_reg_norm = polytopes.generalized_permutahedron(
....: [ A ,3], regular=True, backend= normaliz ); perm_a3_reg_norm
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 24 vertices
sage: perm_a3_reg_norm.is_inscribed()
True
sage: perm_b3_reg_norm = polytopes.generalized_permutahedron(
....: [ B ,3], regular=True, backend= normaliz ); perm_b3_reg_norm
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 48 vertices

The speedups from using backend normaliz allow us to go even further:
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sage: # optional - pynormaliz, needs sage.combinat sage.rings.number_field
sage: perm_h3 = polytopes.generalized_permutahedron(
....: [ H ,3], backend= normaliz ); perm_h3
A 3-dimensional polyhedron in
(Number Field in a with defining polynomial x^2 - 5 with a = 2.
→˓236067977499790?)^3
defined as the convex hull of 120 vertices

sage: perm_f4 = polytopes.generalized_permutahedron( # long time
....: [ F ,4], backend= normaliz ); perm_f4
A 4-dimensional polyhedron
in (Number Field in a with defining polynomial x^2 - 2 with a = 1.
→˓414213562373095?)^4
defined as the convex hull of 1152 vertices

See also:

• permutahedron()

• permutahedron()

grand_antiprism(exact=True, backend=None, verbose=False)
Return the grand antiprism.

The grand antiprism is a 4-dimensional non-Wythoffian uniform polytope. The coordinates were taken from
http://eusebeia.dyndns.org/4d/gap. For more information, see the Wikipedia article Grand_antiprism.

Warning: The coordinates are exact by default. The computation with exact coordinates is not as fast as
with floating point approximations. If you find this method to be too slow, consider using floating point
approximations

INPUT:

• exact – (boolean, default True) if False use floating point approximations instead of exact coordi-
nates

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: gap = polytopes.grand_antiprism() # not tested - very long time
sage: gap # not tested - very long time
A 4-dimensional polyhedron in (Number Field in sqrt5 with defining
polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^4 defined as
the convex hull of 100 vertices

Computation with the backend normaliz is instantaneous:

sage: gap_norm = polytopes.grand_antiprism(backend= normaliz ) #␣
→˓optional - pynormaliz, needs sage.rings.number_field
sage: gap_norm #␣
→˓optional - pynormaliz, needs sage.rings.number_field
A 4-dimensional polyhedron in (Number Field in sqrt5 with defining
polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^4 defined as
the convex hull of 100 vertices

Computation with approximated coordinates is also faster, but inexact:
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sage: gap = polytopes.grand_antiprism(exact=False) # random
sage: gap
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 100 vertices
sage: gap.f_vector()
(1, 100, 500, 720, 320, 1)
sage: len(list(gap.bounded_edges()))
500

great_rhombicuboctahedron(exact=True, base_ring=None, backend=None)
Return the great rhombicuboctahedron.

The great rhombicuboctahedron (or truncated cuboctahedron) is an Archimedean solid with 48 vertices and
26 faces. For more information see the Wikipedia article Truncated_cuboctahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: gr = polytopes.great_rhombicuboctahedron() # long time #␣
→˓needs sage.rings.number_field
sage: gr.f_vector() # long time #␣
→˓needs sage.rings.number_field
(1, 48, 72, 26, 1)

A faster implementation is obtained by setting exact=False:

sage: gr = polytopes.great_rhombicuboctahedron(exact=False)
sage: gr.f_vector()
(1, 48, 72, 26, 1)

Its facets are 4 squares, 8 regular hexagons and 6 regular octagons:

sage: sum(1 for f in gr.facets() if len(f.vertices()) == 4)
12
sage: sum(1 for f in gr.facets() if len(f.vertices()) == 6)
8
sage: sum(1 for f in gr.facets() if len(f.vertices()) == 8)
6

hypercube(dim, intervals=None, backend=None)
Return a hypercube of the given dimension.

The dim-dimensional hypercube is by default the convex hull of the 2dim ±1 vectors of length dim. Alter-
natively, it is the product of dim line segments given in the intervals. For more information see the
wikipedia article Wikipedia article Hypercube.

INPUT:

• dim – integer. The dimension of the hypercube.

• intervals – (default = None). It takes the following possible inputs:

– If None (the default), it returns the ±1-cube of dimension dim.
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– zero_one – (string). Return the 0/1-cube.

– a list of length dim. Its elements are pairs of numbers (𝑎, 𝑏) with 𝑎 < 𝑏. The cube will be the
product of these intervals.

• backend – the backend to use to create the polytope.

EXAMPLES:

Create the ±1-hypercube of dimension 4:

sage: four_cube = polytopes.hypercube(4)
sage: four_cube.is_simple()
True
sage: four_cube.base_ring()
Integer Ring
sage: four_cube.volume()
16
sage: four_cube.ehrhart_polynomial() # optional - latte_int
16*t^4 + 32*t^3 + 24*t^2 + 8*t + 1

Return the 0/1-hypercube of dimension 4:

sage: z_cube = polytopes.hypercube(4, intervals= zero_one )
sage: z_cube.vertices()[0]
A vertex at (1, 0, 1, 1)
sage: z_cube.is_simple()
True
sage: z_cube.base_ring()
Integer Ring
sage: z_cube.volume()
1
sage: z_cube.ehrhart_polynomial() # optional - latte_int
t^4 + 4*t^3 + 6*t^2 + 4*t + 1

Return the 4-dimensional combinatorial cube that is the product of [0,3]^4:

sage: t_cube = polytopes.hypercube(4, intervals=[[0,3]]*4)

Checking that t_cube is three times the previous 0/1-cube:

sage: t_cube == 3 * z_cube
True

hypersimplex(dim, k, project=False, backend=None)
Return the hypersimplex in dimension dim and parameter k.

The hypersimplexΔ𝑑,𝑘 is the convex hull of the vertices made of 𝑘 ones and 𝑑− 𝑘 zeros. It lies in the 𝑑− 1
hyperplane of vectors of sum 𝑘. If you want a projected version to R𝑑−1 (with floating point coordinates)
then set project=True in the options.

See also:

simplex()

INPUT:

• dim – the dimension

• n – the numbers (1,...,n) are permuted
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• project – (boolean, default False) if True, the polytope is (isometrically) projected to a vector
space of dimension dim-1. This operation turns the coordinates into floating point approximations and
corresponds to the projection given by the matrix from zero_sum_projection().

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: # needs sage.combinat
sage: h_4_2 = polytopes.hypersimplex(4, 2)
sage: h_4_2
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 6 vertices
sage: h_4_2.f_vector()
(1, 6, 12, 8, 1)
sage: h_4_2.ehrhart_polynomial() # optional -␣
→˓latte_int
2/3*t^3 + 2*t^2 + 7/3*t + 1
sage: TestSuite(h_4_2).run()

sage: # needs sage.combinat
sage: h_7_3 = polytopes.hypersimplex(7, 3, project=True)
sage: h_7_3
A 6-dimensional polyhedron in RDF^6 defined as the convex hull of 35 vertices
sage: h_7_3.f_vector()
(1, 35, 210, 350, 245, 84, 14, 1)
sage: TestSuite(h_7_3).run(skip=["_test_pyramid", "_test_lawrence"])

icosahedron(exact=True, base_ring=None, backend=None)
Return an icosahedron with edge length 1.

The icosahedron is one of the Platonic solids. It has 20 faces and is dual to the dodecahedron().

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – (optional) the ring in which the coordinates will belong to. Note that this ring must
contain

√︀
(5). If it is not provided and exact=True it will be the number field [

√︀
(5)] and if

exact=False it will be the real double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: ico = polytopes.icosahedron() #␣
→˓needs sage.rings.number_field
sage: ico.f_vector() #␣
→˓needs sage.rings.number_field
(1, 12, 30, 20, 1)
sage: ico.volume() #␣
→˓needs sage.rings.number_field
5/12*sqrt5 + 5/4

Its non exact version:

sage: ico = polytopes.icosahedron(exact=False) #␣
→˓needs sage.groups
sage: ico.base_ring() #␣
→˓needs sage.groups
Real Double Field

(continues on next page)

90 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1
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sage: ico.volume() # known bug #␣
→˓needs sage.groups
2.181694990...

A version using 𝐴𝐴 < 𝑠𝑎𝑔𝑒.𝑟𝑖𝑛𝑔𝑠.𝑞𝑞𝑏𝑎𝑟.𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐𝑅𝑒𝑎𝑙𝐹 𝑖𝑒𝑙𝑑 >:

sage: ico = polytopes.icosahedron(base_ring=AA) # long time #␣
→˓needs sage.groups sage.rings.number_field
sage: ico.base_ring() # long time #␣
→˓needs sage.groups sage.rings.number_field
Algebraic Real Field
sage: ico.volume() # long time #␣
→˓needs sage.groups sage.rings.number_field
2.181694990624913?

Note that if base ring is provided it must contain the square root of 5. Otherwise you will get an error:

sage: polytopes.icosahedron(base_ring=QQ) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: unable to convert 1/4*sqrt(5) + 1/4 to a rational

icosidodecahedron(exact=True, backend=None)
Return the icosidodecahedron.

The Icosidodecahedron is a polyhedron with twenty triangular faces and twelve pentagonal faces. For more
information see the Wikipedia article Icosidodecahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: id = polytopes.icosidodecahedron() #␣
→˓needs sage.groups sage.rings.number_field
sage: id.f_vector() #␣
→˓needs sage.groups sage.rings.number_field
(1, 30, 60, 32, 1)

icosidodecahedron_V2(exact=True, base_ring=None, backend=None)
Return the icosidodecahedron.

The icosidodecahedron is an Archimedean solid. It has 32 faces and 30 vertices. For more information, see
the Wikipedia article Icosidodecahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:
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sage: id = polytopes.icosidodecahedron_V2() # long time - 6secs
sage: id.f_vector() # long time
(1, 30, 60, 32, 1)
sage: id.base_ring() # long time
Number Field in sqrt5 with defining polynomial x^2 - 5
with sqrt5 = 2.236067977499790?

A much faster implementation using floating point approximations:

sage: id = polytopes.icosidodecahedron_V2(exact=False)
sage: id.f_vector()
(1, 30, 60, 32, 1)
sage: id.base_ring()
Real Double Field

Its facets are 20 triangles and 12 regular pentagons:

sage: sum(1 for f in id.facets() if len(f.vertices()) == 3)
20
sage: sum(1 for f in id.facets() if len(f.vertices()) == 5)
12

octahedron(backend=None)
Return the octahedron.

The octahedron is a Platonic solid with 6 vertices and 8 faces dual to the cube. It can be defined as the convex
hull of the six vertices (0, 0,±1), (±1, 0, 0) and (0,±1, 0). For more information, see the Wikipedia article
Octahedron.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: co = polytopes.octahedron()
sage: co.f_vector()
(1, 6, 12, 8, 1)

Its facets are 8 triangles:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
8

Some more computation:

sage: co.volume()
4/3
sage: co.ehrhart_polynomial() # optional - latte_int
4/3*t^3 + 2*t^2 + 8/3*t + 1

omnitruncated_one_hundred_twenty_cell(exact=True, backend=None)
Return the omnitruncated 120-cell.

The omnitruncated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 14400 vertices.
For more information see Wikipedia article Omnitruncated 120-cell.
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Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.omnitruncated_one_hundred_twenty_cell(backend= normaliz ) #␣
→˓not tested - very long time ~10min
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 14400␣
→˓vertices

omnitruncated_six_hundred_cell(exact=True, backend=None)
Return the omnitruncated 120-cell.

The omnitruncated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 14400 vertices.
For more information see Wikipedia article Omnitruncated 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.omnitruncated_one_hundred_twenty_cell(backend= normaliz ) #␣
→˓not tested - very long time ~10min
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 14400␣
→˓vertices

one_hundred_twenty_cell(exact=True, backend=None, construction='coxeter')
Return the 120-cell.

The 120-cell is a 4-dimensional 4-uniform polytope in the𝐻4 family. It has 600 vertices and 120 facets. For
more information see Wikipedia article 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.
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• construction – the construction to use (string, default ‘coxeter’); the other possibility is ‘as_permu-
tahedron’.

EXAMPLES:

The classical construction given by Coxeter in [Cox1969] is given by:

sage: polytopes.one_hundred_twenty_cell() # not tested -␣
→˓long time ~15 sec.
A 4-dimensional polyhedron in (Number Field in sqrt5 with defining
polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^4 defined as
the convex hull of 600 vertices

The normaliz is faster:

sage: P = polytopes.one_hundred_twenty_cell(backend= normaliz ); P #␣
→˓optional - pynormaliz
A 4-dimensional polyhedron in (Number Field in sqrt5 with defining
polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^4 defined as
the convex hull of 600 vertices

It is also possible to realize it using the generalized permutahedron of type 𝐻4:

sage: polytopes.one_hundred_twenty_cell(backend= normaliz , # not tested -␣
→˓long time
....: construction= as_permutahedron )
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 600 vertices

parallelotope(generators, backend=None)
Return the zonotope, or parallelotope, spanned by the generators.

The parallelotope is the multi-dimensional generalization of a parallelogram (2 generators) and a paral-
lelepiped (3 generators).

INPUT:

• generators – a list of vectors of same dimension

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.parallelotope([ (1,0), (0,1) ])
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: polytopes.parallelotope([[1,2,3,4], [0,1,0,7], [3,1,0,2], [0,0,1,0]])
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 16 vertices

sage: K = QuadraticField(2, sqrt2 ) #␣
→˓needs sage.rings.number_field
sage: sqrt2 = K.gen() #␣
→˓needs sage.rings.number_field
sage: P = polytopes.parallelotope([(1, sqrt2), (1, -1)]); P #␣
→˓needs sage.rings.number_field
A 2-dimensional polyhedron in (Number Field in sqrt2 with defining
polynomial x^2 - 2 with sqrt2 = 1.414213562373095?)^2 defined as
the convex hull of 4 vertices

pentakis_dodecahedron(exact=True, base_ring=None, backend=None)
Return the pentakis dodecahedron.
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The pentakis dodecahedron (orkisdodecahedron) is a face-regular, vertex-uniform polytope dual to the trun-
cated icosahedron. It has 60 facets and 32 vertices. See the Wikipedia article Pentakis_dodecahedron for
more information.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: pd = polytopes.pentakis_dodecahedron() # long time - ~10 sec
sage: pd.n_vertices() # long time
32
sage: pd.n_inequalities() # long time
60

A much faster implementation is obtained when setting exact=False:

sage: pd = polytopes.pentakis_dodecahedron(exact=False) #␣
→˓needs sage.groups
sage: pd.n_vertices() #␣
→˓needs sage.groups
32
sage: pd.n_inequalities() #␣
→˓needs sage.groups
60

The 60 are triangles:

sage: all(len(f.vertices()) == 3 for f in pd.facets()) #␣
→˓needs sage.groups
True

permutahedron(n, project=False, backend=None)
Return the standard permutahedron of (1,…,n).

The permutahedron (or permutohedron) is the convex hull of the permutations of {1, . . . , 𝑛} seen as vectors.
The edges between the permutations correspond to multiplication on the right by an elementary transposition
in the SymmetricGroup.

If we take the graph in which the vertices correspond to vertices of the polyhedron, and edges to edges, we
get the BubbleSortGraph().

INPUT:

• n – integer

• project – (boolean, default False) if True, the polytope is (isometrically) projected to a vector
space of dimension dim-1. This operation turns the coordinates into floating point approximations and
corresponds to the projection given by the matrix from zero_sum_projection().

• backend – the backend to use to create the polytope.

EXAMPLES:
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sage: perm4 = polytopes.permutahedron(4)
sage: perm4
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 24 vertices
sage: perm4.is_lattice_polytope()
True
sage: perm4.ehrhart_polynomial() # optional - latte_int
16*t^3 + 15*t^2 + 6*t + 1

sage: perm4 = polytopes.permutahedron(4, project=True)
sage: perm4
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 24 vertices
sage: perm4.plot() #␣
→˓needs sage.plot
Graphics3d Object
sage: perm4.graph().is_isomorphic(graphs.BubbleSortGraph(4)) #␣
→˓needs sage.graphs
True

As both Hrepresentation and Vrepresentation are known, the permutahedron can be set up with both using
the backend field. The following takes very very long time to recompute, e.g. with backend ppl:

sage: polytopes.permutahedron(8, backend= field ) # (~1s)
A 7-dimensional polyhedron in QQ^8 defined as the convex hull of 40320␣
→˓vertices
sage: polytopes.permutahedron(9, backend= field ) # not tested (memory␣
→˓consumption) # (~5s)
A 8-dimensional polyhedron in QQ^9 defined as the convex hull of 362880␣
→˓vertices

See also:

• BubbleSortGraph()

rectified_one_hundred_twenty_cell(exact=True, backend=None)
Return the rectified 120-cell.

The rectified 120-cell is a 4-dimensional 4-uniform polytope in the𝐻4 family. It has 1200 vertices. For more
information see Wikipedia article Rectified 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.rectified_one_hundred_twenty_cell(backend= normaliz ) # not␣
→˓tested - long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 1200 vertices
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rectified_six_hundred_cell(exact=True, backend=None)
Return the rectified 600-cell.

The rectified 600-cell is a 4-dimensional 4-uniform polytope in the𝐻4 family. It has 720 vertices. For more
information see Wikipedia article Rectified 600-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.rectified_six_hundred_cell(backend= normaliz ) # not tested -
→˓ long time ~14sec
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 720 vertices

regular_polygon(n, exact=True, base_ring=None, backend=None)
Return a regular polygon with 𝑛 vertices.

INPUT:

• n – a positive integer, the number of vertices.

• exact – (boolean, default True) if False floating point numbers are used for coordinates.

• base_ring – a ring in which the coordinates will lie. It is None by default. If it is not provided and
exact is True then it will be the field of real algebraic number, if exact is False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: octagon = polytopes.regular_polygon(8)
sage: octagon
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 8 vertices
sage: octagon.n_vertices()
8
sage: v = octagon.volume()
sage: v
2.828427124746190?
sage: v == 2*QQbar(2).sqrt()
True

Its non exact version:

sage: polytopes.regular_polygon(3, exact=False).vertices()
(A vertex at (0.0, 1.0),
A vertex at (0.8660254038, -0.5),
A vertex at (-0.8660254038, -0.5))

sage: polytopes.regular_polygon(25, exact=False).n_vertices()
25
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rhombic_dodecahedron(backend=None)
Return the rhombic dodecahedron.

The rhombic dodecahedron is a polytope dual to the cuboctahedron. It has 14 vertices and 12 faces. For more
information see the Wikipedia article Rhombic_dodecahedron.

INPUT:

• backend – the backend to use to create the polytope.

See also:

cuboctahedron()

EXAMPLES:

sage: rd = polytopes.rhombic_dodecahedron()
sage: rd.f_vector()
(1, 14, 24, 12, 1)

Its facets are 12 quadrilaterals (not all identical):

sage: sum(1 for f in rd.facets() if len(f.vertices()) == 4)
12

Some more computations:

sage: p = rd.ehrhart_polynomial() # optional - latte_int
sage: p # optional - latte_int
16*t^3 + 12*t^2 + 4*t + 1
sage: [p(i) for i in [1,2,3,4]] # optional - latte_int
[33, 185, 553, 1233]
sage: [len((i*rd).integral_points()) for i in [1,2,3,4]]
[33, 185, 553, 1233]

rhombicosidodecahedron(exact=True, base_ring=None, backend=None)
Return the rhombicosidodecahedron.

The rhombicosidodecahedron is an Archimedean solid. It has 62 faces and 60 vertices. For more information,
see the Wikipedia article Rhombicosidodecahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: rid = polytopes.rhombicosidodecahedron() # long time (6secs)
sage: rid.f_vector() # long time
(1, 60, 120, 62, 1)
sage: rid.base_ring() # long time
Number Field in sqrt5 with defining polynomial x^2 - 5
with sqrt5 = 2.236067977499790?

A much faster implementation using floating point approximations:
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sage: rid = polytopes.rhombicosidodecahedron(exact=False)
sage: rid.f_vector()
(1, 60, 120, 62, 1)
sage: rid.base_ring()
Real Double Field

Its facets are 20 triangles, 30 squares and 12 pentagons:

sage: sum(1 for f in rid.facets() if len(f.vertices()) == 3)
20
sage: sum(1 for f in rid.facets() if len(f.vertices()) == 4)
30
sage: sum(1 for f in rid.facets() if len(f.vertices()) == 5)
12

runcinated_one_hundred_twenty_cell(exact=False, backend=None)
Return the runcinated 120-cell.

The runcinated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 2400 vertices. For
more information see Wikipedia article Runcinated 120-cell.

Warning: The coordinates are inexact by default. The computation with inexact coordinates (using the
backend cdd ) issues a UserWarning on inconsistencies.

INPUT:

• exact – (boolean, default False) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.runcinated_one_hundred_twenty_cell(exact=False) # not tested␣
→˓- very long time
doctest:warning ... UserWarning: This polyhedron data is
numerically complicated; cdd could not convert between the inexact
V and H representation without loss of data. The resulting object
might show inconsistencies.
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 2400␣
→˓vertices

It is possible to use the backend normaliz to get an exact representation:

sage: polytopes.runcinated_one_hundred_twenty_cell(exact=True, # not tested␣
→˓- very long time
....: backend= normaliz )
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 2400 vertices

runcitruncated_one_hundred_twenty_cell(exact=False, backend=None)
Return the runcitruncated 120-cell.

The runcitruncated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 7200 vertices.
For more information see Wikipedia article Runcitruncated 120-cell.
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Warning: The coordinates are inexact by default. The computation with inexact coordinates (using the
backend cdd ) issues a UserWarning on inconsistencies.

INPUT:

• exact – (boolean, default False) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.runcitruncated_one_hundred_twenty_cell(exact=False) # not␣
→˓tested - very long time
doctest:warning
...
UserWarning: This polyhedron data is numerically complicated; cdd
could not convert between the inexact V and H representation
without loss of data. The resulting object might show
inconsistencies.

It is possible to use the backend normaliz to get an exact representation:

sage: polytopes.runcitruncated_one_hundred_twenty_cell(exact=True, # not␣
→˓tested - very long time
....: backend= normaliz )
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 7200 vertices

runcitruncated_six_hundred_cell(exact=True, backend=None)
Return the runcitruncated 600-cell.

The runcitruncated 600-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 7200 vertices.
For more information see Wikipedia article Runcitruncated 600-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.runcitruncated_six_hundred_cell(backend= normaliz ) # not␣
→˓tested - very long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of
7200 vertices

simplex(dim=3, project=False, base_ring=None, backend=None)
Return the dim dimensional simplex.

The 𝑑-simplex is the convex hull inR𝑑+1 of the standard basis (1, 0, . . . , 0), (0, 1, . . . , 0), ldots, (0, 0, . . . , 1).
For more information, see the Wikipedia article Simplex.
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INPUT:

• dim – The dimension of the simplex, a positive integer.

• project – (boolean, default False) if True, the polytope is (isometrically) projected to a vec-
tor space of dimension dim-1. This corresponds to the projection given by the matrix from
zero_sum_projection(). By default, this operation turns the coordinates into floating point ap-
proximations (see base_ring).

• base_ring – the base ring to use to create the polytope. If project is False, this defaults to .
Otherwise, it defaults to RDF.

• backend – the backend to use to create the polytope.

See also:

tetrahedron()

EXAMPLES:

sage: s5 = polytopes.simplex(5)
sage: s5
A 5-dimensional polyhedron in ZZ^6 defined as the convex hull of 6 vertices
sage: s5.f_vector()
(1, 6, 15, 20, 15, 6, 1)

sage: s5 = polytopes.simplex(5, project=True)
sage: s5
A 5-dimensional polyhedron in RDF^5 defined as the convex hull of 6 vertices

Its volume is
√
𝑑+ 1/𝑑!:

sage: s5 = polytopes.simplex(5, project=True)
sage: s5.volume() # abs tol 1e-10
0.0204124145231931
sage: sqrt(6.) / factorial(5)
0.0204124145231931

sage: s6 = polytopes.simplex(6, project=True)
sage: s6.volume() # abs tol 1e-10
0.00367465459870082
sage: sqrt(7.) / factorial(6)
0.00367465459870082

Computation in algebraic reals:

sage: s3 = polytopes.simplex(3, project=True, base_ring=AA) #␣
→˓needs sage.rings.number_field
sage: s3.volume() == sqrt(3+1) / factorial(3) #␣
→˓needs sage.rings.number_field
True

six_hundred_cell(exact=False, backend=None)
Return the standard 600-cell polytope.

The 600-cell is a 4-dimensional regular polytope. In many ways this is an analogue of the icosahedron.

Warning: The coordinates are not exact by default. The computation with exact coordinates takes a
huge amount of time.
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INPUT:

• exact – (boolean, default False) if True use exact coordinates instead of floating point approxi-
mations

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: p600 = polytopes.six_hundred_cell(); p600 #␣
→˓needs sage.groups
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 120 vertices
sage: p600.f_vector() # long time (~2sec) #␣
→˓needs sage.groups
(1, 120, 720, 1200, 600, 1)

Computation with exact coordinates is currently too long to be useful:

sage: p600 = polytopes.six_hundred_cell(exact=True) # long time, not␣
→˓tested, needs sage.groups
sage: len(list(p600.bounded_edges())) # long time, not␣
→˓tested, needs sage.groups
720

small_rhombicuboctahedron(exact=True, base_ring=None, backend=None)
Return the (small) rhombicuboctahedron.

The rhombicuboctahedron is an Archimedean solid with 24 vertices and 26 faces. See the Wikipedia article
Rhombicuboctahedron for more information.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: sr = polytopes.small_rhombicuboctahedron() #␣
→˓needs sage.rings.number_field
sage: sr.f_vector() #␣
→˓needs sage.rings.number_field
(1, 24, 48, 26, 1)
sage: sr.volume() #␣
→˓needs sage.rings.number_field
80/3*sqrt2 + 32

The faces are 8 equilateral triangles and 18 squares:

sage: sum(1 for f in sr.facets() if len(f.vertices()) == 3) #␣
→˓needs sage.rings.number_field
8
sage: sum(1 for f in sr.facets() if len(f.vertices()) == 4) #␣
→˓needs sage.rings.number_field
18

Its non exact version:
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sage: sr = polytopes.small_rhombicuboctahedron(False)
sage: sr
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of
24 vertices
sage: sr.f_vector()
(1, 24, 48, 26, 1)

snub_cube(exact=False, base_ring=None, backend=None, verbose=False)
Return a snub cube.

The snub cube is an Archimedean solid. It has 24 vertices and 38 faces. For more information see the
Wikipedia article Snub_cube.

The constant 𝑧 used in constructing this polytope is the reciprocal of the tribonacci constant, that is, the
solution of the equation 𝑥3 + 𝑥2 + 𝑥 − 1 = 0. See Wikipedia article Generalizations_of_Fibonacci_num-
bers#Tribonacci_numbers.

INPUT:

• exact – (boolean, default False) if True use exact coordinates instead of floating point approxi-
mations

• base_ring – the field to use. IfNone (the default), construct the exact number field needed (ifexact
is True) or default to RDF (if exact is True).

• backend – the backend to use to create the polytope. If None (the default), the backend will be
selected automatically.

EXAMPLES:

sage: # needs sage.groups
sage: sc_inexact = polytopes.snub_cube(exact=False); sc_inexact
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 24 vertices
sage: sc_inexact.f_vector()
(1, 24, 60, 38, 1)

sage: # long time, needs sage.groups sage.rings.number_field
sage: sc_exact = polytopes.snub_cube(exact=True)
sage: sc_exact.f_vector()
(1, 24, 60, 38, 1)
sage: sorted(sc_exact.vertices())
[A vertex at (-1, -z, -z^2),
A vertex at (-1, -z^2, z),
A vertex at (-1, z^2, -z),
A vertex at (-1, z, z^2),
A vertex at (-z, -1, z^2),
A vertex at (-z, -z^2, -1),
A vertex at (-z, z^2, 1),
A vertex at (-z, 1, -z^2),
A vertex at (-z^2, -1, -z),
A vertex at (-z^2, -z, 1),
A vertex at (-z^2, z, -1),
A vertex at (-z^2, 1, z),
A vertex at (z^2, -1, z),
A vertex at (z^2, -z, -1),
A vertex at (z^2, z, 1),
A vertex at (z^2, 1, -z),
A vertex at (z, -1, -z^2),
A vertex at (z, -z^2, 1),

(continues on next page)
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(continued from previous page)

A vertex at (z, z^2, -1),
A vertex at (z, 1, z^2),
A vertex at (1, -z, z^2),
A vertex at (1, -z^2, -z),
A vertex at (1, z^2, z),
A vertex at (1, z, -z^2)]

sage: sc_exact.is_combinatorially_isomorphic(sc_inexact)
True

snub_dodecahedron(base_ring=None, backend=None, verbose=False)
Return the snub dodecahedron.

The snub dodecahedron is an Archimedean solid. It has 92 faces and 60 vertices. For more information, see
the Wikipedia article Snub_dodecahedron.

INPUT:

• base_ring – the ring in which the coordinates will belong to. If it is not provided it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

Only the backend using the optional normaliz package can construct the snub dodecahedron in reasonable
time:

sage: sd = polytopes.snub_dodecahedron(base_ring=AA, # optional -␣
→˓pynormaliz, long time
....: backend= normaliz )
sage: sd.f_vector() # optional -␣
→˓pynormaliz, long time
(1, 60, 150, 92, 1)
sage: sd.base_ring() # optional -␣
→˓pynormaliz, long time
Algebraic Real Field

Its facets are 80 triangles and 12 pentagons:

sage: sum(1 for f in sd.facets() # optional -␣
→˓pynormaliz, long time
....: if len(f.vertices()) == 3)
80
sage: sum(1 for f in sd.facets() # optional -␣
→˓pynormaliz, long time
....: if len(f.vertices()) == 5)
12

static symmetric_edge_polytope(backend=None)
Return the symmetric edge polytope of self.

The symmetric edge polytope (SEP) of a Graph on 𝑛 vertices is the polytope in 𝑛 defined as the convex hull
of 𝑒𝑖 − 𝑒𝑗 and 𝑒𝑗 − 𝑒𝑖 for each edge (𝑖, 𝑗). Here 𝑒1, . . . , 𝑒𝑛 denotes the standard basis.

INPUT:

• backend – string or None (default); the backend to use; see sage.geometry.polyhedron.
constructor.Polyhedron()
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EXAMPLES:

The SEP of a 4-cycle is a cube:

sage: G = graphs.CycleGraph(4)
sage: P = G.symmetric_edge_polytope(); P #␣
→˓needs sage.geometry.polyhedron
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 8 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cube()) #␣
→˓needs sage.geometry.polyhedron
True

The SEP of a complete graph on 4 vertices is a cuboctahedron:

sage: G = graphs.CompleteGraph(4)
sage: P = G.symmetric_edge_polytope(); P #␣
→˓needs sage.geometry.polyhedron
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 12 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cuboctahedron()) #␣
→˓needs sage.geometry.polyhedron
True

The SEP of a graph with edges on 𝑛 vertices has dimension 𝑛 minus the number of connected components:

sage: n = randint(5, 12)
sage: G = Graph()
sage: while not G.num_edges(): #␣
→˓needs networkx
....: G = graphs.RandomGNP(n, 0.2)
sage: P = G.symmetric_edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P.ambient_dim() == n #␣
→˓needs networkx sage.geometry.polyhedron
True
sage: P.dim() == n - G.connected_components_number() #␣
→˓needs networkx sage.geometry.polyhedron
True

The SEP of a graph is isomorphic to the subdirect sum of its connected components SEP’s:

sage: n = randint(3, 6)
sage: G1 = graphs.RandomGNP(n, 0.2) #␣
→˓needs networkx
sage: n = randint(3, 6)
sage: G2 = graphs.RandomGNP(n, 0.2) #␣
→˓needs networkx
sage: G = G1.disjoint_union(G2) #␣
→˓needs networkx
sage: P = G.symmetric_edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P1 = G1.symmetric_edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P2 = G2.symmetric_edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: P.is_combinatorially_isomorphic(P1.subdirect_sum(P2)) #␣
→˓needs networkx sage.geometry.polyhedron
True

All trees on 𝑛 vertices have isomorphic SEPs:
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sage: n = randint(4, 10)
sage: G1 = graphs.RandomTree(n)
sage: G2 = graphs.RandomTree(n)
sage: P1 = G1.symmetric_edge_polytope() #␣
→˓needs sage.geometry.polyhedron
sage: P2 = G2.symmetric_edge_polytope() #␣
→˓needs sage.geometry.polyhedron
sage: P1.is_combinatorially_isomorphic(P2) #␣
→˓needs sage.geometry.polyhedron
True

However, there are still many different SEPs:

sage: len(list(graphs(5)))
34
sage: polys = []
sage: for G in graphs(5): #␣
→˓needs sage.geometry.polyhedron
....: P = G.symmetric_edge_polytope()
....: for P1 in polys:
....: if P.is_combinatorially_isomorphic(P1):
....: break
....: else:
....: polys.append(P)
sage: len(polys) #␣
→˓needs sage.geometry.polyhedron
25

A non-trivial example of two graphs with isomorphic SEPs:

sage: G1 = graphs.CycleGraph(4)
sage: G1.add_edges([[0, 5], [5, 2], [1, 6], [6, 2]])
sage: G2 = copy(G1)
sage: G1.add_edges([[2, 7], [7, 3]])
sage: G2.add_edges([[0, 7], [7, 3]])
sage: G1.is_isomorphic(G2)
False
sage: P1 = G1.symmetric_edge_polytope() #␣
→˓needs sage.geometry.polyhedron
sage: P2 = G2.symmetric_edge_polytope() #␣
→˓needs sage.geometry.polyhedron
sage: P1.is_combinatorially_isomorphic(P2) #␣
→˓needs sage.geometry.polyhedron
True

Apparently, glueing two graphs together on a vertex gives isomorphic SEPs:

sage: n = randint(3, 7)
sage: g1 = graphs.RandomGNP(n, 0.2) #␣
→˓needs networkx
sage: g2 = graphs.RandomGNP(n, 0.2) #␣
→˓needs networkx
sage: G = g1.disjoint_union(g2) #␣
→˓needs networkx
sage: H = copy(G) #␣
→˓needs networkx
sage: G.merge_vertices(((0, randrange(n)), (1, randrange(n)))) #␣

(continues on next page)
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(continued from previous page)

→˓needs networkx
sage: H.merge_vertices(((0, randrange(n)), (1, randrange(n)))) #␣
→˓needs networkx
sage: PG = G.symmetric_edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: PH = H.symmetric_edge_polytope() #␣
→˓needs networkx sage.geometry.polyhedron
sage: PG.is_combinatorially_isomorphic(PH) #␣
→˓needs networkx sage.geometry.polyhedron
True

tetrahedron(backend=None)

Return the tetrahedron.

The tetrahedron is a Platonic solid with 4 vertices and 4 faces dual to itself. It can be defined as the convex hull
of the 4 vertices (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1). For more information, see the Wikipedia article
Tetrahedron.

INPUT:

• backend – the backend to use to create the polytope.

See also:

simplex()

EXAMPLES:

sage: co = polytopes.tetrahedron()
sage: co.f_vector()
(1, 4, 6, 4, 1)

Its facets are 4 triangles:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
4

Some more computation:

sage: co.volume()
1/3
sage: co.ehrhart_polynomial() # optional - latte_int
1/3*t^3 + t^2 + 5/3*t + 1

truncated_cube(exact=True, base_ring=None, backend=None)
Return the truncated cube.

The truncated cube is an Archimedean solid with 24 vertices and 14 faces. It can be defined as the convex hull
of the 24 vertices (±𝑥,±1,±1), (±1,±𝑥,±1), (±1,±1,±𝑥) where 𝑥 =

√︀
(2)−1. For more information,

see the Wikipedia article Truncated_cube.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [

√
2] and if exact=False it will be the real double field.

• backend – the backend to use to create the polytope.
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EXAMPLES:

sage: co = polytopes.truncated_cube() #␣
→˓needs sage.rings.number_field
sage: co.f_vector() #␣
→˓needs sage.rings.number_field
(1, 24, 36, 14, 1)

Its facets are 8 triangles and 6 octogons:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 3) #␣
→˓needs sage.rings.number_field
8
sage: sum(1 for f in co.facets() if len(f.vertices()) == 8) #␣
→˓needs sage.rings.number_field
6

Some more computation:

sage: co.volume() #␣
→˓needs sage.rings.number_field
56/3*sqrt2 - 56/3

truncated_dodecahedron(exact=True, base_ring=None, backend=None)
Return the truncated dodecahedron.

The truncated dodecahedron is an Archimedean solid. It has 32 faces and 60 vertices. For more information,
see the Wikipedia article Truncated dodecahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: td = polytopes.truncated_dodecahedron() #␣
→˓needs sage.rings.number_field
sage: td.f_vector() #␣
→˓needs sage.rings.number_field
(1, 60, 90, 32, 1)
sage: td.base_ring() #␣
→˓needs sage.rings.number_field
Number Field in sqrt5 with defining polynomial x^2 - 5
with sqrt5 = 2.236067977499790?

Its facets are 20 triangles and 12 regular decagons:

sage: sum(1 for f in td.facets() if len(f.vertices()) == 3) #␣
→˓needs sage.rings.number_field
20
sage: sum(1 for f in td.facets() if len(f.vertices()) == 10) #␣
→˓needs sage.rings.number_field
12
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The faster implementation using floating point approximations does not fully work unfortunately, see https:
//github.com/cddlib/cddlib/pull/7 for a detailed discussion of this case:

sage: td = polytopes.truncated_dodecahedron(exact=False) # random
doctest:warning
...
UserWarning: This polyhedron data is numerically complicated; cdd
could not convert between the inexact V and H representation
without loss of data. The resulting object might show
inconsistencies.
sage: td.f_vector()
Traceback (most recent call last):
...
ValueError: not all vertices are intersections of facets
sage: td.base_ring()
Real Double Field

truncated_icosidodecahedron(exact=True, base_ring=None, backend=None)
Return the truncated icosidodecahedron.

The truncated icosidodecahedron is an Archimedean solid. It has 62 faces and 120 vertices. For more infor-
mation, see the Wikipedia article Truncated_icosidodecahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True
it will be a the number field [𝜑] where 𝜑 is the golden ratio and if exact=False it will be the real
double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: ti = polytopes.truncated_icosidodecahedron() # long time
sage: ti.f_vector() # long time
(1, 120, 180, 62, 1)
sage: ti.base_ring() # long time
Number Field in sqrt5 with defining polynomial x^2 - 5
with sqrt5 = 2.236067977499790?

The implementation using floating point approximations is much faster:

sage: ti = polytopes.truncated_icosidodecahedron(exact=False) # random
sage: ti.f_vector()
(1, 120, 180, 62, 1)
sage: ti.base_ring()
Real Double Field

Its facets are 30 squares, 20 hexagons and 12 decagons:

sage: sum(1 for f in ti.facets() if len(f.vertices()) == 4)
30
sage: sum(1 for f in ti.facets() if len(f.vertices()) == 6)
20
sage: sum(1 for f in ti.facets() if len(f.vertices()) == 10)
12
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truncated_octahedron(backend=None)
Return the truncated octahedron.

The truncated octahedron is an Archimedean solid with 24 vertices and 14 faces. It can be defined as the
convex hull off all the permutations of (0,±1,±2). For more information, see the Wikipedia article Trun-
cated_octahedron.

This is also known as the permutohedron of dimension 3.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: co = polytopes.truncated_octahedron()
sage: co.f_vector()
(1, 24, 36, 14, 1)

Its facets are 6 squares and 8 hexagons:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 4)
6
sage: sum(1 for f in co.facets() if len(f.vertices()) == 6)
8

Some more computation:

sage: co.volume()
32
sage: co.ehrhart_polynomial() # optional - latte_int #␣
→˓needs sage.combinat
32*t^3 + 18*t^2 + 6*t + 1

truncated_one_hundred_twenty_cell(exact=True, backend=None)
Return the truncated 120-cell.

The truncated 120-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 2400 vertices. For
more information see Wikipedia article Truncated 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the
backend cdd ) returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

• exact – (boolean, default True) if True use exact coordinates instead of floating point approxi-
mations.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.truncated_one_hundred_twenty_cell(backend= normaliz ) # not␣
→˓tested - long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 2400 vertices
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truncated_six_hundred_cell(exact=False, backend=None)
Return the truncated 600-cell.

The truncated 600-cell is a 4-dimensional 4-uniform polytope in the 𝐻4 family. It has 1440 vertices. For
more information see Wikipedia article Truncated 600-cell.

Warning: The coordinates are not exact by default. The computation with exact coordinates takes a
huge amount of time.

INPUT:

• exact – (boolean, default False) if True use exact coordinates instead of floating point approxi-
mations

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.truncated_six_hundred_cell() # not tested - long time
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 1440␣
→˓vertices

It is possible to use the backend normaliz to get an exact representation:

sage: polytopes.truncated_six_hundred_cell(exact=True,backend= normaliz ) #␣
→˓not tested - long time ~16sec
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 1440 vertices

truncated_tetrahedron(backend=None)
Return the truncated tetrahedron.

The truncated tetrahedron is anArchimedean solid with 12 vertices and 8 faces. It can be defined as the convex
hull off all the permutations of (±1,±1,±3) with an even number of minus signs. For more information,
see the Wikipedia article Truncated_tetrahedron.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: co = polytopes.truncated_tetrahedron()
sage: co.f_vector()
(1, 12, 18, 8, 1)

Its facets are 4 triangles and 4 hexagons:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
4
sage: sum(1 for f in co.facets() if len(f.vertices()) == 6)
4

Some more computation:

sage: co.volume()
184/3
sage: co.ehrhart_polynomial() # optional - latte_int
184/3*t^3 + 28*t^2 + 26/3*t + 1
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twenty_four_cell(backend=None)
Return the standard 24-cell polytope.

The 24-cell polyhedron (also called icositetrachoron or octaplex) is a regular polyhedron in 4-dimension. For
more information see the Wikipedia article 24-cell.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: p24 = polytopes.twenty_four_cell()
sage: p24.f_vector()
(1, 24, 96, 96, 24, 1)
sage: v = next(p24.vertex_generator())
sage: for adj in v.neighbors(): print(adj)
A vertex at (-1/2, -1/2, -1/2, 1/2)
A vertex at (-1/2, -1/2, 1/2, -1/2)
A vertex at (-1, 0, 0, 0)
A vertex at (-1/2, 1/2, -1/2, -1/2)
A vertex at (0, -1, 0, 0)
A vertex at (0, 0, -1, 0)
A vertex at (0, 0, 0, -1)
A vertex at (1/2, -1/2, -1/2, -1/2)

sage: p24.volume()
2

zonotope(generators, backend=None)
Return the zonotope, or parallelotope, spanned by the generators.

The parallelotope is the multi-dimensional generalization of a parallelogram (2 generators) and a paral-
lelepiped (3 generators).

INPUT:

• generators – a list of vectors of same dimension

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.parallelotope([ (1,0), (0,1) ])
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: polytopes.parallelotope([[1,2,3,4], [0,1,0,7], [3,1,0,2], [0,0,1,0]])
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 16 vertices

sage: K = QuadraticField(2, sqrt2 ) #␣
→˓needs sage.rings.number_field
sage: sqrt2 = K.gen() #␣
→˓needs sage.rings.number_field
sage: P = polytopes.parallelotope([(1, sqrt2), (1, -1)]); P #␣
→˓needs sage.rings.number_field
A 2-dimensional polyhedron in (Number Field in sqrt2 with defining
polynomial x^2 - 2 with sqrt2 = 1.414213562373095?)^2 defined as
the convex hull of 4 vertices

sage.geometry.polyhedron.library.gale_transform_to_polytope(vectors, base_ring=None,
backend=None)

Return the polytope associated to the list of vectors forming a Gale transform.
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This function is the inverse of gale_transform() up to projective transformation.

INPUT:

• vectors – the vectors of the Gale transform

• base_ring – string (default: 𝑁𝑜𝑛𝑒); the base ring to be used for the construction

• backend – string (default: 𝑁𝑜𝑛𝑒); the backend to use to create the polytope

Note: The order of the input vectors will not be preserved.

If the center of the (input) vectors is the origin, the function is much faster and might give a nicer representation
of the polytope.

If this is not the case, the vectors will be scaled (each by a positive scalar) accordingly to obtain the polytope.

See also:

:func`~sage.geometry.polyhedron.library.gale_transform_to_primal`.

EXAMPLES:

sage: from sage.geometry.polyhedron.library import gale_transform_to_polytope
sage: points = polytopes.octahedron().gale_transform()
sage: points
((0, -1), (-1, 0), (1, 1), (1, 1), (-1, 0), (0, -1))
sage: P = gale_transform_to_polytope(points); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: P.vertices()
(A vertex at (-1, 0, 0),
A vertex at (0, -1, 0),
A vertex at (0, 0, -1),
A vertex at (0, 0, 1),
A vertex at (0, 1, 0),
A vertex at (1, 0, 0))

One can specify the base ring:

sage: gale_transform_to_polytope(
....: [(1,1), (-1,-1), (1,0),
....: (-1,0), (1,-1), (-2,1)]).vertices()
(A vertex at (-25, 0, 0),
A vertex at (-15, 50, -60),
A vertex at (0, -25, 0),
A vertex at (0, 0, -25),
A vertex at (16, -35, 54),
A vertex at (24, 10, 31))
sage: gale_transform_to_polytope(
....: [(1,1), (-1,-1), (1,0),
....: (-1,0), (1,-1), (-2,1)],
....: base_ring=RDF).vertices()
(A vertex at (-0.64, 1.4, -2.16),
A vertex at (-0.96, -0.4, -1.24),
A vertex at (0.6, -2.0, 2.4),
A vertex at (1.0, 0.0, 0.0),
A vertex at (0.0, 1.0, 0.0),
A vertex at (0.0, 0.0, 1.0))

One can also specify the backend:
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sage: gale_transform_to_polytope(
....: [(1,1), (-1,-1), (1,0),
....: (-1,0), (1,-1), (-2,1)],
....: backend= field ).backend()
field

sage: gale_transform_to_polytope(
....: [(1,1), (-1,-1), (1,0),
....: (-1,0), (1,-1), (-2,1)],
....: backend= cdd , base_ring=RDF).backend()
cdd

A gale transform corresponds to a polytope if and only if every oriented (linear) hyperplane has at least two vectors
on each side. See Theorem 6.19 of [Zie2007]. If this is not the case, one of two errors is raised.

If there is such a hyperplane with no vector on one side, the vectors are not totally cyclic:

sage: gale_transform_to_polytope([(0,1), (1,1), (1,0), (-1,0)])
Traceback (most recent call last):
...
ValueError: input vectors not totally cyclic

If every hyperplane has at least one vector on each side, then the gale transform corresponds to a point configuration.
It corresponds to a polytope if and only if this point configuration is convex and if and only if every hyperplane
contains at least two vectors of the gale transform on each side.

If this is not the case, an error is raised:

sage: gale_transform_to_polytope([(0,1), (1,1), (1,0), (-1,-1)])
Traceback (most recent call last):
...
ValueError: the gale transform does not correspond to a polytope

sage.geometry.polyhedron.library.gale_transform_to_primal(vectors, base_ring=None,
backend=None)

Return a point configuration dual to a totally cyclic vector configuration.

This is the dehomogenized vector configuration dual to the input. The dual vector configuration is acyclic and can
therefore be dehomogenized as the input is totally cyclic.

INPUT:

• vectors – the ordered vectors of the Gale transform

• base_ring – string (default: 𝑁𝑜𝑛𝑒); the base ring to be used for the construction

• backend – string (default: 𝑁𝑜𝑛𝑒); the backend to be use to construct a polyhedral, used internally in case
the center is not the origin, see Polyhedron()

OUTPUT: An ordered point configuration as list of vectors.

Note: If the center of the (input) vectors is the origin, the function is much faster and might give a nicer represen-
tation of the point configuration.

If this is not the case, the vectors will be scaled (each by a positive scalar) accordingly.

ALGORITHM:

Step 1: If the center of the (input) vectors is not the origin, we do an appropriate transformation to make it so.
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Step 2: We add a row of ones on top of Matrix(vectors). The right kernel of this larger matrix is the dual
configuration space, and a basis of this space provides the dual point configuration.

More concretely, the dual vector configuration (inhomogeneous) is obtained by taking a basis of the right kernel of
Matrix(vectors). If the center of the (input) vectors is the origin, there exists a basis of the right kernel of
the form [[1], [V]], where [1] represents a row of ones. Then, V is a dehomogenization and thus the dual
point configuration.

To extend [1] to a basis of Matrix(vectors), we add a row of ones to Matrix(vectors) and calculate
a basis of the right kernel of the obtained matrix.

REFERENCES:

For more information, see Section 6.4 of [Zie2007] or Definition 2.5.1 and Definition 4.1.35 of
[DLRS2010].

See also:

:func`~sage.geometry.polyhedron.library.gale_transform_to_polytope`.

EXAMPLES:

sage: from sage.geometry.polyhedron.library import gale_transform_to_primal
sage: points = ((0, -1), (-1, 0), (1, 1), (1, 1), (-1, 0), (0, -1))
sage: gale_transform_to_primal(points)
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (-1, 0, 0), (0, -1, 0), (0, 0, -1)]

One can specify the base ring:

sage: p = [(1,1), (-1,-1), (1,0), (-1,0), (1,-1), (-2,1)]
sage: gtpp = gale_transform_to_primal(p); gtpp
[(16, -35, 54),
(24, 10, 31),
(-15, 50, -60),
(-25, 0, 0),
(0, -25, 0),
(0, 0, -25)]
sage: (matrix(RDF, gtpp)/25 +
....: matrix(gale_transform_to_primal(p, base_ring=RDF))).norm() < 1e-15
True

One can also specify the backend to be used internally:

sage: gale_transform_to_primal(p, backend= field )
[(48, -71, 88),
(84, -28, 99),
(-77, 154, -132),
(-55, 0, 0),
(0, -55, 0),
(0, 0, -55)]
sage: gale_transform_to_primal(p, backend= normaliz ) # optional -␣
→˓pynormaliz
[(16, -35, 54),
(24, 10, 31),
(-15, 50, -60),
(-25, 0, 0),
(0, -25, 0),
(0, 0, -25)]

The input vectors should be totally cyclic:
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sage: gale_transform_to_primal([(0,1), (1,0), (1,1), (-1,0)])
Traceback (most recent call last):
...
ValueError: input vectors not totally cyclic

sage: gale_transform_to_primal(
....: [(1,1,0), (-1,-1,0), (1,0,0),
....: (-1,0,0), (1,-1,0), (-2,1,0)], backend= field )
Traceback (most recent call last):
...
ValueError: input vectors not totally cyclic

sage.geometry.polyhedron.library.project_points(*points, **kwds)
Projects a set of points into a vector space of dimension one less.

INPUT:

• points… – the points to project.

• base_ring – (defaults to RDF if keyword is None or not provided in kwds) the base ring to use.

The projection is isometric to the orthogonal projection on the hyperplane made of zero sum vector. Hence, if the
set of points have all equal sums, then their projection is isometric (as a set of points).

The projection used is the matrix given by zero_sum_projection().

EXAMPLES:

sage: from sage.geometry.polyhedron.library import project_points
sage: project_points([2,-1,3,2]) # abs tol 1e-15
[(2.1213203435596424, -2.041241452319315, -0.577350269189626)]
sage: project_points([1,2,3],[3,3,5]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892), (0.0, -1.6329931618554523)]

These projections are compatible with the restriction. More precisely, given a vector 𝑣, the projection of 𝑣 restricted
to the first 𝑖 coordinates will be equal to the projection of the first 𝑖+ 1 coordinates of 𝑣:

sage: project_points([1,2]) # abs tol 1e-15
[(-0.7071067811865475)]
sage: project_points([1,2,3]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892)]
sage: project_points([1,2,3,4]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892, -1.7320508075688776)]
sage: project_points([1,2,3,4,0]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892, -1.7320508075688776, 2.
→˓23606797749979)]

Check that it is (almost) an isometry:

sage: V = list(map(vector, IntegerVectors(n=5, length=3)))
sage: P = project_points(*V)
sage: for i in range(21): #␣
→˓needs sage.combinat
....: for j in range(21):
....: assert abs((V[i]-V[j]).norm() - (P[i]-P[j]).norm()) < 0.00001

Example with exact computation:
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sage: V = [ vector(v) for v in IntegerVectors(n=4, length=2) ]
sage: P = project_points(*V, base_ring=AA) #␣
→˓needs sage.combinat sage.rings.number_field
sage: for i in range(len(V)): #␣
→˓needs sage.combinat sage.rings.number_field
....: for j in range(len(V)):
....: assert (V[i]-V[j]).norm() == (P[i]-P[j]).norm()

sage.geometry.polyhedron.library.zero_sum_projection(d, base_ring=None)
Return a matrix corresponding to the projection on the orthogonal of (1, 1, . . . , 1) in dimension 𝑑.

The projection maps the orthonormal basis (1,−1, 0, . . . , 0)/
√︀
(2), (1, 1,−1, 0, . . . , 0)/

√︀
(3), ldots,

(1, 1, . . . , 1,−1)/
√︀

(𝑑) to the canonical basis in R𝑑−1.

OUTPUT:

A matrix of dimensions (𝑑− 1)× 𝑑 defined over base_ring (default: RDF).

EXAMPLES:

sage: from sage.geometry.polyhedron.library import zero_sum_projection
sage: zero_sum_projection(2)
[ 0.7071067811865475 -0.7071067811865475]
sage: zero_sum_projection(3)
[ 0.7071067811865475 -0.7071067811865475 0.0]
[ 0.4082482904638631 0.4082482904638631 -0.8164965809277261]

Exact computation in AA:

sage: zero_sum_projection(3, base_ring=AA) #␣
→˓needs sage.rings.number_field
[ 0.7071067811865475? -0.7071067811865475? 0]
[ 0.4082482904638630? 0.4082482904638630? -0.8164965809277260?]

2.1.2 Polyhedra

In this module, a polyhedron is a convex (possibly unbounded) set in Euclidean space cut out by a finite set of linear
inequalities and linear equations. Note that the dimension of the polyhedron can be less than the dimension of the ambient
space. There are two complementary representations of the same data:

H(alf-space/Hyperplane)-representation
This describes a polyhedron as the common solution set of a finite number of

• linear inequalities 𝐴�⃗�+ 𝑏 ≥ 0, and

• linear equations 𝐶�⃗�+ 𝑑 = 0.

V(ertex)-representation
The other representation is as the convex hull of vertices (and rays and lines to all for unbounded polyhedra) as
generators. The polyhedron is then the Minkowski sum

𝑃 = conv{𝑣1, . . . , 𝑣𝑘}+
𝑚∑︁
𝑖=1

R+𝑟𝑖 +

𝑛∑︁
𝑗=1

Rℓ𝑗

where

• vertices 𝑣1, . . . , 𝑣𝑘 are a finite number of points. Each vertex is specified by an arbitrary vector, and two
points are equal if and only if the vector is the same.

2.1. Polyhedra 117

../../../../../../../html/en/reference/rings_numerical/sage/rings/real_double.html#sage.rings.real_double.RealDoubleField_class
../../../../../../../html/en/reference/number_fields/sage/rings/qqbar.html#sage.rings.qqbar.AlgebraicRealField


Combinatorial and Discrete Geometry, Release 10.4.rc1

• rays 𝑟1, . . . , 𝑟𝑚 are a finite number of directions (directions of infinity). Each ray is specified by a non-zero
vector, and two rays are equal if and only if the vectors are the same up to rescaling with a positive constant.

• lines ℓ1, . . . , ℓ𝑛 are a finite number of unoriented directions. In other words, a line is equivalent to the set
{𝑟,−𝑟} for a ray 𝑟. Each line is specified by a non-zero vector, and two lines are equivalent if and only if the
vectors are the same up to rescaling with a non-zero (possibly negative) constant.

When specifying a polyhedron, you can input a non-minimal set of inequalities/equations or generating vertices/rays/lines.
The non-minimal generators are usually called points, non-extremal rays, and non-extremal lines, but for our purposes it
is more convenient to always talk about vertices/rays/lines. Sage will remove any superfluous representation objects and
always return a minimal representation. For example, (0, 0) is a superfluous vertex here:

sage: triangle = Polyhedron(vertices=[(0,2), (-1,0), (1,0), (0,0)])
sage: triangle.vertices()
(A vertex at (-1, 0), A vertex at (1, 0), A vertex at (0, 2))

See also:

If one only needs to keep track of a system of linear system of inequalities, one should also consider the class for mixed
integer linear programming.

• Mixed Integer Linear Programming

Unbounded Polyhedra

A polytope is defined as a bounded polyhedron. In this case, the minimal representation is unique and a vertex of the
minimal representation is equivalent to a 0-dimensional face of the polytope. This is why one generally does not distinguish
vertices and 0-dimensional faces. But for non-bounded polyhedra we have to allow for a more general notion of “vertex”
in order to make sense of the Minkowski sum presentation:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: half_plane.Hrepresentation()
(An inequality (1, 0) x + 0 >= 0,)
sage: half_plane.Vrepresentation()
(A line in the direction (0, 1), A ray in the direction (1, 0), A vertex at (0, 0))

Note how we need a point in the above example to anchor the ray and line. But any point on the boundary of the half-plane
would serve the purpose just as well. Sage picked the origin here, but this choice is not unique. Similarly, the choice of
ray is arbitrary but necessary to generate the half-plane.

Finally, note that while rays and lines generate unbounded edges of the polyhedron they are not in a one-to-one corre-
spondence with them. For example, the infinite strip has two infinite edges (1-faces) but only one generating line:

sage: strip = Polyhedron(vertices=[(1,0),(-1,0)], lines=[(0,1)])
sage: strip.Hrepresentation()
(An inequality (1, 0) x + 1 >= 0, An inequality (-1, 0) x + 1 >= 0)
sage: strip.lines()
(A line in the direction (0, 1),)
sage: [f.ambient_V_indices() for f in strip.faces(1)]
[(0, 2), (0, 1)]
sage: for face in strip.faces(1):
....: print(face.ambient_V_indices())
(0, 2)
(0, 1)
sage: for face in strip.faces(1):
....: print("{} = {}".format(face.ambient_V_indices(), face.as_polyhedron().
→˓Vrepresentation()))

(continues on next page)
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(continued from previous page)

(0, 2) = (A line in the direction (0, 1), A vertex at (1, 0))
(0, 1) = (A line in the direction (0, 1), A vertex at (-1, 0))

EXAMPLES:

sage: trunc_quadr = Polyhedron(vertices=[[1,0],[0,1]], rays=[[1,0],[0,1]])
sage: trunc_quadr
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices and 2 rays
sage: v = next(trunc_quadr.vertex_generator()) # the first vertex in the internal␣
→˓enumeration
sage: v
A vertex at (0, 1)
sage: v.vector()
(0, 1)
sage: list(v)
[0, 1]
sage: len(v)
2
sage: v[0] + v[1]
1
sage: v.is_vertex()
True
sage: type(v)
<class sage.geometry.polyhedron.representation.Vertex >
sage: type( v() )
<class sage.modules.vector_rational_dense.Vector_rational_dense >
sage: v.polyhedron()
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices and 2 rays
sage: r = next(trunc_quadr.ray_generator())
sage: r
A ray in the direction (0, 1)
sage: r.vector()
(0, 1)
sage: list( v.neighbors() )
[A ray in the direction (0, 1), A vertex at (1, 0)]

Inequalities 𝐴�⃗�+ 𝑏 ≥ 0 (and, similarly, equations) are specified by a list [b, A]:

sage: Polyhedron(ieqs=[(0,1,0),(0,0,1),(1,-1,-1)]).Hrepresentation()
(An inequality (-1, -1) x + 1 >= 0,
An inequality (1, 0) x + 0 >= 0,
An inequality (0, 1) x + 0 >= 0)

See Polyhedron() for a detailed description of all possible ways to construct a polyhedron.

Base Rings

The base ring of the polyhedron can be specified by the base_ring optional keyword argument. If not specified, a
suitable common base ring for all coordinates and coefficients will be chosen automatically. Important cases are:

• base_ring=QQ uses a fast implementation for exact rational numbers.

• base_ring=ZZ is similar to QQ, but the resulting polyhedron object will have extra methods for lattice polyhedra.

• base_ring=RDF uses floating point numbers, this is fast but susceptible to numerical errors.
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Polyhedra with symmetries often are defined over some algebraic field extension of the rationals. As a simple example,
consider the equilateral triangle whose vertex coordinates involve

√
3. An exact way to work with roots in Sage is the

Algebraic Real Field

sage: triangle = Polyhedron([(0,0), (1,0), (1/2, sqrt(3)/2)], base_ring=AA) #␣
→˓needs sage.rings.number_field sage.symbolic
sage: triangle.Hrepresentation() #␣
→˓needs sage.rings.number_field sage.symbolic
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
An inequality (0, 1.154700538379252?) x + 0 >= 0)

Without specifying the base_ring, the sqrt(3) would be a symbolic ring element and, therefore, the polyhedron
defined over the symbolic ring. This is currently not supported as SR is not exact:

sage: Polyhedron([(0,0), (1,0), (1/2, sqrt(3)/2)]) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
ValueError: no default backend for computations with Symbolic Ring

sage: SR.is_exact() #␣
→˓needs sage.symbolic
False

Even faster than all algebraic real numbers (the field AA) is to take the smallest extension field. For the equilateral triangle,
that would be:

sage: x = polygen(ZZ, x )
sage: K.<sqrt3> = NumberField(x^2 - 3, embedding=AA(3)**(1/2)) #␣
→˓needs sage.rings.number_field
sage: Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) #␣
→˓needs sage.rings.number_field
A 2-dimensional polyhedron in
(Number Field in sqrt3 with defining polynomial x^2 - 3 with sqrt3 = 1.
→˓732050807568878?)^2
defined as the convex hull of 3 vertices

Warning: Be careful when you construct polyhedra with floating point numbers. The only available backend for such
computation is cdd which uses machine floating point numbers which have limited precision. If the input consists
of floating point numbers and the base_ring is not specified, the base ring is set to be the RealField with the
precision given by the minimal bit precision of the input. Then, if the obtained minimum is 53 bits of precision, the
constructor converts automatically the base ring to RDF. Otherwise, it returns an error:
sage: Polyhedron(vertices = [[1.12345678901234, 2.12345678901234]])
A 0-dimensional polyhedron in RDF^2 defined as the convex hull of 1 vertex
sage: Polyhedron(vertices = [[1.12345678901234, 2.123456789012345]])
A 0-dimensional polyhedron in RDF^2 defined as the convex hull of 1 vertex
sage: Polyhedron(vertices = [[1.123456789012345, 2.123456789012345]]) #␣
→˓needs sage.rings.real_mpfr
Traceback (most recent call last):
...
ValueError: the only allowed inexact ring is RDF with backend cdd

The strongly suggested method to input floating point numbers is to specify the base_ring to be RDF:
sage: Polyhedron(vertices = [[1.123456789012345, 2.123456789012345]], base_ring=RDF)
A 0-dimensional polyhedron in RDF^2 defined as the convex hull of 1 vertex
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See also:

Parents for polyhedra

Base classes

Depending on the chosen base ring, a specific class is used to represent the polyhedron object.

See also:

• Base class for polyhedra

• Base class for polyhedra over integers

• Base class for polyhedra over rationals

• Base class for polyhedra over RDF

The most important base class is Base class for polyhedra from which other base classes and backends inherit.

Backends

There are different backends available to deal with polyhedron objects.

See also:

• cdd backend for polyhedra

• field backend for polyhedra

• normaliz backend for polyhedra

• ppl backend for polyhedra

Note: Depending on the backend used, it may occur that different methods are available or not.

Appendix

REFERENCES:

Komei Fukuda’s FAQ in Polyhedral Computation

AUTHORS:

• Marshall Hampton: first version, bug fixes, and various improvements, 2008 and 2009

• Arnaud Bergeron: improvements to triangulation and rendering, 2008

• Sebastien Barthelemy: documentation improvements, 2008

• Volker Braun: refactoring, handle non-compact case, 2009 and 2010

• Andrey Novoseltsev: added lattice_from_incidences, 2010

• Volker Braun: rewrite to use PPL instead of cddlib, 2011

• Volker Braun: Add support for arbitrary subfields of the reals
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sage.geometry.polyhedron.constructor.Polyhedron(vertices=None, rays=None, lines=None,
ieqs=None, eqns=None, ambient_dim=None,
base_ring=None, minimize=True,
verbose=False, backend=None,
mutable=False)

Construct a polyhedron object.

You may either define it with vertex/ray/line or inequalities/equations data, but not both. Redundant data will
automatically be removed (unless minimize=False), and the complementary representation will be computed.

INPUT:

• vertices – iterable of points. Each point can be specified as any iterable container of base_ring
elements. If rays or lines are specified but no vertices, the origin is taken to be the single vertex.

Instead of vertices, the first argument can also be an object that can be converted to a Polyhedron() via
an as_polyhedron() or polyhedron() method. In this case, the following 5 arguments cannot be
provided.

• rays – list of rays. Each ray can be specified as any iterable container of base_ring elements.

• lines – list of lines. Each line can be specified as any iterable container of base_ring elements.

• ieqs – list of inequalities. Each line can be specified as any iterable container of base_ring elements.
An entry equal to [-1,7,3,4] represents the inequality 7𝑥1 + 3𝑥2 + 4𝑥3 ≥ 1.

• eqns – list of equalities. Each line can be specified as any iterable container of base_ring elements. An
entry equal to [-1,7,3,4] represents the equality 7𝑥1 + 3𝑥2 + 4𝑥3 = 1.

• ambient_dim – integer. The ambient space dimension. Usually can be figured out automatically from the
H/Vrepresentation dimensions.

• base_ring – a sub-field of the reals implemented in Sage. The field over which the polyhedron will be
defined. For QQ and algebraic extensions, exact arithmetic will be used. For RDF, floating point numbers will
be used. Floating point arithmetic is faster but might give the wrong result for degenerate input.

• backend – string or None (default). The backend to use. Valid choices are

– cdd : use cdd (backend_cdd) with or R coefficients depending on base_ring

– normaliz : use normaliz (backend_normaliz) with or coefficients depending on
base_ring

– polymake : use polymake (backend_polymake) with ,R orQuadraticField coefficients
depending on base_ring

– ppl : use ppl (backend_ppl) with or coefficients depending on base_ring

– field : use python implementation (backend_field) for any field

Some backends support further optional arguments:

• minimize – boolean (default: True); whether to immediately remove redundant H/V-representation data;
currently not used.

• verbose – boolean (default: False); whether to print verbose output for debugging purposes; only sup-
ported by the cdd and normaliz backends

• mutable – boolean (default: False); whether the polyhedron is mutable

OUTPUT:

The polyhedron defined by the input data.

EXAMPLES:
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Construct some polyhedra:

sage: square_from_vertices = Polyhedron(vertices = [[1, 1], [1, -1], [-1, 1], [-1,
→˓ -1]])
sage: square_from_ieqs = Polyhedron(ieqs = [[1, 0, 1], [1, 1, 0], [1, 0, -1], [1,␣
→˓-1, 0]])
sage: list(square_from_ieqs.vertex_generator())
[A vertex at (1, -1),
A vertex at (1, 1),
A vertex at (-1, 1),
A vertex at (-1, -1)]
sage: list(square_from_vertices.inequality_generator())
[An inequality (1, 0) x + 1 >= 0,
An inequality (0, 1) x + 1 >= 0,
An inequality (-1, 0) x + 1 >= 0,
An inequality (0, -1) x + 1 >= 0]
sage: p = Polyhedron(vertices = [[1.1, 2.2], [3.3, 4.4]], base_ring=RDF)
sage: p.n_inequalities()
2

The same polyhedron given in two ways:

sage: p = Polyhedron(ieqs = [[0,1,0,0],[0,0,1,0]])
sage: p.Vrepresentation()
(A line in the direction (0, 0, 1),
A ray in the direction (1, 0, 0),
A ray in the direction (0, 1, 0),
A vertex at (0, 0, 0))
sage: q = Polyhedron(vertices=[[0,0,0]], rays=[[1,0,0],[0,1,0]], lines=[[0,0,1]])
sage: q.Hrepresentation()
(An inequality (1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0) x + 0 >= 0)

Finally, a more complicated example. Take R6
≥0 with coordinates 𝑎, 𝑏, . . . , 𝑓 and

• The inequality 𝑒+ 𝑏 ≥ 𝑐+ 𝑑

• The inequality 𝑒+ 𝑐 ≥ 𝑏+ 𝑑

• The equation 𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑒+ 𝑓 = 31

sage: positive_coords = Polyhedron(ieqs=[
....: [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],
....: [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
sage: P = Polyhedron(ieqs=positive_coords.inequalities() + (
....: [0,0,1,-1,-1,1,0], [0,0,-1,1,-1,1,0]), eqns=[[-31,1,1,1,1,1,1]])
sage: P
A 5-dimensional polyhedron in QQ^6 defined as the convex hull of 7 vertices
sage: P.dim()
5
sage: P.Vrepresentation()
(A vertex at (31, 0, 0, 0, 0, 0), A vertex at (0, 0, 0, 0, 0, 31),
A vertex at (0, 0, 0, 0, 31, 0), A vertex at (0, 0, 31/2, 0, 31/2, 0),
A vertex at (0, 31/2, 31/2, 0, 0, 0), A vertex at (0, 31/2, 0, 0, 31/2, 0),
A vertex at (0, 0, 0, 31/2, 31/2, 0))

Regular icosahedron, centered at 0 with edge length 2, with vertices given by the cyclic shifts of (0,±1,±(1 +√︀
(5))/2), cf. Wikipedia article Regular_icosahedron. It needs a number field:
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sage: # needs sage.rings.number_field
sage: R0.<r0> = QQ[]
sage: R1.<r1> = NumberField(r0^2-5, embedding=AA(5)**(1/2))
sage: gold = (1+r1)/2
sage: v = [[0, 1, gold], [0, 1, -gold], [0, -1, gold], [0, -1, -gold]]
sage: pp = Permutation((1, 2, 3))
sage: icosah = Polyhedron( #␣
→˓needs sage.combinat
....: [(pp^2).action(w) for w in v] + [pp.action(w) for w in v] + v,
....: base_ring=R1)
sage: len(icosah.faces(2)) #␣
→˓needs sage.combinat
20

When the input contains elements of a Number Field, they require an embedding:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x )
sage: K = NumberField(x^2 - 2, s )
sage: s = K.0
sage: L = NumberField(x^3 - 2, t )
sage: t = L.0
sage: P = Polyhedron(vertices=[[0,s], [t,0]])
Traceback (most recent call last):
...
ValueError: invalid base ring

Converting from a given polyhedron:

sage: cb = polytopes.cube(); cb
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: Polyhedron(cb, base_ring=QQ)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 8 vertices

Converting from other objects to a polyhedron:

sage: quadrant = Cone([(1,0), (0,1)])
sage: Polyhedron(quadrant)
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 2␣
→˓rays
sage: Polyhedron(quadrant, base_ring=QQ)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2␣
→˓rays

sage: o = lattice_polytope.cross_polytope(2)
sage: Polyhedron(o)
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: Polyhedron(o, base_ring=QQ)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices

sage: p = MixedIntegerLinearProgram(solver= PPL )
sage: x, y = p[ x ], p[ y ]
sage: p.add_constraint(x <= 1)
sage: p.add_constraint(x >= -1)
sage: p.add_constraint(y <= 1)
sage: p.add_constraint(y >= -1)
sage: Polyhedron(p, base_ring=ZZ)

(continues on next page)

124 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: Polyhedron(p)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices

sage: # needs sage.combinat
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: h = x + y - 1; h
Hyperplane x + y - 1
sage: Polyhedron(h, base_ring=ZZ)
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 1␣
→˓line
sage: Polyhedron(h)
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1␣
→˓line

Note:

• Once constructed, a Polyhedron object is immutable.

• Although the option base_ring=RDF allows numerical data to be used, it might not give the right answer
for degenerate input data - the results can depend upon the tolerance setting of cdd.

See also:

Library of polytopes

2.1.3 Parents for Polyhedra

sage.geometry.polyhedron.parent.Polyhedra(ambient_space_or_base_ring, ambient_dim,
backend=None, ambient_space=None,
base_ring=None)

Construct a suitable parent class for polyhedra

INPUT:

• base_ring – A ring. Currently there are backends for , , and R.

• ambient_dim – integer. The ambient space dimension.

• ambient_space – A free module.

• backend – string. The name of the backend for computations. There are
several backends implemented:

– backend="ppl" uses the Parma Polyhedra Library

– backend="cdd" uses CDD

– backend="normaliz" uses normaliz

– backend="polymake" uses polymake

– backend="field" a generic Sage implementation

OUTPUT:

A parent class for polyhedra over the given base ring if the backend supports it. If not, the parent base ring can be
larger (for example, instead of ). If there is no implementation at all, a ValueError is raised.
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EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(AA, 3) #␣
→˓needs sage.rings.number_field
Polyhedra in AA^3
sage: Polyhedra(ZZ, 3)
Polyhedra in ZZ^3
sage: type(_)
<class sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category >
sage: Polyhedra(QQ, 3, backend= cdd )
Polyhedra in QQ^3
sage: type(_)
<class sage.geometry.polyhedron.parent.Polyhedra_QQ_cdd_with_category >

CDD does not support integer polytopes directly:

sage: Polyhedra(ZZ, 3, backend= cdd )
Polyhedra in QQ^3

Using a more general form of the constructor:

sage: V = VectorSpace(QQ, 3)
sage: Polyhedra(V) is Polyhedra(QQ, 3)
True
sage: Polyhedra(V, backend= field ) is Polyhedra(QQ, 3, field )
True
sage: Polyhedra(backend= field , ambient_space=V) is Polyhedra(QQ, 3, field )
True

sage: M = FreeModule(ZZ, 2)
sage: Polyhedra(M, backend= ppl ) is Polyhedra(ZZ, 2, ppl )
True

class sage.geometry.polyhedron.parent.Polyhedra_QQ_cdd(base_ring, ambient_dim, backend)
Bases: Polyhedra_base

Element

alias of Polyhedron_QQ_cdd

class sage.geometry.polyhedron.parent.Polyhedra_QQ_normaliz(base_ring, ambient_dim,
backend)

Bases: Polyhedra_base

Element

alias of Polyhedron_QQ_normaliz

class sage.geometry.polyhedron.parent.Polyhedra_QQ_ppl(base_ring, ambient_dim, backend)
Bases: Polyhedra_base

Element

alias of Polyhedron_QQ_ppl

class sage.geometry.polyhedron.parent.Polyhedra_RDF_cdd(base_ring, ambient_dim,
backend)

Bases: Polyhedra_base
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Element

alias of Polyhedron_RDF_cdd

class sage.geometry.polyhedron.parent.Polyhedra_ZZ_normaliz(base_ring, ambient_dim,
backend)

Bases: Polyhedra_base

Element

alias of Polyhedron_ZZ_normaliz

class sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl(base_ring, ambient_dim, backend)
Bases: Polyhedra_base

Element

alias of Polyhedron_ZZ_ppl

class sage.geometry.polyhedron.parent.Polyhedra_base(base_ring, ambient_dim, backend)
Bases: UniqueRepresentation, Parent

Polyhedra in a fixed ambient space.

INPUT:

• base_ring – either ZZ, QQ, or RDF. The base ring of the ambient module/vector space.

• ambient_dim – integer. The ambient space dimension.

• backend – string. The name of the backend for computations. There are
several backends implemented:

– backend="ppl" uses the Parma Polyhedra Library

– backend="cdd" uses CDD

– backend="normaliz" uses normaliz

– backend="polymake" uses polymake

– backend="field" a generic Sage implementation

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ, 3)
Polyhedra in ZZ^3

Hrepresentation_space()

Return the linear space containing the H-representation vectors.

OUTPUT:

A free module over the base ring of dimension ambient_dim() + 1.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ, 2).Hrepresentation_space()
Ambient free module of rank 3 over the principal ideal domain Integer Ring
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Vrepresentation_space()

Return the ambient vector space.

This is the vector space or module containing the Vrepresentation vectors.

OUTPUT:

A free module over the base ring of dimension ambient_dim().

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).Vrepresentation_space()
Vector space of dimension 4 over Rational Field
sage: Polyhedra(QQ, 4).ambient_space()
Vector space of dimension 4 over Rational Field

ambient_dim()

Return the dimension of the ambient space.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 3).ambient_dim()
3

ambient_space()

Return the ambient vector space.

This is the vector space or module containing the Vrepresentation vectors.

OUTPUT:

A free module over the base ring of dimension ambient_dim().

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).Vrepresentation_space()
Vector space of dimension 4 over Rational Field
sage: Polyhedra(QQ, 4).ambient_space()
Vector space of dimension 4 over Rational Field

an_element()

Return a Polyhedron.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).an_element()
A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 5 vertices

backend()

Return the backend.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 3).backend()
ppl
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base_extend(base_ring, backend=None, ambient_dim=None)
Return the base extended parent.

INPUT:

• base_ring, backend – see Polyhedron().

• ambient_dim – if not None change ambient dimension accordingly.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ, 3).base_extend(QQ)
Polyhedra in QQ^3
sage: Polyhedra(ZZ, 3).an_element().base_extend(QQ)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
sage: Polyhedra(QQ, 2).base_extend(ZZ)
Polyhedra in QQ^2

change_ring(base_ring, backend=None, ambient_dim=None)
Return the parent with the new base ring.

INPUT:

• base_ring, backend – see Polyhedron().

• ambient_dim – if not None change ambient dimension accordingly.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ, 3).change_ring(QQ)
Polyhedra in QQ^3
sage: Polyhedra(ZZ, 3).an_element().change_ring(QQ)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices

sage: Polyhedra(RDF, 3).change_ring(QQ).backend()
cdd

sage: Polyhedra(QQ, 3).change_ring(ZZ, ambient_dim=4)
Polyhedra in ZZ^4
sage: Polyhedra(QQ, 3, backend= cdd ).change_ring(QQ, ambient_dim=4).backend()
cdd

empty()

Return the empty polyhedron.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: P = Polyhedra(QQ, 4)
sage: P.empty()
The empty polyhedron in QQ^4
sage: P.empty().is_empty()
True

list()

Return the two polyhedra in ambient dimension 0, raise an error otherwise

EXAMPLES:
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sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: P = Polyhedra(QQ, 3)
sage: P.cardinality()
+Infinity

sage: # needs sage.rings.number_field
sage: P = Polyhedra(AA, 0)
sage: P.category()
Category of finite enumerated polyhedral sets over Algebraic Real Field
sage: P.list()
[The empty polyhedron in AA^0,
A 0-dimensional polyhedron in AA^0 defined as the convex hull of 1 vertex]

sage: P.cardinality()
2

recycle(polyhedron)
Recycle the H/V-representation objects of a polyhedron.

This speeds up creation of new polyhedra by reusing objects. After recycling a polyhedron object, it is not
in a consistent state any more and neither the polyhedron nor its H/V-representation objects may be used any
more.

INPUT:

• polyhedron – a polyhedron whose parent is self.

EXAMPLES:

sage: p = Polyhedron([(0,0),(1,0),(0,1)])
sage: p.parent().recycle(p)

some_elements()

Return a list of some elements of the semigroup.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).some_elements()
[A 3-dimensional polyhedron in QQ^4

defined as the convex hull of 4 vertices,
A 4-dimensional polyhedron in QQ^4
defined as the convex hull of 1 vertex and 4 rays,

A 2-dimensional polyhedron in QQ^4
defined as the convex hull of 2 vertices and 1 ray,

The empty polyhedron in QQ^4]
sage: Polyhedra(ZZ, 0).some_elements()
[The empty polyhedron in ZZ^0,
A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex]

universe()

Return the entire ambient space as polyhedron.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: P = Polyhedra(QQ, 4)
sage: P.universe()
A 4-dimensional polyhedron in QQ^4 defined as

(continues on next page)
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the convex hull of 1 vertex and 4 lines
sage: P.universe().is_universe()
True

zero()

Return the polyhedron consisting of the origin, which is the neutral element for Minkowski addition.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: p = Polyhedra(QQ, 4).zero(); p
A 0-dimensional polyhedron in QQ^4 defined as the convex hull of 1 vertex
sage: p + p == p
True

class sage.geometry.polyhedron.parent.Polyhedra_field(base_ring, ambient_dim, backend)
Bases: Polyhedra_base

Element

alias of Polyhedron_field

class sage.geometry.polyhedron.parent.Polyhedra_normaliz(base_ring, ambient_dim,
backend)

Bases: Polyhedra_base

Element

alias of Polyhedron_normaliz

class sage.geometry.polyhedron.parent.Polyhedra_number_field(base_ring, ambient_dim,
backend)

Bases: Polyhedra_base

Element

alias of Polyhedron_number_field

class sage.geometry.polyhedron.parent.Polyhedra_polymake(base_ring, ambient_dim,
backend)

Bases: Polyhedra_base

Element

alias of Polyhedron_polymake

sage.geometry.polyhedron.parent.does_backend_handle_base_ring(backend)

Return true, if backend can handle base_ring.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import does_backend_handle_base_ring
sage: does_backend_handle_base_ring(QQ, ppl )
True
sage: does_backend_handle_base_ring(QQ[sqrt(5)], ppl ) #␣
→˓needs sage.rings.number_field sage.symbolic
False
sage: does_backend_handle_base_ring(QQ[sqrt(5)], field ) #␣
→˓needs sage.rings.number_field sage.symbolic
True
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2.1.4 H(yperplane) and V(ertex) representation objects for polyhedra

class sage.geometry.polyhedron.representation.Equation(polyhedron_parent)
Bases: Hrepresentation

A linear equation of the polyhedron. That is, the polyhedron is strictly smaller-dimensional than the ambient space,
and contained in this hyperplane. Inherits from Hrepresentation.

contains(Vobj)
Tests whether the hyperplane defined by the equation contains the given vertex/ray/line.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: v = next(p.vertex_generator())
sage: v
A vertex at (0, 0, 0)
sage: a = next(p.equation_generator())
sage: a
An equation (0, 0, 1) x + 0 == 0
sage: a.contains(v)
True

interior_contains(Vobj)
Tests whether the interior of the halfspace (excluding its boundary) defined by the inequality contains the
given vertex/ray/line.

Note: Return False for any equation.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: v = next(p.vertex_generator())
sage: v
A vertex at (0, 0, 0)
sage: a = next(p.equation_generator())
sage: a
An equation (0, 0, 1) x + 0 == 0
sage: a.interior_contains(v)
False

is_equation()

Tests if this object is an equation. By construction, it must be.

type()

Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:

Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or
.LINE.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: repr_obj = next(p.equation_generator())
sage: repr_obj.type()

(continues on next page)
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1
sage: repr_obj.type() == repr_obj.INEQUALITY
False
sage: repr_obj.type() == repr_obj.EQUATION
True
sage: repr_obj.type() == repr_obj.VERTEX
False
sage: repr_obj.type() == repr_obj.RAY
False
sage: repr_obj.type() == repr_obj.LINE
False

class sage.geometry.polyhedron.representation.Hrepresentation(polyhedron_parent)

Bases: PolyhedronRepresentation

The internal base class for H-representation objects of a polyhedron. Inherits from PolyhedronRepresen-
tation.

A()

Return the coefficient vector 𝐴 in 𝐴�⃗�+ 𝑏.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0,],[1,0,-1]])
sage: pH = p.Hrepresentation(2)
sage: pH.A()
(1, 0)

adjacent()

Alias for neighbors().

b()

Return the constant 𝑏 in 𝐴�⃗�+ 𝑏.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0,],[1,0,-1]])
sage: pH = p.Hrepresentation(2)
sage: pH.b()
0

eval(Vobj)

Evaluate the left hand side 𝐴�⃗�+ 𝑏 on the given vertex/ray/line.

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[-1,-1]])
sage: ineq = next(triangle.inequality_generator())
sage: ineq
An inequality (2, -1) x + 1 >= 0
sage: [ ineq.eval(v) for v in triangle.vertex_generator() ]
[0, 0, 3]
sage: [ ineq * v for v in triangle.vertex_generator() ]
[0, 0, 3]

If you pass a vector, it is assumed to be the coordinate vector of a point:
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sage: ineq.eval( vector(ZZ, [3,2]) )
5

incident()

Return a generator for the incident H-representation objects, that is, the vertices/rays/lines satisfying the
(in)equality.

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[-1,-1]])
sage: ineq = next(triangle.inequality_generator())
sage: ineq
An inequality (2, -1) x + 1 >= 0
sage: [ v for v in ineq.incident()]
[A vertex at (-1, -1), A vertex at (0, 1)]
sage: p = Polyhedron(vertices=[[0,0,0],[0,1,0],[0,0,1]], rays=[[1,-1,-1]])
sage: ineq = p.Hrepresentation(2)
sage: ineq
An inequality (1, 0, 1) x + 0 >= 0
sage: [ x for x in ineq.incident() ]
[A vertex at (0, 0, 0),
A vertex at (0, 1, 0),
A ray in the direction (1, -1, -1)]

is_H()

Return True if the object is part of a H-representation (inequality or equation).

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0,],[1,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_H()
True

is_equation()

Return True if the object is an equation of the H-representation.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0,],[1,0,-1]], eqns = [[1,
→˓1,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_equation()
True

is_incident(Vobj)
Return whether the incidence matrix element (Vobj,self) == 1

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0,],[0,1,0,0],
....: [1,-1,0,0],[1,0,-1,0,],[1,0,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_incident(p.Vrepresentation(1))
True
sage: pH.is_incident(p.Vrepresentation(5))
False
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is_inequality()

Return True if the object is an inequality of the H-representation.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0,],[1,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_inequality()
True

neighbors()

Iterate over the adjacent facets (i.e. inequalities).

Only defined for inequalities.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0,],[0,1,0,0],
....: [1,-1,0,0],[1,0,-1,0,],[1,0,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: a = list(pH.neighbors())
sage: a[0]
An inequality (0, -1, 0) x + 1 >= 0
sage: list(a[0])
[1, 0, -1, 0]

repr_pretty(**kwds)
Return a pretty representation of this equality/inequality.

INPUT:

• prefix – a string

• indices – a tuple or other iterable

• latex – a boolean

OUTPUT:

A string

EXAMPLES:

sage: P = Polyhedron(ieqs=[(0, 1, 0, 0), (1, 2, 1, 0)],
....: eqns=[(1, -1, -1, 1)])
sage: for h in P.Hrepresentation():
....: print(h.repr_pretty())
x0 + x1 - x2 == 1
x0 >= 0
2*x0 + x1 >= -1

class sage.geometry.polyhedron.representation.Inequality(polyhedron_parent)
Bases: Hrepresentation

A linear inequality (supporting hyperplane) of the polyhedron. Inherits from Hrepresentation.

contains(Vobj)
Tests whether the halfspace (including its boundary) defined by the inequality contains the given ver-
tex/ray/line.

EXAMPLES:
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sage: p = polytopes.cross_polytope(3)
sage: i1 = next(p.inequality_generator())
sage: [i1.contains(q) for q in p.vertex_generator()]
[True, True, True, True, True, True]
sage: p2 = 3*polytopes.hypercube(3)
sage: [i1.contains(q) for q in p2.vertex_generator()]
[True, True, False, True, False, True, False, False]

interior_contains(Vobj)
Tests whether the interior of the halfspace (excluding its boundary) defined by the inequality contains the
given vertex/ray/line.

EXAMPLES:

sage: p = polytopes.cross_polytope(3)
sage: i1 = next(p.inequality_generator())
sage: [i1.interior_contains(q) for q in p.vertex_generator()]
[False, True, True, False, False, True]
sage: p2 = 3*polytopes.hypercube(3)
sage: [i1.interior_contains(q) for q in p2.vertex_generator()]
[True, True, False, True, False, True, False, False]

If you pass a vector, it is assumed to be the coordinate vector of a point:

sage: P = Polyhedron(vertices=[[1,1],[1,-1],[-1,1],[-1,-1]])
sage: p = vector(ZZ, [1,0] )
sage: [ ieq.interior_contains(p) for ieq in P.inequality_generator() ]
[True, True, False, True]

is_facet_defining_inequality(other)
Check if self defines a facet of other.

INPUT:

• other – a polyhedron

See also:

slack_matrix() incidence_matrix()

EXAMPLES:

sage: P = Polyhedron(vertices=[[0,0,0],[0,1,0]], rays=[[1,0,0]])
sage: P.inequalities()
(An inequality (1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0) x + 0 >= 0,
An inequality (0, -1, 0) x + 1 >= 0)

sage: Q = Polyhedron(ieqs=[[0,1,0,0]])
sage: Q.inequalities()[0].is_facet_defining_inequality(P)
True
sage: Q = Polyhedron(ieqs=[[0,2,0,3]])
sage: Q.inequalities()[0].is_facet_defining_inequality(P)
True
sage: Q = Polyhedron(ieqs=[[0,AA(2).sqrt(),0,3]]) #␣
→˓needs sage.rings.number_field
sage: Q.inequalities()[0].is_facet_defining_inequality(P)
True
sage: Q = Polyhedron(ieqs=[[1,1,0,0]])
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sage: Q.inequalities()[0].is_facet_defining_inequality(P)
False

sage: P = Polyhedron(vertices=[[0,0,0],[0,1,0]], lines=[[1,0,0]])
sage: P.inequalities()
(An inequality (0, 1, 0) x + 0 >= 0, An inequality (0, -1, 0) x + 1 >= 0)
sage: Q = Polyhedron(ieqs=[[0,1,0,0]])
sage: Q.inequalities()[0].is_facet_defining_inequality(P)
False
sage: Q = Polyhedron(ieqs=[[0,-1,0,0]])
sage: Q.inequalities()[0].is_facet_defining_inequality(P)
False
sage: Q = Polyhedron(ieqs=[[0,0,1,3]])
sage: Q.inequalities()[0].is_facet_defining_inequality(P)
True

is_inequality()

Return True since this is, by construction, an inequality.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: a = next(p.inequality_generator())
sage: a.is_inequality()
True

outer_normal()

Return the outer normal vector of self.

OUTPUT:

The normal vector directed away from the interior of the polyhedron.

EXAMPLES:

sage: p = Polyhedron(vertices=[[0,0,0],[1,1,0],[1,2,0]])
sage: a = next(p.inequality_generator())
sage: a.outer_normal()
(1, -1, 0)

type()

Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:

Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or
.LINE.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: repr_obj = next(p.inequality_generator())
sage: repr_obj.type()
0
sage: repr_obj.type() == repr_obj.INEQUALITY
True
sage: repr_obj.type() == repr_obj.EQUATION
False

(continues on next page)
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sage: repr_obj.type() == repr_obj.VERTEX
False
sage: repr_obj.type() == repr_obj.RAY
False
sage: repr_obj.type() == repr_obj.LINE
False

class sage.geometry.polyhedron.representation.Line(polyhedron_parent)

Bases: Vrepresentation

A line (Minkowski summand ≃ R) of the polyhedron. Inherits from Vrepresentation.

evaluated_on(Hobj)

Return 𝐴ℓ⃗

EXAMPLES:

sage: p = Polyhedron(ieqs = [[1, 0, 0, 1],[1,1,0,0]])
sage: a = next(p.line_generator())
sage: h = next(p.inequality_generator())
sage: a.evaluated_on(h)
0

homogeneous_vector(base_ring=None)
Return homogeneous coordinates for this line.

Since a line is given by a direction, this is the vector with a 0 appended.

INPUT:

• base_ring – the base ring of the vector.

EXAMPLES:

sage: P = Polyhedron(vertices=[(2,0)], rays=[(1,0)], lines=[(3,2)])
sage: P.lines()[0].homogeneous_vector()
(3, 2, 0)
sage: P.lines()[0].homogeneous_vector(RDF)
(3.0, 2.0, 0.0)

is_line()

Tests if the object is a line. By construction it must be.

type()

Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:

Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or
.LINE.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[1, 0, 0, 1],[1,1,0,0]])
sage: repr_obj = next(p.line_generator())
sage: repr_obj.type()
4
sage: repr_obj.type() == repr_obj.INEQUALITY

(continues on next page)
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False
sage: repr_obj.type() == repr_obj.EQUATION
False
sage: repr_obj.type() == repr_obj.VERTEX
False
sage: repr_obj.type() == repr_obj.RAY
False
sage: repr_obj.type() == repr_obj.LINE
True

class sage.geometry.polyhedron.representation.PolyhedronRepresentation

Bases: SageObject

The internal base class for all representation objects of Polyhedron (vertices/rays/lines and inequalities/equa-
tions)

Note: You should not (and cannot) instantiate it yourself. You can only obtain them from a Polyhedron() class.

EQUATION = 1

INEQUALITY = 0

LINE = 4

RAY = 3

VERTEX = 2

count(i)
Count the number of occurrences of i in the coordinates.

INPUT:

• i – Anything.

OUTPUT:

Integer. The number of occurrences of i in the coordinates.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,1,1,2,1)])
sage: v = p.Vrepresentation(0); v
A vertex at (0, 1, 1, 2, 1)
sage: v.count(1)
3

index()

Return an arbitrary but fixed number according to the internal storage order.

Note: H-representation and V-representation objects are enumerated independently. That is, amongst all
vertices/rays/lines there will be one with index()==0, and amongst all inequalities/equations there will be
one with index()==0, unless the polyhedron is empty or spans the whole space.

EXAMPLES:
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sage: s = Polyhedron(vertices=[[1],[-1]])
sage: first_vertex = next(s.vertex_generator())
sage: first_vertex.index()
0
sage: first_vertex == s.Vrepresentation(0)
True

polyhedron()

Return the underlying polyhedron.

vector(base_ring=None)
Return the vector representation of the H/V-representation object.

INPUT:

• base_ring – the base ring of the vector.

OUTPUT:

For a V-representation object, a vector of length ambient_dim(). For a H-representation object, a vector
of length ambient_dim() + 1.

EXAMPLES:

sage: s = polytopes.cuboctahedron()
sage: v = next(s.vertex_generator())
sage: v
A vertex at (-1, -1, 0)
sage: v.vector()
(-1, -1, 0)
sage: v()
(-1, -1, 0)
sage: type(v())
<class sage.modules.vector_integer_dense.Vector_integer_dense >

Conversion to a different base ring can be forced with the optional argument:

sage: v.vector(RDF)
(-1.0, -1.0, 0.0)
sage: vector(RDF, v)
(-1.0, -1.0, 0.0)

class sage.geometry.polyhedron.representation.Ray(polyhedron_parent)
Bases: Vrepresentation

A ray of the polyhedron. Inherits from Vrepresentation.

evaluated_on(Hobj)
Return 𝐴�⃗�

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: a = next(p.ray_generator())
sage: h = next(p.inequality_generator())
sage: a.evaluated_on(h)
0
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homogeneous_vector(base_ring=None)
Return homogeneous coordinates for this ray.

Since a ray is given by a direction, this is the vector with a 0 appended.

INPUT:

• base_ring – the base ring of the vector.

EXAMPLES:

sage: P = Polyhedron(vertices=[(2,0)], rays=[(1,0)], lines=[(3,2)])
sage: P.rays()[0].homogeneous_vector()
(1, 0, 0)
sage: P.rays()[0].homogeneous_vector(RDF)
(1.0, 0.0, 0.0)

is_ray()

Tests if this object is a ray. Always True by construction.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: a = next(p.ray_generator())
sage: a.is_ray()
True

type()

Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:

Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or
.LINE.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: repr_obj = next(p.ray_generator())
sage: repr_obj.type()
3
sage: repr_obj.type() == repr_obj.INEQUALITY
False
sage: repr_obj.type() == repr_obj.EQUATION
False
sage: repr_obj.type() == repr_obj.VERTEX
False
sage: repr_obj.type() == repr_obj.RAY
True
sage: repr_obj.type() == repr_obj.LINE
False

class sage.geometry.polyhedron.representation.Vertex(polyhedron_parent)

Bases: Vrepresentation

A vertex of the polyhedron. Inherits from Vrepresentation.

evaluated_on(Hobj)
Return 𝐴�⃗�+ 𝑏

EXAMPLES:
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sage: p = polytopes.hypercube(3)
sage: v = next(p.vertex_generator())
sage: h = next(p.inequality_generator())
sage: v
A vertex at (1, -1, -1)
sage: h
An inequality (-1, 0, 0) x + 1 >= 0
sage: v.evaluated_on(h)
0

homogeneous_vector(base_ring=None)
Return homogeneous coordinates for this vertex.

Since a vertex is given by an affine point, this is the vector with a 1 appended.

INPUT:

• base_ring – the base ring of the vector.

EXAMPLES:

sage: P = Polyhedron(vertices=[(2,0)], rays=[(1,0)], lines=[(3,2)])
sage: P.vertices()[0].homogeneous_vector()
(2, 0, 1)
sage: P.vertices()[0].homogeneous_vector(RDF)
(2.0, 0.0, 1.0)

is_integral()

Return whether the coordinates of the vertex are all integral.

OUTPUT:

Boolean.

EXAMPLES:

sage: p = Polyhedron([(1/2,3,5), (0,0,0), (2,3,7)])
sage: [ v.is_integral() for v in p.vertex_generator() ]
[True, False, True]

is_vertex()

Tests if this object is a vertex. By construction it always is.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: a = next(p.vertex_generator())
sage: a.is_vertex()
True

type()

Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:

Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or
.LINE.

EXAMPLES:
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sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: repr_obj = next(p.vertex_generator())
sage: repr_obj.type()
2
sage: repr_obj.type() == repr_obj.INEQUALITY
False
sage: repr_obj.type() == repr_obj.EQUATION
False
sage: repr_obj.type() == repr_obj.VERTEX
True
sage: repr_obj.type() == repr_obj.RAY
False
sage: repr_obj.type() == repr_obj.LINE
False

class sage.geometry.polyhedron.representation.Vrepresentation(polyhedron_parent)
Bases: PolyhedronRepresentation

The base class for V-representation objects of a polyhedron. Inherits from PolyhedronRepresentation.

adjacent()

Alias for neighbors().

incident()

Return a generator for the equations/inequalities that are satisfied on the given vertex/ray/line.

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[-1,-1]])
sage: ineq = next(triangle.inequality_generator())
sage: ineq
An inequality (2, -1) x + 1 >= 0
sage: [ v for v in ineq.incident()]
[A vertex at (-1, -1), A vertex at (0, 1)]
sage: p = Polyhedron(vertices=[[0,0,0],[0,1,0],[0,0,1]], rays=[[1,-1,-1]])
sage: ineq = p.Hrepresentation(2)
sage: ineq
An inequality (1, 0, 1) x + 0 >= 0
sage: [ x for x in ineq.incident() ]
[A vertex at (0, 0, 0),
A vertex at (0, 1, 0),
A ray in the direction (1, -1, -1)]

is_V()

Return True if the object is part of a V-representation (a vertex, ray, or line).

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0],[1,0],[0,3],[1,3]])
sage: v = next(p.vertex_generator())
sage: v.is_V()
True

is_incident(Hobj)
Return whether the incidence matrix element (self,Hobj) == 1

EXAMPLES:
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sage: p = polytopes.hypercube(3)
sage: h1 = next(p.inequality_generator())
sage: h1
An inequality (-1, 0, 0) x + 1 >= 0
sage: v1 = next(p.vertex_generator())
sage: v1
A vertex at (1, -1, -1)
sage: v1.is_incident(h1)
True

is_line()

Return True if the object is a line of the V-representation. This method is over-ridden by the corresponding
method in the derived class Line.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[1, 0, 0, 0, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0,␣
→˓0]])
sage: line1 = next(p.line_generator())
sage: line1.is_line()
True
sage: v1 = next(p.vertex_generator())
sage: v1.is_line()
False

is_ray()

Return True if the object is a ray of the V-representation. This method is over-ridden by the corresponding
method in the derived class Ray.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[1, 0, 0, 0, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0,␣
→˓0]])
sage: r1 = next(p.ray_generator())
sage: r1.is_ray()
True
sage: v1 = next(p.vertex_generator())
sage: v1
A vertex at (-1, -1, 0, -1)
sage: v1.is_ray()
False

is_vertex()

Return True if the object is a vertex of the V-representation. This method is over-ridden by the corresponding
method in the derived class Vertex.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0],[1,0],[0,3],[1,3]])
sage: v = next(p.vertex_generator())
sage: v.is_vertex()
True
sage: p = Polyhedron(ieqs = [[1, 0, 0, 0, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0,␣
→˓0]])
sage: r1 = next(p.ray_generator())
sage: r1.is_vertex()
False

144 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

neighbors()

Return a generator for the adjacent vertices/rays/lines.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0],[1,0],[0,3],[1,4]])
sage: v = next(p.vertex_generator())
sage: next(v.neighbors())
A vertex at (0, 3)

sage.geometry.polyhedron.representation.repr_pretty(coefficients, type, prefix='x',
indices=None, latex=False, style='>=',
split=False)

Return a pretty representation of equation/inequality represented by the coefficients.

INPUT:

• coefficients – a tuple or other iterable

• type – either 0 (PolyhedronRepresentation.INEQUALITY) or 1
(PolyhedronRepresentation.EQUATION)

• prefix – a string (default: x)

• indices – a tuple or other iterable

• latex – a boolean

• split – a boolean; (Default: False). If set to True,
the output is split into a 3-tuple containing the left-hand side, the relation, and the right-hand side of the
object.

• style – either "positive" (making all coefficients positive), or
"<=" or ">=".

OUTPUT:

A string or 3-tuple of strings (depending on split).

EXAMPLES:

sage: from sage.geometry.polyhedron.representation import repr_pretty
sage: from sage.geometry.polyhedron.representation import PolyhedronRepresentation
sage: print(repr_pretty((0, 1, 0, 0), PolyhedronRepresentation.INEQUALITY))
x0 >= 0
sage: print(repr_pretty((1, 2, 1, 0), PolyhedronRepresentation.INEQUALITY))
2*x0 + x1 >= -1
sage: print(repr_pretty((1, -1, -1, 1), PolyhedronRepresentation.EQUATION))
-x0 - x1 + x2 == -1

2.1.5 Functions for plotting polyhedra

class sage.geometry.polyhedron.plot.Projection(polyhedron, proj=<function
projection_func_identity>)

Bases: SageObject

The projection of a Polyhedron.

This class keeps track of the necessary data to plot the input polyhedron.
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coord_index_of(v)
Convert a coordinate vector to its internal index.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj.coord_index_of(vector((1,1,1)))
2

coord_indices_of(v_list)

Convert list of coordinate vectors to the corresponding list of internal indices.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj.coord_indices_of([vector((1,1,1)), vector((1,-1,1))])
[2, 3]

coordinates_of(coord_index_list)
Given a list of indices, return the projected coordinates.

EXAMPLES:

sage: p = polytopes.simplex(4, project=True).projection()
sage: p.coordinates_of([1])
[[-0.7071067812, 0.4082482905, 0.2886751346, 0.2236067977]]

identity()

Return the identity projection of the polyhedron.

EXAMPLES:

sage: # needs sage.groups
sage: p = polytopes.icosahedron(exact=False)
sage: from sage.geometry.polyhedron.plot import Projection
sage: pproj = Projection(p)
sage: ppid = pproj.identity()
sage: ppid.dimension
3

render_0d(point_opts=None, line_opts=None, polygon_opts=None)
Return 0d rendering of the projection of a polyhedron into 2-dimensional ambient space.

INPUT:

See plot().

OUTPUT:

A 2-d graphics object.

EXAMPLES:

sage: print(Polyhedron([]).projection().render_0d().description()) #␣
→˓needs sage.plot

sage: P = Polyhedron(ieqs=[(1,)])

(continues on next page)
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sage: print(P.projection().render_0d().description()) #␣
→˓needs sage.plot
Point set defined by 1 point(s): [(0.0, 0.0)]

render_1d(point_opts=None, line_opts=None, polygon_opts=None)
Return 1d rendering of the projection of a polyhedron into 2-dimensional ambient space.

INPUT:

See plot().

OUTPUT:

A 2-d graphics object.

EXAMPLES:

sage: Polyhedron([(0,), (1,)]).projection().render_1d() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

render_2d(point_opts=None, line_opts=None, polygon_opts=None)
Return 2d rendering of the projection of a polyhedron into 2-dimensional ambient space.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1,1]], rays=[[1,1]])
sage: q1 = p1.projection()
sage: p2 = Polyhedron(vertices=[[1,0], [0,1], [0,0]])
sage: q2 = p2.projection()
sage: p3 = Polyhedron(vertices=[[1,2]])
sage: q3 = p3.projection()
sage: p4 = Polyhedron(vertices=[[2,0]], rays=[[1,-1]], lines=[[1,1]])
sage: q4 = p4.projection()
sage: q1.plot() + q2.plot() + q3.plot() + q4.plot() #␣
→˓needs sage.plot
Graphics object consisting of 18 graphics primitives

render_3d(point_opts=None, line_opts=None, polygon_opts=None)
Return 3d rendering of a polyhedron projected into 3-dimensional ambient space.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1,1,1]], rays=[[1,1,1]])
sage: p2 = Polyhedron(vertices=[[2,0,0], [0,2,0], [0,0,2]])
sage: p3 = Polyhedron(vertices=[[1,0,0], [0,1,0], [0,0,1]],
....: rays=[[-1,-1,-1]])
sage: (p1.projection().plot() + p2.projection().plot() #␣
→˓needs sage.plot
....: + p3.projection().plot())
Graphics3d Object

It correctly handles various degenerate cases:

sage: # needs sage.plot
sage: Polyhedron(lines=[[1,0,0], [0,1,0], [0,0,1]]).plot() # whole space
Graphics3d Object
sage: Polyhedron(vertices=[[1,1,1]], rays=[[1,0,0]],

(continues on next page)
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....: lines=[[0,1,0], [0,0,1]]).plot() # half space
Graphics3d Object
sage: Polyhedron(lines=[[0,1,0], [0,0,1]],
....: vertices=[[1,1,1]]).plot() # R^2 in R^3
Graphics3d Object
sage: Polyhedron(rays=[[0,1,0], [0,0,1]], # quadrant wedge in R^2
....: lines=[[1,0,0]]).plot()
Graphics3d Object
sage: Polyhedron(rays=[[0,1,0]], # upper half plane in R^3
....: lines=[[1,0,0]]).plot()
Graphics3d Object
sage: Polyhedron(lines=[[1,0,0]]).plot() # R^1 in R^2
Graphics3d Object
sage: Polyhedron(rays=[[0,1,0]]).plot() # Half-line in R^3
Graphics3d Object
sage: Polyhedron(vertices=[[1,1,1]]).plot() # point in R^3
Graphics3d Object

The origin is not included, if it is not in the polyhedron (Issue #23555):

sage: Q = Polyhedron([[100],[101]])
sage: P = Q*Q*Q; P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: p = P.plot() #␣
→˓needs sage.plot
sage: p.bounding_box() #␣
→˓needs sage.plot
((100.0, 100.0, 100.0), (101.0, 101.0, 101.0))

Plot 3d polytope with rainbow colors:

sage: polytopes.hypercube(3).plot(polygon= rainbow , alpha=0.4) #␣
→˓needs sage.plot
Graphics3d Object

render_fill_2d(**kwds)
Return the filled interior (a polygon) of a polyhedron in 2d.

EXAMPLES:

sage: cps = [i^3 for i in srange(-2, 2, 1/5)]
sage: p = Polyhedron(vertices=[[(t^2-1)/(t^2+1), 2*t/(t^2+1)] for t in cps])
sage: proj = p.projection()
sage: filled_poly = proj.render_fill_2d() #␣
→˓needs sage.plot
sage: filled_poly.axes_width() #␣
→˓needs sage.plot
0.8

render_line_1d(**kwds)

Return the line of a polyhedron in 1d.

INPUT:

• **kwds – options passed through to line2d().

OUTPUT:
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A 2-d graphics object.

EXAMPLES:

sage: outline = polytopes.hypercube(1).projection().render_line_1d() #␣
→˓needs sage.plot
sage: outline._objects[0] #␣
→˓needs sage.plot
Line defined by 2 points

render_outline_2d(**kwds)
Return the outline (edges) of a polyhedron in 2d.

EXAMPLES:

sage: penta = polytopes.regular_polygon(5) #␣
→˓needs sage.rings.number_field
sage: outline = penta.projection().render_outline_2d() #␣
→˓needs sage.plot sage.rings.number_field
sage: outline._objects[0] #␣
→˓needs sage.plot sage.rings.number_field
Line defined by 2 points

render_points_1d(**kwds)
Return the points of a polyhedron in 1d.

INPUT:

• **kwds – options passed through to point2d().

OUTPUT:

A 2-d graphics object.

EXAMPLES:

sage: cube1 = polytopes.hypercube(1)
sage: proj = cube1.projection()
sage: points = proj.render_points_1d() #␣
→˓needs sage.plot
sage: points._objects #␣
→˓needs sage.plot
[Point set defined by 2 point(s)]

render_points_2d(**kwds)

Return the points of a polyhedron in 2d.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: hex = polytopes.regular_polygon(6)
sage: proj = hex.projection()
sage: hex_points = proj.render_points_2d() #␣
→˓needs sage.plot
sage: hex_points._objects #␣
→˓needs sage.plot
[Point set defined by 6 point(s)]

render_solid_3d(**kwds)

Return solid 3d rendering of a 3d polytope.
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EXAMPLES:

sage: p = polytopes.hypercube(3).projection()
sage: p_solid = p.render_solid_3d(opacity=.7) #␣
→˓needs sage.plot
sage: type(p_solid) #␣
→˓needs sage.plot
<class sage.plot.plot3d.index_face_set.IndexFaceSet >

render_vertices_3d(**kwds)
Return the 3d rendering of the vertices.

EXAMPLES:

sage: p = polytopes.cross_polytope(3)
sage: proj = p.projection()
sage: verts = proj.render_vertices_3d() #␣
→˓needs sage.plot
sage: verts.bounding_box() #␣
→˓needs sage.plot
((-1.0, -1.0, -1.0), (1.0, 1.0, 1.0))

render_wireframe_3d(**kwds)
Return the 3d wireframe rendering.

EXAMPLES:

sage: cube = polytopes.hypercube(3)
sage: cube_proj = cube.projection()
sage: wire = cube_proj.render_wireframe_3d() #␣
→˓needs sage.plot
sage: print(wire.tachyon().split( \n )[77]) # for testing #␣
→˓needs sage.plot
FCylinder base 1.0 1.0 -1.0 apex -1.0 1.0 -1.0 rad 0.005 texture...

schlegel(facet=None, position=None)
Return the Schlegel projection.

• The facet is orthonormally transformed into its affine hull.

• The position specifies a point coming out of the barycenter of the facet from which the other vertices
will be projected into the facet.

INPUT:

• facet – a PolyhedronFace. The facet into which the Schlegel diagram is created. The default is the
first facet.

• position – a positive number. Determines a relative distance from the barycenter of facet. A value
close to 0 will place the projection point close to the facet and a large value further away. If the given
value is too large, an error is returned. If no position is given, it takes the midpoint of the possible point
of views along a line spanned by the barycenter of the facet and a valid point outside the facet.

EXAMPLES:

sage: cube4 = polytopes.hypercube(4)
sage: from sage.geometry.polyhedron.plot import Projection
sage: Projection(cube4).schlegel()
The projection of a polyhedron into 3 dimensions

(continues on next page)
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sage: _.plot() #␣
→˓needs sage.plot
Graphics3d Object

The 4-cube with a truncated vertex seen into the resulting tetrahedron facet:

sage: tcube4 = cube4.face_truncation(cube4.faces(0)[0])
sage: tcube4.facets()[4]
A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 4␣
→˓vertices
sage: into_tetra = Projection(tcube4).schlegel(tcube4.facets()[4]) #␣
→˓needs sage.symbolic
sage: into_tetra.plot() #␣
→˓needs sage.plot sage.symbolic
Graphics3d Object

Taking a larger value for the position changes the image:

sage: into_tetra_far = Projection(tcube4).schlegel(tcube4.facets()[4], 4) #␣
→˓needs sage.symbolic
sage: into_tetra_far.plot() #␣
→˓needs sage.plot sage.symbolic
Graphics3d Object

A value which is too large or negative give a projection point that sees more than one facet resulting in a error:

sage: Projection(tcube4).schlegel(tcube4.facets()[4], 5)
Traceback (most recent call last):
...
ValueError: the chosen position is too large
sage: Projection(tcube4).schlegel(tcube4.facets()[4], -1)
Traceback (most recent call last):
...
ValueError: position should be a positive number

stereographic(projection_point=None)
Return the stereographic projection.

INPUT:

• projection_point – The projection point. This must be distinct from the polyhedron’s vertices.
Default is (1, 0, . . . , 0)

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import Projection
sage: proj = Projection(polytopes.buckyball()); proj # long time
The projection of a polyhedron into 3 dimensions
sage: proj.stereographic([5,2,3]).plot() # long time #␣
→˓needs sage.plot
Graphics object consisting of 123 graphics primitives
sage: Projection(polytopes.twenty_four_cell()).stereographic([2,0,0,0])
The projection of a polyhedron into 3 dimensions

tikz(view=[0, 0, 1], angle=0, scale=1, edge_color='blue!95!black', facet_color='blue!95!black', opacity=0.8,
vertex_color='green', axis=False, output_type=None)

Return a tikz picture of self as a string or as a TikzPicture according to a projection view and an
angle angle obtained via the threejs viewer.
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INPUT:

• view – list (default: [0,0,1]) representing the rotation axis (see note below).

• angle – integer (default: 0) angle of rotation in degree from 0 to 360 (see note below).

• scale – integer (default: 1) specifying the scaling of the tikz picture.

• edge_color – string (default: ‘blue!95!black’) representing colors which tikz recognize.

• facet_color – string (default: ‘blue!95!black’) representing colors which tikz recognize.

• vertex_color – string (default: ‘green’) representing colors which tikz recognize.

• opacity – real number (default: 0.8) between 0 and 1 giving the opacity of the front facets.

• axis – Boolean (default: False) draw the axes at the origin or not.

• output_type – string (default: None), valid values are None (deprecated), LatexExpr and
TikzPicture , whether to return a LatexExpr object (which inherits from Python str) or a

TikzPicture object from module sage.misc.latex_standalone

OUTPUT:

LatexExpr object or TikzPicture object

Note: The inputs view and angle can be obtained by visualizing it using .show(aspect_ratio=1).
This will open an interactive view in your default browser, where you can rotate the polytope. Once the desired
view angle is found, click on the information icon in the lower right-hand corner and select Get Viewpoint.
This will copy a string of the form ‘[x,y,z],angle’ to your local clipboard. Go back to Sage and type Img =
P.projection().tikz([x,y,z],angle).

The inputs view and angle can also be obtained from the viewer Jmol:

1) Right click on the image
2) Select Console
3) Select the tab State
4) Scroll to the line moveto

It reads something like:

moveto 0.0 {x y z angle} Scale

The view is then [x,y,z] and angle is angle. The following number is the scale.

Jmol performs a rotation of angle degrees along the vector [x,y,z] and show the result from the z-axis.

EXAMPLES:

sage: # needs sage.plot sage.rings.number_field
sage: P1 = polytopes.small_rhombicuboctahedron()
sage: Image1 = P1.projection().tikz([1,3,5], 175, scale=4,
....: output_type= TikzPicture )
sage: type(Image1)
<class sage.misc.latex_standalone.TikzPicture >
sage: Image1
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%

[x={(-0.939161cm, 0.244762cm)},
y={(0.097442cm, -0.482887cm)},

(continues on next page)
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z={(0.329367cm, 0.840780cm)},
scale=4.000000,

...
Use print to see the full content.
...
\node[vertex] at (-2.41421, 1.00000, -1.00000) {};
\node[vertex] at (-2.41421, -1.00000, 1.00000) {};
%%
%%
\end{tikzpicture}
\end{document}
sage: _ = Image1.tex( polytope-tikz1.tex ) # not tested
sage: _ = Image1.png( polytope-tikz1.png ) # not tested
sage: _ = Image1.pdf( polytope-tikz1.pdf ) # not tested
sage: _ = Image1.svg( polytope-tikz1.svg ) # not tested

A second example:

sage: P2 = Polyhedron(vertices=[[1, 1], [1, 2], [2, 1]])
sage: Image2 = P2.projection().tikz(scale=3, edge_color= blue!95!black ,
....: facet_color= orange!95!black , opacity=0.
→˓4,
....: vertex_color= yellow , axis=True,
....: output_type= TikzPicture )
sage: Image2
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%

[scale=3.000000,
back/.style={loosely dotted, thin},
edge/.style={color=blue!95!black, thick},
facet/.style={fill=orange!95!black,fill opacity=0.400000},

...
Use print to see the full content.
...
\node[vertex] at (1.00000, 2.00000) {};
\node[vertex] at (2.00000, 1.00000) {};
%%
%%
\end{tikzpicture}
\end{document}

The second example using a LatexExpr as output type:

sage: # needs sage.plot
sage: Image2 = P2.projection().tikz(scale=3, edge_color= blue!95!black ,
....: facet_color= orange!95!black , opacity=0.
→˓4,
....: vertex_color= yellow , axis=True,
....: output_type= LatexExpr )
sage: type(Image2)
<class sage.misc.latex.LatexExpr >
sage: print( \n .join(Image2.splitlines()[:4]))
\begin{tikzpicture}%

[scale=3.000000,
back/.style={loosely dotted, thin},
edge/.style={color=blue!95!black, thick},

(continues on next page)
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sage: with open( polytope-tikz2.tex , w ) as f: # not tested
....: _ = f.write(Image2)

A third example:

sage: # needs sage.plot
sage: P3 = Polyhedron(vertices=[[-1, -1, 2], [-1, 2, -1], [2, -1, -1]]); P3
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: Image3 = P3.projection().tikz([0.5, -1, -0.1], 55, scale=3,
....: edge_color= blue!95!black ,
....: facet_color= orange!95!black , opacity=0.
→˓7,
....: vertex_color= yellow , axis=True,
....: output_type= TikzPicture )
sage: Image3
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%

[x={(0.658184cm, -0.242192cm)},
y={(-0.096240cm, 0.912008cm)},
z={(-0.746680cm, -0.331036cm)},
scale=3.000000,

...
Use print to see the full content.
...
\node[vertex] at (-1.00000, 2.00000, -1.00000) {};
\node[vertex] at (2.00000, -1.00000, -1.00000) {};
%%
%%
\end{tikzpicture}
\end{document}
sage: _ = Image3.tex( polytope-tikz3.tex ) # not tested
sage: _ = Image3.png( polytope-tikz3.png ) # not tested
sage: _ = Image3.pdf( polytope-tikz3.pdf ) # not tested
sage: _ = Image3.svg( polytope-tikz3.svg ) # not tested

A fourth example:

sage: P = Polyhedron(vertices=[[1,1,0,0], [1,2,0,0],
....: [2,1,0,0], [0,0,1,0], [0,0,0,1]]); P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: P.projection().tikz(output_type= TikzPicture )
Traceback (most recent call last):
...
NotImplementedError: The polytope has to live in 2 or 3 dimensions.

Todo: Make it possible to draw Schlegel diagram for 4-polytopes.

sage: P = Polyhedron(vertices=[[1,1,0,0], [1,2,0,0],
....: [2,1,0,0], [0,0,1,0], [0,0,0,1]]); P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: P.projection().tikz(output_type= TikzPicture )
Traceback (most recent call last):
...
NotImplementedError: The polytope has to live in 2 or 3 dimensions.
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Make it possible to draw 3-polytopes living in higher dimension.

class sage.geometry.polyhedron.plot.ProjectionFuncSchlegel(facet, projection_point)
Bases: object

The Schlegel projection from the given input point.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import ProjectionFuncSchlegel
sage: fcube = polytopes.hypercube(4)
sage: facet = fcube.facets()[0]
sage: proj = ProjectionFuncSchlegel(facet,[0,-1.5,0,0])
sage: proj([0,0,0,0])[0]
1.0

class sage.geometry.polyhedron.plot.ProjectionFuncStereographic(projection_point)

Bases: object

The stereographic (or perspective) projection onto a codimension-1 linear subspace with respect to a sphere centered
at the origin.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import ProjectionFuncStereographic
sage: cube = polytopes.hypercube(3).vertices()
sage: proj = ProjectionFuncStereographic([1.2, 3.4, 5.6])
sage: ppoints = [proj(vector(x)) for x in cube]
sage: ppoints[5]
(-0.0918273..., -0.036375...)

sage.geometry.polyhedron.plot.cyclic_sort_vertices_2d(Vlist)
Return the vertices/rays in cyclic order if possible.

Note: This works if and only if each vertex/ray is adjacent to exactly two others. For example, any 2-dimensional
polyhedron satisfies this.

See vertex_adjacency_matrix() for a discussion of “adjacent”.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import cyclic_sort_vertices_2d
sage: square = Polyhedron([[1,0],[-1,0],[0,1],[0,-1]])
sage: vertices = [v for v in square.vertex_generator()]
sage: vertices
[A vertex at (-1, 0),
A vertex at (0, -1),
A vertex at (0, 1),
A vertex at (1, 0)]
sage: cyclic_sort_vertices_2d(vertices)
[A vertex at (1, 0),
A vertex at (0, -1),
A vertex at (-1, 0),
A vertex at (0, 1)]

Rays are allowed, too:
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sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,
→˓1)])
sage: P.adjacency_matrix()
[0 1 0 1 0]
[1 0 1 0 0]
[0 1 0 0 1]
[1 0 0 0 1]
[0 0 1 1 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (3, 0),
A vertex at (1, 0),
A vertex at (0, 1),
A ray in the direction (0, 1),
A vertex at (4, 1)]

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,
→˓1), (1,1)])
sage: P.adjacency_matrix()
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 0 1]
[0 0 0 0 1]
[0 0 1 1 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A ray in the direction (1, 1),
A vertex at (3, 0),
A vertex at (1, 0),
A vertex at (0, 1),
A ray in the direction (0, 1)]

sage: P = Polyhedron(vertices=[(1,2)], rays=[(0,1)], lines=[(1,0)])
sage: P.adjacency_matrix()
[0 0 1]
[0 0 0]
[1 0 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (0, 2),
A line in the direction (1, 0),
A ray in the direction (0, 1)]

sage.geometry.polyhedron.plot.projection_func_identity(x)

The identity projection.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import projection_func_identity
sage: projection_func_identity((1,2,3))
[1, 2, 3]
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2.1.6 A class to keep information about faces of a polyhedron

This module gives you a tool to work with the faces of a polyhedron and their relative position. First, you need to find the
faces. To get the faces in a particular dimension, use the face() method:

sage: P = polytopes.cross_polytope(3)
sage: P.faces(3)
(A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 6␣
→˓vertices,)
sage: [f.ambient_V_indices() for f in P.facets()]
[(3, 4, 5),
(2, 4, 5),
(1, 3, 5),
(1, 2, 5),
(0, 3, 4),
(0, 2, 4),
(0, 1, 3),
(0, 1, 2)]

sage: [f.ambient_V_indices() for f in P.faces(1)]
[(4, 5),
(3, 5),
(2, 5),
(1, 5),
(3, 4),
(2, 4),
(0, 4),
(1, 3),
(0, 3),
(1, 2),
(0, 2),
(0, 1)]

or face_lattice() to get the whole face lattice as a poset:

sage: P.face_lattice() #␣
→˓needs sage.combinat
Finite lattice containing 28 elements

The faces are printed in shorthand notation where each integer is the index of a vertex/ray/line in the same order as the
containing Polyhedron’s Vrepresentation()

sage: face = P.faces(1)[8]; face
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2 vertices
sage: face.ambient_V_indices()
(0, 3)
sage: P.Vrepresentation(0)
A vertex at (-1, 0, 0)
sage: P.Vrepresentation(3)
A vertex at (0, 0, 1)
sage: face.vertices()
(A vertex at (-1, 0, 0), A vertex at (0, 0, 1))

The face itself is not represented by Sage’s sage.geometry.polyhedron.constructor.Polyhedron()
class, but by an auxiliary class to keep the information. You can get the face as a polyhedron with the
PolyhedronFace.as_polyhedron() method:
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sage: face.as_polyhedron()
A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 2 vertices
sage: _.equations()
(An equation (0, 1, 0) x + 0 == 0,
An equation (1, 0, -1) x + 1 == 0)

class sage.geometry.polyhedron.face.PolyhedronFace(polyhedron, V_indices, H_indices)
Bases: ConvexSet_closed

A face of a polyhedron.

This class is for use in face_lattice().

INPUT:

No checking is performed whether the H/V-representation indices actually determine a face of the polyhedron.
You should not manually create PolyhedronFace objects unless you know what you are doing.

OUTPUT:

A PolyhedronFace.

EXAMPLES:

sage: octahedron = polytopes.cross_polytope(3)
sage: inequality = octahedron.Hrepresentation(2)
sage: face_h = tuple([ inequality ])
sage: face_v = tuple( inequality.incident() )
sage: face_h_indices = [ h.index() for h in face_h ]
sage: face_v_indices = [ v.index() for v in face_v ]
sage: from sage.geometry.polyhedron.face import PolyhedronFace
sage: face = PolyhedronFace(octahedron, face_v_indices, face_h_indices)
sage: face
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices
sage: face.dim()
2
sage: face.ambient_V_indices()
(0, 1, 2)
sage: face.ambient_Hrepresentation()
(An inequality (1, 1, 1) x + 1 >= 0,)
sage: face.ambient_Vrepresentation()
(A vertex at (-1, 0, 0), A vertex at (0, -1, 0), A vertex at (0, 0, -1))

affine_tangent_cone()

Return the affine tangent cone of self as a polyhedron.

It is equal to the sum of self and the cone of feasible directions at any point of the relative interior of self.

OUTPUT:

A polyhedron.

EXAMPLES:

sage: half_plane_in_space = Polyhedron(ieqs=[(0,1,0,0)], eqns=[(0,0,0,1)])
sage: line = half_plane_in_space.faces(1)[0]; line
A 1-dimensional face of a
Polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line

sage: T_line = line.affine_tangent_cone()

(continues on next page)
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sage: T_line == half_plane_in_space
True

sage: c = polytopes.cube()
sage: edge = min(c.faces(1))
sage: edge.vertices()
(A vertex at (1, -1, -1), A vertex at (1, 1, -1))
sage: T_edge = edge.affine_tangent_cone()
sage: T_edge.Vrepresentation()
(A line in the direction (0, 1, 0),
A ray in the direction (0, 0, 1),
A vertex at (1, 0, -1),
A ray in the direction (-1, 0, 0))

ambient()

Return the containing polyhedron.

EXAMPLES:

sage: P = polytopes.cross_polytope(3); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: face = P.facets()[3]; face
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices
sage: face.polyhedron()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices

ambient_H_indices()

Return the indices of the H-representation objects of the ambient polyhedron that make up the
H-representation of self.

See also ambient_Hrepresentation().

OUTPUT:

Tuple of indices

EXAMPLES:

sage: Q = polytopes.cross_polytope(3)
sage: F = Q.faces(1)
sage: [f.ambient_H_indices() for f in F]
[(4, 5),
(5, 6),
(4, 7),
(6, 7),
(0, 5),
(3, 4),
(0, 3),
(1, 6),
(0, 1),
(2, 7),
(2, 3),
(1, 2)]

ambient_Hrepresentation(index=None)
Return the H-representation objects of the ambient polytope defining the face.

INPUT:
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• index – optional. Either an integer or None (default).

OUTPUT:

If the optional argument is not present, a tuple of H-representation objects. Each entry is either an inequality
or an equation.

If the optional integer index is specified, the index-th element of the tuple is returned.

EXAMPLES:

sage: square = polytopes.hypercube(2)
sage: for face in square.face_lattice(): #␣
→˓needs sage.combinat
....: print(face.ambient_Hrepresentation())
(An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0,
An inequality (1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0)

(An inequality (-1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0)
(An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0)
(An inequality (-1, 0) x + 1 >= 0,)
(An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(An inequality (0, -1) x + 1 >= 0,)
(An inequality (1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0)
(An inequality (0, 1) x + 1 >= 0,)
(An inequality (1, 0) x + 1 >= 0,)
()

ambient_V_indices()

Return the indices of the V-representation objects of the ambient polyhedron that make up the
V-representation of self.

See also ambient_Vrepresentation().

OUTPUT:

Tuple of indices

EXAMPLES:

sage: P = polytopes.cube()
sage: F = P.faces(2)
sage: [f.ambient_V_indices() for f in F]
[(0, 3, 4, 5),
(0, 1, 5, 6),
(4, 5, 6, 7),
(2, 3, 4, 7),
(1, 2, 6, 7),
(0, 1, 2, 3)]

ambient_Vrepresentation(index=None)
Return the V-representation objects of the ambient polytope defining the face.

INPUT:

• index – optional. Either an integer or None (default).

OUTPUT:

If the optional argument is not present, a tuple of V-representation objects. Each entry is either a vertex, a
ray, or a line.

If the optional integer index is specified, the index-th element of the tuple is returned.
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EXAMPLES:

sage: square = polytopes.hypercube(2)
sage: for fl in square.face_lattice(): #␣
→˓needs sage.combinat
....: print(fl.ambient_Vrepresentation())
()
(A vertex at (1, -1),)
(A vertex at (1, 1),)
(A vertex at (1, -1), A vertex at (1, 1))
(A vertex at (-1, 1),)
(A vertex at (1, 1), A vertex at (-1, 1))
(A vertex at (-1, -1),)
(A vertex at (1, -1), A vertex at (-1, -1))
(A vertex at (-1, 1), A vertex at (-1, -1))
(A vertex at (1, -1), A vertex at (1, 1),
A vertex at (-1, 1), A vertex at (-1, -1))

ambient_dim()

Return the dimension of the containing polyhedron.

EXAMPLES:

sage: P = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: face = P.faces(1)[0]
sage: face.ambient_dim()
4

ambient_vector_space(base_field=None)
Return the ambient vector space.

It is the ambient free module of the containing polyhedron tensored with a field.

INPUT:

• base_field – (default: the fraction field of the base ring) a field.

EXAMPLES:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: line = half_plane.faces(1)[0]; line
A 1-dimensional face of a
Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line

sage: line.ambient_vector_space()
Vector space of dimension 2 over Rational Field
sage: line.ambient_vector_space(AA) #␣
→˓needs sage.rings.number_field
Vector space of dimension 2 over Algebraic Real Field

as_polyhedron(**kwds)
Return the face as an independent polyhedron.

OUTPUT:

A polyhedron.

EXAMPLES:

sage: P = polytopes.cross_polytope(3); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices

(continues on next page)
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sage: face = P.faces(2)[3]; face
A 2-dimensional face of a
Polyhedron in ZZ^3 defined as the convex hull of 3 vertices

sage: face.as_polyhedron()
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices

sage: P.intersection(face.as_polyhedron()) == face.as_polyhedron()
True

contains(point)
Test whether the polyhedron contains the given point.

INPUT:

• point – a point or its coordinates

EXAMPLES:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: line = half_plane.faces(1)[0]; line
A 1-dimensional face of a
Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line

sage: line.contains([0, 1])
True

As a shorthand, one may use the usual in operator:

sage: [5, 7] in line
False

dim()

Return the dimension of the face.

OUTPUT:

Integer.

EXAMPLES:

sage: fl = polytopes.dodecahedron().face_lattice() #␣
→˓needs sage.combinat sage.rings.number_field
sage: sorted(x.dim() for x in fl) #␣
→˓needs sage.combinat sage.rings.number_field
[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3]

is_compact()

Return whether self is compact.

OUTPUT: Boolean.

EXAMPLES:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: line = half_plane.faces(1)[0]; line
A 1-dimensional face of a
Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line

(continues on next page)
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sage: line.is_compact()
False

is_relatively_open()

Return whether self is relatively open.

OUTPUT: Boolean.

EXAMPLES:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: line = half_plane.faces(1)[0]; line
A 1-dimensional face of a
Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line

sage: line.is_relatively_open()
True

line_generator()

Return a generator for the lines of the face.

EXAMPLES:

sage: pr = Polyhedron(rays = [[1,0],[-1,0],[0,1]], vertices = [[-1,-1]])
sage: face = pr.faces(1)[0]
sage: next(face.line_generator())
A line in the direction (1, 0)

lines()

Return all lines of the face.

OUTPUT:

A tuple of lines.

EXAMPLES:

sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],
→˓[2,3]])
sage: p.lines()
(A line in the direction (1, 0),)

n_ambient_Hrepresentation()

Return the number of objects that make up the ambient H-representation of the polyhedron.

See also ambient_Hrepresentation().

OUTPUT:

Integer.

EXAMPLES:

sage: p = polytopes.cross_polytope(4)
sage: face = p.face_lattice()[5]; face #␣
→˓needs sage.combinat
A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2␣
→˓vertices
sage: face.ambient_Hrepresentation() #␣
→˓needs sage.combinat

(continues on next page)
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(An inequality (1, -1, 1, -1) x + 1 >= 0,
An inequality (1, 1, 1, 1) x + 1 >= 0,
An inequality (1, 1, 1, -1) x + 1 >= 0,
An inequality (1, -1, 1, 1) x + 1 >= 0)

sage: face.n_ambient_Hrepresentation() #␣
→˓needs sage.combinat
4

n_ambient_Vrepresentation()

Return the number of objects that make up the ambient V-representation of the polyhedron.

See also ambient_Vrepresentation().

OUTPUT:

Integer.

EXAMPLES:

sage: p = polytopes.cross_polytope(4)
sage: face = p.face_lattice()[5]; face #␣
→˓needs sage.combinat
A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2␣
→˓vertices
sage: face.ambient_Vrepresentation() #␣
→˓needs sage.combinat
(A vertex at (-1, 0, 0, 0), A vertex at (0, 0, -1, 0))
sage: face.n_ambient_Vrepresentation() #␣
→˓needs sage.combinat
2

n_lines()

Return the number of lines of the face.

OUTPUT:

Integer.

EXAMPLES:

sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],
→˓[2,3]])
sage: p.n_lines()
1

n_rays()

Return the number of rays of the face.

OUTPUT:

Integer.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]])
sage: face = p.faces(2)[0]
sage: face.n_rays()
2
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n_vertices()

Return the number of vertices of the face.

OUTPUT:

Integer.

EXAMPLES:

sage: Q = polytopes.cross_polytope(3)
sage: face = Q.faces(2)[0]
sage: face.n_vertices()
3

normal_cone(direction='outer')

Return the polyhedral cone consisting of normal vectors to hyperplanes supporting self.

INPUT:

• direction – string (default: outer ), the direction in which to consider the normals. The other
allowed option is inner .

OUTPUT:

A polyhedron.

EXAMPLES:

sage: p = Polyhedron(vertices=[[1,2], [2,1], [-2,2], [-2,-2], [2,-2]])
sage: for v in p.face_generator(0):
....: vect = v.vertices()[0].vector()
....: nc = v.normal_cone().rays_list()
....: print("{} has outer normal cone spanned by {}".format(vect,nc))
....:
(2, 1) has outer normal cone spanned by [[1, 0], [1, 1]]
(1, 2) has outer normal cone spanned by [[0, 1], [1, 1]]
(2, -2) has outer normal cone spanned by [[0, -1], [1, 0]]
(-2, -2) has outer normal cone spanned by [[-1, 0], [0, -1]]
(-2, 2) has outer normal cone spanned by [[-1, 0], [0, 1]]

sage: for v in p.face_generator(0):
....: vect = v.vertices()[0].vector()
....: nc = v.normal_cone(direction= inner ).rays_list()
....: print("{} has inner normal cone spanned by {}".format(vect,nc))
....:
(2, 1) has inner normal cone spanned by [[-1, -1], [-1, 0]]
(1, 2) has inner normal cone spanned by [[-1, -1], [0, -1]]
(2, -2) has inner normal cone spanned by [[-1, 0], [0, 1]]
(-2, -2) has inner normal cone spanned by [[0, 1], [1, 0]]
(-2, 2) has inner normal cone spanned by [[0, -1], [1, 0]]

The function works for polytopes that are not full-dimensional:

sage: p = polytopes.permutahedron(3)
sage: f1 = p.faces(0)[0]
sage: f2 = p.faces(1)[0]
sage: f3 = p.faces(2)[0]
sage: f1.normal_cone()
A 3-dimensional polyhedron in ZZ^3 defined as
the convex hull of 1 vertex, 2 rays, 1 line

(continues on next page)
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sage: f2.normal_cone()
A 2-dimensional polyhedron in ZZ^3 defined as
the convex hull of 1 vertex, 1 ray, 1 line

sage: f3.normal_cone()
A 1-dimensional polyhedron in ZZ^3 defined as
the convex hull of 1 vertex and 1 line

Normal cones are only defined for non-empty faces:

sage: f0 = p.faces(-1)[0]
sage: f0.normal_cone()
Traceback (most recent call last):
...
ValueError: the empty face does not have a normal cone

polyhedron()

Return the containing polyhedron.

EXAMPLES:

sage: P = polytopes.cross_polytope(3); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: face = P.facets()[3]; face
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices
sage: face.polyhedron()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices

ray_generator()

Return a generator for the rays of the face.

EXAMPLES:

sage: pi = Polyhedron(ieqs = [[1,1,0],[1,0,1]])
sage: face = pi.faces(1)[1]
sage: next(face.ray_generator())
A ray in the direction (1, 0)

rays()

Return the rays of the face.

OUTPUT:

A tuple of rays.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]])
sage: face = p.faces(2)[2]
sage: face.rays()
(A ray in the direction (1, 0, 0), A ray in the direction (0, 1, 0))

stacking_locus()

Return the polyhedron containing the points that sees every facet containing self.

OUTPUT:

A polyhedron.
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EXAMPLES:

sage: cp = polytopes.cross_polytope(4)
sage: facet = cp.facets()[0]
sage: facet.stacking_locus().vertices()
(A vertex at (1/2, 1/2, 1/2, 1/2),
A vertex at (1, 0, 0, 0),
A vertex at (0, 0, 0, 1),
A vertex at (0, 0, 1, 0),
A vertex at (0, 1, 0, 0))

sage: face = cp.faces(2)[0]
sage: face.stacking_locus().vertices()
(A vertex at (0, 1, 0, 0),
A vertex at (0, 0, 1, 0),
A vertex at (1, 0, 0, 0),
A vertex at (1, 1, 1, 0),
A vertex at (1/2, 1/2, 1/2, 1/2),
A vertex at (1/2, 1/2, 1/2, -1/2))

vertex_generator()

Return a generator for the vertices of the face.

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: face = triangle.facets()[0]
sage: for v in face.vertex_generator(): print(v)
A vertex at (1, 0)
A vertex at (1, 1)
sage: type(face.vertex_generator())
<... generator >

vertices()

Return all vertices of the face.

OUTPUT:

A tuple of vertices.

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: face = triangle.faces(1)[2]
sage: face.vertices()
(A vertex at (0, 1), A vertex at (1, 0))

sage.geometry.polyhedron.face.combinatorial_face_to_polyhedral_face(polyhedron,
combinato-
rial_face)

Convert a combinatorial face to a face of a polyhedron.

INPUT:

• polyhedron – a polyhedron containing combinatorial_face

• combinatorial_face – a CombinatorialFace

OUTPUT: a PolyhedronFace.

EXAMPLES:
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sage: from sage.geometry.polyhedron.face import combinatorial_face_to_polyhedral_
→˓face
sage: P = polytopes.simplex()
sage: C = P.combinatorial_polyhedron()
sage: it = C.face_iter()
sage: comb_face = next(it)
sage: combinatorial_face_to_polyhedral_face(P, comb_face)
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 3␣
→˓vertices

2.1.7 Generate cdd .ext / .ine file format

sage.geometry.polyhedron.cdd_file_format.cdd_Hrepresentation(cdd_type, ieqs, eqns,
file_output=None)

Return a string containing the H-representation in cddlib’s ine format.

INPUT:

• file_output (string; optional) – a filename to which the representation should be written. If set to None
(default), representation is returned as a string.

EXAMPLES:

sage: from sage.geometry.polyhedron.cdd_file_format import cdd_Hrepresentation
sage: cdd_Hrepresentation( rational , None, [[0,1]])
H-representation\nlinearity 1 1\nbegin\n 1 2 rational\n 0 1\nend\n

sage.geometry.polyhedron.cdd_file_format.cdd_Vrepresentation(cdd_type, vertices, rays,
lines, file_output=None)

Return a string containing the V-representation in cddlib’s ext format.

INPUT:

• file_output (string; optional) – a filename to which the representation should be written. If set to None
(default), representation is returned as a string.

Note: If there is no vertex given, then the origin will be implicitly added. You cannot write the empty
V-representation (which cdd would refuse to process).

EXAMPLES:

sage: from sage.geometry.polyhedron.cdd_file_format import cdd_Vrepresentation
sage: print(cdd_Vrepresentation( rational , [[0,0]], [[1,0]], [[0,1]]))
V-representation
linearity 1 1
begin
3 3 rational
0 0 1
0 1 0
1 0 0

end
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2.1.8 Formal modules generated by polyhedra

class sage.geometry.polyhedron.modules.formal_polyhedra_module.FormalPolyhedraModule(base_ring,
di-
men-
sion,
ba-
sis,
cat-
e-
gory)

Bases: CombinatorialFreeModule

Class for formal modules generated by polyhedra.

It is formal because it is free – it does not know about linear relations of polyhedra.

A formal polyhedral module is graded by dimension.

INPUT:

• base_ring – base ring of the module; unrelated to the base ring of the polyhedra

• dimension – the ambient dimension of the polyhedra

• basis – the basis

EXAMPLES:

sage: from sage.geometry.polyhedron.modules.formal_polyhedra_module import␣
→˓FormalPolyhedraModule
sage: def closed_interval(a,b): return Polyhedron(vertices=[[a], [b]])

A three-dimensional vector space of polyhedra:

sage: I01 = closed_interval(0, 1); I01.rename("conv([0], [1])")
sage: I11 = closed_interval(1, 1); I11.rename("{[1]}")
sage: I12 = closed_interval(1, 2); I12.rename("conv([1], [2])")
sage: basis = [I01, I11, I12]
sage: M = FormalPolyhedraModule(QQ, 1, basis=basis); M
Free module generated by {conv([0], [1]), {[1]}, conv([1], [2])} over Rational␣
→˓Field
sage: M.get_order()
[conv([0], [1]), {[1]}, conv([1], [2])]

A one-dimensional subspace; bases of subspaces just use the indexing set 0, . . . , 𝑑− 1, where 𝑑 is the dimension:

sage: M_lower = M.submodule([M(I11)]); M_lower
Free module generated by {0} over Rational Field
sage: M_lower.print_options(prefix= S )
sage: M_lower.is_submodule(M)
True
sage: x = M(I01) - 2*M(I11) + M(I12)
sage: M_lower.reduce(x)
[conv([0], [1])] + [conv([1], [2])]
sage: M_lower.retract.domain() is M
True
sage: y = M_lower.retract(M(I11)); y
S[0]

(continues on next page)

2.1. Polyhedra 169

../../../../../../../../html/en/reference/combinat/sage/combinat/free_module.html#sage.combinat.free_module.CombinatorialFreeModule


Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

sage: M_lower.lift(y)
[{[1]}]

Quotient space; bases of quotient space are families indexed by elements of the ambient space:

sage: M_mod_lower = M.quotient_module(M_lower); M_mod_lower
Free module generated by {conv([0], [1]), conv([1], [2])} over Rational Field
sage: M_mod_lower.print_options(prefix= Q )
sage: M_mod_lower.retract(x)
Q[conv([0], [1])] + Q[conv([1], [2])]
sage: M_mod_lower.retract(M(I01) - 2*M(I11) + M(I12)) == M_mod_lower.
→˓retract(M(I01) + M(I12))
True

degree_on_basis(m)
The degree of an element of the basis is defined as the dimension of the polyhedron.

INPUT:

• m – an element of the basis (a polyhedron)

EXAMPLES:

sage: from sage.geometry.polyhedron.modules.formal_polyhedra_module import␣
→˓FormalPolyhedraModule
sage: def closed_interval(a,b): return Polyhedron(vertices=[[a], [b]])
sage: I01 = closed_interval(0, 1); I01.rename("conv([0], [1])")
sage: I11 = closed_interval(1, 1); I11.rename("{[1]}")
sage: I12 = closed_interval(1, 2); I12.rename("conv([1], [2])")
sage: I02 = closed_interval(0, 2); I02.rename("conv([0], [2])")
sage: M = FormalPolyhedraModule(QQ, 1, basis=[I01, I11, I12, I02])

We can extract homogeneous components:

sage: O = M(I01) + M(I11) + M(I12)
sage: O.homogeneous_component(0)
[{[1]}]
sage: O.homogeneous_component(1)
[conv([0], [1])] + [conv([1], [2])]

We note that modulo the linear relations of polyhedra, this would only be a filtration, not a grading, as the
following example shows:

sage: X = M(I01) + M(I12) - M(I02)
sage: X.degree()
1

sage: Y = M(I11)
sage: Y.degree()
0

170 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

2.2 Lattice polyhedra

2.2.1 Lattice and reflexive polytopes

This module provides tools for work with lattice and reflexive polytopes. A convex polytope is the convex hull of finitely
many points in R𝑛. The dimension 𝑛 of a polytope is the smallest 𝑛 such that the polytope can be embedded in R𝑛.

A lattice polytope is a polytope whose vertices all have integer coordinates.

If 𝐿 is a lattice polytope, the dual polytope of 𝐿 is

{𝑦 ∈ 𝑛 : 𝑥 · 𝑦 ≥ −1 all 𝑥 ∈ 𝐿}

A reflexive polytope is a lattice polytope, such that its polar is also a lattice polytope, i.e. it is bounded and has vertices
with integer coordinates.

This Sage module uses Package for Analyzing Lattice Polytopes (PALP), which is a program written in C by Maximilian
Kreuzer and Harald Skarke, which is freely available under the GNU license terms at http://hep.itp.tuwien.ac.at/~kreuzer/
CY/. Moreover, PALP is included standard with Sage.

PALP is described in the paper arXiv math.SC/0204356. Its distribution also contains the application nef.x, which was
created by Erwin Riegler and computes nef-partitions and Hodge data for toric complete intersections.

ACKNOWLEDGMENT: polytope.pymodule written byWilliam Stein was used as an example of organizing an interface
between an external program and Sage. William Stein also helped Andrey Novoseltsev with debugging and tuning of this
module.

Robert Bradshaw helped Andrey Novoseltsev to realize plot3d function.

Note: IMPORTANT: PALP requires some parameters to be determined during compilation time, i.e., the maximum
dimension of polytopes, the maximum number of points, etc. These limitations may lead to errors during calls to different
functions of these module. Currently, a ValueError exception will be raised if the output of poly.x or nef.x is empty or
contains the exclamation mark. The error message will contain the exact command that caused an error, the description
and vertices of the polytope, and the obtained output.

Data obtained from PALP and some other data is cached and most returned values are immutable. In particular, you
cannot change the vertices of the polytope or their order after creation of the polytope.

If you are going to work with large sets of data, take a look at all_* functions in this module. They precompute different
data for sequences of polynomials with a few runs of external programs. This can significantly affect the time of future
computations. You can also use dump/load, but not all data will be stored (currently only faces and the number of their
internal and boundary points are stored, in addition to polytope vertices and its polar).

AUTHORS:

• Andrey Novoseltsev (2007-01-11): initial version

• Andrey Novoseltsev (2007-01-15): all_* functions

• Andrey Novoseltsev (2008-04-01): second version, including:

– dual nef-partitions and necessary convex_hull and minkowski_sum

– built-in sequences of 2- and 3-dimensional reflexive polytopes

– plot3d, skeleton_show

• Andrey Novoseltsev (2009-08-26): dropped maximal dimension requirement

• Andrey Novoseltsev (2010-12-15): new version of nef-partitions
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• Andrey Novoseltsev (2013-09-30): switch to PointCollection.

• Maximilian Kreuzer and Harald Skarke: authors of PALP (which was also used to obtain the list of 3-dimensional
reflexive polytopes)

• Erwin Riegler: the author of nef.x

sage.geometry.lattice_polytope.LatticePolytope(data, compute_vertices=True, n=0,
lattice=None)

Construct a lattice polytope.

INPUT:

• data – points spanning the lattice polytope, specified as one of:

– a point collection (this is the preferred input and it is the quickest and the most memory efficient
one);

– an iterable of iterables (for example, a list of vectors) defining the point coordinates;

– a file with matrix data, opened for reading, or

– a filename of such a file, see read_palp_point_collection() for the file format;

• compute_vertices – boolean (default: True). If True, the
convex hull of the given points will be computed for determining vertices. Otherwise, the given points
must be vertices;

• n – an integer (default: 0) if data is a name of a file,
that contains data blocks for several polytopes, the n-th block will be used;

• lattice – the ambient lattice of the polytope. If not given, a suitable lattice will be determined automati-
cally, most likely the toric lattice𝑀 of the appropriate dimension.

OUTPUT:

• a lattice polytope.

EXAMPLES:

sage: points = [(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)]
sage: p = LatticePolytope(points)
sage: p
3-d reflexive polytope in 3-d lattice M
sage: p.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M

We draw a pretty picture of the polytope in 3-dimensional space:

sage: p.plot3d().show() #␣
→˓needs palp sage.plot

Now we add an extra point, which is in the interior of the polytope…

sage: points.append((0,0,0))
sage: p = LatticePolytope(points)

(continues on next page)

172 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

sage: p.nvertices()
6

You can suppress vertex computation for speed but this can lead to mistakes:

sage: p = LatticePolytope(points, compute_vertices=False)
...
sage: p.nvertices()
7

Given points must be in the lattice:

sage: LatticePolytope([[1/2], [3/2]])
Traceback (most recent call last):
...
ValueError: points
[[1/2], [3/2]]
are not in 1-d lattice M!

But it is OK to create polytopes of non-maximal dimension:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,0),
....: (-1,0,0), (0,-1,0), (0,0,0), (0,0,0)])
sage: p
2-d lattice polytope in 3-d lattice M
sage: p.vertices()
M(-1, 0, 0),
M( 0, -1, 0),
M( 1, 0, 0),
M( 0, 1, 0)
in 3-d lattice M

An empty lattice polytope can be considered as well:

sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.lattice_dim()
3
sage: p.npoints()
0
sage: p.nfacets()
0
sage: p.points()
Empty collection
in 3-d lattice M
sage: p.faces() #␣
→˓needs sage.graphs
((-1-d lattice polytope in 3-d lattice M,),)

class sage.geometry.lattice_polytope.LatticePolytopeClass(points=None,
compute_vertices=None,
ambient=None,
ambient_vertex_indices=None,
ambient_facet_indices=None)

Bases: ConvexSet_compact, Hashable, LatticePolytope

Create a lattice polytope.
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Warning: This class does not perform any checks of correctness of input nor does it convert input into the
standard representation. Use LatticePolytope() to construct lattice polytopes.

Lattice polytopes are immutable, but they cache most of the returned values.

INPUT:

The input can be either:

• points – PointCollection;

• compute_vertices – boolean.

or (these parameters must be given as keywords):

• ambient – ambient structure, this polytope must be a face of ambient;

• ambient_vertex_indices – increasing list or tuple of integers, indices of vertices of ambient gen-
erating this polytope;

• ambient_facet_indices – increasing list or tuple of integers, indices of facets of ambient generat-
ing this polytope.

OUTPUT:

• lattice polytope.

Note: Every polytope has an ambient structure. If it was not specified, it is this polytope itself.

adjacent()

Return faces adjacent to self in the ambient face lattice.

Two distinct faces 𝐹1 and 𝐹2 of the same face lattice are adjacent if all of the following conditions hold:

• 𝐹1 and 𝐹2 have the same dimension 𝑑;

• 𝐹1 and 𝐹2 share a facet of dimension 𝑑− 1;

• 𝐹1 and 𝐹2 are facets of some face of dimension 𝑑+1, unless 𝑑 is the dimension of the ambient structure.

OUTPUT:

• tuple of lattice polytopes.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.adjacent() #␣
→˓needs sage.graphs
()
sage: face = o.faces(1)[0] #␣
→˓needs sage.graphs
sage: face.adjacent() #␣
→˓needs sage.graphs
(1-d face of 3-d reflexive polytope in 3-d lattice M,
1-d face of 3-d reflexive polytope in 3-d lattice M,
1-d face of 3-d reflexive polytope in 3-d lattice M,
1-d face of 3-d reflexive polytope in 3-d lattice M)
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affine_transform(a=1, b=0)
Return a*P+b, where P is this lattice polytope.

Note:

1. While a and bmay be rational, the final result must be a lattice polytope, i.e. all vertices must be integral.

2. If the transform (restricted to this polytope) is bijective, facial structure will be preserved, e.g. the first
facet of the image will be spanned by the images of vertices which span the first facet of the original
polytope.

INPUT:

• a – (default: 1) rational scalar or matrix

• b – (default: 0) rational scalar or vector, scalars are interpreted as vectors with the same components

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(2)
sage: o.vertices()
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)
in 2-d lattice M
sage: o.affine_transform(2).vertices()
M( 2, 0),
M( 0, 2),
M(-2, 0),
M( 0, -2)
in 2-d lattice M
sage: o.affine_transform(1,1).vertices()
M(2, 1),
M(1, 2),
M(0, 1),
M(1, 0)
in 2-d lattice M
sage: o.affine_transform(b=1).vertices()
M(2, 1),
M(1, 2),
M(0, 1),
M(1, 0)
in 2-d lattice M
sage: o.affine_transform(b=(1, 0)).vertices()
M(2, 0),
M(1, 1),
M(0, 0),
M(1, -1)
in 2-d lattice M
sage: a = matrix(QQ, 2, [1/2, 0, 0, 3/2])
sage: o.polar().vertices()
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1)
in 2-d lattice N
sage: o.polar().affine_transform(a, (1/2, -1/2)).vertices()

(continues on next page)
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(continued from previous page)

M(1, 1),
M(1, -2),
M(0, -2),
M(0, 1)
in 2-d lattice M

While you can use rational transformation, the result must be integer:

sage: o.affine_transform(a)
Traceback (most recent call last):
...
ValueError: points
[(1/2, 0), (0, 3/2), (-1/2, 0), (0, -3/2)]
are not in 2-d lattice M!

ambient()

Return the ambient structure of self.

OUTPUT:

• lattice polytope containing self as a face.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.ambient()
3-d reflexive polytope in 3-d lattice M
sage: o.ambient() is o
True

sage: # needs sage.graphs
sage: face = o.faces(1)[0]
sage: face
1-d face of 3-d reflexive polytope in 3-d lattice M
sage: face.ambient()
3-d reflexive polytope in 3-d lattice M
sage: face.ambient() is o
True

ambient_dim()

Return the dimension of the ambient lattice of self.

An alias is ambient_dim().

OUTPUT:

• integer.

EXAMPLES:

sage: p = LatticePolytope([(1,0)])
sage: p.lattice_dim()
2
sage: p.dim()
0

ambient_facet_indices()

Return indices of facets of the ambient polytope containing self.
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OUTPUT:

• increasing tuple of integers.

EXAMPLES:

The polytope itself is not contained in any of its facets:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.ambient_facet_indices()
()

But each of its other faces is contained in one or more facets:

sage: # needs sage.graphs
sage: face = o.faces(1)[0]
sage: face.ambient_facet_indices()
(4, 5)
sage: face.vertices()
M(1, 0, 0),
M(0, 1, 0)
in 3-d lattice M
sage: o.facets()[face.ambient_facet_indices()[0]].vertices()
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, -1)
in 3-d lattice M

ambient_ordered_point_indices()

Return indices of points of the ambient polytope contained in this one.

OUTPUT:

• tuple of integers such that ambient points in this order are geometrically ordered, e.g. for an edge
points will appear from one end point to the other.

EXAMPLES:

sage: cube = lattice_polytope.cross_polytope(3).polar()
sage: face = cube.facets()[0] #␣
→˓needs sage.graphs
sage: face.ambient_ordered_point_indices() #␣
→˓needs palp sage.graphs
(5, 8, 4, 9, 10, 11, 6, 12, 7)
sage: cube.points(face.ambient_ordered_point_indices()) #␣
→˓needs palp sage.graphs
N(-1, -1, -1),
N(-1, -1, 0),
N(-1, -1, 1),
N(-1, 0, -1),
N(-1, 0, 0),
N(-1, 0, 1),
N(-1, 1, -1),
N(-1, 1, 0),
N(-1, 1, 1)
in 3-d lattice N

ambient_point_indices()

Return indices of points of the ambient polytope contained in this one.

OUTPUT:
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• tuple of integers, the order corresponds to the order of points of this polytope.

EXAMPLES:

sage: cube = lattice_polytope.cross_polytope(3).polar()
sage: face = cube.facets()[0] #␣
→˓needs sage.graphs
sage: face.ambient_point_indices() #␣
→˓needs palp sage.graphs
(4, 5, 6, 7, 8, 9, 10, 11, 12)
sage: cube.points(face.ambient_point_indices()) == face.points() #␣
→˓needs palp sage.graphs
True

ambient_vector_space(base_field=None)

Return the ambient vector space.

It is the ambient lattice (lattice()) tensored with a field.

INPUT:

• base_field – (default: the rationals) a field.

EXAMPLES:

sage: p = LatticePolytope([(1,0)])
sage: p.ambient_vector_space()
Vector space of dimension 2 over Rational Field
sage: p.ambient_vector_space(AA) #␣
→˓needs sage.rings.number_field
Vector space of dimension 2 over Algebraic Real Field

ambient_vertex_indices()

Return indices of vertices of the ambient structure generating self.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.ambient_vertex_indices()
(0, 1, 2, 3, 4, 5)
sage: face = o.faces(1)[0] #␣
→˓needs sage.graphs
sage: face.ambient_vertex_indices() #␣
→˓needs sage.graphs
(0, 1)

boundary_point_indices()

Return indices of (relative) boundary lattice points of this polytope.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

All points but the origin are on the boundary of this square:
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sage: square = lattice_polytope.cross_polytope(2).polar()
sage: square.points() #␣
→˓needs palp
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N( 0, -1),
N( 0, 0),
N( 0, 1),
N( 1, 0)
in 2-d lattice N
sage: square.boundary_point_indices() #␣
→˓needs palp
(0, 1, 2, 3, 4, 5, 7, 8)

For an edge the boundary is formed by the end points:

sage: face = square.edges()[0] #␣
→˓needs sage.graphs
sage: face.points() #␣
→˓needs sage.graphs
N(-1, -1),
N(-1, 1),
N(-1, 0)
in 2-d lattice N
sage: face.boundary_point_indices() #␣
→˓needs sage.graphs
(0, 1)

boundary_points()

Return (relative) boundary lattice points of this polytope.

OUTPUT:

• a point collection.

EXAMPLES:

All points but the origin are on the boundary of this square:

sage: square = lattice_polytope.cross_polytope(2).polar()
sage: square.boundary_points() #␣
→˓needs palp
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N( 0, -1),
N( 0, 1),
N( 1, 0)
in 2-d lattice N

For an edge the boundary is formed by the end points:
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sage: face = square.edges()[0] #␣
→˓needs sage.graphs
sage: face.boundary_points() #␣
→˓needs sage.graphs
N(-1, -1),
N(-1, 1)
in 2-d lattice N

contains(*args)
Check if a given point is contained in self.

INPUT:

• an attempt will be made to convert all arguments into a single element of the ambient space of self; if
it fails, False will be returned

OUTPUT:

• True if the given point is contained in self, False otherwise

EXAMPLES:

sage: p = lattice_polytope.cross_polytope(2)
sage: p.contains(p.lattice()(1,0))
True
sage: p.contains((1,0))
True
sage: p.contains(1,0)
True
sage: p.contains((2,0))
False

dim()

Return the dimension of this polytope.

EXAMPLES:

We create a 3-dimensional octahedron and check its dimension:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.dim()
3

Now we create a 2-dimensional diamond in a 3-dimensional space:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.dim()
2
sage: p.lattice_dim()
3

distances(point=None)

Return the matrix of distances for this polytope or distances for the given point.

The matrix of distances m gives distances m[i,j] between the i-th facet (which is also the i-th vertex of the
polar polytope in the reflexive case) and j-th point of this polytope.

If point is specified, integral distances from the point to all facets of this polytope will be computed.

EXAMPLES: The matrix of distances for a 3-dimensional octahedron:
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sage: o = lattice_polytope.cross_polytope(3)
sage: o.distances() #␣
→˓needs palp
[2 0 0 0 2 2 1]
[2 2 0 0 0 2 1]
[2 2 2 0 0 0 1]
[2 0 2 0 2 0 1]
[0 0 2 2 2 0 1]
[0 0 0 2 2 2 1]
[0 2 0 2 0 2 1]
[0 2 2 2 0 0 1]

Distances from facets to the point (1,2,3):

sage: o.distances([1,2,3])
(-3, 1, 7, 3, 1, -5, -1, 5)

It is OK to use RATIONAL coordinates:

sage: o.distances([1,2,3/2])
(-3/2, 5/2, 11/2, 3/2, -1/2, -7/2, 1/2, 7/2)
sage: o.distances([1,2,sqrt(2)]) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: unable to convert sqrt(2) to an element of Rational Field

Now we create a non-spanning polytope:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.distances() #␣
→˓needs palp
[2 2 0 0 1]
[2 0 0 2 1]
[0 0 2 2 1]
[0 2 2 0 1]
sage: p.distances((1/2, 3, 0)) #␣
→˓needs palp
(9/2, -3/2, -5/2, 7/2)

This point is not even in the affine subspace of the polytope:

sage: p.distances((1, 1, 1)) #␣
→˓needs palp
(3, 1, -1, 1)

dual()

Return the dual face under face duality of polar reflexive polytopes.

This duality extends the correspondence between vertices and facets.

OUTPUT:

• a lattice polytope.

EXAMPLES:
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sage: # needs sage.graphs
sage: o = lattice_polytope.cross_polytope(4)
sage: e = o.edges()[0]; e
1-d face of 4-d reflexive polytope in 4-d lattice M
sage: ed = e.dual(); ed
2-d face of 4-d reflexive polytope in 4-d lattice N
sage: ed.ambient() is e.ambient().polar()
True
sage: e.ambient_vertex_indices() == ed.ambient_facet_indices()
True
sage: e.ambient_facet_indices() == ed.ambient_vertex_indices()
True

dual_lattice()

Return the dual of the ambient lattice of self.

OUTPUT:

• a lattice. If possible (that is, if lattice() has a dual() method), the dual lattice is returned. Oth-
erwise, 𝑛 is returned, where 𝑛 is the dimension of self.

EXAMPLES:

sage: LatticePolytope([(1,0)]).dual_lattice()
2-d lattice N
sage: LatticePolytope([], lattice=ZZ^3).dual_lattice()
Ambient free module of rank 3
over the principal ideal domain Integer Ring

edges()

Return edges (faces of dimension 1) of self.

OUTPUT:

• tuple of lattice polytopes.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.edges() #␣
→˓needs sage.graphs
(1-d face of 3-d reflexive polytope in 3-d lattice M,
...
1-d face of 3-d reflexive polytope in 3-d lattice M)

sage: len(o.edges()) #␣
→˓needs sage.graphs
12

face_lattice()

Return the face lattice of self.

This lattice will have the empty polytope as the bottom and this polytope itself as the top.

OUTPUT:

• finite poset of lattice polytopes.

EXAMPLES:

Let’s take a look at the face lattice of a square:
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sage: square = LatticePolytope([(0,0), (1,0), (1,1), (0,1)])
sage: L = square.face_lattice(); L #␣
→˓needs sage.graphs
Finite lattice containing 10 elements with distinguished linear extension

To see all faces arranged by dimension, you can do this:

sage: for level in L.level_sets(): print(level) #␣
→˓needs sage.graphs
[-1-d face of 2-d lattice polytope in 2-d lattice M]
[0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M]

[1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M]

[2-d lattice polytope in 2-d lattice M]

For a particular face you can look at its actual vertices…

sage: face = L.level_sets()[1][0] #␣
→˓needs sage.graphs
sage: face.vertices() #␣
→˓needs sage.graphs
M(0, 0)
in 2-d lattice M

… or you can see the index of the vertex of the original polytope that corresponds to the above one:

sage: face.ambient_vertex_indices() #␣
→˓needs sage.graphs
(0,)
sage: square.vertex(0)
M(0, 0)

An alternative to extracting faces from the face lattice is to use faces() method:

sage: face is square.faces(dim=0)[0] #␣
→˓needs sage.graphs
True

The advantage of working with the face lattice directly is that you can (relatively easily) get faces that are
related to the given one:

sage: face = L.level_sets()[1][0] #␣
→˓needs sage.graphs
sage: D = L.hasse_diagram() #␣
→˓needs sage.graphs
sage: sorted(D.neighbors(face)) #␣
→˓needs sage.graphs
[-1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M]

However, you can achieve some of this functionality using facets(), facet_of(), and adjacent()
methods:
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sage: # needs sage.graphs
sage: face = square.faces(0)[0]
sage: face
0-d face of 2-d lattice polytope in 2-d lattice M
sage: face.vertices()
M(0, 0)
in 2-d lattice M
sage: face.facets()
(-1-d face of 2-d lattice polytope in 2-d lattice M,)
sage: face.facet_of()
(1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M)

sage: face.adjacent()
(0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M)

sage: face.adjacent()[0].vertices()
M(1, 0)
in 2-d lattice M

Note that if p is a face of superp, then the face lattice of p consists of (appropriate) faces of superp:

sage: # needs sage.graphs
sage: superp = LatticePolytope([(1,2,3,4), (5,6,7,8),
....: (1,2,4,8), (1,3,9,7)])
sage: superp.face_lattice()
Finite lattice containing 16 elements with distinguished linear extension
sage: superp.face_lattice().top()
3-d lattice polytope in 4-d lattice M
sage: p = superp.facets()[0]
sage: p
2-d face of 3-d lattice polytope in 4-d lattice M
sage: p.face_lattice()
Finite poset containing 8 elements with distinguished linear extension
sage: p.face_lattice().bottom()
-1-d face of 3-d lattice polytope in 4-d lattice M
sage: p.face_lattice().top()
2-d face of 3-d lattice polytope in 4-d lattice M
sage: p.face_lattice().top() is p
True

faces(dim=None, codim=None)
Return faces of self of specified (co)dimension.

INPUT:

• dim – integer, dimension of the requested faces;

• codim – integer, codimension of the requested faces.

Note: You can specify at most one parameter. If you don’t give any, then all faces will be returned.

OUTPUT:

• if either dim or codim is given, the output will be a tuple of lattice polytopes;

• if neither dim nor codim is given, the output will be the tuple of tuples as above, giving faces of all
existing dimensions. If you care about inclusion relations between faces, consider using face_lat-
tice() or adjacent(), facet_of(), and facets().
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EXAMPLES:

Let’s take a look at the faces of a square:

sage: square = LatticePolytope([(0,0), (1,0), (1,1), (0,1)])
sage: square.faces() #␣
→˓needs sage.graphs
((-1-d face of 2-d lattice polytope in 2-d lattice M,),
(0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M,
0-d face of 2-d lattice polytope in 2-d lattice M),

(1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M),

(2-d lattice polytope in 2-d lattice M,))

Its faces of dimension one (i.e., edges):

sage: square.faces(dim=1) #␣
→˓needs sage.graphs
(1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M,
1-d face of 2-d lattice polytope in 2-d lattice M)

Its faces of codimension one are the same (also edges):

sage: square.faces(codim=1) is square.faces(dim=1) #␣
→˓needs sage.graphs
True

Let’s pick a particular face:

sage: face = square.faces(dim=1)[0] #␣
→˓needs sage.graphs

Now you can look at the actual vertices of this face…

sage: face.vertices() #␣
→˓needs sage.graphs
M(0, 0),
M(0, 1)
in 2-d lattice M

… or you can see indices of the vertices of the original polytope that correspond to the above ones:

sage: face.ambient_vertex_indices() #␣
→˓needs sage.graphs
(0, 3)
sage: square.vertices(face.ambient_vertex_indices()) #␣
→˓needs sage.graphs
M(0, 0),
M(0, 1)
in 2-d lattice M

facet_constant(i)
Return the constant in the i-th facet inequality of this polytope.
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This is equivalent to facet_constants()[i].

INPUT:

• i – integer; the index of the facet

OUTPUT:

• integer – the constant in the i-th facet inequality.

See also:

facet_constants(), facet_normal(), facet_normals(), facets().

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.facet_constant(0)
1
sage: o.facet_constant(0) == o.facet_constants()[0]
True

facet_constants()

Return facet constants of self.

Facet inequalities have form 𝑛 · 𝑥+ 𝑐 ≥ 0 where 𝑛 is the inner normal and 𝑐 is a constant.

OUTPUT:

• an integer vector

See also:

facet_constant(), facet_normal(), facet_normals(), facets().

EXAMPLES:

For reflexive polytopes all constants are 1:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.facet_constants()
(1, 1, 1, 1, 1, 1, 1, 1)

Here is an example of a 3-dimensional polytope in a 4-dimensional space with 3 facets containing the origin:

sage: p = LatticePolytope([(0,0,0,0), (1,1,1,3),
....: (1,-1,1,3), (-1,-1,1,3)])
sage: p.vertices()
M( 0, 0, 0, 0),
M( 1, 1, 1, 3),
M( 1, -1, 1, 3),
M(-1, -1, 1, 3)
in 4-d lattice M
sage: p.facet_constants()
(0, 0, 3, 0)
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facet_normal(i)
Return the inner normal to the i-th facet of this polytope.

This is equivalent to facet_normals()[i].

INPUT:

• i – integer; the index of the facet

OUTPUT:

• a vector

See also:

facet_constant(), facet_constants(), facet_normals(), facets().

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.facet_normal(0)
N(1, -1, -1)
sage: o.facet_normal(0) is o.facet_normals()[0]
True

facet_normals()

Return inner normals to the facets of self.

If this polytope is not full-dimensional, facet normals will define this polytope in the affine subspace spanned
by it.

OUTPUT:

• a point collection in the dual_lattice() of self.

See also:

facet_constant(), facet_constants(), facet_normal(), facets().

EXAMPLES:

Normals to facets of an octahedron are vertices of a cube:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.facet_normals()
N( 1, -1, -1),
N( 1, 1, -1),
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N
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Here is an example of a 3-dimensional polytope in a 4-dimensional space:

sage: p = LatticePolytope([(0,0,0,0), (1,1,1,3),
....: (1,-1,1,3), (-1,-1,1,3)])
sage: p.vertices()
M( 0, 0, 0, 0),
M( 1, 1, 1, 3),
M( 1, -1, 1, 3),
M(-1, -1, 1, 3)
in 4-d lattice M
sage: p.facet_normals()
N( 0, 3, 0, 1),
N( 1, -1, 0, 0),
N( 0, 0, 0, -1),
N(-3, 0, 0, 1)
in 4-d lattice N
sage: p.facet_constants()
(0, 0, 3, 0)

Nowwemanually compute the distancematrix of this polytope. Since it is a simplex, each line (corresponding
to a facet) should consist of zeros (indicating generating vertices of the corresponding facet) and a single
positive number (since our normals are inner):

sage: matrix([[n * v + c for v in p.vertices()]
....: for n, c in zip(p.facet_normals(), p.facet_constants())])
[0 6 0 0]
[0 0 2 0]
[3 0 0 0]
[0 0 0 6]

facet_of()

Return elements of the ambient face lattice having self as a facet.

OUTPUT:

• tuple of lattice polytopes.

EXAMPLES:

sage: # needs sage.graphs
sage: square = LatticePolytope([(0,0), (1,0), (1,1), (0,1)])
sage: square.facet_of()
()
sage: face = square.faces(0)[0]
sage: len(face.facet_of())
2
sage: face.facet_of()[1]
1-d face of 2-d lattice polytope in 2-d lattice M

facets()

Return facets (faces of codimension 1) of self.

OUTPUT:

• tuple of lattice polytopes.

EXAMPLES:
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sage: o = lattice_polytope.cross_polytope(3)
sage: o.facets() #␣
→˓needs sage.graphs
(2-d face of 3-d reflexive polytope in 3-d lattice M,
...
2-d face of 3-d reflexive polytope in 3-d lattice M)

sage: len(o.facets()) #␣
→˓needs sage.graphs
8

incidence_matrix()

Return the incidence matrix.

Note: The columns correspond to facets/facet normals in the order of facet_normals(), the rows
correspond to the vertices in the order of vertices().

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(2)
sage: o.incidence_matrix()
[0 0 1 1]
[0 1 1 0]
[1 1 0 0]
[1 0 0 1]
sage: o.faces(1)[0].incidence_matrix() #␣
→˓needs sage.graphs
[1 0]
[0 1]

sage: o = lattice_polytope.cross_polytope(4)
sage: o.incidence_matrix().column(3).nonzero_positions()
[3, 4, 5, 6]
sage: o.facets()[3].ambient_vertex_indices() #␣
→˓needs sage.graphs
(3, 4, 5, 6)

index()

Return the index of this polytope in the internal database of 2- or 3-dimensional reflexive polytopes. Databases
are stored in the directory of the package.

Note: The first call to this function for each dimension can take a few seconds while the dictionary of all
polytopes is constructed, but after that it is cached and fast.

Return type
integer

EXAMPLES: We check what is the index of the “diamond” in the database:

sage: d = lattice_polytope.cross_polytope(2)
sage: d.index() #␣
→˓needs palp
3
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Note that polytopes with the same index are not necessarily the same:

sage: d.vertices()
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)
in 2-d lattice M
sage: lattice_polytope.ReflexivePolytope(2,3).vertices()
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

But they are in the same 𝐺𝐿( 𝑛) orbit and have the same normal form:

sage: d.normal_form() #␣
→˓needs sage.groups
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M
sage: lattice_polytope.ReflexivePolytope(2,3).normal_form() #␣
→˓needs sage.groups
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

interior_point_indices()

Return indices of (relative) interior lattice points of this polytope.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

The origin is the only interior point of this square:

sage: square = lattice_polytope.cross_polytope(2).polar()
sage: square.points() #␣
→˓needs palp
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N( 0, -1),
N( 0, 0),
N( 0, 1),
N( 1, 0)
in 2-d lattice N
sage: square.interior_point_indices() #␣
→˓needs palp
(6,)
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Its edges also have a single interior point each:

sage: face = square.edges()[0] #␣
→˓needs sage.graphs
sage: face.points() #␣
→˓needs sage.graphs
N(-1, -1),
N(-1, 1),
N(-1, 0)
in 2-d lattice N
sage: face.interior_point_indices() #␣
→˓needs sage.graphs
(2,)

interior_points()

Return (relative) boundary lattice points of this polytope.

OUTPUT:

• a point collection.

EXAMPLES:

The origin is the only interior point of this square:

sage: square = lattice_polytope.cross_polytope(2).polar()
sage: square.interior_points() #␣
→˓needs palp
N(0, 0)
in 2-d lattice N

Its edges also have a single interior point each:

sage: face = square.edges()[0] #␣
→˓needs sage.graphs
sage: face.interior_points() #␣
→˓needs sage.graphs
N(-1, 0)
in 2-d lattice N

is_reflexive()

Return True if this polytope is reflexive.

EXAMPLES: The 3-dimensional octahedron is reflexive (and 4319 other 3-polytopes):

sage: o = lattice_polytope.cross_polytope(3)
sage: o.is_reflexive()
True

But not all polytopes are reflexive:

sage: p = LatticePolytope([(1,0,0), (0,1,17), (-1,0,0), (0,-1,0)])
sage: p.is_reflexive()
False

Only full-dimensional polytopes can be reflexive (otherwise the polar set is not a polytope at all, since it is
unbounded):
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sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.is_reflexive()
False

lattice()

Return the ambient lattice of self.

OUTPUT:

• a lattice.

EXAMPLES:

sage: lattice_polytope.cross_polytope(3).lattice()
3-d lattice M

lattice_dim()

Return the dimension of the ambient lattice of self.

An alias is ambient_dim().

OUTPUT:

• integer.

EXAMPLES:

sage: p = LatticePolytope([(1,0)])
sage: p.lattice_dim()
2
sage: p.dim()
0

linearly_independent_vertices()

Return a maximal set of linearly independent vertices.

OUTPUT:

A tuple of vertex indices.

EXAMPLES:

sage: L = LatticePolytope([[0, 0], [-1, 1], [-1, -1]])
sage: L.linearly_independent_vertices()
(1, 2)
sage: L = LatticePolytope([[0, 0, 0]])
sage: L.linearly_independent_vertices()
()
sage: L = LatticePolytope([[0, 1, 0]])
sage: L.linearly_independent_vertices()
(0,)

nef_partitions(keep_symmetric=False, keep_products=True, keep_projections=True,
hodge_numbers=False)

Return 2-part nef-partitions of self.

INPUT:

• keep_symmetric – (default: False) if True, “-s” option will be passed to nef.x in order to keep
symmetric partitions, i.e. partitions related by lattice automorphisms preserving self;
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• keep_products – (default: True) if True, “-D” option will be passed to nef.x in order to keep
product partitions, with corresponding complete intersections being direct products;

• keep_projections – (default: True) if True, “-P” option will be passed to nef.x in order to
keep projection partitions, i.e. partitions with one of the parts consisting of a single vertex;

• hodge_numbers – (default: False) if False, “-p” option will be passed to nef.x in order to skip
Hodge numbers computation, which takes a lot of time.

OUTPUT:

• a sequence of nef-partitions.

Type NefPartition? for definitions and notation.

EXAMPLES:

Nef-partitions of the 4-dimensional cross-polytope:

sage: p = lattice_polytope.cross_polytope(4)
sage: p.nef_partitions() #␣
→˓needs palp
[
Nef-partition {0, 1, 4, 5} ⊔ {2, 3, 6, 7} (direct product),
Nef-partition {0, 1, 2, 4} ⊔ {3, 5, 6, 7},
Nef-partition {0, 1, 2, 4, 5} ⊔ {3, 6, 7},
Nef-partition {0, 1, 2, 4, 5, 6} ⊔ {3, 7} (direct product),
Nef-partition {0, 1, 2, 3} ⊔ {4, 5, 6, 7},
Nef-partition {0, 1, 2, 3, 4} ⊔ {5, 6, 7},
Nef-partition {0, 1, 2, 3, 4, 5} ⊔ {6, 7},
Nef-partition {0, 1, 2, 3, 4, 5, 6} ⊔ {7} (projection)
]

Now we omit projections:

sage: p.nef_partitions(keep_projections=False) #␣
→˓needs palp
[
Nef-partition {0, 1, 4, 5} ⊔ {2, 3, 6, 7} (direct product),
Nef-partition {0, 1, 2, 4} ⊔ {3, 5, 6, 7},
Nef-partition {0, 1, 2, 4, 5} ⊔ {3, 6, 7},
Nef-partition {0, 1, 2, 4, 5, 6} ⊔ {3, 7} (direct product),
Nef-partition {0, 1, 2, 3} ⊔ {4, 5, 6, 7},
Nef-partition {0, 1, 2, 3, 4} ⊔ {5, 6, 7},
Nef-partition {0, 1, 2, 3, 4, 5} ⊔ {6, 7}
]

Currently Hodge numbers cannot be computed for a given nef-partition:

sage: p.nef_partitions()[1].hodge_numbers() #␣
→˓needs palp
Traceback (most recent call last):
...
NotImplementedError: use nef_partitions(hodge_numbers=True)!

But they can be obtained from nef.x for all nef-partitions at once. Partitions will be exactly the same:

sage: p.nef_partitions(hodge_numbers=True) # long time (2s on sage.math,␣
→˓2011), needs palp
[

(continues on next page)
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Nef-partition {0, 1, 4, 5} ⊔ {2, 3, 6, 7} (direct product),
Nef-partition {0, 1, 2, 4} ⊔ {3, 5, 6, 7},
Nef-partition {0, 1, 2, 4, 5} ⊔ {3, 6, 7},
Nef-partition {0, 1, 2, 4, 5, 6} ⊔ {3, 7} (direct product),
Nef-partition {0, 1, 2, 3} ⊔ {4, 5, 6, 7},
Nef-partition {0, 1, 2, 3, 4} ⊔ {5, 6, 7},
Nef-partition {0, 1, 2, 3, 4, 5} ⊔ {6, 7},
Nef-partition {0, 1, 2, 3, 4, 5, 6} ⊔ {7} (projection)
]

Now it is possible to get Hodge numbers:

sage: p.nef_partitions(hodge_numbers=True)[1].hodge_numbers() #␣
→˓needs palp
(20,)

Since nef-partitions are cached, their Hodge numbers are accessible after the first request, even if you do not
specify hodge_numbers=True anymore:

sage: p.nef_partitions()[1].hodge_numbers() #␣
→˓needs palp
(20,)

We illustrate removal of symmetric partitions on a diamond:

sage: p = lattice_polytope.cross_polytope(2)
sage: p.nef_partitions() #␣
→˓needs palp
[
Nef-partition {0, 2} ⊔ {1, 3} (direct product),
Nef-partition {0, 1} ⊔ {2, 3},
Nef-partition {0, 1, 2} ⊔ {3} (projection)
]
sage: p.nef_partitions(keep_symmetric=True) #␣
→˓needs palp
[
Nef-partition {0, 1, 3} ⊔ {2} (projection),
Nef-partition {0, 2, 3} ⊔ {1} (projection),
Nef-partition {0, 3} ⊔ {1, 2},
Nef-partition {1, 2, 3} ⊔ {0} (projection),
Nef-partition {1, 3} ⊔ {0, 2} (direct product),
Nef-partition {2, 3} ⊔ {0, 1},
Nef-partition {0, 1, 2} ⊔ {3} (projection)
]

Nef-partitions can be computed only for reflexive polytopes:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,2),
....: (-1,0,0), (0,-1,0), (0,0,-1)])
sage: p.nef_partitions() #␣
→˓needs palp
Traceback (most recent call last):
...
ValueError: The given polytope is not reflexive!
Polytope: 3-d lattice polytope in 3-d lattice M

nef_x(keys)
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Run nef.x with given keys on vertices of this polytope.

INPUT:

• keys – a string of options passed to nef.x. The key “-f” is added automatically.

OUTPUT: the output of nef.x as a string.

EXAMPLES: This call is used internally for computing nef-partitions:

sage: o = lattice_polytope.cross_polytope(3)
sage: s = o.nef_x("-N -V -p") #␣
→˓needs palp
sage: s # output contains random time #␣
→˓needs palp
M:27 8 N:7 6 codim=2 #part=5
3 6 Vertices of P:

1 0 0 -1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1

P:0 V:2 4 5 0sec 0cpu
P:2 V:3 4 5 0sec 0cpu
P:3 V:4 5 0sec 0cpu

np=3 d:1 p:1 0sec 0cpu

nfacets()

Return the number of facets of this polytope.

EXAMPLES: The number of facets of the 3-dimensional octahedron:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.nfacets()
8

The number of facets of an interval is 2:

sage: LatticePolytope(([1],[2])).nfacets()
2

Now consider a 2-dimensional diamond in a 3-dimensional space:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.nfacets()
4

normal_form(algorithm='palp_native', permutation=False)
Return the normal form of vertices of self.

Two full-dimensional lattice polytopes are in the same 𝐺𝐿( 𝑛)-orbit if and only if their normal forms are
the same. Normal form is not defined and thus cannot be used for polytopes whose dimension is smaller than
the dimension of the ambient space.

The original algorithm was presented in [KS1998] and implemented in PALP. A modified version of the
PALP algorithm is discussed in [GK2013] and available here as "palp_modified".

INPUT:

• algorithm – (default: "palp_native") The algorithm which is used to compute the normal form.
Options are:
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– "palp" – Run external PALP code, usually the fastest option when it works; but reproducible
crashes have been observed in dimension 5 and higher.

– "palp_native" – The original PALP algorithm implemented in sage. Currently competitive
with PALP in many cases.

– "palp_modified" – A modified version of the PALP algorithm which determines the maximal
vertex-facet pairing matrix first and then computes its automorphisms, while the PALP algorithm
does both things concurrently.

• permutation – boolean (default: False); if True, the permutation applied to vertices to obtain
the normal form is returned as well. Note that the different algorithms may return different results that
nevertheless lead to the same normal form.

OUTPUT:

• a point collection in the lattice() of self or a tuple of it and a permutation.

EXAMPLES:

We compute the normal form of the “diamond”:

sage: d = LatticePolytope([(1,0), (0,1), (-1,0), (0,-1)])
sage: d.vertices()
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)
in 2-d lattice M
sage: d.normal_form() #␣
→˓needs sage.groups
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

The diamond is the 3rd polytope in the internal database:

sage: d.index() #␣
→˓needs palp
3
sage: d #␣
→˓needs palp
2-d reflexive polytope #3 in 2-d lattice M

You can get it in its normal form (in the default lattice) as

sage: lattice_polytope.ReflexivePolytope(2, 3).vertices()
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

It is not possible to compute normal forms for polytopes which do not span the space:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.normal_form()
Traceback (most recent call last):

(continues on next page)
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...
ValueError: normal form is not defined for
2-d lattice polytope in 3-d lattice M

We can perform the same examples using other algorithms:

sage: o = lattice_polytope.cross_polytope(2)
sage: o.normal_form(algorithm="palp_native") #␣
→˓needs sage.groups
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

sage: o = lattice_polytope.cross_polytope(2)
sage: o.normal_form(algorithm="palp_modified") #␣
→˓needs sage.groups
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

The following examples demonstrate the speed of the available algorithms. In low dimensions, the default
algorithm, "palp_native", is the fastest. As the dimension increases, "palp" is relatively faster than
"palp_native". "palp_native" is usually much faster than "palp_modified". In some cases
when the polytope has high symmetry, however, "palp_native" is slower:

sage: # not tested
sage: o = lattice_polytope.cross_polytope(2)
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp")
625 loops, best of 3: 3.07 ms per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_native")
625 loops, best of 3: 0.445 ms per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_modified")
625 loops, best of 3: 5.01 ms per loop
sage: o = lattice_polytope.cross_polytope(3)
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp")
625 loops, best of 3: 3.22 ms per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_native")
625 loops, best of 3: 2.73 ms per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_modified")
625 loops, best of 3: 20.7 ms per loop
sage: o = lattice_polytope.cross_polytope(4)
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp")
625 loops, best of 3: 4.84 ms per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_native")
625 loops, best of 3: 55.6 ms per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_modified")
625 loops, best of 3: 129 ms per loop
sage: o = lattice_polytope.cross_polytope(5)
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp")
10 loops, best of 3: 0.0364 s per loop
sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_native")
10 loops, best of 3: 1.68 s per loop

(continues on next page)
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sage: %timeit o.normal_form.clear_cache(); o.normal_form("palp_modified")
10 loops, best of 3: 0.858 s per loop

Note that the algorithm "palp" may crash for higher dimensions because of the overflow errors as men-
tioned in Issue #13525#comment:9. Then use "palp_native" instead, which is usually faster than
"palp_modified". Below is an example where "palp" fails and "palp_native" is much faster
than "palp_modified":

sage: P = LatticePolytope([[-3, -3, -6, -6, -1], [3, 3, 6, 6, 1], [-3, -3, -6,
→˓ -6, 1],
....: [-3, -3, -3, -6, 0], [-3, -3, -3, 0, 0], [-3, -3,␣
→˓0, 0, 0],
....: [-3, 0, -6, -6, 0], [-3, 0, -3, -6, 0], [-3, 0, -3,
→˓ 0, 0],
....: [-3, 0, 0, 0, -1], [3, 3, 6, 6, -1], [-3, 0, 0, 0,␣
→˓1],
....: [0, -3, -6, -6, 0], [0, -3, -3, -6, 0], [0, -3, -3,
→˓ 0, 0],
....: [0, -3, 0, 0, -1], [3, 3, 3, 6, 0], [0, -3, 0, 0,␣
→˓1],
....: [0, 0, -6, -6, 0], [0, 0, -3, -6, -1], [3, 3, 3, 0,
→˓ 0],
....: [0, 0, -3, -6, 1], [0, 0, -3, 0, -1], [3, 3, 0, 0,␣
→˓0],
....: [0, 0, -3, 0, 1], [0, 0, 3, 0, -1], [3, 0, 6, 6,␣
→˓0],
....: [0, 0, 3, 0, 1], [0, 0, 3, 6, -1], [3, 0, 3, 6, 0],
....: [0, 0, 3, 6, 1], [0, 0, 6, 6, 0], [0, 3, 0, 0, -1],
....: [3, 0, 3, 0, 0], [0, 3, 0, 0, 1], [0, 3, 3, 0, 0],
....: [0, 3, 3, 6, 0], [0, 3, 6, 6, 0], [3, 0,0, 0, -1],␣
→˓[3, 0, 0, 0, 1]])
sage: P.normal_form(algorithm="palp") # not tested
Traceback (most recent call last):
...
RuntimeError: Error executing ... for a polytope sequence!
Output:
b *** stack smashing detected ***: terminated\nAborted\n
sage: P.normal_form(algorithm="palp_native") #␣
→˓needs sage.groups
M( 6, 0, 0, 0, 0),
M( -6, 0, 0, 0, 0),
M( 0, 1, 0, 0, 0),
M( 0, 0, 3, 0, 0),
M( 0, 1, 0, 3, 0),
M( 0, 0, 0, 0, 3),
M( -6, 1, 6, 3, -6),
M( -6, 0, 6, 0, -3),
M(-12, 1, 6, 3, -3),
M( -6, 1, 0, 3, 0),
M( -6, 0, 3, 3, 0),
M( 6, 0, -6, -3, 6),
M(-12, 1, 6, 3, -6),
M(-12, 0, 9, 3, -6),
M( 0, 0, 0, -3, 0),
M(-12, 1, 6, 6, -6),
M(-12, 0, 6, 3, -3),
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M( 0, 1, -3, 0, 0),
M( 0, 0, -3, -3, 3),
M( 0, 1, 0, 3, -3),
M( 0, -1, 0, -3, 3),
M( 0, 0, 3, 3, -3),
M( 0, -1, 3, 0, 0),
M( 12, 0, -6, -3, 3),
M( 12, -1, -6, -6, 6),
M( 0, 0, 0, 3, 0),
M( 12, 0, -9, -3, 6),
M( 12, -1, -6, -3, 6),
M( -6, 0, 6, 3, -6),
M( 6, 0, -3, -3, 0),
M( 6, -1, 0, -3, 0),
M(-12, 1, 9, 6, -6),
M( 6, 0, -6, 0, 3),
M( 6, -1, -6, -3, 6),
M( 0, 0, 0, 0, -3),
M( 0, -1, 0, -3, 0),
M( 0, 0, -3, 0, 0),
M( 0, -1, 0, 0, 0),
M( 12, -1, -9, -6, 6),
M( 12, -1, -6, -3, 3)
in 5-d lattice M
sage: P.normal_form(algorithm="palp_modified") # not tested (22s;␣
→˓MemoryError on 32 bit), needs sage.groups
M( 6, 0, 0, 0, 0),
M( -6, 0, 0, 0, 0),
M( 0, 1, 0, 0, 0),
M( 0, 0, 3, 0, 0),
M( 0, 1, 0, 3, 0),
M( 0, 0, 0, 0, 3),
M( -6, 1, 6, 3, -6),
M( -6, 0, 6, 0, -3),
M(-12, 1, 6, 3, -3),
M( -6, 1, 0, 3, 0),
M( -6, 0, 3, 3, 0),
M( 6, 0, -6, -3, 6),
M(-12, 1, 6, 3, -6),
M(-12, 0, 9, 3, -6),
M( 0, 0, 0, -3, 0),
M(-12, 1, 6, 6, -6),
M(-12, 0, 6, 3, -3),
M( 0, 1, -3, 0, 0),
M( 0, 0, -3, -3, 3),
M( 0, 1, 0, 3, -3),
M( 0, -1, 0, -3, 3),
M( 0, 0, 3, 3, -3),
M( 0, -1, 3, 0, 0),
M( 12, 0, -6, -3, 3),
M( 12, -1, -6, -6, 6),
M( 0, 0, 0, 3, 0),
M( 12, 0, -9, -3, 6),
M( 12, -1, -6, -3, 6),
M( -6, 0, 6, 3, -6),
M( 6, 0, -3, -3, 0),
M( 6, -1, 0, -3, 0),

(continues on next page)
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M(-12, 1, 9, 6, -6),
M( 6, 0, -6, 0, 3),
M( 6, -1, -6, -3, 6),
M( 0, 0, 0, 0, -3),
M( 0, -1, 0, -3, 0),
M( 0, 0, -3, 0, 0),
M( 0, -1, 0, 0, 0),
M( 12, -1, -9, -6, 6),
M( 12, -1, -6, -3, 3)
in 5-d lattice M
sage: %timeit P.normal_form.clear_cache(); P.normal_form("palp_native") #␣
→˓not tested
10 loops, best of 3: 0.137 s per loop
sage: %timeit P.normal_form.clear_cache(); P.normal_form("palp_modified") #␣
→˓not tested
10 loops, best of 3: 22.2 s per loop

npoints()

Return the number of lattice points of this polytope.

EXAMPLES: The number of lattice points of the 3-dimensional octahedron and its polar cube:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.npoints() #␣
→˓needs palp
7
sage: cube = o.polar()
sage: cube.npoints() #␣
→˓needs palp
27

nvertices()

Return the number of vertices of this polytope.

EXAMPLES: The number of vertices of the 3-dimensional octahedron and its polar cube:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.nvertices()
6
sage: cube = o.polar()
sage: cube.nvertices()
8

origin()

Return the index of the origin in the list of points of self.

OUTPUT:

• integer if the origin belongs to this polytope, None otherwise.

EXAMPLES:

sage: p = lattice_polytope.cross_polytope(2)
sage: p.origin() #␣
→˓needs palp
4
sage: p.point(p.origin()) #␣

(continues on next page)
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→˓needs palp
M(0, 0)

sage: p = LatticePolytope(([1],[2]))
sage: p.points()
M(1),
M(2)
in 1-d lattice M
sage: print(p.origin())
None

Nowwemake sure that the origin of non-full-dimensional polytopes can be identified correctly (Issue #10661):

sage: LatticePolytope([(1,0,0), (-1,0,0)]).origin()
2

parent()

Return the set of all lattice polytopes.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.parent()
Set of all Lattice Polytopes

plot3d(show_facets=True, facet_opacity=0.5, facet_color=(0, 1, 0), facet_colors=None, show_edges=True,
edge_thickness=3, edge_color=(0.5, 0.5, 0.5), show_vertices=True, vertex_size=10, vertex_color=(1, 0,
0), show_points=True, point_size=10, point_color=(0, 0, 1), show_vindices=None, vindex_color=(0, 0,
0), vlabels=None, show_pindices=None, pindex_color=(0, 0, 0), index_shift=1.1)

Return a 3d-plot of this polytope.

Polytopes with ambient dimension 1 and 2 will be plotted along x-axis or in xy-plane respectively. Polytopes
of dimension 3 and less with ambient dimension 4 and greater will be plotted in some basis of the spanned
space.

By default, everything is shown with more or less pretty combination of size and color parameters.

INPUT:

Most of the parameters are self-explanatory:

• show_facets – (default: True)

• facet_opacity – (default:0.5)

• facet_color – (default:(0,1,0))

• facet_colors – (default:None) if specified, must be a list of colors for each facet separately, used
instead of facet_color

• show_edges – (default: True) whether to draw edges as lines

• edge_thickness – (default:3)

• edge_color – (default:(0.5,0.5,0.5))

• show_vertices – (default: True) whether to draw vertices as balls

• vertex_size – (default:10)

• vertex_color – (default:(1,0,0))
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• show_points – (default: True) whether to draw other points as balls

• point_size – (default:10)

• point_color – (default:(0,0,1))

• show_vindices – (default: same as show_vertices) whether to show indices of vertices

• vindex_color – (default:(0,0,0)) color for vertex labels

• vlabels – (default:None) if specified, must be a list of labels for each vertex, default labels are vertex
indices

• show_pindices – (default: same as show_points) whether to show indices of other points

• pindex_color – (default:(0,0,0)) color for point labels

• index_shift – (default:1.1)) if 1, labels are placed exactly at the corresponding points. Otherwise
the label position is computed as a multiple of the point position vector.

EXAMPLES: The default plot of a cube:

sage: c = lattice_polytope.cross_polytope(3).polar()
sage: c.plot3d() #␣
→˓needs palp sage.plot
Graphics3d Object

Plot without facets and points, shown without the frame:

sage: c.plot3d(show_facets=false, #␣
→˓needs palp sage.plot
....: show_points=false).show(frame=False)

Plot with facets of different colors:

sage: c.plot3d(facet_colors=rainbow(c.nfacets(), rgbtuple )) #␣
→˓needs palp sage.plot
Graphics3d Object

It is also possible to plot lower dimensional polytops in 3D (let’s also change labels of vertices):

sage: c2 = lattice_polytope.cross_polytope(2)
sage: c2.plot3d(vlabels=["A", "B", "C", "D"]) #␣
→˓needs palp sage.plot
Graphics3d Object

point(i)
Return the i-th point of this polytope, i.e. the i-th column of the matrix returned by points().

EXAMPLES: First few points are actually vertices:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.point(1) #␣

(continues on next page)
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→˓needs palp
M(0, 1, 0)

The only other point in the octahedron is the origin:

sage: o.point(6) #␣
→˓needs palp
M(0, 0, 0)
sage: o.points() #␣
→˓needs palp
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1),
M( 0, 0, 0)
in 3-d lattice M

points(*args, **kwds)
Return all lattice points of self.

INPUT:

• any arguments given will be passed on to the returned object.

OUTPUT:

• a point collection.

EXAMPLES:

Lattice points of the octahedron and its polar cube:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.points() #␣
→˓needs palp
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1),
M( 0, 0, 0)
in 3-d lattice M
sage: cube = o.polar()
sage: cube.points() #␣
→˓needs palp
N( 1, -1, -1),
N( 1, 1, -1),
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1),
N(-1, -1, 0),
N(-1, 0, -1),

(continues on next page)
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N(-1, 0, 0),
N(-1, 0, 1),
N(-1, 1, 0),
N( 0, -1, -1),
N( 0, -1, 0),
N( 0, -1, 1),
N( 0, 0, -1),
N( 0, 0, 0),
N( 0, 0, 1),
N( 0, 1, -1),
N( 0, 1, 0),
N( 0, 1, 1),
N( 1, -1, 0),
N( 1, 0, -1),
N( 1, 0, 0),
N( 1, 0, 1),
N( 1, 1, 0)
in 3-d lattice N

Lattice points of a 2-dimensional diamond in a 3-dimensional space:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.points() #␣
→˓needs palp
M( 1, 0, 0),
M( 0, 1, 0),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, 0)
in 3-d lattice M

Only two of the above points:

sage: p.points(1, 3) #␣
→˓needs palp
M(0, 1, 0),
M(0, -1, 0)
in 3-d lattice M

We check that points of a zero-dimensional polytope can be computed:

sage: p = LatticePolytope([[1]])
sage: p.points()
M(1)
in 1-d lattice M

polar()

Return the polar polytope, if this polytope is reflexive.

EXAMPLES: The polar polytope to the 3-dimensional octahedron:

sage: o = lattice_polytope.cross_polytope(3)
sage: cube = o.polar()
sage: cube
3-d reflexive polytope in 3-d lattice N

The polar polytope “remembers” the original one:
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sage: cube.polar()
3-d reflexive polytope in 3-d lattice M
sage: cube.polar().polar() is cube
True

Only reflexive polytopes have polars:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,2),
....: (-1,0,0), (0,-1,0), (0,0,-1)])
sage: p.polar()
Traceback (most recent call last):
...
ValueError: The given polytope is not reflexive!
Polytope: 3-d lattice polytope in 3-d lattice M

poly_x(keys, reduce_dimension=False)
Run poly.x with given keys on vertices of this polytope.

INPUT:

• keys – a string of options passed to poly.x. The key “f” is added automatically.

• reduce_dimension – (default: False) if True and this polytope is not full-dimensional, poly.x
will be called for the vertices of this polytope in some basis of the spanned affine space.

OUTPUT: the output of poly.x as a string.

EXAMPLES: This call is used for determining if a polytope is reflexive or not:

sage: o = lattice_polytope.cross_polytope(3)
sage: print(o.poly_x("e")) #␣
→˓needs palp
8 3 Vertices of P-dual <-> Equations of P

-1 -1 1
1 -1 1

-1 1 1
1 1 1

-1 -1 -1
1 -1 -1

-1 1 -1
1 1 -1

Since PALP has limits on different parameters determined during compilation, the following code is likely to
fail, unless you change default settings of PALP:

sage: BIG = lattice_polytope.cross_polytope(7)
sage: BIG
7-d reflexive polytope in 7-d lattice M
sage: BIG.poly_x("e") #␣
→˓needs palp
Traceback (most recent call last):
...
ValueError: Error executing poly.x -fe for the given polytope!
Output:
Please increase POLY_Dmax to at least 7

You cannot call poly.x for polytopes that don’t span the space (if you could, it would crush anyway):

2.2. Lattice polyhedra 205



Combinatorial and Discrete Geometry, Release 10.4.rc1

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.poly_x("e") #␣
→˓needs palp
Traceback (most recent call last):
...
ValueError: Cannot run PALP for a 2-dimensional polytope in a 3-dimensional␣
→˓space!

But if you know what you are doing, you can call it for the polytope in some basis of the spanned space:

sage: print(p.poly_x("e", reduce_dimension=True)) #␣
→˓needs palp
4 2 Equations of P

-1 1 0
1 1 2

-1 -1 0
1 -1 2

polyhedron(**kwds)
Return the Polyhedron object determined by this polytope’s vertices.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(2)
sage: o.polyhedron()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices

show3d()

Show a 3d picture of the polytope with default settings and without axes or frame.

See self.plot3d? for more details.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.show3d() #␣
→˓needs palp sage.plot

skeleton()

Return the graph of the one-skeleton of this polytope.

EXAMPLES:

sage: d = lattice_polytope.cross_polytope(2)
sage: g = d.skeleton(); g #␣
→˓needs palp sage.graphs
Graph on 4 vertices
sage: g.edges(sort=True) #␣
→˓needs palp sage.graphs
[(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]

skeleton_points(k=1)
Return the increasing list of indices of lattice points in k-skeleton of the polytope (k is 1 by default).

EXAMPLES: We compute all skeleton points for the cube:
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sage: o = lattice_polytope.cross_polytope(3)
sage: c = o.polar()
sage: c.skeleton_points() #␣
→˓needs palp sage.graphs
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 21, 22, 23, 25, 26]

The default was 1-skeleton:

sage: c.skeleton_points(k=1) #␣
→˓needs palp sage.graphs
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 21, 22, 23, 25, 26]

0-skeleton just lists all vertices:

sage: c.skeleton_points(k=0) #␣
→˓needs palp sage.graphs
[0, 1, 2, 3, 4, 5, 6, 7]

2-skeleton lists all points except for the origin (point #17):

sage: c.skeleton_points(k=2) #␣
→˓needs palp sage.graphs
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
18, 19, 20, 21, 22, 23, 24, 25, 26]

3-skeleton includes all points:

sage: c.skeleton_points(k=3) #␣
→˓needs palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26]

It is OK to compute higher dimensional skeletons - you will get the list of all points:

sage: c.skeleton_points(k=100) #␣
→˓needs palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26]

skeleton_show(normal=None)
Show the graph of one-skeleton of this polytope. Works only for polytopes in a 3-dimensional space.

INPUT:

• normal – a 3-dimensional vector (can be given as a list), which should be perpendicular to the screen.
If not given, will be selected randomly (new each time and it may be far from “nice”).

EXAMPLES: Show a pretty picture of the octahedron:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.skeleton_show([1,2,4]) #␣
→˓needs palp sage.plot

Does not work for a diamond at the moment:

sage: d = lattice_polytope.cross_polytope(2)
sage: d.skeleton_show()
Traceback (most recent call last):

(continues on next page)
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...
NotImplementedError: skeleton view is implemented only in 3-d space

traverse_boundary()

Return a list of indices of vertices of a 2-dimensional polytope in their boundary order.

Needed for plot3d function of polytopes.

EXAMPLES:

sage: p = lattice_polytope.cross_polytope(2).polar()
sage: p.traverse_boundary() #␣
→˓needs sage.graphs
[3, 0, 1, 2]

vertex(i)
Return the i-th vertex of this polytope, i.e. the i-th column of the matrix returned by vertices().

EXAMPLES: Note that numeration starts with zero:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.vertex(3)
M(-1, 0, 0)

vertex_facet_pairing_matrix()

Return the vertex facet pairing matrix 𝑃𝑀 .

Return a matrix whose the 𝑖, 𝑗th entry is the height of the 𝑗th vertex over the 𝑖th facet. The ordering of the
vertices and facets is as in vertices() and facets().

EXAMPLES:

sage: L = lattice_polytope.cross_polytope(3)
sage: L.vertex_facet_pairing_matrix()
[2 0 0 0 2 2]
[2 2 0 0 0 2]
[2 2 2 0 0 0]
[2 0 2 0 2 0]
[0 0 2 2 2 0]
[0 0 0 2 2 2]
[0 2 0 2 0 2]
[0 2 2 2 0 0]

vertices(*args, **kwds)
Return vertices of self.

INPUT:

• any arguments given will be passed on to the returned object.

OUTPUT:
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• a point collection.

EXAMPLES:

Vertices of the octahedron and its polar cube are in dual lattices:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: cube = o.polar()
sage: cube.vertices()
N( 1, -1, -1),
N( 1, 1, -1),
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N

class sage.geometry.lattice_polytope.NefPartition(data, Delta_polar, check=True)
Bases: SageObject, Hashable

Create a nef-partition.

INPUT:

• data – a list of integers, the 𝑖-th element of this list must be the part of the 𝑖-th vertex of Delta_polar
in this nef-partition;

• Delta_polar – a lattice polytope;

• check – by default the input will be checked for correctness, i.e. that data indeed specify a nef-partition.
If you are sure that the input is correct, you can speed up construction via check=False option.

OUTPUT:

• a nef-partition of Delta_polar.

Let𝑀 and 𝑁 be dual lattices. Let Δ ⊂ 𝑀R be a reflexive polytope with polar Δ∘ ⊂ 𝑁R. Let 𝑋Δ be the toric
variety associated to the normal fan of Δ. A nef-partition is a decomposition of the vertex set 𝑉 of Δ∘ into a
disjoint union 𝑉 = 𝑉0 ⊔ 𝑉1 ⊔ · · · ⊔ 𝑉𝑘−1 such that divisors 𝐸𝑖 =

∑︀
𝑣∈𝑉𝑖

𝐷𝑣 are Cartier (here 𝐷𝑣 are prime
torus-invariant Weil divisors corresponding to vertices of Δ∘). Equivalently, let ∇𝑖 ⊂ 𝑁R be the convex hull of
vertices from 𝑉𝑖 and the origin. These polytopes form a nef-partition if their Minkowski sum∇ ⊂ 𝑁R is a reflexive
polytope.

The dual nef-partition is formed by polytopes Δ𝑖 ⊂ 𝑀R of 𝐸𝑖, which give a decomposition of the vertex set of
∇∘ ⊂ 𝑀R and their Minkowski sum is Δ, i.e. the polar duality of reflexive polytopes switches convex hull and
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Minkowski sum for dual nef-partitions:

Δ∘ = Conv (∇0,∇1, . . . ,∇𝑘−1) ,

∇ = ∇0 +∇1 + · · ·+∇𝑘−1,

Δ = Δ0 +Δ1 + · · ·+Δ𝑘−1,

∇∘ = Conv (Δ0,Δ1, . . . ,Δ𝑘−1) .

One can also interpret the duality of nef-partitions as the duality of the associated cones. Below𝑀 = 𝑀 × 𝑘

and 𝑁 = 𝑁 × 𝑘 are dual lattices.

The Cayley polytope 𝑃 ⊂𝑀R of a nef-partition is given by 𝑃 = Conv(Δ0 × 𝑒0,Δ1 × 𝑒1, . . . ,Δ𝑘−1 × 𝑒𝑘−1),
where {𝑒𝑖}𝑘−1

𝑖=0 is the standard basis of 𝑘. The dual Cayley polytope 𝑃 * ⊂ 𝑁R is the Cayley polytope of the
dual nef-partition.

The Cayley cone 𝐶 ⊂ 𝑀R of a nef-partition is the cone spanned by its Cayley polytope. The dual Cayley cone
𝐶∨ ⊂𝑀R is the usual dual cone of 𝐶. It turns out, that 𝐶∨ is spanned by 𝑃 *.

It is also possible to go back from the Cayley cone to the Cayley polytope, since 𝐶 is a reflexive Gorenstein cone
supported by 𝑃 : primitive integral ray generators of 𝐶 are contained in an affine hyperplane and coincide with
vertices of 𝑃 .

See Section 4.3.1 in [CK1999] and references therein for further details, or [BN2008] for a purely combinatorial
approach.

EXAMPLES:

It is very easy to create a nef-partition for the octahedron, since for this polytope any decomposition of vertices is a
nef-partition. We create a 3-part nef-partition with the 0-th and 1-st vertices belonging to the 0-th part (recall that
numeration in Sage starts with 0), the 2-nd and 5-th vertices belonging to the 1-st part, and 3-rd and 4-th vertices
belonging to the 2-nd part:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0,0,1,2,2,1], o)
sage: np
Nef-partition {0, 1} ⊔ {2, 5} ⊔ {3, 4}

The octahedron plays the role ofΔ∘ in the above description:

sage: np.Delta_polar() is o
True

The dual nef-partition (corresponding to the “mirror complete intersection”) gives decomposition of the vertex set
of∇∘:

sage: np.dual()
Nef-partition {0, 1, 2} ⊔ {3, 4} ⊔ {5, 6, 7}
sage: np.nabla_polar().vertices()
N(-1, -1, 0),
N(-1, 0, 0),
N( 0, -1, 0),
N( 0, 0, -1),
N( 0, 0, 1),
N( 1, 0, 0),
N( 0, 1, 0),
N( 1, 1, 0)
in 3-d lattice N

Of course,∇∘ is Δ∘ from the point of view of the dual nef-partition:
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sage: np.dual().Delta_polar() is np.nabla_polar()
True
sage: np.Delta(1).vertices()
N(0, 0, -1),
N(0, 0, 1)
in 3-d lattice N
sage: np.dual().nabla(1).vertices()
N(0, 0, -1),
N(0, 0, 1)
in 3-d lattice N

Instead of constructing nef-partitions directly, you can request all 2-part nef-partitions of a given reflexive polytope
(they will be computed using nef.x program from PALP):

sage: o.nef_partitions() #␣
→˓needs palp
[
Nef-partition {0, 1, 3} ⊔ {2, 4, 5},
Nef-partition {0, 1, 3, 4} ⊔ {2, 5} (direct product),
Nef-partition {0, 1, 2} ⊔ {3, 4, 5},
Nef-partition {0, 1, 2, 3} ⊔ {4, 5},
Nef-partition {0, 1, 2, 3, 4} ⊔ {5} (projection)
]

Delta(i=None)
Return the polytope Δ or Δ𝑖 corresponding to self.

INPUT:

• i – an integer. If not given,Δ will be returned.

OUTPUT:

• a lattice polytope.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.Delta().polar() is o
True
sage: np.Delta().vertices()
N( 1, -1, -1),
N( 1, 1, -1),
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N
sage: np.Delta(0).vertices()
N(-1, -1, 0),
N(-1, 0, 0),
N( 1, 0, 0),

(continues on next page)
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N( 1, -1, 0)
in 3-d lattice N

Delta_polar()

Return the polytope Δ∘ corresponding to self.

OUTPUT:

• a lattice polytope.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.Delta_polar() is o
True

Deltas()

Return the polytopes Δ𝑖 corresponding to self.

OUTPUT:

• a tuple of lattice polytopes.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.Delta().vertices()
N( 1, -1, -1),
N( 1, 1, -1),
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N
sage: [Delta_i.vertices() for Delta_i in np.Deltas()]
[N(-1, -1, 0),
N(-1, 0, 0),
N( 1, 0, 0),
N( 1, -1, 0)
in 3-d lattice N,
N(0, 0, -1),
N(0, 1, 1),
N(0, 0, 1),
N(0, 1, -1)
in 3-d lattice N]

sage: np.nabla_polar().vertices()
N(-1, -1, 0),
N( 1, -1, 0),
N( 1, 0, 0),

(continues on next page)
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N(-1, 0, 0),
N( 0, 1, -1),
N( 0, 1, 1),
N( 0, 0, 1),
N( 0, 0, -1)
in 3-d lattice N

dual()

Return the dual nef-partition.

OUTPUT:

• a nef-partition.

See the class documentation for the definition.

ALGORITHM:

See Proposition 3.19 in [BN2008].

Note: Automatically constructed dual nef-partitions will be ordered, i.e. vertex partition of∇ will look like
{0, 1, 2} ⊔ {3, 4, 5, 6} ⊔ {7, 8}.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.dual()
Nef-partition {0, 1, 2, 3} ⊔ {4, 5, 6, 7}
sage: np.dual().Delta() is np.nabla()
True
sage: np.dual().nabla(0) is np.Delta(0)
True

hodge_numbers()

Return Hodge numbers corresponding to self.

OUTPUT:

• a tuple of integers (produced by nef.x program from PALP).

EXAMPLES:

Currently, you need to request Hodge numbers when you compute nef-partitions:

sage: # long time, needs palp
sage: p = lattice_polytope.cross_polytope(5)
sage: np = p.nef_partitions()[0] # 4s on sage.math, 2011
sage: np.hodge_numbers()
Traceback (most recent call last):
...
NotImplementedError: use nef_partitions(hodge_numbers=True)!
sage: np = p.nef_partitions(hodge_numbers=True)[0] # 13s on sage.math, 2011
sage: np.hodge_numbers()
(19, 19)
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nabla(i=None)
Return the polytope ∇ or ∇𝑖 corresponding to self.

INPUT:

• i – an integer. If not given,∇ will be returned.

OUTPUT:

• a lattice polytope.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.Delta_polar().vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: np.nabla(0).vertices()
M(-1, 0, 0),
M( 1, 0, 0),
M( 0, 1, 0)
in 3-d lattice M
sage: np.nabla().vertices()
M(-1, 0, 1),
M(-1, 0, -1),
M( 1, 0, 1),
M( 1, 0, -1),
M( 0, 1, 1),
M( 0, 1, -1),
M( 1, -1, 0),
M(-1, -1, 0)
in 3-d lattice M

nabla_polar()

Return the polytope ∇∘ corresponding to self.

OUTPUT:

• a lattice polytope.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.nabla_polar().vertices()
N(-1, -1, 0),
N( 1, -1, 0),
N( 1, 0, 0),
N(-1, 0, 0),

(continues on next page)
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N( 0, 1, -1),
N( 0, 1, 1),
N( 0, 0, 1),
N( 0, 0, -1)
in 3-d lattice N
sage: np.nabla_polar() is np.dual().Delta_polar()
True

nablas()

Return the polytopes ∇𝑖 corresponding to self.

OUTPUT:

• a tuple of lattice polytopes.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.Delta_polar().vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: [nabla_i.vertices() for nabla_i in np.nablas()]
[M(-1, 0, 0),
M( 1, 0, 0),
M( 0, 1, 0)
in 3-d lattice M,
M(0, -1, 0),
M(0, 0, -1),
M(0, 0, 1)
in 3-d lattice M]

nparts()

Return the number of parts in self.

OUTPUT:

• an integer.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.nparts()
2

part(i, all_points=False)
Return the i-th part of self.

INPUT:
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• i – an integer

• all_points – (default: False) whether to list all lattice points or just vertices

OUTPUT:

• a tuple of integers, indices of vertices (or all lattice points) of Δ∘ belonging to 𝑉𝑖.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.part(0)
(0, 1, 3)
sage: np.part(0, all_points=True) #␣
→˓needs palp
(0, 1, 3)
sage: np.dual().part(0)
(0, 1, 2, 3)
sage: np.dual().part(0, all_points=True) #␣
→˓needs palp
(0, 1, 2, 3, 8)

part_of(i)
Return the index of the part containing the i-th vertex.

INPUT:

• i – an integer.

OUTPUT:

• an integer 𝑗 such that the i-th vertex ofΔ∘ belongs to 𝑉𝑗 .

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.part_of(3)
0
sage: np.part_of(2)
1

part_of_point(i)
Return the index of the part containing the i-th point.

INPUT:

• i – an integer.

OUTPUT:

• an integer 𝑗 such that the i-th point ofΔ∘ belongs to∇𝑗 .

Note: Since a nef-partition induces a partition on the set of boundary lattice points of Δ∘, the value of
𝑗 is well-defined for all 𝑖 but the one that corresponds to the origin, in which case this method will raise a
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ValueError exception. (The origin always belongs to all∇𝑗 .)

See nef-partition class documentation for definitions and notation.

EXAMPLES:

We consider a relatively complicated reflexive polytope #2252 (easily accessible in Sage as
ReflexivePolytope(3, 2252), we create it here explicitly to avoid loading the whole database):

sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,1), (0,1,-1),
....: (0,-1,1), (-1,1,0), (0,-1,-1), (-1,-1,0), (-1,-1,2)])
sage: np = p.nef_partitions()[0]; np #␣
→˓needs palp
Nef-partition {1, 2, 5, 7, 8} ⊔ {0, 3, 4, 6}
sage: p.nvertices()
9
sage: p.npoints() #␣
→˓needs palp
15

We see that the polytope has 6 more points in addition to vertices. One of them is the origin:

sage: p.origin() #␣
→˓needs palp
14
sage: np.part_of_point(14) #␣
→˓needs palp
Traceback (most recent call last):
...
ValueError: the origin belongs to all parts!

But the remaining 5 are partitioned by np:

sage: [n for n in range(p.npoints()) #␣
→˓needs palp
....: if p.origin() != n and np.part_of_point(n) == 0]
[1, 2, 5, 7, 8, 9, 11, 13]
sage: [n for n in range(p.npoints()) #␣
→˓needs palp
....: if p.origin() != n and np.part_of_point(n) == 1]
[0, 3, 4, 6, 10, 12]

parts(all_points=False)
Return all parts of self.

INPUT:

• all_points – (default: False) whether to list all lattice points or just vertices

OUTPUT:

• a tuple of tuples of integers. The 𝑖-th tuple contains indices of vertices (or all lattice points) of Δ∘

belonging to 𝑉𝑖
See nef-partition class documentation for definitions and notation.

EXAMPLES:
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sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.parts()
((0, 1, 3), (2, 4, 5))
sage: np.parts(all_points=True) #␣
→˓needs palp
((0, 1, 3), (2, 4, 5))
sage: np.dual().parts()
((0, 1, 2, 3), (4, 5, 6, 7))
sage: np.dual().parts(all_points=True) #␣
→˓needs palp
((0, 1, 2, 3, 8), (4, 5, 6, 7, 10))

sage.geometry.lattice_polytope.ReflexivePolytope(dim, n)
Return the 𝑛-th 2- or 3-dimensional reflexive polytope.

Note:

1. Numeration starts with zero: 0 ≤ 𝑛 ≤ 15 for dim = 2 and 0 ≤ 𝑛 ≤ 4318 for dim = 3.

2. During the first call, all reflexive polytopes of requested dimension are loaded and cached for future use, so
the first call for 3-dimensional polytopes can take several seconds, but all consecutive calls are fast.

3. Equivalent to ReflexivePolytopes(dim)[n] but checks bounds first.

EXAMPLES:

The 3rd 2-dimensional polytope is “the diamond”:

sage: ReflexivePolytope(2, 3)
2-d reflexive polytope #3 in 2-d lattice M
sage: lattice_polytope.ReflexivePolytope(2,3).vertices()
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

There are 16 reflexive polygons and numeration starts with 0:

sage: ReflexivePolytope(2,16)
Traceback (most recent call last):
...
ValueError: there are only 16 reflexive polygons!

It is not possible to load a 4-dimensional polytope in this way:

sage: ReflexivePolytope(4,16)
Traceback (most recent call last):
...
NotImplementedError: only 2- and 3-dimensional reflexive polytopes are available!

sage.geometry.lattice_polytope.ReflexivePolytopes(dim)

Return the sequence of all 2- or 3-dimensional reflexive polytopes.
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Note: During the first call the database is loaded and cached for future use, so repetitive calls will return the same
object in memory.

Parameters
dim (2 or 3) – dimension of required reflexive polytopes

Return type
list of lattice polytopes

EXAMPLES:

There are 16 reflexive polygons:

sage: len(ReflexivePolytopes(2))
16

It is not possible to load 4-dimensional polytopes in this way:

sage: ReflexivePolytopes(4)
Traceback (most recent call last):
...
NotImplementedError: only 2- and 3-dimensional reflexive polytopes are available!

class sage.geometry.lattice_polytope.SetOfAllLatticePolytopesClass

Bases: Set_generic

sage.geometry.lattice_polytope.all_cached_data(polytopes)
Compute all cached data for all given polytopes and their polars.

This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is
recommended to use this functions if you work with big sets of data. None of the polytopes in the given sequence
should be constructed as the polar polytope to another one.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course,
you can use short sequences as well:

sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_cached_data([o]) #␣
→˓needs palp

sage.geometry.lattice_polytope.all_facet_equations(polytopes)

Compute polar polytopes for all reflexive and equations of facets for all non-reflexive polytopes.

all_facet_equations and all_polars are synonyms.

This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is
recommended to use this functions if you work with big sets of data.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course,
you can use short sequences as well:
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sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_polars([o]) #␣
→˓needs palp
sage: o.polar() #␣
→˓needs palp
3-d reflexive polytope in 3-d lattice N

sage.geometry.lattice_polytope.all_nef_partitions(polytopes, keep_symmetric=False)
Compute nef-partitions for all given polytopes.

This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is
recommended to use this functions if you work with big sets of data.

Note: member function is_reflexive will be called separately for each polytope. It is strictly recommended
to call all_polars on the sequence of polytopes before using this function.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course,
you can use short sequences as well:

sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_nef_partitions([o]) #␣
→˓needs palp
sage: o.nef_partitions() #␣
→˓needs palp
[
Nef-partition {0, 1, 3} ⊔ {2, 4, 5},
Nef-partition {0, 1, 3, 4} ⊔ {2, 5} (direct product),
Nef-partition {0, 1, 2} ⊔ {3, 4, 5},
Nef-partition {0, 1, 2, 3} ⊔ {4, 5},
Nef-partition {0, 1, 2, 3, 4} ⊔ {5} (projection)
]

You cannot use this function for non-reflexive polytopes:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,2),
....: (-1,0,0), (0,-1,0), (0,0,-1)])
sage: lattice_polytope.all_nef_partitions([o, p]) #␣
→˓needs palp
Traceback (most recent call last):
...
ValueError: nef-partitions can be computed for reflexive polytopes only

sage.geometry.lattice_polytope.all_points(polytopes)
Compute lattice points for all given polytopes.

This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is
recommended to use this functions if you work with big sets of data.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course,
you can use short sequences as well:

sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_points([o]) #␣
→˓needs palp
sage: o.points() #␣

(continues on next page)
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→˓needs palp
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1),
M( 0, 0, 0)
in 3-d lattice M

sage.geometry.lattice_polytope.all_polars(polytopes)
Compute polar polytopes for all reflexive and equations of facets for all non-reflexive polytopes.

all_facet_equations and all_polars are synonyms.

This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is
recommended to use this functions if you work with big sets of data.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course,
you can use short sequences as well:

sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_polars([o]) #␣
→˓needs palp
sage: o.polar() #␣
→˓needs palp
3-d reflexive polytope in 3-d lattice N

sage.geometry.lattice_polytope.convex_hull(points)
Compute the convex hull of the given points.

Note: points might not span the space. Also, it fails for large numbers of vertices in dimensions 4 or greater

INPUT:

• points – a list that can be converted into vectors of the same dimension over ZZ.

OUTPUT:

list of vertices of the convex hull of the given points (as vectors).

EXAMPLES: Let’s compute the convex hull of several points on a line in the plane:

sage: lattice_polytope.convex_hull([[1,2],[3,4],[5,6],[7,8]])
[(1, 2), (7, 8)]

sage.geometry.lattice_polytope.cross_polytope(dim)

Return a cross-polytope of the given dimension.

INPUT:

• dim – an integer.

OUTPUT:

• a lattice polytope.
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EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o
3-d reflexive polytope in 3-d lattice M
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M

sage.geometry.lattice_polytope.is_LatticePolytope(x)
Check if x is a lattice polytope.

INPUT:

• x – anything.

OUTPUT:

• True if x is a lattice polytope, False otherwise.

EXAMPLES:

sage: from sage.geometry.lattice_polytope import is_LatticePolytope
sage: is_LatticePolytope(1)
doctest:warning...
DeprecationWarning: is_LatticePolytope is deprecated, use isinstance instead
See https://github.com/sagemath/sage/issues/34307 for details.
False
sage: p = LatticePolytope([(1,0), (0,1), (-1,-1)])
sage: p #␣
→˓needs palp
2-d reflexive polytope #0 in 2-d lattice M
sage: is_LatticePolytope(p)
True

sage.geometry.lattice_polytope.is_NefPartition(x)
Check if x is a nef-partition.

INPUT:

• x – anything.

OUTPUT:

• True if x is a nef-partition and False otherwise.

EXAMPLES:

sage: from sage.geometry.lattice_polytope import NefPartition
sage: isinstance(1, NefPartition)
False
sage: o = lattice_polytope.cross_polytope(3)
sage: np = o.nef_partitions()[0]; np #␣
→˓needs palp
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: isinstance(np, NefPartition) ␣

(continues on next page)
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→˓ # needs palp
True

sage.geometry.lattice_polytope.minkowski_sum(points1, points2)
Compute the Minkowski sum of two convex polytopes.

Note: Polytopes might not be of maximal dimension.

INPUT:

• points1, points2 – lists of objects that can be converted into vectors of the same dimension, treated
as vertices of two polytopes.

OUTPUT: list of vertices of the Minkowski sum, given as vectors.

EXAMPLES: Let’s compute the Minkowski sum of two line segments:

sage: lattice_polytope.minkowski_sum([[1,0],[-1,0]],[[0,1],[0,-1]])
[(1, 1), (1, -1), (-1, 1), (-1, -1)]

sage.geometry.lattice_polytope.positive_integer_relations(points)
Return relations between given points.

INPUT:

• points – lattice points given as columns of a matrix

OUTPUT:

matrix of relations between given points with non-negative integer coefficients

EXAMPLES: This is a 3-dimensional reflexive polytope:

sage: p = LatticePolytope([(1,0,0), (0,1,0),
....: (-1,-1,0), (0,0,1), (-1,0,-1)])
sage: p.points() #␣
→˓needs palp
M( 1, 0, 0),
M( 0, 1, 0),
M(-1, -1, 0),
M( 0, 0, 1),
M(-1, 0, -1),
M( 0, 0, 0)
in 3-d lattice M

We can compute linear relations between its points in the following way:

sage: p.points().matrix().kernel().echelonized_basis_matrix() #␣
→˓needs palp
[ 1 0 0 1 1 0]
[ 0 1 1 -1 -1 0]
[ 0 0 0 0 0 1]

However, the above relations may contain negative and rational numbers. This function transforms them in such a
way, that all coefficients are non-negative integers:
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sage: points = p.points().column_matrix()
sage: lattice_polytope.positive_integer_relations(points) #␣
→˓needs palp
[1 0 0 1 1 0]
[1 1 1 0 0 0]
[0 0 0 0 0 1]

sage: cm = ReflexivePolytope(2,1).vertices().column_matrix()
sage: lattice_polytope.positive_integer_relations(cm)
[2 1 1]

sage.geometry.lattice_polytope.read_all_polytopes(file_name)
Read all polytopes from the given file.

INPUT:

• file_name – a string with the name of a file with VERTICES of polytopes.

OUTPUT:

• a sequence of polytopes.

EXAMPLES:

We use poly.x to compute two polar polytopes and read them:

sage: # needs palp
sage: d = lattice_polytope.cross_polytope(2)
sage: o = lattice_polytope.cross_polytope(3)
sage: result_name = lattice_polytope._palp("poly.x -fe", [d, o])
sage: with open(result_name) as f:
....: print(f.read())
4 2 Vertices of P-dual <-> Equations of P
-1 1
1 1

-1 -1
1 -1

8 3 Vertices of P-dual <-> Equations of P
-1 -1 1
1 -1 1

-1 1 1
1 1 1

-1 -1 -1
1 -1 -1

-1 1 -1
1 1 -1

sage: lattice_polytope.read_all_polytopes(result_name)
[2-d reflexive polytope #14 in 2-d lattice M,
3-d reflexive polytope in 3-d lattice M]
sage: os.remove(result_name)

sage.geometry.lattice_polytope.read_palp_matrix(data, permutation=False)
Read and return an integer matrix from a string or an opened file.

First input line must start with two integers m and n, the number of rows and columns of the matrix. The rest of
the first line is ignored. The next m lines must contain n numbers each.

If m>n, returns the transposed matrix. If the string is empty or EOF is reached, returns the empty matrix, con-
structed by matrix().

INPUT:
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• data – Either a string containing the filename or the file itself
containing the output by PALP.

• permutation – (default: False) If True, try to retrieve the permutation output by PALP. This param-
eter makes sense only when PALP computed the normal form of a lattice polytope.

OUTPUT:

A matrix or a tuple of a matrix and a permutation.

EXAMPLES:

sage: lattice_polytope.read_palp_matrix("2 3 comment \n 1 2 3 \n 4 5 6")
[1 2 3]
[4 5 6]
sage: lattice_polytope.read_palp_matrix("3 2 Will be transposed \n 1 2 \n 3 4 \n␣
→˓5 6")
[1 3 5]
[2 4 6]

sage.geometry.lattice_polytope.set_palp_dimension(d)
Set the dimension for PALP calls to d.

INPUT:

• d – an integer from the list [4,5,6,11] or None.

OUTPUT:

• none.

PALP has many hard-coded limits, which must be specified before compilation, one of them is dimension. Sage
includes several versions with different dimension settings (which may also affect other limits and enable certain
features of PALP). You can change the version which will be used by calling this function. Such a change is not
done automatically for each polytope based on its dimension, since depending on what you are doing it may be
necessary to use dimensions higher than that of the input polytope.

EXAMPLES:

Let’s try to work with a 7-dimensional polytope:

sage: p = lattice_polytope.cross_polytope(7)
sage: p._palp("poly.x -fv") #␣
→˓needs palp
Traceback (most recent call last):
...
ValueError: Error executing poly.x -fv for the given polytope!
Output:
Please increase POLY_Dmax to at least 7

However, we can work with this polytope by changing PALP dimension to 11:

sage: lattice_polytope.set_palp_dimension(11)
sage: p._palp("poly.x -fv") #␣
→˓needs palp
7 14 Vertices of P...

Let’s go back to default settings:

sage: lattice_polytope.set_palp_dimension(None)
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sage.geometry.lattice_polytope.skip_palp_matrix(data, n=1)
Skip matrix data in a file.

INPUT:

• data – opened file with blocks of matrix data in the following format: A block consisting of m+1 lines has
the number m as the first element of its first line.

• n – (default: 1) integer, specifies how many blocks should be skipped

If EOF is reached during the process, raises ValueError exception.

EXAMPLES: We create a file with vertices of the square and the cube, but read only the second set:

sage: # needs palp
sage: d = lattice_polytope.cross_polytope(2)
sage: o = lattice_polytope.cross_polytope(3)
sage: result_name = lattice_polytope._palp("poly.x -fe", [d, o])
sage: with open(result_name) as f:
....: print(f.read())
4 2 Vertices of P-dual <-> Equations of P
-1 1
1 1

-1 -1
1 -1

8 3 Vertices of P-dual <-> Equations of P
-1 -1 1
1 -1 1

-1 1 1
1 1 1

-1 -1 -1
1 -1 -1

-1 1 -1
1 1 -1

sage: f = open(result_name)
sage: lattice_polytope.skip_palp_matrix(f)
sage: lattice_polytope.read_palp_matrix(f)
[-1 1 -1 1 -1 1 -1 1]
[-1 -1 1 1 -1 -1 1 1]
[ 1 1 1 1 -1 -1 -1 -1]
sage: f.close()
sage: os.remove(result_name)

sage.geometry.lattice_polytope.write_palp_matrix(m, ofile=None, comment='', format=None)
Write m into ofile in PALP format.

INPUT:

• m – a matrix over integers or a point collection.

• ofile – a file opened for writing (default: stdout)

• comment – a string (default: empty) see output description

• format – a format string used to print matrix entries.

OUTPUT:

• nothing is returned, output written to ofile has the format

– First line: number_of_rows number_of_columns comment

– Next number_of_rows lines: rows of the matrix.
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EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.write_palp_matrix(o.vertices(), comment="3D Octahedron")
3 6 3D Octahedron
1 0 0 -1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1
sage: lattice_polytope.write_palp_matrix(o.vertices(), format="%4d")
3 6

1 0 0 -1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1

2.2.2 Lattice Euclidean Group Elements

The classes here are used to return particular isomorphisms of PPL lattice polytopes.

class sage.geometry.polyhedron.lattice_euclidean_group_element.LatticeEuclideanGroupElement(A,
b)

Bases: SageObject

An element of the lattice Euclidean group.

Note that this is just intended as a container for results from LatticePolytope_PPL. There is no group-theoretic
functionality to speak of.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_
→˓PPL, C_Polyhedron
sage: from sage.geometry.polyhedron.lattice_euclidean_group_element import␣
→˓LatticeEuclideanGroupElement
sage: M = LatticeEuclideanGroupElement([[1,2],[2,3],[-1,2]], [1,2,3])
sage: M
The map A*x+b with A=
[ 1 2]
[ 2 3]
[-1 2]
b =
(1, 2, 3)
sage: M._A
[ 1 2]
[ 2 3]
[-1 2]
sage: M._b
(1, 2, 3)
sage: M(vector([0,0]))
(1, 2, 3)
sage: M(LatticePolytope_PPL((0,0),(1,0),(0,1)))
A 2-dimensional lattice polytope in ZZ^3 with 3 vertices
sage: _.vertices()
((1, 2, 3), (2, 4, 2), (3, 5, 5))

codomain_dim()

Return the dimension of the codomain lattice

EXAMPLES:
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sage: from sage.geometry.polyhedron.lattice_euclidean_group_element import␣
→˓LatticeEuclideanGroupElement
sage: M = LatticeEuclideanGroupElement([[1,2],[2,3],[-1,2]], [1,2,3])
sage: M
The map A*x+b with A=
[ 1 2]
[ 2 3]
[-1 2]
b =
(1, 2, 3)
sage: M.codomain_dim()
3

Note that this is not the same as the rank. In fact, the codomain dimension depends only on the matrix shape,
and not on the rank of the linear mapping:

sage: zero_map = LatticeEuclideanGroupElement([[0,0],[0,0],[0,0]], [0,0,0])
sage: zero_map.codomain_dim()
3

domain_dim()

Return the dimension of the domain lattice

EXAMPLES:

sage: from sage.geometry.polyhedron.lattice_euclidean_group_element import␣
→˓LatticeEuclideanGroupElement
sage: M = LatticeEuclideanGroupElement([[1,2],[2,3],[-1,2]], [1,2,3])
sage: M
The map A*x+b with A=
[ 1 2]
[ 2 3]
[-1 2]
b =
(1, 2, 3)
sage: M.domain_dim()
2

exception
sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopeError

Bases: Exception

Base class for errors from lattice polytopes

exception sage.geometry.polyhedron.lattice_euclidean_group_element.
LatticePolytopeNoEmbeddingError

Bases: LatticePolytopeError

Raised when no embedding of the desired kind can be found.

exception sage.geometry.polyhedron.lattice_euclidean_group_element.
LatticePolytopesNotIsomorphicError

Bases: LatticePolytopeError

Raised when two lattice polytopes are not isomorphic.
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2.2.3 Access the PALP database(s) of reflexive lattice polytopes

EXAMPLES:

sage: from sage.geometry.polyhedron.palp_database import PALPreader
sage: for lp in PALPreader(2): #␣
→˓needs sage.graphs
....: cone = Cone([(1,r[0],r[1]) for r in lp.vertices()])
....: fan = Fan([cone])
....: X = ToricVariety(fan)
....: ideal = X.affine_algebraic_patch(cone).defining_ideal()
....: print("{} {}".format(lp.n_vertices(), ideal.hilbert_series()))
3 (t^2 + 7*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
3 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 3*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 6*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 2*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
4 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 3*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
5 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
6 (t^2 + 4*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)

class sage.geometry.polyhedron.palp_database.PALPreader(dim, data_basename=None,
output='Polyhedron')

Bases: SageObject

Read PALP database of polytopes.

INPUT:

• dim – integer. The dimension of the polyhedra

• data_basename – string or None (default). The directory and database base filename (PALP usually uses
zzdb ) name containing the PALP database to read. Defaults to the built-in database location.

• output – string. How to return the reflexive polyhedron data. Allowed values = list ,
Polyhedron (default), pointcollection , and PPL . Case is ignored.

EXAMPLES:

sage: from sage.geometry.polyhedron.palp_database import PALPreader
sage: polygons = PALPreader(2)
sage: [ (p.n_Vrepresentation(), len(p.integral_points())) for p in polygons ]
[(3, 4), (3, 10), (3, 5), (3, 9), (3, 7), (4, 6), (4, 8), (4, 9),
(4, 5), (4, 5), (4, 9), (4, 7), (5, 8), (5, 6), (5, 7), (6, 7)]

sage: next(iter(PALPreader(2, output= list )))
[[1, 0], [0, 1], [-1, -1]]
sage: type(_)
<... list >

sage: next(iter(PALPreader(2, output= Polyhedron )))
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(continued from previous page)

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: type(_)
<class sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category.element_
→˓class >

sage: next(iter(PALPreader(2, output= PPL )))
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: type(_)
<class sage.geometry.polyhedron.ppl_lattice_polygon.LatticePolygon_PPL_class >

sage: next(iter(PALPreader(2, output= PointCollection )))
[ 1, 0],
[ 0, 1],
[-1, -1]
in Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: type(_)
<class sage.geometry.point_collection.PointCollection >

class sage.geometry.polyhedron.palp_database.Reflexive4dHodge(h11, h21,
data_basename=None,
**kwds)

Bases: PALPreader

Read the PALP database for Hodge numbers of 4d polytopes.

The database is very large and not installed by default. You can install it with the shell command sage -i
polytopes_db_4d.

INPUT:

• h11, h21 – Integers. The Hodge numbers of the reflexive polytopes to list.

Any additional keyword arguments are passed to PALPreader.

EXAMPLES:

sage: from sage.geometry.polyhedron.palp_database import Reflexive4dHodge
sage: ref = Reflexive4dHodge(1,101) # optional - polytopes_db_4d
sage: next(iter(ref)).Vrepresentation() # optional - polytopes_db_4d
(A vertex at (-1, -1, -1, -1), A vertex at (0, 0, 0, 1),
A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0), A vertex at (1, 0, 0, 0))

2.2.4 Fast Lattice Polygons using PPL

See ppl_lattice_polytope for the implementation of arbitrary-dimensional lattice polytopes. This module is
about the specialization to 2 dimensions. To be more precise, the LatticePolygon_PPL_class is used if the
ambient space is of dimension 2 or less. These all allow you to cyclically order (see LatticePolygon_PPL_class.
ordered_vertices()) the vertices, which is in general not possible in higher dimensions.

class sage.geometry.polyhedron.ppl_lattice_polygon.LatticePolygon_PPL_class

Bases: LatticePolytope_PPL_class

A lattice polygon

This includes 2-dimensional polytopes as well as degenerate (0 and 1-dimensional) lattice polygons. Any polytope
in 2d is a polygon.
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find_isomorphism(polytope)
Return a lattice isomorphism with polytope.

INPUT:

• polytope – a polytope, potentially higher-dimensional.

OUTPUT:

A LatticeEuclideanGroupElement. It is not necessarily invertible if the affine dimension of self
or polytope is not two. A LatticePolytopesNotIsomorphicError is raised if no such iso-
morphism exists.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
sage: L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
sage: iso = L1.find_isomorphism(L2)
sage: iso(L1) == L2
True

sage: L1 = LatticePolytope_PPL((0, 1), (3, 0), (0, 3), (1, 0))
sage: L2 = LatticePolytope_PPL((0,0,2,1),(0,1,2,0),(2,0,0,3),(2,3,0,0))
sage: iso = L1.find_isomorphism(L2)
sage: iso(L1) == L2
True

The following polygons are isomorphic over , but not as lattice polytopes:

sage: L1 = LatticePolytope_PPL((1,0),(0,1),(-1,-1))
sage: L2 = LatticePolytope_PPL((0, 0), (0, 1), (1, 0))
sage: L1.find_isomorphism(L2)
Traceback (most recent call last):
...
LatticePolytopesNotIsomorphicError: different number of integral points
sage: L2.find_isomorphism(L1)
Traceback (most recent call last):
...
LatticePolytopesNotIsomorphicError: different number of integral points

is_isomorphic(polytope)
Test if self and polytope are isomorphic.

INPUT:

• polytope – a lattice polytope.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
sage: L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
sage: L1.is_isomorphic(L2)
True
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ordered_vertices()

Return the vertices of a lattice polygon in cyclic order.

OUTPUT:

A tuple of vertices ordered along the perimeter of the polygon. The first point is arbitrary.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: square = LatticePolytope_PPL((0,0), (1,1), (0,1), (1,0))
sage: square.vertices()
((0, 0), (0, 1), (1, 0), (1, 1))
sage: square.ordered_vertices()
((0, 0), (1, 0), (1, 1), (0, 1))

plot()

Plot the lattice polygon.

OUTPUT:

A graphics object.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: P = LatticePolytope_PPL((1,0), (0,1), (0,0), (2,2))
sage: P.plot() #␣
→˓needs sage.plot
Graphics object consisting of 6 graphics primitives
sage: LatticePolytope_PPL([0], [1]).plot() #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives
sage: LatticePolytope_PPL([0]).plot() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

sub_polytopes()

Return a list of all lattice sub-polygons up to isomorphism.

OUTPUT:

All non-empty sub-lattice polytopes up to isomorphism. This includes self as improper sub-polytope, but
excludes the empty polytope. Isomorphic sub-polytopes that can be embedded in different places are only
returned once.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: P1xP1 = LatticePolytope_PPL((1,0), (0,1), (-1,0), (0,-1))
sage: P1xP1.sub_polytopes()
(A 2-dimensional lattice polytope in ZZ^2 with 4 vertices,
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices,
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices,
A 1-dimensional lattice polytope in ZZ^2 with 2 vertices,
A 1-dimensional lattice polytope in ZZ^2 with 2 vertices,
A 0-dimensional lattice polytope in ZZ^2 with 1 vertex)
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sage.geometry.polyhedron.ppl_lattice_polygon.polar_P1xP1_polytope()

The polar of the 𝑃 1 × 𝑃 1 polytope

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polygon import polar_P1xP1_
→˓polytope
sage: polar_P1xP1_polytope()
A 2-dimensional lattice polytope in ZZ^2 with 4 vertices
sage: _.vertices()
((0, 0), (0, 2), (2, 0), (2, 2))

sage.geometry.polyhedron.ppl_lattice_polygon.polar_P2_112_polytope()

The polar of the 𝑃 2[1, 1, 2] polytope

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polygon import polar_P2_112_
→˓polytope
sage: polar_P2_112_polytope()
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: _.vertices()
((0, 0), (0, 2), (4, 0))

sage.geometry.polyhedron.ppl_lattice_polygon.polar_P2_polytope()

The polar of the 𝑃 2 polytope

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polygon import polar_P2_polytope
sage: polar_P2_polytope()
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: _.vertices()
((0, 0), (0, 3), (3, 0))

sage.geometry.polyhedron.ppl_lattice_polygon.sub_reflexive_polygons()

Return all lattice sub-polygons of reflexive polygons.

OUTPUT:

A tuple of all lattice sub-polygons. Each sub-polygon is returned as a pair sub-polygon, containing reflexive polygon.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polygon import sub_reflexive_
→˓polygons
sage: l = sub_reflexive_polygons(); l[5]
(A 2-dimensional lattice polytope in ZZ^2 with 6 vertices,
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices)
sage: len(l)
33

sage.geometry.polyhedron.ppl_lattice_polygon.subpolygons_of_polar_P1xP1()

The lattice sub-polygons of the polar 𝑃 1 × 𝑃 1 polytope

OUTPUT:

A tuple of lattice polytopes.

EXAMPLES:
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sage: from sage.geometry.polyhedron.ppl_lattice_polygon import subpolygons_of_
→˓polar_P1xP1
sage: len(subpolygons_of_polar_P1xP1())
20

sage.geometry.polyhedron.ppl_lattice_polygon.subpolygons_of_polar_P2()

The lattice sub-polygons of the polar 𝑃 2 polytope

OUTPUT:

A tuple of lattice polytopes.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polygon import subpolygons_of_
→˓polar_P2
sage: len(subpolygons_of_polar_P2())
27

sage.geometry.polyhedron.ppl_lattice_polygon.subpolygons_of_polar_P2_112()

The lattice sub-polygons of the polar 𝑃 2[1, 1, 2] polytope

OUTPUT:

A tuple of lattice polytopes.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polygon import subpolygons_of_
→˓polar_P2_112
sage: len(subpolygons_of_polar_P2_112())
28

2.2.5 Fast Lattice Polytopes using PPL.

The LatticePolytope_PPL() class is a thin wrapper around PPL polyhedra. Its main purpose is to be fast to
construct, at the cost of being much less full-featured than the usual polyhedra. This makes it possible to iterate with it
over the list of all 473800776 reflexive polytopes in 4 dimensions.

Note: For general lattice polyhedra you should use Polyhedron() with base_ring=ZZ.

The class derives from the PPL ppl.polyhedron.C_Polyhedron class, so you can work with the underlying
generator and constraint objects. However, integral points are generally represented by -vectors. In the following, we
always use generator to refer the PPL generator objects and vertex (or integral point) for the corresponding -vector.

EXAMPLES:

sage: vertices = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1,
→˓ -1)]
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: P = LatticePolytope_PPL(vertices); P
A 4-dimensional lattice polytope in ZZ^4 with 5 vertices
sage: P.integral_points()
((-9, -6, -1, -1), (-3, -2, 0, 0), (-2, -1, 0, 0), (-1, -1, 0, 0),
(-1, 0, 0, 0), (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0))

(continues on next page)
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(continued from previous page)

sage: P.integral_points_not_interior_to_facets()
((-9, -6, -1, -1), (-3, -2, 0, 0), (0, 0, 0, 0), (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0))

Fibrations of the lattice polytopes are defined as lattice sub-polytopes and give rise to fibrations of toric varieties for
suitable fan refinements. We can compute them using fibration_generator()

sage: F = next(P.fibration_generator(2))
sage: F.vertices()
((1, 0, 0, 0), (0, 1, 0, 0), (-3, -2, 0, 0))

Finally, we can compute automorphisms and identify fibrations that only differ by a lattice automorphism:

sage: square = LatticePolytope_PPL((-1,-1), (-1,1), (1,-1), (1,1))
sage: fibers = [ f.vertices() for f in square.fibration_generator(1) ]; fibers
[((1, 0), (-1, 0)), ((0, 1), (0, -1)), ((-1, -1), (1, 1)), ((-1, 1), (1, -1))]
sage: square.pointsets_mod_automorphism(fibers) #␣
→˓needs sage.groups
(frozenset({(-1, -1), (1, 1)}), frozenset({(-1, 0), (1, 0)}))

AUTHORS:

• Volker Braun: initial version, 2012

sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL(*args)
Construct a new instance of the PPL-based lattice polytope class.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_
→˓PPL
sage: LatticePolytope_PPL((0,0), (1,0), (0,1))
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices

sage: from ppl import point, Generator_System, C_Polyhedron, Linear_Expression #␣
→˓needs pplpy
sage: p = point(Linear_Expression([2,3],0)); p #␣
→˓needs pplpy
point(2/1, 3/1)
sage: LatticePolytope_PPL(p) #␣
→˓needs pplpy
A 0-dimensional lattice polytope in ZZ^2 with 1 vertex

sage: P = C_Polyhedron(Generator_System(p)); P #␣
→˓needs pplpy
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: LatticePolytope_PPL(P) #␣
→˓needs pplpy
A 0-dimensional lattice polytope in ZZ^2 with 1 vertex

A TypeError is raised if the arguments do not specify a lattice polytope:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_
→˓PPL
sage: LatticePolytope_PPL((0,0), (1/2,1)) #␣
→˓needs pplpy
Traceback (most recent call last):

(continues on next page)
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(continued from previous page)

...
TypeError: unable to convert rational 1/2 to an integer

sage: from ppl import point, Generator_System, C_Polyhedron, Linear_Expression #␣
→˓needs pplpy
sage: p = point(Linear_Expression([2,3],0), 5); p #␣
→˓needs pplpy
point(2/5, 3/5)
sage: LatticePolytope_PPL(p) #␣
→˓needs pplpy
Traceback (most recent call last):
...
TypeError: generator is not a lattice polytope generator

sage: P = C_Polyhedron(Generator_System(p)); P #␣
→˓needs pplpy
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: LatticePolytope_PPL(P) #␣
→˓needs pplpy
Traceback (most recent call last):
...
TypeError: polyhedron has non-integral generators

class sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class

Bases: C_Polyhedron

The lattice polytope class.

You should use LatticePolytope_PPL() to construct instances.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_
→˓PPL
sage: LatticePolytope_PPL((0,0), (1,0), (0,1))
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices

affine_lattice_polytope()

Return the lattice polytope restricted to affine_space().

OUTPUT:

A new, full-dimensional lattice polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: poly_4d = LatticePolytope_PPL((-9,-6,0,0), (0,1,0,0), (1,0,0,0)); poly_
→˓4d
A 2-dimensional lattice polytope in ZZ^4 with 3 vertices
sage: poly_4d.space_dimension()
4
sage: poly_2d = poly_4d.affine_lattice_polytope(); poly_2d
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: poly_2d.space_dimension()
2
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affine_space()

Return the affine space spanned by the polytope.

OUTPUT:

The free module 𝑛, where 𝑛 is the dimension of the affine space spanned by the points of the polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: point = LatticePolytope_PPL((1,2,3))
sage: point.affine_space()
Free module of degree 3 and rank 0 over Integer Ring
Echelon basis matrix:
[]
sage: line = LatticePolytope_PPL((1,1,1), (1,2,3))
sage: line.affine_space()
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1 2]

ambient_space()

Return the ambient space.

OUTPUT:

The free module 𝑑, where 𝑑 is the ambient space dimension.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: point = LatticePolytope_PPL((1,2,3))
sage: point.ambient_space()
Ambient free module of rank 3 over the principal ideal domain Integer Ring

base_projection(fiber)
The projection that maps the sub-polytope fiber to a single point.

OUTPUT:

The quotient module of the ambient space modulo the affine_space() spanned by the fiber.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),
....: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0))
sage: fiber = next(poly.fibration_generator(2))
sage: poly.base_projection(fiber)
Finitely generated module V/W over Integer Ring with invariants (0, 0)

base_projection_matrix(fiber)
The projection that maps the sub-polytope fiber to a single point.

OUTPUT:

An integer matrix that represents the projection to the base.
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See also:

The base_projection() yields equivalent information, and is easier to use. However, just returning the
matrix has lower overhead.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),
....: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0))
sage: fiber = next(poly.fibration_generator(2))
sage: poly.base_projection_matrix(fiber)
[ 0 0 -1 0]
[ 0 0 0 -1]

Note that the basis choice in base_projection() for the quotient is usually different:

sage: proj = poly.base_projection(fiber)
sage: proj_matrix = poly.base_projection_matrix(fiber)
sage: [proj(p) for p in poly.integral_points()]
[(-1, -1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1,
→˓ 0)]
sage: [proj_matrix*p for p in poly.integral_points()]
[(1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, -1), (-1,
→˓ 0)]

base_rays(fiber, points)
Return the primitive lattice vectors that generate the direction given by the base projection of points.

INPUT:

• fiber – a sub-lattice polytope defining the base_projection().

• points – the points to project to the base.

OUTPUT:

A tuple of primitive -vectors.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),
....: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0))
sage: fiber = next(poly.fibration_generator(2))
sage: poly.base_rays(fiber, poly.integral_points_not_interior_to_facets())
((-1, -1), (0, 1), (1, 0))

sage: p = LatticePolytope_PPL((1,0), (1,2), (-1,0))
sage: f = LatticePolytope_PPL((1,0), (-1,0))
sage: p.base_rays(f, p.integral_points())
((1),)

bounding_box()

Return the coordinates of a rectangular box containing the non-empty polytope.

OUTPUT:

A pair of tuples (box_min, box_max) where box_min are the coordinates of a point bounding the
coordinates of the polytope from below and box_max bounds the coordinates from above.
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EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0), (1,0), (0,1)).bounding_box()
((0, 0), (1, 1))

contains(point_coordinates)

Test whether point is contained in the polytope.

INPUT:

• point_coordinates – a list/tuple/iterable of rational numbers. The coordinates of the point.

OUTPUT: Boolean.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: line = LatticePolytope_PPL((1,2,3), (-1,-2,-3))
sage: line.contains([0,0,0])
True
sage: line.contains([1,0,0])
False

contains_origin()

Test whether the polytope contains the origin

OUTPUT: Boolean.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((1,2,3), (-1,-2,-3)).contains_origin()
True
sage: LatticePolytope_PPL((1,2,5), (-1,-2,-3)).contains_origin()
False

embed_in_reflexive_polytope(output='hom')
Find an embedding as a sub-polytope of a maximal reflexive polytope.

INPUT:

• hom – string. One of hom (default), polytope , or points. How the embedding is returned.
See the output section for details.

OUTPUT:

An embedding into a reflexive polytope. Depending on the output option slightly different data is returned.

• If output= hom , a map from a reflexive polytope onto self is returned.

• If output= polytope , a reflexive polytope that contains self (up to a lattice linear transforma-
tion) is returned. That is, the domain of the output= hom map is returned. If the affine span of
self is less or equal 2-dimensional, the output is one of the following three possibilities:

polar_P2_polytope(), polar_P1xP1_polytope(), or polar_P2_112_poly-
tope().
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• If output= points , a dictionary containing the integral points of self as keys and the corre-
sponding integral point of the reflexive polytope as value.

If there is no such embedding, a LatticePolytopeNoEmbeddingError is raised. Even if it exists,
the ambient reflexive polytope is usually not uniquely determined and a random but fixed choice will be
returned.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: polygon = LatticePolytope_PPL((0,0,2,1), (0,1,2,0), (2,3,0,0), (2,0,0,
→˓3))
sage: polygon.embed_in_reflexive_polytope()
The map A*x+b with

A=
[ 1 1]
[ 0 1]
[-1 -1]
[ 1 0]

b = (-1, 0, 3, 0)
sage: polygon.embed_in_reflexive_polytope( polytope )
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: polygon.embed_in_reflexive_polytope( points )
{(0, 0, 2, 1): (1, 0),
(0, 1, 2, 0): (0, 1),
(1, 0, 1, 2): (2, 0),
(1, 1, 1, 1): (1, 1),
(1, 2, 1, 0): (0, 2),
(2, 0, 0, 3): (3, 0),
(2, 1, 0, 2): (2, 1),
(2, 2, 0, 1): (1, 2),
(2, 3, 0, 0): (0, 3)}

sage: LatticePolytope_PPL((0,0), (4,0), (0,4)).embed_in_reflexive_polytope()
Traceback (most recent call last):
...
LatticePolytopeNoEmbeddingError: not a sub-polytope of a reflexive polygon

fibration_generator(dim)
Generate the lattice polytope fibrations.

For the purposes of this function, a lattice polytope fiber is a sub-lattice polytope. Projecting the plane spanned
by the subpolytope to a point yields another lattice polytope, the base of the fibration.

INPUT:

• dim – integer. The dimension of the lattice polytope fiber.

OUTPUT:

A generator yielding the distinct lattice polytope fibers of given dimension.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: p = LatticePolytope_PPL((-9,-6,-1,-1),
....: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0))
sage: list(p.fibration_generator(2))
[A 2-dimensional lattice polytope in ZZ^4 with 3 vertices]
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has_IP_property()

Whether the lattice polytope has the IP property.

That is, the polytope is full-dimensional and the origin is a interior point not on the boundary.

OUTPUT: Boolean.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((-1,-1), (0,1), (1,0)).has_IP_property()
True
sage: LatticePolytope_PPL((-1,-1), (1,1)).has_IP_property()
False

integral_points()

Return the integral points in the polyhedron.

Uses the naive algorithm (iterate over a rectangular bounding box).

OUTPUT:

The list of integral points in the polyhedron. If the polyhedron is not compact, a ValueError is raised.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((-1,-1), (1,0), (1,1), (0,1)).integral_points()
((-1, -1), (0, 0), (0, 1), (1, 0), (1, 1))

sage: simplex = LatticePolytope_PPL((1,2,3), (2,3,7), (-2,-3,-11))
sage: simplex.integral_points()
((-2, -3, -11), (0, 0, -2), (1, 2, 3), (2, 3, 7))

The polyhedron need not be full-dimensional:

sage: simplex = LatticePolytope_PPL((1,2,3,5), (2,3,7,5), (-2,-3,-11,5))
sage: simplex.integral_points()
((-2, -3, -11, 5), (0, 0, -2, 5), (1, 2, 3, 5), (2, 3, 7, 5))

sage: point = LatticePolytope_PPL((2,3,7))
sage: point.integral_points()
((2, 3, 7),)

sage: empty = LatticePolytope_PPL()
sage: empty.integral_points()
()

Here is a simplex where the naive algorithm of running over all points in a rectangular bounding box no longer
works fast enough:

sage: v = [(1,0,7,-1), (-2,-2,4,-3), (-1,-1,-1,4), (2,9,0,-5), (-2,-1,5,1)]
sage: simplex = LatticePolytope_PPL(v); simplex
A 4-dimensional lattice polytope in ZZ^4 with 5 vertices
sage: len(simplex.integral_points())
49

Finally, the 3-d reflexive polytope number 4078:
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sage: v = [(1,0,0), (0,1,0), (0,0,1), (0,0,-1), (0,-2,1),
....: (-1,2,-1), (-1,2,-2), (-1,1,-2), (-1,-1,2), (-1,-3,2)]
sage: P = LatticePolytope_PPL(*v)
sage: pts1 = P.integral_points() # Sage s own code
sage: pts2 = LatticePolytope(v).points() #␣
→˓needs palp
sage: for p in pts1: p.set_immutable()
sage: set(pts1) == set(pts2) #␣
→˓needs palp
True

sage: len(Polyhedron(v).integral_points()) # takes about 1 ms
23
sage: len(LatticePolytope(v).points()) # takes about 13 ms #␣
→˓needs palp
23
sage: len(LatticePolytope_PPL(*v).integral_points()) # takes about 0.5 ms
23

integral_points_not_interior_to_facets()

Return the integral points not interior to facets.

OUTPUT:

A tuple whose entries are the coordinate vectors of integral points not interior to facets (codimension one
faces) of the lattice polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: square = LatticePolytope_PPL((-1,-1), (-1,1), (1,-1), (1,1))
sage: square.n_integral_points()
9
sage: square.integral_points_not_interior_to_facets()
((-1, -1), (-1, 1), (0, 0), (1, -1), (1, 1))

is_bounded()

Return whether the lattice polytope is compact.

OUTPUT:

Always True, since polytopes are by definition compact.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0), (1,0), (0,1)).is_bounded()
True

is_full_dimensional()

Return whether the lattice polytope is full dimensional.

OUTPUT:

Boolean. Whether the affine_dimension() equals the ambient space dimension.

EXAMPLES:
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sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: p = LatticePolytope_PPL((0,0), (0,1))
sage: p.is_full_dimensional()
False
sage: q = LatticePolytope_PPL((0,0), (0,1), (1,0))
sage: q.is_full_dimensional()
True

is_simplex()

Return whether the polyhedron is a simplex.

OUTPUT:

Boolean, whether the polyhedron is a simplex (possibly of strictly smaller dimension than the ambient space).

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0,0), (1,0,0), (0,1,0)).is_simplex()
True

lattice_automorphism_group(points=None, point_labels=None)
The integral subgroup of the restricted automorphism group.

INPUT:

• points – A tuple of coordinate vectors or None (default). If specified, the points must form complete
orbits under the lattice automorphism group. If None all vertices are used.

• point_labels – A tuple of labels for the points or None (default). These will be used as labels
for the do permutation group. If None, the points will be used themselves.

OUTPUT:

The integral subgroup of the restricted automorphism group acting on the given points, or all vertices if
not specified.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: Z3square = LatticePolytope_PPL((0,0), (1,2), (2,1), (3,3))
sage: Z3square.lattice_automorphism_group() #␣
→˓needs sage.graphs sage.groups
Permutation Group with generators [(), ((1,2),(2,1)),
((0,0),(3,3)), ((0,0),(3,3))((1,2),(2,1))]

sage: G1 = Z3square.lattice_automorphism_group(point_labels=(1,2,3,4)) #␣
→˓needs sage.graphs sage.groups
sage: G1 #␣
→˓needs sage.graphs sage.groups
Permutation Group with generators [(), (2,3), (1,4), (1,4)(2,3)]
sage: G1.cardinality() #␣
→˓needs sage.graphs sage.groups
4

sage: G2 = Z3square.restricted_automorphism_group(vertex_labels=(1,2,3,4)) #␣
→˓needs sage.graphs sage.groups

(continues on next page)
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(continued from previous page)

sage: G2 == PermutationGroup([[(2,3)], [(1,2),(3,4)], [(1,4)]]) #␣
→˓needs sage.graphs sage.groups
True
sage: G2.cardinality() #␣
→˓needs sage.graphs sage.groups
8

sage: points = Z3square.integral_points(); points
((0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3))
sage: Z3square.lattice_automorphism_group(points, #␣
→˓needs sage.graphs sage.groups
....: point_labels=(1,2,3,4,5,6))
Permutation Group with generators [(), (3,4), (1,6)(2,5), (1,6)(2,5)(3,4)]

Point labels also work for lattice polytopes that are not full-dimensional, see Issue #16669:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: lp = LatticePolytope_PPL((1,0,0), (0,1,0), (-1,-1,0))
sage: lp.lattice_automorphism_group(point_labels=(0,1,2)) #␣
→˓needs sage.graphs sage.groups
Permutation Group with generators [(), (1,2), (0,1), (0,1,2), (0,2,1), (0,2)]

n_integral_points()

Return the number of integral points.

OUTPUT:

Integer. The number of integral points contained in the lattice polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0), (1,0), (0,1)).n_integral_points()
3

n_vertices()

Return the number of vertices.

OUTPUT:

An integer, the number of vertices.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0,0), (1,0,0), (0,1,0)).n_vertices()
3

pointsets_mod_automorphism(pointsets)
Return pointsets modulo the automorphisms of self.

INPUT:

• polytopes – a tuple/list/iterable of subsets of the integral points of self.

OUTPUT:
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Representatives of the point sets modulo the lattice_automorphism_group() of self.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: square = LatticePolytope_PPL((-1,-1), (-1,1), (1,-1), (1,1))
sage: fibers = [f.vertices() for f in square.fibration_generator(1)]
sage: square.pointsets_mod_automorphism(fibers) #␣
→˓needs sage.graphs sage.groups
(frozenset({(-1, -1), (1, 1)}), frozenset({(-1, 0), (1, 0)}))

sage: cell24 = LatticePolytope_PPL(
....: (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,-1,-1,1), (0,0,-1,1),
....: (0,-1,0,1), (-1,0,0,1), (1,0,0,-1), (0,1,0,-1), (0,0,1,-1), (-1,1,1,
→˓-1),
....: (1,-1,-1,0), (0,0,-1,0), (0,-1,0,0), (-1,0,0,0), (1,-1,0,0), (1,0,-
→˓1,0),
....: (0,1,1,-1), (-1,1,1,0), (-1,1,0,0), (-1,0,1,0), (0,-1,-1,1), (0,0,0,
→˓-1))
sage: fibers = [f.vertices() for f in cell24.fibration_generator(2)]
sage: cell24.pointsets_mod_automorphism(fibers) # long time #␣
→˓needs sage.graphs sage.groups
(frozenset({(-1, 0, 0, 0),

(-1, 0, 0, 1),
(0, 0, 0, -1),
(0, 0, 0, 1),
(1, 0, 0, -1),
(1, 0, 0, 0)}),

frozenset({(-1, 0, 0, 0), (-1, 1, 1, 0), (1, -1, -1, 0), (1, 0, 0, 0)}))

restricted_automorphism_group(vertex_labels=None)
Return the restricted automorphism group.

First, let the linear automorphism group be the subgroup of the Euclidean group 𝐸(𝑑) = 𝐺𝐿(𝑑,R) n R𝑑

preserving the 𝑑-dimensional polyhedron. The Euclidean group acts in the usual way �⃗� ↦→ 𝐴�⃗� + 𝑏 on
the ambient space. The restricted automorphism group is the subgroup of the linear automorphism group
generated by permutations of vertices. If the polytope is full-dimensional, it is equal to the full (unrestricted)
automorphism group.

INPUT:

• vertex_labels – a tuple or None (default). The labels of the vertices that will be used in the output
permutation group. By default, the vertices are used themselves.

OUTPUT:

A PermutationGroup acting on the vertices (or the vertex_labels, if specified).

REFERENCES:

[BSS2009]

EXAMPLES:

sage: # needs sage.graphs sage.groups
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: Z3square = LatticePolytope_PPL((0,0), (1,2), (2,1), (3,3))
sage: G1234 = Z3square.restricted_automorphism_group(

(continues on next page)
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....: vertex_labels=(1,2,3,4))
sage: G1234 == PermutationGroup([[(2,3)], [(1,2),(3,4)]])
True
sage: G = Z3square.restricted_automorphism_group()
sage: G == PermutationGroup([[((1,2),(2,1))], [((0,0),(1,2)),
....: ((2,1),(3,3))], [((0,0),(3,3))]])
True
sage: set(G.domain()) == set(Z3square.vertices())
True
sage: (set(tuple(x) for x in G.orbit(Z3square.vertices()[0]))
....: == set([(0, 0), (1, 2), (3, 3), (2, 1)]))
True
sage: cell24 = LatticePolytope_PPL(
....: (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,-1,-1,1), (0,0,-1,1),
....: (0,-1,0,1), (-1,0,0,1), (1,0,0,-1), (0,1,0,-1), (0,0,1,-1), (-1,1,1,
→˓-1),
....: (1,-1,-1,0), (0,0,-1,0), (0,-1,0,0), (-1,0,0,0), (1,-1,0,0), (1,0,-
→˓1,0),
....: (0,1,1,-1), (-1,1,1,0), (-1,1,0,0), (-1,0,1,0), (0,-1,-1,1), (0,0,0,
→˓-1))
sage: cell24.restricted_automorphism_group().cardinality()
1152

sub_polytope_generator()

Generate the maximal lattice sub-polytopes.

OUTPUT:

A generator yielding the maximal (with respect to inclusion) lattice sub polytopes. That is, each can be gotten
as the convex hull of the integral points of self with one vertex removed.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: P = LatticePolytope_PPL((1,0,0), (0,1,0), (0,0,1), (-1,-1,-1))
sage: for p in P.sub_polytope_generator():
....: print(p.vertices())
((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0))
((-1, -1, -1), (0, 0, 0), (0, 1, 0), (1, 0, 0))
((-1, -1, -1), (0, 0, 0), (0, 0, 1), (1, 0, 0))
((-1, -1, -1), (0, 0, 0), (0, 0, 1), (0, 1, 0))

vertices()

Return the vertices as a tuple of -vectors.

OUTPUT:

A tuple of -vectors. Each entry is the coordinate vector of an integral points of the lattice polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: p = LatticePolytope_PPL((-9,-6,-1,-1),
....: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0))
sage: p.vertices()
((-9, -6, -1, -1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))

(continues on next page)
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sage: p.minimized_generators()
Generator_System {point(-9/1, -6/1, -1/1, -1/1), point(0/1, 0/1, 0/1, 1/1),
point(0/1, 0/1, 1/1, 0/1), point(0/1, 1/1, 0/1, 0/1), point(1/1, 0/1, 0/1, 0/
→˓1)}

vertices_saturating(constraint)
Return the vertices saturating the constraint.

INPUT:

• constraint – a constraint (inequality or equation) of the polytope.

OUTPUT:

The tuple of vertices saturating the constraint. The vertices are returned as -vectors, as in vertices().

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import␣
→˓LatticePolytope_PPL
sage: p = LatticePolytope_PPL((0,0), (0,1), (1,0))
sage: ieq = next(iter(p.constraints())); ieq
x0>=0
sage: p.vertices_saturating(ieq)
((0, 0), (0, 1))

2.2.6 Generating Function of Polyhedron’s Integral Points

This module provides generating_function_of_integral_points()which computes the generating func-
tion of the integral points of a polyhedron.

The main function is accessible via sage.geometry.polyhedron.base.Polyhedron_base.
generating_function_of_integral_points() as well.

Various

AUTHORS:

• Daniel Krenn (2016, 2021)
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sage.geometry.polyhedron.generating_function.generating_function_of_integral_points(poly-
he-
dron,
split=False,
re-
sult_as_tu-
ple=None,
name=None,
names=None,
**kwds)

Return the multivariate generating function of the integral points of the polyhedron.

To be precise, this returns ∑︁
(𝑟0,...,𝑟𝑑−1)∈polyhedron∩ 𝑑

𝑦𝑟00 . . . 𝑦
𝑟𝑑−1

𝑑−1 .

INPUT:

• polyhedron – an instance of Polyhedron_base (see also sage.geometry.polyhedron.
constructor)

• split – (default: False) a boolean or list

– split=False computes the generating function directly, without any splitting.

– When split is a list of disjoint polyhedra, then for each of these polyhedra, polyhedron is inter-
sected with it, its generating function computed and all these generating functions are summed up.

– split=True splits into 𝑑! disjoint polyhedra.

• result_as_tuple – (default: None) a boolean or None

This specifies whether the output is a (partial) factorization (result_as_tuple=False) or a sum of such
(partial) factorizations (result_as_tuple=True). By default (result_as_tuple=None), this is
automatically determined. If the output is a sum, it is represented as a tuple whose entries are the summands.

• indices – (default: None) a list or tuple

If this is None, this is automatically determined.

• name – (default: y ) a string

The variable names of the Laurent polynomial ring of the output are this string followed by an integer.

• names – a list or tuple of names (strings), or a comma separated string

name is extracted from names, therefore names has to contain exactly one variable name, and name
and``names`` cannot be specified both at the same time.

• Factorization_sort (default: False) and Factorization_simplify (default: True) –
booleans

These are passed on to sage.structure.factorization.Factorization when creating the
result.

• sort_factors – (default: False) a boolean

If set, then the factors of the output are sorted such that the numerator is first and only then all factors of the
denominator. It is ensured that the sorting is always the same; use this for doctesting.

OUTPUT:

The generating function as a (partial) Factorization of the result whose factors are Laurent polynomials

248 Chapter 2. Polyhedral computations

../../../../../../../html/en/reference/structure/sage/structure/factorization.html#sage.structure.factorization.Factorization
../../../../../../../html/en/reference/structure/sage/structure/factorization.html#sage.structure.factorization.Factorization


Combinatorial and Discrete Geometry, Release 10.4.rc1

The result might be a tuple of such factorizations (depending on the parameter result_as_tuple) as well.

Note: At the moment, only polyhedra with nonnegative coordinates (i.e. a polyhedron in the nonnegative orthant)
are handled.

EXAMPLES:

sage: from sage.geometry.polyhedron.generating_function import generating_
→˓function_of_integral_points

sage: P2 = (
....: Polyhedron(ieqs=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, -1)]),
....: Polyhedron(ieqs=[(0, -1, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0)]))
sage: generating_function_of_integral_points(P2[0], sort_factors=True)
1 * (-y0 + 1)^-1 * (-y1 + 1)^-1 * (-y0*y2 + 1)^-1
sage: generating_function_of_integral_points(P2[1], sort_factors=True)
1 * (-y1 + 1)^-1 * (-y2 + 1)^-1 * (-y0*y2 + 1)^-1
sage: (P2[0] & P2[1]).Hrepresentation()
(An equation (1, 0, -1) x + 0 == 0,
An inequality (1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0) x + 0 >= 0)
sage: generating_function_of_integral_points(P2[0] & P2[1], sort_factors=True)
1 * (-y1 + 1)^-1 * (-y0*y2 + 1)^-1

sage: P3 = (
....: Polyhedron(
....: ieqs=[(0, 0, 0, 0, 1), (0, 0, 0, 1, 0),
....: (0, 0, 1, 0, -1), (-1, 1, 0, -1, -1)]),
....: Polyhedron(
....: ieqs=[(0, 0, -1, 0, 1), (0, 1, 0, 0, -1),
....: (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (-1, 1, -1, -1, 0)]),
....: Polyhedron(
....: ieqs=[(1, -1, 0, 1, 1), (1, -1, 1, 1, 0),
....: (0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0),
....: (1, 0, 1, 1, -1), (0, 1, 0, 0, 0), (1, 1, 1, 0, -1)]),
....: Polyhedron(
....: ieqs=[(0, 1, 0, -1, 0), (0, -1, 0, 0, 1),
....: (-1, 0, -1, -1, 1), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0)]),
....: Polyhedron(
....: ieqs=[(0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
....: (-1, -1, -1, 0, 1), (0, -1, 0, 1, 0)]))
sage: def intersect(I):
....: I = iter(I)
....: result = next(I)
....: for i in I:
....: result &= i
....: return result
sage: for J in subsets(range(len(P3))):
....: if not J:
....: continue
....: P = intersect([P3[j] for j in J])
....: print( {}: {} .format(J, P.Hrepresentation()))
....: print(generating_function_of_integral_points(P, sort_factors=True))
[0]: (An inequality (0, 0, 0, 1) x + 0 >= 0,

An inequality (0, 0, 1, 0) x + 0 >= 0,
An inequality (0, 1, 0, -1) x + 0 >= 0,

(continues on next page)
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An inequality (1, 0, -1, -1) x - 1 >= 0)
y0 * (-y0 + 1)^-1 * (-y1 + 1)^-1 * (-y0*y2 + 1)^-1 * (-y0*y1*y3 + 1)^-1
[1]: (An inequality (0, -1, 0, 1) x + 0 >= 0,

An inequality (0, 0, 1, 0) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (1, -1, -1, 0) x - 1 >= 0,
An inequality (1, 0, 0, -1) x + 0 >= 0)

(-y0^2*y2*y3 - y0^2*y3 + y0*y3 + y0) *
(-y0 + 1)^-1 * (-y0*y2 + 1)^-1 * (-y0*y3 + 1)^-1 *
(-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 1]: (An equation (0, 1, 0, -1) x + 0 == 0,

An inequality (1, -1, -1, 0) x - 1 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (0, 0, 1, 0) x + 0 >= 0)

y0 * (-y0 + 1)^-1 * (-y0*y2 + 1)^-1 * (-y0*y1*y3 + 1)^-1
[2]: (An inequality (-1, 0, 1, 1) x + 1 >= 0,

An inequality (-1, 1, 1, 0) x + 1 >= 0,
An inequality (0, 0, 0, 1) x + 0 >= 0,
An inequality (0, 0, 1, 0) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 1, -1) x + 1 >= 0,
An inequality (1, 0, 0, 0) x + 0 >= 0,
An inequality (1, 1, 0, -1) x + 1 >= 0)

(y0^2*y1*y2*y3^2 + y0^2*y2^2*y3 + y0*y1^2*y3^2 - y0^2*y2*y3 +
y0*y1*y2*y3 - y0*y1*y3^2 - 2*y0*y1*y3 - 2*y0*y2*y3 - y0*y2 +
y0*y3 - y1*y3 + y0 + y3 + 1) *
(-y1 + 1)^-1 * (-y2 + 1)^-1 * (-y0*y2 + 1)^-1 *
(-y1*y3 + 1)^-1 * (-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 2]: (An equation (1, 0, -1, -1) x - 1 == 0,

An inequality (-1, 1, 1, 0) x + 1 >= 0,
An inequality (1, 0, -1, 0) x - 1 >= 0,
An inequality (0, 0, 1, 0) x + 0 >= 0)

y0 * (-y1 + 1)^-1 * (-y0*y2 + 1)^-1 * (-y0*y1*y3 + 1)^-1
[1, 2]: (An equation (1, -1, -1, 0) x - 1 == 0,

An inequality (0, -1, 0, 1) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (1, 0, 0, -1) x + 0 >= 0,
An inequality (1, -1, 0, 0) x - 1 >= 0)

(-y0^2*y2*y3 + y0*y3 + y0) *
(-y0*y2 + 1)^-1 * (-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 1, 2]: (An equation (0, 1, 0, -1) x + 0 == 0,

An equation (1, -1, -1, 0) x - 1 == 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (1, -1, 0, 0) x - 1 >= 0)

y0 * (-y0*y2 + 1)^-1 * (-y0*y1*y3 + 1)^-1
[3]: (An inequality (-1, 0, 0, 1) x + 0 >= 0,

An inequality (0, -1, -1, 1) x - 1 >= 0,
An inequality (0, 0, 1, 0) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (1, 0, -1, 0) x + 0 >= 0)

(-y0*y1*y3^2 - y0*y3^2 + y0*y3 + y3) *
(-y3 + 1)^-1 * (-y0*y3 + 1)^-1 *
(-y1*y3 + 1)^-1 * (-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 3]: (An equation -1 == 0,)
0
[1, 3]: (An equation (1, 0, 0, -1) x + 0 == 0,

An inequality (1, -1, -1, 0) x - 1 >= 0,
(continues on next page)
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An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (0, 0, 1, 0) x + 0 >= 0)

y0*y3 * (-y0*y3 + 1)^-1 * (-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 1, 3]: (An equation -1 == 0,)
0
[2, 3]: (An equation (0, 1, 1, -1) x + 1 == 0,

An inequality (1, 0, -1, 0) x + 0 >= 0,
An inequality (-1, 1, 1, 0) x + 1 >= 0,
An inequality (0, 0, 1, 0) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0)

(-y0*y1*y3^2 + y0*y3 + y3) *
(-y1*y3 + 1)^-1 * (-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 2, 3]: (An equation -1 == 0,)
0
[1, 2, 3]: (An equation (1, 0, 0, -1) x + 0 == 0,

An equation (1, -1, -1, 0) x - 1 == 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (1, -1, 0, 0) x - 1 >= 0)

y0*y3 * (-y0*y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 1, 2, 3]: (An equation -1 == 0,)
0
[4]: (An inequality (-1, -1, 0, 1) x - 1 >= 0,

An inequality (-1, 0, 1, 0) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (1, 0, 0, 0) x + 0 >= 0)

y3 * (-y2 + 1)^-1 * (-y3 + 1)^-1 * (-y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 4]: (An equation -1 == 0,)
0
[1, 4]: (An equation -1 == 0,)
0
[0, 1, 4]: (An equation -1 == 0,)
0
[2, 4]: (An equation (1, 1, 0, -1) x + 1 == 0,

An inequality (-1, 0, 1, 0) x + 0 >= 0,
An inequality (1, 0, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0, 0) x + 0 >= 0)

y3 * (-y2 + 1)^-1 * (-y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 2, 4]: (An equation -1 == 0,)
0
[1, 2, 4]: (An equation -1 == 0,)
0
[0, 1, 2, 4]: (An equation -1 == 0,)
0
[3, 4]: (An equation (1, 0, -1, 0) x + 0 == 0,

An inequality (0, 1, 0, 0) x + 0 >= 0,
An inequality (-1, -1, 0, 1) x - 1 >= 0,
An inequality (1, 0, 0, 0) x + 0 >= 0)

y3 * (-y3 + 1)^-1 * (-y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 3, 4]: (An equation -1 == 0,)
0
[1, 3, 4]: (An equation -1 == 0,)
0
[0, 1, 3, 4]: (An equation -1 == 0,)
0
[2, 3, 4]: (An equation (1, 1, 0, -1) x + 1 == 0,

An equation (1, 0, -1, 0) x + 0 == 0,
An inequality (0, 1, 0, 0) x + 0 >= 0,

(continues on next page)
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An inequality (1, 0, 0, 0) x + 0 >= 0)
y3 * (-y1*y3 + 1)^-1 * (-y0*y2*y3 + 1)^-1
[0, 2, 3, 4]: (An equation -1 == 0,)
0
[1, 2, 3, 4]: (An equation -1 == 0,)
0
[0, 1, 2, 3, 4]: (An equation -1 == 0,)
0

sage: P = Polyhedron(vertices=[[1], [5]])
sage: P.generating_function_of_integral_points()
y0^5 + y0^4 + y0^3 + y0^2 + y0

See also:

This function is accessible via sage.geometry.polyhedron.base.Polyhedron_base.
generating_function_of_integral_points() as well. More examples can be found there.

2.3 Combinatorial Polyhedra

2.3.1 Combinatorial polyhedron

This module gathers algorithms for polyhedra that only depend on the vertex-facet incidences and that are called com-
binatorial polyhedron. The main class is CombinatorialPolyhedron. Most importantly, this class allows to iterate
quickly through the faces (possibly of given dimension) via the FaceIterator object. The CombinatorialPoly-
hedron uses this iterator to quickly generate the f-vector, the edges, the ridges and the face lattice.

Terminology used in this module:

• Vrep – [vertices, rays, lines] of the polyhedron.

• Hrep – inequalities and equations of the polyhedron.

• Facets – facets of the polyhedron.

• Vrepresentation – represents a face by the list of Vrep it contains.

• Hrepresentation – represents a face by a list of Hrep it is contained in.

• bit representation – represents incidences as bitset, where each bit represents one incidence. There might be trailing
zeros, to fit alignment requirements. In most instances, faces are represented by the bit representation, where each
bit corresponds to a Vrep or facet. Thus a bit representation can either be a Vrep or facet representation depending
on context.

EXAMPLES:

Construction:

sage: P = polytopes.hypercube(4)
sage: C = CombinatorialPolyhedron(P); C
A 4-dimensional combinatorial polyhedron with 8 facets

Obtaining edges and ridges:

sage: C.edges()[:2]
((A vertex at (1, -1, -1, -1), A vertex at (-1, -1, -1, -1)),

(continues on next page)
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(A vertex at (-1, -1, -1, 1), A vertex at (-1, -1, -1, -1)))
sage: C.edges(names=False)[:2]
((6, 15), (14, 15))

sage: C.ridges()[:2]
((An inequality (0, 0, 1, 0) x + 1 >= 0,

An inequality (0, 1, 0, 0) x + 1 >= 0),
(An inequality (0, 0, 0, 1) x + 1 >= 0,
An inequality (0, 1, 0, 0) x + 1 >= 0))

sage: C.ridges(names=False)[:2]
((6, 7), (5, 7))

Vertex-graph and facet-graph:

sage: C.vertex_graph() #␣
→˓needs sage.graphs
Graph on 16 vertices
sage: C.facet_graph() #␣
→˓needs sage.graphs
Graph on 8 vertices

Face lattice:

sage: C.face_lattice() #␣
→˓needs sage.combinat
Finite lattice containing 82 elements

Face iterator:

sage: C.face_generator()
Iterator over the proper faces of a 4-dimensional combinatorial polyhedron

sage: C.face_generator(2)
Iterator over the 2-faces of a 4-dimensional combinatorial polyhedron

AUTHOR:

• Jonathan Kliem (2019-04)

class
sage.geometry.polyhedron.combinatorial_polyhedron.base.CombinatorialPolyhedron

Bases: SageObject

The class of the Combinatorial Type of a Polyhedron, a Polytope.

INPUT:

• data – an instance of

– Polyhedron_base

– or a LatticePolytopeClass

– or a ConvexRationalPolyhedralCone

– or an incidence_matrix as in incidence_matrix() In this case you should also specify
the Vrep and facets arguments

– or list of facets, each facet given as a list of [vertices, rays, lines] if the polyhedron is
unbounded, then rays and lines and the extra argument nr_lines are required if the polyhedron
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contains no lines, the rays can be thought of as the vertices of the facets deleted from a bounded
polyhedron see Polyhedron_base on how to use rays and lines

– or an integer, representing the dimension of a polyhedron equal to its affine hull

– or a tuple consisting of facets and vertices as two ListOfFaces.

• Vrep – (optional) when data is an incidence matrix, it should be the list of [vertices, rays,
lines], if the rows in the incidence_matrix should correspond to names

• facets – (optional) when data is an incidence matrix or a list of facets, it should be a list of facets that
would be used instead of indices (of the columns of the incidence matrix).

• unbounded – value will be overwritten if data is a polyhedron; if unbounded and data is incidence
matrix or a list of facets, need to specify far_face

• far_face – (semi-optional); if the polyhedron is unbounded this needs to be set to the list of indices of the
rays and line unless data is an instance of Polyhedron_base.

EXAMPLES:

We illustrate all possible input: a polyhedron:

sage: P = polytopes.cube() sage: CombinatorialPolyhedron(P) A 3-dimensional combinatorial polyhe-
dron with 6 facets

a lattice polytope:

sage: points = [(1,0,0), (0,1,0), (0,0,1),
....: (-1,0,0), (0,-1,0), (0,0,-1)]
sage: L = LatticePolytope(points)
sage: CombinatorialPolyhedron(L)
A 3-dimensional combinatorial polyhedron with 8 facets

a cone:

sage: M = Cone([(1,0), (0,1)])
sage: CombinatorialPolyhedron(M)
A 2-dimensional combinatorial polyhedron with 2 facets

an incidence matrix:

sage: P = Polyhedron(rays=[[0,1]])
sage: data = P.incidence_matrix()
sage: far_face = [i for i in range(2) if not P.Vrepresentation()[i].is_vertex()]
sage: CombinatorialPolyhedron(data, unbounded=True, far_face=far_face)
A 1-dimensional combinatorial polyhedron with 1 facet
sage: C = CombinatorialPolyhedron(data, Vrep=[ myvertex ],
....: facets=[ myfacet ], unbounded=True, far_face=far_face)
sage: C.Vrepresentation()
( myvertex ,)
sage: C.Hrepresentation()
( myfacet ,)

a list of facets:

sage: CombinatorialPolyhedron(((1,2,3),(1,2,4),(1,3,4),(2,3,4)))
A 3-dimensional combinatorial polyhedron with 4 facets
sage: facetnames = [ facet0 , facet1 , facet2 , myfacet3 ]
sage: facetinc = ((1,2,3),(1,2,4),(1,3,4),(2,3,4))
sage: C = CombinatorialPolyhedron(facetinc, facets=facetnames)

(continues on next page)
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sage: C.Vrepresentation()
(1, 2, 3, 4)
sage: C.Hrepresentation()
( facet0 , facet1 , facet2 , myfacet3 )

an integer:

sage: CombinatorialPolyhedron(-1).f_vector()
(1)
sage: CombinatorialPolyhedron(0).f_vector()
(1, 1)
sage: CombinatorialPolyhedron(5).f_vector()
(1, 0, 0, 0, 0, 0, 1)

tuple of ListOfFaces:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets, \
....: facets_tuple_to_bit_rep_of_Vrep
sage: bi_pyr = ((0,1,4), (1,2,4), (2,3,4), (3,0,4),
....: (0,1,5), (1,2,5), (2,3,5), (3,0,5))
sage: facets = facets_tuple_to_bit_rep_of_facets(bi_pyr, 6)
sage: Vrep = facets_tuple_to_bit_rep_of_Vrep(bi_pyr, 6)
sage: C = CombinatorialPolyhedron((facets, Vrep)); C
A 3-dimensional combinatorial polyhedron with 8 facets
sage: C.f_vector()
(1, 6, 12, 8, 1)

Specifying that a polyhedron is unbounded is important. The following with a polyhedron works fine:

sage: P = Polyhedron(ieqs=[[1,-1,0],[1,1,0]])
sage: C = CombinatorialPolyhedron(P) # this works fine
sage: C
A 2-dimensional combinatorial polyhedron with 2 facets

The following is incorrect, as unbounded is implicitly set to False:

sage: data = P.incidence_matrix()
sage: vert = P.Vrepresentation()
sage: C = CombinatorialPolyhedron(data, Vrep=vert)
sage: C
A 2-dimensional combinatorial polyhedron with 2 facets
sage: C.f_vector()
Traceback (most recent call last):
...
ValueError: not all vertices are intersections of facets
sage: C.vertices()
(A line in the direction (0, 1), A vertex at (1, 0), A vertex at (-1, 0))

The correct usage is:

sage: far_face = [i for i in range(3) if not P.Vrepresentation()[i].is_vertex()]
sage: C = CombinatorialPolyhedron(data, Vrep=vert, unbounded=True, far_face=far_
→˓face)
sage: C
A 2-dimensional combinatorial polyhedron with 2 facets

(continues on next page)
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sage: C.f_vector()
(1, 0, 2, 1)
sage: C.vertices()
()

Hrepresentation()

Return a list of names of facets and possibly some equations.

EXAMPLES:

sage: P = polytopes.permutahedron(3)
sage: C = CombinatorialPolyhedron(P)
sage: C.Hrepresentation()
(An inequality (1, 1, 0) x - 3 >= 0,
An inequality (-1, -1, 0) x + 5 >= 0,
An inequality (0, 1, 0) x - 1 >= 0,
An inequality (-1, 0, 0) x + 3 >= 0,
An inequality (1, 0, 0) x - 1 >= 0,
An inequality (0, -1, 0) x + 3 >= 0,
An equation (1, 1, 1) x - 6 == 0)

sage: points = [(1,0,0), (0,1,0), (0,0,1),
....: (-1,0,0), (0,-1,0), (0,0,-1)]
sage: L = LatticePolytope(points)
sage: C = CombinatorialPolyhedron(L)
sage: C.Hrepresentation()
(N(1, -1, -1),
N(1, 1, -1),
N(1, 1, 1),
N(1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1))

sage: M = Cone([(1,0), (0,1)])
sage: CombinatorialPolyhedron(M).Hrepresentation()
(M(0, 1), M(1, 0))

Vrepresentation()

Return a list of names of [vertices, rays, lines].

EXAMPLES:

sage: P = Polyhedron(rays=[[1,0,0], [0,1,0], \
....: [0,0,1],[0,0,-1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.Vrepresentation()
(A line in the direction (0, 0, 1),
A ray in the direction (1, 0, 0),
A vertex at (0, 0, 0),
A ray in the direction (0, 1, 0))

sage: points = [(1,0,0), (0,1,0), (0,0,1),
....: (-1,0,0), (0,-1,0), (0,0,-1)]
sage: L = LatticePolytope(points)
sage: C = CombinatorialPolyhedron(L)

(continues on next page)
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sage: C.Vrepresentation()
(M(1, 0, 0), M(0, 1, 0), M(0, 0, 1), M(-1, 0, 0), M(0, -1, 0), M(0, 0, -1))

sage: M = Cone([(1,0), (0,1)])
sage: CombinatorialPolyhedron(M).Vrepresentation()
(N(1, 0), N(0, 1), N(0, 0))

a_maximal_chain(Vindex=None, Hindex=None)
Return a maximal chain of the face lattice in increasing order without empty face and whole polyhedron/max-
imal face.

INPUT:

• Vindex – integer (default: None); prescribe the index of the vertex in the chain

• Hindex – integer (default: None); prescribe the index of the facet in the chain

Each face is given as CombinatorialFace.

EXAMPLES:

sage: P = polytopes.cross_polytope(4)
sage: C = P.combinatorial_polyhedron()
sage: chain = C.a_maximal_chain(); chain
[A 0-dimensional face of a 4-dimensional combinatorial polyhedron,
A 1-dimensional face of a 4-dimensional combinatorial polyhedron,
A 2-dimensional face of a 4-dimensional combinatorial polyhedron,
A 3-dimensional face of a 4-dimensional combinatorial polyhedron]

sage: [face.ambient_V_indices() for face in chain]
[(7,), (6, 7), (5, 6, 7), (4, 5, 6, 7)]

sage: P = polytopes.hypercube(4)
sage: C = P.combinatorial_polyhedron()
sage: chain = C.a_maximal_chain(); chain
[A 0-dimensional face of a 4-dimensional combinatorial polyhedron,
A 1-dimensional face of a 4-dimensional combinatorial polyhedron,
A 2-dimensional face of a 4-dimensional combinatorial polyhedron,
A 3-dimensional face of a 4-dimensional combinatorial polyhedron]

sage: [face.ambient_V_indices() for face in chain]
[(15,), (6, 15), (5, 6, 14, 15), (0, 5, 6, 7, 8, 9, 14, 15)]

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(4)
sage: C = P.combinatorial_polyhedron()
sage: chain = C.a_maximal_chain(); chain
[A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron]

sage: [face.ambient_V_indices() for face in chain]
[(16,), (15, 16), (8, 9, 14, 15, 16, 17)]

sage: P = Polyhedron(rays=[[1,0]], lines=[[0,1]])
sage: C = P.combinatorial_polyhedron()
sage: chain = C.a_maximal_chain()
sage: [face.ambient_V_indices() for face in chain]
[(0, 1)]

sage: P = Polyhedron(rays=[[1,0,0],[0,0,1]], lines=[[0,1,0]])

(continues on next page)
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sage: C = P.combinatorial_polyhedron()
sage: chain = C.a_maximal_chain()
sage: [face.ambient_V_indices() for face in chain]
[(0, 1), (0, 1, 3)]

sage: P = Polyhedron(rays=[[1,0,0]], lines=[[0,1,0],[0,0,1]])
sage: C = P.combinatorial_polyhedron()
sage: chain = C.a_maximal_chain()
sage: [face.ambient_V_indices() for face in chain]
[(0, 1, 2)]

Specify an index for the vertex of the chain:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: [face.ambient_V_indices() for face in C.a_maximal_chain()]
[(5,), (0, 5), (0, 3, 4, 5)]
sage: [face.ambient_V_indices() for face in C.a_maximal_chain(Vindex=2)]
[(2,), (2, 7), (2, 3, 4, 7)]

Specify an index for the facet of the chain:

sage: [face.ambient_H_indices() for face in C.a_maximal_chain()]
[(3, 4, 5), (4, 5), (5,)]
sage: [face.ambient_H_indices() for face in C.a_maximal_chain(Hindex=3)]
[(3, 4, 5), (3, 4), (3,)]
sage: [face.ambient_H_indices() for face in C.a_maximal_chain(Hindex=2)]
[(2, 3, 5), (2, 3), (2,)]

If the specified vertex is not contained in the specified facet an error is raised:

sage: C.a_maximal_chain(Vindex=0, Hindex=3)
Traceback (most recent call last):
...
ValueError: the given Vindex is not compatible with the given Hindex

An error is raised, if the specified index does not correspond to a facet:

sage: C.a_maximal_chain(Hindex=40)
Traceback (most recent call last):
...
ValueError: the given Hindex does not correspond to a facet

An error is raised, if the specified index does not correspond to a vertex:

sage: C.a_maximal_chain(Vindex=40)
Traceback (most recent call last):
...
ValueError: the given Vindex does not correspond to a vertex

sage: P = Polyhedron(rays=[[1,0,0],[0,0,1]], lines=[[0,1,0]])
sage: C = P.combinatorial_polyhedron()
sage: C.a_maximal_chain(Vindex=0)
Traceback (most recent call last):
...
ValueError: the given Vindex does not correspond to a vertex
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sage: P = Polyhedron(rays=[[1,0,0],[0,0,1]])
sage: C = P.combinatorial_polyhedron()
sage: C.a_maximal_chain(Vindex=0)
[A 0-dimensional face of a 2-dimensional combinatorial polyhedron,
A 1-dimensional face of a 2-dimensional combinatorial polyhedron]
sage: C.a_maximal_chain(Vindex=1)
Traceback (most recent call last):
...
ValueError: the given Vindex does not correspond to a vertex

choose_algorithm_to_compute_edges_or_ridges(edges_or_ridges)
Use some heuristics to pick primal or dual algorithm for computation of edges resp. ridges.

We estimate how long it takes to compute a face using the primal and the dual algorithm. This may differ
significantly, so that e.g. visiting all faces with the primal algorithm is faster than using the dual algorithm to
just visit vertices and edges.

We guess the number of edges and ridges and do a wild estimate on the total number of faces.

INPUT:

• edges_or_ridges – string; one of: * edges * ridges

OUTPUT:

Either primal or dual .

EXAMPLES:

sage: C = polytopes.permutahedron(5).combinatorial_polyhedron()
sage: C.choose_algorithm_to_compute_edges_or_ridges("edges")
primal

sage: C.choose_algorithm_to_compute_edges_or_ridges("ridges")
primal

sage: C = polytopes.cross_polytope(5).combinatorial_polyhedron()
sage: C.choose_algorithm_to_compute_edges_or_ridges("edges")
dual

sage: C.choose_algorithm_to_compute_edges_or_ridges("ridges")
dual

sage: C = polytopes.Birkhoff_polytope(5).combinatorial_polyhedron()
sage: C.choose_algorithm_to_compute_edges_or_ridges("edges")
dual

sage: C.choose_algorithm_to_compute_edges_or_ridges("ridges")
primal

sage: C.choose_algorithm_to_compute_edges_or_ridges("something_else")
Traceback (most recent call last):
...
ValueError: unknown computation goal something_else

dim()

Return the dimension of the polyhedron.

EXAMPLES:

sage: C = CombinatorialPolyhedron([(1,2,3), (1,2,4),
....: (1,3,4), (2,3,4)])

(continues on next page)
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sage: C.dimension()
3

sage: P = Polyhedron(rays=[[1,0,0],[0,1,0],[0,0,1],[0,0,-1]])
sage: CombinatorialPolyhedron(P).dimension()
3

dim is an alias:

sage: CombinatorialPolyhedron(P).dim()
3

dimension()

Return the dimension of the polyhedron.

EXAMPLES:

sage: C = CombinatorialPolyhedron([(1,2,3), (1,2,4),
....: (1,3,4), (2,3,4)])
sage: C.dimension()
3

sage: P = Polyhedron(rays=[[1,0,0],[0,1,0],[0,0,1],[0,0,-1]])
sage: CombinatorialPolyhedron(P).dimension()
3

dim is an alias:

sage: CombinatorialPolyhedron(P).dim()
3

dual()

Return the dual/polar of self.

Only defined for bounded polyhedra.

See also:

polar().

EXAMPLES:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: D = C.dual()
sage: D.f_vector()
(1, 6, 12, 8, 1)
sage: D1 = P.polar().combinatorial_polyhedron()
sage: D1.face_lattice().is_isomorphic(D.face_lattice()) #␣
→˓needs sage.combinat
True

Polar is an alias to be consistent with Polyhedron_base:

sage: C.polar().f_vector()
(1, 6, 12, 8, 1)

For unbounded polyhedra, an error is raised:
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sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.dual()
Traceback (most recent call last):
...
ValueError: self must be bounded

edges(names=True, algorithm=None)
Return the edges of the polyhedron, i.e. the rank 1 faces.

INPUT:

• names – boolean (default: True); if False, then the Vrepresentatives in the edges are given by their
indices in the Vrepresentation

• algorithm – string (optional); specify whether the face generator starts with facets or vertices: *
primal – start with the facets * dual – start with the vertices * None – choose automatically

Note: To compute edges and f_vector, first compute the edges. This might be faster.

EXAMPLES:

sage: P = polytopes.cyclic_polytope(3,5)
sage: C = CombinatorialPolyhedron(P)
sage: C.edges()
((A vertex at (3, 9, 27), A vertex at (4, 16, 64)),
(A vertex at (2, 4, 8), A vertex at (4, 16, 64)),
(A vertex at (1, 1, 1), A vertex at (4, 16, 64)),
(A vertex at (0, 0, 0), A vertex at (4, 16, 64)),
(A vertex at (2, 4, 8), A vertex at (3, 9, 27)),
(A vertex at (0, 0, 0), A vertex at (3, 9, 27)),
(A vertex at (1, 1, 1), A vertex at (2, 4, 8)),
(A vertex at (0, 0, 0), A vertex at (2, 4, 8)),
(A vertex at (0, 0, 0), A vertex at (1, 1, 1)))

sage: C.edges(names=False)
((3, 4), (2, 4), (1, 4), (0, 4), (2, 3), (0, 3), (1, 2), (0, 2), (0, 1))

sage: P = Polyhedron(rays=[[-1,0],[1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: C.edges()
((A line in the direction (1, 0), A vertex at (0, 0)),)

sage: P = Polyhedron(vertices=[[0,0],[1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: C.edges()
((A vertex at (0, 0), A vertex at (1, 0)),)

sage: from itertools import combinations
sage: N = combinations([ a , b , c , d , e ], 4)
sage: C = CombinatorialPolyhedron(N)
sage: C.edges()
(( d , e ),
( c , e ),
( b , e ),
( a , e ),
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( c , d ),
( b , d ),
( a , d ),
( b , c ),
( a , c ),
( a , b ))

f_vector(num_threads=None, parallelization_depth=None, algorithm=None)
Compute the f_vector of the polyhedron.

The f_vector contains the number of faces of dimension 𝑘 for each 𝑘 in range(-1, self.
dimension() + 1).

INPUT:

• num_threads – integer (optional); specify the number of threads

• parallelization_depth – integer (optional); specify how deep in the lattice the parallelization
is done

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

Note: To obtain edges and/or ridges as well, first do so. This might already compute the f_vector.

EXAMPLES:

sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: C.f_vector()
(1, 120, 240, 150, 30, 1)

sage: P = polytopes.cyclic_polytope(6,10)
sage: C = CombinatorialPolyhedron(P)
sage: C.f_vector()
(1, 10, 45, 120, 185, 150, 50, 1)

Using two threads:

sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: C.f_vector(num_threads=2)
(1, 120, 240, 150, 30, 1)

face_by_face_lattice_index(index)

Return the element of CombinatorialPolyhedron.face_lattice() with corresponding index.

The element will be returned as CombinatorialFace.

EXAMPLES:
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sage: # needs sage.combinat
sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: F = C.face_lattice()
sage: F
Finite lattice containing 28 elements
sage: G = F.relabel(C.face_by_face_lattice_index)
sage: G.level_sets()[0]
[A -1-dimensional face of a 3-dimensional combinatorial polyhedron]
sage: G.level_sets()[3]
[A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron]

sage: P = Polyhedron(rays=[[0,1], [1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: F = C.face_lattice() #␣
→˓needs sage.combinat
sage: G = F.relabel(C.face_by_face_lattice_index) #␣
→˓needs sage.combinat
sage: G._elements #␣
→˓needs sage.combinat
(A -1-dimensional face of a 2-dimensional combinatorial polyhedron,

A 0-dimensional face of a 2-dimensional combinatorial polyhedron,
A 1-dimensional face of a 2-dimensional combinatorial polyhedron,
A 1-dimensional face of a 2-dimensional combinatorial polyhedron,
A 2-dimensional face of a 2-dimensional combinatorial polyhedron)

sage: def f(i): return C.face_by_face_lattice_index(i).ambient_V_indices()
sage: G = F.relabel(f) #␣
→˓needs sage.combinat
sage: G._elements #␣
→˓needs sage.combinat
((), (0,), (0, 1), (0, 2), (0, 1, 2))

face_generator(dimension=None, algorithm=None)
Iterator over all proper faces of specified dimension.

INPUT:

• dimension – if specified, then iterate over only this dimension

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

OUTPUT:

• FaceIterator

Note: FaceIterator can ignore subfaces or supfaces of the current face.
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EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(dimension=2)
sage: face = next(it); face
A 2-dimensional face of a 4-dimensional combinatorial polyhedron
sage: face.ambient_Vrepresentation()
(A vertex at (1, 3, 2, 5, 4),
A vertex at (2, 3, 1, 5, 4),
A vertex at (3, 1, 2, 5, 4),
A vertex at (3, 2, 1, 5, 4),
A vertex at (2, 1, 3, 5, 4),
A vertex at (1, 2, 3, 5, 4))

sage: face = next(it); face
A 2-dimensional face of a 4-dimensional combinatorial polyhedron
sage: face.ambient_Vrepresentation()
(A vertex at (2, 1, 4, 5, 3),
A vertex at (3, 2, 4, 5, 1),
A vertex at (3, 1, 4, 5, 2),
A vertex at (1, 3, 4, 5, 2),
A vertex at (1, 2, 4, 5, 3),
A vertex at (2, 3, 4, 5, 1))

sage: face.ambient_Hrepresentation()
(An inequality (0, 0, -1, -1, 0) x + 9 >= 0,
An inequality (0, 0, 0, -1, 0) x + 5 >= 0,
An equation (1, 1, 1, 1, 1) x - 15 == 0)

sage: face.ambient_H_indices()
(25, 29, 30)
sage: face = next(it); face
A 2-dimensional face of a 4-dimensional combinatorial polyhedron
sage: face.ambient_H_indices()
(24, 29, 30)
sage: face.ambient_V_indices()
(32, 89, 90, 94)

sage: C = CombinatorialPolyhedron([[0,1,2],[0,1,3],[0,2,3],[1,2,3]])
sage: it = C.face_generator()
sage: for face in it: face.ambient_Vrepresentation()
(1, 2, 3)
(0, 2, 3)
(0, 1, 3)
(0, 1, 2)
(2, 3)
(1, 3)
(1, 2)
(3,)
(2,)
(1,)
(0, 3)
(0, 2)
(0,)
(0, 1)

sage: P = Polyhedron(rays=[[1,0],[0,1]], vertices=[[1,0],[0,1]])
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(1)
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sage: for face in it: face.ambient_Vrepresentation()
(A vertex at (0, 1), A vertex at (1, 0))
(A ray in the direction (1, 0), A vertex at (1, 0))
(A ray in the direction (0, 1), A vertex at (0, 1))

See also:

FaceIterator, CombinatorialFace.

face_iter(dimension=None, algorithm=None)
Iterator over all proper faces of specified dimension.

INPUT:

• dimension – if specified, then iterate over only this dimension

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

OUTPUT:

• FaceIterator

Note: FaceIterator can ignore subfaces or supfaces of the current face.

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(dimension=2)
sage: face = next(it); face
A 2-dimensional face of a 4-dimensional combinatorial polyhedron
sage: face.ambient_Vrepresentation()
(A vertex at (1, 3, 2, 5, 4),
A vertex at (2, 3, 1, 5, 4),
A vertex at (3, 1, 2, 5, 4),
A vertex at (3, 2, 1, 5, 4),
A vertex at (2, 1, 3, 5, 4),
A vertex at (1, 2, 3, 5, 4))

sage: face = next(it); face
A 2-dimensional face of a 4-dimensional combinatorial polyhedron
sage: face.ambient_Vrepresentation()
(A vertex at (2, 1, 4, 5, 3),
A vertex at (3, 2, 4, 5, 1),
A vertex at (3, 1, 4, 5, 2),
A vertex at (1, 3, 4, 5, 2),
A vertex at (1, 2, 4, 5, 3),
A vertex at (2, 3, 4, 5, 1))

sage: face.ambient_Hrepresentation()
(An inequality (0, 0, -1, -1, 0) x + 9 >= 0,
An inequality (0, 0, 0, -1, 0) x + 5 >= 0,
An equation (1, 1, 1, 1, 1) x - 15 == 0)
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sage: face.ambient_H_indices()
(25, 29, 30)
sage: face = next(it); face
A 2-dimensional face of a 4-dimensional combinatorial polyhedron
sage: face.ambient_H_indices()
(24, 29, 30)
sage: face.ambient_V_indices()
(32, 89, 90, 94)

sage: C = CombinatorialPolyhedron([[0,1,2],[0,1,3],[0,2,3],[1,2,3]])
sage: it = C.face_generator()
sage: for face in it: face.ambient_Vrepresentation()
(1, 2, 3)
(0, 2, 3)
(0, 1, 3)
(0, 1, 2)
(2, 3)
(1, 3)
(1, 2)
(3,)
(2,)
(1,)
(0, 3)
(0, 2)
(0,)
(0, 1)

sage: P = Polyhedron(rays=[[1,0],[0,1]], vertices=[[1,0],[0,1]])
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(1)
sage: for face in it: face.ambient_Vrepresentation()
(A vertex at (0, 1), A vertex at (1, 0))
(A ray in the direction (1, 0), A vertex at (1, 0))
(A ray in the direction (0, 1), A vertex at (0, 1))

See also:

FaceIterator, CombinatorialFace.

face_lattice()

Generate the face-lattice.

OUTPUT:

• FiniteLatticePoset

Note: Use CombinatorialPolyhedron.face_by_face_lattice_index() to get the face
for each index.

Warning: The labeling of the face lattice might depend on architecture and implementation. Relabel-
ing the face lattice with CombinatorialPolyhedron.face_by_face_lattice_index()
or the properties obtained from this face will be platform independent.

EXAMPLES:
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sage: P = Polyhedron(rays=[[1,0],[0,1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.face_lattice() #␣
→˓needs sage.combinat
Finite lattice containing 5 elements

sage: P = Polyhedron(rays=[[1,0,0], [-1,0,0], [0,-1,0], [0,1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: P1 = Polyhedron(rays=[[1,0], [-1,0]])
sage: C1 = CombinatorialPolyhedron(P1)
sage: C.face_lattice().is_isomorphic(C1.face_lattice()) #␣
→˓needs sage.combinat
True

sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: C.face_lattice() #␣
→˓needs sage.combinat
Finite lattice containing 542 elements

facet_adjacency_matrix(algorithm=None)
Return the binary matrix of facet adjacencies.

INPUT:

• algorithm – string (optional); specify whether the face generator starts with facets or vertices: *
primal – start with the facets * dual – start with the vertices * None – choose automatically

See also:

vertex_adjacency_matrix().

EXAMPLES:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: C.facet_adjacency_matrix()
[0 1 1 0 1 1]
[1 0 1 1 1 0]
[1 1 0 1 0 1]
[0 1 1 0 1 1]
[1 1 0 1 0 1]
[1 0 1 1 1 0]

facet_graph(names=True, algorithm=None)
Return the facet graph.

The facet graph of a polyhedron consists of ridges as edges and facets as vertices.

INPUT:

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

If names is False, the vertices of the graph will be the indices of the facets in the Hrepresentation.

EXAMPLES:
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sage: P = polytopes.cyclic_polytope(4,6)
sage: C = CombinatorialPolyhedron(P)
sage: C.facet_graph() #␣
→˓needs sage.graphs
Graph on 9 vertices

facets(names=True)

Return the facets as lists of [vertices, rays, lines].

If names is False, then the Vrepresentatives in the facets are given by their indices in the Vrepresentation.

The facets are the maximal nontrivial faces.

EXAMPLES:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: C.facets()
((A vertex at (1, -1, -1),

A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (1, -1, 1)),

(A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1)),

(A vertex at (1, 1, 1),
A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, 1)),

(A vertex at (-1, -1, 1),
A vertex at (-1, -1, -1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1)),

(A vertex at (1, -1, -1),
A vertex at (1, 1, -1),
A vertex at (-1, -1, -1),
A vertex at (-1, 1, -1)),

(A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, -1, -1)))

sage: C.facets(names=False)
((0, 1, 2, 3),
(1, 2, 6, 7),
(2, 3, 4, 7),
(4, 5, 6, 7),
(0, 1, 5, 6),
(0, 3, 4, 5))

The empty face is trivial and hence the 0-dimensional polyhedron does not have facets:

sage: C = CombinatorialPolyhedron(0)
sage: C.facets()
()

flag_f_vector(*args)
Return the flag f-vector.
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For each −1 < 𝑖0 < · · · < 𝑖𝑛 < 𝑑 the flag f-vector counts the number of flags 𝐹0 ⊂ · · · ⊂ 𝐹𝑛 with 𝐹𝑗 of
dimension 𝑖𝑗 for each 0 ≤ 𝑗 ≤ 𝑛, where 𝑑 is the dimension of the polyhedron.

INPUT:

• args – integers (optional); specify an entry of the flag-f-vector; must be an increasing sequence of
integers

OUTPUT:

• a dictionary, if no arguments were given

• an Integer, if arguments were given

EXAMPLES:

Obtain the entire flag-f-vector:

sage: C = polytopes.hypercube(4).combinatorial_polyhedron()
sage: C.flag_f_vector() #␣
→˓needs sage.combinat

{(-1,): 1,
(0,): 16,
(0, 1): 64,
(0, 1, 2): 192,
(0, 1, 2, 3): 384,
(0, 1, 3): 192,
(0, 2): 96,
(0, 2, 3): 192,
(0, 3): 64,
(1,): 32,
(1, 2): 96,
(1, 2, 3): 192,
(1, 3): 96,
(2,): 24,
(2, 3): 48,
(3,): 8,
(4,): 1}

Specify an entry:

sage: C.flag_f_vector(0,3) #␣
→˓needs sage.combinat
64
sage: C.flag_f_vector(2) #␣
→˓needs sage.combinat
24

Leading -1 and trailing entry of dimension are allowed:

sage: C.flag_f_vector(-1,0,3) #␣
→˓needs sage.combinat
64
sage: C.flag_f_vector(-1,0,3,4) #␣
→˓needs sage.combinat
64

One can get the number of trivial faces:
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sage: C.flag_f_vector(-1) #␣
→˓needs sage.combinat
1
sage: C.flag_f_vector(4) #␣
→˓needs sage.combinat
1

Polyhedra with lines, have 0 entries accordingly:

sage: C = (Polyhedron(lines=[[1]]) * polytopes.hypercube(2)).combinatorial_
→˓polyhedron()
sage: C.flag_f_vector() #␣
→˓needs sage.combinat
{(-1,): 1, (0, 1): 0, (0, 2): 0, (0,): 0, (1, 2): 8, (1,): 4, (2,): 4, 3: 1}

If the arguments are not stricly increasing or out of range, a key error is raised:

sage: C.flag_f_vector(-1,0,3,5) #␣
→˓needs sage.combinat
Traceback (most recent call last):
...
KeyError: (0, 3, 5)
sage: C.flag_f_vector(-1,3,0) #␣
→˓needs sage.combinat
Traceback (most recent call last):
...
KeyError: (3, 0)

graph(names=True, algorithm=None)
Return a graph in which the vertices correspond to vertices of the polyhedron, and edges to bounded rank 1
faces.

INPUT:

• names – boolean (default: True); if False, then the nodes of the graph are labeld by the indices of
the Vrepresentation

• algorithm – string (optional); specify whether the face generator starts with facets or vertices: *
primal – start with the facets * dual – start with the vertices * None – choose automatically

EXAMPLES:

sage: P = polytopes.cyclic_polytope(3,5)
sage: C = CombinatorialPolyhedron(P)
sage: G = C.vertex_graph(); G #␣
→˓needs sage.graphs
Graph on 5 vertices
sage: sorted(G.degree()) #␣
→˓needs sage.graphs
[3, 3, 4, 4, 4]

sage: P = Polyhedron(rays=[[1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.graph() #␣
→˓needs sage.graphs
Graph on 1 vertex

hasse_diagram()

Return the Hasse diagram of self.
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This is the Hasse diagram of the poset of the faces of self: A directed graph consisting of a vertex for each
face and an edge for each minimal inclusion of faces.

Note: The vertices of the Hasse diagram are given by indices. Use CombinatorialPolyhedron.
face_by_face_lattice_index() to relabel.

Warning: The indices of the Hasse diagrammight depend on architecture and implementation. Relabel-
ing the face lattice with CombinatorialPolyhedron.face_by_face_lattice_index()
or the properties obtained from this face will be platform independent

EXAMPLES:

sage: # needs sage.graphs sage.rings.number_field
sage: P = polytopes.regular_polygon(4).pyramid()
sage: C = CombinatorialPolyhedron(P)
sage: D = C.hasse_diagram(); D
Digraph on 20 vertices
sage: D.average_degree()
21/5
sage: D.relabel(C.face_by_face_lattice_index)
sage: dim_0_vert = D.vertices(sort=True)[1:6]; dim_0_vert
[A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron]

sage: sorted(D.out_degree(vertices=dim_0_vert))
[3, 3, 3, 3, 4]

incidence_matrix()

Return the incidence matrix.

Note: The columns correspond to inequalities/equations in the order Hrepresentation(), the rows
correspond to vertices/rays/lines in the order Vrepresentation().

See also:

incidence_matrix().

EXAMPLES:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: C.incidence_matrix()
[1 0 0 0 1 1]
[1 1 0 0 1 0]
[1 1 1 0 0 0]
[1 0 1 0 0 1]
[0 0 1 1 0 1]
[0 0 0 1 1 1]
[0 1 0 1 1 0]
[0 1 1 1 0 0]

In this case the incidence matrix is only computed once:
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sage: P.incidence_matrix() is C.incidence_matrix()
True
sage: C.incidence_matrix.clear_cache()
sage: C.incidence_matrix() is P.incidence_matrix()
False
sage: C.incidence_matrix() == P.incidence_matrix()
True

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5, backend= field )
sage: C = P.combinatorial_polyhedron()
sage: C.incidence_matrix.clear_cache()
sage: C.incidence_matrix() == P.incidence_matrix()
True

The incidence matrix is consistent with incidence_matrix():

sage: P = Polyhedron([[0,0]])
sage: P.incidence_matrix()
[1 1]
sage: C = P.combinatorial_polyhedron()
sage: C.incidence_matrix.clear_cache()
sage: P.combinatorial_polyhedron().incidence_matrix()
[1 1]

is_bipyramid(certificate=False)
Test whether the polytope is a bipyramid over some other polytope.

INPUT:

• certificate – boolean (default: False); specifies whether to return a vertex of the polytope which
is the apex of a pyramid, if found

INPUT:

• certificate – boolean (default: False); specifies whether to return two vertices of the polytope
which are the apices of a bipyramid, if found

OUTPUT:

If certificate is True, returns a tuple containing:

1. Boolean.

2. None or a tuple containing:

a. The first apex.

b. The second apex.

If certificate is False returns a boolean.

EXAMPLES:

sage: C = polytopes.hypercube(4).combinatorial_polyhedron()
sage: C.is_bipyramid()
False
sage: C.is_bipyramid(certificate=True)
(False, None)
sage: C = polytopes.cross_polytope(4).combinatorial_polyhedron()
sage: C.is_bipyramid()

(continues on next page)
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True
sage: C.is_bipyramid(certificate=True)
(True, [A vertex at (1, 0, 0, 0), A vertex at (-1, 0, 0, 0)])

For unbounded polyhedra, an error is raised:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.is_pyramid()
Traceback (most recent call last):
...
ValueError: polyhedron has to be compact

ALGORITHM:

Assume all faces of a polyhedron to be given as lists of vertices.

A polytope is a bipyramid with apexes 𝑣, 𝑤 if and only if for each proper face 𝑣 ∈ 𝐹 there exists a face 𝐺
with 𝐺 ∖ {𝑤} = 𝐹 ∖ {𝑣} and vice versa (for each proper face 𝑤 ∈ 𝐹 there exists …).

To check this property it suffices to check for all facets of the polyhedron.

is_compact()

Return whether the polyhedron is compact

EXAMPLES:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.is_compact()
False
sage: C = CombinatorialPolyhedron([[0,1], [0,2], [1,2]])
sage: C.is_compact()
True
sage: P = polytopes.simplex()
sage: P.combinatorial_polyhedron().is_compact()
True
sage: P = Polyhedron(rays=P.vertices())
sage: P.combinatorial_polyhedron().is_compact()
False

is_lawrence_polytope()

Return True if self is a Lawrence polytope.

A polytope is called a Lawrence polytope if it has a centrally symmetric (normalized) Gale diagram.

Equivalently, there exists a partition 𝑃1, . . . , 𝑃𝑘 of the vertices 𝑉 such that each part 𝑃𝑖 has size 2 or 1 and
for each part there exists a facet with vertices exactly 𝑉 ∖ 𝑃𝑖.

EXAMPLES:

sage: C = polytopes.simplex(5).combinatorial_polyhedron()
sage: C.is_lawrence_polytope()
True
sage: P = polytopes.hypercube(4).lawrence_polytope()
sage: C = P.combinatorial_polyhedron()
sage: C.is_lawrence_polytope()
True
sage: P = polytopes.hypercube(4)

(continues on next page)
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sage: C = P.combinatorial_polyhedron()
sage: C.is_lawrence_polytope()
False

For unbounded polyhedra, an error is raised:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.is_lawrence_polytope()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for polytopes only

AUTHORS:

• Laith Rastanawi

• Jonathan Kliem

REFERENCES:

For more information, see [BaSt1990].

is_neighborly(k=None)
Return whether the polyhedron is neighborly.

If the input 𝑘 is provided, then return whether the polyhedron is 𝑘-neighborly.

A polyhedron is neighborly if every set of 𝑛 vertices forms a face for 𝑛 up to floor of half the dimension of
the polyhedron. It is 𝑘-neighborly if this is true for 𝑛 up to 𝑘.

INPUT:

• k – the dimension up to which to check if every set of k vertices forms a face. If no k is provided, check
up to floor of half the dimension of the polyhedron.

OUTPUT:

• True if the every set of up to k vertices forms a face,

• False otherwise

See also:

neighborliness()

EXAMPLES:

sage: P = polytopes.cyclic_polytope(8,12)
sage: C = P.combinatorial_polyhedron()
sage: C.is_neighborly()
True
sage: P = polytopes.simplex(6)
sage: C = P.combinatorial_polyhedron()
sage: C.is_neighborly()
True
sage: P = polytopes.cyclic_polytope(4,10)
sage: P = P.join(P)
sage: C = P.combinatorial_polyhedron()
sage: C.is_neighborly()
False

(continues on next page)
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sage: C.is_neighborly(k=2)
True

is_prism(certificate=False)

Test whether the polytope is a prism of some polytope.

INPUT:

• certificate – boolean (default: False); specifies whether to return two facets of the polytope
which are the bases of a prism, if found

OUTPUT:

If certificate is True, returns a tuple containing:

1. Boolean.

2. None or a tuple containing:

a. List of the vertices of the first base facet.

b. List of the vertices of the second base facet.

If certificate is False returns a boolean.

is_pyramid(certificate=False)
Test whether the polytope is a pyramid over one of its facets.

INPUT:

• certificate – boolean (default: False); specifies whether to return a vertex of the polytope which
is the apex of a pyramid, if found

OUTPUT:

If certificate is True, returns a tuple containing:

1. Boolean.

2. The apex of the pyramid or None.

If certificate is False returns a boolean.

AUTHORS:

• Laith Rastanawi

• Jonathan Kliem

EXAMPLES:

sage: C = polytopes.cross_polytope(4).combinatorial_polyhedron()
sage: C.is_pyramid()
False
sage: C.is_pyramid(certificate=True)
(False, None)
sage: C = polytopes.cross_polytope(4).pyramid().combinatorial_polyhedron()
sage: C.is_pyramid()
True
sage: C.is_pyramid(certificate=True)
(True, A vertex at (1, 0, 0, 0, 0))
sage: C = polytopes.simplex(5).combinatorial_polyhedron()
sage: C.is_pyramid(certificate=True)
(True, A vertex at (1, 0, 0, 0, 0, 0))
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For unbounded polyhedra, an error is raised:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.is_pyramid()
Traceback (most recent call last):
...
ValueError: polyhedron has to be compact

is_simple()

Test whether the polytope is simple.

If the polyhedron is unbounded, return False.

A polytope is simple, if each vertex is contained in exactly 𝑑 facets, where 𝑑 is the dimension of the polytope.

EXAMPLES:

sage: P = polytopes.cyclic_polytope(4,10)
sage: C = P.combinatorial_polyhedron()
sage: C.is_simple()
False
sage: P = polytopes.hypercube(4)
sage: C = P.combinatorial_polyhedron()
sage: C.is_simple()
True

Return False for unbounded polyhedra:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.is_simple()
False

is_simplex()

Return whether the polyhedron is a simplex.

A simplex is a bounded polyhedron with 𝑑+ 1 vertices, where 𝑑 is the dimension.

EXAMPLES:

sage: CombinatorialPolyhedron(2).is_simplex()
False
sage: CombinatorialPolyhedron([[0,1],[0,2],[1,2]]).is_simplex()
True

is_simplicial()

Test whether the polytope is simplicial.

This method is not implemented for unbounded polyhedra.

A polytope is simplicial, if each facet contains exactly 𝑑 vertices, where 𝑑 is the dimension of the polytope.

EXAMPLES:

sage: P = polytopes.cyclic_polytope(4,10)
sage: C = P.combinatorial_polyhedron()
sage: C.is_simplicial()
True
sage: P = polytopes.hypercube(4)

(continues on next page)
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sage: C = P.combinatorial_polyhedron()
sage: C.is_simplicial()
False

For unbounded polyhedra, an error is raised:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.is_simplicial()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for polytopes only

join_of_Vrep(*indices)
Return the smallest face containing all Vrepresentatives indicated by the indices.

See also:

join_of_Vrep().

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(4)
sage: C = CombinatorialPolyhedron(P)
sage: C.join_of_Vrep(0,1)
A 1-dimensional face of a 3-dimensional combinatorial polyhedron
sage: C.join_of_Vrep(0,11).ambient_V_indices()
(0, 1, 10, 11, 12, 13)
sage: C.join_of_Vrep(8).ambient_V_indices()
(8,)
sage: C.join_of_Vrep().ambient_V_indices()
()

meet_of_Hrep(*indices)
Return the largest face contained in all facets indicated by the indices.

See also:

meet_of_Hrep().

EXAMPLES:

sage: # needs sage.rings.number_field
sage: P = polytopes.dodecahedron()
sage: C = CombinatorialPolyhedron(P)
sage: C.meet_of_Hrep(0)
A 2-dimensional face of a 3-dimensional combinatorial polyhedron
sage: C.meet_of_Hrep(0).ambient_H_indices()
(0,)
sage: C.meet_of_Hrep(0,1).ambient_H_indices()
(0, 1)
sage: C.meet_of_Hrep(0,2).ambient_H_indices()
(0, 2)
sage: C.meet_of_Hrep(0,2,3).ambient_H_indices()
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
sage: C.meet_of_Hrep().ambient_H_indices()
()
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n_facets()

Return the number of facets.

Is equivalent to len(self.facets()).

EXAMPLES:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: C.n_facets()
6

sage: P = polytopes.cyclic_polytope(4,20)
sage: C = CombinatorialPolyhedron(P)
sage: C.n_facets()
170

sage: P = Polyhedron(lines=[[0,1]], vertices=[[1,0], [-1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: C.n_facets()
2

sage: P = Polyhedron(rays=[[1,0], [-1,0], [0,1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.n_facets()
1

sage: C = CombinatorialPolyhedron(-1)
sage: C.f_vector()
(1)
sage: C.n_facets()
0

Facets are defined to be the maximal nontrivial faces. The 0-dimensional polyhedron does not have nontrivial
faces:

sage: C = CombinatorialPolyhedron(0)
sage: C.f_vector()
(1, 1)
sage: C.n_facets()
0

n_vertices()

Return the number of vertices.

Is equivalent to len(self.vertices()).

EXAMPLES:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: C.n_vertices()
8

sage: P = polytopes.cyclic_polytope(4,20)
sage: C = CombinatorialPolyhedron(P)
sage: C.n_vertices()
20

(continues on next page)
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sage: P = Polyhedron(lines=[[0,1]], vertices=[[1,0], [-1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: C.n_vertices()
0

sage: P = Polyhedron(rays=[[1,0,0], [0,1,0]], lines=[[0,0,1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.n_vertices()
0

sage: C = CombinatorialPolyhedron(4)
sage: C.f_vector()
(1, 0, 0, 0, 0, 1)
sage: C.n_vertices()
0

sage: C = CombinatorialPolyhedron(0)
sage: C.f_vector()
(1, 1)
sage: C.n_vertices()
1

neighborliness()

Return the largest k, such that the polyhedron is k-neighborly.

A polyhedron is 𝑘-neighborly if every set of 𝑛 vertices forms a face for 𝑛 up to 𝑘.

In case of the 𝑑-dimensional simplex, it returns 𝑑+ 1.

See also:

is_neighborly()

EXAMPLES:

sage: P = polytopes.cyclic_polytope(8,12)
sage: C = P.combinatorial_polyhedron()
sage: C.neighborliness()
4
sage: P = polytopes.simplex(6)
sage: C = P.combinatorial_polyhedron()
sage: C.neighborliness()
7
sage: P = polytopes.cyclic_polytope(4,10)
sage: P = P.join(P)
sage: C = P.combinatorial_polyhedron()
sage: C.neighborliness()
2

polar()

Return the dual/polar of self.

Only defined for bounded polyhedra.

See also:

polar().

EXAMPLES:
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sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: D = C.dual()
sage: D.f_vector()
(1, 6, 12, 8, 1)
sage: D1 = P.polar().combinatorial_polyhedron()
sage: D1.face_lattice().is_isomorphic(D.face_lattice()) #␣
→˓needs sage.combinat
True

Polar is an alias to be consistent with Polyhedron_base:

sage: C.polar().f_vector()
(1, 6, 12, 8, 1)

For unbounded polyhedra, an error is raised:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.dual()
Traceback (most recent call last):
...
ValueError: self must be bounded

pyramid(new_vertex=None, new_facet=None)
Return the pyramid of self.

INPUT:

• new_vertex – (optional); specify a new vertex name to set up the pyramid with vertex names

• new_facet – (optional); specify a new facet name to set up the pyramid with facet names

EXAMPLES:

sage: C = CombinatorialPolyhedron(((1,2,3),(1,2,4),(1,3,4),(2,3,4)))
sage: C1 = C.pyramid()
sage: C1.facets()
((0, 1, 2, 4), (0, 1, 3, 4), (0, 2, 3, 4), (1, 2, 3, 4), (0, 1, 2, 3))

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: C1 = C.pyramid()
sage: P1 = P.pyramid()
sage: C2 = P1.combinatorial_polyhedron()
sage: C2.vertex_facet_graph().is_isomorphic(C1.vertex_facet_graph()) #␣
→˓needs sage.combinat
True

One can specify a name for the new vertex:

sage: P = polytopes.cyclic_polytope(4,10)
sage: C = P.combinatorial_polyhedron()
sage: C1 = C.pyramid(new_vertex= apex )
sage: C1.is_pyramid(certificate=True)
(True, apex )
sage: C1.facets()[0]
(A vertex at (0, 0, 0, 0),

(continues on next page)
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A vertex at (1, 1, 1, 1),
A vertex at (2, 4, 8, 16),
A vertex at (3, 9, 27, 81),
apex )

One can specify a name for the new facets:

sage: # needs sage.rings.number_field
sage: P = polytopes.regular_polygon(4)
sage: C = P.combinatorial_polyhedron()
sage: C1 = C.pyramid(new_facet= base )
sage: C1.Hrepresentation()
(An inequality (-1/2, 1/2) x + 1/2 >= 0,
An inequality (-1/2, -1/2) x + 1/2 >= 0,
An inequality (1/2, 0.50000000000000000?) x + 1/2 >= 0,
An inequality (1/2, -1/2) x + 1/2 >= 0,
base )

For unbounded polyhedra, an error is raised:

sage: C = CombinatorialPolyhedron([[0,1], [0,2]], far_face=[1,2],␣
→˓unbounded=True)
sage: C.pyramid()
Traceback (most recent call last):
...
ValueError: self must be bounded

ridges(add_equations=False, names=True, algorithm=None)
Return the ridges.

The ridges of a polyhedron are the faces contained in exactly two facets.

To obtain all faces of codimension 1 use CombinatorialPolyhedron.face_generator() in-
stead.

The ridges will be given by the facets, they are contained in.

INPUT:

• add_equations – if True, then equations of the polyhedron will be added (only applicable when
names is True)

• names – boolean (default: 𝑇𝑟𝑢𝑒); if False, then the facets are given by their indices

• algorithm – string (optional); specify whether the face generator starts with facets or vertices: *
primal – start with the facets * dual – start with the vertices * None – choose automatically

Note: To compute ridges and f_vector, compute the ridges first. This might be faster.

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(2)
sage: C = CombinatorialPolyhedron(P)
sage: C.ridges()
((An inequality (1, 0) x - 1 >= 0, An inequality (-1, 0) x + 2 >= 0),)
sage: C.ridges(add_equations=True)

(continues on next page)
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(((An inequality (1, 0) x - 1 >= 0, An equation (1, 1) x - 3 == 0),
(An inequality (-1, 0) x + 2 >= 0, An equation (1, 1) x - 3 == 0)),)

sage: P = polytopes.cyclic_polytope(4,5)
sage: C = CombinatorialPolyhedron(P)
sage: C.ridges()
((An inequality (24, -26, 9, -1) x + 0 >= 0,

An inequality (-50, 35, -10, 1) x + 24 >= 0),
(An inequality (-12, 19, -8, 1) x + 0 >= 0,
An inequality (-50, 35, -10, 1) x + 24 >= 0),

(An inequality (8, -14, 7, -1) x + 0 >= 0,
An inequality (-50, 35, -10, 1) x + 24 >= 0),

(An inequality (-6, 11, -6, 1) x + 0 >= 0,
An inequality (-50, 35, -10, 1) x + 24 >= 0),

(An inequality (-12, 19, -8, 1) x + 0 >= 0,
An inequality (24, -26, 9, -1) x + 0 >= 0),

(An inequality (8, -14, 7, -1) x + 0 >= 0,
An inequality (24, -26, 9, -1) x + 0 >= 0),

(An inequality (-6, 11, -6, 1) x + 0 >= 0,
An inequality (24, -26, 9, -1) x + 0 >= 0),

(An inequality (8, -14, 7, -1) x + 0 >= 0,
An inequality (-12, 19, -8, 1) x + 0 >= 0),

(An inequality (-6, 11, -6, 1) x + 0 >= 0,
An inequality (-12, 19, -8, 1) x + 0 >= 0),

(An inequality (-6, 11, -6, 1) x + 0 >= 0,
An inequality (8, -14, 7, -1) x + 0 >= 0))

sage: C.ridges(names=False)
((3, 4),
(2, 4),
(1, 4),
(0, 4),
(2, 3),
(1, 3),
(0, 3),
(1, 2),
(0, 2),
(0, 1))

sage: P = Polyhedron(rays=[[1,0]])
sage: C = CombinatorialPolyhedron(P)
sage: C
A 1-dimensional combinatorial polyhedron with 1 facet
sage: C.ridges()
()
sage: it = C.face_generator(0)
sage: for face in it: face.ambient_Hrepresentation()
(An inequality (1, 0) x + 0 >= 0, An equation (0, 1) x + 0 == 0)

simpliciality()

Return the largest 𝑘 such that the polytope is 𝑘-simplicial.

Return the dimension in case of a simplex.

A polytope is 𝑘-simplicial, if every 𝑘-face is a simplex.

EXAMPLES:
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sage: cyclic = polytopes.cyclic_polytope(10,4)
sage: CombinatorialPolyhedron(cyclic).simpliciality()
3

sage: hypersimplex = polytopes.hypersimplex(5,2)
sage: CombinatorialPolyhedron(hypersimplex).simpliciality()
2

sage: cross = polytopes.cross_polytope(4)
sage: P = cross.join(cross)
sage: CombinatorialPolyhedron(P).simpliciality()
3

sage: P = polytopes.simplex(3)
sage: CombinatorialPolyhedron(P).simpliciality()
3

sage: P = polytopes.simplex(1)
sage: CombinatorialPolyhedron(P).simpliciality()
1

simplicity()

Return the largest 𝑘 such that the polytope is 𝑘-simple.

Return the dimension in case of a simplex.

A polytope 𝑃 is 𝑘-simple, if every (𝑑−1−𝑘)-face is contained in exactly 𝑘+1 facets of 𝑃 for 1 ≤ 𝑘 ≤ 𝑑−1.

Equivalently it is 𝑘-simple if the polar/dual polytope is 𝑘-simplicial.

EXAMPLES:

sage: hyper4 = polytopes.hypersimplex(4,2)
sage: CombinatorialPolyhedron(hyper4).simplicity()
1

sage: hyper5 = polytopes.hypersimplex(5,2)
sage: CombinatorialPolyhedron(hyper5).simplicity()
2

sage: hyper6 = polytopes.hypersimplex(6,2)
sage: CombinatorialPolyhedron(hyper6).simplicity()
3

sage: P = polytopes.simplex(3)
sage: CombinatorialPolyhedron(P).simplicity()
3

sage: P = polytopes.simplex(1)
sage: CombinatorialPolyhedron(P).simplicity()
1

vertex_adjacency_matrix(algorithm=None)

Return the binary matrix of vertex adjacencies.

INPUT:

• algorithm – string (optional); specify whether the face generator starts with facets or vertices: *
primal – start with the facets * dual – start with the vertices * None – choose automatically
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See also:

vertex_adjacency_matrix().

EXAMPLES:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: C.vertex_adjacency_matrix()
[0 1 0 1 0 1 0 0]
[1 0 1 0 0 0 1 0]
[0 1 0 1 0 0 0 1]
[1 0 1 0 1 0 0 0]
[0 0 0 1 0 1 0 1]
[1 0 0 0 1 0 1 0]
[0 1 0 0 0 1 0 1]
[0 0 1 0 1 0 1 0]

vertex_facet_graph(names=True)
Return the vertex-facet graph.

This method constructs a directed bipartite graph. The nodes of the graph correspond to elements of the
Vrepresentation and facets. There is a directed edge from Vrepresentation to facets for each incidence.

If names is set to False, then the vertices (of the graph) are given by integers.

INPUT:

• names – boolean (default: True); if True label the vertices of the graph by the corresponding names
of the Vrepresentation resp. Hrepresentation; if False label the vertices of the graph by integers

EXAMPLES:

sage: P = polytopes.hypercube(2).pyramid()
sage: C = CombinatorialPolyhedron(P)
sage: G = C.vertex_facet_graph(); G #␣
→˓needs sage.graphs
Digraph on 10 vertices
sage: C.Vrepresentation()
(A vertex at (0, -1, -1),
A vertex at (0, -1, 1),
A vertex at (0, 1, -1),
A vertex at (0, 1, 1),
A vertex at (1, 0, 0))

sage: sorted(G.neighbors_out(C.Vrepresentation()[4])) #␣
→˓needs sage.graphs
[An inequality (-1, -1, 0) x + 1 >= 0,
An inequality (-1, 0, -1) x + 1 >= 0,
An inequality (-1, 0, 1) x + 1 >= 0,
An inequality (-1, 1, 0) x + 1 >= 0]

If names is True (the default) but the combinatorial polyhedron has been initialized without specifying
names to Vrepresentation and Hrepresentation, then indices of the Vrepresentation and the
facets will be used along with a string ‘H’ or ‘V’:

sage: C = CombinatorialPolyhedron(P.incidence_matrix())
sage: C.vertex_facet_graph().vertices(sort=True) #␣
→˓needs sage.graphs
[( H , 0),
( H , 1),

(continues on next page)
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( H , 2),
( H , 3),
( H , 4),
( V , 0),
( V , 1),
( V , 2),
( V , 3),
( V , 4)]

If names is False then the vertices of the graph are given by integers:

sage: C.vertex_facet_graph(names=False).vertices(sort=True) #␣
→˓needs sage.graphs
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

vertex_graph(names=True, algorithm=None)
Return a graph in which the vertices correspond to vertices of the polyhedron, and edges to bounded rank 1
faces.

INPUT:

• names – boolean (default: True); if False, then the nodes of the graph are labeld by the indices of
the Vrepresentation

• algorithm – string (optional); specify whether the face generator starts with facets or vertices: *
primal – start with the facets * dual – start with the vertices * None – choose automatically

EXAMPLES:

sage: P = polytopes.cyclic_polytope(3,5)
sage: C = CombinatorialPolyhedron(P)
sage: G = C.vertex_graph(); G #␣
→˓needs sage.graphs
Graph on 5 vertices
sage: sorted(G.degree()) #␣
→˓needs sage.graphs
[3, 3, 4, 4, 4]

sage: P = Polyhedron(rays=[[1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.graph() #␣
→˓needs sage.graphs
Graph on 1 vertex

vertices(names=True)

Return the elements in the Vrepresentation that are vertices.

In case of an unbounded polyhedron, there might be lines and rays in the Vrepresentation.

If names is set to False, then the vertices are given by their indices in the Vrepresentation.

EXAMPLES:

sage: P = Polyhedron(rays=[[1,0,0],[0,1,0],[0,0,1]])
sage: C = CombinatorialPolyhedron(P)
sage: C.vertices()
(A vertex at (0, 0, 0),)
sage: C.Vrepresentation()

(continues on next page)
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(A vertex at (0, 0, 0),
A ray in the direction (0, 0, 1),
A ray in the direction (0, 1, 0),
A ray in the direction (1, 0, 0))

sage: P = polytopes.cross_polytope(3)
sage: C = CombinatorialPolyhedron(P)
sage: C.vertices()
(A vertex at (-1, 0, 0),
A vertex at (0, -1, 0),
A vertex at (0, 0, -1),
A vertex at (0, 0, 1),
A vertex at (0, 1, 0),
A vertex at (1, 0, 0))

sage: C.vertices(names=False)
(0, 1, 2, 3, 4, 5)

sage: points = [(1,0,0), (0,1,0), (0,0,1),
....: (-1,0,0), (0,-1,0), (0,0,-1)]
sage: L = LatticePolytope(points)
sage: C = CombinatorialPolyhedron(L)
sage: C.vertices()
(M(1, 0, 0), M(0, 1, 0), M(0, 0, 1), M(-1, 0, 0), M(0, -1, 0), M(0, 0, -1))
sage: C.vertices(names=False)
(0, 1, 2, 3, 4, 5)

sage: P = Polyhedron(vertices=[[0,0]])
sage: C = CombinatorialPolyhedron(P)
sage: C.vertices()
(A vertex at (0, 0),)

2.3.2 Combinatorial face of a polyhedron

This module provides the combinatorial type of a polyhedral face.

See also:

sage.geometry.polyhedron.combinatorial_polyhedron.base, sage.geometry.
polyhedron.combinatorial_polyhedron.face_iterator.

EXAMPLES:

Obtain a face from a face iterator:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: face = next(it); face
A 2-dimensional face of a 3-dimensional combinatorial polyhedron

Obtain a face from a face lattice index:

sage: P = polytopes.simplex(2)
sage: C = CombinatorialPolyhedron(P)
sage: sorted(C.face_lattice()._elements) #␣
→˓needs sage.combinat
[0, 1, 2, 3, 4, 5, 6, 7]

(continues on next page)
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sage: face = C.face_by_face_lattice_index(0); face
A -1-dimensional face of a 2-dimensional combinatorial polyhedron

Obtain further information regarding a face:

sage: P = polytopes.octahedron()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(2)
sage: face = next(it); face
A 2-dimensional face of a 3-dimensional combinatorial polyhedron
sage: face.ambient_Vrepresentation()
(A vertex at (0, 0, 1), A vertex at (0, 1, 0), A vertex at (1, 0, 0))
sage: face.n_ambient_Vrepresentation()
3
sage: face.ambient_H_indices()
(5,)
sage: face.dimension()
2
sage: face.ambient_dimension()
3

See also:

sage.geometry.polyhedron.combinatorial_polyhedron.base.CombinatorialPolyhedron.

AUTHOR:

• Jonathan Kliem (2019-05)

class sage.geometry.polyhedron.combinatorial_polyhedron.combinatorial_face.
CombinatorialFace

Bases: SageObject

A class of the combinatorial type of a polyhedral face.

EXAMPLES:

Obtain a combinatorial face from a face iterator:

sage: P = polytopes.cyclic_polytope(5,8)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: next(it)
A 0-dimensional face of a 5-dimensional combinatorial polyhedron

Obtain a combinatorial face from an index of the face lattice:

sage: F = C.face_lattice() #␣
→˓needs sage.combinat
sage: F._elements[3] #␣
→˓needs sage.combinat
34
sage: C.face_by_face_lattice_index(29)
A 1-dimensional face of a 5-dimensional combinatorial polyhedron

Obtain the dimension of a combinatorial face:
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sage: face = next(it)
sage: face.dimension()
0

The dimension of the polyhedron:

sage: face.ambient_dimension()
5

The Vrepresentation:

sage: face.ambient_Vrepresentation()
(A vertex at (6, 36, 216, 1296, 7776),)
sage: face.ambient_V_indices()
(6,)
sage: face.n_ambient_Vrepresentation()
1

The Hrepresentation:

sage: face.ambient_Hrepresentation()
(An inequality (60, -112, 65, -14, 1) x + 0 >= 0,
An inequality (180, -216, 91, -16, 1) x + 0 >= 0,
An inequality (360, -342, 119, -18, 1) x + 0 >= 0,
An inequality (840, -638, 179, -22, 1) x + 0 >= 0,
An inequality (-2754, 1175, -245, 25, -1) x + 2520 >= 0,
An inequality (504, -450, 145, -20, 1) x + 0 >= 0,
An inequality (-1692, 853, -203, 23, -1) x + 1260 >= 0,
An inequality (252, -288, 113, -18, 1) x + 0 >= 0,
An inequality (-844, 567, -163, 21, -1) x + 420 >= 0,
An inequality (84, -152, 83, -16, 1) x + 0 >= 0,
An inequality (-210, 317, -125, 19, -1) x + 0 >= 0)
sage: face.ambient_H_indices()
(3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19)
sage: face.n_ambient_Hrepresentation()
11

ambient_H_indices(add_equations=True)
Return the indices of the Hrepresentation objects of the ambient polyhedron defining the face.

INPUT:

• add_equations – boolean (default: True); whether or not to include the equations

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(2)
sage: face = next(it)
sage: face.ambient_H_indices(add_equations=False)
(28, 29)
sage: face2 = next(it)
sage: face2.ambient_H_indices(add_equations=False)
(25, 29)

Add the indices of the equation:
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sage: face.ambient_H_indices(add_equations=True) #␣
→˓needs sage.combinat
(28, 29, 30)
sage: face2.ambient_H_indices(add_equations=True) #␣
→˓needs sage.combinat
(25, 29, 30)

Another example:

sage: P = polytopes.cyclic_polytope(4,6)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: _ = next(it); _ = next(it)
sage: next(it).ambient_H_indices()
(0, 1, 2, 4, 5, 7)
sage: next(it).ambient_H_indices()
(0, 1, 5, 6, 7, 8)
sage: next(it).ambient_H_indices()
(0, 1, 2, 3, 6, 8)
sage: [next(it).dimension() for _ in range(2)]
[0, 1]
sage: face = next(it)
sage: face.ambient_H_indices()
(4, 5, 7)

See also:

ambient_Hrepresentation().

ambient_Hrepresentation()

Return the Hrepresentation objects of the ambient polyhedron defining the face.

It consists of the facets/inequalities that contain the face and the equations defining the ambient polyhedron.

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(2)
sage: next(it).ambient_Hrepresentation()
(An inequality (1, 1, 1, 0, 0) x - 6 >= 0,
An inequality (0, 0, 0, -1, 0) x + 5 >= 0,
An equation (1, 1, 1, 1, 1) x - 15 == 0)

sage: next(it).ambient_Hrepresentation()
(An inequality (0, 0, -1, -1, 0) x + 9 >= 0,
An inequality (0, 0, 0, -1, 0) x + 5 >= 0,
An equation (1, 1, 1, 1, 1) x - 15 == 0)

sage: P = polytopes.cyclic_polytope(4,6)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: next(it).ambient_Hrepresentation()
(An inequality (-20, 29, -10, 1) x + 0 >= 0,
An inequality (60, -47, 12, -1) x + 0 >= 0,
An inequality (30, -31, 10, -1) x + 0 >= 0,
An inequality (10, -17, 8, -1) x + 0 >= 0,
An inequality (-154, 71, -14, 1) x + 120 >= 0,

(continues on next page)
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An inequality (-78, 49, -12, 1) x + 40 >= 0)
sage: next(it).ambient_Hrepresentation()
(An inequality (-50, 35, -10, 1) x + 24 >= 0,
An inequality (-12, 19, -8, 1) x + 0 >= 0,
An inequality (-20, 29, -10, 1) x + 0 >= 0,
An inequality (60, -47, 12, -1) x + 0 >= 0,
An inequality (-154, 71, -14, 1) x + 120 >= 0,
An inequality (-78, 49, -12, 1) x + 40 >= 0)

See also:

ambient_H_indices().

ambient_V_indices()

Return the indices of the Vrepresentation objects of the ambient polyhedron defining the face.

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(dimension=2)
sage: face = next(it)
sage: next(it).ambient_V_indices()
(32, 91, 92, 93, 94, 95)
sage: next(it).ambient_V_indices()
(32, 89, 90, 94)

sage: C = CombinatorialPolyhedron([[0,1,2],[0,1,3],[0,2,3],[1,2,3]])
sage: it = C.face_generator()
sage: for face in it: (face.dimension(), face.ambient_V_indices())
(2, (1, 2, 3))
(2, (0, 2, 3))
(2, (0, 1, 3))
(2, (0, 1, 2))
(1, (2, 3))
(1, (1, 3))
(1, (1, 2))
(0, (3,))
(0, (2,))
(0, (1,))
(1, (0, 3))
(1, (0, 2))
(0, (0,))
(1, (0, 1))

See also:

ambient_Vrepresentation().

ambient_Vrepresentation()

Return the Vrepresentation objects of the ambient polyhedron defining the face.

It consists of the vertices/rays/lines that face contains.

EXAMPLES:
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sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(dimension=2)
sage: face = next(it)
sage: face.ambient_Vrepresentation()
(A vertex at (1, 3, 2, 5, 4),
A vertex at (2, 3, 1, 5, 4),
A vertex at (3, 1, 2, 5, 4),
A vertex at (3, 2, 1, 5, 4),
A vertex at (2, 1, 3, 5, 4),
A vertex at (1, 2, 3, 5, 4))

sage: face = next(it)
sage: face.ambient_Vrepresentation()
(A vertex at (2, 1, 4, 5, 3),
A vertex at (3, 2, 4, 5, 1),
A vertex at (3, 1, 4, 5, 2),
A vertex at (1, 3, 4, 5, 2),
A vertex at (1, 2, 4, 5, 3),
A vertex at (2, 3, 4, 5, 1))

sage: C = CombinatorialPolyhedron([[0,1,2],[0,1,3],[0,2,3],[1,2,3]])
sage: it = C.face_generator()
sage: for face in it: (face.dimension(), face.ambient_Vrepresentation())
(2, (1, 2, 3))
(2, (0, 2, 3))
(2, (0, 1, 3))
(2, (0, 1, 2))
(1, (2, 3))
(1, (1, 3))
(1, (1, 2))
(0, (3,))
(0, (2,))
(0, (1,))
(1, (0, 3))
(1, (0, 2))
(0, (0,))
(1, (0, 1))

See also:

ambient_V_indices().

ambient_dimension()

Return the dimension of the polyhedron.

EXAMPLES:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: face = next(it)
sage: face.ambient_dimension()
3

as_combinatorial_polyhedron(quotient=False)

Return self as combinatorial polyhedron.

If quotient is True, return the quotient of the polyhedron by self. Let G be the face corresponding to
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self in the dual/polar polytope. The quotient is the dual/polar of G.

Let [0̂, 1̂] be the face lattice of the ambient polyhedron and 𝐹 be self as element of the face lattice. The face
lattice of self as polyhedron corresponds to [0̂, 𝐹 ] and the face lattice of the quotient by self corresponds
to [𝐹, 1̂].

EXAMPLES:

sage: P = polytopes.cyclic_polytope(7,11)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(4)
sage: f = next(it); f
A 4-dimensional face of a 7-dimensional combinatorial polyhedron
sage: F = f.as_combinatorial_polyhedron(); F
A 4-dimensional combinatorial polyhedron with 5 facets
sage: F.f_vector()
(1, 5, 10, 10, 5, 1)
sage: F_alt = polytopes.cyclic_polytope(4,5).combinatorial_polyhedron()
sage: F_alt.vertex_facet_graph().is_isomorphic(F.vertex_facet_graph()) #␣
→˓needs sage.graphs
True

Obtaining the quotient:

sage: Q = f.as_combinatorial_polyhedron(quotient=True); Q
A 2-dimensional combinatorial polyhedron with 6 facets
sage: Q
A 2-dimensional combinatorial polyhedron with 6 facets
sage: Q.f_vector()
(1, 6, 6, 1)

The Vrepresentation of the face as polyhedron is given by the ambient Vrepresentation of the face in that
order:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(2)
sage: f = next(it)
sage: F = f.as_combinatorial_polyhedron()
sage: C.Vrepresentation()
(A vertex at (1, -1, -1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, -1, -1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1))
sage: f.ambient_Vrepresentation()
(A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, -1, -1))
sage: F.Vrepresentation()
(0, 1, 2, 3)

To obtain the facets of the face as polyhedron, we compute the meet of each facet with the face. The first
representative of each element strictly contained in the face is kept:
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sage: C.facets(names=False)
((0, 1, 2, 3),
(1, 2, 6, 7),
(2, 3, 4, 7),
(4, 5, 6, 7),
(0, 1, 5, 6),
(0, 3, 4, 5))

sage: F.facets(names=False)
((0, 1), (1, 2), (2, 3), (0, 3))

The Hrepresentation of the quotient by the face is given by the ambient Hrepresentation of the face in that
order:

sage: it = C.face_generator(1)
sage: f = next(it)
sage: Q = f.as_combinatorial_polyhedron(quotient=True)
sage: C.Hrepresentation()
(An inequality (-1, 0, 0) x + 1 >= 0,
An inequality (0, -1, 0) x + 1 >= 0,
An inequality (0, 0, -1) x + 1 >= 0,
An inequality (1, 0, 0) x + 1 >= 0,
An inequality (0, 0, 1) x + 1 >= 0,
An inequality (0, 1, 0) x + 1 >= 0)
sage: f.ambient_Hrepresentation()
(An inequality (0, 0, 1) x + 1 >= 0, An inequality (0, 1, 0) x + 1 >= 0)
sage: Q.Hrepresentation()
(0, 1)

To obtain the vertices of the face as polyhedron, we compute the join of each vertex with the face. The first
representative of each element strictly containing the face is kept:

sage: [g.ambient_H_indices() for g in C.face_generator(0)]
[(3, 4, 5),
(0, 4, 5),
(2, 3, 5),
(0, 2, 5),
(1, 3, 4),
(0, 1, 4),
(1, 2, 3),
(0, 1, 2)]
sage: [g.ambient_H_indices() for g in Q.face_generator(0)]
[(1,), (0,)]

The method is not implemented for unbounded polyhedra:

sage: P = Polyhedron(rays=[[0,1]])*polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(2)
sage: f = next(it)
sage: f.as_combinatorial_polyhedron()
Traceback (most recent call last):
...
NotImplementedError: only implemented for bounded polyhedra

REFERENCES:

For more information, see Exercise 2.9 of [Zie2007].
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Note: This method is tested in _test_combinatorial_face_as_combinatorial_polyhe-
dron().

dim()

Return the dimension of the face.

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.associahedron([ A , 3])
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: face = next(it)
sage: face.dimension()
2

dim is an alias:

sage: face.dim() #␣
→˓needs sage.combinat
2

dimension()

Return the dimension of the face.

EXAMPLES:

sage: # needs sage.combinat
sage: P = polytopes.associahedron([ A , 3])
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: face = next(it)
sage: face.dimension()
2

dim is an alias:

sage: face.dim() #␣
→˓needs sage.combinat
2

is_subface(other)
Return whether self is contained in other.

EXAMPLES:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: it = C.face_generator()
sage: face = next(it)
sage: face.ambient_V_indices()
(0, 3, 4, 5)
sage: face2 = next(it)
sage: face2.ambient_V_indices()
(0, 1, 5, 6)
sage: face.is_subface(face2)

(continues on next page)

294 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1
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False
sage: face2.is_subface(face)
False
sage: it.only_subfaces()
sage: face3 = next(it)
sage: face3.ambient_V_indices()
(0, 5)
sage: face3.is_subface(face2)
True
sage: face3.is_subface(face)
True

Works for faces of the same combinatorial polyhedron; also from different iterators:

sage: it = C.face_generator(algorithm= dual )
sage: v7 = next(it); v7.ambient_V_indices()
(7,)
sage: v6 = next(it); v6.ambient_V_indices()
(6,)
sage: v5 = next(it); v5.ambient_V_indices()
(5,)
sage: face.ambient_V_indices()
(0, 3, 4, 5)
sage: face.is_subface(v7)
False
sage: v7.is_subface(face)
False
sage: v6.is_subface(face)
False
sage: v5.is_subface(face)
True
sage: face2.ambient_V_indices()
(0, 1, 5, 6)
sage: face2.is_subface(v7)
False
sage: v7.is_subface(face2)
False
sage: v6.is_subface(face2)
True
sage: v5.is_subface(face2)
True

Only implemented for faces of the same combinatorial polyhedron:

sage: P1 = polytopes.cube()
sage: C1 = P1.combinatorial_polyhedron()
sage: it = C1.face_generator()
sage: other_face = next(it)
sage: other_face.ambient_V_indices()
(0, 3, 4, 5)
sage: face.ambient_V_indices()
(0, 3, 4, 5)
sage: C is C1
False
sage: face.is_subface(other_face)
Traceback (most recent call last):
...

(continues on next page)
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NotImplementedError: is_subface only implemented for faces of the same␣
→˓polyhedron

n_ambient_Hrepresentation(add_equations=True)

Return the length of the CombinatorialFace.ambient_H_indices().

Might be faster than then using len.

INPUT:

• add_equations – boolean (default: True); whether or not to count the equations

EXAMPLES:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: all(face.n_ambient_Hrepresentation() == len(face.ambient_
→˓Hrepresentation()) for face in it)
True

Specifying whether to count the equations or not:

sage: # needs sage.combinat
sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(2)
sage: f = next(it)
sage: f.n_ambient_Hrepresentation(add_equations=True)
3
sage: f.n_ambient_Hrepresentation(add_equations=False)
2

n_ambient_Vrepresentation()

Return the length of the CombinatorialFace.ambient_V_indices().

Might be faster than using len.

EXAMPLES:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: all(face.n_ambient_Vrepresentation() == len(face.ambient_
→˓Vrepresentation()) for face in it)
True

2.3.3 PolyhedronFaceLattice

This module provides a class that stores and sorts all faces of the polyhedron.

CombinatorialPolyhedron implicitly uses this class to generate the face lattice of a polyhedron.

Terminology in this module:

• Vrep – [vertices, rays, lines] of the polyhedron.

• Hrep – inequalities and equations of the polyhedron.
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• Facets – facets of the polyhedron.

• Coatoms – the faces from which all others are constructed in the face iterator. This will be facets or Vrep. In
non-dual mode, faces are constructed as intersections of the facets. In dual mode, the are constructed theoretically
as joins of vertices. The coatoms are repsented as incidences with the atoms they contain.

• Atoms – facets or Vrep depending on application of algorithm. Atoms are repsented as incidences of coatoms they
are contained in.

• Vrepresentation – represents a face by a list of Vrep it contains.

• Hrepresentation – represents a face by a list of Hrep it is contained in.

• bit representation – represents incidences as uint64_t-array, where each bit represents one incidence. There
might be trailing zeros, to fit alignment requirements. In most instances, faces are represented by the bit represen-
tation, where each bit corresponds to an atom.

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.polyhedron_face_lattice \
....: import PolyhedronFaceLattice
sage: P = polytopes.octahedron()
sage: C = CombinatorialPolyhedron(P)
sage: all_faces = PolyhedronFaceLattice(C)

See also:

base, PolyhedronFaceLattice.

AUTHOR:

• Jonathan Kliem (2019-04)

class sage.geometry.polyhedron.combinatorial_polyhedron.
polyhedron_face_lattice.PolyhedronFaceLattice

Bases: object

A class to generate incidences of CombinatorialPolyhedron.

On initialization all faces of the given CombinatorialPolyhedron are added and sorted (except coatoms).
The incidences can be used to generate the face_lattice.

Might generate the faces of the dual polyhedron for speed.

INPUT:

• baseCombinatorialPolyhedron

See also:

_record_all_faces(), _record_all_faces_helper(), face_lattice(), _com-
pute_face_lattice_incidences().

EXAMPLES:

sage: P = polytopes.Birkhoff_polytope(3)
sage: C = CombinatorialPolyhedron(P)
sage: C._record_all_faces() # indirect doctests
sage: C.face_lattice() #␣
→˓needs sage.combinat
Finite lattice containing 50 elements

ALGORITHM:
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The faces are recorded with FaceIterator in Bit-representation. Once created, all level-sets but the coatoms
are sorted with merge sort. Non-trivial incidences of elements whose rank differs by 1 are determined by intersect-
ing with all coatoms. Then each intersection is looked up in the sorted level sets.

dual

get_face(dimension, index)
Return the face of dimension dimension and index index.

INPUT:

• dimension – dimension of the face

• index – index of the face

• names – if True returns the names of the [vertices, rays, lines] as given on initialization
of CombinatorialPolyhedron

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.polyhedron_face_
→˓lattice \
....: import PolyhedronFaceLattice
sage: P = polytopes.permutahedron(4)
sage: C = CombinatorialPolyhedron(P)
sage: F = PolyhedronFaceLattice(C)
sage: it = C.face_generator(dimension=1)
sage: face = next(it)
sage: index = F._find_face_from_combinatorial_face(face)
sage: F.get_face(face.dimension(), index).ambient_Vrepresentation()
(A vertex at (2, 1, 4, 3), A vertex at (1, 2, 4, 3))
sage: face.ambient_Vrepresentation()
(A vertex at (2, 1, 4, 3), A vertex at (1, 2, 4, 3))
sage: all(F.get_face(face.dimension(),
....: F._find_face_from_combinatorial_face(face)).ambient_
→˓Vrepresentation() ==
....: face.ambient_Vrepresentation() for face in it)
True

sage: P = polytopes.twenty_four_cell()
sage: C = CombinatorialPolyhedron(P)
sage: F = PolyhedronFaceLattice(C)
sage: it = C.face_generator()
sage: face = next(it)
sage: while (face.dimension() == 3): face = next(it)
sage: index = F._find_face_from_combinatorial_face(face)
sage: F.get_face(face.dimension(), index).ambient_Vrepresentation()
(A vertex at (-1/2, 1/2, -1/2, -1/2),
A vertex at (-1/2, 1/2, 1/2, -1/2),
A vertex at (0, 0, 0, -1))

sage: all(F.get_face(face.dimension(),
....: F._find_face_from_combinatorial_face(face)).ambient_V_
→˓indices() ==
....: face.ambient_V_indices() for face in it)
True
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2.3.4 Face iterator for polyhedra

This iterator in principle works on every graded lattice, where every interval of length two has exactly 4 elements (diamond
property).

It also works on unbounded polyhedra, as those satisfy the diamond property, except for intervals including the empty
face. A (slightly generalized) description of the algorithm can be found in [KS2019].

Terminology in this module:

• Coatoms – the faces from which all others are constructed in the face iterator. This will be facets or Vrep. In
non-dual mode, faces are constructed as intersections of the facets. In dual mode, they are constructed theoretically
as joins of vertices. The coatoms are repsented as incidences with the atoms they contain.

• Atoms – facets or Vrep depending on application of algorithm. Atoms are represented as incidences of coatoms
they are contained in.

See also:

sage.geometry.polyhedron.combinatorial_polyhedron.base.

EXAMPLES:

Construct a face iterator:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator \
....: import FaceIterator
sage: P = polytopes.octahedron()
sage: C = CombinatorialPolyhedron(P)

sage: FaceIterator(C, False)
Iterator over the proper faces of a 3-dimensional combinatorial polyhedron
sage: FaceIterator(C, False, output_dimension=2)
Iterator over the 2-faces of a 3-dimensional combinatorial polyhedron

Iterator in the non-dual mode starts with facets:

sage: it = FaceIterator(C, False)
sage: [next(it) for _ in range(9)]
[A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron]

Iterator in the dual-mode starts with vertices:

sage: it = FaceIterator(C, True)
sage: [next(it) for _ in range(7)]
[A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron]
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Obtain the Vrepresentation:

sage: it = FaceIterator(C, False)
sage: face = next(it)
sage: face.ambient_Vrepresentation()
(A vertex at (0, -1, 0), A vertex at (0, 0, -1), A vertex at (1, 0, 0))
sage: face.n_ambient_Vrepresentation()
3

Obtain the facet-representation:

sage: it = FaceIterator(C, True)
sage: face = next(it)
sage: face.ambient_Hrepresentation()
(An inequality (-1, -1, 1) x + 1 >= 0,
An inequality (-1, -1, -1) x + 1 >= 0,
An inequality (-1, 1, -1) x + 1 >= 0,
An inequality (-1, 1, 1) x + 1 >= 0)

sage: face.ambient_H_indices()
(4, 5, 6, 7)
sage: face.n_ambient_Hrepresentation()
4

In non-dual mode one can ignore all faces contained in the current face:

sage: it = FaceIterator(C, False)
sage: face = next(it)
sage: face.ambient_H_indices()
(7,)
sage: it.ignore_subfaces()
sage: [face.ambient_H_indices() for face in it]
[(6,),
(5,),
(4,),
(3,),
(2,),
(1,),
(0,),
(5, 6),
(1, 6),
(0, 1, 5, 6),
(4, 5),
(0, 5),
(0, 3, 4, 5),
(3, 4),
(2, 3),
(0, 3),
(0, 1, 2, 3),
(1, 2),
(0, 1)]

In dual mode one can ignore all faces that contain the current face:

sage: it = FaceIterator(C, True)
sage: face = next(it)
sage: face.ambient_V_indices()
(5,)
sage: it.ignore_supfaces()

(continues on next page)
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sage: [face.ambient_V_indices() for face in it]
[(4,),
(3,),
(2,),
(1,),
(0,),
(3, 4),
(2, 4),
(0, 4),
(0, 3, 4),
(0, 2, 4),
(1, 3),
(0, 3),
(0, 1, 3),
(1, 2),
(0, 2),
(0, 1, 2),
(0, 1)]

There is a special face iterator class for geometric polyhedra. It yields (geometric) polyhedral faces and it also yields
trivial faces. Otherwise, it works exactly the same:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator \
....: import FaceIterator_geom
sage: P = polytopes.cube()
sage: it = FaceIterator_geom(P)
sage: [next(it) for _ in range(5)]
[A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8␣
→˓vertices,
A -1-dimensional face of a Polyhedron in ZZ^3,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices]
sage: it
Iterator over the faces of a 3-dimensional polyhedron in ZZ^3

AUTHOR:

• Jonathan Kliem (2019-04)

class
sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator.FaceIterator

Bases: FaceIterator_base

A class to iterate over all combinatorial faces of a polyhedron.

Construct all proper faces from the facets. In dual mode, construct all proper faces from the vertices. Dual will be
faster for less vertices than facets.

INPUT:

• C – a CombinatorialPolyhedron

• dual – if True, then dual polyhedron is used for iteration (only possible for bounded Polyhedra)

• output_dimension – if not None, then the face iterator will only yield faces of this dimension
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See also:

FaceIterator, FaceIterator_geom, CombinatorialPolyhedron.

EXAMPLES:

Construct a face iterator:

sage: P = polytopes.cuboctahedron()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: next(it)
A 0-dimensional face of a 3-dimensional combinatorial polyhedron

Construct faces by the dual or not:

sage: it = C.face_generator(algorithm= primal )
sage: next(it).dimension()
2

sage: it = C.face_generator(algorithm= dual )
sage: next(it).dimension()
0

For unbounded polyhedra only non-dual iteration is possible:

sage: P = Polyhedron(rays=[[0,0,1], [0,1,0], [1,0,0]])
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator()
sage: [face.ambient_Vrepresentation() for face in it]
[(A vertex at (0, 0, 0),
A ray in the direction (0, 1, 0),
A ray in the direction (1, 0, 0)),

(A vertex at (0, 0, 0),
A ray in the direction (0, 0, 1),
A ray in the direction (1, 0, 0)),

(A vertex at (0, 0, 0),
A ray in the direction (0, 0, 1),
A ray in the direction (0, 1, 0)),

(A vertex at (0, 0, 0), A ray in the direction (1, 0, 0)),
(A vertex at (0, 0, 0), A ray in the direction (0, 1, 0)),
(A vertex at (0, 0, 0),),
(A vertex at (0, 0, 0), A ray in the direction (0, 0, 1))]
sage: it = C.face_generator(algorithm= dual )
Traceback (most recent call last):
...
ValueError: dual algorithm only available for bounded polyhedra

Construct a face iterator only yielding dimension 2 faces:

sage: P = polytopes.permutahedron(5)
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(dimension=2)
sage: counter = 0
sage: for _ in it: counter += 1
sage: print ( permutahedron(5) has , counter,
....: faces of dimension 2 )
permutahedron(5) has 150 faces of dimension 2

(continues on next page)
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sage: C.f_vector()
(1, 120, 240, 150, 30, 1)

In non-dual mode one can ignore all faces contained in the current face:

sage: P = polytopes.cube()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(algorithm= primal )
sage: face = next(it)
sage: face.ambient_H_indices()
(5,)
sage: it.ignore_subfaces()
sage: [face.ambient_H_indices() for face in it]
[(4,),
(3,),
(2,),
(1,),
(0,),
(3, 4),
(1, 4),
(0, 4),
(1, 3, 4),
(0, 1, 4),
(2, 3),
(1, 3),
(1, 2, 3),
(1, 2),
(0, 2),
(0, 1, 2),
(0, 1)]

sage: it = C.face_generator(algorithm= dual )
sage: next(it)
A 0-dimensional face of a 3-dimensional combinatorial polyhedron
sage: it.ignore_subfaces()
Traceback (most recent call last):
...
ValueError: only possible when not in dual mode

In dual mode one can ignore all faces that contain the current face:

sage: it = C.face_generator(algorithm= dual )
sage: next(it)
A 0-dimensional face of a 3-dimensional combinatorial polyhedron
sage: face = next(it)
sage: face.ambient_V_indices()
(6,)
sage: [face.ambient_V_indices() for face in it]
[(5,),
(4,),
(3,),
(2,),
(1,),
(0,),
(6, 7),
(4, 7),
(2, 7),

(continues on next page)
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(4, 5, 6, 7),
(1, 2, 6, 7),
(2, 3, 4, 7),
(5, 6),
(1, 6),
(0, 1, 5, 6),
(4, 5),
(0, 5),
(0, 3, 4, 5),
(3, 4),
(2, 3),
(0, 3),
(0, 1, 2, 3),
(1, 2),
(0, 1)]

sage: it = C.face_generator(algorithm= primal )
sage: next(it)
A 2-dimensional face of a 3-dimensional combinatorial polyhedron
sage: it.ignore_supfaces()
Traceback (most recent call last):
...
ValueError: only possible when in dual mode

ALGORITHM:

The algorithm to visit all proper faces exactly once is roughly equivalent to the following. A (slightly generalized)
description of the algorithm can be found in [KS2019].

Initialization:

faces = [set(facet) for facet in P.facets()]
face_iterator(faces, [])

The function face_iterator is defined recursively. It visits all faces of the polyhedron 𝑃 , except those con-
tained in any of visited_all. It assumes faces to be exactly those facets of 𝑃 that are not contained in any
of the visited_all. It assumes visited_all to be some list of faces of a polyhedron 𝑃2, which contains
𝑃 as one of its faces:

def face_iterator(faces, visited_all):
while facets:

one_face = faces.pop()
maybe_new_faces = [one_face.intersection(face) for face in faces]

...

At this point we claim that maybe_new_faces contains all facets of one_face, which we have not visited
before.

Proof: Let 𝐹 be a facet of one_face. We have a chain: 𝑃 ⊃ one_face ⊃ 𝐹 . By the diamond property,
there exists a second_face with 𝑃 ⊃ second_face ⊃ 𝐹 .

Now either second_face is not an element of faces: Hence second_face is contained in one of vis-
ited_all. In particular, 𝐹 is contained in visited_all.

Or second_face is an element of faces: Then, intersecting one_face with second_face gives F.

This concludes the proof.
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Moreover, if an element in maybe_new_faces is inclusion-maximal and not contained in any of the vis-
ited_all, it is a facet of one_face. Any facet in maybe_new_faces of one_face is inclusion-maximal.

Hence, in the following loop, an element face1 in maybe_new_faces is a facet of one_face if and only if
it is not contained in another facet:

...
maybe_new_faces2 = []
for i, face1 in enumerate(maybe_new_faces):

if (all(not face1 < face2 for face2 in maybe_new_faces[:i])
and all(not face1 <= face2 for face2 in maybe_new_

→˓faces[i+1:])):
maybe_new_faces2.append(face1)

...

Now maybe_new_faces2 contains only facets of one_face and some faces contained in any of vis-
ited_all. It also contains all the facets not contained in any of visited_all.

We construct new_faces as the list of all facets of one_face not contained in any of visited_all:

...
new_faces = []
for face1 in maybe_new_faces2:

if all(not face1 < face2 for face2 in visited_all):
new_faces.append(face1)

...

By induction we can apply the algorithm, to visit all faces of one_face not contained in visited_all:

...
face_iterator(new_faces, visited_all)

...

Finally we visit one_face and add it to visited_all:

...
visit(one_face)
visited_all.append(one_face)

Note: At this point, we have visited exactly those faces, contained in any of the visited_all. The function
ends here.

ALGORITHM for the special case that all intervals of the lattice not containing zero are boolean (e.g. when the
polyhedron is simple):

We do not assume any other properties of our lattice in this case. Note that intervals of length 2 not containing
zero, have exactly 2 elements now. But the atom-representation of faces might not be unique.

We do the following modifications:

• To check whether an intersection of faces is zero, we check whether the atom-representation is zero. Although
not unique, it works to distinct from zero.

• The intersection of two (relative) facets has always codimension 1 unless empty.

• To intersect we now additionally unite the coatom representation. This gives the correct representation of the
new face unless the intersection is zero.

• To mark a face as visited, we save its coatom representation.

• To check whether we have seen a face already, we check containment of the coatom representation.

2.3. Combinatorial Polyhedra 305



Combinatorial and Discrete Geometry, Release 10.4.rc1

class sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator.
FaceIterator_base

Bases: SageObject

A base class to iterate over all faces of a polyhedron.

Construct all proper faces from the facets. In dual mode, construct all proper faces from the vertices. Dual will be
faster for less vertices than facets.

See FaceIterator.

current()

Retrieve the last value of next().

EXAMPLES:

sage: P = polytopes.octahedron()
sage: it = P.combinatorial_polyhedron().face_generator()
sage: next(it)
A 0-dimensional face of a 3-dimensional combinatorial polyhedron
sage: it.current()
A 0-dimensional face of a 3-dimensional combinatorial polyhedron
sage: next(it).ambient_V_indices() == it.current().ambient_V_indices()
True

dual

ignore_subfaces()

The iterator will not visit any faces of the current face.

Only possible when not in dual mode.

EXAMPLES:

sage: P = polytopes.Gosset_3_21()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(algorithm= primal )
sage: n_non_simplex_faces = 1
sage: for face in it:
....: if face.n_ambient_Vrepresentation() > face.dimension() + 1:
....: n_non_simplex_faces += 1
....: else:
....: it.ignore_subfaces()
....:
sage: n_non_simplex_faces
127

Face iterator must not be in dual mode:

sage: it = C.face_generator(algorithm= dual )
sage: _ = next(it)
sage: it.ignore_subfaces()
Traceback (most recent call last):
...
ValueError: only possible when not in dual mode

Ignoring the same face as was requested to visit only consumes the iterator:
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sage: it = C.face_generator(algorithm= primal )
sage: _ = next(it)
sage: it.only_subfaces()
sage: it.ignore_subfaces()
sage: list(it)
[]

Face iterator must be set to a face first:

sage: it = C.face_generator(algorithm= primal )
sage: it.ignore_subfaces()
Traceback (most recent call last):
...
ValueError: iterator not set to a face yet

ignore_supfaces()

The iterator will not visit any faces containing the current face.

Only possible when in dual mode.

EXAMPLES:

sage: P = polytopes.Gosset_3_21()
sage: C = CombinatorialPolyhedron(P)
sage: it = C.face_generator(algorithm= dual )
sage: n_faces_with_non_simplex_quotient = 1
sage: for face in it:
....: n_facets = face.n_ambient_Hrepresentation(add_equations=False)
....: if n_facets > C.dimension() - face.dimension() + 1:
....: n_faces_with_non_simplex_quotient += 1
....: else:
....: it.ignore_supfaces()
....:
sage: n_faces_with_non_simplex_quotient
4845

Face iterator must be in dual mode:

sage: it = C.face_generator(algorithm= primal )
sage: _ = next(it)
sage: it.ignore_supfaces()
Traceback (most recent call last):
...
ValueError: only possible when in dual mode

join_of_Vrep(*indices)
Construct the join of the Vrepresentatives indicated by the indices.

This is the smallest face containing all Vrepresentatives with the given indices.

The iterator must be reset if not newly initialized.

Note: In the case of unbounded polyhedra, the smallest face containing given Vrepresentatives may not be
well defined.

EXAMPLES:
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sage: P = polytopes.cube()
sage: it = P.face_generator()
sage: it.join_of_Vrep(1)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: it.join_of_Vrep(1,2).ambient_V_indices()
(1, 2)
sage: it.join_of_Vrep(1,3).ambient_V_indices()
(0, 1, 2, 3)
sage: it.join_of_Vrep(1,5).ambient_V_indices()
(0, 1, 5, 6)

sage: P = polytopes.cross_polytope(4)
sage: it = P.face_generator()
sage: it.join_of_Vrep().ambient_V_indices()
()
sage: it.join_of_Vrep(1,3).ambient_V_indices()
(1, 3)
sage: it.join_of_Vrep(1,2).ambient_V_indices()
(1, 2)
sage: it.join_of_Vrep(1,6).ambient_V_indices()
(0, 1, 2, 3, 4, 5, 6, 7)
sage: it.join_of_Vrep(8)
Traceback (most recent call last):
...
IndexError: coatoms out of range

If the iterator has already been used, it must be reset before:

sage: # needs sage.groups sage.rings.number_field
sage: P = polytopes.dodecahedron()
sage: it = P.face_generator()
sage: _ = next(it), next(it)
sage: next(it).ambient_V_indices()
(15, 16, 17, 18, 19)
sage: it.join_of_Vrep(1,10)
Traceback (most recent call last):
...
ValueError: please reset the face iterator
sage: it.reset()
sage: it.join_of_Vrep(1,10).ambient_V_indices()
(1, 10)

In the case of an unbounded polyhedron, we try to make sense of the input:

sage: P = polytopes.cube()*Polyhedron(lines=[[1]])
sage: it = P.face_generator()
sage: it.join_of_Vrep(1)
A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 1␣
→˓vertex and 1 line
sage: it.join_of_Vrep(0, 1)
A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 1␣
→˓vertex and 1 line
sage: it.join_of_Vrep(0)
Traceback (most recent call last):
...
ValueError: the join is not well-defined

(continues on next page)

308 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

sage: P = Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,1]])
sage: it = P.face_generator()
sage: it.join_of_Vrep(0)
A 0-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex
sage: it.join_of_Vrep(1)
A 0-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex
sage: it.join_of_Vrep(2)
Traceback (most recent call last):
...
ValueError: the join is not well-defined
sage: it.join_of_Vrep(0,2)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex and 1 ray

sage: P = Polyhedron(rays=[[1,0], [0,1]])
sage: it = P.face_generator()
sage: it.join_of_Vrep(0)
A 0-dimensional face of a Polyhedron in ZZ^2 defined as the convex hull of 1␣
→˓vertex
sage: it.join_of_Vrep(1,2)
A 2-dimensional face of a Polyhedron in ZZ^2 defined as the convex hull of 1␣
→˓vertex and 2 rays

meet_of_Hrep(*indices)
Construct the meet of the facets indicated by the indices.

This is the largest face contained in all facets with the given indices.

The iterator must be reset if not newly initialized.

EXAMPLES:

sage: P = polytopes.cube()
sage: it = P.face_generator()
sage: it.meet_of_Hrep(1,2)
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices
sage: it.meet_of_Hrep(1,2).ambient_H_indices()
(1, 2)
sage: it.meet_of_Hrep(1,3).ambient_H_indices()
(1, 3)
sage: it.meet_of_Hrep(1,5).ambient_H_indices()
(0, 1, 2, 3, 4, 5)

sage: P = polytopes.cross_polytope(4)
sage: it = P.face_generator()
sage: it.meet_of_Hrep().ambient_H_indices()
()
sage: it.meet_of_Hrep(1,3).ambient_H_indices()
(1, 2, 3, 4)
sage: it.meet_of_Hrep(1,2).ambient_H_indices()
(1, 2)
sage: it.meet_of_Hrep(1,6).ambient_H_indices()
(1, 6)

(continues on next page)
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sage: it.meet_of_Hrep(1,2,6).ambient_H_indices()
(1, 2, 6, 7)
sage: it.meet_of_Hrep(1,2,5,6).ambient_H_indices()
(0, 1, 2, 3, 4, 5, 6, 7)

sage: s = cones.schur(4)
sage: C = CombinatorialPolyhedron(s)
sage: it = C.face_generator()
sage: it.meet_of_Hrep(1,2).ambient_H_indices()
(1, 2)
sage: it.meet_of_Hrep(1,2,3).ambient_H_indices()
Traceback (most recent call last):
...
IndexError: coatoms out of range

If the iterator has already been used, it must be reset before:

sage: # needs sage.groups sage.rings.number_field
sage: P = polytopes.dodecahedron()
sage: it = P.face_generator()
sage: _ = next(it), next(it)
sage: next(it).ambient_V_indices()
(15, 16, 17, 18, 19)
sage: it.meet_of_Hrep(9,11)
Traceback (most recent call last):
...
ValueError: please reset the face iterator
sage: it.reset()
sage: it.meet_of_Hrep(9,11).ambient_H_indices()
(9, 11)

next()

Must be implemented by a derived class.

only_subfaces()

The iterator will visit all (remaining) subfaces of the current face and then terminate.

EXAMPLES:

sage: P = polytopes.cube()
sage: it = P.face_generator()
sage: next(it).ambient_H_indices()
()
sage: next(it).ambient_H_indices()
(0, 1, 2, 3, 4, 5)
sage: next(it).ambient_H_indices()
(5,)
sage: next(it).ambient_H_indices()
(4,)
sage: it.only_subfaces()
sage: list(f.ambient_H_indices() for f in it)
[(4, 5), (3, 4), (1, 4), (0, 4), (3, 4, 5), (0, 4, 5), (1, 3, 4), (0, 1, 4)]

sage: P = polytopes.Birkhoff_polytope(4)
sage: C = P.combinatorial_polyhedron()
sage: it = C.face_generator()

(continues on next page)
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sage: next(it).ambient_H_indices(add_equations=False)
(15,)
sage: next(it).ambient_H_indices(add_equations=False)
(14,)
sage: it.only_subfaces()
sage: all(14 in f.ambient_H_indices() for f in it)
True

Face iterator needs to be set to a face first:

sage: it = C.face_generator()
sage: it.only_subfaces()
Traceback (most recent call last):
...
ValueError: iterator not set to a face yet

Face iterator must not be in dual mode:

sage: it = C.face_generator(algorithm= dual )
sage: _ = next(it)
sage: it.only_subfaces()
Traceback (most recent call last):
...
ValueError: only possible when not in dual mode

Cannot run only_subfaces after ignore_subfaces:

sage: it = C.face_generator()
sage: _ = next(it)
sage: it.ignore_subfaces()
sage: it.only_subfaces()
Traceback (most recent call last):
...
ValueError: cannot only visit subsets after ignoring a face

only_supfaces()

The iterator will visit all (remaining) faces containing the current face and then terminate.

EXAMPLES:

sage: P = polytopes.cross_polytope(3)
sage: it = P.face_generator()
sage: next(it).ambient_V_indices()
(0, 1, 2, 3, 4, 5)
sage: next(it).ambient_V_indices()
()
sage: next(it).ambient_V_indices()
(5,)
sage: next(it).ambient_V_indices()
(4,)
sage: it.only_supfaces()
sage: list(f.ambient_V_indices() for f in it)
[(4, 5), (3, 4), (2, 4), (0, 4), (3, 4, 5), (2, 4, 5), (0, 3, 4), (0, 2, 4)]

sage: P = polytopes.Birkhoff_polytope(4)
sage: C = P.combinatorial_polyhedron()

(continues on next page)
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sage: it = C.face_generator(algorithm= dual )
sage: next(it).ambient_V_indices()
(23,)
sage: next(it).ambient_V_indices()
(22,)
sage: it.only_supfaces()
sage: all(22 in f.ambient_V_indices() for f in it)
True

reset()

Reset the iterator.

The iterator will start with the first face again.

EXAMPLES:

sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: it = C.face_generator()
sage: next(it).ambient_V_indices()
(0, 3, 4, 5)
sage: it.reset()
sage: next(it).ambient_V_indices()
(0, 3, 4, 5)

class sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator.
FaceIterator_geom

Bases: FaceIterator_base

A class to iterate over all geometric faces of a polyhedron.

Construct all faces from the facets. In dual mode, construct all faces from the vertices. Dual will be faster for less
vertices than facets.

INPUT:

• P – an instance of Polyhedron_base

• dual – if True, then dual polyhedron is used for iteration (only possible for bounded Polyhedra)

• output_dimension – if not None, then the FaceIterator will only yield faces of this dimension

EXAMPLES:

Construct a geometric face iterator:

sage: P = polytopes.cuboctahedron()
sage: it = P.face_generator()
sage: next(it)
A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 12␣
→˓vertices

Construct faces by the dual or not:

sage: it = P.face_generator(algorithm= primal )
sage: _ = next(it), next(it)
sage: next(it).dim()
2

(continues on next page)
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sage: it = P.face_generator(algorithm= dual )
sage: _ = next(it), next(it)
sage: next(it).dim()
0

For unbounded polyhedra only non-dual iteration is possible:

sage: P = Polyhedron(rays=[[0,0,1], [0,1,0], [1,0,0]])
sage: it = P.face_generator()
sage: [face.ambient_Vrepresentation() for face in it]
[(A vertex at (0, 0, 0),
A ray in the direction (0, 0, 1),
A ray in the direction (0, 1, 0),
A ray in the direction (1, 0, 0)),

(),
(A vertex at (0, 0, 0),
A ray in the direction (0, 1, 0),
A ray in the direction (1, 0, 0)),

(A vertex at (0, 0, 0),
A ray in the direction (0, 0, 1),
A ray in the direction (1, 0, 0)),

(A vertex at (0, 0, 0),
A ray in the direction (0, 0, 1),
A ray in the direction (0, 1, 0)),

(A vertex at (0, 0, 0), A ray in the direction (1, 0, 0)),
(A vertex at (0, 0, 0), A ray in the direction (0, 1, 0)),
(A vertex at (0, 0, 0),),
(A vertex at (0, 0, 0), A ray in the direction (0, 0, 1))]
sage: it = P.face_generator(algorithm= dual )
Traceback (most recent call last):
...
ValueError: cannot iterate over dual of unbounded Polyedron

Construct a FaceIterator only yielding dimension 2 faces:

sage: P = polytopes.permutahedron(5)
sage: it = P.face_generator(face_dimension=2)
sage: counter = 0
sage: for _ in it: counter += 1
sage: print ( permutahedron(5) has , counter,
....: faces of dimension 2 )
permutahedron(5) has 150 faces of dimension 2
sage: P.f_vector()
(1, 120, 240, 150, 30, 1)

In non-dual mode one can ignore all faces contained in the current face:

sage: P = polytopes.cube()
sage: it = P.face_generator(algorithm= primal )
sage: _ = next(it), next(it)
sage: face = next(it)
sage: face.ambient_H_indices()
(5,)
sage: it.ignore_subfaces()
sage: [face.ambient_H_indices() for face in it]
[(4,),
(3,),

(continues on next page)
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(2,),
(1,),
(0,),
(3, 4),
(1, 4),
(0, 4),
(1, 3, 4),
(0, 1, 4),
(2, 3),
(1, 3),
(1, 2, 3),
(1, 2),
(0, 2),
(0, 1, 2),
(0, 1)]

sage: it = P.face_generator(algorithm= dual )
sage: _ = next(it), next(it)
sage: next(it)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: it.ignore_subfaces()
Traceback (most recent call last):
...
ValueError: only possible when not in dual mode

In dual mode one can ignore all faces that contain the current face:

sage: P = polytopes.cube()
sage: it = P.face_generator(algorithm= dual )
sage: _ = next(it), next(it)
sage: next(it)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: face = next(it)
sage: face.ambient_V_indices()
(6,)
sage: [face.ambient_V_indices() for face in it]
[(5,),
(4,),
(3,),
(2,),
(1,),
(0,),
(6, 7),
(4, 7),
(2, 7),
(4, 5, 6, 7),
(1, 2, 6, 7),
(2, 3, 4, 7),
(5, 6),
(1, 6),
(0, 1, 5, 6),
(4, 5),
(0, 5),
(0, 3, 4, 5),
(3, 4),

(continues on next page)
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(2, 3),
(0, 3),
(0, 1, 2, 3),
(1, 2),
(0, 1)]

sage: it = P.face_generator(algorithm= primal )
sage: _ = next(it), next(it)
sage: next(it)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices
sage: it.ignore_supfaces()
Traceback (most recent call last):
...
ValueError: only possible when in dual mode

See also:

FaceIterator_base.

P

current()

Retrieve the last value of __next__().

EXAMPLES:

sage: P = polytopes.octahedron()
sage: it = P.face_generator()
sage: _ = next(it), next(it)
sage: next(it)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: it.current()
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: next(it).ambient_V_indices() == it.current().ambient_V_indices()
True

reset()

Reset the iterator.

The iterator will start with the first face again.

EXAMPLES:

sage: P = polytopes.cube()
sage: it = P.face_generator()
sage: next(it).ambient_V_indices()
(0, 1, 2, 3, 4, 5, 6, 7)
sage: next(it).ambient_V_indices()
()
sage: next(it).ambient_V_indices()
(0, 3, 4, 5)
sage: it.reset()
sage: next(it).ambient_V_indices()
(0, 1, 2, 3, 4, 5, 6, 7)
sage: next(it).ambient_V_indices()

(continues on next page)
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()
sage: next(it).ambient_V_indices()
(0, 3, 4, 5)

2.3.5 List of faces

This module provides a class to store faces of a polyhedron in Bit-representation.

This class allocates memory to store the faces in. A face will be stored as vertex-incidences, where each Bit represents an
incidence. In conversions there a methods to actually convert facets of a polyhedron to bit-representations of vertices
stored in ListOfFaces.

Moreover, ListOfFaces calculates the dimension of a polyhedron, assuming the faces are the facets of this polyhedron.

Each face is stored over-aligned according to the chunktype.

See also:

sage.geometry.polyhedron.combinatorial_polyhedron.base.

EXAMPLES:

Provide enough space to store 20 faces as incidences to 60 vertices:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.list_of_faces \
....: import ListOfFaces
sage: face_list = ListOfFaces(20, 60, 20)
sage: face_list.matrix().is_zero()
True

Obtain the facets of a polyhedron:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import incidence_matrix_to_bit_rep_of_facets
sage: P = polytopes.cube()
sage: face_list = incidence_matrix_to_bit_rep_of_facets(P.incidence_matrix())
sage: face_list = incidence_matrix_to_bit_rep_of_facets(P.incidence_matrix())
sage: face_list.compute_dimension()
3

Obtain the Vrepresentation of a polyhedron as facet-incidences:

sage: # needs sage.combinat
sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import incidence_matrix_to_bit_rep_of_Vrep
sage: P = polytopes.associahedron([ A ,3])
sage: face_list = incidence_matrix_to_bit_rep_of_Vrep(P.incidence_matrix())
sage: face_list.compute_dimension()
3

Obtain the facets of a polyhedron as ListOfFaces from a facet list:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets
sage: facets = ((0,1,2), (0,1,3), (0,2,3), (1,2,3))
sage: face_list = facets_tuple_to_bit_rep_of_facets(facets, 4)

Likewise for the Vrepresentatives as facet-incidences:
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sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_Vrep
sage: facets = ((0,1,2), (0,1,3), (0,2,3), (1,2,3))
sage: face_list = facets_tuple_to_bit_rep_of_Vrep(facets, 4)

Obtain the matrix of a list of faces:

sage: face_list.matrix()
[1 1 1 0]
[1 1 0 1]
[1 0 1 1]
[0 1 1 1]

See also:

base, face_iterator, conversions, polyhedron_faces_lattice.

AUTHOR:

• Jonathan Kliem (2019-04)

class
sage.geometry.polyhedron.combinatorial_polyhedron.list_of_faces.ListOfFaces

Bases: object

A class to store the Bit-representation of faces in.

This class will allocate the memory for the faces.

INPUT:

• n_faces – the number of faces to be stored

• n_atoms – the total number of atoms the faces contain

• n_coatoms – the total number of coatoms of the polyhedron

See also:

incidence_matrix_to_bit_rep_of_facets(), incidence_ma-
trix_to_bit_rep_of_Vrep(), facets_tuple_to_bit_rep_of_facets(), facets_tu-
ple_to_bit_rep_of_Vrep(), FaceIterator, CombinatorialPolyhedron.

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.list_of_faces \
....: import ListOfFaces
sage: facets = ListOfFaces(5, 13, 5)
sage: facets.matrix().dimensions()
(5, 13)

compute_dimension()

Compute the dimension of a polyhedron by its facets.

This assumes that self is the list of facets of a polyhedron.

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets, \
....: facets_tuple_to_bit_rep_of_Vrep
sage: bi_pyr = ((0,1,4), (1,2,4), (2,3,4), (3,0,4),

(continues on next page)
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....: (0,1,5), (1,2,5), (2,3,5), (3,0,5))
sage: facets = facets_tuple_to_bit_rep_of_facets(bi_pyr, 6)
sage: Vrep = facets_tuple_to_bit_rep_of_Vrep(bi_pyr, 6)
sage: facets.compute_dimension()
3
sage: Vrep.compute_dimension()
3

ALGORITHM:

This is done by iteration:

Computes the facets of one of the facets (i.e. the ridges contained in one of the facets). Then computes the
dimension of the facet, by considering its facets.

Repeats until a face has only one facet. Usually this is a vertex.

However, in the unbounded case, this might be different. The face with only one facet might be a ray or a line.
So the correct dimension of a polyhedron with one facet is the number of [lines, rays, vertices]
that the facet contains.

Hence, we know the dimension of a face, which has only one facet and iteratively we know the dimension of
entire polyhedron we started from.

matrix()

Obtain the matrix of self.

Each row represents a face and each column an atom.

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets, \
....: facets_tuple_to_bit_rep_of_Vrep
sage: bi_pyr = ((0,1,4), (1,2,4), (2,3,4), (3,0,4), (0,1,5), (1,2,5), (2,3,5),
→˓ (3,0,5))
sage: facets = facets_tuple_to_bit_rep_of_facets(bi_pyr, 6)
sage: Vrep = facets_tuple_to_bit_rep_of_Vrep(bi_pyr, 6)
sage: facets.matrix()
[1 1 0 0 1 0]
[0 1 1 0 1 0]
[0 0 1 1 1 0]
[1 0 0 1 1 0]
[1 1 0 0 0 1]
[0 1 1 0 0 1]
[0 0 1 1 0 1]
[1 0 0 1 0 1]
sage: facets.matrix().transpose() == Vrep.matrix()
True

pyramid()

Return the list of faces of the pyramid.

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets
sage: facets = ((0,1,2), (0,1,3), (0,2,3), (1,2,3))
sage: face_list = facets_tuple_to_bit_rep_of_facets(facets, 4)

(continues on next page)
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sage: face_list.matrix()
[1 1 1 0]
[1 1 0 1]
[1 0 1 1]
[0 1 1 1]
sage: face_list.pyramid().matrix()
[1 1 1 0 1]
[1 1 0 1 1]
[1 0 1 1 1]
[0 1 1 1 1]
[1 1 1 1 0]

Incorrect facets that illustrate how this method works:

sage: facets = ((0,1,2,3), (0,1,2,3), (0,1,2,3), (0,1,2,3))
sage: face_list = facets_tuple_to_bit_rep_of_facets(facets, 4)
sage: face_list.matrix()
[1 1 1 1]
[1 1 1 1]
[1 1 1 1]
[1 1 1 1]
sage: face_list.pyramid().matrix()
[1 1 1 1 1]
[1 1 1 1 1]
[1 1 1 1 1]
[1 1 1 1 1]
[1 1 1 1 0]

sage: facets = ((), (), (), ())
sage: face_list = facets_tuple_to_bit_rep_of_facets(facets, 4)
sage: face_list.matrix()
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: face_list.pyramid().matrix()
[0 0 0 0 1]
[0 0 0 0 1]
[0 0 0 0 1]
[0 0 0 0 1]
[1 1 1 1 0]

2.3.6 Conversions

This module provides conversions to ListOfFaces from - an incidence matrix of a polyhedron or - a tuple of facets
(as tuple of vertices each).

Also this module provides a conversion from the data of ListOfFaces, which is a Bit-vector representing incidences
of a face, to a list of entries which are incident.

See also:

list_of_faces, face_iterator, base.

EXAMPLES:

Obtain the facets of a polyhedron as ListOfFaces:
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sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import incidence_matrix_to_bit_rep_of_facets
sage: P = polytopes.simplex(4)
sage: inc = P.incidence_matrix()
sage: mod_inc = inc.delete_columns([i for i,V in enumerate(P.Hrepresentation()) if V.
→˓is_equation()])
sage: face_list = incidence_matrix_to_bit_rep_of_facets(mod_inc)
sage: face_list.compute_dimension()
4

Obtain the Vrepresentation of a polyhedron as facet-incidences stored in ListOfFaces:

sage: # needs sage.combinat
sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import incidence_matrix_to_bit_rep_of_Vrep
sage: P = polytopes.associahedron([ A ,4])
sage: face_list = incidence_matrix_to_bit_rep_of_Vrep(P.incidence_matrix())
sage: face_list.compute_dimension()
4

Obtain the facets of a polyhedron as ListOfFaces from a facet list:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets
sage: facets = ((0,1,2), (0,1,3), (0,2,3), (1,2,3))
sage: face_list = facets_tuple_to_bit_rep_of_facets(facets, 4)

Likewise for the Vrep as facet-incidences:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_Vrep
sage: facets = ((0,1,2), (0,1,3), (0,2,3), (1,2,3))
sage: face_list = facets_tuple_to_bit_rep_of_Vrep(facets, 4)

AUTHOR:

• Jonathan Kliem (2019-04)

sage.geometry.polyhedron.combinatorial_polyhedron.conversions.facets_tuple_to_bit_rep_of_Vrep(facets_in-
put,
n_Vrep)

Initialize Vrepresentatives in Bit-representation as ListOfFaces.

Each Vrepresentative is represented as the facets it is contained in. Those are the facets of the polar polyhedron, if
it exists.

INPUT:

• facets_input – tuple of facets, each facet a tuple of Vrep, Vrep must be exactly range(n_Vrep)

• n_Vrep

OUTPUT:

• ListOfFaces

EXAMPLES:
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sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_Vrep, \
....: _bit_rep_to_Vrep_list_wrapper
sage: bi_pyr = ((0,1,4), (1,2,4), (2,3,4), (3,0,4),
....: (0,1,5), (1,2,5), (2,3,5), (3,0,5))
sage: vertices = facets_tuple_to_bit_rep_of_Vrep(bi_pyr, 6)
sage: for i in range(6):
....: print(_bit_rep_to_Vrep_list_wrapper(vertices, i))
(0, 3, 4, 7)
(0, 1, 4, 5)
(1, 2, 5, 6)
(2, 3, 6, 7)
(0, 1, 2, 3)
(4, 5, 6, 7)

sage.geometry.polyhedron.combinatorial_polyhedron.conversions.facets_tuple_to_bit_rep_of_facets(facets_in-
put,
n_Vrep)

Initializes facets in Bit-representation as ListOfFaces.

INPUT:

• facets_input – tuple of facets, each facet a tuple of Vrep, Vrep must be exactly range(n_Vrep)

• n_Vrep

OUTPUT:

• ListOfFaces

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import facets_tuple_to_bit_rep_of_facets, \
....: _bit_rep_to_Vrep_list_wrapper
sage: bi_pyr = ((0,1,4), (1,2,4), (2,3,4), (3,0,4),
....: (0,1,5), (1,2,5), (2,3,5), (3,0,5))
sage: facets = facets_tuple_to_bit_rep_of_facets(bi_pyr, 6)
sage: for i in range(8):
....: print(_bit_rep_to_Vrep_list_wrapper(facets, i))
(0, 1, 4)
(1, 2, 4)
(2, 3, 4)
(0, 3, 4)
(0, 1, 5)
(1, 2, 5)
(2, 3, 5)
(0, 3, 5)

sage.geometry.polyhedron.combinatorial_polyhedron.conversions.incidence_matrix_to_bit_rep_of_Vrep(ma-
trix)

Initialize Vrepresentatives in Bit-representation as ListOfFaces.

Each Vrepresentative is represented as the facets it is contained in. Those are the facets of the polar polyhedron, if
it exists.

INPUT:

• matrix – an incidence matrix as in sage.geometry.polyhedron.base.Polyhedron_base.
incidence_matrix() with columns corresponding to equations deleted of type sage.matrix.
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matrix_dense.Matrix_dense

OUTPUT:

• ListOfFaces

EXAMPLES:

sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import incidence_matrix_to_bit_rep_of_Vrep, \
....: _bit_rep_to_Vrep_list_wrapper
sage: P = polytopes.permutahedron(4)
sage: inc = P.incidence_matrix()
sage: mod_inc = inc.delete_columns([i for i,V in enumerate(P.Hrepresentation())␣
→˓if V.is_equation()])
sage: vertices = incidence_matrix_to_bit_rep_of_Vrep(mod_inc)
sage: vertices.matrix().dimensions()
(24, 14)
sage: for row in vertices.matrix():
....: row.nonzero_positions()
[8, 9, 11]
[8, 10, 11]
[2, 3, 7]
[1, 5, 7]
[4, 5, 7]
[1, 3, 7]
[4, 6, 7]
[2, 6, 7]
[1, 5, 13]
[8, 9, 13]
[1, 9, 11]
[2, 10, 11]
[1, 3, 11]
[2, 3, 11]
[4, 5, 13]
[4, 12, 13]
[8, 12, 13]
[1, 9, 13]
[0, 8, 12]
[0, 4, 12]
[0, 2, 10]
[0, 2, 6]
[0, 8, 10]
[0, 4, 6]

sage.geometry.polyhedron.combinatorial_polyhedron.conversions.incidence_matrix_to_bit_rep_of_facets(ma-
trix)

Initialize facets in Bit-representation as ListOfFaces.

INPUT:

• matrix – an incidence matrix as in sage.geometry.polyhedron.base.Polyhedron_base.
incidence_matrix() with columns corresponding to equations deleted of type sage.matrix.
matrix_dense.Matrix_dense

OUTPUT:

• ListOfFaces

EXAMPLES:
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sage: from sage.geometry.polyhedron.combinatorial_polyhedron.conversions \
....: import incidence_matrix_to_bit_rep_of_facets, \
....: _bit_rep_to_Vrep_list_wrapper
sage: P = polytopes.permutahedron(4)
sage: inc = P.incidence_matrix()
sage: mod_inc = inc.delete_columns([i for i,V in enumerate(P.Hrepresentation())␣
→˓if V.is_equation()])
sage: facets = incidence_matrix_to_bit_rep_of_facets(mod_inc)
sage: facets.matrix().dimensions()
(14, 24)
sage: for row in facets.matrix():
....: row.nonzero_positions()
[18, 19, 20, 21, 22, 23]
[3, 5, 8, 10, 12, 17]
[2, 7, 11, 13, 20, 21]
[2, 5, 12, 13]
[4, 6, 14, 15, 19, 23]
[3, 4, 8, 14]
[6, 7, 21, 23]
[2, 3, 4, 5, 6, 7]
[0, 1, 9, 16, 18, 22]
[0, 9, 10, 17]
[1, 11, 20, 22]
[0, 1, 10, 11, 12, 13]
[15, 16, 18, 19]
[8, 9, 14, 15, 16, 17]

2.4 Polyhedral complexes

2.4.1 Finite polyhedral complexes

This module implements the basic structure of finite polyhedral complexes. For more information, see Polyhedral-
Complex.

AUTHORS:

• Yuan Zhou (2021-05): initial implementation
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List of PolyhedralComplex methods

Maximal cells and cells

maximal_cells() Return the dictionary of the maximal cells in this polyhedral complex.
maximal_cell_itera-
tor()

Return an iterator over maximal cells in this polyhedral complex.

maxi-
mal_cells_sorted()

Return the sorted list of all maximal cells in this polyhedral complex.

n_maximal_cells() List the maximal cells of dimension 𝑛 in this polyhedral complex.
_n_maxi-
mal_cells_sorted()

Return the sorted list of maximal cells of dim 𝑛 in this complex.

is_maximal_cell() Return True if the given cell is a maximal cell in this complex.
cells() Return the dictionary of the cells in this polyhedral complex.
cell_iterator() Return an iterator over cells in this polyhedral complex.
cells_sorted() Return the sorted list of all cells in this polyhedral complex.
n_cells() List the cells of dimension 𝑛 in this polyhedral complex.
_n_cells_sorted() Return the sorted list of 𝑛-cells in this polyhedral complex.
is_cell() Return True if the given cell is in this polyhedral complex.
face_poset() Return the poset of nonempty cells in the polyhedral complex.
relative_bound-
ary_cells()

List the maximal cells on the boundary of the polyhedral complex.

Properties of the polyhedral complex

dimension() Return the dimension of the polyhedral complex.
ambient_dimension() Return the ambient dimension of the polyhedral complex.
is_pure() Return True if the polyhedral complex is pure.
is_full_dimensional() Return True if the polyhedral complex is full dimensional.
is_compact() Return True if the polyhedral complex is bounded.
is_connected() Return True if the polyhedral complex is connected.
is_subcomplex() Return True if this complex is a subcomplex of the other.
is_convex() Return True if the polyhedral complex is convex.
is_mutable() Return True if the polyhedral complex is mutable.
is_immutable() Return True if the polyhedral complex is not mutable.
is_simplicial_com-
plex()

Return True if the polyhedral complex is a simplicial complex.

is_polyhedral_fan() Return True if the polyhedral complex is a fan.
is_simplicial_fan() Return True if the polyhedral complex is a simplicial fan.

New polyhedral complexes from old ones
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connected_component() Return the connected component containing a cell as a subcomplex.
connected_compo-
nents()

Return the connected components of this polyhedral complex.

n_skeleton() Return the 𝑛-skeleton of this polyhedral complex.
stratify() Return the (pure) subcomplex formed by the maximal cells of dim 𝑛 in this com-

plex.
boundary_subcomplex() Return the boundary subcomplex of this polyhedral complex.
product() Return the (Cartesian) product of this polyhedral complex with another one.
disjoint_union() Return the disjoint union of this polyhedral complex with another one.
union() Return the union of this polyhedral complex with another one.
join() Return the join of this polyhedral complex with another one.
subdivide() Return a new polyhedral complex (with option make_simplicial) subdivid-

ing this one.

Update polyhedral complex

set_immutable() Make this polyhedral complex immutable.
add_cell() Add a cell to this polyhedral complex.
remove_cell() Remove a cell from this polyhedral complex.

Miscellaneous

plot() Return a Graphic object showing the plot of polyhedral complex.
graph() Return a directed graph corresponding to the 1-skeleton of this polyhedral com-

plex, given that it is bounded.
union_as_polyhedron() Return a Polyhedron which is the union of cells in this polyhedral complex,

given that it is convex.

Classes and functions

class sage.geometry.polyhedral_complex.PolyhedralComplex(maximal_cells=None,
backend=None,
maximality_check=True,
face_to_face_check=False,
is_mutable=True,
is_immutable=False,
ambient_dim=None)

Bases: GenericCellComplex

A polyhedral complex.

A polyhedral complex 𝑃𝐶 is a collection of polyhedra in a certain ambient spaceR𝑛 such that the following hold.

• If a polyhedron 𝑃 is in 𝑃𝐶, then all the faces of 𝑃 are in 𝑃𝐶.

• If polyhedra 𝑃 and 𝑄 are in 𝑃𝐶, then 𝑃 ∩𝑄 is either empty or a face of both 𝑃 and 𝑄.

In this context, a “polyhedron” means the geometric realization of a polyhedron. This is in contrast to simpli-
cial complex, whose cells are abstract simplices. The concept of a polyhedral complex generalizes that of a
geometric simplicial complex.
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Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods
are not listed here; see the Generic Cell Complex page instead.

INPUT:

• maximal_cells – a list, a tuple, or a dictionary (indexed by dimension) of cells of the Complex. Each
cell is of class Polyhedron of the same ambient dimension. To set up a :class:PolyhedralComplex, it is
sufficient to provide the maximal faces. Use keyword argument partial=True to set up a partial polyhe-
dral complex, which is a subset of the faces (viewed as relatively open) of a polyhedral complex that is not
necessarily closed under taking intersection.

• maximality_check – boolean (default: True); if True, then the constructor checks that each given
maximal cell is indeed maximal, and ignores those that are not

• face_to_face_check – boolean (default: False); if True, then the constructor checks whether the
cells are face-to-face, and it raises a ValueError if they are not

• is_mutable and is_immutable – boolean (default: True and False respectively); set is_muta-
ble=False or is_immutable=True to make this polyhedral complex immutable

• backend – string (optional); the name of the backend used for computations on Sage polyhedra; if it is not
given, then each cell has its own backend; otherwise it must be one of the following:

– ppl – the Parma Polyhedra Library

– cdd – CDD

– normaliz – normaliz

– polymake – polymake

– field – a generic Sage implementation

• ambient_dim – integer (optional); used to set up an empty complex in the intended ambient space

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1/7, 2/7)]),
....: Polyhedron(vertices=[(1/7, 2/7), (0, 0), (0, 1/4)])])
sage: [p.Vrepresentation() for p in pc.cells_sorted()]
[(A vertex at (0, 0), A vertex at (0, 1/4), A vertex at (1/7, 2/7)),
(A vertex at (0, 0), A vertex at (1/3, 1/3), A vertex at (1/7, 2/7)),
(A vertex at (0, 0), A vertex at (0, 1/4)),
(A vertex at (0, 0), A vertex at (1/7, 2/7)),
(A vertex at (0, 0), A vertex at (1/3, 1/3)),
(A vertex at (0, 1/4), A vertex at (1/7, 2/7)),
(A vertex at (1/3, 1/3), A vertex at (1/7, 2/7)),
(A vertex at (0, 0),),
(A vertex at (0, 1/4),),
(A vertex at (1/7, 2/7),),
(A vertex at (1/3, 1/3),)]
sage: pc.plot() #␣
→˓needs sage.plot
Graphics object consisting of 10 graphics primitives
sage: pc.is_pure()
True
sage: pc.is_full_dimensional()
True
sage: pc.is_compact()

(continues on next page)
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(continued from previous page)

True
sage: pc.boundary_subcomplex()
Polyhedral complex with 4 maximal cells
sage: pc.is_convex()
True
sage: pc.union_as_polyhedron().Hrepresentation()
(An inequality (1, -4) x + 1 >= 0,
An inequality (-1, 1) x + 0 >= 0,
An inequality (1, 0) x + 0 >= 0)
sage: pc.face_poset()
Finite poset containing 11 elements
sage: pc.is_connected()
True
sage: pc.connected_component() == pc
True

add_cell(cell)
Add a cell to this polyhedral complex.

INPUT:

• cell – a polyhedron

This changes the polyhedral complex, by adding a new cell and all of its subfaces.

EXAMPLES:

Set up an empty complex in the intended ambient space, then add a cell:

sage: pc = PolyhedralComplex(ambient_dim=2)
sage: pc.add_cell(Polyhedron(vertices=[(1, 2), (0, 2)]))
sage: pc
Polyhedral complex with 1 maximal cell

If you add a cell which is already present, there is no effect:

sage: pc.add_cell(Polyhedron(vertices=[(1, 2)]))
sage: pc
Polyhedral complex with 1 maximal cell
sage: pc.dimension()
1

Add a cell and check that dimension is correctly updated:

sage: pc.add_cell(Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)]))
sage: pc.dimension()
2
sage: pc.maximal_cells()
{2: {A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3␣
→˓vertices}}
sage: pc.is_convex()
True

Add another cell and check that the properties are correctly updated:

sage: pc.add_cell(Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]))
sage: pc
Polyhedral complex with 2 maximal cells

(continues on next page)
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sage: len(pc._cells[1])
5
sage: pc._face_poset
Finite poset containing 11 elements
sage: pc._is_convex
True
sage: pc._polyhedron.vertices_list()
[[0, 0], [0, 2], [1, 1], [1, 2]]

Add a ray which makes the complex non convex:

sage: pc.add_cell(Polyhedron(rays=[(1, 0)]))
sage: pc
Polyhedral complex with 3 maximal cells
sage: len(pc._cells[1])
6
sage: (pc._is_convex is False) and (pc._polyhedron is None)
True

alexander_whitney(cell, dim_left)
The decomposition of cell in this complex into left and right factors, suitable for computing cup products.

Todo: Implement alexander_whitney() of a polyhedral complex.

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.alexander_whitney(None, 1)
Traceback (most recent call last):
...
NotImplementedError: alexander_whitney is not implemented for polyhedral␣
→˓complex

ambient_dimension()

The ambient dimension of this cell complex: the ambient dimension of each of its cells.

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[(1, 2, 3)])])
sage: pc.ambient_dimension()
3
sage: empty_pc = PolyhedralComplex([])
sage: empty_pc.ambient_dimension()
-1
sage: pc0 = PolyhedralComplex(ambient_dim=2)
sage: pc0.ambient_dimension()
2

boundary_subcomplex()

Return the sub-polyhedral complex that is the boundary of self.

A point 𝑃 is on the boundary of a set 𝑆 if 𝑃 is in the closure of 𝑆 but not in the interior of 𝑆.

EXAMPLES:
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sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: bd = PolyhedralComplex([p1, p2]).boundary_subcomplex()
sage: len(bd.n_maximal_cells(2))
0
sage: len(bd.n_maximal_cells(1))
4
sage: pt = PolyhedralComplex([p3])
sage: pt.boundary_subcomplex() == pt
True

Test on polyhedral complex which is not pure:

sage: pc_non_pure = PolyhedralComplex([p1, p3])
sage: pc_non_pure.boundary_subcomplex() == pc_non_pure.n_skeleton(1)
True

Test with maximality_check == False:

sage: pc_invalid = PolyhedralComplex([p2, p3],
....: maximality_check=False)
sage: pc_invalid.boundary_subcomplex() == pc_invalid.n_skeleton(1)
True

Test unbounded cases:

sage: pc1 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]])])
sage: pc1.boundary_subcomplex() == pc1.n_skeleton(1)
True
sage: pc1b = PolyhedralComplex([Polyhedron(
....: vertices=[[1,0,0], [0,1,0]], rays=[[1,0,0],[0,1,0]])])
sage: pc1b.boundary_subcomplex() == pc1b
True
sage: pc2 = PolyhedralComplex([
....: Polyhedron(vertices=[[-1,0], [1,0]], lines=[[0,1]])])
sage: pc2.boundary_subcomplex() == pc2.n_skeleton(1)
True
sage: pc3 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]]),
....: Polyhedron(vertices=[[1,0], [0,-1]], rays=[[1,0], [0,-1]])])
sage: pc3.boundary_subcomplex() == pc3.n_skeleton(1)
False

cell_iterator(increasing=True)

An iterator for the cells in this polyhedral complex.

INPUT:

• increasing – (default True) if True, return cells in increasing order of dimension, thus starting
with the zero-dimensional cells; otherwise it returns cells in decreasing order of dimension

Note: Among the cells of a fixed dimension, there is no sorting.

EXAMPLES:
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sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: len(list(pc.cell_iterator()))
11

cells(subcomplex=None)

The cells of this polyhedral complex, in the form of a dictionary: the keys are integers, representing dimension,
and the value associated to an integer 𝑑 is the set of 𝑑-cells.

INPUT:

• subcomplex – (optional) if a subcomplex is given then return the cells which are not in this subcom-
plex

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: list(pc.cells().keys())
[2, 1, 0]

cells_sorted(subcomplex=None)
The sorted list of the cells of this polyhedral complex in non-increasing dimensions.

INPUT:

• subcomplex – (optional) if a subcomplex is given then return the cells which are not in this subcom-
plex

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: len(pc.cells_sorted())
11
sage: pc.cells_sorted()[0].Vrepresentation()
(A vertex at (0, 0), A vertex at (0, 2), A vertex at (1, 2))

chain_complex(subcomplex=None, augmented=False, verbose=False, check=True, dimensions=None,
base_ring=Integer Ring, cochain=False)

The chain complex associated to this polyhedral complex.

Todo: Implement chain complexes of a polyhedral complex.

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.chain_complex()
Traceback (most recent call last):
...
NotImplementedError: chain_complex is not implemented for polyhedral complex
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connected_component(cell=None)
Return the connected component of this polyhedral complex containing a given cell.

INPUT:

• cell – (default: self.an_element()) a cell of self

OUTPUT:

The connected component containing cell. If the polyhedral complex is empty or if it does not contain the
given cell, raise an error.

EXAMPLES:

sage: t1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: t2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: v1 = Polyhedron(vertices=[(1, 1)])
sage: v2 = Polyhedron(vertices=[(0, 2)])
sage: v3 = Polyhedron(vertices=[(-1, 0)])
sage: o = Polyhedron(vertices=[(0, 0)])
sage: r = Polyhedron(rays=[(1, 0)])
sage: l = Polyhedron(vertices=[(-1, 0)], lines=[(1, -1)])
sage: pc1 = PolyhedralComplex([t1, t2])
sage: pc1.connected_component() == pc1
True
sage: pc1.connected_component(v1) == pc1
True
sage: pc2 = PolyhedralComplex([t1, v2])
sage: pc2.connected_component(t1) == PolyhedralComplex([t1])
True
sage: pc2.connected_component(o) == PolyhedralComplex([t1])
True
sage: pc2.connected_component(v3)
Traceback (most recent call last):
...
ValueError: the polyhedral complex does not contain the given cell
sage: pc2.connected_component(r)
Traceback (most recent call last):
...
ValueError: the polyhedral complex does not contain the given cell
sage: pc3 = PolyhedralComplex([t1, t2, r])
sage: pc3.connected_component(v2) == pc3
True
sage: pc4 = PolyhedralComplex([t1, t2, r, l])
sage: pc4.connected_component(o) == pc3
True
sage: pc4.connected_component(v3)
Traceback (most recent call last):
...
ValueError: the polyhedral complex does not contain the given cell
sage: pc5 = PolyhedralComplex([t1, t2, r, l, v3])
sage: pc5.connected_component(v3) == PolyhedralComplex([v3])
True
sage: PolyhedralComplex([]).connected_component()
Traceback (most recent call last):
...
ValueError: the empty polyhedral complex has no connected components

connected_components()

Return the connected components of this polyhedral complex, as list of (sub-)PolyhedralComplexes.

2.4. Polyhedral complexes 331



Combinatorial and Discrete Geometry, Release 10.4.rc1

EXAMPLES:

sage: t1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: t2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: v1 = Polyhedron(vertices=[(1, 1)])
sage: v2 = Polyhedron(vertices=[(0, 2)])
sage: v3 = Polyhedron(vertices=[(-1, 0)])
sage: o = Polyhedron(vertices=[(0, 0)])
sage: r = Polyhedron(rays=[(1, 0)])
sage: l = Polyhedron(vertices=[(-1, 0)], lines=[(1, -1)])
sage: pc1 = PolyhedralComplex([t1, t2])
sage: len(pc1.connected_components())
1
sage: pc2 = PolyhedralComplex([t1, v2])
sage: len(pc2.connected_components())
2
sage: pc3 = PolyhedralComplex([t1, t2, r])
sage: len(pc3.connected_components())
1
sage: pc4 = PolyhedralComplex([t1, t2, r, l])
sage: len(pc4.connected_components())
2
sage: pc5 = PolyhedralComplex([t1, t2, r, l, v3])
sage: len(pc5.connected_components())
3
sage: PolyhedralComplex([]).connected_components()
Traceback (most recent call last):
...
ValueError: the empty polyhedral complex has no connected components

dimension()

The dimension of this cell complex: the maximum dimension of its cells.

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 2)]) ])
sage: pc.dimension()
2
sage: empty_pc = PolyhedralComplex([])
sage: empty_pc.dimension()
-1

disjoint_union(right)
The disjoint union of this polyhedral complex with another one.

INPUT:

• right – the other polyhedral complex (the right-hand factor)

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(-1, 0), (0, 0), (0, 1)])
sage: p2 = Polyhedron(vertices=[(0, -1), (0, 0), (1, 0)])
sage: p3 = Polyhedron(vertices=[(0, -1), (1, -1), (1, 0)])
sage: pc = PolyhedralComplex([p1]).disjoint_union(PolyhedralComplex([p3]))
sage: set(pc.maximal_cell_iterator()) == set([p1, p3])
True

(continues on next page)
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sage: pc.disjoint_union(PolyhedralComplex([p2]))
Traceback (most recent call last):
...
ValueError: the two complexes are not disjoint

face_poset()

The face poset of this polyhedral complex, the poset of nonempty cells, ordered by inclusion.

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)])])
sage: poset = pc.face_poset()
sage: poset
Finite poset containing 11 elements
sage: d = {i: i.vertices_matrix() for i in poset}
sage: poset.plot(element_labels=d) #␣
→˓needs sage.plot
Graphics object consisting of 28 graphics primitives

For a nonbounded polyhedral complex:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)]),
....: Polyhedron(vertices=[(-1/2, -1/2)], lines=[(1, -1)]),
....: Polyhedron(rays=[(1, 0)])])
sage: poset = pc.face_poset()
sage: poset
Finite poset containing 13 elements
sage: d = {i: .join([str(v)+ \n
....: for v in i.Vrepresentation()]) for i in poset}
sage: poset.show(element_labels=d, figsize=15) # not tested
sage: pc = PolyhedralComplex([
....: Polyhedron(rays=[(1,0),(0,1)]),
....: Polyhedron(rays=[(-1,0),(0,1)]),
....: Polyhedron(rays=[(-1,0),(0,-1)]),
....: Polyhedron(rays=[(1,0),(0,-1)])])
sage: pc.face_poset()
Finite poset containing 9 elements

graph()

Return the 1-skeleton of this polyhedral complex, as a graph.

The vertices of the graph are of type vector. This raises a NotImplementedError if the polyhedral
complex is unbounded.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),

(continues on next page)
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....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: g = pc.graph(); g
Graph on 4 vertices
sage: g.vertices(sort=True)
[(0, 0), (0, 2), (1, 1), (1, 2)]
sage: g.edges(sort=True, labels=False)
[((0, 0), (0, 2)), ((0, 0), (1, 1)), ((0, 0), (1, 2)), ((0, 2), (1, 2)), ((1,␣
→˓1), (1, 2))]
sage: PolyhedralComplex([Polyhedron(rays=[(1,1)])]).graph()
Traceback (most recent call last):
...
NotImplementedError: the polyhedral complex is unbounded

Wrong answer due to maximality_check=False:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: PolyhedralComplex([p1, p2]).is_pure()
True
sage: PolyhedralComplex([p2, p3], maximality_check=True).is_pure()
True
sage: PolyhedralComplex([p2, p3], maximality_check=False).is_pure()
False

is_cell(c)
Return whether the given cell c is a cell of self.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2])
sage: pc.is_cell(p3)
True
sage: pc.is_cell(Polyhedron(vertices=[(0, 0)]))
True

is_compact()

Test for boundedness of the polyhedral complex

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)])
sage: p2 = Polyhedron(rays=[(1, 0)])
sage: PolyhedralComplex([p1]).is_compact()
True
sage: PolyhedralComplex([p1, p2]).is_compact()
False

is_connected()

Return whether self is connected.

EXAMPLES:
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sage: pc1 = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: pc1.is_connected()
True
sage: pc2 = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(0, 2)])])
sage: pc2.is_connected()
False
sage: pc3 = PolyhedralComplex([
....: Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)]),
....: Polyhedron(vertices=[(-1/2, -1/2)], lines=[(1, -1)]),
....: Polyhedron(rays=[(1, 0)])])
sage: pc3.is_connected()
False
sage: pc4 = PolyhedralComplex([
....: Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)]),
....: Polyhedron(rays=[(1, 0)])])
sage: pc4.is_connected()
True

is_convex()

Return whether the set of points in self is a convex set.

When self is convex, the union of its cells is a Polyhedron.

See also:

union_as_polyhedron()

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(0, 0), (1, 1), (2, 0)])
sage: p4 = Polyhedron(vertices=[(2, 2)])
sage: PolyhedralComplex([p1, p2]).is_convex()
True
sage: PolyhedralComplex([p1, p3]).is_convex()
False
sage: PolyhedralComplex([p1, p4]).is_convex()
False

Test unbounded cases:

sage: pc1 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]])])
sage: pc1.is_convex()
True
sage: pc2 = PolyhedralComplex([
....: Polyhedron(vertices=[[-1,0], [1,0]], lines=[[0,1]])])
sage: pc2.is_convex()
True
sage: pc3 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]]),
....: Polyhedron(vertices=[[1,0], [0,-1]], rays=[[1,0], [0,-1]])])

(continues on next page)
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sage: pc3.is_convex()
False
sage: pc4 = PolyhedralComplex([Polyhedron(rays=[[1,0], [-1,1]]),
....: Polyhedron(rays=[[1,0], [-1,-1]])])
sage: pc4.is_convex()
False

The whole 3d space minus the first orthant is not convex:

sage: pc5 = PolyhedralComplex([
....: Polyhedron(rays=[[1,0,0], [0,1,0], [0,0,-1]]),
....: Polyhedron(rays=[[1,0,0], [0,-1,0], [0,0,-1]]),
....: Polyhedron(rays=[[1,0,0], [0,-1,0], [0,0,1]]),
....: Polyhedron(rays=[[-1,0,0], [0,-1,0], [0,0,-1]]),
....: Polyhedron(rays=[[-1,0,0], [0,-1,0], [0,0,1]]),
....: Polyhedron(rays=[[-1,0,0], [0,1,0], [0,0,-1]]),
....: Polyhedron(rays=[[-1,0,0], [0,1,0], [0,0,1]])])
sage: pc5.is_convex()
False

Test some non-full-dimensional examples:

sage: l = PolyhedralComplex([Polyhedron(vertices=[(1, 2), (0, 2)])])
sage: l.is_convex()
True
sage: pc1b = PolyhedralComplex([Polyhedron(
....: vertices=[[1,0,0], [0,1,0]], rays=[[1,0,0],[0,1,0]])])
sage: pc1b.is_convex()
True
sage: pc4b = PolyhedralComplex([
....: Polyhedron(rays=[[1,0,0], [-1,1,0]]),
....: Polyhedron(rays=[[1,0,0], [-1,-1,0]])])
sage: pc4b.is_convex()
False

is_full_dimensional()

Return whether this polyhedral complex is full-dimensional: its dimension is equal to its ambient dimension.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.is_full_dimensional()
True
sage: PolyhedralComplex([p3]).is_full_dimensional()
False

is_immutable()

Return whether self is immutable.

EXAMPLES:

sage: pc1 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc1.is_immutable()
False

(continues on next page)
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sage: pc2 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])],
....: is_mutable=False)
sage: pc2.is_immutable()
True
sage: pc3 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])],
....: is_immutable=True)
sage: pc3.is_immutable()
True

is_maximal_cell(c)
Return whether the given cell c is a maximal cell of self.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.is_maximal_cell(p1)
True
sage: pc.is_maximal_cell(p3)
False

Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
....: maximality_check=False)
sage: pc_invalid.is_maximal_cell(p3)
True

is_mutable()

Return whether self is mutable.

EXAMPLES:

sage: pc1 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc1.is_mutable()
True
sage: pc2 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])],
....: is_mutable=False)
sage: pc2.is_mutable()
False
sage: pc1 == pc2
True
sage: pc3 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])],
....: is_immutable=True)
sage: pc3.is_mutable()
False
sage: pc2 == pc3
True
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is_polyhedral_fan()

Test if this polyhedral complex is a polyhedral fan.

A polyhedral complex is a fan if all of its (maximal) cells are cones.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(0, 0), (1, 1), (1, 2)])
sage: p2 = Polyhedron(rays=[(1, 0)])
sage: PolyhedralComplex([p1]).is_polyhedral_fan()
False
sage: PolyhedralComplex([p2]).is_polyhedral_fan()
True
sage: halfplane = Polyhedron(rays=[(1, 0), (-1, 0), (0, 1)])
sage: PolyhedralComplex([halfplane]).is_polyhedral_fan()
True

is_pure()

Test if this polyhedral complex is pure.

A polyhedral complex is pure if and only if all of its maximal cells have the same dimension.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.is_pure()
True

Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
....: maximality_check=False)
sage: pc_invalid.is_pure()
False

is_simplicial_complex()

Test if this polyhedral complex is a simplicial complex.

A polyhedral complex is simplicial if all of its (maximal) cells are simplices, i.e., every cell is a bounded
polytope with 𝑑+ 1 vertices, where 𝑑 is the dimension of the polytope.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(0, 0), (1, 1), (1, 2)])
sage: p2 = Polyhedron(rays=[(1, 0)])
sage: PolyhedralComplex([p1]).is_simplicial_complex()
True
sage: PolyhedralComplex([p2]).is_simplicial_complex()
False
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is_simplicial_fan()

Test if this polyhedral complex is a simplicial fan.

A polyhedral complex is a simplicial fan if all of its (maximal) cells are simplical cones, i.e., every cell is a
pointed cone (with vertex being the origin) generated by 𝑑 linearly independent rays, where 𝑑 is the dimension
of the cone.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(0, 0), (1, 1), (1, 2)])
sage: p2 = Polyhedron(rays=[(1, 0)])
sage: PolyhedralComplex([p1]).is_simplicial_fan()
False
sage: PolyhedralComplex([p2]).is_simplicial_fan()
True
sage: halfplane = Polyhedron(rays=[(1, 0), (-1, 0), (0, 1)])
sage: PolyhedralComplex([halfplane]).is_simplicial_fan()
False

is_subcomplex(other)
Return whether self is a subcomplex of other.

INPUT:

• other – a polyhedral complex

Each maximal cell of self must be a cell of other for this to be True.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)])
sage: p3 = Polyhedron(vertices=[(0, 0), (1, 0)])
sage: pc = PolyhedralComplex([p1, Polyhedron(vertices=[(1, 0)])])
sage: pc.is_subcomplex(PolyhedralComplex([p1, p2, p3]))
True
sage: pc.is_subcomplex(PolyhedralComplex([p1, p2]))
False

join(right)
The join of this polyhedral complex with another one.

INPUT:

• right – the other polyhedral complex (the right-hand factor)

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc_join = pc.join(pc)
sage: pc_join
Polyhedral complex with 1 maximal cell
sage: next(pc_join.maximal_cell_iterator()).vertices()
(A vertex at (0, 0, 0),
A vertex at (0, 0, 1),
A vertex at (0, 1, 1),
A vertex at (1, 0, 0))

maximal_cell_iterator(increasing=False)
An iterator for the maximal cells in this polyhedral complex.
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INPUT:

• increasing – (default: False) if True, return maximal cells in increasing order of dimension.
Otherwise it returns cells in decreasing order of dimension.

Note: Among the cells of a fixed dimension, there is no sorting.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: len(list(pc.maximal_cell_iterator()))
2

Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
....: maximality_check=False)
sage: len(list(pc_invalid.maximal_cell_iterator()))
3

maximal_cells()

The maximal cells of this polyhedral complex, in the form of a dictionary: the keys are integers, representing
dimension, and the value associated to an integer 𝑑 is the set of 𝑑-maximal cells.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: len(pc.maximal_cells()[2])
2
sage: 1 in pc.maximal_cells()
False

Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
....: maximality_check=False)
sage: len(pc_invalid.maximal_cells()[1])
1
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maximal_cells_sorted()

Return the sorted list of the maximal cells of this polyhedral complex by non-increasing dimensions.

EXAMPLES:

sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: [p.vertices_list() for p in pc.maximal_cells_sorted()]
[[[0, 0], [0, 2], [1, 2]], [[0, 0], [1, 1], [1, 2]]]

n_maximal_cells(n)

List of maximal cells of dimension n of this polyhedral complex.

INPUT:

• n – non-negative integer; the dimension

Note: The resulting list need not be sorted. If you want a sorted list of 𝑛-cells, use _n_maxi-
mal_cells_sorted().

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: len(pc.n_maximal_cells(2))
2
sage: len(pc.n_maximal_cells(1))
0

Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
....: maximality_check=False)
sage: len(pc_invalid.n_maximal_cells(1))
1

n_skeleton(n)
The 𝑛-skeleton of this polyhedral complex.

The 𝑛-skeleton of a polyhedral complex is obtained by discarding all of the cells in dimensions larger than 𝑛.

INPUT:

• n – non-negative integer; the dimension

See also:

stratify()

EXAMPLES:
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sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: pc.n_skeleton(2)
Polyhedral complex with 2 maximal cells
sage: pc.n_skeleton(1)
Polyhedral complex with 5 maximal cells
sage: pc.n_skeleton(0)
Polyhedral complex with 4 maximal cells

plot(**kwds)
Return a plot of the polyhedral complex, if it is of dim at most 3.

INPUT:

• explosion_factor – (default: 0) if positive, separate the cells of the complex by extra space. In
this case, the following keyword arguments can be passed to exploded_plot():

– center – (default: None, denoting the origin) the center of explosion

– sticky_vertices – (default: False) boolean or dict. Whether to draw line segments between
shared vertices of the given polyhedra. A dict gives options for sage.plot.line().

– sticky_center – (default: True) boolean or dict. When center is a vertex of some of the
polyhedra, whether to draw line segments connecting the center to the shifted copies of these
vertices. A dict gives options for sage.plot.line().

• color – (default: None) if "rainbow", assign a different color to every maximal cell; otherwise,
passed on to plot().

• other keyword arguments are passed on to plot().

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(0, 0), (0, 2), (-1, 1)])
sage: pc1 = PolyhedralComplex([p1, p2, p3, -p1, -p2, -p3])
sage: bb = dict(xmin=-2, xmax=2, ymin=-3, ymax=3, axes=False)
sage: g0 = pc1.plot(color= rainbow , **bb) #␣
→˓needs sage.plot
sage: g1 = pc1.plot(explosion_factor=0.5, **bb) #␣
→˓needs sage.plot
sage: g2 = pc1.plot(explosion_factor=1, color= rainbow , alpha=0.5, **bb) #␣
→˓needs sage.plot
sage: graphics_array([g0, g1, g2]).show(axes=False) #␣
→˓not tested

sage: pc2 = PolyhedralComplex([polytopes.hypercube(3)])
sage: pc3 = pc2.subdivide(new_vertices=[(0, 0, 0)])
sage: g3 = pc3.plot(explosion_factor=1, color= rainbow , #␣
→˓needs sage.plot
....: alpha=0.5, axes=False, online=True)
sage: pc4 = pc2.subdivide(make_simplicial=True)
sage: g4 = pc4.plot(explosion_factor=1, center=(1, -1, 1), fill= blue , #␣
→˓needs sage.plot
....: wireframe= white , point={ color : red , size :10},
....: alpha=0.6, online=True)
sage: pc5 = PolyhedralComplex([

(continues on next page)
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....: Polyhedron(rays=[[1,0,0], [0,1,0], [0,0,-1]]),

....: Polyhedron(rays=[[1,0,0], [0,-1,0], [0,0,-1]]),

....: Polyhedron(rays=[[1,0,0], [0,-1,0], [0,0,1]]),

....: Polyhedron(rays=[[-1,0,0], [0,-1,0], [0,0,-1]]),

....: Polyhedron(rays=[[-1,0,0], [0,-1,0], [0,0,1]]),

....: Polyhedron(rays=[[-1,0,0], [0,1,0], [0,0,-1]]),

....: Polyhedron(rays=[[-1,0,0], [0,1,0], [0,0,1]])])
sage: g5 = pc5.plot(explosion_factor=0.3, color= rainbow , alpha=0.8, #␣
→˓needs sage.plot
....: point={ size : 20}, axes=False, online=True)

product(right)
The (Cartesian) product of this polyhedral complex with another one.

INPUT:

• right – the other polyhedral complex (the right-hand factor)

OUTPUT:

• the product self x right

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc_square = pc.product(pc)
sage: pc_square
Polyhedral complex with 1 maximal cell
sage: next(pc_square.maximal_cell_iterator()).vertices()
(A vertex at (0, 0),
A vertex at (0, 1),
A vertex at (1, 0),
A vertex at (1, 1))

relative_boundary_cells()

Return the maximal cells of the relative-boundary sub-complex.

A point 𝑃 is in the relative boundary of a set 𝑆 if 𝑃 is in the closure of 𝑆 but not in the relative interior of 𝑆.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: p4 = Polyhedron(vertices=[(2, 2)])
sage: pc = PolyhedralComplex([p1, p2])
sage: rbd_cells = pc.relative_boundary_cells()
sage: len(rbd_cells)
4
sage: all(p.dimension() == 1 for p in rbd_cells)
True
sage: pc_lower_dim = PolyhedralComplex([p3])
sage: sorted([p.vertices() for p in pc_lower_dim.relative_boundary_cells()])
[(A vertex at (0, 2),), (A vertex at (1, 2),)]
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Test on polyhedral complex which is not pure:

sage: pc_non_pure = PolyhedralComplex([p1, p3, p4])
sage: (set(pc_non_pure.relative_boundary_cells())
....: == set([f.as_polyhedron() for f in p1.faces(1)] + [p3, p4]))
True

Test with maximality_check == False:

sage: pc_invalid = PolyhedralComplex([p2, p3],
....: maximality_check=False)
sage: (set(pc_invalid.relative_boundary_cells())
....: == set([f.as_polyhedron() for f in p2.faces(1)]))
True

Test unbounded case:

sage: pc3 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]]),
....: Polyhedron(vertices=[[1,0], [0,-1]], rays=[[1,0], [0,-1]])])
sage: len(pc3.relative_boundary_cells())
4

remove_cell(cell, check=False)
Remove cell from self and all the cells that contain cell as a subface.

INPUT:

• cell – a cell of the polyhedral complex

• check – boolean (default: False); if True, raise an error if cell is not a cell of this complex

This does not return anything; instead, it changes the polyhedral complex.

EXAMPLES:

If you add a cell which is already present, there is no effect:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: r = Polyhedron(rays=[(1, 0)])
sage: pc = PolyhedralComplex([p1, p2, r])
sage: pc.dimension()
2
sage: pc.remove_cell(Polyhedron(vertices=[(0, 0), (1, 2)]))
sage: pc.dimension()
1
sage: pc
Polyhedral complex with 5 maximal cells
sage: pc.remove_cell(Polyhedron(vertices=[(1, 2)]))
sage: pc.dimension()
1
sage: pc
Polyhedral complex with 3 maximal cells
sage: pc.remove_cell(Polyhedron(vertices=[(0, 0)]))
sage: pc.dimension()
0

set_immutable()

Make this polyhedral complex immutable.
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EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.is_mutable()
True
sage: pc.set_immutable()
sage: pc.is_mutable()
False

stratify(n)
Return the pure sub-polyhedral complex which is constructed from the 𝑛-dimensional maximal cells of this
polyhedral complex.

See also:

n_skeleton()

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximal-
ity_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.stratify(2) == pc
True
sage: pc.stratify(1)
Polyhedral complex with 0 maximal cells

Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
....: maximality_check=False)
sage: pc_invalid.stratify(1)
Polyhedral complex with 1 maximal cell

subdivide(make_simplicial=False, new_vertices=None, new_rays=None)
Construct a new polyhedral complex by iterative stellar subdivision of self for each new vertex/ray given.

Currently, subdivision is only supported for bounded polyhedral complex or polyhedral fan.

INPUT:

• make_simplicial – boolean (default: False); if True, the returned polyhedral complex is sim-
plicial

• new_vertices, new_rays – list (optional); new generators to be added during subdivision

EXAMPLES:

sage: square_vertices = [(1, 1, 1), (-1, 1, 1), (-1, -1, 1), (1, -1, 1)]
sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(0, 0, 0)] + square_vertices),
....: Polyhedron(vertices=[(0, 0, 2)] + square_vertices)])
sage: pc.is_compact() and not pc.is_simplicial_complex()
True

(continues on next page)
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sage: subdivided_pc = pc.subdivide(new_vertices=[(0, 0, 1)])
sage: subdivided_pc
Polyhedral complex with 8 maximal cells
sage: subdivided_pc.is_simplicial_complex()
True
sage: simplicial_pc = pc.subdivide(make_simplicial=True)
sage: simplicial_pc
Polyhedral complex with 4 maximal cells
sage: simplicial_pc.is_simplicial_complex()
True

sage: fan = PolyhedralComplex([Polyhedron(rays=square_vertices)])
sage: fan.is_polyhedral_fan() and not fan.is_simplicial_fan()
True
sage: fan.subdivide(new_vertices=[(0, 0, 1)])
Traceback (most recent call last):
...
ValueError: new vertices cannot be used for subdivision
sage: subdivided_fan = fan.subdivide(new_rays=[(0, 0, 1)])
sage: subdivided_fan
Polyhedral complex with 4 maximal cells
sage: subdivided_fan.is_simplicial_fan()
True
sage: simplicial_fan = fan.subdivide(make_simplicial=True)
sage: simplicial_fan
Polyhedral complex with 2 maximal cells
sage: simplicial_fan.is_simplicial_fan()
True

sage: halfspace = PolyhedralComplex([Polyhedron(rays=[(0, 0, 1)],
....: lines=[(1, 0, 0), (0, 1, 0)])])
sage: halfspace.is_simplicial_fan()
False
sage: subdiv_halfspace = halfspace.subdivide(make_simplicial=True)
sage: subdiv_halfspace
Polyhedral complex with 4 maximal cells
sage: subdiv_halfspace.is_simplicial_fan()
True

union(right)
The union of this polyhedral complex with another one.

INPUT:

• right – the other polyhedral complex (the right-hand factor)

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(-1, 0), (0, 0), (0, 1)])
sage: p2 = Polyhedron(vertices=[(0, -1), (0, 0), (1, 0)])
sage: p3 = Polyhedron(vertices=[(0, -1), (1, -1), (1, 0)])
sage: pc = PolyhedralComplex([p1]).union(PolyhedralComplex([p3]))
sage: set(pc.maximal_cell_iterator()) == set([p1, p3])
True
sage: pc.union(PolyhedralComplex([p2]))
Polyhedral complex with 3 maximal cells
sage: p4 = Polyhedron(vertices=[(0, -1), (0, 0), (1, 0), (1, -1)])

(continues on next page)
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sage: pc.union(PolyhedralComplex([p4]))
Traceback (most recent call last):
...
ValueError: the given cells are not face-to-face

union_as_polyhedron()

Return self as a Polyhedron if self is convex.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(0, 0), (1, 1), (2, 0)])
sage: P = PolyhedralComplex([p1, p2]).union_as_polyhedron()
sage: P.vertices_list()
[[0, 0], [0, 2], [1, 1], [1, 2]]
sage: PolyhedralComplex([p1, p3]).union_as_polyhedron()
Traceback (most recent call last):
...
ValueError: the polyhedral complex is not convex

wedge(right)
The wedge (one-point union) of self with right.

Todo: Implement the wedge product of two polyhedral complexes.

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.wedge(pc)
Traceback (most recent call last):
...
NotImplementedError: wedge is not implemented for polyhedral complex

sage.geometry.polyhedral_complex.cells_list_to_cells_dict(cells_list)
Helper function that returns the dictionary whose keys are the dimensions, and the value associated to an integer 𝑑
is the set of 𝑑-dimensional polyhedra in the given list.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 1), (0, 0)])
sage: p3 = Polyhedron(vertices=[(0, 0)])
sage: p4 = Polyhedron(vertices=[(1, 1)])
sage: sage.geometry.polyhedral_complex.cells_list_to_cells_dict([p1, p2, p3, p4])
{0: {A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex,
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex},

1: {A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices},
2: {A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices}}

sage.geometry.polyhedral_complex.exploded_plot(polyhedra, center, explosion_factor,
sticky_vertices, sticky_center, point, **kwds)

Return a plot of several polyhedra in one figure with extra space between them.

INPUT:
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• polyhedra – an iterable of Polyhedron_base objects

• center – (default: None, denoting the origin) the center of explosion

• explosion_factor – (default: 1) a nonnegative number; translate polyhedra by this factor of the distance
from center to their center

• sticky_vertices – (default: False) boolean or dict. Whether to draw line segments between shared
vertices of the given polyhedra. A dict gives options for sage.plot.line().

• sticky_center – (default: True) boolean or dict. When center is a vertex of some of the polyhedra,
whether to draw line segments connecting the center to the shifted copies of these vertices. A dict gives
options for sage.plot.line().

• color – (default: None) if "rainbow", assign a different color to every maximal cell and every vertex;
otherwise, passed on to plot().

• other keyword arguments are passed on to plot().

EXAMPLES:

sage: from sage.geometry.polyhedral_complex import exploded_plot
sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(0, 0), (1, 1), (2, 0)])
sage: exploded_plot([p1, p2, p3]) #␣
→˓needs sage.plot
Graphics object consisting of 20 graphics primitives
sage: exploded_plot([p1, p2, p3], center=(1, 1)) #␣
→˓needs sage.plot
Graphics object consisting of 19 graphics primitives
sage: exploded_plot([p1, p2, p3], center=(1, 1), sticky_vertices=True) #␣
→˓needs sage.plot
Graphics object consisting of 23 graphics primitives

2.5 Toric geometry

2.5.1 Toric lattices

This module was designed as a part of the framework for toric varieties (variety, fano_variety).

All toric lattices are isomorphic to 𝑛 for some 𝑛, but will prevent you from doing “wrong” operations with objects from
different lattices.

AUTHORS:

• Andrey Novoseltsev (2010-05-27): initial version.

• Andrey Novoseltsev (2010-07-30): sublattices and quotients.

EXAMPLES:

The simplest way to create a toric lattice is to specify its dimension only:

sage: N = ToricLattice(3)
sage: N
3-d lattice N

While our lattice N is called exactly “N” it is a coincidence: all lattices are called “N” by default:

348 Chapter 2. Polyhedral computations

../../../../../../html/en/reference/schemes/sage/schemes/toric/variety.html#module-sage.schemes.toric.variety
../../../../../../html/en/reference/schemes/sage/schemes/toric/fano_variety.html#module-sage.schemes.toric.fano_variety


Combinatorial and Discrete Geometry, Release 10.4.rc1

sage: another_name = ToricLattice(3)
sage: another_name
3-d lattice N

If fact, the above lattice is exactly the same as before as an object in memory:

sage: N is another_name
True

There are actually four names associated to a toric lattice and they all must be the same for two lattices to coincide:

sage: N, N.dual(), latex(N), latex(N.dual())
(3-d lattice N, 3-d lattice M, N, M)

Notice that the lattice dual to N is called “M” which is standard in toric geometry. This happens only if you allow
completely automatic handling of names:

sage: another_N = ToricLattice(3, "N")
sage: another_N.dual()
3-d lattice N*
sage: N is another_N
False

What can you do with toric lattices? Well, their main purpose is to allow creation of elements of toric lattices:

sage: n = N([1,2,3])
sage: n
N(1, 2, 3)
sage: M = N.dual()
sage: m = M(1,2,3)
sage: m
M(1, 2, 3)

Dual lattices can act on each other:

sage: n * m
14
sage: m * n
14

You can also add elements of the same lattice or scale them:

sage: 2 * n
N(2, 4, 6)
sage: n * 2
N(2, 4, 6)
sage: n + n
N(2, 4, 6)

However, you cannot “mix wrong lattices” in your expressions:

sage: n + m
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
3-d lattice N and 3-d lattice M

sage: n * n

(continues on next page)
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Traceback (most recent call last):
...
TypeError: elements of the same toric lattice cannot be multiplied!
sage: n == m
False

Note that n and m are not equal to each other even though they are both “just (1,2,3).” Moreover, you cannot easily
convert elements between toric lattices:

sage: M(n)
Traceback (most recent call last):
...
TypeError: N(1, 2, 3) cannot be converted to 3-d lattice M!

If you really need to consider elements of one lattice as elements of another, you can either use intermediate conversion
to “just a vector”:

sage: ZZ3 = ZZ^3
sage: n_in_M = M(ZZ3(n))
sage: n_in_M
M(1, 2, 3)
sage: n == n_in_M
False
sage: n_in_M == m
True

Or you can create a homomorphism from one lattice to any other:

sage: h = N.hom(identity_matrix(3), M)
sage: h(n)
M(1, 2, 3)

Warning: While integer vectors (elements of 𝑛) are printed as (1,2,3), in the code (1,2,3) is a tuple,
which has nothing to do neither with vectors, nor with toric lattices, so the following is probably not what you want
while working with toric geometry objects:

sage: (1,2,3) + (1,2,3)
(1, 2, 3, 1, 2, 3)

Instead, use syntax like

sage: N(1,2,3) + N(1,2,3)
N(2, 4, 6)

class sage.geometry.toric_lattice.ToricLatticeFactory

Bases: UniqueFactory

Create a lattice for toric geometry objects.

INPUT:

• rank – nonnegative integer, the only mandatory parameter;

• name – string;

• dual_name – string;
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• latex_name – string;

• latex_dual_name – string.

OUTPUT:

• lattice.

A toric lattice is uniquely determined by its rank and associated names. There are four such “associated names”
whose meaning should be clear from the names of the corresponding parameters, but the choice of default values
is a little bit involved. So here is the full description of the “naming algorithm”:

1. If no names were given at all, then this lattice will be called “N” and the dual one “M”. These are the standard
choices in toric geometry.

2. If name was given and dual_name was not, then dual_name will be name followed by “*”.

3. If LaTeX names were not given, they will coincide with the “usual” names, but if dual_name was con-
structed automatically, the trailing star will be typeset as a superscript.

EXAMPLES:

Let’s start with no names at all and see how automatic names are given:

sage: L1 = ToricLattice(3)
sage: L1
3-d lattice N
sage: L1.dual()
3-d lattice M

If we give the name “N” explicitly, the dual lattice will be called “N*”:

sage: L2 = ToricLattice(3, "N")
sage: L2
3-d lattice N
sage: L2.dual()
3-d lattice N*

However, we can give an explicit name for it too:

sage: L3 = ToricLattice(3, "N", "M")
sage: L3
3-d lattice N
sage: L3.dual()
3-d lattice M

If you want, you may also give explicit LaTeX names:

sage: L4 = ToricLattice(3, "N", "M", r"\mathbb{N}", r"\mathbb{M}")
sage: latex(L4)
\mathbb{N}
sage: latex(L4.dual())
\mathbb{M}

While all four lattices above are called “N”, only two of them are equal (and are actually the same):

sage: L1 == L2
False
sage: L1 == L3
True
sage: L1 is L3

(continues on next page)
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(continued from previous page)

True
sage: L1 == L4
False

The reason for this is that L2 and L4 have different names either for dual lattices or for LaTeX typesetting.

create_key(rank, name=None, dual_name=None, latex_name=None, latex_dual_name=None)
Create a key that uniquely identifies this toric lattice.

See ToricLattice for documentation.

Warning: You probably should not use this function directly.

create_object(version, key)
Create the toric lattice described by key.

See ToricLattice for documentation.

Warning: You probably should not use this function directly.

class sage.geometry.toric_lattice.ToricLattice_ambient(rank, name, dual_name,
latex_name, latex_dual_name)

Bases: ToricLattice_generic, FreeModule_ambient_pid

Create a toric lattice.

See ToricLattice for documentation.

Warning: There should be only one toric lattice with the given rank and associated names. Using this class
directly to create toric lattices may lead to unexpected results. Please, use ToricLattice to create toric
lattices.

Element

alias of ToricLatticeElement

ambient_module()

Return the ambient module of self.

OUTPUT:

• toric lattice.

Note: For any ambient toric lattice its ambient module is the lattice itself.

EXAMPLES:

sage: N = ToricLattice(3)
sage: N.ambient_module()
3-d lattice N
sage: N.ambient_module() is N
True
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dual()

Return the lattice dual to self.

OUTPUT:

• toric lattice.

EXAMPLES:

sage: N = ToricLattice(3)
sage: N
3-d lattice N
sage: M = N.dual()
sage: M
3-d lattice M
sage: M.dual() is N
True

Elements of dual lattices can act on each other:

sage: n = N(1,2,3)
sage: m = M(4,5,6)
sage: n * m
32
sage: m * n
32

plot(**options)
Plot self.

INPUT:

• any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:

• a plot.

EXAMPLES:

sage: N = ToricLattice(3)
sage: N.plot() #␣
→˓needs sage.plot
Graphics3d Object

class sage.geometry.toric_lattice.ToricLattice_generic(base_ring, rank, degree,
sparse=False,
coordinate_ring=None,
category=None)

Bases: FreeModule_generic_pid

Abstract base class for toric lattices.

Element

alias of ToricLatticeElement

construction()

Return the functorial construction of self.

OUTPUT:
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• None, we do not think of toric lattices as constructed from simpler objects since we do not want to
perform arithmetic involving different lattices.

direct_sum(other)
Return the direct sum with other.

INPUT:

• other – a toric lattice or more general module.

OUTPUT:

The direct sum of self and other as -modules. If other is a ToricLattice, another toric lattice
will be returned.

EXAMPLES:

sage: K = ToricLattice(3, K )
sage: L = ToricLattice(3, L )
sage: N = K.direct_sum(L); N
6-d lattice K+L
sage: N, N.dual(), latex(N), latex(N.dual())
(6-d lattice K+L, 6-d lattice K*+L*, K \oplus L, K^* \oplus L^*)

With default names:

sage: N = ToricLattice(3).direct_sum(ToricLattice(2))
sage: N, N.dual(), latex(N), latex(N.dual())
(5-d lattice N+N, 5-d lattice M+M, N \oplus N, M \oplus M)

If other is not a ToricLattice, fall back to sum of modules:

sage: ToricLattice(3).direct_sum(ZZ^2)
Free module of degree 5 and rank 5 over Integer Ring
Echelon basis matrix:
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

intersection(other)

Return the intersection of self and other.

INPUT:

• other – a toric (sub)lattice.dual

OUTPUT:

• a toric (sub)lattice.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns1 = N.submodule([N(2,4,0), N(9,12,0)])
sage: Ns2 = N.submodule([N(1,4,9), N(9,2,0)])
sage: Ns1.intersection(Ns2)
Sublattice <N(54, 12, 0)>

Note that if one of the intersecting sublattices is a sublattice of another, no new lattices will be constructed:
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sage: N.intersection(N) is N
True
sage: Ns1.intersection(N) is Ns1
True
sage: N.intersection(Ns1) is Ns1
True

quotient(sub, check=True, positive_point=None, positive_dual_point=None, **kwds)
Return the quotient of self by the given sublattice sub.

INPUT:

• sub – sublattice of self;

• check – (default: True) whether or not to check that sub is a valid sublattice.

If the quotient is one-dimensional and torsion free, the following two mutually exclusive keyword arguments
are also allowed. They decide the sign choice for the (single) generator of the quotient lattice:

• positive_point – a lattice point of self not in the sublattice sub (that is, not zero in the quotient
lattice). The quotient generator will be in the same direction as positive_point.

• positive_dual_point – a dual lattice point. The quotient generator will be chosen such that its
lift has a positive product with positive_dual_point. Note: if positive_dual_point is
not zero on the sublattice sub, then the notion of positivity will depend on the choice of lift!

Further named arguments are passed to the constructor of a toric lattice quotient.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q
Quotient with torsion of 3-d lattice N
by Sublattice <N(1, 8, 0), N(0, 12, 0)>

Attempting to quotient one lattice by a sublattice of another will result in a ValueError:

sage: N = ToricLattice(3)
sage: M = ToricLattice(3, name= M )
sage: Ms = M.submodule([M(2,4,0), M(9,12,0)])
sage: N.quotient(Ms)
Traceback (most recent call last):
...
ValueError: M(1, 8, 0) cannot generate a sublattice of
3-d lattice N

However, if we forget the sublattice structure, then it is possible to quotient by vector spaces or modules
constructed from any sublattice:

sage: N = ToricLattice(3)
sage: M = ToricLattice(3, name= M )
sage: Ms = M.submodule([M(2,4,0), M(9,12,0)])
sage: N.quotient(Ms.vector_space())
Quotient with torsion of 3-d lattice N by Sublattice
<N(1, 8, 0), N(0, 12, 0)>
sage: N.quotient(Ms.sparse_module())
Quotient with torsion of 3-d lattice N by Sublattice
<N(1, 8, 0), N(0, 12, 0)>
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See ToricLattice_quotient for more examples.

saturation()

Return the saturation of self.

OUTPUT:

• a toric lattice.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([(1,2,3), (4,5,6)])
sage: Ns
Sublattice <N(1, 2, 3), N(0, 3, 6)>
sage: Ns_sat = Ns.saturation()
sage: Ns_sat
Sublattice <N(1, 0, -1), N(0, 1, 2)>
sage: Ns_sat is Ns_sat.saturation()
True

span(gens, base_ring=Integer Ring, *args, **kwds)
Return the span of the given generators.

INPUT:

• gens – list of elements of the ambient vector space of self.

• base_ring – (default: ) base ring for the generated module.

OUTPUT:

• submodule spanned by gens.

Note: The output need not be a submodule of self, nor even of the ambient space. It must, however, be
contained in the ambient vector space.

See also span_of_basis(), submodule(), and submodule_with_basis(),

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N.gen(0)])
sage: Ns.span([N.gen(1)])
Sublattice <N(0, 1, 0)>
sage: Ns.submodule([N.gen(1)])
Traceback (most recent call last):
...
ArithmeticError: argument gens (= [N(0, 1, 0)]) does not generate a submodule␣
→˓of self

span_of_basis(basis, base_ring=Integer Ring, *args, **kwds)
Return the submodule with the given basis.

INPUT:

• basis – list of elements of the ambient vector space of self.

• base_ring – (default: ) base ring for the generated module.

OUTPUT:
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• submodule spanned by basis.

Note: The output need not be a submodule of self, nor even of the ambient space. It must, however, be
contained in the ambient vector space.

See also span(), submodule(), and submodule_with_basis(),

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.span_of_basis([(1,2,3)])
sage: Ns.span_of_basis([(2,4,0)])
Sublattice <N(2, 4, 0)>
sage: Ns.span_of_basis([(1/5,2/5,0), (1/7,1/7,0)])
Free module of degree 3 and rank 2 over Integer Ring
User basis matrix:
[1/5 2/5 0]
[1/7 1/7 0]

Of course the input basis vectors must be linearly independent:

sage: Ns.span_of_basis([(1,2,0), (2,4,0)])
Traceback (most recent call last):
...
ValueError: The given basis vectors must be linearly independent.

class sage.geometry.toric_lattice.ToricLattice_quotient(V ,W , check=True,
positive_point=None,
positive_dual_point=None,
**kwds)

Bases: FGP_Module_class

Construct the quotient of a toric lattice V by its sublattice W.

INPUT:

• V – ambient toric lattice;

• W – sublattice of V;

• check – (default: True) whether to check correctness of input or not.

If the quotient is one-dimensional and torsion free, the following two mutually exclusive keyword arguments are
also allowed. They decide the sign choice for the (single) generator of the quotient lattice:

• positive_point – a lattice point of self not in the sublattice sub (that is, not zero in the quotient
lattice). The quotient generator will be in the same direction as positive_point.

• positive_dual_point – a dual lattice point. The quotient generator will be chosen such that its lift
has a positive product with positive_dual_point. Note: if positive_dual_point is not zero
on the sublattice sub, then the notion of positivity will depend on the choice of lift!

Further given named arguments are passed to the constructor of an FGP module.

OUTPUT:

• quotient of V by W.

EXAMPLES:

The intended way to get objects of this class is to use quotient() method of toric lattices:
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sage: N = ToricLattice(3)
sage: sublattice = N.submodule([(1,1,0), (3,2,1)])
sage: Q = N/sublattice
sage: Q
1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)>
sage: Q.gens()
(N[1, 0, 0],)

Here, sublattice happens to be of codimension one in N. If you want to prescribe the sign of the quotient
generator, you can do either:

sage: Q = N.quotient(sublattice, positive_point=N(0,0,-1)); Q
1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)>
sage: Q.gens()
(N[1, 0, 0],)

or:

sage: M = N.dual()
sage: Q = N.quotient(sublattice, positive_dual_point=M(1,0,0)); Q
1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)>
sage: Q.gens()
(N[1, 0, 0],)

Element

alias of ToricLattice_quotient_element

base_extend(R)
Return the base change of self to the ring R.

INPUT:

• R – either or .

OUTPUT:

• self if 𝑅 = , quotient of the base extension of the ambient lattice by the base extension of the
sublattice if 𝑅 = .

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.base_extend(ZZ) is Q
True
sage: Q.base_extend(QQ)
Vector space quotient V/W of dimension 1 over Rational Field where
V: Vector space of dimension 3 over Rational Field
W: Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]

coordinate_vector(x, reduce=False)
Return coordinates of x with respect to the optimized representation of self.

INPUT:

• x – element of self or convertible to self
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• reduce – (default: False); if True, reduce coefficients modulo invariants

OUTPUT:

The coordinates as a vector.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Q = N.quotient(N.span([N(1,2,3), N(0,2,1)]), positive_point=N(0,-1,0))
sage: q = Q.gen(0); q
N[0, -1, 0]
sage: q.vector() # indirect test
(1)
sage: Q.coordinate_vector(q)
(1)

dimension()

Return the rank of self.

OUTPUT:

Integer. The dimension of the free part of the quotient.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
1
sage: Ns = N.submodule([N(1,4,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
2

dual()

Return the lattice dual to self.

OUTPUT:

• a toric lattice quotient.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([(1, -1, -1)])
sage: Q = N / Ns
sage: Q.dual()
Sublattice <M(1, 0, 1), M(0, 1, -1)>

gens()

Return the generators of the quotient.

OUTPUT:

A tuple of ToricLattice_quotient_element generating the quotient.
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EXAMPLES:

sage: N = ToricLattice(3)
sage: Q = N.quotient(N.span([N(1,2,3), N(0,2,1)]), positive_point=N(0,-1,0))
sage: Q.gens()
(N[0, -1, 0],)

is_torsion_free()

Check if self is torsion-free.

OUTPUT:

• True is self has no torsion and False otherwise.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.is_torsion_free()
False
sage: Ns = N.submodule([N(1,4,0)])
sage: Q = N/Ns
sage: Q.is_torsion_free()
True

rank()

Return the rank of self.

OUTPUT:

Integer. The dimension of the free part of the quotient.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
1
sage: Ns = N.submodule([N(1,4,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
2

class sage.geometry.toric_lattice.ToricLattice_quotient_element(parent, x,
check=True)

Bases: FGP_Element

Create an element of a toric lattice quotient.

Warning: You probably should not construct such elements explicitly.

INPUT:
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• same as for FGP_Element.

OUTPUT:

• element of a toric lattice quotient.

set_immutable()

Make self immutable.

OUTPUT:

• none.

Note: Elements of toric lattice quotients are always immutable, so this method does nothing, it is introduced
for compatibility purposes only.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.0.set_immutable()

class sage.geometry.toric_lattice.ToricLattice_sublattice(ambient, gens, check=True,
already_echelonized=False,
category=None)

Bases: ToricLattice_sublattice_with_basis, FreeModule_submodule_pid

Construct the sublattice of ambient toric lattice generated by gens.

INPUT (same as for FreeModule_submodule_pid):

• ambient – ambient toric lattice for this sublattice;

• gens – list of elements of ambient generating the constructed sublattice;

• see the base class for other available options.

OUTPUT:

• sublattice of a toric lattice with an automatically chosen basis.

See also ToricLattice_sublattice_with_basis if you want to specify an explicit basis.

EXAMPLES:

The intended way to get objects of this class is to use submodule() method of toric lattices:

sage: N = ToricLattice(3)
sage: sublattice = N.submodule([(1,1,0), (3,2,1)])
sage: sublattice.has_user_basis()
False
sage: sublattice.basis()
[
N(1, 0, 1),
N(0, 1, -1)
]

For sublattices without user-specified basis, the basis obtained above is the same as the “standard” one:
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sage: sublattice.echelonized_basis()
[
N(1, 0, 1),
N(0, 1, -1)
]

class sage.geometry.toric_lattice.ToricLattice_sublattice_with_basis(ambient,
basis,
check=True,
echelo-
nize=False,
echelo-
nized_ba-
sis=None,
already_eche-
lo-
nized=False,
cate-
gory=None)

Bases: ToricLattice_generic, FreeModule_submodule_with_basis_pid

Construct the sublattice of ambient toric lattice with given basis.

INPUT (same as for FreeModule_submodule_with_basis_pid):

• ambient – ambient toric lattice for this sublattice;

• basis – list of linearly independent elements of ambient, these elements will be used as the default basis
of the constructed sublattice;

• see the base class for other available options.

OUTPUT:

• sublattice of a toric lattice with a user-specified basis.

See also ToricLattice_sublattice if you do not want to specify an explicit basis.

EXAMPLES:

The intended way to get objects of this class is to use submodule_with_basis() method of toric lattices:

sage: N = ToricLattice(3)
sage: sublattice = N.submodule_with_basis([(1,1,0), (3,2,1)])
sage: sublattice.has_user_basis()
True
sage: sublattice.basis()
[
N(1, 1, 0),
N(3, 2, 1)
]

Even if you have provided your own basis, you still can access the “standard” one:

sage: sublattice.echelonized_basis()
[
N(1, 0, 1),
N(0, 1, -1)
]
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dual()

Return the lattice dual to self.

OUTPUT:

• a toric lattice quotient.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([(1,1,0), (3,2,1)])
sage: Ns.dual()
2-d lattice, quotient of 3-d lattice M by Sublattice <M(1, -1, -1)>

plot(**options)
Plot self.

INPUT:

• any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:

• a plot.

EXAMPLES:

sage: N = ToricLattice(3)
sage: sublattice = N.submodule_with_basis([(1,1,0), (3,2,1)])
sage: sublattice.plot() #␣
→˓needs sage.plot
Graphics3d Object

Now we plot both the ambient lattice and its sublattice:

sage: N.plot() + sublattice.plot(point_color="red") #␣
→˓needs sage.plot
Graphics3d Object

sage.geometry.toric_lattice.is_ToricLattice(x)
Check if x is a toric lattice.

INPUT:

• x – anything.

OUTPUT:

• True if x is a toric lattice and False otherwise.

EXAMPLES:

sage: from sage.geometry.toric_lattice import (
....: is_ToricLattice)
sage: is_ToricLattice(1)
doctest:warning...
DeprecationWarning: The function is_ToricLattice is deprecated;
use isinstance(..., ToricLattice_generic) instead.
See https://github.com/sagemath/sage/issues/38126 for details.
False
sage: N = ToricLattice(3)
sage: N

(continues on next page)
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(continued from previous page)

3-d lattice N
sage: is_ToricLattice(N)
True

sage.geometry.toric_lattice.is_ToricLatticeQuotient(x)
Check if x is a toric lattice quotient.

INPUT:

• x – anything.

OUTPUT:

• True if x is a toric lattice quotient and False otherwise.

EXAMPLES:

sage: from sage.geometry.toric_lattice import (
....: is_ToricLatticeQuotient)
sage: is_ToricLatticeQuotient(1)
doctest:warning...
DeprecationWarning: The function is_ToricLatticeQuotient is deprecated;
use isinstance(..., ToricLattice_quotient) instead.
See https://github.com/sagemath/sage/issues/38126 for details.
False
sage: N = ToricLattice(3)
sage: N
3-d lattice N
sage: is_ToricLatticeQuotient(N)
False
sage: Q = N / N.submodule([(1,2,3), (3,2,1)])
sage: Q
Quotient with torsion of 3-d lattice N
by Sublattice <N(1, 2, 3), N(0, 4, 8)>
sage: is_ToricLatticeQuotient(Q)
True

2.5.2 Convex rational polyhedral cones

This module was designed as a part of framework for toric varieties (variety, fano_variety). While the emphasis
is on strictly convex cones, non-strictly convex cones are supported as well. Work with distinct lattices (in the sense of
discrete subgroups spanning vector spaces) is supported. The default lattice is ToricLattice 𝑁 of the appropriate
dimension. The only case when you must specify lattice explicitly is creation of a 0-dimensional cone, where dimension
of the ambient space cannot be guessed.

AUTHORS:

• Andrey Novoseltsev (2010-05-13): initial version.

• Andrey Novoseltsev (2010-06-17): substantial improvement during review by Volker Braun.

• Volker Braun (2010-06-21): various spanned/quotient/dual lattice computations added.

• Volker Braun (2010-12-28): Hilbert basis for cones.

• Andrey Novoseltsev (2012-02-23): switch to PointCollection container.

EXAMPLES:

Use Cone() to construct cones:
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sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: halfspace = Cone([(1,0,0), (0,1,0), (-1,-1,0), (0,0,1)])
sage: positive_xy = Cone([(1,0,0), (0,1,0)])
sage: four_rays = Cone([(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1)])

For all of the cones above we have provided primitive generating rays, but in fact this is not necessary - a cone can be
constructed from any collection of rays (from the same space, of course). If there are non-primitive (or even non-integral)
rays, they will be replaced with primitive ones. If there are extra rays, they will be discarded. Of course, this means that
Cone() has to do some work before actually constructing the cone and sometimes it is not desirable, if you know for
sure that your input is already “good”. In this case you can use options check=False to force Cone() to use exactly
the directions that you have specified and normalize=False to force it to use exactly the rays that you have specified.
However, it is better not to use these possibilities without necessity, since cones are assumed to be represented by a
minimal set of primitive generating rays. See Cone() for further documentation on construction.

Once you have a cone, you can perform numerous operations on it. The most important ones are, probably, ray accessing
methods:

sage: rays = halfspace.rays()
sage: rays
N( 0, 0, 1),
N( 0, 1, 0),
N( 0, -1, 0),
N( 1, 0, 0),
N(-1, 0, 0)
in 3-d lattice N
sage: rays.set()
frozenset({N(-1, 0, 0), N(0, -1, 0), N(0, 0, 1), N(0, 1, 0), N(1, 0, 0)})
sage: rays.matrix()
[ 0 0 1]
[ 0 1 0]
[ 0 -1 0]
[ 1 0 0]
[-1 0 0]
sage: rays.column_matrix()
[ 0 0 0 1 -1]
[ 0 1 -1 0 0]
[ 1 0 0 0 0]
sage: rays(3)
N(1, 0, 0)
in 3-d lattice N
sage: rays[3]
N(1, 0, 0)
sage: halfspace.ray(3)
N(1, 0, 0)

The method rays() returns a PointCollection with the 𝑖-th element being the primitive integral generator of the
𝑖-th ray. It is possible to convert this collection to a matrix with either rows or columns corresponding to these generators.
You may also change the default output_format() of all point collections to be such a matrix.

If you want to do something with each ray of a cone, you can write

sage: for ray in positive_xy: print(ray)
N(1, 0, 0)
N(0, 1, 0)

There are two dimensions associated to each cone - the dimension of the subspace spanned by the cone and the dimension
of the space where it lives:
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sage: positive_xy.dim()
2
sage: positive_xy.lattice_dim()
3

You also may be interested in this dimension:

sage: dim(positive_xy.linear_subspace())
0
sage: dim(halfspace.linear_subspace())
2

Or, perhaps, all you care about is whether it is zero or not:

sage: positive_xy.is_strictly_convex()
True
sage: halfspace.is_strictly_convex()
False

You can also perform these checks:

sage: positive_xy.is_simplicial()
True
sage: four_rays.is_simplicial()
False
sage: positive_xy.is_smooth()
True

You can work with subcones that form faces of other cones:

sage: # needs sage.graphs
sage: face = four_rays.faces(dim=2)[0]
sage: face
2-d face of 3-d cone in 3-d lattice N
sage: face.rays()
N(-1, -1, 1),
N(-1, 1, 1)
in 3-d lattice N
sage: face.ambient_ray_indices()
(2, 3)
sage: four_rays.rays(face.ambient_ray_indices())
N(-1, -1, 1),
N(-1, 1, 1)
in 3-d lattice N

If you need to know inclusion relations between faces, you can use

sage: # needs sage.graphs
sage: L = four_rays.face_lattice()
sage: [len(s) for s in L.level_sets()]
[1, 4, 4, 1]
sage: face = L.level_sets()[2][0]
sage: face.rays()
N(1, 1, 1),
N(1, -1, 1)
in 3-d lattice N
sage: L.hasse_diagram().neighbors_in(face)

(continues on next page)
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[1-d face of 3-d cone in 3-d lattice N,
1-d face of 3-d cone in 3-d lattice N]

Warning: The order of faces in level sets of the face lattice may differ from the order of faces returned by faces().
While the first order is random, the latter one ensures that one-dimensional faces are listed in the same order as
generating rays.

When all the functionality provided by cones is not enough, you may want to check if you can do necessary things using
polyhedra corresponding to cones:

sage: four_rays.polyhedron()
A 3-dimensional polyhedron in ZZ^3 defined as
the convex hull of 1 vertex and 4 rays

And of course you are always welcome to suggest new features that should be added to cones!

REFERENCES:

• [Ful1993]

sage.geometry.cone.Cone(rays, lattice=None, check=True, normalize=True)
Construct a (not necessarily strictly) convex rational polyhedral cone.

INPUT:

• rays – a list of rays. Each ray should be given as a list or a vector convertible to the rational extension of
the given lattice. May also be specified by a Polyhedron_base object;

• lattice – ToricLattice, 𝑛, or any other object that behaves like these. If not specified, an attempt
will be made to determine an appropriate toric lattice automatically;

• check – by default the input data will be checked for correctness (e.g. that all rays have the same number of
components) and generating rays will be constructed from rays. If you know that the input is a minimal set
of generators of a valid cone, you may significantly decrease construction time using check=False option;

• normalize – you can further speed up construction using normalize=False option. In this case
rays must be a list of immutable primitive rays in lattice. In general, you should not use this option, it
is designed for code optimization and does not give as drastic improvement in speed as the previous one.

OUTPUT:

• convex rational polyhedral cone determined by rays.

EXAMPLES:

Let’s define a cone corresponding to the first quadrant of the plane (note, you can even mix objects of different
types to represent rays, as long as you let this function to perform all the checks and necessary conversions!):

sage: quadrant = Cone([(1,0), [0,1]])
sage: quadrant
2-d cone in 2-d lattice N
sage: quadrant.rays()
N(1, 0),
N(0, 1)
in 2-d lattice N

If you give more rays than necessary, the extra ones will be discarded:
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sage: Cone([(1,0), (0,1), (1,1), (0,1)]).rays()
N(0, 1),
N(1, 0)
in 2-d lattice N

However, this work is not done with check=False option, so use it carefully!

sage: Cone([(1,0), (0,1), (1,1), (0,1)], check=False).rays()
N(1, 0),
N(0, 1),
N(1, 1),
N(0, 1)
in 2-d lattice N

Even worse things can happen with normalize=False option:

sage: Cone([(1,0), (0,1)], check=False, normalize=False)
Traceback (most recent call last):
...
AttributeError: tuple object has no attribute parent ...

You can construct different “not” cones: not full-dimensional, not strictly convex, not containing any rays:

sage: one_dimensional_cone = Cone([(1,0)])
sage: one_dimensional_cone.dim()
1
sage: half_plane = Cone([(1,0), (0,1), (-1,0)])
sage: half_plane.rays()
N( 0, 1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
sage: half_plane.is_strictly_convex()
False
sage: origin = Cone([(0,0)])
sage: origin.rays()
Empty collection
in 2-d lattice N
sage: origin.dim()
0
sage: origin.lattice_dim()
2

You may construct the cone above without giving any rays, but in this case you must provide lattice explicitly:

sage: origin = Cone([])
Traceback (most recent call last):
...
ValueError: lattice must be given explicitly if there are no rays!
sage: origin = Cone([], lattice=ToricLattice(2))
sage: origin.dim()
0
sage: origin.lattice_dim()
2
sage: origin.lattice()
2-d lattice N

However, the trivial cone in n dimensions has a predefined constructor for you to use:
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sage: origin = cones.trivial(2)
sage: origin.rays()
Empty collection
in 2-d lattice N

Of course, you can also provide lattice in other cases:

sage: L = ToricLattice(3, "L")
sage: c1 = Cone([(1,0,0),(1,1,1)], lattice=L)
sage: c1.rays()
L(1, 0, 0),
L(1, 1, 1)
in 3-d lattice L

Or you can construct cones from rays of a particular lattice:

sage: ray1 = L(1,0,0)
sage: ray2 = L(1,1,1)
sage: c2 = Cone([ray1, ray2])
sage: c2.rays()
L(1, 0, 0),
L(1, 1, 1)
in 3-d lattice L
sage: c1 == c2
True

When the cone in question is not strictly convex, the standard form for the “generating rays” of the linear subspace
is “basis vectors and their negatives”, as in the following example:

sage: plane = Cone([(1,0), (0,1), (-1,-1)])
sage: plane.rays()
N( 0, 1),
N( 0, -1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N

The cone can also be specified by a Polyhedron_base:

sage: p = plane.polyhedron()
sage: Cone(p)
2-d cone in 2-d lattice N
sage: Cone(p) == plane
True

class sage.geometry.cone.ConvexRationalPolyhedralCone(rays=None, lattice=None,
ambient=None,
ambient_ray_indices=None,
PPL=None)

Bases: IntegralRayCollection, Container, ConvexSet_closed, ConvexRationalPolyhe-
dralCone

Create a convex rational polyhedral cone.

Warning: This class does not perform any checks of correctness of input nor does it convert input into the
standard representation. Use Cone() to construct cones.
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Cones are immutable, but they cache most of the returned values.

INPUT:

The input can be either:

• rays – list of immutable primitive vectors in lattice;

• lattice –ToricLattice, 𝑛, or any other object that behaves like these. IfNone, it will be determined
as parent() of the first ray. Of course, this cannot be done if there are no rays, so in this case you must
give an appropriate lattice directly.

or (these parameters must be given as keywords):

• ambient – ambient structure of this cone, a bigger cone or a fan, this cone must be a face of ambient;

• ambient_ray_indices – increasing list or tuple of integers, indices of rays of ambient generating
this cone.

In both cases, the following keyword parameter may be specified in addition:

• PPL – either None (default) or a C_Polyhedron representing the cone. This serves only to cache the
polyhedral data if you know it already. The constructor does not make a copy so the PPL object should not
be modified afterwards.

OUTPUT:

• convex rational polyhedral cone.

Note: Every cone has its ambient structure. If it was not specified, it is this cone itself.

Hilbert_basis()

Return the Hilbert basis of the cone.

Given a strictly convex cone 𝐶 ⊂ R𝑑, the Hilbert basis of 𝐶 is the set of all irreducible elements in the
semigroup 𝐶 ∩ 𝑑. It is the unique minimal generating set over for the integral points 𝐶 ∩ 𝑑.

If the cone 𝐶 is not strictly convex, this method finds the (unique) minimal set of lattice points that need to
be added to the defining rays of the cone to generate the whole semigroup 𝐶 ∩ 𝑑. But because the rays of
the cone are not unique nor necessarily minimal in this case, neither is the returned generating set (consisting
of the rays plus additional generators).

See also semigroup_generators() if you are not interested in a minimal set of generators.

OUTPUT:

• a PointCollection. The rays of self are the first self.nrays() entries.

EXAMPLES:

The following command ensures that the output ordering in the examples below is independent of TOPCOM,
you don’t have to use it:

sage: PointConfiguration.set_engine( internal )

We start with a simple case of a non-smooth 2-dimensional cone:

sage: Cone([(1,0), (1,2)]).Hilbert_basis()
N(1, 0),
N(1, 2),
N(1, 1)
in 2-d lattice N
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Two more complicated example from GAP/toric:

sage: Cone([[1,0], [3,4]]).dual().Hilbert_basis()
M(0, 1),
M(4, -3),
M(1, 0),
M(2, -1),
M(3, -2)
in 2-d lattice M
sage: cone = Cone([[1,2,3,4], [0,1,0,7], [3,1,0,2], [0,0,1,0]]).dual()
sage: cone.Hilbert_basis() # long time
M(10, -7, 0, 1),
M(-5, 21, 0, -3),
M( 0, -2, 0, 1),
M(15, -63, 25, 9),
M( 2, -3, 0, 1),
M( 1, -4, 1, 1),
M( 4, -4, 0, 1),
M(-1, 3, 0, 0),
M( 1, -5, 2, 1),
M( 3, -5, 1, 1),
M( 6, -5, 0, 1),
M( 3, -13, 5, 2),
M( 2, -6, 2, 1),
M( 5, -6, 1, 1),
M( 8, -6, 0, 1),
M( 0, 1, 0, 0),
M(-2, 8, 0, -1),
M(10, -42, 17, 6),
M( 7, -28, 11, 4),
M( 5, -21, 9, 3),
M( 6, -21, 8, 3),
M( 5, -14, 5, 2),
M( 2, -7, 3, 1),
M( 4, -7, 2, 1),
M( 7, -7, 1, 1),
M( 0, 0, 1, 0),
M( 1, 0, 0, 0),
M(-1, 7, 0, -1),
M(-3, 14, 0, -2)
in 4-d lattice M

Not a strictly convex cone:

sage: wedge = Cone([(1,0,0), (1,2,0), (0,0,1), (0,0,-1)])
sage: sorted(wedge.semigroup_generators())
[N(0, 0, -1), N(0, 0, 1), N(1, 0, 0), N(1, 1, 0), N(1, 2, 0)]
sage: wedge.Hilbert_basis()
N(1, 2, 0),
N(1, 0, 0),
N(0, 0, 1),
N(0, 0, -1),
N(1, 1, 0)
in 3-d lattice N

Not full-dimensional cones are ok, too (see Issue #11312):

sage: Cone([(1,1,0), (-1,1,0)]).Hilbert_basis()

(continues on next page)
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N( 1, 1, 0),
N(-1, 1, 0),
N( 0, 1, 0)
in 3-d lattice N

ALGORITHM:

The primal Normaliz algorithm, see [Normaliz].

Hilbert_coefficients(point, solver, verbose=None, integrality_tolerance=0)
Return the expansion coefficients of point with respect to Hilbert_basis().

INPUT:

• point – a lattice() point in the cone, or something that can be converted to a point. For example,
a list or tuple of integers.

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on MILP solvers and which default solver is
used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0). Sets the level of verbosity of the LP solver. Set to 0 by default, which
means quiet.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

OUTPUT:

A -vector of length len(self.Hilbert_basis()) with nonnegative components.

Note: Since the Hilbert basis elements are not necessarily linearly independent, the expansion coefficients
are not unique. However, this method will always return the same expansion coefficients when invoked with
the same argument.

EXAMPLES:

sage: cone = Cone([(1,0), (0,1)])
sage: cone.rays()
N(1, 0),
N(0, 1)
in 2-d lattice N
sage: cone.Hilbert_coefficients([3,2])
(3, 2)

A more complicated example:

sage: N = ToricLattice(2)
sage: cone = Cone([N(1,0), N(1,2)])
sage: cone.Hilbert_basis()
N(1, 0),
N(1, 2),
N(1, 1)
in 2-d lattice N
sage: cone.Hilbert_coefficients(N(1,1))
(0, 0, 1)

The cone need not be strictly convex:
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sage: N = ToricLattice(3)
sage: cone = Cone([N(1,0,0), N(1,2,0), N(0,0,1), N(0,0,-1)])
sage: cone.Hilbert_basis()
N(1, 2, 0),
N(1, 0, 0),
N(0, 0, 1),
N(0, 0, -1),
N(1, 1, 0)
in 3-d lattice N
sage: cone.Hilbert_coefficients(N(1,1,3))
(0, 0, 3, 0, 1)

Z_operators_gens()

Compute minimal generators of the Z-operators on this cone.

The Z-operators on a cone generalize the Z-matrices over the nonnegative orthant. They are simply negations
of the cross_positive_operators_gens().

OUTPUT:

A list of 𝑛-by-𝑛 matrices where 𝑛 is the ambient dimension of this cone. Each matrix 𝐿 in the list has the
property that 𝑠(𝐿(𝑥)) ≤ 0 whenever (𝑥, 𝑠) is an element of this cone’s discrete_complementar-
ity_set().

The returned matrices generate the cone of Z-operators on this cone; that is,

• Any nonnegative linear combination of the returned matrices is a Z-operator on this cone.

• Every Z-operator on this cone is some nonnegative linear combination of the returned matrices.

See also:

cross_positive_operators_gens(), lyapunov_like_basis(), positive_opera-
tors_gens()

REFERENCES:

• [BP1994]

• [Or2018b]

adjacent()

Return faces adjacent to self in the ambient face lattice.

Two distinct faces 𝐹1 and 𝐹2 of the same face lattice are adjacent if all of the following conditions hold:

• 𝐹1 and 𝐹2 have the same dimension 𝑑;

• 𝐹1 and 𝐹2 share a facet of dimension 𝑑− 1;

• 𝐹1 and 𝐹2 are facets of some face of dimension 𝑑+1, unless 𝑑 is the dimension of the ambient structure.

OUTPUT:

• tuple of cones.

EXAMPLES:

sage: # needs sage.graphs
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.adjacent()
()
sage: one_face = octant.faces(1)[0]

(continues on next page)

2.5. Toric geometry 373



Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

sage: len(one_face.adjacent())
2
sage: one_face.adjacent()[1]
1-d face of 3-d cone in 3-d lattice N

Things are a little bit subtle with fans, as we illustrate below.

First, we create a fan from two cones in the plane:

sage: fan = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,1), (-1,0)])
sage: cone = fan.generating_cone(0)
sage: len(cone.adjacent()) #␣
→˓needs sage.graphs
1

The second generating cone is adjacent to this one. Now we create the same fan, but embedded into the
3-dimensional space:

sage: fan = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0,0), (0,1,0), (-1,0,0)])
sage: cone = fan.generating_cone(0)
sage: len(cone.adjacent()) #␣
→˓needs sage.graphs
1

The result is as before, since we still have:

sage: fan.dim()
2

Now we add another cone to make the fan 3-dimensional:

sage: fan = Fan(cones=[(0,1), (1,2), (3,)],
....: rays=[(1,0,0), (0,1,0), (-1,0,0), (0,0,1)])
sage: cone = fan.generating_cone(0)
sage: len(cone.adjacent()) #␣
→˓needs sage.graphs
0

Since now cone has smaller dimension than fan, it and its adjacent cones must be facets of a bigger one,
but since cone in this example is generating, it is not contained in any other.

ambient()

Return the ambient structure of self.

OUTPUT:

• cone or fan containing self as a face.

EXAMPLES:

sage: cone = Cone([(1,2,3), (4,6,5), (9,8,7)])
sage: cone.ambient()
3-d cone in 3-d lattice N
sage: cone.ambient() is cone
True

(continues on next page)
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sage: # needs sage.graphs
sage: face = cone.faces(1)[0]
sage: face
1-d face of 3-d cone in 3-d lattice N
sage: face.ambient()
3-d cone in 3-d lattice N
sage: face.ambient() is cone
True

ambient_ray_indices()

Return indices of rays of the ambient structure generating self.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.ambient_ray_indices()
(0, 1)
sage: quadrant.facets()[1].ambient_ray_indices() #␣
→˓needs sage.graphs
(1,)

an_affine_basis()

Return points in self that form a basis for the affine hull.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.an_affine_basis()
[(0, 0), (1, 0), (0, 1)]
sage: ray = Cone([(1, 1)])
sage: ray.an_affine_basis()
[(0, 0), (1, 1)]
sage: line = Cone([(1,0), (-1,0)])
sage: line.an_affine_basis()
[(1, 0), (0, 0)]

cartesian_product(other, lattice=None)
Return the Cartesian product of self with other.

INPUT:

• other – a cone;

• lattice – (optional) the ambient lattice for the Cartesian product cone. By default, the direct sum of
the ambient lattices of self and other is constructed.

OUTPUT:

• a cone.

EXAMPLES:

sage: c = Cone([(1,)])
sage: c.cartesian_product(c)
2-d cone in 2-d lattice N+N

(continues on next page)

2.5. Toric geometry 375



Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

sage: _.rays()
N+N(1, 0),
N+N(0, 1)
in 2-d lattice N+N

contains(*args)
Check if a given point is contained in self.

INPUT:

• anything. An attempt will be made to convert all arguments into a single element of the ambient space
of self. If it fails, False will be returned.

OUTPUT:

• True if the given point is contained in self, False otherwise.

EXAMPLES:

sage: c = Cone([(1,0), (0,1)])
sage: c.contains(c.lattice()(1,0))
True
sage: c.contains((1,0))
True
sage: c.contains((1,1))
True
sage: c.contains(1,1)
True
sage: c.contains((-1,0))
False
sage: c.contains(c.dual_lattice()(1,0)) # random output (warning)
False
sage: c.contains(c.dual_lattice()(1,0))
False
sage: c.contains(1)
False
sage: c.contains(1/2, sqrt(3)) #␣
→˓needs sage.symbolic
True
sage: c.contains(-1/2, sqrt(3)) #␣
→˓needs sage.symbolic
False

cross_positive_operators_gens()

Compute minimal generators of the cross-positive operators on this cone.

Any positive operator 𝑃 on this cone will have 𝑠(𝑃 (𝑥)) ≥ 0 whenever 𝑥 is an element of this cone and
𝑠 is an element of its dual. By contrast, the cross-positive operators need only satisfy that property on the
discrete_complementarity_set(); that is, when 𝑥 and 𝑠 are “cross” (orthogonal).

The cross-positive operators (on some fixed cone) themselves form a closed convex cone. This method com-
putes and returns the generators of that cone as a list of matrices.

Cross-positive operators are also called exponentially-positive, since they become positive operators when
exponentiated. Other equivalent names are resolvent-positive, essentially-positive, and quasimonotone.

OUTPUT:

A list of 𝑛-by-𝑛 matrices where 𝑛 is the ambient dimension of this cone. Each matrix 𝐿 in the list has the
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property that 𝑠(𝐿(𝑥)) ≥ 0 whenever (𝑥, 𝑠) is an element of this cone’s discrete_complementar-
ity_set().

The returned matrices generate the cone of cross-positive operators on this cone; that is,

• Any nonnegative linear combination of the returned matrices is cross-positive on this cone.

• Every cross-positive operator on this cone is some nonnegative linear combination of the returned ma-
trices.

See also:

lyapunov_like_basis(), positive_operators_gens(), Z_operators_gens()

REFERENCES:

• [SV1970]

• [Or2018b]

EXAMPLES:

Cross-positive operators on the nonnegative orthant are negations of Z-matrices; that is, matrices whose
off-diagonal elements are nonnegative:

sage: K = cones.nonnegative_orthant(2)
sage: K.cross_positive_operators_gens()
[
[0 1] [0 0] [1 0] [-1 0] [0 0] [ 0 0]
[0 0], [1 0], [0 0], [ 0 0], [0 1], [ 0 -1]
]
sage: K = Cone([(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)])
sage: all(c[i][j] >= 0 for c in K.cross_positive_operators_gens()
....: for i in range(c.nrows())
....: for j in range(c.ncols())
....: if i != j)
True

The trivial cone in a trivial space has no cross-positive operators:

sage: K = cones.trivial(0)
sage: K.cross_positive_operators_gens()
[]

Every operator is a cross-positive operator on the ambient vector space:

sage: K = Cone([(1,), (-1,)])
sage: K.is_full_space()
True
sage: K.cross_positive_operators_gens()
[[1], [-1]]

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.cross_positive_operators_gens()
[
[1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
[0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
]

A non-obvious application is to find the cross-positive operators on the right half-plane [Or2018b]:
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sage: K = Cone([(1,0), (0,1), (0,-1)])
sage: K.cross_positive_operators_gens()
[
[1 0] [-1 0] [0 0] [ 0 0] [0 0] [ 0 0]
[0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
]

Cross-positive operators on a subspace are Lyapunov-like and vice-versa:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: lls = span(vector(l.list())
....: for l in K.lyapunov_like_basis())
sage: cs = span(vector(c.list())
....: for c in K.cross_positive_operators_gens())
sage: cs == lls
True

discrete_complementarity_set()

Compute a discrete complementarity set of this cone.

A discrete complementarity set of a cone is the set of all orthogonal pairs (𝑥, 𝑠) where 𝑥 is in some fixed
generating set of the cone, and 𝑠 is in some fixed generating set of its dual. The generators chosen for this
cone and its dual are simply their rays().

OUTPUT:

A tuple of pairs (𝑥, 𝑠) such that,

• 𝑥 and 𝑠 are nonzero.

• 𝑠(𝑥) is zero.

• 𝑥 is one of this cone’s rays().

• 𝑠 is one of the rays() of this cone’s dual().

REFERENCES:

• [Or2017]

EXAMPLES:

Pairs of standard basis elements form a discrete complementarity set for the nonnegative orthant:

sage: K = cones.nonnegative_orthant(2)
sage: K.discrete_complementarity_set()
((N(1, 0), M(0, 1)), (N(0, 1), M(1, 0)))

If a cone consists of a single ray, then the second components of a discrete complementarity set for that cone
should generate the orthogonal complement of the ray:

sage: K = Cone([(1,0)])
sage: K.discrete_complementarity_set()
((N(1, 0), M(0, 1)), (N(1, 0), M(0, -1)))
sage: K = Cone([(1,0,0)])
sage: K.discrete_complementarity_set()
((N(1, 0, 0), M(0, 1, 0)),
(N(1, 0, 0), M(0, -1, 0)),

(continues on next page)
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(N(1, 0, 0), M(0, 0, 1)),
(N(1, 0, 0), M(0, 0, -1)))

When a cone is the entire space, its dual is the trivial cone, so the only discrete complementarity set for it is
empty:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.discrete_complementarity_set()
()

Likewise for trivial cones, whose duals are the entire space:

sage: cones.trivial(0).discrete_complementarity_set()
()

dual()

Return the dual cone of self.

OUTPUT:

• cone.

EXAMPLES:

sage: cone = Cone([(1,0), (-1,3)])
sage: cone.dual().rays()
M(0, 1),
M(3, 1)
in 2-d lattice M

Now let’s look at a more complicated case:

sage: cone = Cone([(-2,-1,2), (4,1,0), (-4,-1,-5), (4,1,5)])
sage: cone.is_strictly_convex()
False
sage: cone.dim()
3
sage: cone.dual().rays()
M(7, -18, -2),
M(1, -4, 0)
in 3-d lattice M
sage: cone.dual().dual() is cone
True

We correctly handle the degenerate cases:

sage: N = ToricLattice(2)
sage: Cone([], lattice=N).dual().rays() # empty cone
M( 1, 0),
M(-1, 0),
M( 0, 1),
M( 0, -1)
in 2-d lattice M
sage: Cone([(1,0)], lattice=N).dual().rays() # ray in 2d
M(1, 0),

(continues on next page)
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M(0, 1),
M(0, -1)
in 2-d lattice M
sage: Cone([(1,0),(-1,0)], lattice=N).dual().rays() # line in 2d
M(0, 1),
M(0, -1)
in 2-d lattice M
sage: Cone([(1,0),(0,1)], lattice=N).dual().rays() # strictly convex cone
M(0, 1),
M(1, 0)
in 2-d lattice M
sage: Cone([(1,0),(-1,0),(0,1)], lattice=N).dual().rays() # half space
M(0, 1)
in 2-d lattice M
sage: Cone([(1,0),(0,1),(-1,-1)], lattice=N).dual().rays() # whole space
Empty collection
in 2-d lattice M

embed(cone)
Return the cone equivalent to the given one, but sitting in self as a face.

You may need to use this method before calling methods of cone that depend on the ambient structure, such
as ambient_ray_indices() or facet_of(). The cone returned by this method will have self as
ambient. If cone does not represent a valid cone of self, ValueError exception is raised.

Note: This method is very quick if self is already the ambient structure of cone, so you can use without
extra checks and performance hit even if cone is likely to sit in self but in principle may not.

INPUT:

• cone – a cone.

OUTPUT:

• a cone, equivalent to cone but sitting inside self.

EXAMPLES:

Let’s take a 3-d cone on 4 rays:

sage: c = Cone([(1,0,1), (0,1,1), (-1,0,1), (0,-1,1)])

Then any ray generates a 1-d face of this cone, but if you construct such a face directly, it will not “sit” inside
the cone:

sage: ray = Cone([(0,-1,1)])
sage: ray
1-d cone in 3-d lattice N
sage: ray.ambient_ray_indices()
(0,)
sage: ray.adjacent() #␣
→˓needs sage.graphs
()
sage: ray.ambient()
1-d cone in 3-d lattice N

If we want to operate with this ray as a face of the cone, we need to embed it first:
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sage: # needs sage.graphs
sage: e_ray = c.embed(ray)
sage: e_ray
1-d face of 3-d cone in 3-d lattice N
sage: e_ray.rays()
N(0, -1, 1)
in 3-d lattice N
sage: e_ray is ray
False
sage: e_ray.is_equivalent(ray)
True
sage: e_ray.ambient_ray_indices()
(3,)
sage: e_ray.adjacent()
(1-d face of 3-d cone in 3-d lattice N,
1-d face of 3-d cone in 3-d lattice N)

sage: e_ray.ambient()
3-d cone in 3-d lattice N

Not every cone can be embedded into a fixed ambient cone:

sage: c.embed(Cone([(0,0,1)]))
Traceback (most recent call last):
...
ValueError: 1-d cone in 3-d lattice N is not a face
of 3-d cone in 3-d lattice N!
sage: c.embed(Cone([(1,0,1), (-1,0,1)])) #␣
→˓needs sage.graphs
Traceback (most recent call last):
...
ValueError: 2-d cone in 3-d lattice N is not a face
of 3-d cone in 3-d lattice N!

face_lattice()

Return the face lattice of self.

This lattice will have the origin as the bottom (we do not include the empty set as a face) and this cone itself
as the top.

OUTPUT:

• finite poset of cones.

EXAMPLES:

Let’s take a look at the face lattice of the first quadrant:

sage: quadrant = Cone([(1,0), (0,1)])
sage: L = quadrant.face_lattice() #␣
→˓needs sage.combinat sage.graphs
sage: L #␣
→˓needs sage.combinat sage.graphs
Finite lattice containing 4 elements with distinguished linear extension

To see all faces arranged by dimension, you can do this:

sage: for level in L.level_sets(): print(level) #␣
→˓needs sage.combinat sage.graphs
[0-d face of 2-d cone in 2-d lattice N]

(continues on next page)
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[1-d face of 2-d cone in 2-d lattice N,
1-d face of 2-d cone in 2-d lattice N]

[2-d cone in 2-d lattice N]

For a particular face you can look at its actual rays…

sage: face = L.level_sets()[1][0] #␣
→˓needs sage.combinat sage.graphs
sage: face.rays() #␣
→˓needs sage.combinat sage.graphs
N(1, 0)
in 2-d lattice N

… or you can see the index of the ray of the original cone that corresponds to the above one:

sage: face.ambient_ray_indices() #␣
→˓needs sage.combinat sage.graphs
(0,)
sage: quadrant.ray(0)
N(1, 0)

An alternative to extracting faces from the face lattice is to use faces() method:

sage: face is quadrant.faces(dim=1)[0] #␣
→˓needs sage.combinat sage.graphs
True

The advantage of working with the face lattice directly is that you can (relatively easily) get faces that are
related to the given one:

sage: face = L.level_sets()[1][0] #␣
→˓needs sage.combinat sage.graphs
sage: D = L.hasse_diagram() #␣
→˓needs sage.combinat sage.graphs
sage: sorted(D.neighbors(face)) #␣
→˓needs sage.combinat sage.graphs
[0-d face of 2-d cone in 2-d lattice N,
2-d cone in 2-d lattice N]

However, you can achieve some of this functionality using facets(), facet_of(), and adjacent()
methods:

sage: # needs sage.graphs
sage: face = quadrant.faces(1)[0]
sage: face
1-d face of 2-d cone in 2-d lattice N
sage: face.rays()
N(1, 0)
in 2-d lattice N
sage: face.facets()
(0-d face of 2-d cone in 2-d lattice N,)
sage: face.facet_of()
(2-d cone in 2-d lattice N,)
sage: face.adjacent()
(1-d face of 2-d cone in 2-d lattice N,)
sage: face.adjacent()[0].rays()

(continues on next page)
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N(0, 1)
in 2-d lattice N

Note that if cone is a face of supercone, then the face lattice of cone consists of (appropriate) faces of
supercone:

sage: # needs sage.combinat sage.graphs
sage: supercone = Cone([(1,2,3,4), (5,6,7,8),
....: (1,2,4,8), (1,3,9,7)])
sage: supercone.face_lattice()
Finite lattice containing 16 elements with distinguished linear extension
sage: supercone.face_lattice().top()
4-d cone in 4-d lattice N
sage: cone = supercone.facets()[0]
sage: cone
3-d face of 4-d cone in 4-d lattice N
sage: cone.face_lattice()
Finite poset containing 8 elements with distinguished linear extension
sage: cone.face_lattice().bottom()
0-d face of 4-d cone in 4-d lattice N
sage: cone.face_lattice().top()
3-d face of 4-d cone in 4-d lattice N
sage: cone.face_lattice().top() == cone
True

faces(dim=None, codim=None)
Return faces of self of specified (co)dimension.

INPUT:

• dim – integer, dimension of the requested faces;

• codim – integer, codimension of the requested faces.

Note: You can specify at most one parameter. If you don’t give any, then all faces will be returned.

OUTPUT:

• if either dim or codim is given, the output will be a tuple of cones;

• if neither dim nor codim is given, the output will be the tuple of tuples as above, giving faces of all
existing dimensions. If you care about inclusion relations between faces, consider using face_lat-
tice() or adjacent(), facet_of(), and facets().

EXAMPLES:

Let’s take a look at the faces of the first quadrant:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.faces() #␣
→˓needs sage.graphs
((0-d face of 2-d cone in 2-d lattice N,),
(1-d face of 2-d cone in 2-d lattice N,
1-d face of 2-d cone in 2-d lattice N),

(2-d cone in 2-d lattice N,))
sage: quadrant.faces(dim=1) #␣
→˓needs sage.graphs

(continues on next page)
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(1-d face of 2-d cone in 2-d lattice N,
1-d face of 2-d cone in 2-d lattice N)

sage: face = quadrant.faces(dim=1)[0] #␣
→˓needs sage.graphs

Now you can look at the actual rays of this face…

sage: face.rays() #␣
→˓needs sage.graphs
N(1, 0)
in 2-d lattice N

… or you can see indices of the rays of the original cone that correspond to the above ray:

sage: face.ambient_ray_indices() #␣
→˓needs sage.graphs
(0,)
sage: quadrant.ray(0)
N(1, 0)

Note that it is OK to ask for faces of too small or high dimension:

sage: quadrant.faces(-1) #␣
→˓needs sage.graphs
()
sage: quadrant.faces(3) #␣
→˓needs sage.graphs
()

In the case of non-strictly convex cones even faces of small non-negative dimension may be missing:

sage: # needs sage.graphs
sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: halfplane.faces(0)
()
sage: halfplane.faces()
((1-d face of 2-d cone in 2-d lattice N,),
(2-d cone in 2-d lattice N,))

sage: plane = Cone([(1,0), (0,1), (-1,-1)])
sage: plane.faces(1)
()
sage: plane.faces()
((2-d cone in 2-d lattice N,),)

facet_normals()

Return inward normals to facets of self.

Note:

1. For a not full-dimensional cone facet normals will specify hyperplanes whose intersections with the space
spanned by self give facets of self.

2. For a not strictly convex cone facet normals will be orthogonal to the linear subspace of self, i.e. they
always will be elements of the dual cone of self.

3. The order of normals is random, but consistent with facets().
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OUTPUT:

• a PointCollection.

If the ambient lattice() of self is a toric lattice, the facet normals will be elements of the dual
lattice. If it is a general lattice (like ZZ^n) that does not have a dual() method, the facet normals will be
returned as integral vectors.

EXAMPLES:

sage: cone = Cone([(1,0), (-1,3)])
sage: cone.facet_normals()
M(0, 1),
M(3, 1)
in 2-d lattice M

Now let’s look at a more complicated case:

sage: cone = Cone([(-2,-1,2), (4,1,0), (-4,-1,-5), (4,1,5)])
sage: cone.is_strictly_convex()
False
sage: cone.dim()
3
sage: cone.linear_subspace().dimension()
1
sage: lsg = (QQ^3)(cone.linear_subspace().gen(0)); lsg
(1, 1/4, 5/4)
sage: cone.facet_normals()
M(7, -18, -2),
M(1, -4, 0)
in 3-d lattice M
sage: [lsg*normal for normal in cone.facet_normals()]
[0, 0]

A lattice that does not have a dual() method:

sage: Cone([(1,1),(0,1)], lattice=ZZ^2).facet_normals()
(-1, 1),
( 1, 0)
in Ambient free module of rank 2
over the principal ideal domain Integer Ring

We correctly handle the degenerate cases:

sage: N = ToricLattice(2)
sage: Cone([], lattice=N).facet_normals() # empty cone
Empty collection
in 2-d lattice M
sage: Cone([(1,0)], lattice=N).facet_normals() # ray in 2d
M(1, 0)
in 2-d lattice M
sage: Cone([(1,0),(-1,0)], lattice=N).facet_normals() # line in 2d
Empty collection
in 2-d lattice M
sage: Cone([(1,0),(0,1)], lattice=N).facet_normals() # strictly convex cone
M(0, 1),
M(1, 0)

(continues on next page)
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in 2-d lattice M
sage: Cone([(1,0),(-1,0),(0,1)], lattice=N).facet_normals() # half space
M(0, 1)
in 2-d lattice M
sage: Cone([(1,0),(0,1),(-1,-1)], lattice=N).facet_normals() # whole space
Empty collection
in 2-d lattice M

facet_of()

Return cones of the ambient face lattice having self as a facet.

OUTPUT:

• tuple of cones.

EXAMPLES:

sage: # needs sage.graphs
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.facet_of()
()
sage: one_face = octant.faces(1)[0]
sage: len(one_face.facet_of())
2
sage: one_face.facet_of()[1]
2-d face of 3-d cone in 3-d lattice N

While fan is the top element of its own cone lattice, which is a variant of a face lattice, we do not refer to
cones as its facets:

sage: fan = Fan([octant]) #␣
→˓needs sage.graphs
sage: fan.generating_cone(0).facet_of() #␣
→˓needs sage.graphs
()

Subcones of generating cones work as before:

sage: one_cone = fan(1)[0] #␣
→˓needs sage.graphs
sage: len(one_cone.facet_of()) #␣
→˓needs sage.graphs
2

facets()

Return facets (faces of codimension 1) of self.

OUTPUT:

• tuple of cones.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.facets() #␣
→˓needs sage.graphs
(1-d face of 2-d cone in 2-d lattice N,
1-d face of 2-d cone in 2-d lattice N)
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incidence_matrix()

Return the incidence matrix.

Note: The columns correspond to facets/facet normals in the order of facet_normals(), the rows
correspond to the rays in the order of rays().

EXAMPLES:

sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.incidence_matrix()
[0 1 1]
[1 0 1]
[1 1 0]

sage: halfspace = Cone([(1,0,0), (0,1,0), (-1,-1,0), (0,0,1)])
sage: halfspace.incidence_matrix()
[0]
[1]
[1]
[1]
[1]

interior()

Return the interior of self.

OUTPUT:

• either self, an empty polyhedron, or an instance of RelativeInterior.

EXAMPLES:

sage: c = Cone([(1,0,0), (0,1,0)]); c
2-d cone in 3-d lattice N
sage: c.interior()
The empty polyhedron in ZZ^3

sage: origin = cones.trivial(2); origin
0-d cone in 2-d lattice N
sage: origin.interior()
The empty polyhedron in ZZ^2

sage: K = cones.nonnegative_orthant(2); K
2-d cone in 2-d lattice N
sage: K.interior()
Relative interior of 2-d cone in 2-d lattice N

sage: K2 = Cone([(1,0),(-1,0),(0,1),(0,-1)]); K2
2-d cone in 2-d lattice N
sage: K2.interior() is K2
True

interior_contains(*args)
Check if a given point is contained in the interior of self.

For a cone of strictly lower-dimension than the ambient space, the interior is always empty. You probably
want to use relative_interior_contains() in this case.

INPUT:

2.5. Toric geometry 387



Combinatorial and Discrete Geometry, Release 10.4.rc1

• anything. An attempt will be made to convert all arguments into a single element of the ambient space
of self. If it fails, False will be returned.

OUTPUT:

• True if the given point is contained in the interior of self, False otherwise.

EXAMPLES:

sage: c = Cone([(1,0), (0,1)])
sage: c.contains((1,1))
True
sage: c.interior_contains((1,1))
True
sage: c.contains((1,0))
True
sage: c.interior_contains((1,0))
False

intersection(other)
Compute the intersection of two cones.

INPUT:

• other – cone.

OUTPUT:

• cone.

This raises ValueError if the ambient space dimensions are not compatible.

EXAMPLES:

sage: cone1 = Cone([(1,0), (-1, 3)])
sage: cone2 = Cone([(-1,0), (2, 5)])
sage: cone1.intersection(cone2).rays()
N(-1, 3),
N( 2, 5)
in 2-d lattice N

The intersection can also be expressed using the operator &:

sage: (cone1 & cone2).rays()
N(-1, 3),
N( 2, 5)
in 2-d lattice N

It is OK to intersect cones living in sublattices of the same ambient lattice:

sage: N = cone1.lattice()
sage: Ns = N.submodule([(1,1)])
sage: cone3 = Cone([(1,1)], lattice=Ns)
sage: I = cone1.intersection(cone3)
sage: I.rays()
N(1, 1)
in Sublattice <N(1, 1)>
sage: I.lattice()
Sublattice <N(1, 1)>

But you cannot intersect cones from incompatible lattices without explicit conversion:
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sage: cone1.intersection(cone1.dual())
Traceback (most recent call last):
...
ValueError: 2-d lattice N and 2-d lattice M
have different ambient lattices!
sage: cone1.intersection(Cone(cone1.dual().rays(), N)).rays()
N(3, 1),
N(0, 1)
in 2-d lattice N

An intersection with a polyhedron returns a polyhedron:

sage: cone = Cone([(1,0), (-1,0), (0,1)])
sage: p = polytopes.hypercube(2)
sage: cone & p
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: sorted(_.vertices_list())
[[-1, 0], [-1, 1], [1, 0], [1, 1]]

is_compact()

Checks if the cone has no rays.

OUTPUT:

• True if the cone has no rays, False otherwise.

EXAMPLES:

sage: c0 = cones.trivial(3)
sage: c0.is_trivial()
True
sage: c0.nrays()
0

is_empty()

Return whether self is the empty set.

Because a cone always contains the origin, this method returns False.

EXAMPLES:

sage: trivial_cone = cones.trivial(3)
sage: trivial_cone.is_empty()
False

is_equivalent(other)

Check if self is “mathematically” the same as other.

INPUT:

• other – cone.

OUTPUT:

• True if self and other define the same cones as sets of points in the same lattice, False otherwise.

There are three different equivalences between cones 𝐶1 and 𝐶2 in the same lattice:

1. They have the same generating rays in the same order. This is tested by C1 == C2.

2. They describe the same sets of points. This is tested by C1.is_equivalent(C2).
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3. They are in the same orbit of𝐺𝐿(𝑛, ) (and, therefore, correspond to isomorphic affine toric varieties).
This is tested by C1.is_isomorphic(C2).

EXAMPLES:

sage: cone1 = Cone([(1,0), (-1, 3)])
sage: cone2 = Cone([(-1,3), (1, 0)])
sage: cone1.rays()
N( 1, 0),
N(-1, 3)
in 2-d lattice N
sage: cone2.rays()
N(-1, 3),
N( 1, 0)
in 2-d lattice N
sage: cone1 == cone2
False
sage: cone1.is_equivalent(cone2)
True

is_face_of(cone)
Check if self forms a face of another cone.

INPUT:

• cone – cone.

OUTPUT:

• True if self is a face of cone, False otherwise.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: cone1 = Cone([(1,0)])
sage: cone2 = Cone([(1,2)])
sage: quadrant.is_face_of(quadrant)
True
sage: cone1.is_face_of(quadrant)
True
sage: cone2.is_face_of(quadrant)
False

Being a face means more than just saturating a facet inequality:

sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: cone = Cone([(2,1,0),(1,2,0)])
sage: cone.is_face_of(octant)
False

is_full_dimensional()

Check if this cone is solid.

A cone is said to be solid if it has nonempty interior. That is, if its extreme rays span the entire ambient space.

An alias is is_full_dimensional().

OUTPUT:

True if this cone is solid, and False otherwise.
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See also:

is_proper()

EXAMPLES:

The nonnegative orthant is always solid:

sage: quadrant = cones.nonnegative_orthant(2)
sage: quadrant.is_solid()
True
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.is_solid()
True

However, if we embed the two-dimensional nonnegative quadrant into three-dimensional space, then the
resulting cone no longer has interior, so it is not solid:

sage: quadrant = Cone([(1,0,0), (0,1,0)])
sage: quadrant.is_solid()
False

is_full_space()

Check if this cone is equal to its ambient vector space.

An alias is is_universe().

OUTPUT:

True if this cone equals its entire ambient vector space and False otherwise.

EXAMPLES:

A single ray in two dimensions is not equal to the entire space:

sage: K = Cone([(1,0)])
sage: K.is_full_space()
False

Neither is the nonnegative orthant:

sage: K = cones.nonnegative_orthant(2)
sage: K.is_full_space()
False

The right half-space contains a vector subspace, but it is still not equal to the entire space:

sage: K = Cone([(1,0), (-1,0), (0,1)])
sage: K.is_full_space()
False

However, if we allow conic combinations of both axes, then the resulting cone is the entire two-dimensional
space:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True

is_isomorphic(other)

Check if self is in the same 𝐺𝐿(𝑛, )-orbit as other.
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INPUT:

• other – cone.

OUTPUT:

• True if self and other are in the same 𝐺𝐿(𝑛, )-orbit, False otherwise.

There are three different equivalences between cones 𝐶1 and 𝐶2 in the same lattice:

1. They have the same generating rays in the same order. This is tested by C1 == C2.

2. They describe the same sets of points. This is tested by C1.is_equivalent(C2).

3. They are in the same orbit of𝐺𝐿(𝑛, ) (and, therefore, correspond to isomorphic affine toric varieties).
This is tested by C1.is_isomorphic(C2).

EXAMPLES:

sage: cone1 = Cone([(1,0), (0, 3)])
sage: m = matrix(ZZ, [(1, -5), (-1, 4)]) # a GL(2,ZZ)-matrix
sage: cone2 = Cone( m*r for r in cone1.rays() )
sage: cone1.is_isomorphic(cone2)
True

sage: cone1 = Cone([(1,0), (0, 3)])
sage: cone2 = Cone([(-1,3), (1, 0)])
sage: cone1.is_isomorphic(cone2)
False

is_proper()

Check if this cone is proper.

A cone is said to be proper if it is closed, convex, solid, and contains no lines. This cone is assumed to be
closed and convex; therefore it is proper if it is solid and contains no lines.

OUTPUT:

True if this cone is proper, and False otherwise.

See also:

is_strictly_convex(), is_solid()

EXAMPLES:

The nonnegative orthant is always proper:

sage: quadrant = cones.nonnegative_orthant(2)
sage: quadrant.is_proper()
True
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.is_proper()
True

However, if we embed the two-dimensional nonnegative quadrant into three-dimensional space, then the
resulting cone no longer has interior, so it is not solid, and thus not proper:

sage: quadrant = Cone([(1,0,0), (0,1,0)])
sage: quadrant.is_proper()
False

Likewise, a half-space contains at least one line, so it is not proper:
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sage: halfspace = Cone([(1,0), (0,1), (-1,0)])
sage: halfspace.is_proper()
False

is_relatively_open()

Return whether self is relatively open.

OUTPUT:

Boolean.

EXAMPLES:

sage: K = cones.nonnegative_orthant(3)
sage: K.is_relatively_open()
False

sage: K1 = Cone([(1,0), (-1,0)]); K1
1-d cone in 2-d lattice N
sage: K1.is_relatively_open()
True

is_simplicial()

Check if self is simplicial.

A cone is called simplicial if primitive vectors along its generating rays form a part of a rational basis of the
ambient space.

OUTPUT:

• True if self is simplicial, False otherwise.

EXAMPLES:

sage: cone1 = Cone([(1,0), (0, 3)])
sage: cone2 = Cone([(1,0), (0, 3), (-1,-1)])
sage: cone1.is_simplicial()
True
sage: cone2.is_simplicial()
False

is_smooth()

Check if self is smooth.

A cone is called smooth if primitive vectors along its generating rays form a part of an integral basis of the
ambient space. Equivalently, they generate the whole lattice on the linear subspace spanned by the rays.

OUTPUT:

• True if self is smooth, False otherwise.

EXAMPLES:

sage: cone1 = Cone([(1,0), (0, 1)])
sage: cone2 = Cone([(1,0), (-1, 3)])
sage: cone1.is_smooth()
True
sage: cone2.is_smooth()
False

The following cones are the same up to a 𝑆𝐿(2, ) coordinate transformation:
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sage: Cone([(1,0,0), (2,1,-1)]).is_smooth()
True
sage: Cone([(1,0,0), (2,1,1)]).is_smooth()
True
sage: Cone([(1,0,0), (2,1,2)]).is_smooth()
True

is_solid()

Check if this cone is solid.

A cone is said to be solid if it has nonempty interior. That is, if its extreme rays span the entire ambient space.

An alias is is_full_dimensional().

OUTPUT:

True if this cone is solid, and False otherwise.

See also:

is_proper()

EXAMPLES:

The nonnegative orthant is always solid:

sage: quadrant = cones.nonnegative_orthant(2)
sage: quadrant.is_solid()
True
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.is_solid()
True

However, if we embed the two-dimensional nonnegative quadrant into three-dimensional space, then the
resulting cone no longer has interior, so it is not solid:

sage: quadrant = Cone([(1,0,0), (0,1,0)])
sage: quadrant.is_solid()
False

is_strictly_convex()

Check if self is strictly convex.

A cone is called strictly convex if it does not contain any lines.

OUTPUT:

• True if self is strictly convex, False otherwise.

EXAMPLES:

sage: cone1 = Cone([(1,0), (0, 1)])
sage: cone2 = Cone([(1,0), (-1, 0)])
sage: cone1.is_strictly_convex()
True
sage: cone2.is_strictly_convex()
False

is_trivial()

Checks if the cone has no rays.

OUTPUT:
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• True if the cone has no rays, False otherwise.

EXAMPLES:

sage: c0 = cones.trivial(3)
sage: c0.is_trivial()
True
sage: c0.nrays()
0

is_universe()

Check if this cone is equal to its ambient vector space.

An alias is is_universe().

OUTPUT:

True if this cone equals its entire ambient vector space and False otherwise.

EXAMPLES:

A single ray in two dimensions is not equal to the entire space:

sage: K = Cone([(1,0)])
sage: K.is_full_space()
False

Neither is the nonnegative orthant:

sage: K = cones.nonnegative_orthant(2)
sage: K.is_full_space()
False

The right half-space contains a vector subspace, but it is still not equal to the entire space:

sage: K = Cone([(1,0), (-1,0), (0,1)])
sage: K.is_full_space()
False

However, if we allow conic combinations of both axes, then the resulting cone is the entire two-dimensional
space:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True

lineality()

Return the lineality of this cone.

The lineality of a cone is the dimension of the largest linear subspace contained in that cone.

OUTPUT:

A nonnegative integer; the dimension of the largest subspace contained within this cone.

REFERENCES:

• [Roc1970]

EXAMPLES:

The lineality of the nonnegative orthant is zero, since it clearly contains no lines:
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sage: K = cones.nonnegative_orthant(3)
sage: K.lineality()
0

However, if we add another ray so that the entire 𝑥-axis belongs to the cone, then the resulting cone will have
lineality one:

sage: K = Cone([(1,0,0), (-1,0,0), (0,1,0), (0,0,1)])
sage: K.lineality()
1

If our cone is all of R2, then its lineality is equal to the dimension of the ambient space (i.e. two):

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.lineality()
2
sage: K.lattice_dim()
2

Per the definition, the lineality of the trivial cone in a trivial space is zero:

sage: K = cones.trivial(0)
sage: K.lineality()
0

linear_subspace()

Return the largest linear subspace contained inside of self.

OUTPUT:

• subspace of the ambient space of self.

EXAMPLES:

sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: halfplane.linear_subspace()
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]

lines()

Return lines generating the linear subspace of self.

OUTPUT:

• tuple of primitive vectors in the lattice of self giving directions of lines that span the linear subspace
of self. These lines are arbitrary, but fixed. If you do not care about the order, see also line_set().

EXAMPLES:

sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: halfplane.lines()
N(1, 0)
in 2-d lattice N
sage: fullplane = Cone([(1,0), (0,1), (-1,-1)])
sage: fullplane.lines()

(continues on next page)
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N(0, 1),
N(1, 0)
in 2-d lattice N

lyapunov_like_basis()

Compute a basis of Lyapunov-like transformations on this cone.

A linear transformation 𝐿 is said to be Lyapunov-like on this cone if 𝐿(𝑥) and 𝑠 are orthogonal for every pair
(𝑥, 𝑠) in its discrete_complementarity_set(). The set of all such transformations forms a vector
space, namely the Lie algebra of the automorphism group of this cone.

OUTPUT:

A list of matrices forming a basis for the space of all Lyapunov-like transformations on this cone.

See also:

cross_positive_operators_gens(), positive_operators_gens(), Z_opera-
tors_gens()

REFERENCES:

• [Or2017]

• [RNPA2011]

EXAMPLES:

Every transformation is Lyapunov-like on the trivial cone:

sage: K = cones.trivial(2)
sage: M = MatrixSpace(K.lattice().base_field(), K.lattice_dim())
sage: list(M.basis()) == K.lyapunov_like_basis()
True

And by duality, every transformation is Lyapunov-like on the ambient space:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: M = MatrixSpace(K.lattice().base_field(), K.lattice_dim())
sage: list(M.basis()) == K.lyapunov_like_basis()
True

However, in a trivial space, there are no non-trivial linear maps, so there can be no Lyapunov-like basis:

sage: K = cones.trivial(0)
sage: K.lyapunov_like_basis()
[]

The Lyapunov-like transformations on the nonnegative orthant are diagonal matrices:

sage: K = cones.nonnegative_orthant(1)
sage: K.lyapunov_like_basis()
[[1]]

sage: K = cones.nonnegative_orthant(2)
sage: K.lyapunov_like_basis()
[

(continues on next page)
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[1 0] [0 0]
[0 0], [0 1]
]

sage: K = cones.nonnegative_orthant(3)
sage: K.lyapunov_like_basis()
[
[1 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 1 0] [0 0 0]
[0 0 0], [0 0 0], [0 0 1]
]

Only the identity matrix is Lyapunov-like on the pyramids defined by the one- and infinity-norms
[RNPA2011]:

sage: l31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: l31.lyapunov_like_basis()
[
[1 0 0]
[0 1 0]
[0 0 1]
]

sage: l3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
sage: l3infty.lyapunov_like_basis()
[
[1 0 0]
[0 1 0]
[0 0 1]
]

lyapunov_rank()

Compute the Lyapunov rank of this cone.

The Lyapunov rank of a cone is the dimension of the space of its Lyapunov-like transformations — that is,
the length of a lyapunov_like_basis(). Equivalently, the Lyapunov rank is the dimension of the Lie
algebra of the automorphism group of the cone.

OUTPUT:

A nonnegative integer representing the Lyapunov rank of this cone.

If the ambient space is trivial, then the Lyapunov rank will be zero. On the other hand, if the dimension of
the ambient vector space is 𝑛 > 0, then the resulting Lyapunov rank will be between 1 and 𝑛2 inclusive. If
this cone is_proper(), then that upper bound reduces from 𝑛2 to 𝑛. A Lyapunov rank of 𝑛 − 1 is not
possible (by Lemma 6 [Or2017]) in either case.

ALGORITHM:

Algorithm 3 [Or2017] is used. Every closed convex cone is isomorphic to a Cartesian product of a proper
cone, a subspace, and a trivial cone. The Lyapunov ranks of the subspace and trivial cone are easy to compute.
Essentially, we “peel off” those easy parts of the cone and compute their Lyapunov ranks separately. We then
compute the rank of the proper cone by counting a lyapunov_like_basis() for it. Summing the
individual ranks gives the Lyapunov rank of the original cone.

REFERENCES:

• [GT2014]
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• [Or2017]

• [RNPA2011]

EXAMPLES:

The Lyapunov rank of the nonnegative orthant is the same as the dimension of the ambient space
[RNPA2011]:

sage: positives = cones.nonnegative_orthant(1)
sage: positives.lyapunov_rank()
1
sage: quadrant = cones.nonnegative_orthant(2)
sage: quadrant.lyapunov_rank()
2
sage: octant = cones.nonnegative_orthant(3)
sage: octant.lyapunov_rank()
3

A vector space of dimension 𝑛 has Lyapunov rank 𝑛2 [Or2017]:

sage: Q5 = VectorSpace(QQ, 5)
sage: gs = Q5.basis() + [-r for r in Q5.basis()]
sage: K = Cone(gs)
sage: K.lyapunov_rank()
25

A pyramid in three dimensions has Lyapunov rank one [RNPA2011]:

sage: l31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: l31.lyapunov_rank()
1
sage: l3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
sage: l3infty.lyapunov_rank()
1

A ray in 𝑛 dimensions has Lyapunov rank 𝑛2 − 𝑛+ 1 [Or2017]:

sage: K = Cone([(1,0,0,0,0)])
sage: K.lyapunov_rank()
21
sage: K.lattice_dim()**2 - K.lattice_dim() + 1
21

A subspace of dimension𝑚 in an 𝑛-dimensional ambient space has Lyapunov rank 𝑛2−𝑚(𝑛−𝑚) [Or2017]:

sage: e1 = vector(QQ, [1,0,0,0,0])
sage: e2 = vector(QQ, [0,1,0,0,0])
sage: z = (0,0,0,0,0)
sage: K = Cone([e1, -e1, e2, -e2, z, z, z])
sage: K.lyapunov_rank()
19
sage: K.lattice_dim()**2 - K.dim()*K.codim()
19

Lyapunov rank is additive on a product of proper cones [RNPA2011]:

sage: l31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])

(continues on next page)
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sage: K = l31.cartesian_product(octant)
sage: K.lyapunov_rank()
4
sage: l31.lyapunov_rank() + octant.lyapunov_rank()
4

Two linearly-isomorphic cones have the same Lyapunov rank [RNPA2011]. A cone linearly-isomorphic to
the nonnegative octant will have Lyapunov rank 3:

sage: K = Cone([(1,2,3), (-1,1,0), (1,0,6)])
sage: K.lyapunov_rank()
3

Lyapunov rank is invariant under dual() [RNPA2011]:

sage: K = Cone([(2,2,4), (-1,9,0), (2,0,6)])
sage: K.lyapunov_rank() == K.dual().lyapunov_rank()
True

max_angle(other=None, exact=True, epsilon=0)
Return the maximal angle between self and other.

The maximal angle between two closed convex cones is the unique largest angle formed by any two unit-norm
vectors in those cones. In pathological cases, this computation can fail.

If it fails when exact is True and if each of the cones is_strictly_convex(), then a second attempt
will be made using inexact arithmetic. (This sometimes avoids the problem noted in [Or2024]). If the
computation fails when the cones are not strictly convex or when exact is False, a ValueError is
raised.

INPUT:

• other – (default: None) a rational, polyhedral convex cone

• exact – (default: True) whether or not to use exact rational arithmetic instead of floating point com-
putations; beware that True is not guaranteed to avoid floating point computations if the algorithm runs
into trouble in rational arithmetic

• epsilon – (default: 0) the tolerance to use when making comparisons

Warning: Using inexact arithmetic (exact=False) is faster, but this computation is only known to
be stable when both of the cones are strictly convex (or when one of them is the entire space, but the
maximal angle is obviously 𝜋 in that case).

OUTPUT:

A triple (𝜃max, 𝑢, 𝑣) containing:

• the maximal angle 𝜃max between self and other

• a vector 𝑢 in self that achieves the maximal angle

• a vector 𝑣 in other that achieves the maximal angle

If other is None (the default), then the maximal angle within this cone (between this cone and itself) is
returned.

If an eigenspace of dimension greater than one is encountered and if the corresponding angle cannot be ruled
out as a maximum, the behavior of this function depends on exact:
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• If exact is True and if both self and other are strictly convex, then the algorithm will fall
back to inexact arithmetic. In that case, the returned angle and vectors will be over sage.rings.
real_double.RDF.

• If exact is False or if either cone is not strictly convex, then a ValueError is raised to indicate
that we have failed; i.e. we cannot say with certainty what the maximal angle is.

REFERENCES:

• [IS2005]

• [SS2016]

• [Or2020]

• [Or2024]

ALGORITHM:

Algorithm 3 in [Or2020] is used. If a potentially-maximal angle corresponds to an eigenspace of dimension
two or more, we sometimes fall back to inexact arithmetic which has the effect of perturbing the cones. That
this will not affect the answer too much is one conclusion of [Or2024].

EXAMPLES:

The maximal angle in a single ray is zero:

sage: K = random_cone(min_rays=1, max_rays=1, max_ambient_dim=5)
sage: K.max_angle()[0]
0

The maximal angle in the nonnegative octant is 𝜋/2:

sage: K = cones.nonnegative_orthant(3)
sage: K.max_angle()[0]
1/2*pi

The maximal angle between the nonnegative quintant and the Schur cone of dimension 5 is about 0.8524𝜋.
The same result can be obtained faster using inexact arithmetic, but only confidently so because we already
know the answer:

sage: # long time
sage: P = cones.nonnegative_orthant(5)
sage: Q = cones.schur(5)
sage: actual = P.max_angle(Q)[0]
sage: expected = 0.8524*pi
sage: bool( (actual - expected).abs() < 0.0001 )
True
sage: actual = P.max_angle(Q,exact=False)[0]
sage: bool( (actual - expected).abs() < 0.0001 )
True

The maximal angle within the Schur cone is known explicitly via Gourion and Seeger’s Proposition 2
[GS2010]:

sage: n = 3
sage: K = cones.schur(n)
sage: bool(K.max_angle()[0] == ((n-1)/n)*pi)
True

Sage can’t prove that the actual and expected results are equal in the next two cases without a little nudge in
the right direction, and, moreover, it’s crashy about it:
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sage: n = 4
sage: K = cones.schur(n)
sage: actual = K.max_angle()[0].simplify()._sympy_()._sage_()
sage: expected = ((n-1)/n)*pi
sage: bool( actual == expected )
True
sage: n = 5
sage: K = cones.schur(n)
sage: actual = K.max_angle()[0].simplify()._sympy_()._sage_()
sage: expected = ((n-1)/n)*pi
sage: bool( actual == expected )
True

When there’s a unit norm vector in self whose negation is in other, they form a maximal angle of 𝜋:

sage: P = Cone([(5,1), (1,-1)])
sage: Q = Cone([(-1,0), (-1,0)])
sage: P.max_angle(Q)[0]
pi

orthogonal_sublattice(*args, **kwds)
The sublattice (in the dual lattice) orthogonal to the sublattice spanned by the cone.

Let𝑀 = self.dual_lattice() be the lattice dual to the ambient lattice of the given cone 𝜎. Then,
in the notation of [Ful1993], this method returns the sublattice

𝑀(𝜎)
def
= 𝜎⊥ ∩𝑀 ⊂𝑀

INPUT:

• either nothing or something that can be turned into an element of this lattice.

OUTPUT:

• if no arguments were given, a toric sublattice, otherwise the corresponding element of it.

EXAMPLES:

sage: c = Cone([(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1)])
sage: c.orthogonal_sublattice()
Sublattice <>
sage: c12 = Cone([(1,1,1), (1,-1,1)])
sage: c12.sublattice()
Sublattice <N(1, 1, 1), N(0, -1, 0)>
sage: c12.orthogonal_sublattice()
Sublattice <M(1, 0, -1)>

plot(**options)

Plot self.

INPUT:

• any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:

• a plot.

EXAMPLES:
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sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.plot() #␣
→˓needs sage.plot sage.symbolic
Graphics object consisting of 9 graphics primitives

polyhedron(**kwds)
Return the polyhedron associated to self.

Mathematically this polyhedron is the same as self.

OUTPUT:

• Polyhedron_base.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.polyhedron()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull
of 1 vertex and 2 rays
sage: line = Cone([(1,0), (-1,0)])
sage: line.polyhedron()
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull
of 1 vertex and 1 line

Here is an example of a trivial cone (see Issue #10237):

sage: origin = Cone([], lattice=ZZ^2)
sage: origin.polyhedron()
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull
of 1 vertex

positive_operators_gens(K2=None)
Compute minimal generators of the positive operators on this cone.

A linear operator on a cone is positive if the image of the cone under the operator is a subset of the cone.
This concept can be extended to two cones: the image of the first cone under a positive operator is a subset
of the second cone, which may live in a different space.

The positive operators (on one or two fixed cones) themselves form a closed convex cone. This method
computes and returns the generators of that cone as a list of matrices.

INPUT:

• K2 – (default: self) the codomain cone; the image of this cone under the returned generators is a subset
of K2.

OUTPUT:

A list of 𝑚-by-𝑛 matrices where 𝑚 is the ambient dimension of K2 and 𝑛 is the ambient dimension of this
cone. Each matrix 𝑃 in the list has the property that 𝑃 (𝑥) is an element of K2 whenever 𝑥 is an element of
this cone.

The returned matrices generate the cone of positive operators from this cone to K2; that is,

• Any nonnegative linear combination of the returned matrices sends elements of this cone to K2.

• Every positive operator on this cone (with respect to K2) is some nonnegative linear combination of the
returned matrices.

ALGORITHM:
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Computing positive operators directly is difficult, but computing their dual is straightforward using the gener-
ators of Berman and Gaiha. We construct the dual of the positive operators, and then return the dual of that,
which is guaranteed to be the desired positive operators because everything is closed, convex, and polyhedral.

See also:

cross_positive_operators_gens(), lyapunov_like_basis(), Z_opera-
tors_gens()

REFERENCES:

• [BG1972]

• [BP1994]

• [Or2018b]

EXAMPLES:

Positive operators on the nonnegative orthant are nonnegative matrices:

sage: K = Cone([(1,)])
sage: K.positive_operators_gens()
[[1]]

sage: K = Cone([(1,0), (0,1)])
sage: K.positive_operators_gens()
[
[1 0] [0 1] [0 0] [0 0]
[0 0], [0 0], [1 0], [0 1]
]

The trivial cone in a trivial space has no positive operators:

sage: K = cones.trivial(0)
sage: K.positive_operators_gens()
[]

Every operator is positive on the trivial cone:

sage: K = cones.trivial(1)
sage: K.positive_operators_gens()
[[1], [-1]]

sage: K = cones.trivial(2)
sage: K.is_trivial()
True
sage: K.positive_operators_gens()
[
[1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
[0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
]

Every operator is positive on the ambient vector space:

sage: K = Cone([(1,), (-1,)])
sage: K.is_full_space()
True
sage: K.positive_operators_gens()
[[1], [-1]]

(continues on next page)
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(continued from previous page)

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.positive_operators_gens()
[
[1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
[0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
]

A non-obvious application is to find the positive operators on the right half-plane [Or2018b]:

sage: K = Cone([(1,0), (0,1), (0,-1)])
sage: K.positive_operators_gens()
[
[1 0] [0 0] [ 0 0] [0 0] [ 0 0]
[0 0], [1 0], [-1 0], [0 1], [ 0 -1]
]

random_element(ring=Integer Ring)
Return a random element of this cone.

All elements of a convex cone can be represented as a nonnegative linear combination of its generators. A
random element is thus constructed by assigning random nonnegative weights to the generators of this cone.
By default, these weights are integral and the resulting random element will live in the same lattice as the
cone.

The random nonnegative weights are chosen from ring which defaults to ZZ. When ring is not ZZ, the
random element returned will be a vector. Only the rings ZZ and QQ are currently supported.

INPUT:

• ring – (default: ZZ) the ring from which the random generator weights are chosen; either ZZ or QQ.

OUTPUT:

Either a lattice element or vector contained in both this cone and its ambient vector space. If ring is ZZ,
a lattice element is returned; otherwise a vector is returned. If ring is neither ZZ nor QQ, then a NotIm-
plementedError is raised.

EXAMPLES:

The trivial element () is always returned in a trivial space:

sage: K = cones.trivial(0)
sage: K.random_element()
N()
sage: K.random_element(ring=QQ)
()

A random element of the trivial cone in a nontrivial space is zero:

sage: K = cones.trivial(3)
sage: K.random_element()
N(0, 0, 0)
sage: K.random_element(ring=QQ)
(0, 0, 0)

A random element of the nonnegative orthant should have all components nonnegative:
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sage: K = cones.nonnegative_orthant(3)
sage: all(x >= 0 for x in K.random_element())
True
sage: all(x >= 0 for x in K.random_element(ring=QQ))
True

If ring is not ZZ or QQ, an error is raised:

sage: K = Cone([(1,0), (0,1)])
sage: K.random_element(ring=RR)
Traceback (most recent call last):
...
NotImplementedError: ring must be either ZZ or QQ.

relative_interior()

Return the relative interior of self.

OUTPUT:

• either self or an instance of RelativeInterior.

EXAMPLES:

sage: c = Cone([(1,0,0), (0,1,0)]); c
2-d cone in 3-d lattice N
sage: c.relative_interior()
Relative interior of 2-d cone in 3-d lattice N

sage: origin = cones.trivial(2); origin
0-d cone in 2-d lattice N
sage: origin.relative_interior() is origin
True

sage: K1 = Cone([(1,0), (-1,0)]); K1
1-d cone in 2-d lattice N
sage: K1.relative_interior() is K1
True

sage: K2 = Cone([(1,0),(-1,0),(0,1),(0,-1)]); K2
2-d cone in 2-d lattice N
sage: K2.relative_interior() is K2
True

relative_interior_contains(*args)
Check if a given point is contained in the relative interior of self.

For a full-dimensional cone the relative interior is simply the interior, so this method will do the same check as
interior_contains(). For a strictly lower-dimensional cone, the relative interior is the cone without
its facets.

INPUT:

• anything. An attempt will be made to convert all arguments into a single element of the ambient space
of self. If it fails, False will be returned.

OUTPUT:

• True if the given point is contained in the relative interior of self, False otherwise.

EXAMPLES:
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sage: c = Cone([(1,0,0), (0,1,0)])
sage: c.contains((1,1,0))
True
sage: c.relative_interior_contains((1,1,0))
True
sage: c.interior_contains((1,1,0))
False
sage: c.contains((1,0,0))
True
sage: c.relative_interior_contains((1,0,0))
False
sage: c.interior_contains((1,0,0))
False

relative_orthogonal_quotient(supercone)
The quotient of the dual spanned lattice by the dual of the supercone’s spanned lattice.

In the notation of [Ful1993], if supercone = 𝜌 > 𝜎 = self is a cone that contains 𝜎 as a face,
then𝑀(𝜌) = supercone.orthogonal_sublattice() is a saturated sublattice of𝑀(𝜎) = self.
orthogonal_sublattice(). This method returns the quotient lattice. The lifts of the quotient gen-
erators are dim(𝜌)− dim(𝜎) linearly independent M-lattice lattice points that, together with𝑀(𝜌), generate
𝑀(𝜎).

OUTPUT:

• toric lattice quotient.

If we call the output Mrho, then

• Mrho.cover() == self.orthogonal_sublattice(), and

• Mrho.relations() == supercone.orthogonal_sublattice().

Note:

• 𝑀(𝜎)/𝑀(𝜌) has no torsion since the sublattice𝑀(𝜌) is saturated.

• In the codimension one case, (a lift of) the generator of𝑀(𝜎)/𝑀(𝜌) is chosen to be positive on 𝜎.

EXAMPLES:

sage: # needs sage.graphs
sage: rho = Cone([(1,1,1,3), (1,-1,1,3), (-1,-1,1,3), (-1,1,1,3)])
sage: rho.orthogonal_sublattice()
Sublattice <M(0, 0, 3, -1)>
sage: sigma = rho.facets()[1]
sage: sigma.orthogonal_sublattice()
Sublattice <M(0, 1, 1, 0), M(0, 0, 3, -1)>
sage: sigma.is_face_of(rho)
True
sage: Q = sigma.relative_orthogonal_quotient(rho); Q
1-d lattice, quotient
of Sublattice <M(0, 1, 1, 0), M(0, 0, 3, -1)>
by Sublattice <M(0, 0, 3, -1)>
sage: Q.gens()
(M[0, 1, 1, 0],)

Different codimension:
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sage: # needs sage.graphs
sage: rho = Cone([[1,-1,1,3],[-1,-1,1,3]])
sage: sigma = rho.facets()[0]
sage: sigma.orthogonal_sublattice()
Sublattice <M(1, 0, 2, -1), M(0, 1, 1, 0), M(0, 0, 3, -1)>
sage: rho.orthogonal_sublattice()
Sublattice <M(0, 1, 1, 0), M(0, 0, 3, -1)>
sage: sigma.relative_orthogonal_quotient(rho).gens()
(M[-1, 0, -2, 1],)

Sign choice in the codimension one case:

sage: sigma1 = Cone([(1, 2, 3), (1, -1, 1), (-1, 1, 1), (-1, -1, 1)]) # 3d
sage: sigma2 = Cone([(1, 1, -1), (1, 2, 3), (1, -1, 1), (1, -1, -1)]) # 3d
sage: rho = sigma1.intersection(sigma2)
sage: rho.relative_orthogonal_quotient(sigma1).gens()
(M[-5, -2, 3],)
sage: rho.relative_orthogonal_quotient(sigma2).gens()
(M[5, 2, -3],)

relative_quotient(subcone)
The quotient of the spanned lattice by the lattice spanned by a subcone.

In the notation of [Ful1993], let 𝑁 be the ambient lattice and 𝑁𝜎 the sublattice spanned by the given cone
𝜎. If 𝜌 < 𝜎 is a subcone, then 𝑁𝜌 = rho.sublattice() is a saturated sublattice of 𝑁𝜎 = self.
sublattice(). This method returns the quotient lattice. The lifts of the quotient generators are dim(𝜎)−
dim(𝜌) linearly independent primitive lattice points that, together with 𝑁𝜌, generate 𝑁𝜎 .

OUTPUT:

• toric lattice quotient.

Note:

• The quotient 𝑁𝜎/𝑁𝜌 of spanned sublattices has no torsion since the sublattice 𝑁𝜌 is saturated.

• In the codimension one case, the generator of𝑁𝜎/𝑁𝜌 is chosen to be in the same direction as the image
𝜎/𝑁𝜌

EXAMPLES:

sage: sigma = Cone([(1,1,1,3),(1,-1,1,3),(-1,-1,1,3),(-1,1,1,3)])
sage: rho = Cone([(-1, -1, 1, 3), (-1, 1, 1, 3)])
sage: sigma.sublattice()
Sublattice <N(1, 1, 1, 3), N(0, -1, 0, 0), N(-1, -1, 0, 0)>
sage: rho.sublattice()
Sublattice <N(-1, -1, 1, 3), N(0, 1, 0, 0)>
sage: sigma.relative_quotient(rho)
1-d lattice, quotient
of Sublattice <N(1, 1, 1, 3), N(0, -1, 0, 0), N(-1, -1, 0, 0)>
by Sublattice <N(1, 0, -1, -3), N(0, 1, 0, 0)>
sage: sigma.relative_quotient(rho).gens()
(N[1, 0, 0, 0],)

More complicated example:
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sage: rho = Cone([(1, 2, 3), (1, -1, 1)])
sage: sigma = Cone([(1, 2, 3), (1, -1, 1), (-1, 1, 1), (-1, -1, 1)])
sage: N_sigma = sigma.sublattice()
sage: N_sigma
Sublattice <N(1, 2, 3), N(1, -1, 1), N(-1, -1, -2)>
sage: N_rho = rho.sublattice()
sage: N_rho
Sublattice <N(1, -1, 1), N(1, 2, 3)>
sage: sigma.relative_quotient(rho).gens()
(N[-1, -1, -2],)
sage: N = rho.lattice()
sage: N_sigma == N.span(N_rho.gens() + tuple(q.lift()
....: for q in sigma.relative_quotient(rho).gens()))
True

Sign choice in the codimension one case:

sage: sigma1 = Cone([(1, 2, 3), (1, -1, 1), (-1, 1, 1), (-1, -1, 1)]) # 3d
sage: sigma2 = Cone([(1, 1, -1), (1, 2, 3), (1, -1, 1), (1, -1, -1)]) # 3d
sage: rho = sigma1.intersection(sigma2)
sage: rho.sublattice()
Sublattice <N(1, -1, 1), N(1, 2, 3)>
sage: sigma1.relative_quotient(rho)
1-d lattice, quotient
of Sublattice <N(1, 2, 3), N(1, -1, 1), N(-1, -1, -2)>
by Sublattice <N(1, 2, 3), N(0, 3, 2)>
sage: sigma1.relative_quotient(rho).gens()
(N[-1, -1, -2],)
sage: sigma2.relative_quotient(rho).gens()
(N[0, 2, 1],)

semigroup_generators()

Return generators for the semigroup of lattice points of self.

OUTPUT:

• a PointCollection of lattice points generating the semigroup of lattice points contained in self.

Note: No attempt is made to return a minimal set of generators, see Hilbert_basis() for that.

EXAMPLES:

The following command ensures that the output ordering in the examples below is independent of TOPCOM,
you don’t have to use it:

sage: PointConfiguration.set_engine( internal )

We start with a simple case of a non-smooth 2-dimensional cone:

sage: Cone([(1,0), (1,2)]).semigroup_generators()
N(1, 1),
N(1, 0),
N(1, 2)
in 2-d lattice N

A non-simplicial cone works, too:
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sage: cone = Cone([(3,0,-1), (1,-1,0), (0,1,0), (0,0,1)])
sage: sorted(cone.semigroup_generators())
[N(0, 0, 1), N(0, 1, 0), N(1, -1, 0), N(1, 0, 0), N(3, 0, -1)]

GAP’s toric package thinks this is challenging:

sage: cone = Cone([[1,2,3,4], [0,1,0,7], [3,1,0,2], [0,0,1,0]]).dual()
sage: len(cone.semigroup_generators())
2806

The cone need not be strictly convex:

sage: halfplane = Cone([(1,0), (2,1), (-1,0)])
sage: sorted(halfplane.semigroup_generators())
[N(-1, 0), N(0, 1), N(1, 0)]
sage: line = Cone([(1,1,1), (-1,-1,-1)])
sage: sorted(line.semigroup_generators())
[N(-1, -1, -1), N(1, 1, 1)]
sage: wedge = Cone([(1,0,0), (1,2,0), (0,0,1), (0,0,-1)])
sage: sorted(wedge.semigroup_generators())
[N(0, 0, -1), N(0, 0, 1), N(1, 0, 0), N(1, 1, 0), N(1, 2, 0)]

Nor does it have to be full-dimensional (see Issue #11312):

sage: Cone([(1,1,0), (-1,1,0)]).semigroup_generators()
N( 0, 1, 0),
N( 1, 1, 0),
N(-1, 1, 0)
in 3-d lattice N

Neither full-dimensional nor simplicial:

sage: A = matrix([(1, 3, 0), (-1, 0, 1), (1, 1, -2), (15, -2, 0)])
sage: A.elementary_divisors()
[1, 1, 1, 0]
sage: cone3d = Cone([(3,0,-1), (1,-1,0), (0,1,0), (0,0,1)])
sage: rays = (A*vector(v) for v in cone3d.rays())
sage: gens = Cone(rays).semigroup_generators(); sorted(gens)
[N(-2, -1, 0, 17),
N(0, 1, -2, 0),
N(1, -1, 1, 15),
N(3, -4, 5, 45),
N(3, 0, 1, -2)]

sage: set(map(tuple,gens)) == set(tuple(A*r) for r in cone3d.semigroup_
→˓generators())
True

ALGORITHM:

If the cone is not simplicial, it is first triangulated. Each simplicial subcone has the integral points of the
spaned parallelotope as generators. This is the first step of the primal Normaliz algorithm, see [Normaliz].
For each simplicial cone (of dimension 𝑑), the integral points of the open parallelotope

𝑝𝑎𝑟⟨𝑥1, . . . , 𝑥𝑑⟩ = 𝑛 ∩ {𝑞1𝑥1 + · · ·+ 𝑞𝑑𝑥𝑑 : 0 ≤ 𝑞𝑖 < 1}

are then computed [BK2001].

Finally, the union of the generators of all simplicial subcones is returned.
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solid_restriction()

Return a solid representation of this cone in terms of a basis of its sublattice().

We define the solid restriction of a cone to be a representation of that cone in a basis of its own sublattice.
Since a cone’s sublattice is just large enough to hold the cone (by definition), the resulting solid restriction
is_solid(). For convenience, the solid restriction lives in a new lattice (of the appropriate dimension)
and not actually in the sublattice object returned by sublattice().

OUTPUT:

A solid cone in a new lattice having the same dimension as this cone’s sublattice().

EXAMPLES:

The nonnegative quadrant in the plane is left after we take its solid restriction in space:

sage: K = Cone([(1,0,0), (0,1,0)])
sage: K.solid_restriction().rays()
N(0, 1),
N(1, 0)
in 2-d lattice N

The solid restriction of a single ray has the same representation regardless of the ambient space:

sage: K = Cone([(1,0)])
sage: K.solid_restriction().rays()
N(1)
in 1-d lattice N
sage: K = Cone([(1,1,1)])
sage: K.solid_restriction().rays()
N(1)
in 1-d lattice N

The solid restriction of the trivial cone lives in a trivial space:

sage: K = cones.trivial(0)
sage: K.solid_restriction()
0-d cone in 0-d lattice N
sage: K = cones.trivial(4)
sage: K.solid_restriction()
0-d cone in 0-d lattice N

The solid restriction of a solid cone is itself:

sage: K = Cone([(1,1),(1,2)])
sage: K.solid_restriction() is K
True

strict_quotient()

Return the quotient of self by the linear subspace.

We define the strict quotient of a cone to be the image of this cone in the quotient of the ambient space by
the linear subspace of the cone, i.e. it is the “complementary part” to the linear subspace.

OUTPUT:

• cone.

EXAMPLES:
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sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: ssc = halfplane.strict_quotient()
sage: ssc
1-d cone in 1-d lattice N
sage: ssc.rays()
N(1)
in 1-d lattice N
sage: line = Cone([(1,0), (-1,0)])
sage: ssc = line.strict_quotient()
sage: ssc
0-d cone in 1-d lattice N
sage: ssc.rays()
Empty collection
in 1-d lattice N

The quotient of the trivial cone is trivial:

sage: K = cones.trivial(0)
sage: K.strict_quotient()
0-d cone in 0-d lattice N
sage: K = Cone([(0,0,0,0)])
sage: K.strict_quotient()
0-d cone in 4-d lattice N

sublattice(*args, **kwds)
The sublattice spanned by the cone.

Let𝜎 be the given cone and𝑁 =self.lattice() the ambient lattice. Then, in the notation of [Ful1993],
this method returns the sublattice

𝑁𝜎
def
= 𝑠𝑝𝑎𝑛(𝑁 ∩ 𝜎)

INPUT:

• either nothing or something that can be turned into an element of this lattice.

OUTPUT:

• if no arguments were given, a toric sublattice, otherwise the corresponding element of it.

Note:

• The sublattice spanned by the cone is the saturation of the sublattice generated by the rays of the cone.

• If you only need a -basis, you may want to try the basis() method on the result of rays().

• The returned lattice points are usually not rays of the cone. In fact, for a non-smooth cone the rays do
not generate the sublattice 𝑁𝜎 , but only a finite index sublattice.

EXAMPLES:

sage: cone = Cone([(1, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1)])
sage: cone.rays().basis()
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1)
in 3-d lattice N
sage: cone.rays().basis().matrix().det()

(continues on next page)
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(continued from previous page)

-4
sage: cone.sublattice()
Sublattice <N(1, 1, 1), N(0, -1, 0), N(-1, -1, 0)>
sage: matrix( cone.sublattice().gens() ).det()
-1

Another example:

sage: c = Cone([(1,2,3), (4,-5,1)])
sage: c
2-d cone in 3-d lattice N
sage: c.rays()
N(1, 2, 3),
N(4, -5, 1)
in 3-d lattice N
sage: c.sublattice()
Sublattice <N(4, -5, 1), N(1, 2, 3)>
sage: c.sublattice(5, -3, 4)
N(5, -3, 4)
sage: c.sublattice(1, 0, 0)
Traceback (most recent call last):
...
TypeError: element [1, 0, 0] is not in free module

sublattice_complement(*args, **kwds)
A complement of the sublattice spanned by the cone.

In other words, sublattice() and sublattice_complement() together form a -basis for the
ambient lattice().

In the notation of [Ful1993], let 𝜎 be the given cone and𝑁 = self.lattice() the ambient lattice. Then
this method returns

𝑁(𝜎)
def
= 𝑁/𝑁𝜎

lifted (non-canonically) to a sublattice of 𝑁 .

INPUT:

• either nothing or something that can be turned into an element of this lattice.

OUTPUT:

• if no arguments were given, a toric sublattice, otherwise the corresponding element of it.

EXAMPLES:

sage: C2_Z2 = Cone([(1,0), (1,2)]) # C^2/Z_2
sage: c1, c2 = C2_Z2.facets() #␣
→˓needs sage.graphs
sage: c2.sublattice() #␣
→˓needs sage.graphs
Sublattice <N(1, 2)>
sage: c2.sublattice_complement() #␣
→˓needs sage.graphs
Sublattice <N(0, 1)>

A more complicated example:
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sage: c = Cone([(1,2,3), (4,-5,1)])
sage: c.sublattice()
Sublattice <N(4, -5, 1), N(1, 2, 3)>
sage: c.sublattice_complement()
Sublattice <N(2, -3, 0)>
sage: m = matrix( c.sublattice().gens() + c.sublattice_complement().gens() )
sage: m
[ 4 -5 1]
[ 1 2 3]
[ 2 -3 0]
sage: m.det()
-1

sublattice_quotient(*args, **kwds)
The quotient of the ambient lattice by the sublattice spanned by the cone.

INPUT:

• either nothing or something that can be turned into an element of this lattice.

OUTPUT:

• if no arguments were given, a quotient of a toric lattice, otherwise the corresponding
element of it.

EXAMPLES:

sage: # needs sage.graphs
sage: C2_Z2 = Cone([(1,0), (1,2)]) # C^2/Z_2
sage: c1, c2 = C2_Z2.facets()
sage: c2.sublattice_quotient()
1-d lattice, quotient of 2-d lattice N by Sublattice <N(1, 2)>
sage: N = C2_Z2.lattice()
sage: n = N(1,1)
sage: n_bar = c2.sublattice_quotient(n); n_bar
N[1, 1]
sage: n_bar.lift()
N(1, 1)
sage: vector(n_bar)
(-1)

class sage.geometry.cone.IntegralRayCollection(rays, lattice)
Bases: SageObject, Hashable, Iterable

Create a collection of integral rays.

Warning: No correctness check or normalization is performed on the input data. This class is designed for
internal operations and you probably should not use it directly.

This is a base class for convex rational polyhedral cones and fans.

Ray collections are immutable, but they cache most of the returned values.

INPUT:

• rays – list of immutable vectors in lattice;

• lattice –ToricLattice, 𝑛, or any other object that behaves like these. IfNone, it will be determined
as parent() of the first ray. Of course, this cannot be done if there are no rays, so in this case you must
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give an appropriate lattice directly. Note that None is not the default value - you always must give this
argument explicitly, even if it is None.

OUTPUT:

• collection of given integral rays.

ambient_dim()

Return the dimension of the ambient lattice of self.

An alias is ambient_dim().

OUTPUT:

• integer.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.lattice_dim()
2
sage: c.dim()
1

ambient_vector_space(base_field=None)
Return the ambient vector space.

It is the ambient lattice (lattice()) tensored with a field.

INPUT:

• base_field – (default: the rationals) a field.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.ambient_vector_space()
Vector space of dimension 2 over Rational Field
sage: c.ambient_vector_space(AA) #␣
→˓needs sage.rings.number_field
Vector space of dimension 2 over Algebraic Real Field

cartesian_product(other, lattice=None)
Return the Cartesian product of self with other.

INPUT:

• other – an IntegralRayCollection;

• lattice – (optional) the ambient lattice for the result. By default, the direct sum of the ambient lattices
of self and other is constructed.

OUTPUT:

• an IntegralRayCollection.

By the Cartesian product of ray collections (𝑟0, . . . , 𝑟𝑛−1) and (𝑠0, . . . , 𝑠𝑚−1) we understand the ray collec-
tion of the form ((𝑟0, 0), . . . , (𝑟𝑛−1, 0), (0, 𝑠0), . . . , (0, 𝑠𝑚−1)), which is suitable for Cartesian products of
cones and fans. The ray order is guaranteed to be as described.

EXAMPLES:
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sage: c = Cone([(1,)])
sage: c.cartesian_product(c) # indirect doctest
2-d cone in 2-d lattice N+N
sage: _.rays()
N+N(1, 0),
N+N(0, 1)
in 2-d lattice N+N

codim()

Return the codimension of self.

The codimension of a collection of rays (of a cone/fan) is the difference between the dimension of the ambient
space and the dimension of the subspace spanned by those rays (of the cone/fan).

OUTPUT:

A nonnegative integer representing the codimension of self.

See also:

dim(), lattice_dim()

EXAMPLES:

The codimension of the nonnegative orthant is zero, since the span of its generators equals the entire ambient
space:

sage: K = cones.nonnegative_orthant(3)
sage: K.codim()
0

However, if we remove a ray so that the entire cone is contained within the 𝑥-𝑦 plane, then the resulting cone
will have codimension one, because the 𝑧-axis is perpendicular to every element of the cone:

sage: K = Cone([(1,0,0), (0,1,0)])
sage: K.codim()
1

If our cone is all of R2, then its codimension is zero:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.codim()
0

And if the cone is trivial in any space, then its codimension is equal to the dimension of the ambient space:

sage: K = cones.trivial(0)
sage: K.lattice_dim()
0
sage: K.codim()
0

sage: K = cones.trivial(1)
sage: K.lattice_dim()
1
sage: K.codim()
1

(continues on next page)
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sage: K = cones.trivial(2)
sage: K.lattice_dim()
2
sage: K.codim()
2

codimension()

Return the codimension of self.

The codimension of a collection of rays (of a cone/fan) is the difference between the dimension of the ambient
space and the dimension of the subspace spanned by those rays (of the cone/fan).

OUTPUT:

A nonnegative integer representing the codimension of self.

See also:

dim(), lattice_dim()

EXAMPLES:

The codimension of the nonnegative orthant is zero, since the span of its generators equals the entire ambient
space:

sage: K = cones.nonnegative_orthant(3)
sage: K.codim()
0

However, if we remove a ray so that the entire cone is contained within the 𝑥-𝑦 plane, then the resulting cone
will have codimension one, because the 𝑧-axis is perpendicular to every element of the cone:

sage: K = Cone([(1,0,0), (0,1,0)])
sage: K.codim()
1

If our cone is all of R2, then its codimension is zero:

sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.codim()
0

And if the cone is trivial in any space, then its codimension is equal to the dimension of the ambient space:

sage: K = cones.trivial(0)
sage: K.lattice_dim()
0
sage: K.codim()
0

sage: K = cones.trivial(1)
sage: K.lattice_dim()
1
sage: K.codim()
1

(continues on next page)
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sage: K = cones.trivial(2)
sage: K.lattice_dim()
2
sage: K.codim()
2

dim()

Return the dimension of the subspace spanned by rays of self.

OUTPUT:

• integer.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.lattice_dim()
2
sage: c.dim()
1

dual_lattice()

Return the dual of the ambient lattice of self.

OUTPUT:

• lattice. If possible (that is, if lattice() has a dual() method), the dual lattice is returned. Other-
wise, 𝑛 is returned, where 𝑛 is the dimension of lattice().

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.dual_lattice()
2-d lattice M
sage: Cone([], ZZ^3).dual_lattice()
Ambient free module of rank 3
over the principal ideal domain Integer Ring

lattice()

Return the ambient lattice of self.

OUTPUT:

• lattice.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.lattice()
2-d lattice N
sage: Cone([], ZZ^3).lattice()
Ambient free module of rank 3
over the principal ideal domain Integer Ring

lattice_dim()

Return the dimension of the ambient lattice of self.

An alias is ambient_dim().
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OUTPUT:

• integer.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.lattice_dim()
2
sage: c.dim()
1

nrays()

Return the number of rays of self.

OUTPUT:

• integer.

EXAMPLES:

sage: c = Cone([(1,0), (0,1)])
sage: c.nrays()
2

plot(**options)
Plot self.

INPUT:

• any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:

• a plot.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.plot() #␣
→˓needs sage.plot sage.symbolic
Graphics object consisting of 9 graphics primitives

ray(n)

Return the n-th ray of self.

INPUT:

• n – integer, an index of a ray of self. Enumeration of rays starts with zero.

OUTPUT:

• ray, an element of the lattice of self.

EXAMPLES:

sage: c = Cone([(1,0), (0,1)])
sage: c.ray(0)
N(1, 0)
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rays(*args)
Return (some of the) rays of self.

INPUT:

• ray_list – a list of integers, the indices of the requested rays. If not specified, all rays of self will
be returned.

OUTPUT:

• a PointCollection of primitive integral ray generators.

EXAMPLES:

sage: c = Cone([(1,0), (0,1), (-1, 0)])
sage: c.rays()
N( 0, 1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
sage: c.rays([0, 2])
N( 0, 1),
N(-1, 0)
in 2-d lattice N

You can also give ray indices directly, without packing them into a list:

sage: c.rays(0, 2)
N( 0, 1),
N(-1, 0)
in 2-d lattice N

span(base_ring=None)
Return the span of self.

INPUT:

• base_ring – (default: from lattice) the base ring to use
for the generated module.

OUTPUT:

A module spanned by the generators of self.

EXAMPLES:

The span of a single ray is a one-dimensional sublattice:

sage: K1 = Cone([(1,)])
sage: K1.span()
Sublattice <N(1)>
sage: K2 = Cone([(1,0)])
sage: K2.span()
Sublattice <N(1, 0)>

The span of the nonnegative orthant is the entire ambient lattice:

sage: K = cones.nonnegative_orthant(3)
sage: K.span() == K.lattice()
True

By specifying a base_ring, we can obtain a vector space:
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sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
sage: K.span(base_ring=QQ)
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

sage.geometry.cone.classify_cone_2d(ray0, ray1, check=True)
Return (𝑑, 𝑘) classifying the lattice cone spanned by the two rays.

INPUT:

• ray0, ray1 – two primitive integer vectors. The generators of the two rays generating the two-dimensional
cone.

• check – boolean (default: True). Whether to check the input rays for consistency.

OUTPUT:

A pair (𝑑, 𝑘) of integers classifying the cone up to 𝐺𝐿(2, ) equivalence. See Proposition 10.1.1 of [CLS2011]
for the definition. We return the unique (𝑑, 𝑘) with minimal 𝑘, see Proposition 10.1.3 of [CLS2011].

EXAMPLES:

sage: ray0 = vector([1,0])
sage: ray1 = vector([2,3])
sage: from sage.geometry.cone import classify_cone_2d
sage: classify_cone_2d(ray0, ray1)
(3, 2)

sage: ray0 = vector([2,4,5])
sage: ray1 = vector([5,19,11])
sage: classify_cone_2d(ray0, ray1)
(3, 1)

sage: m = matrix(ZZ, [(19, -14, -115), (-2, 5, 25), (43, -42, -298)])
sage: m.det() # check that it is in GL(3,ZZ)
-1
sage: classify_cone_2d(m*ray0, m*ray1)
(3, 1)

sage.geometry.cone.integral_length(v)
Compute the integral length of a given rational vector.

INPUT:

• v – any object which can be converted to a list of rationals

OUTPUT:

Rational number 𝑟` such that v = r * u, where u is the primitive integral vector in the direction of v.

EXAMPLES:

sage: from sage.geometry.cone import integral_length
sage: integral_length([1, 2, 4])
1
sage: integral_length([2, 2, 4])
2

(continues on next page)
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sage: integral_length([2/3, 2, 4])
2/3

sage.geometry.cone.is_Cone(x)
Check if x is a cone.

INPUT:

• x – anything.

OUTPUT:

• True if x is a cone and False otherwise.

EXAMPLES:

sage: from sage.geometry.cone import is_Cone
sage: is_Cone(1)
doctest:warning...
DeprecationWarning: is_Cone is deprecated, use isinstance instead
See https://github.com/sagemath/sage/issues/34307 for details.
False
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant
2-d cone in 2-d lattice N
sage: is_Cone(quadrant)
True

sage.geometry.cone.normalize_rays(rays, lattice)
Normalize a list of rational rays: make them primitive and immutable.

INPUT:

• rays – list of rays which can be converted to the rational extension of lattice;

• lattice – ToricLattice, 𝑛, or any other object that behaves like these. If None, an attempt will be
made to determine an appropriate toric lattice automatically.

OUTPUT:

• list of immutable primitive vectors of the lattice in the same directions as original rays.

EXAMPLES:

sage: from sage.geometry.cone import normalize_rays
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], None)
[N(0, 1), N(0, 1), N(3, 2), N(3, 14)]
sage: L = ToricLattice(2, "L")
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], L.dual())
[L*(0, 1), L*(0, 1), L*(3, 2), L*(3, 14)]
sage: ray_in_L = L(0,1)
sage: normalize_rays([ray_in_L, (0, 2), (3, 2), (5/7, 10/3)], None)
[L(0, 1), L(0, 1), L(3, 2), L(3, 14)]
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], ZZ^2)
[(0, 1), (0, 1), (3, 2), (3, 14)]
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], ZZ^3)
Traceback (most recent call last):
...
TypeError: cannot convert (0, 1) to
Vector space of dimension 3 over Rational Field!

(continues on next page)
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sage: normalize_rays([], ZZ^3)
[]

sage.geometry.cone.random_cone(lattice=None, min_ambient_dim=0, max_ambient_dim=None,
min_rays=0, max_rays=None, strictly_convex=None, solid=None)

Generate a random convex rational polyhedral cone.

Lower and upper boundsmay be provided for both the dimension of the ambient space and the number of generating
rays of the cone. If a lower bound is left unspecified, it defaults to zero. Unspecified upper bounds will be chosen
randomly, unless you set solid, in which case they are chosen a little more wisely.

You may specify the ambient lattice for the returned cone. In that case, the min_ambient_dim and
max_ambient_dim parameters are ignored.

You may also request that the returned cone be strictly convex (or not). Likewise you may request that it be
(non-)solid.

Warning: If you request a large number of rays in a low-dimensional space, you might be waiting for a while.
For example, in three dimensions, it is possible to obtain an octagon raised up to height one (all z-coordinates
equal to one). But in practice, we usually generate the entire three-dimensional space with six rays before we
get to the eight rays needed for an octagon. We therefore have to throw the cone out and start over from scratch.
This process repeats until we get lucky.

We also refrain from “adjusting” the min/max parameters given to us when a (non-)strictly convex or (non-)solid
cone is requested. This means that it may take a long time to generate such a cone if the parameters are chosen
unwisely.

For example, you may want to set min_rays close to min_ambient_dim if you desire a solid cone. Or,
if you desire a non-strictly-convex cone, then they all contain at least two generating rays. So that might be a
good candidate for min_rays.

INPUT:

• lattice (default: random) – A ToricLattice object in which the returned cone will live. By de-
fault a new lattice will be constructed with a randomly-chosen rank (subject to min_ambient_dim and
max_ambient_dim).

• min_ambient_dim (default: zero) – A nonnegative integer representing the minimum dimension of the
ambient lattice.

• max_ambient_dim (default: random) – A nonnegative integer representing the maximum dimension of
the ambient lattice.

• min_rays (default: zero) – A nonnegative integer representing the minimum number of generating rays of
the cone.

• max_rays (default: random) – A nonnegative integer representing the maximum number of generating rays
of the cone.

• strictly_convex (default: random) –Whether or not to make the returned cone strictly convex. Specify
True for a strictly convex cone, False for a non-strictly-convex cone, or None if you don’t care.

• solid (default: random) – Whether or not to make the returned cone solid. Specify True for a solid cone,
False for a non-solid cone, or None if you don’t care.

OUTPUT:

A new, randomly generated cone.
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A ValueError will be thrown under the following conditions:

• Any of min_ambient_dim, max_ambient_dim, min_rays, or max_rays are negative.

• max_ambient_dim is less than min_ambient_dim.

• max_rays is less than min_rays.

• Both max_ambient_dim and lattice are specified.

• min_rays is greater than four but max_ambient_dim is less than three.

• min_rays is greater than four but lattice has dimension less than three.

• min_rays is greater than two but max_ambient_dim is less than two.

• min_rays is greater than two but lattice has dimension less than two.

• min_rays is positive but max_ambient_dim is zero.

• min_rays is positive but lattice has dimension zero.

• A trivial lattice is supplied and a non-strictly-convex cone is requested.

• A non-strictly-convex cone is requested but max_rays is less than two.

• A solid cone is requested but max_rays is less than min_ambient_dim.

• A solid cone is requested but max_rays is less than the dimension of lattice.

• A non-solid cone is requested but max_ambient_dim is zero.

• A non-solid cone is requested but lattice has dimension zero.

• A non-solid cone is requested but min_rays is so large that it guarantees a solid cone.

ALGORITHM:

First, a lattice is determined from min_ambient_dim and max_ambient_dim (or from the supplied lat-
tice).

Then, lattice elements are generated one at a time and added to a cone. This continues until either the cone meets
the user’s requirements, or the cone is equal to the entire space (at which point it is futile to generate more).

We check whether or not the resulting cone meets the user’s requirements; if it does, it is returned. If not, we throw
it away and start over. This process repeats indefinitely until an appropriate cone is generated.

EXAMPLES:

Generate a trivial cone in a trivial space:

sage: random_cone(max_ambient_dim=0, max_rays=0)
0-d cone in 0-d lattice N

We can predict the ambient dimension when min_ambient_dim == max_ambient_dim:

sage: K = random_cone(min_ambient_dim=4, max_ambient_dim=4)
sage: K.lattice_dim()
4

Likewise for the number of rays when min_rays == max_rays:

sage: K = random_cone(min_rays=3, max_rays=3)
sage: K.nrays()
3

If we specify a lattice, then the returned cone will live in it:
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sage: L = ToricLattice(5, "L")
sage: K = random_cone(lattice=L)
sage: K.lattice() is L
True

We can also request a strictly convex cone:

sage: K = random_cone(max_ambient_dim=8, max_rays=10,
....: strictly_convex=True)
sage: K.is_strictly_convex()
True

Or one that isn’t strictly convex:

sage: K = random_cone(min_ambient_dim=5, min_rays=2,
....: strictly_convex=False)
sage: K.is_strictly_convex()
False

An example with all parameters set:

sage: K = random_cone(min_ambient_dim=4, max_ambient_dim=7,
....: min_rays=2, max_rays=10,
....: strictly_convex=False, solid=True)
sage: 4 <= K.lattice_dim() and K.lattice_dim() <= 7
True
sage: 2 <= K.nrays() and K.nrays() <= 10
True
sage: K.is_strictly_convex()
False
sage: K.is_solid()
True

2.5.3 Catalog of common polyhedral convex cones

This module provides shortcut functions, grouped under the globally-available cones prefix, to create some common
cones:

• The downward-monotone cone,

• The nonnegative orthant,

• The rearrangement cone of order p,

• The Schur cone,

• The trivial cone.

At the moment, only convex rational polyhedral cones are supported—specifically, those cones that can be built using the
Cone() constructor. As a result, each shortcut method can be passed either an ambient dimension ambient_dim, or
a toric lattice (from which the dimension can be inferred) to determine the ambient space.

Here are some typical usage examples:

sage: cones.downward_monotone(3).rays()
N( 1, 0, 0),
N( 1, 1, 0),
N( 1, 1, 1),

(continues on next page)
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N(-1, -1, -1)
in 3-d lattice N

sage: cones.nonnegative_orthant(2).rays()
N(1, 0),
N(0, 1)
in 2-d lattice N

sage: cones.rearrangement(2,2).rays()
N( 1, 0),
N( 1, -1),
N(-1, 1)
in 2-d lattice N

sage: cones.schur(3).rays()
N(1, -1, 0),
N(0, 1, -1)
in 3-d lattice N

sage: cones.trivial(3).rays()
Empty collection
in 3-d lattice N

To specify some other lattice, pass it as an argument to the function:

sage: K = cones.nonnegative_orthant(3)
sage: cones.schur(lattice=K.dual().lattice())
2-d cone in 3-d lattice M

For more information about these cones, see the documentation for the individual functions and the references therein.

sage.geometry.cone_catalog.downward_monotone(ambient_dim=None, lattice=None)
The downward-monotone cone in ambient_dim dimensions, or living in lattice.

The elements of the downward-monotone cone are vectors whose components are arranged in non-increasing order.
Vectors whose entries are arranged in the reverse (non-decreasing) order are sometimes called isotone vectors, and
are used in statistics for isotonic regression.

The downward-monotone cone is the dual of the Schur cone. It is also often referred to as the downward-monotone
cone.

INPUT:

• ambient_dim – a nonnegative integer (default: None); the dimension of the ambient space

• lattice – a toric lattice (default: None); the lattice in which the cone will live

If ambient_dim is omitted, then it will be inferred from the rank of lattice. If the lattice is omitted,
then the default lattice of rank ambient_dim will be used.

A ValueError is raised if neither ambient_dim nor lattice are specified. It is also a ValueError to
specify both ambient_dim and lattice unless the rank of lattice is equal to ambient_dim.

OUTPUT:

A ConvexRationalPolyhedralCone living in lattice whose elements’ entries are arranged in nonin-
creasing order. Each generating ray has the integer ring as its base ring.
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A ValueError can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for
details.

See also:

schur()

REFERENCES:

• [GS2010], Section 3.1

• [Niez1998], Example 2.2

EXAMPLES:

The entries of the elements of the downward-monotone cone are in non-increasing order:

sage: ambient_dim = ZZ.random_element(10)
sage: K = cones.downward_monotone(ambient_dim)
sage: all( x[i] >= x[i + 1]
....: for i in range(ambient_dim - 1)
....: for x in K.rays() )
True
sage: x = K.random_element()
sage: all( x[i] >= x[i + 1] for i in range(ambient_dim - 1) )
True

A nontrivial downward-monotone cone is solid but not proper, since it contains both the vector of all ones and its
negation; that, however, is the only subspace it contains:

sage: ambient_dim = ZZ.random_element(1,10)
sage: K = cones.downward_monotone(ambient_dim)
sage: K.is_solid()
True
sage: K.is_proper()
False
sage: K.lineality()
1

The dual of the downward-monotone cone is the Schur cone [GS2010] that induces the majorization preordering:

sage: ambient_dim = ZZ.random_element(10)
sage: K = cones.downward_monotone(ambient_dim).dual()
sage: J = cones.schur(ambient_dim, K.lattice())
sage: K.is_equivalent(J)
True

sage.geometry.cone_catalog.nonnegative_orthant(ambient_dim=None, lattice=None)
The nonnegative orthant in ambient_dim dimensions, or living in lattice.

The nonnegative orthant consists of all componentwise-nonnegative vectors. It is the convex-conic hull of the
standard basis.

INPUT:

• ambient_dim – a nonnegative integer (default: None); the dimension of the ambient space

• lattice – a toric lattice (default: None); the lattice in which the cone will live

If ambient_dim is omitted, then it will be inferred from the rank of lattice. If the lattice is omitted,
then the default lattice of rank ambient_dim will be used.
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A ValueError is raised if neither ambient_dim nor lattice are specified. It is also a ValueError to
specify both ambient_dim and lattice unless the rank of lattice is equal to ambient_dim.

OUTPUT:

A ConvexRationalPolyhedralCone living in lattice and having ambient_dim standard basis vec-
tors as its generators. Each generating ray has the integer ring as its base ring.

A ValueError can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for
details.

REFERENCES:

• Chapter 2 in [BV2009] (Examples 2.4, 2.14, and 2.23 in particular)

EXAMPLES:

sage: cones.nonnegative_orthant(3).rays()
N(1, 0, 0),
N(0, 1, 0),
N(0, 0, 1)
in 3-d lattice N

sage.geometry.cone_catalog.rearrangement(p, ambient_dim=None, lattice=None)
The rearrangement cone of order p in ambient_dim dimensions, or living in lattice.

The rearrangement cone of orderp inambient_dim dimensions consists of all vectors of lengthambient_dim
whose smallest p components sum to a nonnegative number.

For example, the rearrangement cone of order one has its single smallest component nonnegative. This implies that
all components are nonnegative, and that therefore the rearrangement cone of order one is the nonnegative orthant
in its ambient space.

When p and ambient_dim are equal, all components of the cone’s elements must sum to a nonnegative number.
In other words, the rearrangement cone of order ambient_dim is a half-space.

INPUT:

• p – a nonnegative integer; the number of components to “rearrange”, between 1 and ambient_dim inclu-
sive

• ambient_dim – a nonnegative integer (default: None); the dimension of the ambient space

• lattice – a toric lattice (default: None); the lattice in which the cone will live

If ambient_dim is omitted, then it will be inferred from the rank of lattice. If the lattice is omitted,
then the default lattice of rank ambient_dim will be used.

A ValueError is raised if neither ambient_dim nor lattice are specified. It is also a ValueError to
specify both ambient_dim and lattice unless the rank of lattice is equal to ambient_dim.

It is also a ValueError to specify a non-integer p.

OUTPUT:

A ConvexRationalPolyhedralCone representing the rearrangement cone of order p living in lattice,
with ambient dimension ambient_dim. Each generating ray has the integer ring as its base ring.

A ValueError can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for
details.

ALGORITHM:
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Suppose that the ambient space is of dimension 𝑛. The extreme directions of the rearrangement cone for 1 ≤ 𝑝 ≤
𝑛− 1 are given by [Jeong2017] Theorem 5.2.3. When 2 ≤ 𝑝 ≤ 𝑛− 2 (that is, if we ignore 𝑝 = 1 and 𝑝 = 𝑛− 1),
they consist of

• the standard basis {𝑒1, 𝑒2, . . . , 𝑒𝑛} for the ambient space, and

• the 𝑛 vectors (1, 1, . . . , 1)𝑇 − 𝑝𝑒𝑖 for 𝑖 = 1, 2, . . . , 𝑛.

Special cases are then given for 𝑝 = 1 and 𝑝 = 𝑛 − 1 in the theorem. However in SageMath we don’t need
conically-independent extreme directions. We only need a generating set, because the Cone() function will elim-
inate any redundant generators. And one can easily verify that the special-case extreme directions for 𝑝 = 1 and
𝑝 = 𝑛− 1 are contained in the conic hull of the 2𝑛 generators just described. The half space resulting from 𝑝 = 𝑛
is also covered by this set of generators, so for all valid 𝑝 we simply take the conic hull of those 2𝑛 vectors.

REFERENCES:

• [GJ2016], Section 4

• [HS2010], Example 2.21

• [Jeong2017], Section 5.2

EXAMPLES:

The rearrangement cones of order one are nonnegative orthants:

sage: orthant = cones.nonnegative_orthant(6)
sage: cones.rearrangement(1,6).is_equivalent(orthant)
True

When p and ambient_dim are equal, the rearrangement cone is a half-space, so we expect its lineality to be one
less than ambient_dim because it will contain a hyperplane but is not the entire space:

sage: cones.rearrangement(5,5).lineality()
4

Jeong’s Proposition 5.2.1 [Jeong2017] states that all rearrangement cones are proper when p is less than ambi-
ent_dim:

sage: all( cones.rearrangement(p, ambient_dim).is_proper()
....: for ambient_dim in range(10)
....: for p in range(1, ambient_dim) )
True

Jeong’s Corollary 5.2.4 [Jeong2017] states that if 𝑝 = 𝑛−1 in an 𝑛-dimensional ambient space, then the Lyapunov
rank of the rearrangement cone is 𝑛, and that for all other 𝑝 > 1 its Lyapunov rank is one:

sage: all( cones.rearrangement(p, ambient_dim).lyapunov_rank()
....: ==
....: ambient_dim
....: for ambient_dim in range(2, 10)
....: for p in [ ambient_dim-1 ] )
True
sage: all( cones.rearrangement(p, ambient_dim).lyapunov_rank() == 1
....: for ambient_dim in range(3, 10)
....: for p in range(2, ambient_dim-1) )
True

sage.geometry.cone_catalog.schur(ambient_dim=None, lattice=None)
The Schur cone in ambient_dim dimensions, or living in lattice.
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The Schur cone in 𝑛 dimensions induces the majorization preordering on the ambient space. If {𝑒1, 𝑒2, . . . , 𝑒𝑛}
is the standard basis for the space, then its generators are {𝑒𝑖 − 𝑒𝑖+1 | 1 ≤ 𝑖 ≤ 𝑛− 1}. Its dual is the downward
monotone cone.

INPUT:

• ambient_dim – a nonnegative integer (default: None); the dimension of the ambient space

• lattice – a toric lattice (default: None); the lattice in which the cone will live

If ambient_dim is omitted, then it will be inferred from the rank of lattice. If the lattice is omitted,
then the default lattice of rank ambient_dim will be used.

A ValueError is raised if neither ambient_dim nor lattice are specified. It is also a ValueError to
specify both ambient_dim and lattice unless the rank of lattice is equal to ambient_dim.

OUTPUT:

A ConvexRationalPolyhedralCone representing the Schur cone living in lattice, with ambient di-
mension ambient_dim. Each generating ray has the integer ring as its base ring.

A ValueError can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for
details.

See also:

downward_monotone()

REFERENCES:

• [GS2010], Section 3.1

• [IS2005], Example 7.3

• [SS2016], Example 7.4

EXAMPLES:

Verify the claim [SS2016] that themaximal angle between any two generators of the Schur cone and the nonnegative
orthant in dimension five is (3/4)𝜋:

sage: # needs sage.rings.number_fields
sage: P = cones.schur(5)
sage: Q = cones.nonnegative_orthant(5)
sage: G = ( g.change_ring(QQbar).normalized() for g in P )
sage: H = ( h.change_ring(QQbar).normalized() for h in Q )
sage: actual = max(arccos(u.inner_product(v)) for u in G for v in H)
sage: expected = 3*pi/4
sage: abs(actual - expected).n() < 1e-12
True

The dual of the Schur cone is the downward-monotone cone [GS2010], whose elements’ entries are in
non-increasing order:

sage: ambient_dim = ZZ.random_element(10)
sage: K = cones.schur(ambient_dim).dual()
sage: J = cones.downward_monotone(ambient_dim, K.lattice())
sage: K.is_equivalent(J)
True

sage.geometry.cone_catalog.trivial(ambient_dim=None, lattice=None)
The trivial cone with no nonzero generators in ambient_dim dimensions, or living in lattice.

INPUT:
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• ambient_dim – a nonnegative integer (default: None); the dimension of the ambient space

• lattice – a toric lattice (default: None); the lattice in which the cone will live

If ambient_dim is omitted, then it will be inferred from the rank of lattice. If the lattice is omitted,
then the default lattice of rank ambient_dim will be used.

A ValueError is raised if neither ambient_dim nor lattice are specified. It is also a ValueError to
specify both ambient_dim and lattice unless the rank of lattice is equal to ambient_dim.

OUTPUT:

A ConvexRationalPolyhedralCone representing the trivial cone with no nonzero generators living in
lattice, with ambient dimension ambient_dim.

A ValueError can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for
details.

EXAMPLES:

Construct the trivial cone, containing only the origin, in three dimensions:

sage: cones.trivial(3)
0-d cone in 3-d lattice N

If a lattice is given, the trivial cone will live in that lattice:

sage: L = ToricLattice(3, M )
sage: cones.trivial(3, lattice=L)
0-d cone in 3-d lattice M

2.5.4 Find maximal angles between polyhedral convex cones

Warning: This module is considered internal and its contents are subject to change at any time without (dep-
recation) warning. The stable interface is sage.geometry.cone.ConvexRationalPolyhedralCone.
max_angle().

Finding the maximal (or equivalently, the minimal) angle between two polyhedral convex cones is a hard nonconvex
optimization problem. The problem for a single cone was introduced in [IS2005], and was later extended in [SS2016] to
two cones as a generalization of the principal angle between two vector subspaces.

Seeger and Sossa proposed an algorithm in [SS2016] to find maximal angles, and [Or2020] elaborates on that algorithm.
It is this latest improvement that is implemented (more or less) by this module. The fact that perturbations of pointed
cones may not change the answer too much [Or2024] is taken into consideration to avoid pathological cases.

This module is internal to SageMath; the interface presented to users consists of a public method, sage.geometry.
cone.ConvexRationalPolyhedralCone.max_angle() for polyhedral convex cones. Even though all of the
functions in this module are internal, some are more internal than others. There are a few functions that are used only in
doctests, and not by any code that an end-user would run. Breaking somewhat with tradition, only those methods have
been prefixed with an underscore.

sage.geometry.cone_critical_angles.check_gevp_feasibility(cos_theta, xi, eta, G_I ,
G_I_c_T , H_J , H_J_c_T ,
epsilon)

Determine if a solution to the generalized eigenvalue problem in Theorem 3 [Or2020] is feasible.
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Implementation detail: we take four matrices that we are capable of computing as parameters instead, because we
will be called in a nested loop “for all 𝐼… and for all 𝐽…” The data corresponding to 𝐼 should be computed only
once, which means that we can’t do it here – it needs to be done outside of the 𝐽 loop. For symmetry (and to avoid
relying on too many cross-function implementation details), we also insist that the 𝐽 data be passed in.

INPUT:

• cos_theta – an eigenvalue corresponding to (𝜉, 𝜂)

• xi – first component of the (𝜉, 𝜂) eigenvector

• eta – second component of the (𝜉, 𝜂) eigenvector

• G_I – the submatrix of 𝐺 with columns indexed by 𝐼

• G_I_c_T – a matrix whose rows are the non-𝐼 columns of 𝐺

• H_J – the submatrix of 𝐻 with columns indexed by 𝐽

• H_J_c_T – a matrix whose rows are the non-𝐽 columns of 𝐻

• epsilon – the tolerance to use when making comparisons

OUTPUT:

A triple containing (in order),

• a boolean,

• a vector in the cone 𝑃 (of the same length as xi), and

• a vector in the cone 𝑄 (of the same length as eta).

If (𝜉, 𝜂) is feasible, we return (True, u, v) where 𝑢 and 𝑣 are the vectors in 𝑃 and 𝑄 respectively that form
the the angle 𝜃.

If (𝜉, 𝜂) is not feasible, then we return (False, 0, 0) where 0 should be interpreted to mean the zero vector
in the appropriate space.

EXAMPLES:

If 𝜉 has any components less than “zero,” it isn’t feasible:

sage: from sage.geometry.cone_critical_angles import(
....: check_gevp_feasibility)
sage: xi = vector(QQ, [-1,1])
sage: eta = vector(QQ, [1,1,1])
sage: check_gevp_feasibility(0,xi,eta,None,None,None,None,0)
(False, (0, 0), (0, 0, 0))

If 𝜂 has any components less than “zero,” it isn’t feasible:

sage: from sage.geometry.cone_critical_angles import(
....: check_gevp_feasibility)
sage: xi = vector(QQ, [2])
sage: eta = vector(QQ, [1,-4,4,5])
sage: check_gevp_feasibility(0,xi,eta,None,None,None,None,0)
(False, (0), (0, 0, 0, 0))

If 𝜉 and 𝜂 are equal and if 𝐺𝐼 and𝐻𝐽 are not, then the copy of 𝜂 that’s been scaled by the norm of 𝐺𝐼𝜉 generally
won’t satisfy its norm-equality constraint:
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sage: from sage.geometry.cone_critical_angles import(
....: check_gevp_feasibility)
sage: xi = vector(QQ, [1,1])
sage: eta = xi
sage: G_I = matrix.identity(QQ,2)
sage: H_J = 2*G_I
sage: check_gevp_feasibility(0,xi,eta,G_I,None,H_J,None,0)
(False, (0, 0), (0, 0))

When cos 𝜃 is zero, the inequality (42) in Theorem 7.3 [SS2016] is just an inner product with 𝑣 which we can
make positive by ensuring that all of the entries of 𝐻𝐽 are positive. So, if any of the rows of G_I_c_T contain a
negative entry, (42) will fail:

sage: from sage.geometry.cone_critical_angles import(
....: check_gevp_feasibility)
sage: xi = vector(QQ, [1/2,1/2,1/2,1/2])
sage: eta = xi
sage: G_I = matrix.identity(QQ,4)
sage: G_I_c_T = matrix(QQ, [[0,-1,0,0]])
sage: H_J = G_I
sage: check_gevp_feasibility(0,xi,eta,G_I,G_I_c_T,H_J,None,0)
(False, (0, 0, 0, 0), (0, 0, 0, 0))

Likewise we can make (43) fail in exactly the same way:

sage: from sage.geometry.cone_critical_angles import(
....: check_gevp_feasibility)
sage: xi = vector(QQ, [1/2,1/2,1/2,1/2])
sage: eta = xi
sage: G_I = matrix.identity(QQ,4)
sage: G_I_c_T = matrix(QQ, [[0,1,0,0]])
sage: H_J = G_I
sage: H_J_c_T = matrix(QQ, [[0,-1,0,0]])
sage: check_gevp_feasibility(0,xi,eta,G_I,G_I_c_T,H_J,H_J_c_T,0)
(False, (0, 0, 0, 0), (0, 0, 0, 0))

Finally, if we ensure that everything works, we get back a feasible result along with the vectors (scaled 𝜉 and 𝜂)
that worked:

sage: from sage.geometry.cone_critical_angles import(
....: check_gevp_feasibility)
sage: xi = vector(QQ, [1/2,1/2,1/2,1/2])
sage: eta = xi
sage: G_I = matrix.identity(QQ,4)
sage: G_I_c_T = matrix(QQ, [[0,1,0,0]])
sage: H_J = G_I
sage: H_J_c_T = matrix(QQ, [[0,1,0,0]])
sage: check_gevp_feasibility(0,xi,eta,G_I,G_I_c_T,H_J,H_J_c_T,0)
(True, (1/2, 1/2, 1/2, 1/2), (1/2, 1/2, 1/2, 1/2))

sage.geometry.cone_critical_angles.compute_gevp_M(gs, hs)
Compute the matrix𝑀 whose (𝑖, 𝑗)-th entry is the inner product of gs[i] and hs[j].

This is the “generalized Gram matrix” appearing in Proposition 6 in [Or2020]. For efficiency, we also return the
minimal pair, whose inner product is minimal among the entries of 𝑀 . This allows our consumer to bail out
immediately (knowing the optimal pair!) if it turns out that the maximal angle is acute; i.e. if the smallest entry of
𝑀 is nonnegative.
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INPUT:

• gs – a linearly independent list of unit-norm generators for the cone 𝑃

• hs – a linearly independent list of unit-norm generators for the cone 𝑄

OUTPUT:

A tuple containing four elements, in order:

• The matrix𝑀 described in Proposition 6

• The minimal entry in the matrix𝑀

• A vector in gs that achieves that minimal inner product along with the next element of the tuple

• A vector in hs that achieves the minimal inner product along with the previous element in the tuple

EXAMPLES:

sage: from sage.geometry.cone_critical_angles import compute_gevp_M
sage: P = Cone([ (1,2,0), (3,4,0) ])
sage: Q = Cone([ (-1,4,1), (5,-2,-1), (-1,-1,5) ])
sage: gs = [g.change_ring(QQ) for g in P]
sage: hs = [h.change_ring(QQ) for h in Q]
sage: M = compute_gevp_M(gs, hs)[0]
sage: all( M[i][j] == gs[i].inner_product(hs[j])
....: for i in range(P.nrays())
....: for j in range(Q.nrays()) )
True

sage.geometry.cone_critical_angles.gevp_licis(G)
Return all nonempty subsets of indices for the columns of G that correspond to linearly independent sets (of columns
of G).

Mnemonic: linearly independent column-index subsets (LICIS).

The returned lists are all sorted in the same (the natural) order; and are returned as lists so that they may be used
to index into the rows/columns of matrices.

INPUT:

• G – the matrix whose linearly independent column index sets we want

OUTPUT:

A generator that returns sorted lists of natural numbers. Each generated list I is a set of indices corresponding to
columns of G that, when considered as a set, is linearly independent.

EXAMPLES:

The linearly independent subsets of the matrix corresponding to a line (with two generators pointing in opposite
directions) are the one-element subsets, since the only two-element subset isn’t linearly independent:

sage: from sage.geometry.cone_critical_angles import gevp_licis
sage: K = Cone([(1,0),(-1,0)])
sage: G = matrix.column(K.rays())
sage: list(gevp_licis(G))
[[0], [1]]

The matrix for the trivial cone has no linearly independent subsets, since we require them to be nonempty:
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sage: from sage.geometry.cone_critical_angles import gevp_licis
sage: trivial_cone = cones.trivial(0)
sage: trivial_cone.is_trivial()
True
sage: list(gevp_licis(matrix.column(trivial_cone.rays())))
[]

All rays in the nonnegative orthant of 𝑅𝑛 are linearly independent, so we should get back 2𝑛 − 1 subsets after
accounting for the absence of the empty set:

sage: from sage.geometry.cone_critical_angles import gevp_licis
sage: K = cones.nonnegative_orthant(3)
sage: G = matrix.column(K.rays())
sage: len(list(gevp_licis(G))) == 2^(K.nrays()) - 1
True

sage.geometry.cone_critical_angles.max_angle(P, Q, exact, epsilon)
Find the maximal angle between the cones 𝑃 and 𝑄.

This implements sage.geometry.cone.ConvexRationalPolyhedralCone.max_angle(),
which should be fully documented.

EXAMPLES:

For the sake of the user interface, the argument validation for this function is performed in the associated cone
method; we can therefore crash it by feeding it invalid input like an inadmissible cone:

sage: from sage.geometry.cone_critical_angles import max_angle
sage: K = cones.trivial(3)
sage: max_angle(K,K,True,0)
Traceback (most recent call last):
...
IndexError: list index out of range

sage.geometry.cone_critical_angles.solve_gevp_nonzero(GG, HH , M , I , J)
Solve the generalized eigenvalue problem in Theorem 3 [Or2020] for a nonzero eigenvalue using Propositions 3
and 5 [Or2020].

INPUT:

• GG – the matrix whose (𝑖, 𝑗)-th entry is the inner product of 𝑔𝑖 and 𝑔𝑗 , which are in turn the 𝑖-th and 𝑗-th
columns of the matrix 𝐺 in Theorem 3 [Or2020]

• HH – the matrix whose (𝑖, 𝑗)-th entry is the inner product of ℎ𝑖 and ℎ𝑗 , which are in turn the 𝑖-th and 𝑗-th
columns of the matrix 𝐻 in Theorem 3 [Or2020]

• M – the matrix whose (𝑖, 𝑗)-th entry is the inner product of 𝑔𝑖 and ℎ𝑗 as in Proposition 6 in [Or2020]

• I – a linearly independent column-index set for the matrix 𝐺 that appears in Theorem 3 [Or2020]

• J – a linearly independent column-index set for the matrix 𝐻 that appears in Theorem 3 [Or2020]

OUTPUT:

A generator of (eigenvalue, xi, eta, multiplicity) quartets where

• eigenvalue is a real eigenvalue of the system

• xi is the first (length len(I)) component of an eigenvector associated with eigenvalue

• eta is the second (length len(J)) component of an eigenvector associated with eigenvalue
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• multiplicity is the dimension of the eigenspace associated with eigenvalue

Note that we do not return a basis for each eigenspace along with its eigenvalue. For the application we have in mind,
an eigenspace of dimension greater than one (so, multiplicity > 1) is an error. As such, our return value is
optimized for convenience in the non-error case, where there is only one eigenvector (spanning a one-dimensional
eigenspace) associated with each eigenvalue.

ALGORITHM:

According to Proposition 5 [Or2020], the solutions corresponding to non-zero eigenvalues can be found by solving
a smaller eigenvalue problem in only the variable 𝜉. So, we do that, and then solve for 𝜂 in terms of 𝜉 as described
in the proposition.

EXAMPLES:

When the zero solutions are included, this function returns the same solutions as the naive method on the Schur
cone in three dimensions:

sage: from itertools import chain
sage: from sage.geometry.cone_critical_angles import (
....: _normalize_gevp_solution,
....: _solve_gevp_naive,
....: gevp_licis,
....: solve_gevp_nonzero,
....: solve_gevp_zero)
sage: K = cones.schur(3)
sage: gs = [g.change_ring(AA).normalized() for g in K]
sage: G = matrix.column(gs)
sage: GG = G.transpose() * G
sage: G_index_sets = list(gevp_licis(G))
sage: all(
....: set(
....: _normalize_gevp_solution(s)
....: for s in
....: chain(
....: solve_gevp_zero(GG, I, J),
....: solve_gevp_nonzero(GG, GG, GG, I, J)
....: )
....: )
....: ==
....: set(
....: _normalize_gevp_solution(s)
....: for s in
....: _solve_gevp_naive(GG,GG,GG,I,J)
....: )
....: for I in G_index_sets
....: for J in G_index_sets
....: )
True

sage.geometry.cone_critical_angles.solve_gevp_zero(M , I , J)
Solve the generalized eigenvalue problem in Theorem 3 [Or2020] for a zero eigenvalue using Propositions 3 and 4
[Or2020].

INPUT:

• M – the matrix whose (𝑖, 𝑗)-th entry is the inner product of 𝑔𝑖 and ℎ𝑗 as in Proposition 6 [Or2020]

• I – a linearly independent column-index set for the matrix 𝐺 that appears in Theorem 3 [Or2020]

• J – a linearly independent column-index set for the matrix 𝐻 that appears in Theorem 3 [Or2020]
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OUTPUT:

A generator of (eigenvalue, xi, eta, multiplicity) quartets where

• eigenvalue is zero (the eigenvalue of the system)

• xi is the first (length len(I)) component of an eigenvector associated with eigenvalue

• eta is the second (length len(J)) component of an eigenvector associated with eigenvalue

• multiplicity is the dimension of the eigenspace associated with eigenvalue

ALGORITHM:

Proposition 4 in [Or2020] is used.

EXAMPLES:

This particular configuration results in the zero matrix in the eigenvalue problem, so the only solutions correspond
to the eigenvalue zero:

sage: from sage.geometry.cone_critical_angles import solve_gevp_zero
sage: K = cones.nonnegative_orthant(2)
sage: G = matrix.column(K.rays())
sage: GG = G.transpose() * G
sage: I = [0]
sage: J = [1]
sage: list(solve_gevp_zero(GG, I, J))
[(0, (1), (0), 2), (0, (0), (1), 2)]

2.5.5 Rational polyhedral fans

This module was designed as a part of the framework for toric varieties (variety, fano_variety). While the
emphasis is on complete full-dimensional fans, arbitrary fans are supported. Work with distinct lattices. The default
lattice is ToricLattice 𝑁 of the appropriate dimension. The only case when you must specify lattice explicitly is
creation of a 0-dimensional fan, where dimension of the ambient space cannot be guessed.

A rational polyhedral fan is a finite collection of strictly convex rational polyhedral cones, such that the intersection of
any two cones of the fan is a face of each of them and each face of each cone is also a cone of the fan.

AUTHORS:

• Andrey Novoseltsev (2010-05-15): initial version.

• Andrey Novoseltsev (2010-06-17): substantial improvement during review by Volker Braun.

EXAMPLES:

Use Fan() to construct fans “explicitly”:

sage: fan = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,1), (-1,0)])
sage: fan
Rational polyhedral fan in 2-d lattice N

In addition to giving such lists of cones and rays you can also create cones first using Cone() and then combine them
into a fan. See the documentation of Fan() for details.

In 2 dimensions there is a unique maximal fan determined by rays, and you can use Fan2d() to construct it:
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sage: fan2d = Fan2d(rays=[(1,0), (0,1), (-1,0)])
sage: fan2d.is_equivalent(fan)
True

But keep in mind that in higher dimensions the cone data is essential and cannot be omitted. Instead of building a fan from
scratch, for this tutorial we will use an easy way to get two fans associated to lattice polytopes: FaceFan()
and NormalFan():

sage: fan1 = FaceFan(lattice_polytope.cross_polytope(3))
sage: fan2 = NormalFan(lattice_polytope.cross_polytope(3))

Given such “automatic” fans, you may wonder what are their rays and cones:

sage: fan1.rays()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: fan1.generating_cones()
(3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M)

The last output is not very illuminating. Let’s try to improve it:

sage: for cone in fan1: print(cone.rays())
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0)
in 3-d lattice M
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0)
in 3-d lattice M
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
M( 0, 1, 0),
M(-1, 0, 0),
M( 0, 0, -1)
in 3-d lattice M
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, -1)
in 3-d lattice M
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, 1)

(continues on next page)
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in 3-d lattice M
M(1, 0, 0),
M(0, 0, 1),
M(0, -1, 0)
in 3-d lattice M
M(1, 0, 0),
M(0, -1, 0),
M(0, 0, -1)
in 3-d lattice M

You can also do

sage: for cone in fan1: print(cone.ambient_ray_indices())
(1, 2, 3)
(2, 3, 4)
(3, 4, 5)
(1, 3, 5)
(0, 1, 5)
(0, 1, 2)
(0, 2, 4)
(0, 4, 5)

to see indices of rays of the fan corresponding to each cone.

While the above cycles were over “cones in fan”, it is obvious that we did not get ALL the cones: every face of every cone
in a fan must also be in the fan, but all of the above cones were of dimension three. The reason for this behaviour is that
in many cases it is enough to work with generating cones of the fan, i.e. cones which are not faces of bigger cones. When
you do need to work with lower dimensional cones, you can easily get access to them using cones():

sage: [cone.ambient_ray_indices() for cone in fan1.cones(2)]
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (0, 4),
(2, 4), (3, 4), (0, 5), (1, 5), (3, 5), (4, 5)]

In fact, you do not have to type .cones:

sage: [cone.ambient_ray_indices() for cone in fan1(2)]
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (0, 4),
(2, 4), (3, 4), (0, 5), (1, 5), (3, 5), (4, 5)]

You may also need to know the inclusion relations between all of the cones of the fan. In this case check out cone_lat-
tice():

sage: L = fan1.cone_lattice()
sage: L
Finite lattice containing 28 elements with distinguished linear extension
sage: L.bottom()
0-d cone of Rational polyhedral fan in 3-d lattice M
sage: L.top()
Rational polyhedral fan in 3-d lattice M
sage: cone = L.level_sets()[2][0]
sage: cone
2-d cone of Rational polyhedral fan in 3-d lattice M
sage: sorted(L.hasse_diagram().neighbors(cone))
[1-d cone of Rational polyhedral fan in 3-d lattice M,
1-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M,
3-d cone of Rational polyhedral fan in 3-d lattice M]
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You can check how “good” a fan is:

sage: fan1.is_complete()
True
sage: fan1.is_simplicial()
True
sage: fan1.is_smooth()
True

The face fan of the octahedron is really good! Time to remember that we have also constructed its normal fan:

sage: fan2.is_complete()
True
sage: fan2.is_simplicial()
False
sage: fan2.is_smooth()
False

This one does have some “problems,” but we can fix them:

sage: fan3 = fan2.make_simplicial()
sage: fan3.is_simplicial()
True
sage: fan3.is_smooth()
False

Note that we had to save the result ofmake_simplicial() in a new fan. Fans in Sage are immutable, so any operation
that does change them constructs a new fan.

We can also make fan3 smooth, but it will take a bit more work:

sage: # needs palp
sage: cube = lattice_polytope.cross_polytope(3).polar()
sage: sk = cube.skeleton_points(2)
sage: rays = [cube.point(p) for p in sk]
sage: fan4 = fan3.subdivide(new_rays=rays)
sage: fan4.is_smooth()
True

Let’s see how “different” are fan2 and fan4:

sage: fan2.ngenerating_cones()
6
sage: fan2.nrays()
8
sage: fan4.ngenerating_cones() #␣
→˓needs palp
48
sage: fan4.nrays() #␣
→˓needs palp
26

Smoothness does not come for free!

Please take a look at the rest of the available functions below and their complete descriptions. If you need any features
that are missing, feel free to suggest them. (Or implement them on your own and submit a patch to Sage for inclusion!)

class sage.geometry.fan.Cone_of_fan(ambient, ambient_ray_indices)
Bases: ConvexRationalPolyhedralCone
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Construct a cone belonging to a fan.

Warning: This class does not check that the input defines a valid cone of a fan. You must not construct objects
of this class directly.

In addition to all of the properties of “regular” cones, such cones know their relation to the fan.

INPUT:

• ambient – fan whose cone is constructed;

• ambient_ray_indices – increasing list or tuple of integers, indices of rays of ambient generating
this cone.

OUTPUT:

cone of ambient

EXAMPLES:

The intended way to get objects of this class is the following:

sage: # needs palp
sage: fan = toric_varieties.P1xP1().fan()
sage: cone = fan.generating_cone(0); cone
2-d cone of Rational polyhedral fan in 2-d lattice N
sage: cone.ambient_ray_indices()
(0, 2)
sage: cone.star_generator_indices()
(0,)

star_generator_indices()

Return indices of generating cones of the “ambient fan” containing self.

OUTPUT:

increasing tuple of integers

EXAMPLES:

sage: P1xP1 = toric_varieties.P1xP1() #␣
→˓needs palp
sage: cone = P1xP1.fan().generating_cone(0) #␣
→˓needs palp
sage: cone.star_generator_indices() #␣
→˓needs palp
(0,)

star_generators()

Return indices of generating cones of the “ambient fan” containing self.

OUTPUT:

increasing tuple of integers

EXAMPLES:

sage: P1xP1 = toric_varieties.P1xP1() #␣
→˓needs palp
sage: cone = P1xP1.fan().generating_cone(0) #␣

(continues on next page)
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→˓needs palp
sage: cone.star_generators() #␣
→˓needs palp
(2-d cone of Rational polyhedral fan in 2-d lattice N,)

sage.geometry.fan.FaceFan(polytope, lattice=None)
Construct the face fan of the given rational polytope.

INPUT:

• polytope – a polytope over or a lattice polytope. A (not necessarily full-dimensional)
polytope containing the origin in its relative interior.

• lattice – ToricLattice, 𝑛, or any other object that behaves like these. If not specified, an attempt
will be made to determine an appropriate toric lattice automatically.

OUTPUT:

rational polyhedral fan

See also NormalFan().

EXAMPLES:

Let’s construct the fan corresponding to the product of two projective lines:

sage: diamond = lattice_polytope.cross_polytope(2)
sage: P1xP1 = FaceFan(diamond)
sage: P1xP1.rays()
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)
in 2-d lattice M
sage: for cone in P1xP1: print(cone.rays())
M(-1, 0),
M( 0, -1)
in 2-d lattice M
M( 0, 1),
M(-1, 0)
in 2-d lattice M
M(1, 0),
M(0, 1)
in 2-d lattice M
M(1, 0),
M(0, -1)
in 2-d lattice M

sage.geometry.fan.Fan(cones, rays=None, lattice=None, check=True, normalize=True, is_complete=None,
virtual_rays=None, discard_faces=False, allow_arrangement=False)

Construct a rational polyhedral fan.

Note: Approximate time to construct a fan consisting of 𝑛 cones is 𝑛2/5 seconds. That is half an hour for 100
cones. This time can be significantly reduced in the future, but it is still likely to be ∼ 𝑛2 (with, say, /500 instead
of /5). If you know that your input does form a valid fan, use check=False option to skip consistency checks.

INPUT:
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• cones – list of either Cone objects or lists of integers interpreted as indices of generating rays in rays.
These must be only maximal cones of the fan, unless discard_faces=True or allow_arrange-
ment=True option is specified;

• rays – list of rays given as list or vectors convertible to the rational extension of lattice. If cones are
given by Cone objects rays may be determined automatically. You still may give them explicitly to ensure
a particular order of rays in the fan. In this case you must list all rays that appear in cones. You can give
“extra” ones if it is convenient (e.g. if you have a big list of rays for several fans), but all “extra” rays will be
discarded;

• lattice – ToricLattice, 𝑛, or any other object that behaves like these. If not specified, an attempt
will be made to determine an appropriate toric lattice automatically;

• check – by default the input data will be checked for correctness (e.g. that intersection of any two given
cones is a face of each), unless allow_arrangement=True option is specified. If you know for sure
that the input is correct, you may significantly decrease construction time using check=False option;

• normalize – you can further speed up construction using normalize=False option. In this case
cones must be a list of sorted tuples and rays must be immutable primitive vectors in lattice.
In general, you should not use this option, it is designed for code optimization and does not give as drastic
improvement in speed as the previous one;

• is_complete – every fan can determine on its own if it is complete or not, however it can take quite a
bit of time for “big” fans with many generating cones. On the other hand, in some situations it is known in
advance that a certain fan is complete. In this case you can pass is_complete=True option to speed
up some computations. You may also pass is_complete=False option, although it is less likely to be
beneficial. Of course, passing a wrong value can compromise the integrity of data structures of the fan and
lead to wrong results, so you should be very careful if you decide to use this option;

• virtual_rays – (optional, computed automatically if needed) a list of ray generators to be used for
virtual_rays();

• discard_faces – by default, the fan constructor expects the list ofmaximal cones, unless allow_ar-
rangement=True option is specified. If you provide “extra” ones and leave allow_arrange-
ment=False (default) and check=True (default), an exception will be raised. If you provide “extra”
cones and set allow_arrangement=False (default) and check=False, you may get wrong re-
sults as assumptions on internal data structures will be invalid. If you want the fan constructor to select
the maximal cones from the given input, you may provide discard_faces=True option (it works both
for check=True and check=False).

• allow_arrangement – by default (allow_arrangement=False), the fan constructor expects that
the intersection of any two given cones is a face of each. If allow_arrangement=True option is spec-
ified, then construct a rational polyhedralfan from the cone arrangement, so that the union of the cones in the
polyhedral fan equals to the union of the given cones, and each given cone is the union of some cones in the
polyhedral fan.

OUTPUT:

a fan

See also:

In 2 dimensions you can cyclically order the rays. Hence the rays determine a unique maximal fan without having
to specify the cones, and you can use Fan2d() to construct this fan from just the rays.

EXAMPLES:

Let’s construct a fan corresponding to the projective plane in several ways:
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sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(0,1), (-1,-1)])
sage: cone3 = Cone([(-1,-1), (1,0)])
sage: P2 = Fan([cone1, cone2, cone2])
Traceback (most recent call last):
...
ValueError: you have provided 3 cones, but only 2 of them are maximal!
Use discard_faces=True if you indeed need to construct a fan from
these cones.

Oops! There was a typo and cone2 was listed twice as a generating cone of the fan. If it was intentional (e.g. the
list of cones was generated automatically and it is possible that it contains repetitions or faces of other cones), use
discard_faces=True option:

sage: P2 = Fan([cone1, cone2, cone2], discard_faces=True)
sage: P2.ngenerating_cones()
2

However, in this case it was definitely a typo, since the fan of P2 has 3 maximal cones:

sage: P2 = Fan([cone1, cone2, cone3])
sage: P2.ngenerating_cones()
3

Looks better. An alternative way is

sage: rays = [(1,0), (0,1), (-1,-1)]
sage: cones = [(0,1), (1,2), (2,0)]
sage: P2a = Fan(cones, rays)
sage: P2a.ngenerating_cones()
3
sage: P2 == P2a
False

That may seem wrong, but it is not:

sage: P2.is_equivalent(P2a)
True

See is_equivalent() for details.

Yet another way to construct this fan is

sage: P2b = Fan(cones, rays, check=False)
sage: P2b.ngenerating_cones()
3
sage: P2a == P2b
True

If you try the above examples, you are likely to notice the difference in speed, so when you are sure that everything
is correct, it is a good idea to use check=False option. On the other hand, it is usually NOT a good idea to use
normalize=False option:

sage: P2c = Fan(cones, rays, check=False, normalize=False)
Traceback (most recent call last):
...
AttributeError: tuple object has no attribute parent ...
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Yet another way is to use functions FaceFan() and NormalFan() to construct fans from lattice poly-
topes.

We have not yet used lattice argument, since if was determined automatically:

sage: P2.lattice()
2-d lattice N
sage: P2b.lattice()
2-d lattice N

However, it is necessary to specify it explicitly if you want to construct a fan without rays or cones:

sage: Fan([], [])
Traceback (most recent call last):
...
ValueError: you must specify the lattice
when you construct a fan without rays and cones!
sage: F = Fan([], [], lattice=ToricLattice(2, "L"))
sage: F
Rational polyhedral fan in 2-d lattice L
sage: F.lattice_dim()
2
sage: F.dim()
0

In the following examples, we test the allow_arrangement=True option. See Issue #25122.

The intersection of the two cones is not a face of each. Therefore, they do not belong to the same rational polyhedral
fan:

sage: c1 = Cone([(-2,-1,1), (-2,1,1), (2,1,1), (2,-1,1)])
sage: c2 = Cone([(-1,-2,1), (-1,2,1), (1,2,1), (1,-2,1)])
sage: c1.intersection(c2).is_face_of(c1)
False
sage: c1.intersection(c2).is_face_of(c2)
False
sage: Fan([c1, c2])
Traceback (most recent call last):
...
ValueError: these cones cannot belong to the same fan!
...

Let’s construct the fan using allow_arrangement=True option:

sage: fan = Fan([c1, c2], allow_arrangement=True)
sage: fan.ngenerating_cones()
5

Another example where cone c2 is inside cone c1:

sage: c1 = Cone([(4, 0, 0), (0, 4, 0), (0, 0, 4)])
sage: c2 = Cone([(2, 1, 1), (1, 2, 1), (1, 1, 2)])
sage: fan = Fan([c1, c2], allow_arrangement=True)
sage: fan.ngenerating_cones()
7
sage: fan.plot() #␣
→˓needs sage.plot
Graphics3d Object
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Cones of different dimension:

sage: c1 = Cone([(1,0), (0,1)])
sage: c2 = Cone([(2,1)])
sage: c3 = Cone([(-1,-2)])
sage: fan = Fan([c1, c2, c3], allow_arrangement=True)
sage: for cone in sorted(fan.generating_cones()): print(sorted(cone.rays()))
[N(-1, -2)]
[N(0, 1), N(1, 2)]
[N(1, 0), N(2, 1)]
[N(1, 2), N(2, 1)]

A 3-d cone and a 1-d cone:

sage: c3 = Cone([[0, 1, 1], [1, 0, 1], [0, -1, 1], [-1, 0, 1]])
sage: c1 = Cone([[0, 0, 1]])
sage: fan1 = Fan([c1, c3], allow_arrangement=True)
sage: fan1.plot() #␣
→˓needs sage.plot
Graphics3d Object

A 3-d cone and two 2-d cones:

sage: c2v = Cone([[0, 1, 1], [0, -1, 1]])
sage: c2h = Cone([[1, 0, 1], [-1, 0, 1]])
sage: fan2 = Fan([c2v, c2h, c3], allow_arrangement=True)
sage: fan2.is_simplicial()
True
sage: fan2.is_equivalent(fan1)
True

sage.geometry.fan.Fan2d(rays, lattice=None)
Construct the maximal 2-d fan with given rays.

In two dimensions we can uniquely construct a fan from just rays, just by cyclically ordering the rays and constructing
as many cones as possible. This is why we implement a special constructor for this case.

INPUT:

• rays – list of rays given as list or vectors convertible to the rational extension of lattice. Duplicate rays
are removed without changing the ordering of the remaining rays.

• lattice – ToricLattice, 𝑛, or any other object that behaves like these. If not specified, an attempt
will be made to determine an appropriate toric lattice automatically.

EXAMPLES:

sage: Fan2d([(0,1), (1,0)])
Rational polyhedral fan in 2-d lattice N
sage: Fan2d([], lattice=ToricLattice(2, myN ))
Rational polyhedral fan in 2-d lattice myN

The ray order is as specified, even if it is not the cyclic order:

sage: fan1 = Fan2d([(0,1), (1,0)])
sage: fan1.rays()
N(0, 1),
N(1, 0)
in 2-d lattice N

(continues on next page)
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sage: fan2 = Fan2d([(1,0), (0,1)])
sage: fan2.rays()
N(1, 0),
N(0, 1)
in 2-d lattice N

sage: fan1 == fan2, fan1.is_equivalent(fan2)
(False, True)

sage: fan = Fan2d([(1,1), (-1,-1), (1,-1), (-1,1)])
sage: [cone.ambient_ray_indices() for cone in fan]
[(2, 1), (1, 3), (3, 0), (0, 2)]
sage: fan.is_complete()
True

sage.geometry.fan.NormalFan(polytope, lattice=None)
Construct the normal fan of the given rational polytope.

This returns the inner normal fan. For the outer normal fan, use NormalFan(-P).

INPUT:

• polytope – a full-dimensional polytope over or:class:𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑝𝑜𝑙𝑦𝑡𝑜𝑝𝑒 <
𝑠𝑎𝑔𝑒.𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦.𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑝𝑜𝑙𝑦𝑡𝑜𝑝𝑒.𝐿𝑎𝑡𝑡𝑖𝑐𝑒𝑃𝑜𝑙𝑦𝑡𝑜𝑝𝑒𝐶𝑙𝑎𝑠𝑠 >.

• lattice – ToricLattice, 𝑛, or any other object that behaves like these. If not specified, an attempt
will be made to determine an appropriate toric lattice automatically.

OUTPUT:

rational polyhedral fan

See also FaceFan().

EXAMPLES:

Let’s construct the fan corresponding to the product of two projective lines:

sage: square = LatticePolytope([(1,1), (-1,1), (-1,-1), (1,-1)])
sage: P1xP1 = NormalFan(square)
sage: P1xP1.rays()
N( 1, 0),
N( 0, 1),
N(-1, 0),
N( 0, -1)
in 2-d lattice N
sage: for cone in P1xP1: print(cone.rays())
N(-1, 0),
N( 0, -1)
in 2-d lattice N
N(1, 0),
N(0, -1)
in 2-d lattice N
N(1, 0),
N(0, 1)
in 2-d lattice N
N( 0, 1),
N(-1, 0)

(continues on next page)
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in 2-d lattice N

sage: cuboctahed = polytopes.cuboctahedron()
sage: NormalFan(cuboctahed)
Rational polyhedral fan in 3-d lattice N

class sage.geometry.fan.RationalPolyhedralFan(cones, rays, lattice, is_complete=None,
virtual_rays=None)

Bases: IntegralRayCollection, Callable, Container

Create a rational polyhedral fan.

Warning: This class does not perform any checks of correctness of input nor does it convert input into the
standard representation. Use Fan() to construct fans from “raw data” or FaceFan() and NormalFan()
to get fans associated to polytopes.

Fans are immutable, but they cache most of the returned values.

INPUT:

• cones – list of generating cones of the fan, each cone given as a list of indices of its generating rays in rays;

• rays – list of immutable primitive vectors in lattice consisting of exactly the rays of the fan (i.e. no
“extra” ones);

• lattice –ToricLattice, 𝑛, or any other object that behaves like these. IfNone, it will be determined
as parent() of the first ray. Of course, this cannot be done if there are no rays, so in this case you must
give an appropriate lattice directly;

• is_complete – if given, must be True or False depending on whether this fan is complete or not. By
default, it will be determined automatically if necessary;

• virtual_rays – if given, must be a list of immutable primitive vectors in lattice, see vir-
tual_rays() for details. By default, it will be determined automatically if necessary.

OUTPUT:

rational polyhedral fan

Gale_transform()

Return the Gale transform of self.

OUTPUT:

A matrix over 𝑍𝑍

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.Gale_transform() #␣
→˓needs palp
[ 1 1 0 0 -2]
[ 0 0 1 1 -2]
sage: _.base_ring() #␣
→˓needs palp
Integer Ring
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Stanley_Reisner_ideal(ring)
Return the Stanley-Reisner ideal.

INPUT:

• A polynomial ring in self.nrays() variables.

OUTPUT:

The Stanley-Reisner ideal in the given polynomial ring

EXAMPLES:

sage: fan = Fan([[0,1,3], [3,4], [2,0], [1,2,4]],
....: [(-3, -2, 1), (0, 0, 1), (3, -2, 1), (-1, -1, 1), (1, -1, 1)])
sage: fan.Stanley_Reisner_ideal(PolynomialRing(QQ, 5, A, B, C, D, E ))
Ideal (A*E, C*D, A*B*C, B*D*E) of
Multivariate Polynomial Ring in A, B, C, D, E over Rational Field

cartesian_product(other, lattice=None)
Return the Cartesian product of self with other.

INPUT:

• other – a rational polyhedral fan;

• lattice – (optional) the ambient lattice for the Cartesian product fan. By default, the direct sum of
the ambient lattices of self and other is constructed.

OUTPUT:

a fan whose cones are all pairwise Cartesian products of the cones of self and other

EXAMPLES:

sage: K = ToricLattice(1, K )
sage: fan1 = Fan([[0],[1]], [(1,),(-1,)], lattice=K)
sage: L = ToricLattice(2, L )
sage: fan2 = Fan(rays=[(1,0), (0,1), (-1,-1)],
....: cones=[[0,1], [1,2], [2,0]], lattice=L)
sage: fan1.cartesian_product(fan2)
Rational polyhedral fan in 3-d lattice K+L
sage: _.ngenerating_cones()
6

common_refinement(other)
Return the common refinement of this fan and other.

INPUT:

• other – a fan in the same lattice() and with the same support as this fan

OUTPUT:

a fan

EXAMPLES:

Refining a fan with itself gives itself:

sage: F0 = Fan2d([(1,0), (0,1), (-1,0), (0,-1)])
sage: F0.common_refinement(F0) == F0
True
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A more complex example with complete fans:

sage: F1 = Fan([[0],[1]], [(1,),(-1,)])
sage: F2 = Fan2d([(1,0), (1,1), (0,1), (-1,0), (0,-1)])
sage: F3 = F2.cartesian_product(F1)
sage: F4 = F1.cartesian_product(F2)
sage: FF = F3.common_refinement(F4)
sage: F3.ngenerating_cones()
10
sage: F4.ngenerating_cones()
10
sage: FF.ngenerating_cones()
13

An example with two non-complete fans with the same support:

sage: F5 = Fan2d([(1,0), (1,2), (0,1)])
sage: F6 = Fan2d([(1,0), (2,1), (0,1)])
sage: F5.common_refinement(F6).ngenerating_cones()
3

Both fans must live in the same lattice:

sage: F0.common_refinement(F1)
Traceback (most recent call last):
...
ValueError: the fans are not in the same lattice

complex(base_ring=Integer Ring, extended=False)
Return the chain complex of the fan.

To a 𝑑-dimensional fan Σ, one can canonically associate a chain complex𝐾∙

0 −→ Σ(𝑑) −→ Σ(𝑑−1) −→ · · · −→ Σ(0) −→ 0

where the leftmost non-zero entry is in degree 0 and the rightmost entry in degree 𝑑. See [Kly1990], eq.
(3.2). This complex computes the homology of |Σ| ⊂ 𝑁R with arbitrary support,

𝐻𝑖(𝐾) = 𝐻𝑑−𝑖(|Σ|, )non-cpct

For a complete fan, this is just the non-compactly supported homology of R𝑑. In this case,𝐻0(𝐾) = and
0 in all non-zero degrees.

For a complete fan, there is an extended chain complex

0 −→ −→ Σ(𝑑) −→ Σ(𝑑−1) −→ · · · −→ Σ(0) −→ 0

where we take the first term to be in degree -1. This complex is an exact sequence, that is, all homology
groups vanish.

The orientation of each cone is chosen as in oriented_boundary().

INPUT:

• extended – Boolean (default: False). Whether to construct the extended complex, that is, including
the -term at degree -1 or not.

• base_ring – A ring (default: ZZ). The ring to use instead of .
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OUTPUT:

The complex associated to the fan as a ChainComplex. This raises a ValueError if the extended
complex is requested for a non-complete fan.

EXAMPLES:

sage: # needs palp
sage: fan = toric_varieties.P(3).fan()
sage: K_normal = fan.complex(); K_normal
Chain complex with at most 4 nonzero terms over Integer Ring
sage: K_normal.homology()
{0: Z, 1: 0, 2: 0, 3: 0}
sage: K_extended = fan.complex(extended=True); K_extended
Chain complex with at most 5 nonzero terms over Integer Ring
sage: K_extended.homology()
{-1: 0, 0: 0, 1: 0, 2: 0, 3: 0}

Homology computations are much faster over if you do not care about the torsion coefficients:

sage: toric_varieties.P2_123().fan().complex(extended=True, #␣
→˓needs palp
....: base_ring=QQ)
Chain complex with at most 4 nonzero terms over Rational Field
sage: _.homology() #␣
→˓needs palp
{-1: Vector space of dimension 0 over Rational Field,
0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 0 over Rational Field,
2: Vector space of dimension 0 over Rational Field}

The extended complex is only defined for complete fans:

sage: fan = Fan([Cone([(1,0)])])
sage: fan.is_complete()
False
sage: fan.complex(extended=True)
Traceback (most recent call last):
...
ValueError: The extended complex is only defined for complete fans!

The definition of the complex does not refer to the ambient space of the fan, so it does not distinguish a fan
from the same fan embedded in a subspace:

sage: K1 = Fan([Cone([(-1,)]), Cone([(1,)])]).complex()
sage: K2 = Fan([Cone([(-1,0,0)]), Cone([(1,0,0)])]).complex()
sage: K1 == K2
True

Things get more complicated for non-complete fans:

sage: fan = Fan([Cone([(1,1,1)]),
....: Cone([(1,0,0), (0,1,0)]),
....: Cone([(-1,0,0), (0,-1,0), (0,0,-1)])])
sage: fan.complex().homology()
{0: 0, 1: 0, 2: Z x Z, 3: 0}
sage: fan = Fan([Cone([(1,0,0), (0,1,0)]),
....: Cone([(-1,0,0), (0,-1,0), (0,0,-1)])])

(continues on next page)
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sage: fan.complex().homology()
{0: 0, 1: 0, 2: Z, 3: 0}
sage: fan = Fan([Cone([(-1,0,0), (0,-1,0), (0,0,-1)])])
sage: fan.complex().homology()
{0: 0, 1: 0, 2: 0, 3: 0}

cone_containing(*points)

Return the smallest cone of self containing all given points.

INPUT:

• either one or more indices of rays of self, or one or more objects representing points of the ambient
space of self, or a list of such objects (you CANNOT give a list of indices).

OUTPUT:

A cone of fan whose ambient fan is self

Note: We think of the origin as of the smallest cone containing no rays at all. If there is no ray in self that
contains all rays, a ValueError exception will be raised.

EXAMPLES:

sage: cone1 = Cone([(0,-1), (1,0)])
sage: cone2 = Cone([(1,0), (0,1)])
sage: f = Fan([cone1, cone2])
sage: f.rays()
N(0, -1),
N(0, 1),
N(1, 0)
in 2-d lattice N
sage: f.cone_containing(0) # ray index
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing(0, 1) # ray indices
Traceback (most recent call last):
...
ValueError: there is no cone in
Rational polyhedral fan in 2-d lattice N
containing all of the given rays! Ray indices: [0, 1]
sage: f.cone_containing(0, 2) # ray indices
2-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing((0,1)) # point
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing([(0,1)]) # point
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing((1,1))
2-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing((1,1), (1,0))
2-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing()
0-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing((0,0))
0-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing((-1,1))
Traceback (most recent call last):
...

(continues on next page)
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ValueError: there is no cone in
Rational polyhedral fan in 2-d lattice N
containing all of the given points! Points: [N(-1, 1)]

cone_lattice()

Return the cone lattice of self.

This lattice will have the origin as the bottom (we do not include the empty set as a cone) and the fan itself
as the top.

OUTPUT:

finite poset <sage.combinat.posets.posets.FinitePoset of cones of fan, be-
having like “regular” cones, but also containing the information about their relation to this fan, namely, the
contained rays and containing generating cones. The top of the lattice will be this fan itself (which is not a
cone of fan).

See also cones().

EXAMPLES:

Cone lattices can be computed for arbitrary fans:

sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.rays()
N(-1, 0),
N( 0, 1),
N( 1, 0)
in 2-d lattice N
sage: for cone in fan: print(cone.ambient_ray_indices())
(1, 2)
(0,)
sage: L = fan.cone_lattice()
sage: L
Finite poset containing 6 elements with distinguished linear extension

These 6 elements are the origin, three rays, one two-dimensional cone, and the fan itself. Since we do add
the fan itself as the largest face, you should be a little bit careful with this last element:

sage: for face in L: print(face.ambient_ray_indices())
Traceback (most recent call last):
...
AttributeError: RationalPolyhedralFan
object has no attribute ambient_ray_indices
sage: L.top()
Rational polyhedral fan in 2-d lattice N

For example, you can do

sage: for l in L.level_sets()[:-1]:
....: print([f.ambient_ray_indices() for f in l])
[()]
[(0,), (1,), (2,)]
[(1, 2)]

If the fan is complete, its cone lattice is atomic and coatomic and can (and will!) be computed in a much
more efficient way, but the interface is exactly the same:
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sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: L = fan.cone_lattice() #␣
→˓needs palp
sage: for l in L.level_sets()[:-1]: #␣
→˓needs palp
....: print([f.ambient_ray_indices() for f in l])
[()]
[(0,), (1,), (2,), (3,)]
[(0, 2), (1, 2), (1, 3), (0, 3)]

Let’s also consider the cone lattice of a fan generated by a single cone:

sage: fan = Fan([cone1])
sage: L = fan.cone_lattice()
sage: L
Finite poset containing 5 elements with distinguished linear extension

Here these 5 elements correspond to the origin, two rays, one generating cone of dimension two, and the
whole fan. While this single cone “is” the whole fan, it is consistent and convenient to distinguish them in the
cone lattice.

cones(dim=None, codim=None)
Return the specified cones of self.

INPUT:

• dim – dimension of the requested cones;

• codim – codimension of the requested cones.

Note: You can specify at most one input parameter.

OUTPUT:

tuple of cones of self of the specified (co)dimension, if either dim or codim is given. Otherwise
tuple of such tuples for all existing dimensions.

EXAMPLES:

sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan(dim=0)
(0-d cone of Rational polyhedral fan in 2-d lattice N,)
sage: fan(codim=2)
(0-d cone of Rational polyhedral fan in 2-d lattice N,)
sage: for cone in fan.cones(1): cone.ray(0)
N(-1, 0)
N(0, 1)
N(1, 0)
sage: fan.cones(2)
(2-d cone of Rational polyhedral fan in 2-d lattice N,)

You cannot specify both dimension and codimension, even if they “agree”:
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sage: fan(dim=1, codim=1)
Traceback (most recent call last):
...
ValueError: dimension and codimension
cannot be specified together!

But it is OK to ask for cones of too high or low (co)dimension:

sage: fan(-1)
()
sage: fan(3)
()
sage: fan(codim=4)
()

contains(cone)
Check if a given cone is equivalent to a cone of the fan.

INPUT:

• cone – anything.

OUTPUT:

False if cone is not a cone or if cone is not equivalent to a cone of the fan, True otherwise

Note: Recall that a fan is a (finite) collection of cones. A cone is contained in a fan if it is equivalent to one
of the cones of the fan. In particular, it is possible that all rays of the cone are in the fan, but the cone itself
is not.

If you want to know whether a point is in the support of the fan, you should use support_contains().

EXAMPLES:

We first construct a simple fan:

sage: cone1 = Cone([(0,-1), (1,0)])
sage: cone2 = Cone([(1,0), (0,1)])
sage: f = Fan([cone1, cone2])

Now we check if some cones are in this fan. First, we make sure that the order of rays of the input cone does
not matter (check=False option ensures that rays of these cones will be listed exactly as they are given):

sage: f.contains(Cone([(1,0), (0,1)], check=False))
True
sage: f.contains(Cone([(0,1), (1,0)], check=False))
True

Now we check that a non-generating cone is in our fan:

sage: f.contains(Cone([(1,0)]))
True
sage: Cone([(1,0)]) in f # equivalent to the previous command
True

Finally, we test some cones which are not in this fan:
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sage: f.contains(Cone([(1,1)]))
False
sage: f.contains(Cone([(1,0), (-0,1)]))
True

A point is not a cone:

sage: n = f.lattice()(1,1); n
N(1, 1)
sage: f.contains(n)
False

embed(cone)

Return the cone equivalent to the given one, but sitting in self.

You may need to use this method before calling methods of cone that depend on the ambient structure, such
as ambient_ray_indices() or facet_of(). The cone returned by this method will have self as
ambient. If cone does not represent a valid cone of self, ValueError exception is raised.

Note: This method is very quick if self is already the ambient structure of cone, so you can use without
extra checks and performance hit even if cone is likely to sit in self but in principle may not.

INPUT:

• cone – a cone.

OUTPUT:

a cone of fan, equivalent to cone but sitting inside self

EXAMPLES:

Let’s take a 3-d fan generated by a cone on 4 rays:

sage: f = Fan([Cone([(1,0,1), (0,1,1), (-1,0,1), (0,-1,1)])])

Then any ray generates a 1-d cone of this fan, but if you construct such a cone directly, it will not “sit” inside
the fan:

sage: ray = Cone([(0,-1,1)])
sage: ray
1-d cone in 3-d lattice N
sage: ray.ambient_ray_indices()
(0,)
sage: ray.adjacent()
()
sage: ray.ambient()
1-d cone in 3-d lattice N

If we want to operate with this ray as a part of the fan, we need to embed it first:

sage: e_ray = f.embed(ray)
sage: e_ray
1-d cone of Rational polyhedral fan in 3-d lattice N
sage: e_ray.rays()
N(0, -1, 1)
in 3-d lattice N

(continues on next page)
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sage: e_ray is ray
False
sage: e_ray.is_equivalent(ray)
True
sage: e_ray.ambient_ray_indices()
(3,)
sage: e_ray.adjacent()
(1-d cone of Rational polyhedral fan in 3-d lattice N,
1-d cone of Rational polyhedral fan in 3-d lattice N)

sage: e_ray.ambient()
Rational polyhedral fan in 3-d lattice N

Not every cone can be embedded into a fixed fan:

sage: f.embed(Cone([(0,0,1)]))
Traceback (most recent call last):
...
ValueError: 1-d cone in 3-d lattice N does not belong
to Rational polyhedral fan in 3-d lattice N!
sage: f.embed(Cone([(1,0,1), (-1,0,1)]))
Traceback (most recent call last):
...
ValueError: 2-d cone in 3-d lattice N does not belong
to Rational polyhedral fan in 3-d lattice N!

f_vector()

Return the f-vector of the fan.

This is the tuple (𝑓0, 𝑓1, . . . , 𝑓𝑑) where 𝑓𝑖 is the number of cones of dimension 𝑖.

EXAMPLES:

sage: F = ClusterAlgebra([ A ,2]).cluster_fan()
sage: F.f_vector()
(1, 5, 5)

generating_cone(n)
Return the n-th generating cone of self.

INPUT:

• n – integer, the index of a generating cone.

OUTPUT:

cone of fan

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.generating_cone(0) #␣
→˓needs palp
2-d cone of Rational polyhedral fan in 2-d lattice N

generating_cones()

Return generating cones of self.

OUTPUT:
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tuple of cones of fan

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.generating_cones() #␣
→˓needs palp
(2-d cone of Rational polyhedral fan in 2-d lattice N,
2-d cone of Rational polyhedral fan in 2-d lattice N,
2-d cone of Rational polyhedral fan in 2-d lattice N,
2-d cone of Rational polyhedral fan in 2-d lattice N)

sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.generating_cones()
(2-d cone of Rational polyhedral fan in 2-d lattice N,
1-d cone of Rational polyhedral fan in 2-d lattice N)

is_complete()

Check if self is complete.

A rational polyhedral fan is complete if its cones fill the whole space.

OUTPUT:

True if self is complete and False otherwise

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.is_complete() #␣
→˓needs palp
True
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.is_complete()
False

is_equivalent(other)
Check if self is “mathematically” the same as other.

INPUT:

• other – fan.

OUTPUT:

True if self and other define the same fans as collections of equivalent cones in the same lattice, False
otherwise.

There are three different equivalences between fans 𝐹1 and 𝐹2 in the same lattice:

1. They have the same rays in the same order and the same generating cones in the same order. This is
tested by F1 == F2.

2. They have the same rays and the same generating cones without taking into account any order. This is
tested by F1.is_equivalent(F2).

3. They are in the same orbit of 𝐺𝐿(𝑛, ) (and, therefore, correspond to isomorphic toric varieties). This
is tested by F1.is_isomorphic(F2).
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Note that virtual_rays() are included into consideration for all of the above equivalences.

EXAMPLES:

sage: fan1 = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,1), (-1,-1)],
....: check=False)
sage: fan2 = Fan(cones=[(2,1), (0,2)],
....: rays=[(1,0), (-1,-1), (0,1)],
....: check=False)
sage: fan3 = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,1), (-1,1)],
....: check=False)
sage: fan1 == fan2
False
sage: fan1.is_equivalent(fan2)
True
sage: fan1 == fan3
False
sage: fan1.is_equivalent(fan3)
False

is_isomorphic(other)
Check if self is in the same 𝐺𝐿(𝑛, )-orbit as other.

There are three different equivalences between fans 𝐹1 and 𝐹2 in the same lattice:

1. They have the same rays in the same order and the same generating cones in the same order. This is
tested by F1 == F2.

2. They have the same rays and the same generating cones without taking into account any order. This is
tested by F1.is_equivalent(F2).

3. They are in the same orbit of 𝐺𝐿(𝑛, ) (and, therefore, correspond to isomorphic toric varieties). This
is tested by F1.is_isomorphic(F2).

Note that virtual_rays() are included into consideration for all of the above equivalences.

INPUT:

• other – a fan.

OUTPUT:

True if self and other are in the same 𝐺𝐿(𝑛, )-orbit, False otherwise

See also:

If you want to obtain the actual fan isomorphism, use isomorphism().

EXAMPLES:

Here we pick an 𝑆𝐿(2, ) matrix m and then verify that the image fan is isomorphic:

sage: rays = ((1, 1), (0, 1), (-1, -1), (1, 0))
sage: cones = [(0,1), (1,2), (2,3), (3,0)]
sage: fan1 = Fan(cones, rays)
sage: m = matrix([[-2,3], [1,-1]])
sage: fan2 = Fan(cones, [vector(r)*m for r in rays])
sage: fan1.is_isomorphic(fan2)
True
sage: fan1.is_equivalent(fan2)

(continues on next page)
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False
sage: fan1 == fan2
False

These fans are “mirrors” of each other:

sage: fan1 = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,1), (-1,-1)],
....: check=False)
sage: fan2 = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,-1), (-1,1)],
....: check=False)
sage: fan1 == fan2
False
sage: fan1.is_equivalent(fan2)
False
sage: fan1.is_isomorphic(fan2)
True
sage: fan1.is_isomorphic(fan1)
True

is_simplicial()

Check if self is simplicial.

A rational polyhedral fan is simplicial if all of its cones are, i.e. primitive vectors along generating rays of
every cone form a part of a rational basis of the ambient space.

OUTPUT:

True if self is simplicial and False otherwise

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.is_simplicial() #␣
→˓needs palp
True
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.is_simplicial()
True

In fact, any fan in a two-dimensional ambient space is simplicial. This is no longer the case in dimension
three:

sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: fan.is_simplicial()
False
sage: fan.generating_cone(0).nrays()
4

is_smooth(codim=None)
Check if self is smooth.

A rational polyhedral fan is smooth if all of its cones are, i.e. primitive vectors along generating rays of every
cone form a part of an integral basis of the ambient space. In this case the corresponding toric variety is
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smooth.

A fan in an 𝑛-dimensional lattice is smooth up to codimension 𝑐 if all cones of codimension greater than or
equal to 𝑐 are smooth, i.e. if all cones of dimension less than or equal to 𝑛 − 𝑐 are smooth. In this case the
singular set of the corresponding toric variety is of dimension less than 𝑐.

INPUT:

• codim – codimension in which smoothness has to be checked, by default complete smoothness will be
checked.

OUTPUT:

True if self is smooth (in codimension codim, if it was given) and False otherwise.

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.is_smooth() #␣
→˓needs palp
True
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.is_smooth()
True
sage: fan = NormalFan(lattice_polytope.cross_polytope(2))
sage: fan.is_smooth()
False
sage: fan.is_smooth(codim=1)
True
sage: fan.generating_cone(0).rays()
N(-1, -1),
N(-1, 1)
in 2-d lattice N
sage: fan.generating_cone(0).rays().matrix().det()
-2

isomorphism(other)
Return a fan isomorphism from self to other.

INPUT:

• other – fan.

OUTPUT:

A fan isomorphism. If no such isomorphism exists, a FanNotIsomorphicError is raised.

EXAMPLES:

sage: rays = ((1, 1), (0, 1), (-1, -1), (3, 1))
sage: cones = [(0,1), (1,2), (2,3), (3,0)]
sage: fan1 = Fan(cones, rays)
sage: m = matrix([[-2,3], [1,-1]])
sage: fan2 = Fan(cones, [vector(r)*m for r in rays])

sage: fan1.isomorphism(fan2)
Fan morphism defined by the matrix
[-2 3]

(continues on next page)
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[ 1 -1]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N

sage: fan2.isomorphism(fan1)
Fan morphism defined by the matrix
[1 3]
[1 2]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N

sage: fan1.isomorphism(toric_varieties.P2().fan()) #␣
→˓needs palp
Traceback (most recent call last):
...
FanNotIsomorphicError

linear_equivalence_ideal(ring)
Return the ideal generated by linear relations.

INPUT:

• A polynomial ring in self.nrays() variables.

OUTPUT:

Return the ideal, in the given ring, generated by the linear relations of the rays. In toric geometry, this
corresponds to rational equivalence of divisors.

EXAMPLES:

sage: fan = Fan([[0,1,3],[3,4],[2,0],[1,2,4]],
....: [(-3, -2, 1), (0, 0, 1), (3, -2, 1), (-1, -1, 1), (1, -1, 1)])
sage: fan.linear_equivalence_ideal(PolynomialRing(QQ, 5, A, B, C, D, E ))
Ideal (-3*A + 3*C - D + E, -2*A - 2*C - D - E, A + B + C + D + E) of
Multivariate Polynomial Ring in A, B, C, D, E over Rational Field

make_simplicial(**kwds)
Construct a simplicial fan subdividing self.

It is a synonym for subdivide() with make_simplicial=True option.

INPUT:

• this functions accepts only keyword arguments. See subdivide() for documentation.

OUTPUT:

rational polyhedral fan

EXAMPLES:

sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: fan.is_simplicial()
False
sage: fan.ngenerating_cones()
6
sage: new_fan = fan.make_simplicial()
sage: new_fan.is_simplicial()
True

(continues on next page)
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sage: new_fan.ngenerating_cones()
12

ngenerating_cones()

Return the number of generating cones of self.

OUTPUT:

integer

EXAMPLES:

sage: fan = toric_varieties.P1xP1().fan() #␣
→˓needs palp
sage: fan.ngenerating_cones() #␣
→˓needs palp
4
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.ngenerating_cones()
2

oriented_boundary(cone)
Return the facets bounding cone with their induced orientation.

INPUT:

• cone – a cone of the fan or the whole fan.

OUTPUT:

The boundary cones of cone as a formal linear combination of cones with coefficients ±1. Each summand
is a facet of cone and the coefficient indicates whether their (chosen) orientation agrees or disagrees with
the “outward normal first” boundary orientation. Note that the orientation of any individual cone is arbitrary.
This method once and for all picks orientations for all cones and then computes the boundaries relative to that
chosen orientation.

If cone is the fan itself, the generating cones with their orientation relative to the ambient space are returned.

See complex() for the associated chain complex. If you do not require the orientation, use cone.
facets() instead.

EXAMPLES:

sage: # needs palp
sage: fan = toric_varieties.P(3).fan()
sage: cone = fan(2)[0]
sage: bdry = fan.oriented_boundary(cone); bdry
-1-d cone of Rational polyhedral fan in 3-d lattice N
+ 1-d cone of Rational polyhedral fan in 3-d lattice N
sage: bdry[0]
(-1, 1-d cone of Rational polyhedral fan in 3-d lattice N)
sage: bdry[1]
(1, 1-d cone of Rational polyhedral fan in 3-d lattice N)
sage: fan.oriented_boundary(bdry[0][1])
-0-d cone of Rational polyhedral fan in 3-d lattice N
sage: fan.oriented_boundary(bdry[1][1])
-0-d cone of Rational polyhedral fan in 3-d lattice N
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If you pass the fan itself, this method returns the orientation of the generating cones which is determined by
the order of the rays in cone.ray_basis()

sage: fan.oriented_boundary(fan) #␣
→˓needs palp
-3-d cone of Rational polyhedral fan in 3-d lattice N
+ 3-d cone of Rational polyhedral fan in 3-d lattice N
- 3-d cone of Rational polyhedral fan in 3-d lattice N
+ 3-d cone of Rational polyhedral fan in 3-d lattice N
sage: [cone.rays().basis().matrix().det() #␣
→˓needs palp
....: for cone in fan.generating_cones()]
[-1, 1, -1, 1]

A non-full dimensional fan:

sage: cone = Cone([(4,5)])
sage: fan = Fan([cone])
sage: fan.oriented_boundary(cone)
0-d cone of Rational polyhedral fan in 2-d lattice N
sage: fan.oriented_boundary(fan)
1-d cone of Rational polyhedral fan in 2-d lattice N

plot(**options)
Plot self.

INPUT:

• any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:

a plot

EXAMPLES:

sage: fan = toric_varieties.dP6().fan() #␣
→˓needs palp
sage: fan.plot() #␣
→˓needs palp sage.plot
Graphics object consisting of 31 graphics primitives

primitive_collections()

Return the primitive collections.

OUTPUT:

Return the subsets {𝑖1, . . . , 𝑖𝑘} ⊂ {1, . . . , 𝑛} such that

• The points {𝑝𝑖1 , . . . , 𝑝𝑖𝑘} do not span a cone of the fan.

• If you remove any one 𝑝𝑖𝑗 from the set, then they do span a cone of the fan.

Note: By replacing the multiindices {𝑖1, . . . , 𝑖𝑘} of each primitive collection with the monomials 𝑥𝑖1 · · ·𝑥𝑖𝑘
one generates the Stanley-Reisner ideal in [𝑥1, . . . ].

REFERENCES:

• [Bat1991]
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EXAMPLES:

sage: fan = Fan([[0,1,3], [3,4], [2,0], [1,2,4]],
....: [(-3, -2, 1), (0, 0, 1), (3, -2, 1), (-1, -1, 1), (1, -1, 1)])
sage: fan.primitive_collections()
[frozenset({0, 4}),
frozenset({2, 3}),
frozenset({0, 1, 2}),
frozenset({1, 3, 4})]

subdivide(new_rays=None, make_simplicial=False, algorithm='default', verbose=False)
Construct a new fan subdividing self.

INPUT:

• new_rays – list of new rays to be added during subdivision, each ray must be a list or a vector. May
be empty or None (default);

• make_simplicial – if True, the returned fan is guaranteed to be simplicial, default is False;

• algorithm – string with the name of the algorithm used for subdivision. Currently there is only one
available algorithm called “default”;

• verbose – if True, some timing information may be printed during the process of subdivision.

OUTPUT:

rational polyhedral fan

Currently the “default” algorithm corresponds to iterative stellar subdivision for each ray in new_rays.

EXAMPLES:

sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: fan.is_simplicial()
False
sage: fan.ngenerating_cones()
6
sage: fan.nrays()
8
sage: new_fan = fan.subdivide(new_rays=[(1,0,0)])
sage: new_fan.is_simplicial()
False
sage: new_fan.ngenerating_cones()
9
sage: new_fan.nrays()
9

support_contains(*args)

Check if a point is contained in the support of the fan.

The support of a fan is the union of all cones of the fan. If you want to know whether the fan contains a given
cone, you should use contains() instead.

INPUT:

• *args – an element of self.lattice() or something that can be converted to it (for example, a
list of coordinates).

OUTPUT:

True if point is contained in the support of the fan, False otherwise
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toric_variety(*args, **kwds)
Return the associated toric variety.

INPUT:

same arguments as ToricVariety()

OUTPUT:

a toric variety

This is equivalent to the command ToricVariety(self) and is provided only as a convenient alternative
method to go from the fan to the associated toric variety.

EXAMPLES:

sage: Fan([Cone([(1,0)]), Cone([(0,1)])]).toric_variety()
2-d toric variety covered by 2 affine patches

vertex_graph()

Return the graph of 1- and 2-cones.

OUTPUT:

An edge-colored graph. The vertices correspond to the 1-cones (i.e. rays) of the fan. Two vertices are joined
by an edge iff the rays span a 2-cone of the fan. The edges are colored by pairs of integers that classify the
2-cones up to 𝐺𝐿(2, ) transformation, see classify_cone_2d().

EXAMPLES:

sage: # needs palp
sage: dP8 = toric_varieties.dP8()
sage: g = dP8.fan().vertex_graph(); g
Graph on 4 vertices
sage: set(dP8.fan(1)) == set(g.vertices(sort=False))
True
sage: g.edge_labels() # all edge labels the same since every cone is smooth
[(1, 0), (1, 0), (1, 0), (1, 0)]

sage: g = toric_varieties.Cube_deformation(10).fan().vertex_graph()
sage: g.automorphism_group().order() #␣
→˓needs sage.groups
48
sage: g.automorphism_group(edge_labels=True).order() #␣
→˓needs sage.groups
4

virtual_rays(*args)
Return (some of the) virtual rays of self.

Let 𝑁 be the 𝐷-dimensional lattice() of a 𝑑-dimensional fan Σ in 𝑁R. Then the corresponding toric
variety is of the form 𝑋 × (C*)𝐷−𝑑. The actual rays() of Σ give a canonical choice of homogeneous
coordinates on 𝑋 . This function returns an arbitrary but fixed choice of virtual rays corresponding to a
(non-canonical) choice of homogeneous coordinates on the torus factor. Combinatorially primitive integral
generators of virtual rays span the𝐷− 𝑑 dimensions of𝑁 “missed” by the actual rays. (In general addition
of virtual rays is not sufficient to span 𝑁 over .)

Note: You may use a particular choice of virtual rays by passing optional argument virtual_rays to
the Fan() constructor.
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INPUT:

• ray_list – a list of integers, the indices of the requested virtual rays. If not specified, all virtual rays
of self will be returned.

OUTPUT:

a PointCollection of primitive integral ray generators. Usually (if the fan is full-dimensional) this will
be empty.

EXAMPLES:

sage: f = Fan([Cone([(1,0,1,0), (0,1,1,0)])])
sage: f.virtual_rays()
N(1, 0, 0, 0),
N(0, 0, 0, 1)
in 4-d lattice N

sage: f.rays()
N(1, 0, 1, 0),
N(0, 1, 1, 0)
in 4-d lattice N

sage: f.virtual_rays([0])
N(1, 0, 0, 0)
in 4-d lattice N

You can also give virtual ray indices directly, without packing them into a list:

sage: f.virtual_rays(0)
N(1, 0, 0, 0)
in 4-d lattice N

Make sure that Issue #16344 is fixed and one can compute the virtual rays of fans in non-saturated lattices:

sage: N = ToricLattice(1)
sage: B = N.submodule([(2,)]).basis()
sage: f = Fan([Cone([B[0]])])
sage: len(f.virtual_rays())
0

sage.geometry.fan.discard_faces(cones)

Return the cones of the given list which are not faces of each other.

INPUT:

• cones – a list of cones.

OUTPUT:

a list of cones, sorted by dimension in decreasing order

EXAMPLES:

Consider all cones of a fan:

sage: Sigma = toric_varieties.P2().fan() #␣
→˓needs palp
sage: cones = flatten(Sigma.cones()) #␣
→˓needs palp
sage: len(cones) #␣

(continues on next page)
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→˓needs palp
7

Most of them are not necessary to generate this fan:

sage: from sage.geometry.fan import discard_faces
sage: len(discard_faces(cones)) #␣
→˓needs palp
3
sage: Sigma.ngenerating_cones() #␣
→˓needs palp
3

sage.geometry.fan.is_Fan(x)
Check if x is a Fan.

INPUT:

• x – anything.

OUTPUT:

True if x is a fan and False otherwise

EXAMPLES:

sage: from sage.geometry.fan import is_Fan
sage: is_Fan(1)
doctest:warning...
DeprecationWarning: The function is_Fan is deprecated; use isinstance(...,␣
→˓RationalPolyhedralFan) instead.
See https://github.com/sagemath/sage/issues/38126 for details.
False
sage: fan = toric_varieties.P2().fan(); fan #␣
→˓needs palp
Rational polyhedral fan in 2-d lattice N
sage: is_Fan(fan) #␣
→˓needs palp
True

2.5.6 Morphisms between toric lattices compatible with fans

This module is a part of the framework for toric varieties (variety, fano_variety). Its main purpose is to provide
support for working with lattice morphisms compatible with fans via FanMorphism class.

AUTHORS:

• Andrey Novoseltsev (2010-10-17): initial version.

• Andrey Novoseltsev (2011-04-11): added tests for injectivity/surjectivity,
fibration, bundle, as well as some related methods.

EXAMPLES:

Let’s consider the face and normal fans of the “diamond” and the projection to the 𝑥-axis:
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sage: diamond = lattice_polytope.cross_polytope(2)
sage: face = FaceFan(diamond, lattice=ToricLattice(2))
sage: normal = NormalFan(diamond)
sage: N = face.lattice()
sage: H = End(N)
sage: phi = H([N.0, 0])
sage: phi
Free module morphism defined by the matrix
[1 0]
[0 0]
Domain: 2-d lattice N
Codomain: 2-d lattice N
sage: FanMorphism(phi, normal, face)
Traceback (most recent call last):
...
ValueError: the image of generating cone #1 of the domain fan
is not contained in a single cone of the codomain fan!

Some of the cones of the normal fan fail to be mapped to a single cone of the face fan. We can rectify the situation in the
following way:

sage: fm = FanMorphism(phi, normal, face, subdivide=True)
sage: fm
Fan morphism defined by the matrix
[1 0]
[0 0]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N
sage: fm.domain_fan().rays()
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1),
N( 0, -1),
N( 0, 1)
in 2-d lattice N
sage: normal.rays()
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1)
in 2-d lattice N

As you see, it was necessary to insert two new rays (to prevent “upper” and “lower” cones of the normal fan from being
mapped to the whole 𝑥-axis).

class sage.geometry.fan_morphism.FanMorphism(morphism, domain_fan, codomain=None,
subdivide=False, check=True, verbose=False)

Bases: FreeModuleMorphism

Create a fan morphism.

Let Σ1 and Σ2 be two fans in lattices𝑁1 and𝑁2 respectively. Let 𝜑 be a morphism (i.e. a linear map) from𝑁1 to
𝑁2. We say that 𝜑 is compatible withΣ1 andΣ2 if every cone 𝜎1 ∈ Σ1 is mapped by 𝜑 into a single cone 𝜎2 ∈ Σ2,
i.e. 𝜑(𝜎1) ⊂ 𝜎2 (𝜎2 may be different for different 𝜎1).

By a fanmorphismwe understand amorphism between two lattices compatible with specified fans in these lattices.
Such morphisms behave in exactly the same way as “regular” morphisms between lattices, but:
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• fan morphisms have a special constructor allowing some automatic adjustments to the initial fans (see below);

• fan morphisms are aware of the associated fans and they can be accessed via codomain_fan() and do-
main_fan();

• fan morphisms can efficiently compute image_cone() of a given cone of the domain fan and preim-
age_cones() of a given cone of the codomain fan.

INPUT:

• morphism – either a morphism between domain and codomain, or an integral matrix defining such a mor-
phism;

• domain_fan – a fan in the domain;

• codomain – (default: None) either a codomain lattice or a fan in the codomain. If the codomain fan is
not given, the image fan (fan generated by images of generating cones) of domain_fan will be used, if
possible;

• subdivide – (default: False) if True and domain_fan is not compatible with the codomain fan
because it is too coarse, it will be automatically refined to become compatible (the minimal refinement is
canonical, so there are no choices involved);

• check – (default: True) if False, given fans and morphism will be assumed to be compatible. Be careful
when using this option, since wrong assumptions can lead to wrong and hard-to-detect errors. On the other
hand, this option may save you some time;

• verbose – (default: False) if True, some information may be printed during construction of the fan
morphism.

OUTPUT:

• a fan morphism.

EXAMPLES:

Here we consider the face and normal fans of the “diamond” and the projection to the 𝑥-axis:

sage: diamond = lattice_polytope.cross_polytope(2)
sage: face = FaceFan(diamond, lattice=ToricLattice(2))
sage: normal = NormalFan(diamond)
sage: N = face.lattice()
sage: H = End(N)
sage: phi = H([N.0, 0])
sage: phi
Free module morphism defined by the matrix
[1 0]
[0 0]
Domain: 2-d lattice N
Codomain: 2-d lattice N
sage: fm = FanMorphism(phi, face, normal)
sage: fm.domain_fan() is face
True

Note, that since phi is compatible with these fans, the returned fan is exactly the same object as the initial do-
main_fan.

sage: FanMorphism(phi, normal, face)
Traceback (most recent call last):
...
ValueError: the image of generating cone #1 of the domain fan
is not contained in a single cone of the codomain fan!

(continues on next page)
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sage: fm = FanMorphism(phi, normal, face, subdivide=True)
sage: fm.domain_fan() is normal
False
sage: fm.domain_fan().ngenerating_cones()
6

We had to subdivide two of the four cones of the normal fan, since they were mapped by phi into non-strictly
convex cones.

It is possible to omit the codomain fan, in which case the image fan will be used instead of it:

sage: fm = FanMorphism(phi, face)
sage: fm.codomain_fan()
Rational polyhedral fan in 2-d lattice N
sage: fm.codomain_fan().rays()
N( 1, 0),
N(-1, 0)
in 2-d lattice N

Now we demonstrate a more subtle example. We take the first quadrant as our domain fan. Then we divide the
first quadrant into three cones, throw away the middle one and take the other two as our codomain fan. These fans
are incompatible with the identity lattice morphism since the image of the domain fan is out of the support of the
codomain fan:

sage: N = ToricLattice(2)
sage: phi = End(N).identity()
sage: F1 = Fan(cones=[(0,1)], rays=[(1,0), (0,1)])
sage: F2 = Fan(cones=[(0,1), (2,3)],
....: rays=[(1,0), (2,1), (1,2), (0,1)])
sage: FanMorphism(phi, F1, F2)
Traceback (most recent call last):
...
ValueError: the image of generating cone #0 of the domain fan
is not contained in a single cone of the codomain fan!
sage: FanMorphism(phi, F1, F2, subdivide=True)
Traceback (most recent call last):
...
ValueError: morphism defined by
[1 0]
[0 1]
does not map
Rational polyhedral fan in 2-d lattice N
into the support of
Rational polyhedral fan in 2-d lattice N!

The problem was detected and handled correctly (i.e. an exception was raised). However, the used algorithm
requires extra checks for this situation after constructing a potential subdivision and this can take significant time.
You can save about half the time using check=False option, if you know in advance that it is possible to make
fans compatible with the morphism by subdividing the domain fan. Of course, if your assumption was incorrect,
the result will be wrong and you will get a fan which does map into the support of the codomain fan, but is not a
subdivision of the domain fan. You can test it on the example above:

sage: fm = FanMorphism(phi, F1, F2, subdivide=True,
....: check=False, verbose=True)
Placing ray images (... ms)
Computing chambers (... ms)

(continues on next page)
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Number of domain cones: 1.
Number of chambers: 2.
Cone 0 sits in chambers 0 1 (... ms)
sage: fm.domain_fan().is_equivalent(F2)
True

codomain_fan(dim=None, codim=None)
Return the codomain fan of self.

INPUT:

• dim – dimension of the requested cones;

• codim – codimension of the requested cones.

OUTPUT:

• rational polyhedral fan if no parameters were given, tuple of cones otherwise.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.codomain_fan()
Rational polyhedral fan in 2-d lattice N
sage: fm.codomain_fan() is quadrant
True

domain_fan(dim=None, codim=None)
Return the codomain fan of self.

INPUT:

• dim – dimension of the requested cones;

• codim – codimension of the requested cones.

OUTPUT:

• rational polyhedral fan if no parameters were given, tuple of cones otherwise.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.domain_fan()
Rational polyhedral fan in 2-d lattice N
sage: fm.domain_fan() is quadrant_bl
True

factor()

Factor self into injective * birational * surjective morphisms.

OUTPUT:

• a triple of FanMorphism (𝜑𝑖, 𝜑𝑏, 𝜑𝑠), such that 𝜑𝑠 is surjective, 𝜑𝑏 is birational, 𝜑𝑖 is injective, and
self is equal to 𝜑𝑖 ∘ 𝜑𝑏 ∘ 𝜑𝑠.
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Intermediate fans live in the saturation of the image of self as a map between lattices and are the image of
the domain_fan() and the restriction of the codomain_fan(), i.e. if self maps Σ → Σ′, then we
have factorization into

Σ � Σ𝑠 → Σ𝑖 →˓ Σ.

Note:

• Σ𝑠 is the finest fan with the smallest support that is compatible with self: any fan morphism from Σ
given by the same map of lattices as self factors through Σ𝑠.

• Σ𝑖 is the coarsest fan of the largest support that is compatible with self: any fan morphism into Σ′

given by the same map of lattices as self factors though Σ𝑖.

EXAMPLES:

We map an affine plane into a projective 3-space in such a way, that it becomes “a double cover of a chart of
the blow up of one of the coordinate planes”:

sage: A2 = toric_varieties.A2()
sage: P3 = toric_varieties.P(3) #␣
→˓needs palp
sage: m = matrix([(2,0,0), (1,1,0)])
sage: phi = A2.hom(m, P3) #␣
→˓needs palp
sage: phi.as_polynomial_map() #␣
→˓needs palp
Scheme morphism:

From: 2-d affine toric variety
To: 3-d CPR-Fano toric variety covered by 4 affine patches
Defn: Defined on coordinates by sending [x : y] to

[x^2*y : y : 1 : 1]

Now we will work with the underlying fan morphism:

sage: # needs palp
sage: phi = phi.fan_morphism(); phi
Fan morphism defined by the matrix
[2 0 0]
[1 1 0]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 3-d lattice N
sage: phi.is_surjective(), phi.is_birational(), phi.is_injective()
(False, False, False)
sage: phi_i, phi_b, phi_s = phi.factor()
sage: phi_s.is_surjective(), phi_b.is_birational(), phi_i.is_injective()
(True, True, True)
sage: prod(phi.factor()) == phi
True

Double cover (surjective):

sage: A2.fan().rays()
N(1, 0),
N(0, 1)
in 2-d lattice N

(continues on next page)
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sage: phi_s #␣
→˓needs palp
Fan morphism defined by the matrix
[2 0]
[1 1]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)>
sage: phi_s.codomain_fan().rays() #␣
→˓needs palp
N(1, 0, 0),
N(1, 1, 0)
in Sublattice <N(1, 0, 0), N(0, 1, 0)>

Blowup chart (birational):

sage: phi_b #␣
→˓needs palp
Fan morphism defined by the matrix
[1 0]
[0 1]
Domain fan: Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)>
Codomain fan: Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)>
sage: phi_b.codomain_fan().rays() #␣
→˓needs palp
N(-1, -1, 0),
N( 0, 1, 0),
N( 1, 0, 0)
in Sublattice <N(1, 0, 0), N(0, 1, 0)>

Coordinate plane inclusion (injective):

sage: phi_i #␣
→˓needs palp
Fan morphism defined by the matrix
[1 0 0]
[0 1 0]
Domain fan: Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)>
Codomain fan: Rational polyhedral fan in 3-d lattice N
sage: phi.codomain_fan().rays() #␣
→˓needs palp
N( 1, 0, 0),
N( 0, 1, 0),
N( 0, 0, 1),
N(-1, -1, -1)
in 3-d lattice N

image_cone(cone)

Return the cone of the codomain fan containing the image of cone.

INPUT:

• cone – a cone equivalent to a cone of the domain_fan() of self.

OUTPUT:

• a cone of the codomain_fan() of self.

EXAMPLES:
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sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.image_cone(Cone([(1,0)]))
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: fm.image_cone(Cone([(1,1)]))
2-d cone of Rational polyhedral fan in 2-d lattice N

index(cone=None)
Return the index of self as a map between lattices.

INPUT:

• cone – (default: None) a cone of the codomain_fan() of self.

OUTPUT:

• an integer, infinity, or None.

If no cone was specified, this function computes the index of the image of self in the codomain. If a cone
𝜎 was given, the index of self over 𝜎 is computed in the sense of Definition 2.1.7 of [HLY2002]: if 𝜎′ is
any cone of the domain_fan() of self whose relative interior is mapped to the relative interior of 𝜎, it
is the index of the image of𝑁 ′(𝜎′) in𝑁(𝜎), where𝑁 ′ and𝑁 are domain and codomain lattices respectively.
While that definition was formulated for the case of the finite index only, we extend it to the infinite one as
well and return None if there is no 𝜎′ at all. See examples below for situations when such things happen.
Note also that the index of self is the same as index over the trivial cone.

EXAMPLES:

sage: # needs palp
sage: Sigma = toric_varieties.dP8().fan()
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)
sage: phi.index()
1
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)
sage: psi.index()
2
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)
sage: xi.index()
+Infinity

Infinite index in the last example indicates that the image has positive codimension in the codomain. Let’s
look at the rays of our fans:

sage: Sigma_p.rays() #␣
→˓needs palp
N( 1),
N(-1)
in 1-d lattice N
sage: Sigma.rays() #␣
→˓needs palp
N( 1, 1),
N( 0, 1),
N(-1, -1),
N( 1, 0)
in 2-d lattice N

(continues on next page)
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sage: xi.factor()[0].domain_fan().rays() #␣
→˓needs palp
N(-1, 0),
N( 1, 0)
in Sublattice <N(1, 0)>

We see that one of the rays of the fan of P1 is mapped to a ray, while the other one to the interior of some
2-d cone. Both rays correspond to single points on P1, yet one is mapped to the distinguished point of a torus
invariant curve of dP8 (with the rest of this curve being uncovered) and the other to a fixed point of dP8
(thus completely covering this torus orbit in dP8).

We should therefore expect the following behaviour: all indices over 1-d cones are None, except for one
which is infinite, and all indices over 2-d cones are None, except for one which is 1:

sage: [xi.index(cone) for cone in Sigma(1)] #␣
→˓needs palp
[None, None, None, +Infinity]
sage: [xi.index(cone) for cone in Sigma(2)] #␣
→˓needs palp
[None, 1, None, None]

is_birational()

Check if self is birational.

OUTPUT:

• True if self is birational, False otherwise.

For fan morphisms this check is equivalent to self.index() == 1 and means that the corresponding
map between toric varieties is birational.

EXAMPLES:

sage: # needs palp
sage: Sigma = toric_varieties.dP8().fan()
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)
sage: phi.index(), psi.index(), xi.index()
(1, 2, +Infinity)
sage: phi.is_birational(), psi.is_birational(), xi.is_birational()
(True, False, False)

is_bundle()

Check if self is a bundle.

OUTPUT:

• True if self is a bundle, False otherwise.

Let 𝜑 : Σ → Σ′ be a fan morphism such that the underlying lattice morphism 𝜑 : 𝑁 → 𝑁 ′ is surjective. Let
Σ0 be the kernel fan of 𝜑. Then 𝜑 is a bundle (or splitting) if there is a subfan ̂︀Σ of Σ such that the following
two conditions are satisfied:

1. Cones of Σ are precisely the cones of the form 𝜎0 + ̂︀𝜎, where 𝜎0 ∈ Σ0 and ̂︀𝜎 ∈ ̂︀Σ.
2. Cones of ̂︀Σ are in bijection with cones ofΣ′ induced by 𝜑 and 𝜑maps lattice points in every cone ̂︀𝜎 ∈ ̂︀Σ

bijectively onto lattice points in 𝜑(̂︀𝜎).
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If a fan morphism 𝜑 : Σ → Σ′ is a bundle, then 𝑋Σ is a fiber bundle over 𝑋Σ′ with fibers 𝑋Σ0,𝑁0 , where
𝑁0 is the kernel lattice of 𝜑. See [CLS2011] for more details.

See also:

is_fibration(), kernel_fan().

EXAMPLES:

We consider several maps between fans of a del Pezzo surface and the projective line:

sage: # needs palp
sage: Sigma = toric_varieties.dP8().fan()
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)
sage: phi.is_bundle()
True
sage: phi.is_fibration()
True
sage: phi.index()
1
sage: psi.is_bundle()
False
sage: psi.is_fibration()
True
sage: psi.index()
2
sage: xi.is_fibration()
False
sage: xi.index()
+Infinity

The first of these maps induces not only a fibration, but a fiber bundle structure. The second map is very
similar, yet it fails to be a bundle, as its index is 2. The last map is not even a fibration.

is_dominant()

Return whether the fan morphism is dominant.

A fan morphism 𝜑 is dominant if it is surjective as a map of vector spaces. That is, 𝜑R : 𝑁R → 𝑁 ′
R is

surjective.

If the domain fan is complete, then this implies that the fan morphism is surjective.

If the fan morphism is dominant, then the associated morphism of toric varieties is dominant in the
algebraic-geometric sense (that is, surjective onto a dense subset).

OUTPUT:

Boolean.

EXAMPLES:

sage: P1 = toric_varieties.P1()
sage: A1 = toric_varieties.A1()
sage: phi = FanMorphism(matrix([[1]]), A1.fan(), P1.fan())
sage: phi.is_dominant()
True
sage: phi.is_surjective()
False
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is_fibration()

Check if self is a fibration.

OUTPUT:

• True if self is a fibration, False otherwise.

A fan morphism 𝜑 : Σ → Σ′ is a fibration if for any cone 𝜎′ ∈ Σ′ and any primitive preimage cone 𝜎 ∈ Σ
corresponding to 𝜎′ the linear map of vector spaces 𝜑R induces a bijection between 𝜎 and 𝜎′, and, in addition,
𝜑 is dominant (that is, 𝜑R : 𝑁R → 𝑁 ′

R is surjective).

If a fan morphism 𝜑 : Σ → Σ′ is a fibration, then the associated morphism between toric varieties 𝜑 :
𝑋Σ → 𝑋Σ′ is a fibration in the sense that it is surjective and all of its fibers have the same dimension, namely
dim𝑋Σ − dim𝑋Σ′ . These fibers do not have to be isomorphic, i.e. a fibration is not necessarily a fiber
bundle. See [HLY2002] for more details.

See also:

is_bundle(), primitive_preimage_cones().

EXAMPLES:

We consider several maps between fans of a del Pezzo surface and the projective line:

sage: # needs palp
sage: Sigma = toric_varieties.dP8().fan()
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)
sage: phi.is_bundle()
True
sage: phi.is_fibration()
True
sage: phi.index()
1
sage: psi.is_bundle()
False
sage: psi.is_fibration()
True
sage: psi.index()
2
sage: xi.is_fibration()
False
sage: xi.index()
+Infinity

The first of these maps induces not only a fibration, but a fiber bundle structure. The second map is very
similar, yet it fails to be a bundle, as its index is 2. The last map is not even a fibration.

is_injective()

Check if self is injective.

OUTPUT:

• True if self is injective, False otherwise.

Let 𝜑 : Σ → Σ′ be a fan morphism such that the underlying lattice morphism 𝜑 : 𝑁 → 𝑁 ′ bijectively
maps 𝑁 to a saturated sublattice of 𝑁 ′. Let 𝜓 : Σ → Σ′

0 be the restriction of 𝜑 to the image. Then 𝜑 is
injective if the map between cones corresponding to 𝜓 (injectively) maps each cone of Σ to a cone of the
same dimension.
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If a fan morphism 𝜑 : Σ → Σ′ is injective, then the associated morphism between toric varieties 𝜑 : 𝑋Σ →
𝑋Σ′ is injective.

See also:

factor().

EXAMPLES:

Consider the fan of the affine plane:

sage: A2 = toric_varieties.A(2).fan()

We will map several fans consisting of a single ray into the interior of the 2-cone:

sage: Sigma = Fan([Cone([(1,1)])])
sage: m = identity_matrix(2)
sage: FanMorphism(m, Sigma, A2).is_injective()
False

This morphism was not injective since (in the toric varieties interpretation) the 1-dimensional orbit corre-
sponding to the ray was mapped to the 0-dimensional orbit corresponding to the 2-cone.

sage: Sigma = Fan([Cone([(1,)])])
sage: m = matrix(1, 2, [1,1])
sage: FanMorphism(m, Sigma, A2).is_injective()
True

While the fans in this example are close to the previous one, here the ray corresponds to a 0-dimensional orbit.

sage: Sigma = Fan([Cone([(1,)])])
sage: m = matrix(1, 2, [2,2])
sage: FanMorphism(m, Sigma, A2).is_injective()
False

Here the problem is that m maps the domain lattice to a non-saturated sublattice of the codomain. The
corresponding map of the toric varieties is a two-sheeted cover of its image.

We also embed the affine plane into the projective one:

sage: P2 = toric_varieties.P(2).fan() #␣
→˓needs palp
sage: m = identity_matrix(2)
sage: FanMorphism(m, A2, P2).is_injective() #␣
→˓needs palp
True

is_surjective()

Check if self is surjective.

OUTPUT:

• True if self is surjective, False otherwise.

A fan morphism 𝜑 : Σ → Σ′ is surjective if the corresponding map between cones is surjective, i.e. for each
cone 𝜎′ ∈ Σ′ there is at least one preimage cone 𝜎 ∈ Σ such that the relative interior of 𝜎 is mapped to the
relative interior of 𝜎′ and, in addition, 𝜑R : 𝑁R → 𝑁 ′

R is surjective.

If a fan morphism 𝜑 : Σ → Σ′ is surjective, then the associated morphism between toric varieties 𝜑 : 𝑋Σ →
𝑋Σ′ is surjective.
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See also:

is_bundle(), is_fibration(), preimage_cones(), is_complete().

EXAMPLES:

We check that the blow up of the affine plane at the origin is surjective:

sage: A2 = toric_varieties.A(2).fan()
sage: Bl = A2.subdivide([(1,1)])
sage: m = identity_matrix(2)
sage: FanMorphism(m, Bl, A2).is_surjective()
True

It remains surjective if we throw away “south and north poles” of the exceptional divisor:

sage: FanMorphism(m, Fan(Bl.cones(1)), A2).is_surjective()
True

But a single patch of the blow up does not cover the plane:

sage: F = Fan([Bl.generating_cone(0)])
sage: FanMorphism(m, F, A2).is_surjective()
False

kernel_fan()

Return the subfan of the domain fan mapped into the origin.

OUTPUT:

• a fan.

Note: The lattice of the kernel fan is the kernel() sublattice of self.

See also:

preimage_fan().

EXAMPLES:

sage: fan = Fan(rays=[(1,0), (1,1), (0,1)], cones=[(0,1), (1,2)])
sage: fm = FanMorphism(matrix(2, 1, [1,-1]), fan, ToricLattice(1))
sage: fm.kernel_fan()
Rational polyhedral fan in Sublattice <N(1, 1)>
sage: _.rays()
N(1, 1)
in Sublattice <N(1, 1)>
sage: fm.kernel_fan().cones()
((0-d cone of Rational polyhedral fan in Sublattice <N(1, 1)>,),
(1-d cone of Rational polyhedral fan in Sublattice <N(1, 1)>,))

preimage_cones(cone)
Return cones of the domain fan whose image_cone() is cone.

INPUT:

• cone – a cone equivalent to a cone of the codomain_fan() of self.

OUTPUT:
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• a tuple of cones of the domain_fan() of self, sorted by dimension.

See also:

preimage_fan().

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.preimage_cones(Cone([(1,0)]))
(1-d cone of Rational polyhedral fan in 2-d lattice N,)
sage: fm.preimage_cones(Cone([(1,0), (0,1)]))
(1-d cone of Rational polyhedral fan in 2-d lattice N,
2-d cone of Rational polyhedral fan in 2-d lattice N,
2-d cone of Rational polyhedral fan in 2-d lattice N)

preimage_fan(cone)
Return the subfan of the domain fan mapped into cone.

INPUT:

• cone – a cone equivalent to a cone of the codomain_fan() of self.

OUTPUT:

• a fan.

Note: The preimage fan of cone consists of all cones of the domain_fan() which are mapped into
cone, including those that are mapped into its boundary. So this fan is not necessarily generated by preim-
age_cones() of cone.

See also:

kernel_fan(), preimage_cones().

EXAMPLES:

sage: quadrant_cone = Cone([(1,0), (0,1)])
sage: quadrant_fan = Fan([quadrant_cone])
sage: quadrant_bl = quadrant_fan.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2),
....: quadrant_bl, quadrant_fan)
sage: fm.preimage_fan(Cone([(1,0)])).cones()
((0-d cone of Rational polyhedral fan in 2-d lattice N,),
(1-d cone of Rational polyhedral fan in 2-d lattice N,))

sage: fm.preimage_fan(quadrant_cone).ngenerating_cones()
2
sage: len(fm.preimage_cones(quadrant_cone))
3

primitive_preimage_cones(cone)
Return the primitive cones of the domain fan corresponding to cone.

INPUT:

• cone – a cone equivalent to a cone of the codomain_fan() of self.

OUTPUT:
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• a cone.

Let 𝜑 : Σ → Σ′ be a fanmorphism, let 𝜎 ∈ Σ, and let 𝜎′ = 𝜑(𝜎). Then 𝜎 is a primitive cone corresponding
to 𝜎′ if there is no proper face 𝜏 of 𝜎 such that 𝜑(𝜏) = 𝜎′.

Primitive cones play an important role for fibration morphisms.

See also:

is_fibration(), preimage_cones(), preimage_fan().

EXAMPLES:

Consider a projection of a del Pezzo surface onto the projective line:

sage: Sigma = toric_varieties.dP6().fan() #␣
→˓needs palp
sage: Sigma.rays() #␣
→˓needs palp
N( 0, 1),
N(-1, 0),
N(-1, -1),
N( 0, -1),
N( 1, 0),
N( 1, 1)
in 2-d lattice N
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p) #␣
→˓needs palp

Under this map, one pair of rays is mapped to the origin, one in the positive direction, and one in the negative
one. Also three 2-dimensional cones are mapped in the positive direction and three in the negative one, so
there are 5 preimage cones corresponding to either of the rays of the codomain fan Sigma_p:

sage: len(phi.preimage_cones(Cone([(1,)]))) #␣
→˓needs palp
5

Yet only rays are primitive:

sage: phi.primitive_preimage_cones(Cone([(1,)])) #␣
→˓needs palp
(1-d cone of Rational polyhedral fan in 2-d lattice N,
1-d cone of Rational polyhedral fan in 2-d lattice N)

Since all primitive cones are mapped onto their images bijectively, we get a fibration:

sage: phi.is_fibration() #␣
→˓needs palp
True

But since there are several primitive cones corresponding to the same cone of the codomain fan, this map is
not a bundle, even though its index is 1:

sage: phi.is_bundle() #␣
→˓needs palp
False
sage: phi.index() #␣
→˓needs palp
1
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relative_star_generators(domain_cone)
Return the relative star generators of domain_cone.

INPUT:

• domain_cone – a cone of the domain_fan() of self.

OUTPUT:

• star_generators() of domain_cone viewed as a cone of preimage_fan() of im-
age_cone() of domain_cone.

EXAMPLES:

sage: A2 = toric_varieties.A(2).fan()
sage: Bl = A2.subdivide([(1,1)])
sage: f = FanMorphism(identity_matrix(2), Bl, A2)
sage: for c1 in Bl(1):
....: print(f.relative_star_generators(c1))
(1-d cone of Rational polyhedral fan in 2-d lattice N,)
(1-d cone of Rational polyhedral fan in 2-d lattice N,)
(2-d cone of Rational polyhedral fan in 2-d lattice N,
2-d cone of Rational polyhedral fan in 2-d lattice N)

2.5.7 Point collections

This module was designed as a part of framework for toric varieties (variety, fano_variety).

AUTHORS:

• Andrey Novoseltsev (2011-04-25): initial version, based on cone module.

• Andrey Novoseltsev (2012-03-06): additions and doctest changes while switching cones to use point collections.

EXAMPLES:

The idea behind point collections is to have a container for points of the same space that

• behaves like a tuple without significant performance penalty:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c[1]
N(1, 0, 1)
sage: for point in c: point
N(0, 0, 1)
N(1, 0, 1)
N(0, 1, 1)
N(1, 1, 1)

• prints in a convenient way and with clear indication of the ambient space:

sage: c
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1),
N(1, 1, 1)
in 3-d lattice N

• allows (cached) access to alternative representations:
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sage: c.set()
frozenset({N(0, 0, 1), N(0, 1, 1), N(1, 0, 1), N(1, 1, 1)})

• allows introduction of additional methods:

sage: c.basis()
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1)
in 3-d lattice N

Examples of natural point collections include ray and line generators of cones, vertices and points of polytopes, normals
to facets, their subcollections, etc.

Using this class for all of the above cases allows for unified interface and cache sharing. Suppose that Δ is a reflexive
polytope. Then the same point collection can be linked as

1. vertices ofΔ;

2. facet normals of its polar Δ∘;

3. ray generators of the face fan ofΔ;

4. ray generators of the normal fan ofΔ.

If all these objects are in use and, say, a matrix representation was computed for one of them, it becomes available to all
others as well, eliminating the need to spend time and memory four times.

class sage.geometry.point_collection.PointCollection

Bases: SageObject

Create a point collection.

Warning: No correctness check or normalization is performed on the input data. This class is designed for
internal operations and you probably should not use it directly.

Point collections are immutable, but cache most of the returned values.

INPUT:

• points – an iterable structure of immutable elements of module, if points are already accessible to
you as a tuple, it is preferable to use it for speed and memory consumption reasons;

• module – an ambient module for points. If None (the default), it will be determined as parent()
of the first point. Of course, this cannot be done if there are no points, so in this case you must give an
appropriate module directly.

OUTPUT:

• a point collection.

basis()

Return a linearly independent subset of points of self.

OUTPUT:

• a point collection giving a random (but fixed) choice of an R-basis for the vector space spanned
by the points of self.

EXAMPLES:
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sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.basis()
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1)
in 3-d lattice N

Calling this method twice will always return exactly the same point collection:

sage: c.basis().basis() is c.basis()
True

cardinality()

Return the number of points in self.

OUTPUT:

• an integer.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.cardinality()
4

cartesian_product(other, module=None)
Return the Cartesian product of self with other.

INPUT:

• other – a point collection;

• module – (optional) the ambient module for the result. By default, the direct sum of the ambient
modules of self and other is constructed.

OUTPUT:

• a point collection.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,1,1)]).rays()
sage: c.cartesian_product(c)
N+N(0, 0, 1, 0, 0, 1),
N+N(1, 1, 1, 0, 0, 1),
N+N(0, 0, 1, 1, 1, 1),
N+N(1, 1, 1, 1, 1, 1)
in 6-d lattice N+N

column_matrix()

Return a matrix whose columns are points of self.

OUTPUT:

• a matrix.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.column_matrix()

(continues on next page)
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[0 1 0 1]
[0 0 1 1]
[1 1 1 1]

dim()

Return the dimension of the space spanned by points of self.

Note: You can use either dim() or dimension().

OUTPUT:

• an integer.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,1,1)]).rays()
sage: c.dimension()
2
sage: c.dim()
2

dimension()

Return the dimension of the space spanned by points of self.

Note: You can use either dim() or dimension().

OUTPUT:

• an integer.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,1,1)]).rays()
sage: c.dimension()
2
sage: c.dim()
2

dual_module()

Return the dual of the ambient module of self.

OUTPUT:

• a module. If possible (that is, if the ambient module() 𝑀 of self has a dual() method), the
dual module is returned. Otherwise, 𝑅𝑛 is returned, where 𝑛 is the dimension of𝑀 and 𝑅 is its base
ring.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.dual_module()
3-d lattice M
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index(*args)
Return the index of the first occurrence of point in self.

INPUT:

• point – a point of self;

• start – (optional) an integer, if given, the search will start at this position;

• stop – (optional) an integer, if given, the search will stop at this position.

OUTPUT:

• an integer if point is in self[start:stop], otherwise a ValueError exception is raised.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.index((0,1,1))
Traceback (most recent call last):
...
ValueError: tuple.index(x): x not in tuple

Note that this was not a mistake: the tuple (0,1,1) is not a point of c! We need to pass actual element of
the ambient module of c to get their indices:

sage: N = c.module()
sage: c.index(N(0,1,1))
2
sage: c[2]
N(0, 1, 1)

matrix()

Return a matrix whose rows are points of self.

OUTPUT:

• a matrix.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.matrix()
[0 0 1]
[1 0 1]
[0 1 1]
[1 1 1]

module()

Return the ambient module of self.

OUTPUT:

• a module.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.module()
3-d lattice N
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static output_format(format=None)
Return or set the output format for ALL point collections.

INPUT:

• format – (optional) if given, must be one of the strings

– “default” – output one point per line with vertical alignment of coordinates in text mode, same as
“tuple” for LaTeX;

– “tuple” – output tuple(self) with lattice information;

– “matrix” – output matrix() with lattice information;

– “column matrix” – output column_matrix() with lattice information;

– “separated columnmatrix” – same as “columnmatrix” for text mode, for LaTeX separate columns
by lines (not shown by jsMath).

OUTPUT:

• a string with the current format (only if format was omitted).

This function affects both regular and LaTeX output.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1),
N(1, 1, 1)
in 3-d lattice N
sage: c.output_format()
default

sage: c.output_format("tuple")
sage: c
(N(0, 0, 1), N(1, 0, 1), N(0, 1, 1), N(1, 1, 1))
in 3-d lattice N
sage: c.output_format("matrix")
sage: c
[0 0 1]
[1 0 1]
[0 1 1]
[1 1 1]
in 3-d lattice N
sage: c.output_format("column matrix")
sage: c
[0 1 0 1]
[0 0 1 1]
[1 1 1 1]
in 3-d lattice N
sage: c.output_format("separated column matrix")
sage: c
[0 1 0 1]
[0 0 1 1]
[1 1 1 1]
in 3-d lattice N

Note that the last two outputs are identical, separators are only inserted in the LaTeX mode:
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sage: latex(c)
\left(\begin{array}{r|r|r|r}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)_{N}

Since this is a static method, you can call it for the class directly:

sage: from sage.geometry.point_collection import PointCollection
sage: PointCollection.output_format("default")
sage: c
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1),
N(1, 1, 1)
in 3-d lattice N

set()

Return points of self as a frozenset.

OUTPUT:

• a frozenset.

EXAMPLES:

sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.set()
frozenset({N(0, 0, 1), N(0, 1, 1), N(1, 0, 1), N(1, 1, 1)})

write_for_palp(f)
Write self into an open file f in PALP format.

INPUT:

• f – a file opened for writing.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: from io import StringIO
sage: f = StringIO()
sage: o.vertices().write_for_palp(f)
sage: print(f.getvalue())
6 3
1 0 0
0 1 0
0 0 1
-1 0 0
0 -1 0
0 0 -1

sage.geometry.point_collection.is_PointCollection(x)

Check if x is a point collection.

INPUT:

• x – anything.
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OUTPUT:

• True if x is a point collection and False otherwise.

EXAMPLES:

sage: from sage.geometry.point_collection import PointCollection
sage: isinstance(1, PointCollection)
False
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)])
sage: isinstance(c.rays(), PointCollection)
True

sage.geometry.point_collection.read_palp_point_collection(f , lattice=None,
permutation=False)

Read and return a point collection from an opened file.

Data must be in PALP format:

• the first input line starts with two integers𝑚 and 𝑛, the number of points and the number of components of
each;

• the rest of the first line may contain a permutation;

• the next𝑚 lines contain 𝑛 numbers each.

Note: If𝑚 < 𝑛, it is assumed (for compatibility with PALP) that the matrix is transposed, i.e. that each column
is a point.

INPUT:

• f – an opened file with PALP output.

• lattice – the lattice for points. If not given, the toric lattice𝑀 of dimension 𝑛 will be used.

• permutation – (default: False) if True, try to retrieve the permutation. This parameter makes sense
only when PALP computed the normal form of a lattice polytope.

OUTPUT:

• a point collection, optionally followed by a permutation. None if EOF is reached.

EXAMPLES:

sage: data = "3 2 regular\n1 2\n3 4\n5 6\n2 3 transposed\n1 2 3\n4 5 6"
sage: print(data)
3 2 regular
1 2
3 4
5 6
2 3 transposed
1 2 3
4 5 6
sage: from io import StringIO
sage: f = StringIO(data)
sage: from sage.geometry.point_collection \
....: import read_palp_point_collection
sage: read_palp_point_collection(f)
M(1, 2),
M(3, 4),

(continues on next page)
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M(5, 6)
in 2-d lattice M
sage: read_palp_point_collection(f)
M(1, 4),
M(2, 5),
M(3, 6)
in 2-d lattice M
sage: read_palp_point_collection(f) is None
True

2.5.8 Toric plotter

This module provides a helper class ToricPlotter for producing plots of objects related to toric geometry. Default
plotting objects can be adjusted using options() and reset using reset_options().

AUTHORS:

• Andrey Novoseltsev (2010-10-03): initial version, using some code bits by Volker Braun.

EXAMPLES:

In most cases, this module is used indirectly, e.g.

sage: fan = toric_varieties.dP6().fan() #␣
→˓needs palp sage.graphs
sage: fan.plot() #␣
→˓needs palp sage.graphs sage.plot
Graphics object consisting of 31 graphics primitives

You may change default plotting options as follows:

sage: toric_plotter.options("show_rays")
True
sage: toric_plotter.options(show_rays=False)
sage: toric_plotter.options("show_rays")
False
sage: fan.plot() #␣
→˓needs palp sage.graphs sage.plot
Graphics object consisting of 19 graphics primitives
sage: toric_plotter.reset_options()
sage: toric_plotter.options("show_rays")
True
sage: fan.plot() #␣
→˓needs palp sage.graphs sage.plot
Graphics object consisting of 31 graphics primitives

class sage.geometry.toric_plotter.ToricPlotter(all_options, dimension, generators=None)
Bases: SageObject

Create a toric plotter.

INPUT:

• all_options – a dictionary, containing any of the options related to toric objects (see options())
and any other options that will be passed to lower level plotting functions;

• dimension – an integer (1, 2, or 3), dimension of toric objects to be plotted;
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• generators – (optional) a list of ray generators, see examples for a detailed explanation of this argument.

OUTPUT:

• a toric plotter.

EXAMPLES:

In most cases there is no need to create and use ToricPlotter directly. Instead, use plotting method of the
object which you want to plot, e.g.

sage: fan = toric_varieties.dP6().fan() #␣
→˓needs palp sage.graphs
sage: fan.plot() #␣
→˓needs palp sage.graphs sage.plot
Graphics object consisting of 31 graphics primitives
sage: print(fan.plot()) #␣
→˓needs palp sage.graphs sage.plot
Graphics object consisting of 31 graphics primitives

If you do want to create your own plotting function for some toric structure, the anticipated usage of toric plotters
is the following:

• collect all necessary options in a dictionary;

• pass these options and dimension to ToricPlotter;

• call include_points() on ray generators and any other points that you want to be present on the plot
(it will try to set appropriate cut-off bounds);

• call adjust_options() to choose “nice” default values for all options that were not set yet and ensure
consistency of rectangular and spherical cut-off bounds;

• call set_rays() on ray generators to scale them to the cut-off bounds of the plot;

• call appropriate plot_* functions to actually construct the plot.

For example, the plot from the previous example can be obtained as follows:

sage: # needs palp sage.graphs sage.plot
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: options = dict() # use default for everything
sage: tp = ToricPlotter(options, fan.lattice().degree())
sage: tp.include_points(fan.rays())
sage: tp.adjust_options()
sage: tp.set_rays(fan.rays())
sage: result = tp.plot_lattice()
sage: result += tp.plot_rays()
sage: result += tp.plot_generators()
sage: result += tp.plot_walls(fan(2))
sage: result
Graphics object consisting of 31 graphics primitives

In most situations it is only necessary to include generators of rays, in this case they can be passed to the constructor
as an optional argument. In the example above, the toric plotter can be completely set up using

sage: tp = ToricPlotter(options, fan.lattice().degree(), fan.rays()) #␣
→˓needs palp sage.graphs sage.plot

All options are exposed as attributes of toric plotters and can be modified after constructions, however you will
have to manually call adjust_options() and set_rays() again if you decide to change the plotting mode
and/or cut-off bounds. Otherwise plots maybe invalid.
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adjust_options()

Adjust plotting options.

This function determines appropriate default values for those options, that were not specified by the user,
based on the other options. See ToricPlotter for a detailed example.

OUTPUT:

• none.

include_points(points, force=False)
Try to include points into the bounding box of self.

INPUT:

• points – a list of points;

• force – boolean (default: False). by default, only bounds that were not set before will be chosen to
include points. Use force=True if you don’t mind increasing existing bounding box.

OUTPUT:

• none.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: print(tp.radius)
None
sage: tp.include_points([(3, 4)])
sage: print(tp.radius)
5.5...
sage: tp.include_points([(5, 12)])
sage: print(tp.radius)
5.5...
sage: tp.include_points([(5, 12)], force=True)
sage: print(tp.radius)
13.5...

plot_generators()

Plot ray generators.

Ray generators must be specified during construction or using set_rays() before calling this method.

OUTPUT:

• a plot.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, [(3,4)])
sage: tp.plot_generators() #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

plot_labels(labels, positions)
Plot labels at specified positions.

INPUT:

• labels – a string or a list of strings;
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• positions – a list of points.

OUTPUT:

• a plot.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.plot_labels("u", [(1.5,0)]) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

plot_lattice()

Plot the lattice (i.e. its points in the cut-off bounds of self).

OUTPUT:

• a plot.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.adjust_options()
sage: tp.plot_lattice() #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

plot_points(points)
Plot given points.

INPUT:

• points – a list of points.

OUTPUT:

• a plot.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.adjust_options()
sage: tp.plot_points([(1,0), (0,1)]) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

plot_ray_labels()

Plot ray labels.

Usually ray labels are plotted together with rays, but in some cases it is desirable to output them separately.

Ray generators must be specified during construction or using set_rays() before calling this method.

OUTPUT:

• a plot.

EXAMPLES:
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sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, [(3,4)])
sage: tp.plot_ray_labels() #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

plot_rays()

Plot rays and their labels.

Ray generators must be specified during construction or using set_rays() before calling this method.

OUTPUT:

• a plot.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, [(3,4)])
sage: tp.plot_rays() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

plot_walls(walls)
Plot walls, i.e. 2-d cones, and their labels.

Ray generators must be specified during construction or using set_rays() before calling this method and
these specified ray generators will be used in conjunction with ambient_ray_indices() of walls.

INPUT:

• walls – a list of 2-d cones.

OUTPUT:

• a plot.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, quadrant.rays())
sage: tp.plot_walls([quadrant]) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

Let’s also check that the truncating polyhedron is functioning correctly:

sage: tp = ToricPlotter({"mode": "box"}, 2, quadrant.rays())
sage: tp.plot_walls([quadrant]) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

set_rays(generators)

Set up rays and their generators to be used by plotting functions.

As an alternative to using this method, you can pass generators to ToricPlotter constructor.

INPUT:

• generators – a list of primitive non-zero ray generators.
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OUTPUT:

• none.

EXAMPLES:

sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.adjust_options()
sage: tp.plot_rays() #␣
→˓needs sage.plot
Traceback (most recent call last):
...
AttributeError: ToricPlotter object has no attribute rays ...
sage: tp.set_rays([(0,1)])
sage: tp.plot_rays() #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

sage.geometry.toric_plotter.color_list(color, n)
Normalize a list of n colors.

INPUT:

• color – anything specifying a Color, a list of such specifications, or the string “rainbow”;

• n – an integer.

OUTPUT:

• a list of n colors.

If color specified a single color, it is repeated n times. If it was a list of n colors, it is returned without changes.
If it was “rainbow”, the rainbow of n colors is returned.

EXAMPLES:

sage: # needs sage.plot
sage: from sage.geometry.toric_plotter import color_list
sage: color_list("grey", 1)
[RGB color (0.5019607843137255, 0.5019607843137255, 0.5019607843137255)]
sage: len(color_list("grey", 3))
3
sage: L = color_list("rainbow", 3)
sage: L
[RGB color (1.0, 0.0, 0.0),
RGB color (0.0, 1.0, 0.0),
RGB color (0.0, 0.0, 1.0)]
sage: color_list(L, 3)
[RGB color (1.0, 0.0, 0.0),
RGB color (0.0, 1.0, 0.0),
RGB color (0.0, 0.0, 1.0)]
sage: color_list(L, 4)
Traceback (most recent call last):
...
ValueError: expected 4 colors, got 3!

sage.geometry.toric_plotter.label_list(label, n, math_mode, index_set=None)
Normalize a list of n labels.

INPUT:
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• label – None, a string, or a list of string;

• n – an integer;

• math_mode – boolean, if True, will produce LaTeX expressions for labels;

• index_set – a list of integers (default: range(n)) that will be used as subscripts for labels.

OUTPUT:

• a list of n labels.

If label was a list of n entries, it is returned without changes. If label is None, a list of n None’s is returned.
If label is a string, a list of strings of the form $label_{i}$ is returned, where 𝑖 ranges over index_set.
(If math_mode=False, the form “label_i” is used instead.) If n=1, there is no subscript added, unless in-
dex_set was specified explicitly.

EXAMPLES:

sage: from sage.geometry.toric_plotter import label_list
sage: label_list("u", 3, False)
[ u_0 , u_1 , u_2 ]
sage: label_list("u", 3, True)
[ $u_{0}$ , $u_{1}$ , $u_{2}$ ]
sage: label_list("u", 1, True)
[ $u$ ]

sage.geometry.toric_plotter.options(option=None, **kwds)
Get or set options for plots of toric geometry objects.

Note: This function provides access to global default options. Any of these options can be overridden by passing
them directly to plotting functions. See also reset_options().

INPUT:

• None;

OR:

• option – a string, name of the option whose value you wish to get;

OR:

• keyword arguments specifying new values for one or more options.

OUTPUT:

• if there was no input, the dictionary of current options for toric plots;

• if option argument was given, the current value of option;

• if other keyword arguments were given, none.

Name Conventions

To clearly distinguish parts of toric plots, in options and methods we use the following name conventions:

Generator
A primitive integral vector generating a 1-dimensional cone, plotted as an arrow from the origin (or a line, if
the head of the arrow is beyond cut-off bounds for the plot).

Ray
A 1-dimensional cone, plotted as a line from the origin to the cut-off bounds for the plot.
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Wall
A 2-dimensional cone, plotted as a region between rays (in the above sense). Its exact shape depends on the
plotting mode (see below).

Chamber
A 3-dimensional cone, plotting is not implemented yet.

Plotting Modes

A plotting mode mostly determines the shape of the cut-off region (which is always relevant for toric plots except
for trivial objects consisting of the origin only). The following options are available:

Box
The cut-off region is a box with edges parallel to coordinate axes.

Generators
The cut-off region is determined by primitive integral generators of rays. Note that this notion is well-defined
only for rays and walls, in particular you should plot the lattice on your own (plot_lattice() will use
box mode which is likely to be unsuitable). While this method may not be suitable for general fans, it is quite
natural for fans of CPR-Fano toric varieties. <sage.schemes.toric.fano_variety.
CPRFanoToricVariety_field

Round
The cut-off regions is a sphere centered at the origin.

Available Options

Default values for the following options can be set using this function:

• mode – “box”, “generators”, or “round”, see above for descriptions;

• show_lattice – boolean, whether to show lattice points in the cut-off region or not;

• show_rays – boolean, whether to show rays or not;

• show_generators – boolean, whether to show rays or not;

• show_walls – boolean, whether to show rays or not;

• generator_color – a color for generators;

• label_color – a color for labels;

• point_color – a color for lattice points;

• ray_color – a color for rays, a list of colors (one for each ray), or the string “rainbow”;

• wall_color – a color for walls, a list of colors (one for each wall), or the string “rainbow”;

• wall_alpha – a number between 0 and 1, the alpha-value for walls (determining their transparency);

• point_size – an integer, the size of lattice points;

• ray_thickness – an integer, the thickness of rays;

• generator_thickness – an integer, the thickness of generators;

• font_size – an integer, the size of font used for labels;

• ray_label – a string or a list of strings used for ray labels; use None to hide labels;

• wall_label – a string or a list of strings used for wall labels; use None to hide labels;

• radius – a positive number, the radius of the cut-off region for “round” mode;

• xmin, xmax, ymin, ymax, zmin, zmax – numbers determining the cut-off region for “box” mode. Note
that you cannot exclude the origin - if you try to do so, bounds will be automatically expanded to include it;

498 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

• lattice_filter – a callable, taking as an argument a lattice point and returning True if this point
should be included on the plot (useful, e.g. for plotting sublattices);

• wall_zorder, ray_zorder, generator_zorder, point_zorder, label_zorder – inte-
gers, z-orders for different classes of objects. By default all values are negative, so that you can add other
graphic objects on top of a toric plot. You may need to adjust these parameters if you want to put a toric plot
on top of something else or if you want to overlap several toric plots.

You can see the current default value of any options by typing, e.g.

sage: toric_plotter.options("show_rays")
True

If the default value is None, it means that the actual default is determined later based on the known options. Note,
that not all options can be determined in such a way, so you should not set options to None unless it was its original
state. (You can always revert to this “original state” using reset_options().)

EXAMPLES:

The following line will make all subsequent toric plotting commands to draw “rainbows” from walls:

sage: toric_plotter.options(wall_color="rainbow")

If you prefer a less colorful output (e.g. if you need black-and-white illustrations for a paper), you can use something
like this:

sage: toric_plotter.options(wall_color="grey")

sage.geometry.toric_plotter.reset_options()

Reset options for plots of toric geometry objects.

OUTPUT:

• none.

EXAMPLES:

sage: toric_plotter.options("show_rays")
True
sage: toric_plotter.options(show_rays=False)
sage: toric_plotter.options("show_rays")
False

Now all toric plots will not show rays, unless explicitly requested. If you want to go back to “default defaults”, use
this method:

sage: toric_plotter.reset_options()
sage: toric_plotter.options("show_rays")
True

sage.geometry.toric_plotter.sector(ray1, ray2, **extra_options)
Plot a sector between ray1 and ray2 centered at the origin.

Note: This function was intended for plotting strictly convex cones, so it plots the smaller sector between ray1
and ray2 and, therefore, they cannot be opposite. If you do want to use this function for bigger regions, split them
into several parts.
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Note: As of version 4.6 Sage does not have a graphic primitive for sectors in 3-dimensional space, so this function
will actually approximate them using polygons (the number of vertices used depends on the angle between rays).

INPUT:

• ray1, ray2 – rays in 2- or 3-dimensional space of the same length;

• extra_options – a dictionary of options that should be passed to lower level plotting functions.

OUTPUT:

• a plot.

EXAMPLES:

sage: from sage.geometry.toric_plotter import sector
sage: sector((1,0), (0,1)) #␣
→˓needs sage.symbolic
Graphics object consisting of 1 graphics primitive
sage: sector((3,2,1), (1,2,3)) #␣
→˓needs sage.plot
Graphics3d Object

2.5.9 Groebner Fans

Sage provides much of the functionality of gfan, which is a software package whose main function is to enumerate all
reduced Groebner bases of a polynomial ideal. The reduced Groebner bases yield the maximal cones in the Groebner fan
of the ideal. Several subcomputations can be issued and additional tools are included. Among these the highlights are:

• Commands for computing tropical varieties.

• Interactive walks in the Groebner fan of an ideal.

• Commands for graphical renderings of Groebner fans and monomial ideals.

AUTHORS:

• Anders Nedergaard Jensen: Wrote the gfan C++ program, which implements algorithms many of which were
invented by Jensen, Komei Fukuda, and Rekha Thomas. All the underlying hard work of the Groebner fans func-
tionality of Sage depends on this C++ program.

• William Stein (2006-04-20): Wrote first version of the Sage code for working with Groebner fans.

• Tristram Bogart: the design of the Sage interface to gfan is joint work with Tristram Bogart, who also supplied
numerous examples.

• Marshall Hampton (2008-03-25): Rewrote various functions to use gfan-0.3. This is still a work in progress,
comments are appreciated on sage-devel@googlegroups.com (or personally at hamptonio@gmail.com).

EXAMPLES:

sage: x,y = QQ[ x,y ].gens()
sage: i = ideal(x^2 - y^2 + 1)
sage: g = i.groebner_fan()
sage: g.reduced_groebner_bases()
[[x^2 - y^2 + 1], [-x^2 + y^2 - 1]]

REFERENCES:
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• Anders N. Jensen; Gfan, a software system for Groebner fans; http://home.math.au.dk/jensen/software/gfan/gfan.
html

class sage.rings.polynomial.groebner_fan.GroebnerFan(I , is_groebner_basis=False,
symmetry=None, verbose=False)

Bases: SageObject

This class is used to access capabilities of the program Gfan.

In addition to computing Groebner fans, Gfan can compute other things in tropical geometry such as tropical
prevarieties.

INPUT:

• I – ideal in a multivariate polynomial ring

• is_groebner_basis – bool (default False). if True, then I.gens() must be a Groebner basis with
respect to the standard degree lexicographic term order.

• symmetry – default: None; if not None, describes symmetries of the ideal

• verbose – default: False; if True, printout useful info during computations

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: I = R.ideal([x^2*y - z, y^2*z - x, z^2*x - y])
sage: G = I.groebner_fan(); G
Groebner fan of the ideal:
Ideal (x^2*y - z, y^2*z - x, x*z^2 - y) of Multivariate Polynomial Ring in x, y,␣
→˓z over Rational Field

Here is an example of the use of the tropical_intersection command, and then using the RationalPolyhedralFan
class to compute the Stanley-Reisner ideal of the tropical prevariety:

sage: R.<x,y,z> = QQ[]
sage: I = R.ideal([(x+y+z)^3-1,(x+y+z)^3-x,(x+y+z)-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.rays()
[[-1, 0, 0], [0, -1, 0], [0, 0, -1], [1, 1, 1]]
sage: RPF = PF.to_RationalPolyhedralFan()
sage: RPF.Stanley_Reisner_ideal(PolynomialRing(QQ,4, A, B, C, D ))
Ideal (A*B, A*C, B*C*D) of Multivariate Polynomial Ring in A, B, C, D over␣
→˓Rational Field

buchberger()

Return a lexicographic reduced Groebner basis for the ideal.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: G = R.ideal([x - z^3, y^2 - x + x^2 - z^3*x]).groebner_fan()
sage: G.buchberger()
[-z^3 + y^2, -z^3 + x]

characteristic()

Return the characteristic of the base ring.

EXAMPLES:
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sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: i1 = ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf = i1.groebner_fan()
sage: gf.characteristic()
0

dimension_of_homogeneity_space()

Return the dimension of the homogeneity space.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.dimension_of_homogeneity_space()
0

gfan(cmd='bases', I=None, format=None)
Return the gfan output as a string given an input cmd.

The default is to produce the list of reduced Groebner bases in gfan format.

INPUT:

• cmd – string (default: bases ), GFan command

• I – ideal (default:None)

• format – bool (default:None), deprecated

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: gf = R.ideal([x^3-y,y^3-x-1]).groebner_fan()
sage: gf.gfan()
Q[x,y]\n{{\ny^9-1-y+3*y^3-3*y^6,\nx+1-y^3}\n,\n{\nx^3-y,\ny^3-1-x}\n,\n{\nx^
→˓9-1-x,\ny-x^3}\n}\n

homogeneity_space()

Return the homogeneity space of a the list of polynomials that define this Groebner fan.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: H = G.homogeneity_space()

ideal()

Return the ideal the was used to define this Groebner fan.

EXAMPLES:

sage: R.<x1,x2> = PolynomialRing(QQ,2)
sage: gf = R.ideal([x1^3-x2,x2^3-2*x1-2]).groebner_fan()
sage: gf.ideal()
Ideal (x1^3 - x2, x2^3 - 2*x1 - 2) of Multivariate Polynomial Ring in x1, x2␣
→˓over Rational Field
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interactive(*args, **kwds)
See the documentation for self[0].interactive(). This does not work with the notebook.

EXAMPLES:

sage: print("This is not easily doc-testable; please write a good one!")
This is not easily doc-testable; please write a good one!

maximal_total_degree_of_a_groebner_basis()

Return the maximal total degree of any Groebner basis.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.maximal_total_degree_of_a_groebner_basis()
4

minimal_total_degree_of_a_groebner_basis()

Return the minimal total degree of any Groebner basis.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.minimal_total_degree_of_a_groebner_basis()
2

mixed_volume()

Return the mixed volume of the generators of this ideal.

This is not really an ideal property, it can depend on the generators used.

The generators must give a square system (as many polynomials as variables).

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: example_ideal = R.ideal([x^2-y-1,y^2-z-1,z^2-x-1])
sage: gf = example_ideal.groebner_fan()
sage: mv = gf.mixed_volume()
sage: mv
8

sage: R2.<x,y> = QQ[]
sage: g1 = 1 - x + x^7*y^3 + 2*x^8*y^4
sage: g2 = 2 + y + 3*x^7*y^3 + x^8*y^4
sage: example2 = R2.ideal([g1,g2])
sage: example2.groebner_fan().mixed_volume()
15

number_of_reduced_groebner_bases()

Return the number of reduced Groebner bases.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()

(continues on next page)
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sage: G.number_of_reduced_groebner_bases()
3

number_of_variables()

Return the number of variables.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.number_of_variables()
2

sage: R = PolynomialRing(QQ, x ,10)
sage: R.inject_variables(globals())
Defining x0, x1, x2, x3, x4, x5, x6, x7, x8, x9
sage: G = ideal([x0 - x9, sum(R.gens())]).groebner_fan()
sage: G.number_of_variables()
10

polyhedralfan()

Return a polyhedral fan object corresponding to the reduced Groebner bases.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-1]).groebner_fan()
sage: pf = gf.polyhedralfan()
sage: pf.rays()
[[0, 0, 1], [0, 1, 0], [1, 0, 0]]

reduced_groebner_bases()

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ, 3, order= lex )
sage: G = R.ideal([x^2*y - z, y^2*z - x, z^2*x - y]).groebner_fan()
sage: X = G.reduced_groebner_bases()
sage: len(X)
33
sage: X[0]
[z^15 - z, x - z^9, y - z^11]
sage: X[0].ideal()
Ideal (z^15 - z, x - z^9, y - z^11) of Multivariate Polynomial Ring in x, y,␣
→˓z over Rational Field
sage: X[:5]
[[z^15 - z, x - z^9, y - z^11],
[y^2 - z^8, x - z^9, y*z^4 - z, -y + z^11],
[y^3 - z^5, x - y^2*z, y^2*z^3 - y, y*z^4 - z, -y^2 + z^8],
[y^4 - z^2, x - y^2*z, y^2*z^3 - y, y*z^4 - z, -y^3 + z^5],
[y^9 - z, y^6*z - y, x - y^2*z, -y^4 + z^2]]
sage: R3.<x,y,z> = PolynomialRing(GF(2477),3)
sage: gf = R3.ideal([300*x^3-y,y^2-z,z^2-12]).groebner_fan()
sage: gf.reduced_groebner_bases()
[[z^2 - 12, y^2 - z, x^3 + 933*y],
[y^4 - 12, x^3 + 933*y, -y^2 + z],

(continues on next page)
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[x^6 - 1062*z, z^2 - 12, -300*x^3 + y],
[x^12 + 200, -300*x^3 + y, -828*x^6 + z]]

render(file=None, larger=False, shift=0, rgbcolor=(0, 0, 0), polyfill=True, scale_colors=True)
Render a Groebner fan as sage graphics or save as an xfig file.

More precisely, the output is a drawing of the Groebner fan intersected with a triangle. The corners of the
triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables
in the ring we extend these coordinates with zeros.

INPUT:

• file – a filename if you prefer the output saved to a file. This will be in xfig format.

• shift – shift the positions of the variables in the drawing. For example, with shift=1, the corners will
be b (right), c (left), and d (top). The shifting is done modulo the number of variables in the polynomial
ring. The default is 0.

• larger – bool (default: False); if True, make the triangle larger so that the shape of the Groebner
region appears. Affects the xfig file but probably not the sage graphics (?)

• rgbcolor – This will not affect the saved xfig file, only the sage graphics produced.

• polyfill – Whether or not to fill the cones with a color determined by the highest degree in each
reduced Groebner basis for that cone.

• scale_colors – if True, this will normalize color values to try to maximize the range

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x,z]).groebner_fan()
sage: test_render = G.render() #␣
→˓needs sage.plot

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: G = R.ideal([x^2*y - z, y^2*z - x, z^2*x - y]).groebner_fan()
sage: test_render = G.render(larger=True) #␣
→˓needs sage.plot

render3d(verbose=False)
For a Groebner fan of an ideal in a ring with four variables, this function intersects the fan with the standard
simplex perpendicular to (1,1,1,1), creating a 3d polytope, which is then projected into 3 dimensions. The
edges of this projected polytope are returned as lines.

EXAMPLES:

sage: R4.<w,x,y,z> = PolynomialRing(QQ,4)
sage: gf = R4.ideal([w^2-x,x^2-y,y^2-z,z^2-x]).groebner_fan()
sage: three_d = gf.render3d() #␣
→˓needs sage.plot

ring()

Return the multivariate polynomial ring.

EXAMPLES:
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sage: R.<x1,x2> = PolynomialRing(QQ,2)
sage: gf = R.ideal([x1^3-x2,x2^3-x1-2]).groebner_fan()
sage: gf.ring()
Multivariate Polynomial Ring in x1, x2 over Rational Field

tropical_basis(check=True, verbose=False)
Return a tropical basis for the tropical curve associated to this ideal.

INPUT:

• check – bool (default: True); if True raises a ValueError exception if this ideal does not define a
tropical curve (i.e., the condition that R/I has dimension equal to 1 + the dimension of the homogeneity
space is not satisfied).

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3, order= lex )
sage: G = R.ideal([y^3-3*x^2, z^3-x-y-2*y^3+2*x^2]).groebner_fan()
sage: G
Groebner fan of the ideal:
Ideal (-3*x^2 + y^3, 2*x^2 - x - 2*y^3 - y + z^3) of Multivariate Polynomial␣
→˓Ring in x, y, z over Rational Field
sage: G.tropical_basis()
[-3*x^2 + y^3, 2*x^2 - x - 2*y^3 - y + z^3, 3/4*x + y^3 + 3/4*y - 3/4*z^3]

tropical_intersection(parameters=[], symmetry_generators=[], *args, **kwds)
Return information about the tropical intersection of the polynomials defining the ideal.

This is the common refinement of the outward-pointing normal fans of the Newton polytopes of the generators
of the ideal. Note that some people use the inward-pointing normal fans.

INPUT:

• parameters (optional) – a list of variables to be considered as parameters

• symmetry_generators (optional) – generators of the symmetry group

OUTPUT: a TropicalPrevariety object

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = R.ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf = I.groebner_fan()
sage: pf = gf.tropical_intersection()
sage: pf.rays()
[[-2, 1, 1]]

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: f1 = x*y*z - 1
sage: f2 = f1*(x^2 + y^2 + z^2)
sage: f3 = f2*(x + y + z - 1)
sage: I = R.ideal([f1,f2,f3])
sage: gf = I.groebner_fan()
sage: pf = gf.tropical_intersection(symmetry_generators = (1,2,0),(1,0,2) )
sage: pf.rays()
[[-2, 1, 1], [1, -2, 1], [1, 1, -2]]

sage: R.<x,y,z> = QQ[]
sage: I = R.ideal([(x+y+z)^2-1,(x+y+z)-x,(x+y+z)-3])

(continues on next page)
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sage: GF = I.groebner_fan()
sage: TI = GF.tropical_intersection()
sage: TI.rays()
[[-1, 0, 0], [0, -1, -1], [1, 1, 1]]
sage: GF = I.groebner_fan()
sage: TI = GF.tropical_intersection(parameters=[y])
sage: TI.rays()
[[-1, 0, 0]]

weight_vectors()

Return the weight vectors corresponding to the reduced Groebner bases.

EXAMPLES:

sage: r3.<x,y,z> = PolynomialRing(QQ,3)
sage: g = r3.ideal([x^3+y,y^3-z,z^2-x]).groebner_fan()
sage: g.weight_vectors()
[(3, 7, 1), (5, 1, 2), (7, 1, 4), (5, 1, 4), (1, 1, 1), (1, 4, 8), (1, 4, 10)]
sage: r4.<x,y,z,w> = PolynomialRing(QQ,4)
sage: g4 = r4.ideal([x^3+y,y^3-z,z^2-x,z^3 - w]).groebner_fan()
sage: len(g4.weight_vectors())
23

class sage.rings.polynomial.groebner_fan.InitialForm(cone, rays, initial_forms)
Bases: SageObject

A system of initial forms from a polynomial system.

To each form is associated a cone and a list of polynomials (the initial form system itself).

This class is intended for internal use inside of the TropicalPrevariety class.

EXAMPLES:

sage: from sage.rings.polynomial.groebner_fan import InitialForm
sage: R.<x,y> = QQ[]
sage: inform = InitialForm([0], [[-1, 0]], [y^2 - 1, y^2 - 2, y^2 - 3])
sage: inform._cone
[0]

cone()

The cone associated with the initial form system.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.cone()
[0]

initial_forms()

The initial forms (polynomials).

EXAMPLES:
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sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.initial_forms()
[y^2 - 1, y^2 - 2, y^2 - 3]

internal_ray()

A ray internal to the cone associated with the initial form system.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.internal_ray()
(-1, 0)

rays()

The rays of the cone associated with the initial form system.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.rays()
[[-1, 0]]

class sage.rings.polynomial.groebner_fan.PolyhedralCone(gfan_polyhedral_cone,
ring=Rational Field)

Bases: SageObject

Convert polymake/gfan data on a polyhedral cone into a sage class.

Currently (18-03-2008) needs a lot of work.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.facets()
[[0, 0, 1], [0, 1, 0], [1, 0, 0]]

ambient_dim()

Return the ambient dimension of the Groebner cone.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()

(continues on next page)
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sage: a.ambient_dim()
3

dim()

Return the dimension of the Groebner cone.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.dim()
3

facets()

Return the inward facet normals of the Groebner cone.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.facets()
[[0, 0, 1], [0, 1, 0], [1, 0, 0]]

lineality_dim()

Return the lineality dimension of the Groebner cone. This is just the difference between the ambient di-
mension and the dimension of the cone.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.lineality_dim()
0

relative_interior_point()

Return a point in the relative interior of the Groebner cone.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.relative_interior_point()
[1, 1, 1]

class sage.rings.polynomial.groebner_fan.PolyhedralFan(gfan_polyhedral_fan,
parameter_indices=None)

Bases: SageObject

Convert polymake/gfan data on a polyhedral fan into a sage class.

INPUT:

• gfan_polyhedral_fan – output from gfan of a polyhedral fan.
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EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: i2 = ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf2 = i2.groebner_fan(verbose=False)
sage: pf = gf2.polyhedralfan()
sage: pf.rays()
[[-1, 0, 1], [-1, 1, 0], [1, -2, 1], [1, 1, -2], [2, -1, -1]]

ambient_dim()

Return the ambient dimension of the Groebner fan.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf.polyhedralfan()
sage: a.ambient_dim()
3

cones()

A dictionary of cones in which the keys are the cone dimensions. For each dimension, the value is a list of
the cones, where each element consists of a list of ray indices.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.cones()
{1: [[0], [1], [2], [3], [4], [5]], 2: [[0, 1], [0, 2], [0, 3], [0, 4], [1,␣
→˓2], [1, 3], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [4, 5]]}

dim()

Return the dimension of the Groebner fan.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf.polyhedralfan()
sage: a.dim()
3

f_vector()

The f-vector of the fan.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.f_vector()
[1, 6, 12]
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is_simplicial()

Whether the fan is simplicial or not.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.is_simplicial()
True

lineality_dim()

Return the lineality dimension of the fan. This is the dimension of the largest subspace contained in the fan.

EXAMPLES:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf.polyhedralfan()
sage: a.lineality_dim()
0

maximal_cones()

A dictionary of the maximal cones in which the keys are the cone dimensions. For each dimension, the value
is a list of the maximal cones, where each element consists of a list of ray indices.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.maximal_cones()
{2: [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [2, 4], [3, 4], [1, 5],␣
→˓[2, 5], [3, 5], [4, 5]]}

rays()

A list of rays of the polyhedral fan.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: i2 = ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf2 = i2.groebner_fan(verbose=False)
sage: pf = gf2.polyhedralfan()
sage: pf.rays()
[[-1, 0, 1], [-1, 1, 0], [1, -2, 1], [1, 1, -2], [2, -1, -1]]

to_RationalPolyhedralFan()

Converts to the RationalPolyhedralFan class, which is more actively maintained. While the information in
each class is essentially the same, the methods and implementation are different.

EXAMPLES:
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sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: fan = PF.to_RationalPolyhedralFan()
sage: [tuple(q.facet_normals()) for q in fan]
[(M(0, -1, 0), M(-1, 0, 0)), (M(0, 0, -1), M(-1, 0, 0)), (M(0, 0, 1), M(-1, 0,
→˓ 0)), (M(0, 1, 0), M(-1, 0, 0)), (M(0, 0, -1), M(0, -1, 0)), (M(0, 0, 1),␣
→˓M(0, -1, 0)), (M(0, 1, 0), M(0, 0, -1)), (M(0, 1, 0), M(0, 0, 1)), (M(1, 0,␣
→˓0), M(0, -1, 0)), (M(1, 0, 0), M(0, 0, -1)), (M(1, 0, 0), M(0, 0, 1)), (M(1,
→˓ 0, 0), M(0, 1, 0))]

Here we use the RationalPolyhedralFan’s Gale_transform method on a tropical prevariety.

sage: fan.Gale_transform()
[ 1 0 0 0 0 1 -2]
[ 0 1 0 0 1 0 -2]
[ 0 0 1 1 0 0 -2]

class sage.rings.polynomial.groebner_fan.ReducedGroebnerBasis(groebner_fan, gens,
gfan_gens)

Bases: SageObject, list

A class for representing reduced Groebner bases as produced by gfan.

INPUT:

• groebner_fan – a GroebnerFan object from an ideal

• gens – the generators of the ideal

• gfan_gens – the generators as a gfan string

EXAMPLES:

sage: R.<a,b> = PolynomialRing(QQ,2)
sage: gf = R.ideal([a^2-b^2,b-a-1]).groebner_fan()
sage: from sage.rings.polynomial.groebner_fan import ReducedGroebnerBasis
sage: ReducedGroebnerBasis(gf,gf[0],gf[0]._gfan_gens())
[b - 1/2, a + 1/2]

groebner_cone(restrict=False)
Return defining inequalities for the full-dimensional Groebner cone associated to this marked minimal re-
duced Groebner basis.

INPUT:

• restrict – bool (default: False); if True, add an inequality for each coordinate, so that the cone is
restricted to the positive orthant.

OUTPUT: tuple of integer vectors

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: poly_cone = G[1].groebner_cone()
sage: poly_cone.facets()
[[-1, 2], [1, -1]]

(continues on next page)
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sage: [g.groebner_cone().facets() for g in G]
[[[0, 1], [1, -2]], [[-1, 2], [1, -1]], [[-1, 1], [1, 0]]]
sage: G[1].groebner_cone(restrict=True).facets()
[[-1, 2], [1, -1]]

ideal()

Return the ideal generated by this basis.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: G = R.ideal([x - z^3, y^2 - 13*x]).groebner_fan()
sage: G[0].ideal()
Ideal (-13*z^3 + y^2, -z^3 + x) of Multivariate Polynomial Ring in x, y, z␣
→˓over Rational Field

interactive(latex=False, flippable=False, wall=False, inequalities=False, weight=False)
Do an interactive walk of the Groebner fan starting at this reduced Groebner basis.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G[0].interactive() # not tested
Initializing gfan interactive mode
*********************************************
* Press control-C to return to Sage *
*********************************************
....

class sage.rings.polynomial.groebner_fan.TropicalPrevariety(gfan_polyhedral_fan,
polynomial_system,
poly_ring,
parameters=None)

Bases: PolyhedralFan

This class is a subclass of the PolyhedralFan class, with some additional methods for tropical prevarieties.

INPUT:

• gfan_polyhedral_fan – output from gfan of a polyhedral fan.

• polynomial_system – a list of polynomials

• poly_ring – the polynomial ring of the list of polynomials

• parameters (optional) – a list of variables to be considered
as parameters

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: I = R.ideal([(x+y+z)^2-1,(x+y+z)-x,(x+y+z)-3])
sage: GF = I.groebner_fan()
sage: TI = GF.tropical_intersection()
sage: TI._polynomial_system
[x^2 + 2*x*y + y^2 + 2*x*z + 2*y*z + z^2 - 1, y + z, x + y + z - 3]
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initial_form_systems()

Return a list of systems of initial forms for each cone in the tropical prevariety.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi = PF.initial_form_systems()
sage: for q in pfi:
....: print(q.initial_forms())
[y^2 - 1, y^2 - 2, y^2 - 3]
[x^2 - 1, x^2 - 2, x^2 - 3]
[x^2 + 2*x*y + y^2, x^2 + 2*x*y + y^2, x^2 + 2*x*y + y^2]

sage.rings.polynomial.groebner_fan.ideal_to_gfan_format(input_ring, polys)
Return the ideal in gfan’s notation.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: polys = [x^2*y - z, y^2*z - x, z^2*x - y]
sage: from sage.rings.polynomial.groebner_fan import ideal_to_gfan_format
sage: ideal_to_gfan_format(R, polys)
Q[x, y, z]{x^2*y-z,y^2*z-x,x*z^2-y}

sage.rings.polynomial.groebner_fan.max_degree(list_of_polys)
Compute the maximum degree of a list of polynomials

EXAMPLES:

sage: from sage.rings.polynomial.groebner_fan import max_degree
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: p_list = [x^2-y,x*y^10-x]
sage: max_degree(p_list)
11.0

sage.rings.polynomial.groebner_fan.prefix_check(str_list)
Check if any strings in a list are prefixes of another string in the list.

EXAMPLES:

sage: from sage.rings.polynomial.groebner_fan import prefix_check
sage: prefix_check([ z1 , z1z1 ])
False
sage: prefix_check([ z1 , zz1 ])
True

sage.rings.polynomial.groebner_fan.ring_to_gfan_format(input_ring)
Converts a ring to gfan’s format.

EXAMPLES:

sage: R.<w,x,y,z> = QQ[]
sage: from sage.rings.polynomial.groebner_fan import ring_to_gfan_format
sage: ring_to_gfan_format(R)
Q[w, x, y, z]

(continues on next page)
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sage: R2.<x,y> = GF(2)[]
sage: ring_to_gfan_format(R2)
Z/2Z[x, y]

sage.rings.polynomial.groebner_fan.verts_for_normal(normal, poly)
Return the exponents of the vertices of a Newton polytope that make up the supporting hyperplane for the given
outward normal.

EXAMPLES:

sage: from sage.rings.polynomial.groebner_fan import verts_for_normal
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: f1 = x*y*z - 1
sage: f2 = f1*(x^2 + y^2 + 1)
sage: verts_for_normal([1,1,1],f2)
[(3, 1, 1), (1, 3, 1)]

2.6 Base classes for polyhedra

2.6.1 Base class for polyhedra: Initialization and access to Vrepresentation and
Hrepresentation

class sage.geometry.polyhedron.base0.Polyhedron_base0(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Element, Polyhedron

Initialization and basic access for polyhedra.

See sage.geometry.polyhedron.base.Polyhedron_base.

Hrep_generator()

Return an iterator over the objects of the H-representation (inequalities or equations).

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: next(p.Hrep_generator())
An inequality (-1, 0, 0) x + 1 >= 0

Hrepresentation(index=None)
Return the objects of the H-representation. Each entry is either an inequality or a equation.

INPUT:

• index – either an integer or None

OUTPUT:

The optional argument is an index running from 0 to self.n_Hrepresentation()-1. If present,
the H-representation object at the given index will be returned. Without an argument, returns the list of all
H-representation objects.

EXAMPLES:
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sage: p = polytopes.hypercube(3, backend= field )
sage: p.Hrepresentation(0)
An inequality (-1, 0, 0) x + 1 >= 0
sage: p.Hrepresentation(0) == p.Hrepresentation()[0]
True

Hrepresentation_str(separator='\n', latex=False, style='>=', align=None, **kwds)
Return a human-readable string representation of the Hrepresentation of this polyhedron.

INPUT:

• separator – a string. Default is "\n".

• latex – a boolean. Default is False.

• style – either "positive" (making all coefficients positive)
or "<=", or ">=". Default is ">=".

• align – a boolean or None . Default is None in which case
align is True if separator is the newline character. If set, then the lines of the output string
are aligned by the comparison symbol by padding blanks.

Keyword parameters of repr_pretty() are passed on:

• prefix – a string

• indices – a tuple or other iterable

OUTPUT:

A string.

EXAMPLES:

sage: P = polytopes.permutahedron(3)
sage: print(P.Hrepresentation_str())
x0 + x1 + x2 == 6

x0 + x1 >= 3
-x0 - x1 >= -5

x1 >= 1
-x0 >= -3
x0 >= 1

-x1 >= -3

sage: print(P.Hrepresentation_str(style= <= ))
-x0 - x1 - x2 == -6

-x0 - x1 <= -3
x0 + x1 <= 5

-x1 <= -1
x0 <= 3
-x0 <= -1
x1 <= 3

sage: print(P.Hrepresentation_str(style= positive ))
x0 + x1 + x2 == 6

x0 + x1 >= 3
5 >= x0 + x1
x1 >= 1
3 >= x0
x0 >= 1
3 >= x1

(continues on next page)
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sage: print(P.Hrepresentation_str(latex=True))
\begin{array}{rcl}
x_{0} + x_{1} + x_{2} & = & 6 \\

x_{0} + x_{1} & \geq & 3 \\
-x_{0} - x_{1} & \geq & -5 \\

x_{1} & \geq & 1 \\
-x_{0} & \geq & -3 \\
x_{0} & \geq & 1 \\
-x_{1} & \geq & -3

\end{array}

sage: print(P.Hrepresentation_str(align=False))
x0 + x1 + x2 == 6
x0 + x1 >= 3
-x0 - x1 >= -5
x1 >= 1
-x0 >= -3
x0 >= 1
-x1 >= -3

sage: c = polytopes.cube()
sage: c.Hrepresentation_str(separator= , , style= positive )
1 >= x0, 1 >= x1, 1 >= x2, 1 + x0 >= 0, 1 + x2 >= 0, 1 + x1 >= 0

Vrep_generator()

Return an iterator over the objects of the V-representation (vertices, rays, and lines).

EXAMPLES:

sage: p = polytopes.cyclic_polytope(3,4)
sage: vg = p.Vrep_generator()
sage: next(vg)
A vertex at (0, 0, 0)
sage: next(vg)
A vertex at (1, 1, 1)

Vrepresentation(index=None)
Return the objects of the V-representation. Each entry is either a vertex, a ray, or a line.

See sage.geometry.polyhedron.constructor for a definition of vertex/ray/line.

INPUT:

• index – either an integer or None

OUTPUT:

The optional argument is an index running from 0 to self.n_Vrepresentation()-1. If present,
the V-representation object at the given index will be returned. Without an argument, returns the list of all
V-representation objects.

EXAMPLES:

sage: p = polytopes.simplex(4, project=True)
sage: p.Vrepresentation(0)
A vertex at (0.7071067812, 0.4082482905, 0.2886751346, 0.2236067977)
sage: p.Vrepresentation(0) == p.Vrepresentation() [0]
True
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backend()

Return the backend used.

OUTPUT:

The name of the backend used for computations. It will be one of the following backends:

• ppl the Parma Polyhedra Library

• cdd CDD

• normaliz normaliz

• polymake polymake

• field a generic Sage implementation

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1, 0], [0, 1], [1, 1]])
sage: triangle.backend()
ppl

sage: D = polytopes.dodecahedron() #␣
→˓needs sage.groups sage.rings.number_field
sage: D.backend() #␣
→˓needs sage.groups sage.rings.number_field
field

sage: P = Polyhedron([[1.23]])
sage: P.backend()
cdd

base_extend(base_ring, backend=None)
Return a new polyhedron over a larger base ring.

This method can also be used to change the backend.

INPUT:

• base_ring – the new base ring

• backend – the new backend, see Polyhedron(). If None (the default), attempt to keep the same
backend. Otherwise, use the same defaulting behavior as described there.

OUTPUT:

The same polyhedron, but over a larger base ring and possibly with a changed backend.

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,0), (0,1)], rays=[(1,1)], base_ring=ZZ); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices␣
→˓and 1 ray
sage: P.base_extend(QQ)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices␣
→˓and 1 ray
sage: P.base_extend(QQ) == P
True

base_ring()

Return the base ring.

OUTPUT:
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The ring over which the polyhedron is defined. Must be a sub-ring of the reals to define a polyhedron, in
particular comparison must be defined. Popular choices are

• ZZ (the ring of integers, lattice polytope),

• QQ (exact arithmetic using gmp),

• RDF (double precision floating-point arithmetic), or

• AA (real algebraic field).

EXAMPLES:

sage: triangle = Polyhedron(vertices = [[1,0],[0,1],[1,1]])
sage: triangle.base_ring() == ZZ
True

cdd_Hrepresentation()

Write the inequalities/equations data of the polyhedron in cdd’s H-representation format.

See also:

write_cdd_Hrepresentation() – export the polyhedron as a H-representation to a file.

OUTPUT: a string

EXAMPLES:

sage: p = polytopes.hypercube(2)
sage: print(p.cdd_Hrepresentation())
H-representation
begin
4 3 rational
1 -1 0
1 0 -1
1 1 0
1 0 1

end

sage: triangle = Polyhedron(vertices=[[1,0], [0,1], [1,1]], base_ring=AA) #␣
→˓needs sage.rings.number_field
sage: triangle.base_ring() #␣
→˓needs sage.rings.number_field
Algebraic Real Field
sage: triangle.cdd_Hrepresentation() #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
TypeError: the base ring must be ZZ, QQ, or RDF

cdd_Vrepresentation()

Write the vertices/rays/lines data of the polyhedron in cdd’s V-representation format.

See also:

write_cdd_Vrepresentation() – export the polyhedron as a V-representation to a file.

OUTPUT: a string

EXAMPLES:
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sage: q = Polyhedron(vertices = [[1,1],[0,0],[1,0],[0,1]])
sage: print(q.cdd_Vrepresentation())
V-representation
begin
4 3 rational
1 0 0
1 0 1
1 1 0
1 1 1

end

change_ring(base_ring, backend=None)
Return the polyhedron obtained by coercing the entries of the vertices/lines/rays of this polyhedron into the
given ring.

This method can also be used to change the backend.

INPUT:

• base_ring – the new base ring

• backend – the new backend or None (default), see Polyhedron(). If None (the default), attempt
to keep the same backend. Otherwise, use the same defaulting behavior as described there.

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,0), (0,1)], rays=[(1,1)], base_ring=QQ); P
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices␣
→˓and 1 ray
sage: P.change_ring(ZZ)
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices␣
→˓and 1 ray
sage: P.change_ring(ZZ) == P
True

sage: P = Polyhedron(vertices=[(-1.3,0), (0,2.3)], base_ring=RDF); P.
→˓vertices()
(A vertex at (-1.3, 0.0), A vertex at (0.0, 2.3))
sage: P.change_ring(QQ).vertices()
(A vertex at (-13/10, 0), A vertex at (0, 23/10))
sage: P == P.change_ring(QQ)
True
sage: P.change_ring(ZZ)
Traceback (most recent call last):
...
TypeError: cannot change the base ring to the Integer Ring

sage: P = polytopes.regular_polygon(3); P #␣
→˓needs sage.rings.number_field
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 3 vertices
sage: P.vertices() #␣
→˓needs sage.rings.number_field
(A vertex at (0.?e-16, 1.000000000000000?),
A vertex at (0.866025403784439?, -0.500000000000000?),
A vertex at (-0.866025403784439?, -0.500000000000000?))

sage: P.change_ring(QQ) #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):

(continues on next page)
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...
TypeError: cannot change the base ring to the Rational Field

Warning: The base ring RDF should be used with care. As it is not an exact ring, certain computations
may break or silently produce wrong results, for example changing the base ring from an exact ring into
RDF may cause a loss of data:

sage: P = Polyhedron([[2/3,0],[6666666666666667/10^16,0]], base_ring=AA);␣
→˓P # needs sage.rings.number_field
A 1-dimensional polyhedron in AA^2 defined as the convex hull of 2 vertices
sage: Q = P.change_ring(RDF); Q #␣
→˓needs sage.rings.number_field
A 0-dimensional polyhedron in RDF^2 defined as the convex hull of 1 vertex
sage: P.n_vertices() == Q.n_vertices() #␣
→˓needs sage.rings.number_field
False

equation_generator()

Return a generator for the linear equations satisfied by the polyhedron.

EXAMPLES:

sage: p = polytopes.regular_polygon(8,base_ring=RDF)
sage: p3 = Polyhedron(vertices = [x+[0] for x in p.vertices()], base_ring=RDF)
sage: next(p3.equation_generator())
An equation (0.0, 0.0, 1.0) x + 0.0 == 0

equations()

Return all linear constraints of the polyhedron.

OUTPUT:

A tuple of equations.

EXAMPLES:

sage: test_p = Polyhedron(vertices = [[1,2,3,4],[2,1,3,4],[4,3,2,1],[3,4,1,
→˓2]])
sage: test_p.equations()
(An equation (1, 1, 1, 1) x - 10 == 0,)

equations_list()

Return the linear constraints of the polyhedron. As with inequalities, each constraint is given as [b -a1 -a2 …
an] where for variables x1, x2,…, xn, the polyhedron satisfies the equation b = a1*x1 + a2*x2 + … + an*xn.

Note: It is recommended to use equations() or equation_generator() instead to iterate over
the list of Equation objects.

EXAMPLES:

sage: test_p = Polyhedron(vertices = [[1,2,3,4],[2,1,3,4],[4,3,2,1],[3,4,1,
→˓2]])
sage: test_p.equations_list()
[[-10, 1, 1, 1, 1]]
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inequalities()

Return all inequalities.

OUTPUT:

A tuple of inequalities.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[0,0,1],[0,1,0],[1,0,0],[2,2,2]])
sage: p.inequalities()[0:3]
(An inequality (1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0) x + 0 >= 0,
An inequality (0, 0, 1) x + 0 >= 0)

sage: # needs sage.combinat
sage: p3 = Polyhedron(vertices=Permutations([1, 2, 3, 4]))
sage: ieqs = p3.inequalities()
sage: ieqs[0]
An inequality (0, 1, 1, 1) x - 6 >= 0
sage: list(_)
[-6, 0, 1, 1, 1]

inequalities_list()

Return a list of inequalities as coefficient lists.

Note: It is recommended to use inequalities() or inequality_generator() instead to iterate
over the list of Inequality objects.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0,0],[0,0,1],[0,1,0],[1,0,0],[2,2,2]])
sage: p.inequalities_list()[0:3]
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

sage: # needs sage.combinat
sage: p3 = Polyhedron(vertices=Permutations([1, 2, 3, 4]))
sage: ieqs = p3.inequalities_list()
sage: ieqs[0]
[-6, 0, 1, 1, 1]
sage: ieqs[-1]
[-3, 0, 1, 0, 1]
sage: ieqs == [list(x) for x in p3.inequality_generator()]
True

inequality_generator()

Return a generator for the defining inequalities of the polyhedron.

OUTPUT:

A generator of the inequality Hrepresentation objects.

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: for v in triangle.inequality_generator(): print(v)
An inequality (1, 1) x - 1 >= 0
An inequality (0, -1) x + 1 >= 0

(continues on next page)
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An inequality (-1, 0) x + 1 >= 0
sage: [ v for v in triangle.inequality_generator() ]
[An inequality (1, 1) x - 1 >= 0,
An inequality (0, -1) x + 1 >= 0,
An inequality (-1, 0) x + 1 >= 0]

sage: [ [v.A(), v.b()] for v in triangle.inequality_generator() ]
[[(1, 1), -1], [(0, -1), 1], [(-1, 0), 1]]

is_compact()

Test for boundedness of the polytope.

EXAMPLES:

sage: p = polytopes.icosahedron() #␣
→˓needs sage.groups sage.rings.number_field
sage: p.is_compact() #␣
→˓needs sage.groups sage.rings.number_field
True
sage: p = Polyhedron(ieqs=[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,-1,0,0]])
sage: p.is_compact()
False

is_immutable()

Return True if the polyhedron is immutable, i.e. it cannot be modified in place.

EXAMPLES:

sage: p = polytopes.cube(backend= field )
sage: p.is_immutable()
True

is_mutable()

Return True if the polyhedron is mutable, i.e. it can be modified in place.

EXAMPLES:

sage: p = polytopes.cube(backend= field )
sage: p.is_mutable()
False

line_generator()

Return a generator for the lines of the polyhedron.

EXAMPLES:

sage: pr = Polyhedron(rays = [[1,0],[-1,0],[0,1]], vertices = [[-1,-1]])
sage: next(pr.line_generator()).vector()
(1, 0)

lines()

Return all lines of the polyhedron.

OUTPUT:

A tuple of lines.

EXAMPLES:
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sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],
→˓[2,3]])
sage: p.lines()
(A line in the direction (1, 0),)

lines_list()

Return a list of lines of the polyhedron. The line data is given as a list of coordinates rather than as a
Hrepresentation object.

Note: It is recommended to use line_generator() instead to iterate over the list of Line objects.

EXAMPLES:

sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],
→˓[2,3]])
sage: p.lines_list()
[[1, 0]]
sage: p.lines_list() == [list(x) for x in p.line_generator()]
True

n_Hrepresentation()

Return the number of objects that make up the H-representation of the polyhedron.

OUTPUT:

Integer.

EXAMPLES:

sage: p = polytopes.cross_polytope(4)
sage: p.n_Hrepresentation()
16
sage: p.n_Hrepresentation() == p.n_inequalities() + p.n_equations()
True

n_Vrepresentation()

Return the number of objects that make up the V-representation of the polyhedron.

OUTPUT:

Integer.

EXAMPLES:

sage: p = polytopes.simplex(4)
sage: p.n_Vrepresentation()
5
sage: p.n_Vrepresentation() == p.n_vertices() + p.n_rays() + p.n_lines()
True

n_equations()

Return the number of equations. The representation will always be minimal, so the number of equations is
the codimension of the polyhedron in the ambient space.

EXAMPLES:
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sage: p = Polyhedron(vertices = [[1,0,0],[0,1,0],[0,0,1]])
sage: p.n_equations()
1

n_facets()

Return the number of inequalities. The representation will always be minimal, so the number of inequalities
is the number of facets of the polyhedron in the ambient space.

EXAMPLES:

sage: p = Polyhedron(vertices = [[1,0,0],[0,1,0],[0,0,1]])
sage: p.n_inequalities()
3

sage: p = Polyhedron(vertices = [[t,t^2,t^3] for t in range(6)])
sage: p.n_facets()
8

n_inequalities()

Return the number of inequalities. The representation will always be minimal, so the number of inequalities
is the number of facets of the polyhedron in the ambient space.

EXAMPLES:

sage: p = Polyhedron(vertices = [[1,0,0],[0,1,0],[0,0,1]])
sage: p.n_inequalities()
3

sage: p = Polyhedron(vertices = [[t,t^2,t^3] for t in range(6)])
sage: p.n_facets()
8

n_lines()

Return the number of lines. The representation will always be minimal.

EXAMPLES:

sage: p = Polyhedron(vertices = [[0,0]], rays=[[0,1],[0,-1]])
sage: p.n_lines()
1

n_rays()

Return the number of rays. The representation will always be minimal.

EXAMPLES:

sage: p = Polyhedron(vertices = [[1,0],[0,1]], rays=[[1,1]])
sage: p.n_rays()
1

n_vertices()

Return the number of vertices. The representation will always be minimal.

Warning: If the polyhedron has lines, return the number of vertices in the Vrepresentation. As
the represented polyhedron has no 0-dimensional faces (i.e. vertices), n_vertices corresponds to the
number of 𝑘-faces, where 𝑘 is the number of lines:
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sage: P = Polyhedron(rays=[[1,0,0]],lines=[[0,1,0]])
sage: P.n_vertices()
1
sage: P.faces(0)
()
sage: P.f_vector()
(1, 0, 1, 1)

sage: P = Polyhedron(rays=[[1,0,0]],lines=[[0,1,0],[0,1,1]])
sage: P.n_vertices()
1
sage: P.f_vector()
(1, 0, 0, 1, 1)

EXAMPLES:

sage: p = Polyhedron(vertices = [[1,0],[0,1],[1,1]], rays=[[1,1]])
sage: p.n_vertices()
2

ray_generator()

Return a generator for the rays of the polyhedron.

EXAMPLES:

sage: pi = Polyhedron(ieqs = [[1,1,0],[1,0,1]])
sage: pir = pi.ray_generator()
sage: [x.vector() for x in pir]
[(1, 0), (0, 1)]

rays()

Return a list of rays of the polyhedron.

OUTPUT:

A tuple of rays.

EXAMPLES:

sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]])
sage: p.rays()
(A ray in the direction (1, 0, 0),
A ray in the direction (0, 1, 0),
A ray in the direction (0, 0, 1))

rays_list()

Return a list of rays as coefficient lists.

Note: It is recommended to use rays() or ray_generator() instead to iterate over the list of Ray
objects.

OUTPUT:

A list of rays as lists of coordinates.

EXAMPLES:
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sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]])
sage: p.rays_list()
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
sage: p.rays_list() == [list(r) for r in p.ray_generator()]
True

vertex_generator()

Return a generator for the vertices of the polyhedron.

Warning: If the polyhedron has lines, return a generator for the vertices of the Vrepresentation.
However, the represented polyhedron has no 0-dimensional faces (i.e. vertices):

sage: P = Polyhedron(rays=[[1,0,0]],lines=[[0,1,0]])
sage: list(P.vertex_generator())
[A vertex at (0, 0, 0)]
sage: P.faces(0)
()

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: for v in triangle.vertex_generator(): print(v)
A vertex at (0, 1)
A vertex at (1, 0)
A vertex at (1, 1)
sage: v_gen = triangle.vertex_generator()
sage: next(v_gen) # the first vertex
A vertex at (0, 1)
sage: next(v_gen) # the second vertex
A vertex at (1, 0)
sage: next(v_gen) # the third vertex
A vertex at (1, 1)
sage: try: next(v_gen) # there are only three vertices
....: except StopIteration: print("STOP")
STOP
sage: type(v_gen)
<... generator >
sage: [ v for v in triangle.vertex_generator() ]
[A vertex at (0, 1), A vertex at (1, 0), A vertex at (1, 1)]

vertices()

Return all vertices of the polyhedron.

OUTPUT:

A tuple of vertices.

Warning: If the polyhedron has lines, return the vertices of the Vrepresentation. However, the
represented polyhedron has no 0-dimensional faces (i.e. vertices):
sage: P = Polyhedron(rays=[[1,0,0]],lines=[[0,1,0]])
sage: P.vertices()
(A vertex at (0, 0, 0),)
sage: P.faces(0)
()
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EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: triangle.vertices()
(A vertex at (0, 1), A vertex at (1, 0), A vertex at (1, 1))
sage: a_simplex = Polyhedron(ieqs = [
....: [0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]
....: ], eqns = [[1,-1,-1,-1,-1]])
sage: a_simplex.vertices()
(A vertex at (1, 0, 0, 0), A vertex at (0, 1, 0, 0),
A vertex at (0, 0, 1, 0), A vertex at (0, 0, 0, 1))

vertices_list()

Return a list of vertices of the polyhedron.

Note: It is recommended to use vertex_generator() instead to iterate over the list of Vertex
objects.

Warning: If the polyhedron has lines, return the vertices of the Vrepresentation. However, the
represented polyhedron has no 0-dimensional faces (i.e. vertices):

sage: P = Polyhedron(rays=[[1,0,0]],lines=[[0,1,0]])
sage: P.vertices_list()
[[0, 0, 0]]
sage: P.faces(0)
()

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: triangle.vertices_list()
[[0, 1], [1, 0], [1, 1]]
sage: a_simplex = Polyhedron(ieqs = [
....: [0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]
....: ], eqns = [[1,-1,-1,-1,-1]])
sage: a_simplex.vertices_list()
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
sage: a_simplex.vertices_list() == [list(v) for v in a_simplex.vertex_
→˓generator()]
True

vertices_matrix(base_ring=None)
Return the coordinates of the vertices as the columns of a matrix.

INPUT:

• base_ring – A ring or None (default). The base ring of the returned matrix. If not specified, the
base ring of the polyhedron is used.

OUTPUT:

A matrix over base_ring whose columns are the coordinates of the vertices. A TypeError is raised if
the coordinates cannot be converted to base_ring.
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Warning: If the polyhedron has lines, return the coordinates of the vertices of the Vrepresenta-
tion. However, the represented polyhedron has no 0-dimensional faces (i.e. vertices):

sage: P = Polyhedron(rays=[[1,0,0]],lines=[[0,1,0]])
sage: P.vertices_matrix()
[0]
[0]
[0]
sage: P.faces(0)
()

EXAMPLES:

sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: triangle.vertices_matrix()
[0 1 1]
[1 0 1]
sage: (triangle/2).vertices_matrix()
[ 0 1/2 1/2]
[1/2 0 1/2]
sage: (triangle/2).vertices_matrix(ZZ)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

write_cdd_Hrepresentation(filename)
Export the polyhedron as a H-representation to a file.

INPUT:

• filename – the output file.

See also:

cdd_Hrepresentation() – return the H-representation of the polyhedron as a string.

EXAMPLES:

sage: from sage.misc.temporary_file import tmp_filename
sage: filename = tmp_filename(ext= .ext )
sage: polytopes.cube().write_cdd_Hrepresentation(filename)

write_cdd_Vrepresentation(filename)

Export the polyhedron as a V-representation to a file.

INPUT:

• filename – the output file.

See also:

cdd_Vrepresentation() – return the V-representation of the polyhedron as a string.

EXAMPLES:

sage: from sage.misc.temporary_file import tmp_filename
sage: filename = tmp_filename(ext= .ext )
sage: polytopes.cube().write_cdd_Vrepresentation(filename)
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2.6.2 Base class for polyhedra: Implementation of the ConvexSet_base API

Define methods that exist for convex sets, but not constructions such as dilation or product.

class sage.geometry.polyhedron.base1.Polyhedron_base1(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base0, ConvexSet_closed

Convex set methods for polyhedra, but not constructions such as dilation or product.

See sage.geometry.polyhedron.base.Polyhedron_base.

Hrepresentation_space()

Return the linear space containing the H-representation vectors.

OUTPUT:

A free module over the base ring of dimension ambient_dim() + 1.

EXAMPLES:

sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: poly_test.Hrepresentation_space()
Ambient free module of rank 5 over the principal ideal domain Integer Ring

Vrepresentation_space()

Return the ambient free module.

OUTPUT:

A free module over the base ring of dimension ambient_dim().

EXAMPLES:

sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: poly_test.Vrepresentation_space()
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: poly_test.ambient_space() is poly_test.Vrepresentation_space()
True

a_maximal_chain()

Return a maximal chain of the face lattice in increasing order.

Subclasses must provide an implementation of this method.

EXAMPLES:

sage: from sage.geometry.polyhedron.base1 import Polyhedron_base1
sage: P = polytopes.cube()
sage: Polyhedron_base1.a_maximal_chain
<abstract method a_maximal_chain at ...>

ambient(base_field=None)
Return the ambient vector space.

It is the ambient free module (Vrepresentation_space()) tensored with a field.

INPUT:
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• base_field – (default: the fraction field of the base ring) a field.

EXAMPLES:

sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: poly_test.ambient_vector_space()
Vector space of dimension 4 over Rational Field
sage: poly_test.ambient_vector_space() is poly_test.ambient()
True

sage: poly_test.ambient_vector_space(AA) #␣
→˓needs sage.rings.number_field
Vector space of dimension 4 over Algebraic Real Field
sage: poly_test.ambient_vector_space(RDF)
Vector space of dimension 4 over Real Double Field
sage: poly_test.ambient_vector_space(SR) #␣
→˓needs sage.symbolic
Vector space of dimension 4 over Symbolic Ring

ambient_dim()

Return the dimension of the ambient space.

EXAMPLES:

sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: poly_test.ambient_dim()
4

ambient_space()

Return the ambient free module.

OUTPUT:

A free module over the base ring of dimension ambient_dim().

EXAMPLES:

sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: poly_test.Vrepresentation_space()
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: poly_test.ambient_space() is poly_test.Vrepresentation_space()
True

ambient_vector_space(base_field=None)
Return the ambient vector space.

It is the ambient free module (Vrepresentation_space()) tensored with a field.

INPUT:

• base_field – (default: the fraction field of the base ring) a field.

EXAMPLES:

sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]])
sage: poly_test.ambient_vector_space()
Vector space of dimension 4 over Rational Field
sage: poly_test.ambient_vector_space() is poly_test.ambient()
True

(continues on next page)
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sage: poly_test.ambient_vector_space(AA) #␣
→˓needs sage.rings.number_field
Vector space of dimension 4 over Algebraic Real Field
sage: poly_test.ambient_vector_space(RDF)
Vector space of dimension 4 over Real Double Field
sage: poly_test.ambient_vector_space(SR) #␣
→˓needs sage.symbolic
Vector space of dimension 4 over Symbolic Ring

an_affine_basis()

Return points in self that form a basis for the affine span of self.

This implementation of the method an_affine_basis() for polytopes guarantees the following:

• All points are vertices.

• The basis is obtained by considering amaximal chain of faces in the face lattice and picking for each cover
relation one vertex that is in the difference. Thus this method is independent of the concrete realization
of the polytope.

For unbounded polyhedra, the result may contain arbitrary points of self, not just vertices.

EXAMPLES:

sage: P = polytopes.cube()
sage: P.an_affine_basis()
[A vertex at (-1, -1, -1),
A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (1, 1, -1)]

sage: P = polytopes.permutahedron(5)
sage: P.an_affine_basis()
[A vertex at (1, 2, 3, 5, 4),
A vertex at (2, 1, 3, 5, 4),
A vertex at (1, 3, 2, 5, 4),
A vertex at (4, 1, 3, 5, 2),
A vertex at (4, 2, 5, 3, 1)]

Unbounded polyhedra:

sage: p = Polyhedron(vertices=[(0, 0)], rays=[(1,0), (0,1)])
sage: p.an_affine_basis()
[A vertex at (0, 0), (1, 0), (0, 1)]
sage: p = Polyhedron(vertices=[(2, 1)], rays=[(1,0), (0,1)])
sage: p.an_affine_basis()
[A vertex at (2, 1), (3, 1), (2, 2)]
sage: p = Polyhedron(vertices=[(2, 1)], rays=[(1,0)], lines=[(0,1)])
sage: p.an_affine_basis()
[(2, 1), A vertex at (2, 0), (3, 0)]

contains(point)
Test whether the polyhedron contains the given point.

See also:

interior_contains(), relative_interior_contains().

INPUT:
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• point – coordinates of a point (an iterable)

OUTPUT:

Boolean.

EXAMPLES:

sage: P = Polyhedron(vertices=[[1,1],[1,-1],[0,0]])
sage: P.contains( [1,0] )
True
sage: P.contains( P.center() ) # true for any convex set
True

As a shorthand, one may use the usual in operator:

sage: P.center() in P
True
sage: [-1,-1] in P
False

The point need not have coordinates in the same field as the polyhedron:

sage: # needs sage.symbolic
sage: ray = Polyhedron(vertices=[(0,0)], rays=[(1,0)], base_ring=QQ)
sage: ray.contains([sqrt(2)/3,0]) # irrational coordinates are ok
True
sage: a = var( a )
sage: ray.contains([a,0]) # a might be negative!
False
sage: assume(a>0)
sage: ray.contains([a,0])
True
sage: ray.contains([ hello , kitty ]) # no common ring for coordinates
False

The empty polyhedron needs extra care, see Issue #10238:

sage: empty = Polyhedron(); empty
The empty polyhedron in ZZ^0
sage: empty.contains([])
False
sage: empty.contains([0]) # not a point in QQ^0
False
sage: full = Polyhedron(vertices=[()]); full
A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex
sage: full.contains([])
True
sage: full.contains([0])
False

dim()

Return the dimension of the polyhedron.

OUTPUT:

-1 if the polyhedron is empty, otherwise a non-negative integer.

EXAMPLES:
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sage: simplex = Polyhedron(vertices = [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,
→˓0]])
sage: simplex.dim()
3
sage: simplex.ambient_dim()
4

The empty set is a special case (Issue #12193):

sage: P1=Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]])
sage: P2=Polyhedron(vertices=[[2,0,0],[0,2,0],[0,0,2]])
sage: P12 = P1.intersection(P2)
sage: P12
The empty polyhedron in ZZ^3
sage: P12.dim()
-1

dimension()

Return the dimension of the polyhedron.

OUTPUT:

-1 if the polyhedron is empty, otherwise a non-negative integer.

EXAMPLES:

sage: simplex = Polyhedron(vertices = [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,
→˓0]])
sage: simplex.dim()
3
sage: simplex.ambient_dim()
4

The empty set is a special case (Issue #12193):

sage: P1=Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]])
sage: P2=Polyhedron(vertices=[[2,0,0],[0,2,0],[0,0,2]])
sage: P12 = P1.intersection(P2)
sage: P12
The empty polyhedron in ZZ^3
sage: P12.dim()
-1

interior()

The interior of self.

OUTPUT:

• either an empty polyhedron or an instance of RelativeInterior

EXAMPLES:

If the polyhedron is full-dimensional, the result is the same as that of relative_interior():

sage: P_full = Polyhedron(vertices=[[0,0],[1,1],[1,-1]])
sage: P_full.interior()
Relative interior of
a 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices

If the polyhedron is of strictly smaller dimension than the ambient space, its interior is empty:
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sage: P_lower = Polyhedron(vertices=[[0,1], [0,-1]])
sage: P_lower.interior()
The empty polyhedron in ZZ^2

interior_contains(point)

Test whether the interior of the polyhedron contains the given point.

See also:

contains(), relative_interior_contains().

INPUT:

• point – coordinates of a point

OUTPUT:

True or False.

EXAMPLES:

sage: P = Polyhedron(vertices=[[0,0],[1,1],[1,-1]])
sage: P.contains( [1,0] )
True
sage: P.interior_contains( [1,0] )
False

If the polyhedron is of strictly smaller dimension than the ambient space, its interior is empty:

sage: P = Polyhedron(vertices=[[0,1],[0,-1]])
sage: P.contains( [0,0] )
True
sage: P.interior_contains( [0,0] )
False

The empty polyhedron needs extra care, see Issue #10238:

sage: empty = Polyhedron(); empty
The empty polyhedron in ZZ^0
sage: empty.interior_contains([])
False

is_empty()

Test whether the polyhedron is the empty polyhedron

OUTPUT:

Boolean.

EXAMPLES:

sage: P = Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]]); P
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: P.is_empty(), P.is_universe()
(False, False)

sage: Q = Polyhedron(vertices=()); Q
The empty polyhedron in ZZ^0
sage: Q.is_empty(), Q.is_universe()
(True, False)

(continues on next page)
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sage: R = Polyhedron(lines=[(1,0),(0,1)]); R
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and␣
→˓2 lines
sage: R.is_empty(), R.is_universe()
(False, True)

is_relatively_open()

Return whether self is relatively open.

OUTPUT:

Boolean.

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,0), (-1,0)]); P
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: P.is_relatively_open()
False

sage: P0 = Polyhedron(vertices=[[1, 2]]); P0
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex
sage: P0.is_relatively_open()
True

sage: Empty = Polyhedron(ambient_dim=2); Empty
The empty polyhedron in ZZ^2
sage: Empty.is_relatively_open()
True

sage: Line = Polyhedron(vertices=[(1, 1)], lines=[(1, 0)]); Line
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and␣
→˓1 line
sage: Line.is_relatively_open()
True

is_universe()

Test whether the polyhedron is the whole ambient space

OUTPUT:

Boolean.

EXAMPLES:

sage: P = Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]]); P
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: P.is_empty(), P.is_universe()
(False, False)

sage: Q = Polyhedron(vertices=()); Q
The empty polyhedron in ZZ^0
sage: Q.is_empty(), Q.is_universe()
(True, False)

sage: R = Polyhedron(lines=[(1,0),(0,1)]); R
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and␣

(continues on next page)
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→˓2 lines
sage: R.is_empty(), R.is_universe()
(False, True)

relative_interior()

Return the relative interior of self.

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,0), (-1,0)])
sage: ri_P = P.relative_interior(); ri_P
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: (0, 0) in ri_P
True
sage: (1, 0) in ri_P
False

sage: P0 = Polyhedron(vertices=[[1, 2]])
sage: P0.relative_interior() is P0
True

sage: Empty = Polyhedron(ambient_dim=2)
sage: Empty.relative_interior() is Empty
True

sage: Line = Polyhedron(vertices=[(1, 1)], lines=[(1, 0)])
sage: Line.relative_interior() is Line
True

relative_interior_contains(point)
Test whether the relative interior of the polyhedron contains the given point.

See also:

contains(), interior_contains().

INPUT:

• point – coordinates of a point

OUTPUT:

True or False

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,0), (-1,0)])
sage: P.contains( (0,0) )
True
sage: P.interior_contains( (0,0) )
False
sage: P.relative_interior_contains( (0,0) )
True
sage: P.relative_interior_contains( (1,0) )
False

The empty polyhedron needs extra care, see Issue #10238:
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sage: empty = Polyhedron(); empty
The empty polyhedron in ZZ^0
sage: empty.relative_interior_contains([])
False

representative_point()

Return a “generic” point.

See also:

sage.geometry.polyhedron.base.Polyhedron_base.center().

OUTPUT:

A point as a coordinate vector. The point is chosen to be interior if possible. If the polyhedron is not
full-dimensional, the point is in the relative interior. If the polyhedron is zero-dimensional, its single point is
returned.

EXAMPLES:

sage: p = Polyhedron(vertices=[(3,2)], rays=[(1,-1)])
sage: p.representative_point()
(4, 1)
sage: p.center()
(3, 2)

sage: Polyhedron(vertices=[(3,2)]).representative_point()
(3, 2)

2.6.3 Base class for polyhedra: Methods related to lattice points

class sage.geometry.polyhedron.base2.Polyhedron_base2(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base1

Methods related to lattice points.

See sage.geometry.polyhedron.base.Polyhedron_base.

generating_function_of_integral_points(**kwds)
Return the multivariate generating function of the integral points of this polyhedron.

To be precise, this returns ∑︁
(𝑟0,...,𝑟𝑑−1)∈polyhedron∩ 𝑑

𝑦𝑟00 . . . 𝑦
𝑟𝑑−1

𝑑−1 .

This calls generating_function_of_integral_points(), so have a look at the documentation
and examples there.

INPUT:

The following keyword arguments are passed to generating_function_of_inte-
gral_points():

• split – (default: False) a boolean or list
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– split=False computes the generating function directly, without any splitting.

– When split is a list of disjoint polyhedra, then for each of these polyhedra, this polyhedron is
intersected with it, its generating function computed and all these generating functions are summed
up.

– split=True splits into 𝑑! disjoint polyhedra.

• result_as_tuple – (default: None) a boolean or None

This specifies whether the output is a (partial) factorization (result_as_tuple=False)
or a sum of such (partial) factorizations (result_as_tuple=True). By default
(result_as_tuple=None), this is automatically determined. If the output is a sum, it is
represented as a tuple whose entries are the summands.

• indices – (default: None) a list or tuple

If this is None, this is automatically determined.

• name – (default: y ) a string

The variable names of the Laurent polynomial ring of the output are this string followed by an integer.

• names – a list or tuple of names (strings), or a comma separated string

name is extracted from names, therefore names has to contain exactly one variable name, and name
and``names`` cannot be specified both at the same time.

• Factorization_sort (default: False) and Factorization_simplify (default: True) –
booleans

These are passed on to sage.structure.factorization.Factorization when creating
the result.

• sort_factors – (default: False) a boolean

If set, then the factors of the output are sorted such that the numerator is first and only then all factors
of the denominator. It is ensured that the sorting is always the same; use this for doctesting.

OUTPUT:

The generating function as a (partial) Factorization of the result whose factors are Laurent polynomials

The result might be a tuple of such factorizations (depending on the parameter result_as_tuple) as
well.

Note: At the moment, only polyhedra with nonnegative coordinates (i.e. a polyhedron in the nonnegative
orthant) are handled.

EXAMPLES:

sage: # needs sage.combinat
sage: P2 = (Polyhedron(ieqs=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, -1)]),
....: Polyhedron(ieqs=[(0, -1, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0)]))
sage: P2[0].generating_function_of_integral_points(sort_factors=True)
1 * (-y0 + 1)^-1 * (-y1 + 1)^-1 * (-y0*y2 + 1)^-1
sage: P2[1].generating_function_of_integral_points(sort_factors=True)
1 * (-y1 + 1)^-1 * (-y2 + 1)^-1 * (-y0*y2 + 1)^-1
sage: (P2[0] & P2[1]).Hrepresentation()
(An equation (1, 0, -1) x + 0 == 0,
An inequality (1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0) x + 0 >= 0)

(continues on next page)
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sage: (P2[0] & P2[1]).generating_function_of_integral_points(sort_
→˓factors=True)
1 * (-y1 + 1)^-1 * (-y0*y2 + 1)^-1

The number of integer partitions 1 ≤ 𝑟0 ≤ 𝑟1 ≤ 𝑟2 ≤ 𝑟3 ≤ 𝑟4:

sage: # needs sage.combinat
sage: P = Polyhedron(ieqs=[(-1, 1, 0, 0, 0, 0), (0, -1, 1, 0, 0, 0),
....: (0, 0, -1, 1, 0, 0), (0, 0, 0, -1, 1, 0),
....: (0, 0, 0, 0, -1, 1)])
sage: f = P.generating_function_of_integral_points(sort_factors=True); f
y0*y1*y2*y3*y4 * (-y4 + 1)^-1 * (-y3*y4 + 1)^-1 * (-y2*y3*y4 + 1)^-1 *
(-y1*y2*y3*y4 + 1)^-1 * (-y0*y1*y2*y3*y4 + 1)^-1
sage: f = f.value()
sage: P.<z> = PowerSeriesRing(ZZ)
sage: c = f.subs({y: z for y in f.parent().gens()}); c
z^5 + z^6 + 2*z^7 + 3*z^8 + 5*z^9 + 7*z^10 + 10*z^11 + 13*z^12 + 18*z^13 +
23*z^14 + 30*z^15 + 37*z^16 + 47*z^17 + 57*z^18 + 70*z^19 + 84*z^20 +
101*z^21 + 119*z^22 + 141*z^23 + 164*z^24 + O(z^25)
sage: ([Partitions(k, length=5).cardinality() for k in range(5,20)] ==
....: c.truncate().coefficients(sparse=False)[5:20])
True

See also:

More examples can be found at generating_function_of_integral_points().

get_integral_point(index, **kwds)
Return the index-th integral point in this polyhedron.

This is equivalent to sorted(self.integral_points())[index]. However, so long as inte-
gral_points_count() does not need to enumerate all integral points, neither does this method. Hence
it can be significantly faster. If the polyhedron is not compact, a ValueError is raised.

INPUT:

• index – integer. The index of the integral point to be found. If this is not in [0, self.
integral_point_count()), an IndexError is raised.

• **kwds – optional keyword parameters that are passed to integral_points_count().

ALGORITHM:

The function computes each of the components of the requested point in turn. To compute x_i, the ith
component, it bisects the upper and lower bounds on x_i given by the bounding box. At each bisection, it
uses integral_points_count() to determine on which side of the bisecting hyperplane the requested
point lies.

See also:

integral_points_count().

EXAMPLES:

sage: P = Polyhedron(vertices=[(-1,-1),(1,0),(1,1),(0,1)])
sage: P.get_integral_point(1)
(0, 0)
sage: P.get_integral_point(4)
(1, 1)
sage: sorted(P.integral_points())

(continues on next page)
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[(-1, -1), (0, 0), (0, 1), (1, 0), (1, 1)]
sage: P.get_integral_point(5)
Traceback (most recent call last):
...
IndexError: ...

sage: Q = Polyhedron([(1,3), (2, 7), (9, 77)])
sage: [Q.get_integral_point(i) for i in range(Q.integral_points_count())] ==␣
→˓sorted(Q.integral_points())
True
sage: Q.get_integral_point(0, explicit_enumeration_threshold=0, triangulation=
→˓ cddlib ) # optional - latte_int
(1, 3)
sage: Q.get_integral_point(0, explicit_enumeration_threshold=0, triangulation=
→˓ cddlib , foo=True) # optional - latte_int
Traceback (most recent call last):
...
RuntimeError: ...

sage: R = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]])
sage: R.get_integral_point(0)
Traceback (most recent call last):
...
ValueError: ...

h_star_vector()

Return the ℎ*-vector of the lattice polytope.

The ℎ*-vector records the coefficients of the polynomial in the numerator of the Ehrhart series of a lattice
polytope.

INPUT:

• self – A lattice polytope.

OUTPUT:

A list whose entries give the ℎ*-vector.

EXAMPLES:

The ℎ*-vector of a unimodular simplex S (a simplex with volume = 1
𝑑𝑖𝑚(𝑆)! ) is always 1. Here we test this

on simplices up to dimension 3:

sage: # optional - pynormaliz
sage: s1 = polytopes.simplex(1,backend= normaliz )
sage: s2 = polytopes.simplex(2,backend= normaliz )
sage: s3 = polytopes.simplex(3,backend= normaliz )
sage: [s1.h_star_vector(), s2.h_star_vector(), s3.h_star_vector()]
[[1], [1], [1]]

For a less trivial example, we compute the ℎ*-vector of the 0/1-cube, which has the Eulerian numbers (3, 𝑖)
for 𝑖 ∈ [0, 2] as an ℎ*-vector:

sage: cube = polytopes.cube(intervals= zero_one , backend= normaliz ) #␣
→˓optional - pynormaliz
sage: cube.h_star_vector() #␣
→˓optional - pynormaliz

(continues on next page)
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[1, 4, 1]
sage: from sage.combinat.combinat import eulerian_number
sage: [eulerian_number(3,i) for i in range(3)]
[1, 4, 1]

integral_points(threshold=100000)
Return the integral points in the polyhedron.

Uses either the naive algorithm (iterate over a rectangular bounding box) or triangulation + Smith form.

INPUT:

• threshold – integer (default: 100000). Use the naive algorithm as long as the bounding box is smaller
than this.

OUTPUT:

The list of integral points in the polyhedron. If the polyhedron is not compact, a ValueError is raised.

EXAMPLES:

sage: Polyhedron(vertices=[(-1,-1),(1,0),(1,1),(0,1)]).integral_points()
((-1, -1), (0, 0), (0, 1), (1, 0), (1, 1))

sage: simplex = Polyhedron([(1,2,3), (2,3,7), (-2,-3,-11)])
sage: simplex.integral_points()
((-2, -3, -11), (0, 0, -2), (1, 2, 3), (2, 3, 7))

The polyhedron need not be full-dimensional:

sage: simplex = Polyhedron([(1,2,3,5), (2,3,7,5), (-2,-3,-11,5)])
sage: simplex.integral_points()
((-2, -3, -11, 5), (0, 0, -2, 5), (1, 2, 3, 5), (2, 3, 7, 5))

sage: point = Polyhedron([(2,3,7)])
sage: point.integral_points()
((2, 3, 7),)

sage: empty = Polyhedron()
sage: empty.integral_points()
()

Here is a simplex where the naive algorithm of running over all points in a rectangular bounding box no longer
works fast enough:

sage: v = [(1,0,7,-1), (-2,-2,4,-3), (-1,-1,-1,4), (2,9,0,-5), (-2,-1,5,1)]
sage: simplex = Polyhedron(v); simplex
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: len(simplex.integral_points())
49

A case where rounding in the right direction goes a long way:

sage: P = 1/10*polytopes.hypercube(14, backend= field )
sage: P.integral_points()
((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),)

Finally, the 3-d reflexive polytope number 4078:
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sage: v = [(1,0,0), (0,1,0), (0,0,1), (0,0,-1), (0,-2,1),
....: (-1,2,-1), (-1,2,-2), (-1,1,-2), (-1,-1,2), (-1,-3,2)]
sage: P = Polyhedron(v)
sage: pts1 = P.integral_points() # Sage s own code
sage: all(P.contains(p) for p in pts1)
True
sage: pts2 = LatticePolytope(v).points() #␣
→˓needs palp
sage: for p in pts1: p.set_immutable()
sage: set(pts1) == set(pts2) #␣
→˓needs palp
True

sage: timeit( Polyhedron(v).integral_points() ) # not tested - random
625 loops, best of 3: 1.41 ms per loop
sage: timeit( LatticePolytope(v).points() ) # not tested - random
25 loops, best of 3: 17.2 ms per loop

integral_points_count(**kwds)
Return the number of integral points in the polyhedron.

This generic version of this method simply calls integral_points().

EXAMPLES:

sage: P = polytopes.cube()
sage: P.integral_points_count()
27

We shrink the polyhedron a little bit:

sage: Q = P*(8/9)
sage: Q.integral_points_count()
1

Same for a polyhedron whose coordinates are not rationals. Note that the answer is an integer even though
there are no guarantees for exactness:

sage: Q = P*RDF(8/9)
sage: Q.integral_points_count()
1

Unbounded polyhedra (with or without lattice points) are not supported:

sage: P = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]])
sage: P.integral_points_count()
Traceback (most recent call last):
...
NotImplementedError: ...
sage: P = Polyhedron(vertices=[[1, 1]], rays=[[1, 1]])
sage: P.integral_points_count()
Traceback (most recent call last):
...
NotImplementedError: ...

is_lattice_polytope()

Return whether the polyhedron is a lattice polytope.
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OUTPUT:

True if the polyhedron is compact and has only integral vertices, False otherwise.

EXAMPLES:

sage: polytopes.cross_polytope(3).is_lattice_polytope()
True
sage: polytopes.regular_polygon(5).is_lattice_polytope() #␣
→˓needs sage.rings.number_field
False

lattice_polytope(envelope=False)
Return an encompassing lattice polytope.

INPUT:

• envelope – boolean (default: False). If the polyhedron has non-integral vertices, this option decides
whether to return a strictly larger lattice polytope or raise a ValueError. This option has no effect if
the polyhedron has already integral vertices.

OUTPUT:

A LatticePolytope. If the polyhedron is compact and has integral vertices, the lattice polytope equals
the polyhedron. If the polyhedron is compact but has at least one non-integral vertex, a strictly larger lattice
polytope is returned.

If the polyhedron is not compact, a NotImplementedError is raised.

If the polyhedron is not integral and envelope=False, a ValueError is raised.

ALGORITHM:

For each non-integral vertex, a bounding box of integral points is added and the convex hull of these integral
points is returned.

EXAMPLES:

First, a polyhedron with integral vertices:

sage: P = Polyhedron(vertices=[(1, 0), (0, 1), (-1, 0), (0, -1)])
sage: lp = P.lattice_polytope(); lp
2-d reflexive polytope... in 2-d lattice M
sage: lp #␣
→˓optional - polytopes_db, needs palp
2-d reflexive polytope #3 in 2-d lattice M
sage: lp.vertices()
M(-1, 0),
M( 0, -1),
M( 0, 1),
M( 1, 0)
in 2-d lattice M

Here is a polyhedron with non-integral vertices:

sage: P = Polyhedron( vertices = [(1/2, 1/2), (0, 1), (-1, 0), (0, -1)])
sage: lp = P.lattice_polytope()
Traceback (most recent call last):
...
ValueError: Some vertices are not integral. You probably want
to add the argument "envelope=True" to compute an enveloping

(continues on next page)
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lattice polytope.
sage: lp = P.lattice_polytope(True)
sage: lp #␣
→˓optional - polytopes_db, needs palp
2-d reflexive polytope #5 in 2-d lattice M
sage: lp.vertices()
M(-1, 0),
M( 0, -1),
M( 1, 1),
M( 0, 1),
M( 1, 0)
in 2-d lattice M

random_integral_point(**kwds)
Return an integral point in this polyhedron chosen uniformly at random.

INPUT:

• **kwds – optional keyword parameters that are passed to get_integral_point().

OUTPUT:

The integral point in the polyhedron chosen uniformly at random. If the polyhedron is not compact, a Val-
ueError is raised. If the polyhedron does not contain any integral points, an EmptySetError is raised.

See also:

get_integral_point().

EXAMPLES:

sage: P = Polyhedron(vertices=[(-1,-1),(1,0),(1,1),(0,1)])
sage: P.random_integral_point() # random
(0, 0)
sage: P.random_integral_point() in P.integral_points()
True
sage: P.random_integral_point(explicit_enumeration_threshold=0, # random,␣
→˓optional - latte_int
....: triangulation= cddlib )
(1, 1)
sage: P.random_integral_point(explicit_enumeration_threshold=0, #␣
→˓optional - latte_int
....: triangulation= cddlib , foo=7)
Traceback (most recent call last):
...
RuntimeError: ...

sage: Q = Polyhedron(vertices=[(2, 1/3)], rays=[(1, 2)])
sage: Q.random_integral_point()
Traceback (most recent call last):
...
ValueError: ...

sage: R = Polyhedron(vertices=[(1/2, 0), (1, 1/2), (0, 1/2)])
sage: R.random_integral_point()
Traceback (most recent call last):
...
EmptySetError: ...
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2.6.4 Base class for polyhedra: Methods regarding the combinatorics of a polyhe-
dron

Excluding methods relying on sage.graphs.

class sage.geometry.polyhedron.base3.Polyhedron_base3(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base2

Methods related to the combinatorics of a polyhedron.

See sage.geometry.polyhedron.base.Polyhedron_base.

a_maximal_chain()

Return a maximal chain of the face lattice in increasing order.

EXAMPLES:

sage: P = polytopes.cube()
sage: P.a_maximal_chain()
[A -1-dimensional face of a Polyhedron in ZZ^3,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8␣
→˓vertices]
sage: P = polytopes.cube()
sage: chain = P.a_maximal_chain(); chain
[A -1-dimensional face of a Polyhedron in ZZ^3,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8␣
→˓vertices]
sage: [face.ambient_V_indices() for face in chain]
[(), (5,), (0, 5), (0, 3, 4, 5), (0, 1, 2, 3, 4, 5, 6, 7)]

adjacency_matrix(algorithm=None)
Return the binary matrix of vertex adjacencies.

INPUT:

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

EXAMPLES:
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sage: polytopes.simplex(4).vertex_adjacency_matrix()
[0 1 1 1 1]
[1 0 1 1 1]
[1 1 0 1 1]
[1 1 1 0 1]
[1 1 1 1 0]

The rows and columns of the vertex adjacency matrix correspond to the Vrepresentation() objects:
vertices, rays, and lines. The (𝑖, 𝑗) matrix entry equals 1 if the 𝑖-th and 𝑗-th V-representation object are
adjacent.

Two vertices are adjacent if they are the endpoints of an edge, that is, a one-dimensional face. For un-
bounded polyhedra this clearly needs to be generalized and we define two V-representation objects (see
sage.geometry.polyhedron.constructor) to be adjacent if they together generate a one-face.
There are three possible combinations:

• Two vertices can bound a finite-length edge.

• A vertex and a ray can generate a half-infinite edge starting at the vertex and with the direction given by
the ray.

• A vertex and a line can generate an infinite edge. The position of the vertex on the line is arbitrary in
this case, only its transverse position matters. The direction of the edge is given by the line generator.

For example, take the half-plane:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: half_plane.Hrepresentation()
(An inequality (1, 0) x + 0 >= 0,)

Its (non-unique) V-representation consists of a vertex, a ray, and a line. The only edge is spanned by the
vertex and the line generator, so they are adjacent:

sage: half_plane.Vrepresentation()
(A line in the direction (0, 1), A ray in the direction (1, 0), A vertex at␣
→˓(0, 0))
sage: half_plane.vertex_adjacency_matrix()
[0 0 1]
[0 0 0]
[1 0 0]

In one dimension higher, that is for a half-space in 3 dimensions, there is no one-dimensional face. Hence
nothing is adjacent:

sage: Polyhedron(ieqs=[(0,1,0,0)]).vertex_adjacency_matrix()
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

EXAMPLES:

In a bounded polygon, every vertex has precisely two adjacent ones:

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (3, 0), (4, 1)])
sage: for v in P.Vrep_generator():
....: print("{} {}".format(P.adjacency_matrix().row(v.index()), v))
(0, 1, 0, 1) A vertex at (0, 1)
(1, 0, 1, 0) A vertex at (1, 0)

(continues on next page)
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(0, 1, 0, 1) A vertex at (3, 0)
(1, 0, 1, 0) A vertex at (4, 1)

If the V-representation of the polygon contains vertices and one ray, then each V-representation object is
adjacent to two V-representation objects:

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (3, 0), (4, 1)],
....: rays=[(0,1)])
sage: for v in P.Vrep_generator():
....: print("{} {}".format(P.adjacency_matrix().row(v.index()), v))
(0, 1, 0, 0, 1) A ray in the direction (0, 1)
(1, 0, 1, 0, 0) A vertex at (0, 1)
(0, 1, 0, 1, 0) A vertex at (1, 0)
(0, 0, 1, 0, 1) A vertex at (3, 0)
(1, 0, 0, 1, 0) A vertex at (4, 1)

If the V-representation of the polygon contains vertices and two distinct rays, then each vertex is adjacent to
two V-representation objects (which can now be vertices or rays). The two rays are not adjacent to each other:

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (3, 0), (4, 1)],
....: rays=[(0,1), (1,1)])
sage: for v in P.Vrep_generator():
....: print("{} {}".format(P.adjacency_matrix().row(v.index()), v))
(0, 1, 0, 0, 0) A ray in the direction (0, 1)
(1, 0, 1, 0, 0) A vertex at (0, 1)
(0, 1, 0, 0, 1) A vertex at (1, 0)
(0, 0, 0, 0, 1) A ray in the direction (1, 1)
(0, 0, 1, 1, 0) A vertex at (3, 0)

The vertex adjacency matrix has base ring integers. This way one can express various counting questions:

sage: P = polytopes.cube()
sage: Q = P.stack(P.faces(2)[0])
sage: M = Q.vertex_adjacency_matrix()
sage: sum(M)
(4, 4, 3, 3, 4, 4, 4, 3, 3)
sage: G = Q.vertex_graph() #␣
→˓needs sage.graphs
sage: G.degree() #␣
→˓needs sage.graphs
[4, 4, 3, 3, 4, 4, 4, 3, 3]

bounded_edges()

Return the bounded edges (excluding rays and lines).

OUTPUT:

A generator for pairs of vertices, one pair per edge.

EXAMPLES:

sage: p = Polyhedron(vertices=[[1,0],[0,1]], rays=[[1,0],[0,1]])
sage: [ e for e in p.bounded_edges() ]
[(A vertex at (0, 1), A vertex at (1, 0))]
sage: for e in p.bounded_edges(): print(e)
(A vertex at (0, 1), A vertex at (1, 0))
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combinatorial_polyhedron()

Return the combinatorial type of self.

See sage.geometry.polyhedron.combinatorial_polyhedron.base.
CombinatorialPolyhedron.

EXAMPLES:

sage: polytopes.cube().combinatorial_polyhedron()
A 3-dimensional combinatorial polyhedron with 6 facets

sage: polytopes.cyclic_polytope(4,10).combinatorial_polyhedron()
A 4-dimensional combinatorial polyhedron with 35 facets

sage: Polyhedron(rays=[[0,1], [1,0]]).combinatorial_polyhedron()
A 2-dimensional combinatorial polyhedron with 2 facets

f_vector(num_threads=None, parallelization_depth=None, algorithm=None)
Return the f-vector.

INPUT:

• num_threads – integer (optional); specify the number of threads; otherwise determined byncpus()

• parallelization_depth – integer (optional); specify how deep in the lattice the parallelization
is done

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

OUTPUT:

Return a vector whose 𝑖-th entry is the number of 𝑖− 2-dimensional faces of the polytope.

Note: The vertices as given by vertices() do not need to correspond to 0-dimensional faces. If a
polyhedron contains 𝑘 lines they correspond to 𝑘-dimensional faces. See example below.

EXAMPLES:

sage: p = Polyhedron(vertices=[[1, 2, 3], [1, 3, 2],
....: [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1], [0, 0, 0]])
sage: p.f_vector()
(1, 7, 12, 7, 1)

sage: polytopes.cyclic_polytope(4,10).f_vector()
(1, 10, 45, 70, 35, 1)

sage: polytopes.hypercube(5).f_vector()
(1, 32, 80, 80, 40, 10, 1)

Polyhedra with lines do not have 0-faces:

sage: Polyhedron(ieqs=[[1,-1,0,0],[1,1,0,0]]).f_vector()
(1, 0, 0, 2, 1)
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However, the method Polyhedron_base.vertices() returns two points that belong to the Vrep-
resentation:

sage: P = Polyhedron(ieqs=[[1,-1,0],[1,1,0]])
sage: P.vertices()
(A vertex at (1, 0), A vertex at (-1, 0))
sage: P.f_vector()
(1, 0, 2, 1)

face_generator(face_dimension=None, algorithm=None)
Return an iterator over the faces of given dimension.

If dimension is not specified return an iterator over all faces.

INPUT:

• face_dimension – integer (default None), yield only faces of this dimension if specified

• algorithm – string (optional); specify whether to start with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

OUTPUT:

A FaceIterator_geom. This class iterates over faces as PolyhedronFace. See face for details.
The order is random but fixed.

EXAMPLES:

sage: P = polytopes.cube()
sage: it = P.face_generator()
sage: it
Iterator over the faces of a 3-dimensional polyhedron in ZZ^3
sage: list(it)
[A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8␣
→˓vertices,
A -1-dimensional face of a Polyhedron in ZZ^3,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
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A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices]

sage: P = polytopes.hypercube(4)
sage: list(P.face_generator(2))[:4]
[A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of␣
→˓4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of␣

→˓4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of␣

→˓4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of␣

→˓4 vertices]

If a polytope has more facets than vertices, the dual mode is chosen:

sage: P = polytopes.cross_polytope(3)
sage: list(P.face_generator())
[A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 6␣
→˓vertices,
A -1-dimensional face of a Polyhedron in ZZ^3,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
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A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices,
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3␣
→˓vertices,
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices]

The face iterator can also be slightly modified. In non-dual mode we can skip subfaces of the current (proper)
face:

sage: P = polytopes.cube()
sage: it = P.face_generator(algorithm= primal )
sage: _ = next(it), next(it)
sage: face = next(it)
sage: face.ambient_H_indices()
(5,)
sage: it.ignore_subfaces()

(continues on next page)
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sage: face = next(it)
sage: face.ambient_H_indices()
(4,)
sage: it.ignore_subfaces()
sage: [face.ambient_H_indices() for face in it]
[(3,),
(2,),
(1,),
(0,),
(2, 3),
(1, 3),
(1, 2, 3),
(1, 2),
(0, 2),
(0, 1, 2),
(0, 1)]

In dual mode we can skip supfaces of the current (proper) face:

sage: P = polytopes.cube()
sage: it = P.face_generator(algorithm= dual )
sage: _ = next(it), next(it)
sage: face = next(it)
sage: face.ambient_V_indices()
(7,)
sage: it.ignore_supfaces()
sage: next(it)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: face = next(it)
sage: face.ambient_V_indices()
(5,)
sage: it.ignore_supfaces()
sage: [face.ambient_V_indices() for face in it]
[(4,),
(3,),
(2,),
(1,),
(0,),
(1, 6),
(3, 4),
(2, 3),
(0, 3),
(0, 1, 2, 3),
(1, 2),
(0, 1)]

In non-dual mode, we cannot skip supfaces:

sage: it = P.face_generator(algorithm= primal )
sage: _ = next(it), next(it)
sage: next(it)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices
sage: it.ignore_supfaces()
Traceback (most recent call last):
...
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ValueError: only possible when in dual mode

In dual mode, we cannot skip subfaces:

sage: it = P.face_generator(algorithm= dual )
sage: _ = next(it), next(it)
sage: next(it)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: it.ignore_subfaces()
Traceback (most recent call last):
...
ValueError: only possible when not in dual mode

We can only skip sub-/supfaces of proper faces:

sage: it = P.face_generator(algorithm= primal )
sage: next(it)
A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8␣
→˓vertices
sage: it.ignore_subfaces()
Traceback (most recent call last):
...
ValueError: iterator not set to a face yet

See also:

FaceIterator_geom.

ALGORITHM:

See FaceIterator.

faces(face_dimension)
Return the faces of given dimension

INPUT:

• face_dimension – integer. The dimension of the faces whose representation will be returned.

OUTPUT:

A tuple of PolyhedronFace. See module sage.geometry.polyhedron.face for details. The
order is random but fixed.

See also:

face_generator(), facet().

EXAMPLES:

Here we find the vertex and face indices of the eight three-dimensional facets of the four-dimensional hyper-
cube:

sage: p = polytopes.hypercube(4)
sage: list(f.ambient_V_indices() for f in p.faces(3))
[(0, 5, 6, 7, 8, 9, 14, 15),
(1, 4, 5, 6, 10, 13, 14, 15),
(1, 2, 6, 7, 8, 10, 11, 15),
(8, 9, 10, 11, 12, 13, 14, 15),
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(0, 3, 4, 5, 9, 12, 13, 14),
(0, 2, 3, 7, 8, 9, 11, 12),
(1, 2, 3, 4, 10, 11, 12, 13),
(0, 1, 2, 3, 4, 5, 6, 7)]

sage: face = p.faces(3)[3]
sage: face.ambient_Hrepresentation()
(An inequality (1, 0, 0, 0) x + 1 >= 0,)
sage: face.vertices()
(A vertex at (-1, -1, 1, -1),
A vertex at (-1, -1, 1, 1),
A vertex at (-1, 1, -1, -1),
A vertex at (-1, 1, 1, -1),
A vertex at (-1, 1, 1, 1),
A vertex at (-1, 1, -1, 1),
A vertex at (-1, -1, -1, 1),
A vertex at (-1, -1, -1, -1))

You can use the index() method to enumerate vertices and inequalities:

sage: def get_idx(rep): return rep.index()
sage: [get_idx(_) for _ in face.ambient_Hrepresentation()]
[4]
sage: [get_idx(_) for _ in face.ambient_Vrepresentation()]
[8, 9, 10, 11, 12, 13, 14, 15]

sage: [ ([get_idx(_) for _ in face.ambient_Vrepresentation()],
....: [get_idx(_) for _ in face.ambient_Hrepresentation()])
....: for face in p.faces(3) ]
[([0, 5, 6, 7, 8, 9, 14, 15], [7]),
([1, 4, 5, 6, 10, 13, 14, 15], [6]),
([1, 2, 6, 7, 8, 10, 11, 15], [5]),
([8, 9, 10, 11, 12, 13, 14, 15], [4]),
([0, 3, 4, 5, 9, 12, 13, 14], [3]),
([0, 2, 3, 7, 8, 9, 11, 12], [2]),
([1, 2, 3, 4, 10, 11, 12, 13], [1]),
([0, 1, 2, 3, 4, 5, 6, 7], [0])]

facet_adjacency_matrix(algorithm=None)

Return the adjacency matrix for the facets.

INPUT:

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

EXAMPLES:

sage: s4 = polytopes.simplex(4, project=True)
sage: s4.facet_adjacency_matrix()
[0 1 1 1 1]
[1 0 1 1 1]
[1 1 0 1 1]
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[1 1 1 0 1]
[1 1 1 1 0]

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)])
sage: p.facet_adjacency_matrix()
[0 1 1]
[1 0 1]
[1 1 0]

The facet adjacency matrix has base ring integers. This way one can express various counting questions:

sage: P = polytopes.cube()
sage: Q = P.stack(P.faces(2)[0])
sage: M = Q.facet_adjacency_matrix()
sage: sum(M)
(4, 4, 4, 4, 3, 3, 3, 3, 4)

facets()

Return the facets of the polyhedron.

Facets are the maximal nontrivial faces of polyhedra. The empty face and the polyhedron itself are trivial.

A facet of a 𝑑-dimensional polyhedron is a face of dimension 𝑑− 1. For 𝑑 ̸= 0 the converse is true as well.

OUTPUT:

A tuple of PolyhedronFace. See face for details. The order is random but fixed.

See also:

facets()

EXAMPLES:

Here we find the eight three-dimensional facets of the four-dimensional hypercube:

sage: p = polytopes.hypercube(4)
sage: p.facets()
(A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices)

This is the same result as explicitly finding the three-dimensional faces:

sage: dim = p.dimension()
sage: p.faces(dim-1)

(continues on next page)
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(A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices,
A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8␣
→˓vertices)

The 0-dimensional polyhedron does not have facets:

sage: P = Polyhedron([[0]])
sage: P.facets()
()

greatest_common_subface_of_Hrep(*Hrepresentatives)
Return the largest face that is contained in Hrepresentatives.

INPUT:

• Hrepresentatives – facets or indices of Hrepresentatives; the indices are assumed to be the indices
of the Hrepresentation()

OUTPUT: a PolyhedronFace

EXAMPLES:

sage: P = polytopes.permutahedron(5)
sage: P.meet_of_Hrep()
A 4-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of␣
→˓120 vertices
sage: P.meet_of_Hrep(1)
A 3-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 24␣
→˓vertices
sage: P.meet_of_Hrep(4)
A 3-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 12␣
→˓vertices
sage: P.meet_of_Hrep(1,3,7)
A 1-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 2␣
→˓vertices
sage: P.meet_of_Hrep(1,3,7).ambient_H_indices()
(0, 1, 3, 7)

The indices are the indices of the Hrepresentation(). 0 corresponds to an equation and is ignored:

sage: P.meet_of_Hrep(0)
A 4-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of␣
→˓120 vertices

The input is flexible:
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sage: P.meet_of_Hrep(P.facets()[-1], P.inequalities()[2], 7)
A 1-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 2␣
→˓vertices

The Hrepresentatives must belong to self:

sage: P = polytopes.cube(backend= ppl )
sage: Q = polytopes.cube(backend= field )
sage: f = P.facets()[0]
sage: P.meet_of_Hrep(f)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices
sage: Q.meet_of_Hrep(f)
Traceback (most recent call last):
...
ValueError: not a facet of self
sage: f = P.inequalities()[0]
sage: P.meet_of_Hrep(f)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices
sage: Q.meet_of_Hrep(f)
Traceback (most recent call last):
...
ValueError: not a facet of self

incidence_matrix()

Return the incidence matrix.

Note: The columns correspond to inequalities/equations in the order Hrepresentation(), the rows
correspond to vertices/rays/lines in the order Vrepresentation().

See also:

slack_matrix().

EXAMPLES:

sage: p = polytopes.cuboctahedron()
sage: p.incidence_matrix()
[0 0 1 1 0 1 0 0 0 0 1 0 0 0]
[0 0 0 1 0 0 1 0 1 0 1 0 0 0]
[0 0 1 1 1 0 0 1 0 0 0 0 0 0]
[1 0 0 1 1 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 1 1 1 0 0 0]
[0 0 1 0 0 1 0 1 0 0 0 1 0 0]
[1 0 0 0 0 0 1 0 1 0 0 0 1 0]
[1 0 0 0 1 0 0 1 0 0 0 0 0 1]
[0 1 0 0 0 1 0 0 0 1 0 1 0 0]
[0 1 0 0 0 0 0 0 1 1 0 0 1 0]
[0 1 0 0 0 0 0 1 0 0 0 1 0 1]
[1 1 0 0 0 0 0 0 0 0 0 0 1 1]
sage: v = p.Vrepresentation(0)
sage: v
A vertex at (-1, -1, 0)
sage: h = p.Hrepresentation(2)
sage: h

(continues on next page)
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An inequality (1, 1, -1) x + 2 >= 0
sage: h.eval(v) # evaluation (1, 1, -1) * (-1/2, -1/2, 0) + 1
0
sage: h*v # same as h.eval(v)
0
sage: p.incidence_matrix() [0,2] # this entry is (v,h)
1
sage: h.contains(v)
True
sage: p.incidence_matrix() [2,0] # note: not symmetric
0

The incidence matrix depends on the ambient dimension:

sage: simplex = polytopes.simplex(); simplex
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
sage: simplex.incidence_matrix()
[1 1 1 1 0]
[1 1 1 0 1]
[1 1 0 1 1]
[1 0 1 1 1]
sage: simplex = simplex.affine_hull_projection(); simplex
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices
sage: simplex.incidence_matrix()
[1 1 1 0]
[1 1 0 1]
[1 0 1 1]
[0 1 1 1]

An incidence matrix does not determine a unique polyhedron:

sage: P = Polyhedron(vertices=[[0,1],[1,1],[1,0]])
sage: P.incidence_matrix()
[1 1 0]
[1 0 1]
[0 1 1]

sage: Q = Polyhedron(vertices=[[0,1], [1,0]], rays=[[1,1]])
sage: Q.incidence_matrix()
[1 1 0]
[1 0 1]
[0 1 1]

An example of two polyhedra with isomorphic face lattices but different incidence matrices:

sage: Q.incidence_matrix()
[1 1 0]
[1 0 1]
[0 1 1]

sage: R = Polyhedron(vertices=[[0,1], [1,0]], rays=[[1,3/2], [3/2,1]])
sage: R.incidence_matrix()
[1 1 0]
[1 0 1]
[0 1 0]
[0 0 1]
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The incidence matrix has base ring integers. This way one can express various counting questions:

sage: P = polytopes.twenty_four_cell()
sage: M = P.incidence_matrix()
sage: sum(sum(x) for x in M) == P.flag_f_vector(0, 3) #␣
→˓needs sage.combinat
True

is_bipyramid(certificate=False)
Test whether the polytope is combinatorially equivalent to a bipyramid over some polytope.

INPUT:

• certificate – boolean (default: False); specifies whether to return two vertices of the polytope
which are the apices of a bipyramid, if found

OUTPUT:

If certificate is True, returns a tuple containing:

1. Boolean.

2. None or a tuple containing:

a. The first apex.

b. The second apex.

If certificate is False returns a boolean.

EXAMPLES:

sage: P = polytopes.octahedron()
sage: P.is_bipyramid()
True
sage: P.is_bipyramid(certificate=True)
(True, [A vertex at (1, 0, 0), A vertex at (-1, 0, 0)])
sage: Q = polytopes.cyclic_polytope(3,7)
sage: Q.is_bipyramid()
False
sage: R = Q.bipyramid()
sage: R.is_bipyramid(certificate=True)
(True, [A vertex at (1, 3, 13, 63), A vertex at (-1, 3, 13, 63)])

is_lawrence_polytope()

Return True if self is a Lawrence polytope.

A polytope is called a Lawrence polytope if it has a centrally symmetric (normalized) Gale diagram.

EXAMPLES:

sage: P = polytopes.hypersimplex(5,2)
sage: L = P.lawrence_polytope()
sage: L.is_lattice_polytope()
True

sage: egyptian_pyramid = polytopes.regular_polygon(4).pyramid() #␣
→˓needs sage.number_field
sage: egyptian_pyramid.is_lawrence_polytope() #␣
→˓needs sage.number_field
True

(continues on next page)
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sage: polytopes.octahedron().is_lawrence_polytope()
False

REFERENCES:

For more information, see [BaSt1990].

is_neighborly(k=None)
Return whether the polyhedron is neighborly.

If the input k is provided, then return whether the polyhedron is k-neighborly

A polyhedron is neighborly if every set of 𝑛 vertices forms a face for 𝑛 up to floor of half the dimension of
the polyhedron. It is 𝑘-neighborly if this is true for 𝑛 up to 𝑘.

INPUT:

• k – the dimension up to which to check if every set of k vertices forms a face. If no k is provided, check
up to floor of half the dimension of the polyhedron.

OUTPUT:

• True if every set of up to k vertices forms a face,

• False otherwise

See also:

neighborliness()

EXAMPLES:

sage: cube = polytopes.hypercube(3)
sage: cube.is_neighborly()
True
sage: cube = polytopes.hypercube(4)
sage: cube.is_neighborly()
False

Cyclic polytopes are neighborly:

sage: all(polytopes.cyclic_polytope(i, i + 1 + j).is_neighborly() for i in␣
→˓range(5) for j in range(3))
True

The neighborliness of a polyhedron equals floor of dimension half (or larger in case of a simplex) if and only
if the polyhedron is neighborly:

sage: testpolys = [polytopes.cube(), polytopes.cyclic_polytope(6, 9),␣
→˓polytopes.simplex(6)]
sage: [(P.neighborliness() >= P.dim() // 2) == P.is_neighborly() for P in␣
→˓testpolys]
[True, True, True]

is_prism(certificate=False)
Test whether the polytope is combinatorially equivalent to a prism of some polytope.

INPUT:
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• certificate – boolean (default: False); specifies whether to return two facets of the polytope
which are the bases of a prism, if found

OUTPUT:

If certificate is True, returns a tuple containing:

1. Boolean.

2. None or a tuple containing:

a. List of the vertices of the first base facet.

b. List of the vertices of the second base facet.

If certificate is False returns a boolean.

EXAMPLES:

sage: P = polytopes.cube()
sage: P.is_prism()
True
sage: P.is_prism(certificate=True)
(True,
[(A vertex at (1, -1, -1),

A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, -1, -1)),

(A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1))])

sage: Q = polytopes.cyclic_polytope(3,8)
sage: Q.is_prism()
False
sage: R = Q.prism()
sage: R.is_prism(certificate=True)
(True,
[(A vertex at (0, 3, 9, 27),

A vertex at (0, 6, 36, 216),
A vertex at (0, 0, 0, 0),
A vertex at (0, 7, 49, 343),
A vertex at (0, 5, 25, 125),
A vertex at (0, 1, 1, 1),
A vertex at (0, 2, 4, 8),
A vertex at (0, 4, 16, 64)),

(A vertex at (1, 6, 36, 216),
A vertex at (1, 0, 0, 0),
A vertex at (1, 7, 49, 343),
A vertex at (1, 5, 25, 125),
A vertex at (1, 1, 1, 1),
A vertex at (1, 2, 4, 8),
A vertex at (1, 4, 16, 64),
A vertex at (1, 3, 9, 27))])

is_pyramid(certificate=False)

Test whether the polytope is a pyramid over one of its facets.

INPUT:

• certificate – boolean (default: False); specifies whether to return a vertex of the polytope which
is the apex of a pyramid, if found
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OUTPUT:

If certificate is True, returns a tuple containing:

1. Boolean.

2. The apex of the pyramid or None.

If certificate is False returns a boolean.

EXAMPLES:

sage: P = polytopes.simplex(3)
sage: P.is_pyramid()
True
sage: P.is_pyramid(certificate=True)
(True, A vertex at (1, 0, 0, 0))
sage: egyptian_pyramid = polytopes.regular_polygon(4).pyramid() #␣
→˓needs sage.rings.number_field
sage: egyptian_pyramid.is_pyramid() #␣
→˓needs sage.rings.number_field
True
sage: Q = polytopes.octahedron()
sage: Q.is_pyramid()
False

For the 0-dimensional polyhedron, the output is True, but it cannot be constructed as a pyramid over the
empty polyhedron:

sage: P = Polyhedron([[0]])
sage: P.is_pyramid()
True
sage: Polyhedron().pyramid()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

is_simple()

Test for simplicity of a polytope.

See Wikipedia article Simple_polytope

EXAMPLES:

sage: p = Polyhedron([[0,0,0],[1,0,0],[0,1,0],[0,0,1]])
sage: p.is_simple()
True
sage: p = Polyhedron([[0,0,0],[4,4,0],[4,0,0],[0,4,0],[2,2,2]])
sage: p.is_simple()
False

is_simplex()

Return whether the polyhedron is a simplex.

A simplex is a bounded polyhedron with 𝑑+ 1 vertices, where 𝑑 is the dimension.

EXAMPLES:

sage: Polyhedron([(0,0,0), (1,0,0), (0,1,0)]).is_simplex()
True

(continues on next page)
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sage: polytopes.simplex(3).is_simplex()
True
sage: polytopes.hypercube(3).is_simplex()
False

is_simplicial()

Tests if the polytope is simplicial

A polytope is simplicial if every facet is a simplex.

See Wikipedia article Simplicial_polytope

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: p.is_simplicial()
False
sage: q = polytopes.simplex(5, project=True)
sage: q.is_simplicial()
True
sage: p = Polyhedron([[0,0,0],[1,0,0],[0,1,0],[0,0,1]])
sage: p.is_simplicial()
True
sage: q = Polyhedron([[1,1,1],[-1,1,1],[1,-1,1],[-1,-1,1],[1,1,-1]])
sage: q.is_simplicial()
False
sage: P = polytopes.simplex(); P
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
sage: P.is_simplicial()
True

The method is not implemented for unbounded polyhedra:

sage: p = Polyhedron(vertices=[(0,0)],rays=[(1,0),(0,1)])
sage: p.is_simplicial()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for polytopes only

join_of_Vrep(*Vrepresentatives)
Return the smallest face that contains Vrepresentatives.

INPUT:

• Vrepresentatives – vertices/rays/lines of self or indices of such

OUTPUT: a PolyhedronFace

Note: In the case of unbounded polyhedra, the join of rays etc. may not be well-defined.

EXAMPLES:

sage: P = polytopes.permutahedron(5)
sage: P.join_of_Vrep(1)
A 0-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 1␣
→˓vertex
sage: P.join_of_Vrep()

(continues on next page)
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A -1-dimensional face of a Polyhedron in ZZ^5
sage: P.join_of_Vrep(0,12,13).ambient_V_indices()
(0, 12, 13, 68)

The input is flexible:

sage: P.join_of_Vrep(2, P.vertices()[3], P.Vrepresentation(4))
A 2-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 6␣
→˓vertices

sage: P = polytopes.cube()
sage: a, b = P.faces(0)[:2]
sage: P.join_of_Vrep(a, b)
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices

In the case of an unbounded polyhedron, the join may not be well-defined:

sage: P = Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,1]])
sage: P.join_of_Vrep(0)
A 0-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex
sage: P.join_of_Vrep(0,1)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 2␣
→˓vertices
sage: P.join_of_Vrep(0,2)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex and 1 ray
sage: P.join_of_Vrep(1,2)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex and 1 ray
sage: P.join_of_Vrep(2)
Traceback (most recent call last):
...
ValueError: the join is not well-defined

The Vrepresentatives must be of self:

sage: P = polytopes.cube(backend= ppl )
sage: Q = polytopes.cube(backend= field )
sage: v = P.vertices()[0]
sage: P.join_of_Vrep(v)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: Q.join_of_Vrep(v)
Traceback (most recent call last):
...
ValueError: not a Vrepresentative of self
sage: f = P.faces(0)[0]
sage: P.join_of_Vrep(v)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: Q.join_of_Vrep(v)
Traceback (most recent call last):
...
ValueError: not a Vrepresentative of self

2.6. Base classes for polyhedra 565



Combinatorial and Discrete Geometry, Release 10.4.rc1

least_common_superface_of_Vrep(*Vrepresentatives)
Return the smallest face that contains Vrepresentatives.

INPUT:

• Vrepresentatives – vertices/rays/lines of self or indices of such

OUTPUT: a PolyhedronFace

Note: In the case of unbounded polyhedra, the join of rays etc. may not be well-defined.

EXAMPLES:

sage: P = polytopes.permutahedron(5)
sage: P.join_of_Vrep(1)
A 0-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 1␣
→˓vertex
sage: P.join_of_Vrep()
A -1-dimensional face of a Polyhedron in ZZ^5
sage: P.join_of_Vrep(0,12,13).ambient_V_indices()
(0, 12, 13, 68)

The input is flexible:

sage: P.join_of_Vrep(2, P.vertices()[3], P.Vrepresentation(4))
A 2-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 6␣
→˓vertices

sage: P = polytopes.cube()
sage: a, b = P.faces(0)[:2]
sage: P.join_of_Vrep(a, b)
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2␣
→˓vertices

In the case of an unbounded polyhedron, the join may not be well-defined:

sage: P = Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,1]])
sage: P.join_of_Vrep(0)
A 0-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex
sage: P.join_of_Vrep(0,1)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 2␣
→˓vertices
sage: P.join_of_Vrep(0,2)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex and 1 ray
sage: P.join_of_Vrep(1,2)
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1␣
→˓vertex and 1 ray
sage: P.join_of_Vrep(2)
Traceback (most recent call last):
...
ValueError: the join is not well-defined

The Vrepresentatives must be of self:
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sage: P = polytopes.cube(backend= ppl )
sage: Q = polytopes.cube(backend= field )
sage: v = P.vertices()[0]
sage: P.join_of_Vrep(v)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: Q.join_of_Vrep(v)
Traceback (most recent call last):
...
ValueError: not a Vrepresentative of self
sage: f = P.faces(0)[0]
sage: P.join_of_Vrep(v)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1␣
→˓vertex
sage: Q.join_of_Vrep(v)
Traceback (most recent call last):
...
ValueError: not a Vrepresentative of self

meet_of_Hrep(*Hrepresentatives)
Return the largest face that is contained in Hrepresentatives.

INPUT:

• Hrepresentatives – facets or indices of Hrepresentatives; the indices are assumed to be the indices
of the Hrepresentation()

OUTPUT: a PolyhedronFace

EXAMPLES:

sage: P = polytopes.permutahedron(5)
sage: P.meet_of_Hrep()
A 4-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of␣
→˓120 vertices
sage: P.meet_of_Hrep(1)
A 3-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 24␣
→˓vertices
sage: P.meet_of_Hrep(4)
A 3-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 12␣
→˓vertices
sage: P.meet_of_Hrep(1,3,7)
A 1-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 2␣
→˓vertices
sage: P.meet_of_Hrep(1,3,7).ambient_H_indices()
(0, 1, 3, 7)

The indices are the indices of the Hrepresentation(). 0 corresponds to an equation and is ignored:

sage: P.meet_of_Hrep(0)
A 4-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of␣
→˓120 vertices

The input is flexible:

sage: P.meet_of_Hrep(P.facets()[-1], P.inequalities()[2], 7)
A 1-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 2␣
→˓vertices
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The Hrepresentatives must belong to self:

sage: P = polytopes.cube(backend= ppl )
sage: Q = polytopes.cube(backend= field )
sage: f = P.facets()[0]
sage: P.meet_of_Hrep(f)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices
sage: Q.meet_of_Hrep(f)
Traceback (most recent call last):
...
ValueError: not a facet of self
sage: f = P.inequalities()[0]
sage: P.meet_of_Hrep(f)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4␣
→˓vertices
sage: Q.meet_of_Hrep(f)
Traceback (most recent call last):
...
ValueError: not a facet of self

neighborliness()

Return the largest k, such that the polyhedron is k-neighborly.

A polyhedron is 𝑘-neighborly if every set of 𝑛 vertices forms a face for 𝑛 up to 𝑘.

In case of the 𝑑-dimensional simplex, it returns 𝑑+ 1.

See also:

is_neighborly()

EXAMPLES:

sage: cube = polytopes.cube()
sage: cube.neighborliness()
1
sage: P = Polyhedron(); P
The empty polyhedron in ZZ^0
sage: P.neighborliness()
0
sage: P = Polyhedron([[0]]); P
A 0-dimensional polyhedron in ZZ^1 defined as the convex hull of 1 vertex
sage: P.neighborliness()
1
sage: S = polytopes.simplex(5); S
A 5-dimensional polyhedron in ZZ^6 defined as the convex hull of 6 vertices
sage: S.neighborliness()
6
sage: C = polytopes.cyclic_polytope(7,10); C
A 7-dimensional polyhedron in QQ^7 defined as the convex hull of 10 vertices
sage: C.neighborliness()
3
sage: C = polytopes.cyclic_polytope(6,11); C
A 6-dimensional polyhedron in QQ^6 defined as the convex hull of 11 vertices
sage: C.neighborliness()
3
sage: [polytopes.cyclic_polytope(5,n).neighborliness() for n in range(6,10)]
[6, 2, 2, 2]
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simpliciality()

Return the largest integer 𝑘 such that the polytope is 𝑘-simplicial.

A polytope is 𝑘-simplicial, if every 𝑘-face is a simplex. If self is a simplex, returns its dimension.

EXAMPLES:

sage: polytopes.cyclic_polytope(10,4).simpliciality()
3
sage: polytopes.hypersimplex(5,2).simpliciality()
2
sage: polytopes.cross_polytope(4).simpliciality()
3
sage: polytopes.simplex(3).simpliciality()
3
sage: polytopes.simplex(1).simpliciality()
1

The method is not implemented for unbounded polyhedra:

sage: p = Polyhedron(vertices=[(0,0)],rays=[(1,0),(0,1)])
sage: p.simpliciality()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for polytopes only

simplicity()

Return the largest integer 𝑘 such that the polytope is 𝑘-simple.

A polytope 𝑃 is 𝑘-simple, if every (𝑑−1−𝑘)-face is contained in exactly 𝑘+1 facets of 𝑃 for 1 ≤ 𝑘 ≤ 𝑑−1.
Equivalently it is 𝑘-simple if the polar/dual polytope is 𝑘-simplicial. If self is a simplex, it returns its
dimension.

EXAMPLES:

sage: polytopes.hypersimplex(4,2).simplicity()
1
sage: polytopes.hypersimplex(5,2).simplicity()
2
sage: polytopes.hypersimplex(6,2).simplicity()
3
sage: polytopes.simplex(3).simplicity()
3
sage: polytopes.simplex(1).simplicity()
1

The method is not implemented for unbounded polyhedra:

sage: p = Polyhedron(vertices=[(0,0)],rays=[(1,0),(0,1)])
sage: p.simplicity()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for polytopes only

slack_matrix()

Return the slack matrix.

The entries correspond to the evaluation of the Hrepresentation elements on the Vrepresentation elements.
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Note: The columns correspond to inequalities/equations in the order Hrepresentation(), the rows
correspond to vertices/rays/lines in the order Vrepresentation().

See also:

incidence_matrix().

EXAMPLES:

sage: P = polytopes.cube()
sage: P.slack_matrix()
[0 2 2 2 0 0]
[0 0 2 2 0 2]
[0 0 0 2 2 2]
[0 2 0 2 2 0]
[2 2 0 0 2 0]
[2 2 2 0 0 0]
[2 0 2 0 0 2]
[2 0 0 0 2 2]

sage: P = polytopes.cube(intervals= zero_one )
sage: P.slack_matrix()
[0 1 1 1 0 0]
[0 0 1 1 0 1]
[0 0 0 1 1 1]
[0 1 0 1 1 0]
[1 1 0 0 1 0]
[1 1 1 0 0 0]
[1 0 1 0 0 1]
[1 0 0 0 1 1]

sage: # needs sage.rings.number_field
sage: P = polytopes.dodecahedron().faces(2)[0].as_polyhedron()
sage: P.slack_matrix()
[1/2*sqrt5 - 1/2 0 0 1 1/2*sqrt5 -␣
→˓1/2 0]
[ 0 0 1/2*sqrt5 - 1/2 1/2*sqrt5 - 1/2 ␣
→˓ 1 0]
[ 0 1/2*sqrt5 - 1/2 1 0 1/2*sqrt5 -␣
→˓1/2 0]
[ 1 1/2*sqrt5 - 1/2 0 1/2*sqrt5 - 1/2 ␣
→˓ 0 0]
[1/2*sqrt5 - 1/2 1 1/2*sqrt5 - 1/2 0 ␣
→˓ 0 0]

sage: P = Polyhedron(rays=[[1, 0], [0, 1]])
sage: P.slack_matrix()
[0 0]
[0 1]
[1 0]

vertex_adjacency_matrix(algorithm=None)

Return the binary matrix of vertex adjacencies.

INPUT:

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:
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– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

EXAMPLES:

sage: polytopes.simplex(4).vertex_adjacency_matrix()
[0 1 1 1 1]
[1 0 1 1 1]
[1 1 0 1 1]
[1 1 1 0 1]
[1 1 1 1 0]

The rows and columns of the vertex adjacency matrix correspond to the Vrepresentation() objects:
vertices, rays, and lines. The (𝑖, 𝑗) matrix entry equals 1 if the 𝑖-th and 𝑗-th V-representation object are
adjacent.

Two vertices are adjacent if they are the endpoints of an edge, that is, a one-dimensional face. For un-
bounded polyhedra this clearly needs to be generalized and we define two V-representation objects (see
sage.geometry.polyhedron.constructor) to be adjacent if they together generate a one-face.
There are three possible combinations:

• Two vertices can bound a finite-length edge.

• A vertex and a ray can generate a half-infinite edge starting at the vertex and with the direction given by
the ray.

• A vertex and a line can generate an infinite edge. The position of the vertex on the line is arbitrary in
this case, only its transverse position matters. The direction of the edge is given by the line generator.

For example, take the half-plane:

sage: half_plane = Polyhedron(ieqs=[(0,1,0)])
sage: half_plane.Hrepresentation()
(An inequality (1, 0) x + 0 >= 0,)

Its (non-unique) V-representation consists of a vertex, a ray, and a line. The only edge is spanned by the
vertex and the line generator, so they are adjacent:

sage: half_plane.Vrepresentation()
(A line in the direction (0, 1), A ray in the direction (1, 0), A vertex at␣
→˓(0, 0))
sage: half_plane.vertex_adjacency_matrix()
[0 0 1]
[0 0 0]
[1 0 0]

In one dimension higher, that is for a half-space in 3 dimensions, there is no one-dimensional face. Hence
nothing is adjacent:

sage: Polyhedron(ieqs=[(0,1,0,0)]).vertex_adjacency_matrix()
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

EXAMPLES:

In a bounded polygon, every vertex has precisely two adjacent ones:
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sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (3, 0), (4, 1)])
sage: for v in P.Vrep_generator():
....: print("{} {}".format(P.adjacency_matrix().row(v.index()), v))
(0, 1, 0, 1) A vertex at (0, 1)
(1, 0, 1, 0) A vertex at (1, 0)
(0, 1, 0, 1) A vertex at (3, 0)
(1, 0, 1, 0) A vertex at (4, 1)

If the V-representation of the polygon contains vertices and one ray, then each V-representation object is
adjacent to two V-representation objects:

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (3, 0), (4, 1)],
....: rays=[(0,1)])
sage: for v in P.Vrep_generator():
....: print("{} {}".format(P.adjacency_matrix().row(v.index()), v))
(0, 1, 0, 0, 1) A ray in the direction (0, 1)
(1, 0, 1, 0, 0) A vertex at (0, 1)
(0, 1, 0, 1, 0) A vertex at (1, 0)
(0, 0, 1, 0, 1) A vertex at (3, 0)
(1, 0, 0, 1, 0) A vertex at (4, 1)

If the V-representation of the polygon contains vertices and two distinct rays, then each vertex is adjacent to
two V-representation objects (which can now be vertices or rays). The two rays are not adjacent to each other:

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (3, 0), (4, 1)],
....: rays=[(0,1), (1,1)])
sage: for v in P.Vrep_generator():
....: print("{} {}".format(P.adjacency_matrix().row(v.index()), v))
(0, 1, 0, 0, 0) A ray in the direction (0, 1)
(1, 0, 1, 0, 0) A vertex at (0, 1)
(0, 1, 0, 0, 1) A vertex at (1, 0)
(0, 0, 0, 0, 1) A ray in the direction (1, 1)
(0, 0, 1, 1, 0) A vertex at (3, 0)

The vertex adjacency matrix has base ring integers. This way one can express various counting questions:

sage: P = polytopes.cube()
sage: Q = P.stack(P.faces(2)[0])
sage: M = Q.vertex_adjacency_matrix()
sage: sum(M)
(4, 4, 3, 3, 4, 4, 4, 3, 3)
sage: G = Q.vertex_graph() #␣
→˓needs sage.graphs
sage: G.degree() #␣
→˓needs sage.graphs
[4, 4, 3, 3, 4, 4, 4, 3, 3]
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2.6.5 Base class for polyhedra: Graph-theoretic methods

Define methods relying on sage.graphs.

class sage.geometry.polyhedron.base4.Polyhedron_base4(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base3

Methods relying on sage.graphs.

See sage.geometry.polyhedron.base.Polyhedron_base.

combinatorial_automorphism_group(vertex_graph_only=False)

Computes the combinatorial automorphism group.

If vertex_graph_only is True, the automorphism group of the vertex-edge graph of the polyhedron
is returned. Otherwise the automorphism group of the vertex-facet graph, which is isomorphic to the auto-
morphism group of the face lattice is returned.

INPUT:

• vertex_graph_only – boolean (default: False); whether to return the automorphism group of
the vertex edges graph or of the lattice

OUTPUT:

A PermutationGroup that is isomorphic to the combinatorial automorphism group is returned.

• if vertex_graph_only is True: The automorphism group of the vertex-edge graph of the poly-
hedron

• if vertex_graph_only is False (default): The automorphism group of the vertex-facet graph
of the polyhedron, see vertex_facet_graph(). This group is isomorphic to the automorphism
group of the face lattice of the polyhedron.

NOTE:

Depending on vertex_graph_only, this method returns groups that are not necessarily iso-
morphic, see the examples below.

See also:

is_combinatorially_isomorphic(), graph(), vertex_facet_graph().

EXAMPLES:

sage: quadrangle = Polyhedron(vertices=[(0,0),(1,0),(0,1),(2,3)])
sage: quadrangle.combinatorial_automorphism_group().is_isomorphic( #␣
→˓needs sage.groups
....: groups.permutation.Dihedral(4))
True
sage: quadrangle.restricted_automorphism_group() #␣
→˓needs sage.groups
Permutation Group with generators [()]

Permutations of the vertex graph only exchange vertices with vertices:
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sage: P = Polyhedron(vertices=[(1,0), (1,1)], rays=[(1,0)])
sage: P.combinatorial_automorphism_group(vertex_graph_only=True) #␣
→˓needs sage.groups
Permutation Group with generators [(A vertex at (1,0),A vertex at (1,1))]

This shows an example of two polytopes whose vertex-edge graphs are isomorphic, but their face lattices are
not isomorphic:

sage: # needs sage.groups
sage: Q = Polyhedron([[-123984206864/2768850730773, -101701330976/
→˓922950243591, -64154618668/2768850730773, -2748446474675/2768850730773],
....: [-11083969050/98314591817, -4717557075/98314591817, -
→˓32618537490/98314591817, -91960210208/98314591817],
....: [-9690950/554883199, -73651220/554883199, 1823050/
→˓554883199, -549885101/554883199],
....: [-5174928/72012097, 5436288/72012097, -37977984/
→˓72012097, 60721345/72012097],
....: [-19184/902877, 26136/300959, -21472/902877, 899005/
→˓902877],
....: [53511524/1167061933, 88410344/1167061933, 621795064/
→˓1167061933, 982203941/1167061933],
....: [4674489456/83665171433, -4026061312/83665171433,␣
→˓28596876672/83665171433, -78383796375/83665171433],
....: [857794884940/98972360190089, -10910202223200/
→˓98972360190089, 2974263671400/98972360190089, -98320463346111/
→˓98972360190089]])
sage: C = polytopes.cyclic_polytope(4,8)
sage: C.is_combinatorially_isomorphic(Q)
False
sage: C.combinatorial_automorphism_group(vertex_graph_only=True).is_
→˓isomorphic(
....: Q.combinatorial_automorphism_group(vertex_graph_only=True))
True
sage: C.combinatorial_automorphism_group(vertex_graph_only=False).is_
→˓isomorphic(
....: Q.combinatorial_automorphism_group(vertex_graph_only=False))
False

The automorphism group of the face lattice is isomorphic to the combinatorial automorphism group:

sage: # needs sage.groups
sage: CG = C.hasse_diagram().automorphism_group()
sage: C.combinatorial_automorphism_group().is_isomorphic(CG)
True
sage: QG = Q.hasse_diagram().automorphism_group()
sage: Q.combinatorial_automorphism_group().is_isomorphic(QG)
True

face_lattice()

Return the face-lattice poset.

OUTPUT:

A FinitePoset. Elements are given as PolyhedronFace.

In the case of a full-dimensional polytope, the faces are pairs (vertices, inequalities) of the spanning vertices
and corresponding saturated inequalities. In general, a face is defined by a pair (V-rep. objects, H-rep.
objects). The V-representation objects span the face, and the corresponding H-representation objects are
those inequalities and equations that are saturated on the face.
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The bottom-most element of the face lattice is the “empty face”. It contains no V-representation object. All
H-representation objects are incident.

The top-most element is the “full face”. It is spanned by all V-representation objects. The incident
H-representation objects are all equations and no inequalities.

In the case of a full-dimensional polytope, the “empty face” and the “full face” are the empty set (no vertices,
all inequalities) and the full polytope (all vertices, no inequalities), respectively.

ALGORITHM:

See sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator.

Note: The face lattice is not cached, as long as this creates a memory leak, see Issue #28982.

EXAMPLES:

sage: square = polytopes.hypercube(2)
sage: fl = square.face_lattice();fl
Finite lattice containing 10 elements
sage: list(f.ambient_V_indices() for f in fl)
[(), (0,), (1,), (0, 1), (2,), (1, 2), (3,), (0, 3), (2, 3), (0, 1, 2, 3)]
sage: poset_element = fl[5]
sage: a_face = poset_element
sage: a_face
A 1-dimensional face of a Polyhedron in ZZ^2 defined as the convex hull of 2␣
→˓vertices
sage: a_face.ambient_V_indices()
(1, 2)
sage: set(a_face.ambient_Vrepresentation()) == ....: set([square.
→˓Vrepresentation(1), square.Vrepresentation(2)])
True
sage: a_face.ambient_Vrepresentation()
(A vertex at (1, 1), A vertex at (-1, 1))
sage: a_face.ambient_Hrepresentation()
(An inequality (0, -1) x + 1 >= 0,)

A more complicated example:

sage: c5_10 = Polyhedron(vertices = [[i,i^2,i^3,i^4,i^5] for i in range(1,
→˓11)])
sage: c5_10_fl = c5_10.face_lattice()
sage: [len(x) for x in c5_10_fl.level_sets()]
[1, 10, 45, 100, 105, 42, 1]

Note that if the polyhedron contains lines then there is a dimension gap between the empty face and the first
non-empty face in the face lattice:

sage: line = Polyhedron(vertices=[(0,)], lines=[(1,)])
sage: [ fl.dim() for fl in line.face_lattice() ]
[-1, 1]

flag_f_vector(*args)
Return the flag f-vector.

For each −1 < 𝑖0 < · · · < 𝑖𝑛 < 𝑑 the flag f-vector counts the number of flags 𝐹0 ⊂ · · · ⊂ 𝐹𝑛 with 𝐹𝑗 of
dimension 𝑖𝑗 for each 0 ≤ 𝑗 ≤ 𝑛, where 𝑑 is the dimension of the polyhedron.

INPUT:
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• args – integers (optional); specify an entry of the flag-f-vector; must be an increasing sequence of
integers

OUTPUT:

• a dictionary, if no arguments were given

• an Integer, if arguments were given

EXAMPLES:

Obtain the entire flag-f-vector:

sage: P = polytopes.twenty_four_cell()
sage: P.flag_f_vector()

{(-1,): 1,
(0,): 24,
(0, 1): 192,
(0, 1, 2): 576,
(0, 1, 2, 3): 1152,
(0, 1, 3): 576,
(0, 2): 288,
(0, 2, 3): 576,
(0, 3): 144,
(1,): 96,
(1, 2): 288,
(1, 2, 3): 576,
(1, 3): 288,
(2,): 96,
(2, 3): 192,
(3,): 24,
(4,): 1}

Specify an entry:

sage: P.flag_f_vector(0,3)
144
sage: P.flag_f_vector(2)
96

Leading -1 and trailing entry of dimension are allowed:

sage: P.flag_f_vector(-1,0,3)
144
sage: P.flag_f_vector(-1,0,3,4)
144

One can get the number of trivial faces:

sage: P.flag_f_vector(-1)
1
sage: P.flag_f_vector(4)
1

Polyhedra with lines, have 0 entries accordingly:

sage: P = (Polyhedron(lines=[[1]]) * polytopes.cross_polytope(3))
sage: P.flag_f_vector()
{(-1,): 1,
(0, 1): 0,

(continues on next page)
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(0, 1, 2): 0,
(0, 1, 3): 0,
(0, 2): 0,
(0, 2, 3): 0,
(0, 3): 0,
(0,): 0,
(1, 2): 24,
(1, 2, 3): 48,
(1, 3): 24,
(1,): 6,
(2, 3): 24,
(2,): 12,
(3,): 8,
4: 1}

If the arguments are not stricly increasing or out of range, a key error is raised:

sage: P.flag_f_vector(-1,0,3,6)
Traceback (most recent call last):
...
KeyError: (0, 3, 6)
sage: P.flag_f_vector(-1,3,0)
Traceback (most recent call last):
...
KeyError: (3, 0)

graph(**kwds)
Return a graph in which the vertices correspond to vertices of the polyhedron, and edges to edges.

INPUT:

• names – boolean (default: True); if False, then the nodes of the graph are labeld by the indices of
the Vrepresentation

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

Note: The graph of a polyhedron with lines has no vertices, as the polyhedron has no vertices (0-faces).

The method vertices() returns the defining points in this case.

EXAMPLES:

sage: g3 = polytopes.hypercube(3).vertex_graph(); g3
Graph on 8 vertices
sage: g3.automorphism_group().cardinality() ␣
→˓ # needs sage.groups
48
sage: s4 = polytopes.simplex(4).vertex_graph(); s4
Graph on 5 vertices
sage: s4.is_eulerian()
True
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The graph of an unbounded polyhedron is the graph of the bounded complex:

sage: open_triangle = Polyhedron(vertices=[[1,0], [0,1]],
....: rays =[[1,1]])
sage: open_triangle.vertex_graph()
Graph on 2 vertices

The graph of a polyhedron with lines has no vertices:

sage: line = Polyhedron(lines=[[0,1]])
sage: line.vertex_graph()
Graph on 0 vertices

hasse_diagram()

Return the Hasse diagram of the face lattice of self.

This is the Hasse diagram of the poset of the faces of self.

OUTPUT: a directed graph

EXAMPLES:

sage: # needs sage.rings.number_field
sage: P = polytopes.regular_polygon(4).pyramid()
sage: D = P.hasse_diagram(); D
Digraph on 20 vertices
sage: D.degree_polynomial()
x^5 + x^4*y + x*y^4 + y^5 + 4*x^3*y + 8*x^2*y^2 + 4*x*y^3

Faces of a mutable polyhedron are not hashable. Hence those are not suitable as vertices of the hasse diagram.
Use the combinatorial polyhedron instead:

sage: # needs sage.rings.number_field
sage: P = polytopes.regular_polygon(4).pyramid()
sage: parent = P.parent()
sage: parent = parent.change_ring(QQ, backend= ppl )
sage: Q = parent._element_constructor_(P, mutable=True)
sage: Q.hasse_diagram()
Traceback (most recent call last):
...
TypeError: mutable polyhedra are unhashable
sage: C = Q.combinatorial_polyhedron()
sage: D = C.hasse_diagram()
sage: set(D.vertices(sort=False)) == set(range(20))
True
sage: def index_to_combinatorial_face(n):
....: return C.face_by_face_lattice_index(n)
sage: D.relabel(index_to_combinatorial_face, inplace=True)
sage: D.vertices(sort=True)
[A -1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 0-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,

(continues on next page)
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A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 1-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 2-dimensional face of a 3-dimensional combinatorial polyhedron,
A 3-dimensional face of a 3-dimensional combinatorial polyhedron]

sage: D.degree_polynomial()
x^5 + x^4*y + x*y^4 + y^5 + 4*x^3*y + 8*x^2*y^2 + 4*x*y^3

is_combinatorially_isomorphic(other, algorithm='bipartite_graph')
Return whether the polyhedron is combinatorially isomorphic to another polyhedron.

We only consider bounded polyhedra. By definition, they are combinatorially isomorphic if their face lattices
are isomorphic.

INPUT:

• other – a polyhedron object

• algorithm (default = bipartite_graph ) – the algorithm to use. The other possible value is
face_lattice .

OUTPUT:

• True if the two polyhedra are combinatorially isomorphic

• False otherwise

See also:

combinatorial_automorphism_group(), vertex_facet_graph().

REFERENCES:

For the equivalence of the two algorithms see [KK1995], p. 877-878

EXAMPLES:

The square is combinatorially isomorphic to the 2-dimensional cube:

sage: polytopes.hypercube(2).is_combinatorially_isomorphic(polytopes.regular_
→˓polygon(4))
True

All the faces of the 3-dimensional permutahedron are either combinatorially isomorphic to a square or a
hexagon:

sage: H = polytopes.regular_polygon(6) #␣
→˓needs sage.rings.number_field
sage: S = polytopes.hypercube(2)
sage: P = polytopes.permutahedron(4)
sage: all(F.as_polyhedron().is_combinatorially_isomorphic(S) #␣
→˓needs sage.rings.number_field
....: or F.as_polyhedron().is_combinatorially_isomorphic(H)
....: for F in P.faces(2))
True
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Checking that a regular simplex intersected with its reflection through the origin is combinatorially isomorphic
to the intersection of a cube with a hyperplane perpendicular to its long diagonal:

sage: def simplex_intersection(k):
....: S1 = Polyhedron([vector(v)-vector(polytopes.simplex(k).center()) for␣
→˓v in polytopes.simplex(k).vertices_list()])
....: S2 = Polyhedron([-vector(v) for v in S1.vertices_list()])
....: return S1.intersection(S2)
sage: def cube_intersection(k):
....: C = polytopes.hypercube(k+1)
....: H = Polyhedron(eqns=[[0]+[1 for i in range(k+1)]])
....: return C.intersection(H)
sage: [simplex_intersection(k).is_combinatorially_isomorphic(cube_
→˓intersection(k)) for k in range(2,5)]
[True, True, True]
sage: simplex_intersection(2).is_combinatorially_isomorphic(polytopes.regular_
→˓polygon(6)) # needs sage.rings.number_field
True
sage: simplex_intersection(3).is_combinatorially_isomorphic(polytopes.
→˓octahedron())
True

Two polytopes with the same 𝑓 -vector, but different combinatorial types:

sage: P = Polyhedron([[-605520/1525633, -605520/1525633, -1261500/1525633, -
→˓52200/1525633, 11833/1525633],\
[-720/1769, -600/1769, 1500/1769, 0, -31/1769], [-216/749, 240/749, -240/749,
→˓ -432/749, 461/749], \
[-50/181, 50/181, 60/181, -100/181, -119/181], [-32/51, -16/51, -4/51, 12/17,
→˓ 1/17],\
[1, 0, 0, 0, 0], [16/129, 128/129, 0, 0, 1/129], [64/267, -128/267, 24/89, -
→˓128/267, 57/89],\
[1200/3953, -1200/3953, -1440/3953, -360/3953, -3247/3953], [1512/5597, 1512/
→˓5597, 588/5597, 4704/5597, 2069/5597]])
sage: C = polytopes.cyclic_polytope(5,10)
sage: C.f_vector() == P.f_vector(); C.f_vector()
True
(1, 10, 45, 100, 105, 42, 1)
sage: C.is_combinatorially_isomorphic(P)
False

sage: S = polytopes.simplex(3)
sage: S = S.face_truncation(S.faces(0)[3])
sage: S = S.face_truncation(S.faces(0)[4])
sage: S = S.face_truncation(S.faces(0)[5])
sage: T = polytopes.simplex(3)
sage: T = T.face_truncation(T.faces(0)[3])
sage: T = T.face_truncation(T.faces(0)[4])
sage: T = T.face_truncation(T.faces(0)[4])
sage: T.is_combinatorially_isomorphic(S)
False
sage: T.f_vector(), S.f_vector()
((1, 10, 15, 7, 1), (1, 10, 15, 7, 1))

sage: C = polytopes.hypercube(5)
sage: C.is_combinatorially_isomorphic(C)
True
sage: C.is_combinatorially_isomorphic(C, algorithm= magic )

(continues on next page)
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Traceback (most recent call last):
...
AssertionError: algorithm must be bipartite graph or face_lattice

sage: G = Graph()
sage: C.is_combinatorially_isomorphic(G)
Traceback (most recent call last):
...
AssertionError: input other must be a polyhedron

sage: H = Polyhedron(eqns=[[0,1,1,1,1]]); H
A 3-dimensional polyhedron in QQ^4 defined as the convex hull of 1 vertex and␣
→˓3 lines
sage: C.is_combinatorially_isomorphic(H)
Traceback (most recent call last):
...
AssertionError: polyhedron other must be bounded

is_self_dual()

Return whether the polytope is self-dual.

A polytope is self-dual if its face lattice is isomorphic to the face lattice of its dual polytope.

EXAMPLES:

sage: polytopes.simplex().is_self_dual()
True
sage: polytopes.twenty_four_cell().is_self_dual()
True
sage: polytopes.cube().is_self_dual()
False
sage: polytopes.hypersimplex(5,2).is_self_dual() #␣
→˓needs sage.combinat
False
sage: P = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]]).is_self_dual()
Traceback (most recent call last):
...
ValueError: polyhedron has to be compact

restricted_automorphism_group(output='abstract')
Return the restricted automorphism group.

First, let the linear automorphism group be the subgroup of the affine group 𝐴𝐺𝐿(𝑑,R) = 𝐺𝐿(𝑑,R)n R𝑑

preserving the 𝑑-dimensional polyhedron. The affine group acts in the usual way �⃗� ↦→ 𝐴�⃗�+ 𝑏 on the ambient
space.

The restricted automorphism group is the subgroup of the linear automorphism group generated by permuta-
tions of the generators of the same type. That is, vertices can only be permuted with vertices, ray generators
with ray generators, and line generators with line generators.

For example, take the first quadrant

𝑄 =
{︁
(𝑥, 𝑦)

⃒⃒⃒
𝑥 ≥ 0, 𝑦 ≥ 0

}︁
⊂ 2

Then the linear automorphism group is

Aut(𝑄) =

{︂(︂
𝑎 0
0 𝑏

)︂
,

(︂
0 𝑐
𝑑 0

)︂
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ >0

}︂
⊂ 𝐺𝐿(2, ) ⊂ 𝐸(𝑑)
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Note that there are no translations that map the quadrant 𝑄 to itself, so the linear automorphism group is
contained in the general linear group (the subgroup of transformations preserving the origin). The restricted
automorphism group is

Aut(𝑄) =

{︂(︂
1 0
0 1

)︂
,

(︂
0 1
1 0

)︂}︂
≃ 2

INPUT:

• output – how the group should be represented:

– "abstract" (default) – return an abstract permutation group without further meaning.

– "permutation" – return a permutation group on the indices of the polyhedron gen-
erators. For example, the permutation (0,1) would correspond to swapping self.
Vrepresentation(0) and self.Vrepresentation(1).

– "matrix" – return a matrix group representing affine transformations. When acting on affine
vectors, you should append a 1 to every vector. If the polyhedron is not full dimensional, the re-
turned matrices act as the identity on the orthogonal complement of the affine space spanned by the
polyhedron.

– "matrixlist" – like matrix, but return the list of elements of the matrix group. Useful for
fields without a good implementation of matrix groups or to avoid the overhead of creating the group.

OUTPUT:

• For output="abstract" and output="permutation": a PermutationGroup.

• For output="matrix": a MatrixGroup().

• For output="matrixlist": a list of matrices.

REFERENCES:

• [BSS2009]

EXAMPLES:

A cross-polytope example:

sage: # needs sage.groups
sage: P = polytopes.cross_polytope(3)
sage: P.restricted_automorphism_group() == PermutationGroup([[(3,4)], [(2,3),
→˓(4,5)],[(2,5)],[(1,2),(5,6)],[(1,6)]])
True
sage: P.restricted_automorphism_group(output="permutation") ==␣
→˓PermutationGroup([[(2,3)],[(1,2),(3,4)],[(1,4)],[(0,1),(4,5)],[(0,5)]])
True
sage: mgens = [[[1,0,0,0],[0,1,0,0],[0,0,-1,0],[0,0,0,1]], [[1,0,0,0],[0,0,1,
→˓0],[0,1,0,0],[0,0,0,1]], [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]]

We test groups for equality in a fool-proof way; they can have different generators, etc:

sage: # needs sage.groups
sage: poly_g = P.restricted_automorphism_group(output="matrix")
sage: matrix_g = MatrixGroup([matrix(QQ,t) for t in mgens])
sage: all(t.matrix() in poly_g for t in matrix_g.gens())
True
sage: all(t.matrix() in matrix_g for t in poly_g.gens())
True

24-cell example:
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sage: # needs sage.groups
sage: P24 = polytopes.twenty_four_cell()
sage: AutP24 = P24.restricted_automorphism_group()
sage: PermutationGroup([
....: (1,20,2,24,5,23)(3,18,10,19,4,14)(6,21,11,22,7,15)(8,12,16,17,13,9)
→˓ ,
....: (1,21,8,24,4,17)(2,11,6,15,9,13)(3,20)(5,22)(10,16,12,23,14,19)
....: ]).is_isomorphic(AutP24)
True
sage: AutP24.order()
1152

Here is the quadrant example mentioned in the beginning:

sage: # needs sage.groups
sage: P = Polyhedron(rays=[(1,0),(0,1)])
sage: P.Vrepresentation()
(A vertex at (0, 0), A ray in the direction (0, 1), A ray in the direction (1,
→˓ 0))
sage: P.restricted_automorphism_group(output="permutation")
Permutation Group with generators [(1,2)]

Also, the polyhedron need not be full-dimensional:

sage: # needs sage.groups
sage: P = Polyhedron(vertices=[(1,2,3,4,5),(7,8,9,10,11)])
sage: P.restricted_automorphism_group()
Permutation Group with generators [(1,2)]
sage: G = P.restricted_automorphism_group(output="matrixlist"); G
(
[1 0 0 0 0 0] [ -87/55 -82/55 -2/5 38/55 98/55 12/11]
[0 1 0 0 0 0] [-142/55 -27/55 -2/5 38/55 98/55 12/11]
[0 0 1 0 0 0] [-142/55 -82/55 3/5 38/55 98/55 12/11]
[0 0 0 1 0 0] [-142/55 -82/55 -2/5 93/55 98/55 12/11]
[0 0 0 0 1 0] [-142/55 -82/55 -2/5 38/55 153/55 12/11]
[0 0 0 0 0 1], [ 0 0 0 0 0 1]
)
sage: g = AffineGroup(5, QQ)(G[1]); g

[ -87/55 -82/55 -2/5 38/55 98/55] [12/11]
[-142/55 -27/55 -2/5 38/55 98/55] [12/11]

x |-> [-142/55 -82/55 3/5 38/55 98/55] x + [12/11]
[-142/55 -82/55 -2/5 93/55 98/55] [12/11]
[-142/55 -82/55 -2/5 38/55 153/55] [12/11]

sage: g^2
[1 0 0 0 0] [0]
[0 1 0 0 0] [0]

x |-> [0 0 1 0 0] x + [0]
[0 0 0 1 0] [0]
[0 0 0 0 1] [0]

sage: g(list(P.vertices()[0]))
(7, 8, 9, 10, 11)
sage: g(list(P.vertices()[1]))
(1, 2, 3, 4, 5)

Affine transformations do not change the restricted automorphism group. For example, any non-degenerate
triangle has the dihedral group with 6 elements, 𝐷6, as its automorphism group:
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sage: # needs sage.groups
sage: initial_points = [vector([1,0]), vector([0,1]), vector([-2,-1])]
sage: points = initial_points
sage: Polyhedron(vertices=points).restricted_automorphism_group()
Permutation Group with generators [(2,3), (1,2)]
sage: points = [pt - initial_points[0] for pt in initial_points]
sage: Polyhedron(vertices=points).restricted_automorphism_group()
Permutation Group with generators [(2,3), (1,2)]
sage: points = [pt - initial_points[1] for pt in initial_points]
sage: Polyhedron(vertices=points).restricted_automorphism_group()
Permutation Group with generators [(2,3), (1,2)]
sage: points = [pt - 2*initial_points[1] for pt in initial_points]
sage: Polyhedron(vertices=points).restricted_automorphism_group()
Permutation Group with generators [(2,3), (1,2)]

The output="matrixlist" can be used over fields without a complete implementation of matrix
groups:

sage: # needs sage.groups sage.rings.number_field
sage: P = polytopes.dodecahedron(); P
A 3-dimensional polyhedron in (Number Field in sqrt5 with defining
polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^3
defined as the convex hull of 20 vertices

sage: G = P.restricted_automorphism_group(output="matrixlist")
sage: len(G)
120

Floating-point computations are supported with a simple fuzzy zero implementation:

sage: P = Polyhedron(vertices=[(1/3,0,0,1),(0,1/4,0,1),(0,0,1/5,1)],
....: base_ring=RDF)
sage: P.restricted_automorphism_group() #␣
→˓needs sage.groups
Permutation Group with generators [(2,3), (1,2)]
sage: len(P.restricted_automorphism_group(output="matrixlist"))
6

vertex_digraph(f , increasing=True)
Return the directed graph of the polyhedron according to a linear form.

The underlying undirected graph is the graph of vertices and edges.

INPUT:

• f – a linear form. The linear form can be provided as:

– a vector space morphism with one-dimensional codomain, (see sage.modules.
vector_space_morphism.linear_transformation() and sage.modules.
vector_space_morphism.VectorSpaceMorphism)

– a vector ; in this case the linear form is obtained by duality using the dot product: f(v) = v.
dot_product(f).

• increasing – boolean (default True) whether to orient edges in the increasing or decreasing direc-
tion.

By default, an edge is oriented from 𝑣 to 𝑤 if 𝑓(𝑣) ≤ 𝑓(𝑤).

If 𝑓(𝑣) = 𝑓(𝑤), then two opposite edges are created.

EXAMPLES:
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sage: penta = Polyhedron([[0,0],[1,0],[0,1],[1,2],[3,2]])
sage: G = penta.vertex_digraph(vector([1,1])); G
Digraph on 5 vertices
sage: G.sinks()
[A vertex at (3, 2)]

sage: A = matrix(ZZ, [[1], [-1]])
sage: f = linear_transformation(A)
sage: G = penta.vertex_digraph(f) ; G
Digraph on 5 vertices
sage: G.is_directed_acyclic()
False

See also:

vertex_graph()

vertex_facet_graph(labels=True)
Return the vertex-facet graph.

This function constructs a directed bipartite graph. The nodes of the graph correspond to the vertices of the
polyhedron and the facets of the polyhedron. There is a directed edge from a vertex to a face if and only if
the vertex is incident to the face.

INPUT:

• labels – boolean (default: True); decide how the nodes of the graph are labelled. Either with the
original vertices/facets of the Polyhedron or with integers.

OUTPUT:

• a bipartite DiGraph. If labels is True, then the nodes of the graph will actually be the vertices and
facets of self, otherwise they will be integers.

See also:

combinatorial_automorphism_group(), is_combinatorially_isomorphic().

EXAMPLES:

sage: P = polytopes.cube()
sage: G = P.vertex_facet_graph(); G
Digraph on 14 vertices
sage: G.vertices(sort=True, key=lambda v: str(v))
[A vertex at (-1, -1, -1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1),
A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
An inequality (-1, 0, 0) x + 1 >= 0,
An inequality (0, -1, 0) x + 1 >= 0,
An inequality (0, 0, -1) x + 1 >= 0,
An inequality (0, 0, 1) x + 1 >= 0,
An inequality (0, 1, 0) x + 1 >= 0,
An inequality (1, 0, 0) x + 1 >= 0]

sage: G.automorphism_group().is_isomorphic(P.hasse_diagram().automorphism_
→˓group()) # needs sage.groups

(continues on next page)
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True
sage: O = polytopes.octahedron(); O
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: O.vertex_facet_graph()
Digraph on 14 vertices
sage: H = O.vertex_facet_graph()
sage: G.is_isomorphic(H) ␣
→˓ # needs sage.groups
False
sage: G2 = copy(G)
sage: G2.reverse_edges(G2.edges(sort=True))
sage: G2.is_isomorphic(H) ␣
→˓ # needs sage.groups
True

vertex_graph(**kwds)

Return a graph in which the vertices correspond to vertices of the polyhedron, and edges to edges.

INPUT:

• names – boolean (default: True); if False, then the nodes of the graph are labeld by the indices of
the Vrepresentation

• algorithm – string (optional); specify whether the face generator starts with facets or vertices:

– primal – start with the facets

– dual – start with the vertices

– None – choose automatically

Note: The graph of a polyhedron with lines has no vertices, as the polyhedron has no vertices (0-faces).

The method vertices() returns the defining points in this case.

EXAMPLES:

sage: g3 = polytopes.hypercube(3).vertex_graph(); g3
Graph on 8 vertices
sage: g3.automorphism_group().cardinality() ␣
→˓ # needs sage.groups
48
sage: s4 = polytopes.simplex(4).vertex_graph(); s4
Graph on 5 vertices
sage: s4.is_eulerian()
True

The graph of an unbounded polyhedron is the graph of the bounded complex:

sage: open_triangle = Polyhedron(vertices=[[1,0], [0,1]],
....: rays =[[1,1]])
sage: open_triangle.vertex_graph()
Graph on 2 vertices

The graph of a polyhedron with lines has no vertices:
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sage: line = Polyhedron(lines=[[0,1]])
sage: line.vertex_graph()
Graph on 0 vertices

2.6.6 Base class for polyhedra: Methods for constructing new polyhedra

Except for affine hull and affine hull projection.

class sage.geometry.polyhedron.base5.Polyhedron_base5(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base4

Methods constructing new polyhedra except for affine hull and affine hull projection.

See sage.geometry.polyhedron.base.Polyhedron_base.

bipyramid()

Return a polyhedron that is a bipyramid over the original.

EXAMPLES:

sage: octahedron = polytopes.cross_polytope(3)
sage: cross_poly_4d = octahedron.bipyramid()
sage: cross_poly_4d.n_vertices()
8
sage: q = [list(v) for v in cross_poly_4d.vertex_generator()]; q
[[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1],
[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[1, 0, 0, 0]]

Now check that bipyramids of cross-polytopes are cross-polytopes:

sage: q2 = [list(v) for v in polytopes.cross_polytope(4).vertex_generator()]
sage: [v in q2 for v in q]
[True, True, True, True, True, True, True, True]

cartesian_product(other)
Return the Cartesian product.

INPUT:

• other – a Polyhedron_base

OUTPUT:

The Cartesian product of self and other with a suitable base ring to encompass the two.

EXAMPLES:
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sage: P1 = Polyhedron([[0], [1]], base_ring=ZZ)
sage: P2 = Polyhedron([[0], [1]], base_ring=QQ)
sage: P1.product(P2)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices

The Cartesian product is the product in the semiring of polyhedra:

sage: P1 * P1
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: P1 * P2
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices
sage: P2 * P2
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices
sage: 2 * P1
A 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices
sage: P1 * 2.0
A 1-dimensional polyhedron in RDF^1 defined as the convex hull of 2 vertices

An alias is cartesian_product():

sage: P1.cartesian_product(P2) == P1.product(P2)
True

convex_hull(other)
Return the convex hull of the set-theoretic union of the two polyhedra.

INPUT:

• other – a Polyhedron

OUTPUT:

The convex hull.

EXAMPLES:

sage: a_simplex = polytopes.simplex(3, project=True)
sage: verts = a_simplex.vertices()
sage: verts = [[x[0]*3/5 + x[1]*4/5, -x[0]*4/5 + x[1]*3/5, x[2]] for x in␣
→˓verts]
sage: another_simplex = Polyhedron(vertices=verts)
sage: simplex_union = a_simplex.convex_hull(another_simplex)
sage: simplex_union.n_vertices()
7

dilation(scalar)

Return the dilated (uniformly stretched) polyhedron.

INPUT:

• scalar – A scalar, not necessarily in base_ring()

OUTPUT:

The polyhedron dilated by that scalar, possibly coerced to a bigger base ring.

EXAMPLES:

sage: p = Polyhedron(vertices=[[t,t^2,t^3] for t in srange(2,6)])
sage: next(p.vertex_generator())

(continues on next page)
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A vertex at (2, 4, 8)
sage: p2 = p.dilation(2)
sage: next(p2.vertex_generator())
A vertex at (4, 8, 16)
sage: p.dilation(2) == p * 2
True

direct_sum(other)

Return the direct sum of self and other.

The direct sum of two polyhedron is the subdirect sum of the two, when they have the origin in their interior.
To avoid checking if the origin is contained in both, we place the affine subspace containing other at the
center of self.

INPUT:

• other – a Polyhedron_base

EXAMPLES:

sage: P1 = Polyhedron([[1], [2]], base_ring=ZZ)
sage: P2 = Polyhedron([[3], [4]], base_ring=QQ)
sage: ds = P1.direct_sum(P2);ds
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices
sage: ds.vertices()
(A vertex at (1, 0),
A vertex at (2, 0),
A vertex at (3/2, -1/2),
A vertex at (3/2, 1/2))

See also:

join() subdirect_sum()

face_split(face)
Return the face splitting of the face face.

Splitting a face correspond to the bipyramid (see bipyramid()) of self where the two new vertices are
placed above and below the center of face instead of the center of the whole polyhedron. The two new
vertices are placed in the new dimension at height −1 and 1.

INPUT:

• face – a PolyhedronFace or a Vertex

EXAMPLES:

sage: # needs sage.rings.number_field
sage: pentagon = polytopes.regular_polygon(5)
sage: f = pentagon.faces(1)[0]
sage: fsplit_pentagon = pentagon.face_split(f)
sage: fsplit_pentagon.f_vector()
(1, 7, 14, 9, 1)

See also:

one_point_suspension()
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face_truncation(face, linear_coefficients=None, cut_frac=None)
Return a new polyhedron formed by truncating a face by an hyperplane.

By default, the normal vector of the hyperplane used to truncate the polyhedron is obtained by taking the
barycenter vector of the cone corresponding to the truncated face in the normal fan of the polyhedron. It is
possible to change the direction using the option linear_coefficients.

To determine how deep the truncation is done, the method uses the parameter cut_frac. By default it
is equal to 1

3 . Once the normal vector of the cutting hyperplane is chosen, the vertices of polyhedron are
evaluated according to the corresponding linear function. The parameter 1

3 means that the cutting hyperplane
is placed 1

3 of the way from the vertices of the truncated face to the next evaluated vertex.

INPUT:

• face – a PolyhedronFace

• linear_coefficients – tuple of integer. Specifies the coefficient of the normal vector of the
cutting hyperplane used to truncate the face. The default direction is determined using the normal fan
of the polyhedron.

• cut_frac – number between 0 and 1. Determines where the hyperplane cuts the polyhedron. A
value close to 0 cuts very close to the face, whereas a value close to 1 cuts very close to the next vertex
(according to the normal vector of the cutting hyperplane). Default is 1

3 .

OUTPUT:

A Polyhedron object, truncated as described above.

EXAMPLES:

sage: Cube = polytopes.hypercube(3)
sage: vertex_trunc1 = Cube.face_truncation(Cube.faces(0)[0])
sage: vertex_trunc1.f_vector()
(1, 10, 15, 7, 1)
sage: tuple(f.ambient_V_indices() for f in vertex_trunc1.faces(2))
((4, 5, 6, 7, 9),
(0, 3, 4, 8, 9),
(0, 1, 6, 7, 8),
(7, 8, 9),
(2, 3, 4, 5),
(1, 2, 5, 6),
(0, 1, 2, 3))

sage: vertex_trunc1.vertices()
(A vertex at (1, -1, -1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, -1/3, -1),
A vertex at (-1/3, -1, -1),
A vertex at (-1, -1, -1/3))

sage: vertex_trunc2 = Cube.face_truncation(Cube.faces(0)[0], cut_frac=1/2)
sage: vertex_trunc2.f_vector()
(1, 10, 15, 7, 1)
sage: tuple(f.ambient_V_indices() for f in vertex_trunc2.faces(2))
((4, 5, 6, 7, 9),
(0, 3, 4, 8, 9),
(0, 1, 6, 7, 8),

(continues on next page)
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(7, 8, 9),
(2, 3, 4, 5),
(1, 2, 5, 6),
(0, 1, 2, 3))

sage: vertex_trunc2.vertices()
(A vertex at (1, -1, -1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (1, -1, 1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 0, -1),
A vertex at (0, -1, -1),
A vertex at (-1, -1, 0))

sage: vertex_trunc3 = Cube.face_truncation(Cube.faces(0)[0], cut_frac=0.3)
sage: vertex_trunc3.vertices()
(A vertex at (-1.0, -1.0, 1.0),
A vertex at (-1.0, 1.0, -1.0),
A vertex at (-1.0, 1.0, 1.0),
A vertex at (1.0, 1.0, -1.0),
A vertex at (1.0, 1.0, 1.0),
A vertex at (1.0, -1.0, 1.0),
A vertex at (1.0, -1.0, -1.0),
A vertex at (-0.4, -1.0, -1.0),
A vertex at (-1.0, -0.4, -1.0),
A vertex at (-1.0, -1.0, -0.4))

sage: edge_trunc = Cube.face_truncation(Cube.faces(1)[11])
sage: edge_trunc.f_vector()
(1, 10, 15, 7, 1)
sage: tuple(f.ambient_V_indices() for f in edge_trunc.faces(2))
((0, 5, 6, 7),
(1, 4, 5, 6, 8),
(6, 7, 8, 9),
(0, 2, 3, 7, 9),
(1, 2, 8, 9),
(0, 3, 4, 5),
(1, 2, 3, 4))
sage: face_trunc = Cube.face_truncation(Cube.faces(2)[2])
sage: face_trunc.vertices()
(A vertex at (1, -1, -1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (1, -1, 1),
A vertex at (-1/3, -1, 1),
A vertex at (-1/3, 1, 1),
A vertex at (-1/3, 1, -1),
A vertex at (-1/3, -1, -1))

sage: face_trunc.face_lattice().is_isomorphic(Cube.face_lattice()) #␣
→˓needs sage.combinat sage.graphs
True

intersection(other)
Return the intersection of one polyhedron with another.

INPUT:

• other – a Polyhedron
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OUTPUT:

The intersection.

Note that the intersection of two -polyhedra might not be a -polyhedron. In this case, a -polyhedron is
returned.

EXAMPLES:

sage: cube = polytopes.hypercube(3)
sage: oct = polytopes.cross_polytope(3)
sage: cube.intersection(oct*2)
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 12 vertices

As a shorthand, one may use:

sage: cube & oct*2
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 12 vertices

The intersection of two -polyhedra is not necessarily a -polyhedron:

sage: P = Polyhedron([(0,0),(1,1)], base_ring=ZZ)
sage: P.intersection(P)
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: Q = Polyhedron([(0,1),(1,0)], base_ring=ZZ)
sage: P.intersection(Q)
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex
sage: _.Vrepresentation()
(A vertex at (1/2, 1/2),)

join(other)
Return the join of self and other.

The join of two polyhedra is obtained by first placing the two objects in two non-intersecting affine subspaces
𝑉 , and𝑊 whose affine hull is the whole ambient space, and finally by taking the convex hull of their union.
The dimension of the join is the sum of the dimensions of the two polyhedron plus 1.

INPUT:

• other – a polyhedron

EXAMPLES:

sage: P1 = Polyhedron([[0],[1]], base_ring=ZZ)
sage: P2 = Polyhedron([[0],[1]], base_ring=QQ)
sage: P1.join(P2)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
sage: P1.join(P1)
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices
sage: P2.join(P2)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices

An unbounded example:

sage: R1 = Polyhedron(rays=[[1]])
sage: R1.join(R1)
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 2 vertices␣
→˓and 2 rays
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lawrence_extension(v)
Return the Lawrence extension of self on the point v.

Let 𝑃 be a polytope and 𝑣 be a vertex of 𝑃 or a point outside 𝑃 . The Lawrence extension of 𝑃 on 𝑣 is the
convex hull of (𝑣, 1), (𝑣, 2) and (𝑢, 0) for all vertices 𝑢 in 𝑃 other than 𝑣 if 𝑣 is a vertex.

INPUT:

• v – a vertex of self or a point outside it

EXAMPLES:

sage: P = polytopes.cube()
sage: P.lawrence_extension(P.vertices()[0])
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 9 vertices
sage: P.lawrence_extension([-1,-1,-1])
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 9 vertices

REFERENCES:

For more information, see Section 6.6 of [Zie2007].

lawrence_polytope()

Return the Lawrence polytope of self.

Let 𝑃 be a 𝑑-polytope in R𝑟 with 𝑛 vertices. The Lawrence polytope of 𝑃 is the polytope whose vertices are
the columns of the following (𝑟 + 𝑛)-by-2𝑛 matrix.(︂

𝑉 𝑉
𝐼𝑛 2𝐼𝑛

)︂
,

where 𝑉 is the 𝑟-by-𝑛 vertices matrix of 𝑃 .

EXAMPLES:

sage: P = polytopes.octahedron()
sage: L = P.lawrence_polytope(); L
A 9-dimensional polyhedron in ZZ^9 defined as the convex hull of 12 vertices
sage: V = P.vertices_list()
sage: for i, v in enumerate(V):
....: v = v + i*[0]
....: P = P.lawrence_extension(v)
sage: P == L
True

REFERENCES:

For more information, see Section 6.6 of [Zie2007].

linear_transformation(linear_transf , new_base_ring=None)
Return the linear transformation of self.

INPUT:

• linear_transf – a matrix, not necessarily in base_ring()

• new_base_ring – ring (optional); specify the new base ring; may avoid coercion failure

OUTPUT:

The polyhedron transformed by that matrix, possibly coerced to a bigger base ring.

EXAMPLES:
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sage: b3 = polytopes.Birkhoff_polytope(3)
sage: proj_mat = matrix([[0,1,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0],
....: [0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,1,0]])
sage: b3_proj = proj_mat * b3; b3_proj
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices

sage: # needs sage.rings.number_field
sage: square = polytopes.regular_polygon(4)
sage: square.vertices_list()
[[0, -1], [1, 0], [-1, 0], [0, 1]]
sage: transf = matrix([[1,1], [0,1]])
sage: sheared = transf * square
sage: sheared.vertices_list()
[[-1, -1], [1, 0], [-1, 0], [1, 1]]
sage: sheared == square.linear_transformation(transf)
True

Specifying the new base ring may avoid coercion failure:

sage: # needs sage.rings.number_field
sage: K.<sqrt2> = QuadraticField(2)
sage: L.<sqrt3> = QuadraticField(3)
sage: P = polytopes.cube()*sqrt2
sage: M = matrix([[sqrt3, 0, 0], [0, sqrt3, 0], [0, 0, 1]])
sage: P.linear_transformation(M, new_base_ring=K.composite_fields(L)[0])
A 3-dimensional polyhedron in
(Number Field in sqrt2sqrt3 with defining polynomial x^4 - 10*x^2 + 1
with sqrt2sqrt3 = 0.3178372451957823?)^3

defined as the convex hull of 8 vertices

Linear transformation without specified new base ring fails in this case:

sage: M*P #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *:
Full MatrixSpace of 3 by 3 dense matrices over Number Field in sqrt3

with defining polynomial x^2 - 3 with sqrt3 = 1.732050807568878? and
Full MatrixSpace of 3 by 8 dense matrices over Number Field in sqrt2

with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?

minkowski_difference(other)

Return the Minkowski difference.

Minkowski subtraction can equivalently be defined via Minkowski addition (see minkowski_sum()) or
as set-theoretic intersection via

𝑋 ⊖ 𝑌 = (𝑋𝑐 ⊕ 𝑌 )𝑐 =
⋂︁
𝑦∈𝑌

(𝑋 − 𝑦)

where superscript-“c” means the complement in the ambient vector space. The Minkowski difference of
convex sets is convex, and the difference of polyhedra is again a polyhedron. We only consider the case of
polyhedra in the following. Note that it is not quite the inverse of addition. In fact:

• (𝑋 + 𝑌 )− 𝑌 = 𝑋 for any polyhedra 𝑋 , 𝑌 .

• (𝑋 − 𝑌 ) + 𝑌 ⊆ 𝑋
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• (𝑋 − 𝑌 ) + 𝑌 = 𝑋 if and only if Y is a Minkowski summand of X.

INPUT:

• other – a Polyhedron_base

OUTPUT:

The Minkowski difference of self and other. Also known as Minkowski subtraction of other from
self.

EXAMPLES:

sage: X = polytopes.hypercube(3)
sage: Y = Polyhedron(vertices=[(0,0,0), (0,0,1), (0,1,0), (1,0,0)]) / 2
sage: (X+Y)-Y == X
True
sage: (X-Y)+Y < X
True

The polyhedra need not be full-dimensional:

sage: X2 = Polyhedron(vertices=[(-1,-1,0), (1,-1,0), (-1,1,0), (1,1,0)])
sage: Y2 = Polyhedron(vertices=[(0,0,0), (0,1,0), (1,0,0)]) / 2
sage: (X2+Y2)-Y2 == X2
True
sage: (X2-Y2)+Y2 < X2
True

Minus sign is really an alias for minkowski_difference()

sage: four_cube = polytopes.hypercube(4)
sage: four_simplex = Polyhedron(vertices=[[0, 0, 0, 1], [0, 0, 1, 0],
....: [0, 1, 0, 0], [1, 0, 0, 0]])
sage: four_cube - four_simplex
A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 16 vertices
sage: four_cube.minkowski_difference(four_simplex) == four_cube - four_simplex
True

Coercion of the base ring works:

sage: poly_spam = Polyhedron([[3,4,5,2], [1,0,0,1], [0,0,0,0],
....: [0,4,3,2], [-3,-3,-3,-3]], base_ring=ZZ)
sage: poly_eggs = Polyhedron([[5,4,5,4], [-4,5,-4,5],
....: [4,-5,4,-5], [0,0,0,0]], base_ring=QQ) / 100
sage: poly_spam - poly_eggs
A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 5 vertices

minkowski_sum(other)

Return the Minkowski sum.

Minkowski addition of two subsets of a vector space is defined as

𝑋 ⊕ 𝑌 =
⋃︁
𝑦∈𝑌

(𝑋 + 𝑦) =
⋃︁

𝑥∈𝑋,𝑦∈𝑌

(𝑥+ 𝑦)

See minkowski_difference() for a partial inverse operation.

INPUT:

• other – a Polyhedron_base
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OUTPUT:

The Minkowski sum of self and other

EXAMPLES:

sage: X = polytopes.hypercube(3)
sage: Y = Polyhedron(vertices=[(0,0,0), (0,0,1/2), (0,1/2,0), (1/2,0,0)])
sage: X+Y
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 13 vertices

sage: four_cube = polytopes.hypercube(4)
sage: four_simplex = Polyhedron(vertices=[[0, 0, 0, 1], [0, 0, 1, 0],
....: [0, 1, 0, 0], [1, 0, 0, 0]])
sage: four_cube + four_simplex
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 36 vertices
sage: four_cube.minkowski_sum(four_simplex) == four_cube + four_simplex
True

sage: poly_spam = Polyhedron([[3,4,5,2], [1,0,0,1], [0,0,0,0],
....: [0,4,3,2], [-3,-3,-3,-3]], base_ring=ZZ)
sage: poly_eggs = Polyhedron([[5,4,5,4], [-4,5,-4,5],
....: [4,-5,4,-5], [0,0,0,0]], base_ring=QQ)
sage: poly_spam + poly_spam + poly_eggs
A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 12 vertices

one_point_suspension(vertex)
Return the one-point suspension of self by splitting the vertex vertex.

The resulting polyhedron has one more vertex and its dimension increases by one.

INPUT:

• vertex – a Vertex of self

EXAMPLES:

sage: cube = polytopes.cube()
sage: v = cube.vertices()[0]
sage: ops_cube = cube.one_point_suspension(v)
sage: ops_cube.f_vector()
(1, 9, 24, 24, 9, 1)

sage: # needs sage.rings.number_field
sage: pentagon = polytopes.regular_polygon(5)
sage: v = pentagon.vertices()[0]
sage: ops_pentagon = pentagon.one_point_suspension(v)
sage: ops_pentagon.f_vector()
(1, 6, 12, 8, 1)

It works with a polyhedral face as well:

sage: vv = cube.faces(0)[1]
sage: ops_cube2 = cube.one_point_suspension(vv)
sage: ops_cube == ops_cube2
True

See also:

face_split()
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polar(in_affine_span=False)
Return the polar (dual) polytope.

The original vertices are translated so that their barycenter is at the origin, and then the vertices are used as
the coefficients in the polar inequalities.

The polytope must be full-dimensional, unless in_affine_span is True. If in_affine_span is
True, then the operation will be performed in the linear/affine span of the polyhedron (after translation).

EXAMPLES:

sage: p = Polyhedron(vertices=[[0,0,1], [0,1,0], [1,0,0], [0,0,0], [1,1,1]],
....: base_ring=QQ); p
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 5 vertices
sage: p.polar()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 6 vertices

sage: cube = polytopes.hypercube(3)
sage: octahedron = polytopes.cross_polytope(3)
sage: cube_dual = cube.polar()
sage: octahedron == cube_dual
True

in_affine_span somewhat ignores equations, performing the polar in the spanned subspace (after trans-
lating barycenter to origin):

sage: P = polytopes.simplex(3, base_ring=QQ)
sage: P.polar(in_affine_span=True)
A 3-dimensional polyhedron in QQ^4 defined as the convex hull of 4 vertices

Embedding the polytope in a higher dimension, commutes with polar in this case:

sage: point = Polyhedron([[0]])
sage: P = polytopes.cube().change_ring(QQ)
sage: (P*point).polar(in_affine_span=True) == P.polar()*point
True

prism()

Return a prism of the original polyhedron.

EXAMPLES:

sage: square = polytopes.hypercube(2)
sage: cube = square.prism()
sage: cube
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: hypercube = cube.prism()
sage: hypercube.n_vertices()
16

product(other)
Return the Cartesian product.

INPUT:

• other – a Polyhedron_base

OUTPUT:

The Cartesian product of self and other with a suitable base ring to encompass the two.
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EXAMPLES:

sage: P1 = Polyhedron([[0], [1]], base_ring=ZZ)
sage: P2 = Polyhedron([[0], [1]], base_ring=QQ)
sage: P1.product(P2)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices

The Cartesian product is the product in the semiring of polyhedra:

sage: P1 * P1
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: P1 * P2
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices
sage: P2 * P2
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices
sage: 2 * P1
A 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices
sage: P1 * 2.0
A 1-dimensional polyhedron in RDF^1 defined as the convex hull of 2 vertices

An alias is cartesian_product():

sage: P1.cartesian_product(P2) == P1.product(P2)
True

pyramid()

Return a polyhedron that is a pyramid over the original.

EXAMPLES:

sage: square = polytopes.hypercube(2); square
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: egyptian_pyramid = square.pyramid(); egyptian_pyramid
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 5 vertices
sage: egyptian_pyramid.n_vertices()
5
sage: for v in egyptian_pyramid.vertex_generator(): print(v)
A vertex at (0, -1, -1)
A vertex at (0, -1, 1)
A vertex at (0, 1, -1)
A vertex at (0, 1, 1)
A vertex at (1, 0, 0)

stack(face, position=None)
Return a new polyhedron formed by stacking onto a face. Stacking a face adds a new vertex located slightly
outside of the designated face.

INPUT:

• face – a PolyhedronFace

• position – a positive number. Determines a relative distance from the barycenter of face. A value
close to 0 will place the new vertex close to the face and a large value further away. Default is 1. If the
given value is too large, an error is returned.

OUTPUT:

A Polyhedron object

EXAMPLES:
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sage: cube = polytopes.cube()
sage: square_face = cube.facets()[2]
sage: stacked_square = cube.stack(square_face)
sage: stacked_square.f_vector()
(1, 9, 16, 9, 1)

sage: edge_face = cube.faces(1)[3]
sage: stacked_edge = cube.stack(edge_face)
sage: stacked_edge.f_vector()
(1, 9, 17, 10, 1)

sage: cube.stack(cube.faces(0)[0])
Traceback (most recent call last):
...
ValueError: cannot stack onto a vertex

sage: stacked_square_half = cube.stack(square_face, position=1/2)
sage: stacked_square_half.f_vector()
(1, 9, 16, 9, 1)
sage: stacked_square_large = cube.stack(square_face, position=10)

sage: # needs sage.rings.number_field
sage: hexaprism = polytopes.regular_polygon(6).prism()
sage: hexaprism.f_vector()
(1, 12, 18, 8, 1)
sage: square_face = hexaprism.faces(2)[2]
sage: stacked_hexaprism = hexaprism.stack(square_face)
sage: stacked_hexaprism.f_vector()
(1, 13, 22, 11, 1)

sage: hexaprism.stack(square_face, position=4) #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
ValueError: the chosen position is too large

sage: s = polytopes.simplex(7)
sage: f = s.faces(3)[69]
sage: sf = s.stack(f); sf
A 7-dimensional polyhedron in QQ^8 defined as the convex hull of 9 vertices
sage: sf.vertices()
(A vertex at (-4, -4, -4, -4, 17/4, 17/4, 17/4, 17/4),
A vertex at (0, 0, 0, 0, 0, 0, 0, 1),
A vertex at (0, 0, 0, 0, 0, 0, 1, 0),
A vertex at (0, 0, 0, 0, 0, 1, 0, 0),
A vertex at (0, 0, 0, 0, 1, 0, 0, 0),
A vertex at (0, 0, 0, 1, 0, 0, 0, 0),
A vertex at (0, 0, 1, 0, 0, 0, 0, 0),
A vertex at (0, 1, 0, 0, 0, 0, 0, 0),
A vertex at (1, 0, 0, 0, 0, 0, 0, 0))

It is possible to stack on unbounded faces:

sage: Q = Polyhedron(vertices=[[0,1], [1,0]], rays=[[1,1]])
sage: E = Q.faces(1)
sage: Q.stack(E[0],1/2).Vrepresentation()
(A vertex at (0, 1),

(continues on next page)
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(continued from previous page)

A vertex at (1, 0),
A ray in the direction (1, 1),
A vertex at (2, 0))

sage: Q.stack(E[1],1/2).Vrepresentation()
(A vertex at (0, 1),
A vertex at (0, 2),
A vertex at (1, 0),
A ray in the direction (1, 1))

sage: Q.stack(E[2],1/2).Vrepresentation()
(A vertex at (0, 0),
A vertex at (0, 1),
A vertex at (1, 0),
A ray in the direction (1, 1))

Stacking requires a proper face:

sage: Q.stack(Q.faces(2)[0])
Traceback (most recent call last):
...
ValueError: can only stack on proper face

subdirect_sum(other)
Return the subdirect sum of self and other.

The subdirect sum of two polyhedron is a projection of the join of the two polytopes. It is obtained by placing
the two objects in orthogonal subspaces intersecting at the origin.

INPUT:

• other – a Polyhedron_base

EXAMPLES:

sage: P1 = Polyhedron([[1], [2]], base_ring=ZZ)
sage: P2 = Polyhedron([[3], [4]], base_ring=QQ)
sage: sds = P1.subdirect_sum(P2); sds
A 2-dimensional polyhedron in QQ^2
defined as the convex hull of 4 vertices

sage: sds.vertices()
(A vertex at (0, 3),
A vertex at (0, 4),
A vertex at (1, 0),
A vertex at (2, 0))

See also:

join() direct_sum()

translation(displacement)
Return the translated polyhedron.

INPUT:

• displacement – a displacement vector or a list/tuple of coordinates that determines a displacement
vector

OUTPUT:

The translated polyhedron.

EXAMPLES:
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sage: P = Polyhedron([[0,0], [1,0], [0,1]], base_ring=ZZ)
sage: P.translation([2,1])
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: P.translation(vector(QQ, [2,1]))
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices

truncation(cut_frac=None)
Return a new polyhedron formed from two points on each edge between two vertices.

INPUT:

• cut_frac – integer, how deeply to cut into the edge. Default is 1
3 .

OUTPUT:

A Polyhedron object, truncated as described above.

EXAMPLES:

sage: cube = polytopes.hypercube(3)
sage: trunc_cube = cube.truncation()
sage: trunc_cube.n_vertices()
24
sage: trunc_cube.n_inequalities()
14

wedge(face, width=1)
Return the wedge over a face of the polytope self.

The wedge over a face 𝐹 of a polytope 𝑃 with width 𝑤 ̸= 0 is defined as:

(𝑃 × R) ∩ {𝑎⊤𝑥+ |𝑤𝑥𝑑+1| ≤ 𝑏}

where {𝑥|𝑎⊤𝑥 = 𝑏} is a supporting hyperplane defining 𝐹 .

INPUT:

• face – a PolyhedronFace of self, the face which we take the wedge over

• width – a nonzero number (default: 1); specifies how wide the wedge will be

OUTPUT:

A (bounded) polyhedron

EXAMPLES:

sage: # needs sage.rings.number_field
sage: P_4 = polytopes.regular_polygon(4)
sage: W1 = P_4.wedge(P_4.faces(1)[0]); W1
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 6 vertices
sage: triangular_prism = polytopes.regular_polygon(3).prism()
sage: W1.is_combinatorially_isomorphic(triangular_prism) #␣
→˓needs sage.graphs
True

sage: Q = polytopes.hypersimplex(4,2)
sage: W2 = Q.wedge(Q.faces(2)[7]); W2
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 9 vertices
sage: W2.vertices()
(A vertex at (1, 1, 0, 0, 1),

(continues on next page)
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A vertex at (1, 1, 0, 0, -1),
A vertex at (1, 0, 1, 0, 1),
A vertex at (1, 0, 1, 0, -1),
A vertex at (1, 0, 0, 1, 1),
A vertex at (1, 0, 0, 1, -1),
A vertex at (0, 0, 1, 1, 0),
A vertex at (0, 1, 1, 0, 0),
A vertex at (0, 1, 0, 1, 0))

sage: W3 = Q.wedge(Q.faces(1)[11]); W3
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 10 vertices
sage: W3.vertices()
(A vertex at (1, 1, 0, 0, -2),
A vertex at (1, 1, 0, 0, 2),
A vertex at (1, 0, 1, 0, -2),
A vertex at (1, 0, 1, 0, 2),
A vertex at (1, 0, 0, 1, 1),
A vertex at (1, 0, 0, 1, -1),
A vertex at (0, 1, 0, 1, 0),
A vertex at (0, 1, 1, 0, 1),
A vertex at (0, 0, 1, 1, 0),
A vertex at (0, 1, 1, 0, -1))

sage: C_3_7 = polytopes.cyclic_polytope(3,7)
sage: P_6 = polytopes.regular_polygon(6) #␣
→˓needs sage.rings.number_field
sage: W4 = P_6.wedge(P_6.faces(1)[0]) #␣
→˓needs sage.rings.number_field
sage: W4.is_combinatorially_isomorphic(C_3_7.polar()) #␣
→˓needs sage.graphs sage.rings.number_field
True

REFERENCES:

For more information, see Chapter 15 of [HoDaCG17].

2.6.7 Base class for polyhedra: Methods for plotting and affine hull projection

class sage.geometry.polyhedron.base6.Polyhedron_base6(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base5

Methods related to plotting including affine hull projection.

affine_hull(*args, **kwds)
Return the affine hull of self as a polyhedron.

EXAMPLES:

sage: half_plane_in_space = Polyhedron(ieqs=[(0,1,0,0)], eqns=[(0,0,0,1)])
sage: half_plane_in_space.affine_hull().Hrepresentation()
(An equation (0, 0, 1) x + 0 == 0,)

(continues on next page)
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sage: polytopes.cube().affine_hull().is_universe()
True

affine_hull_manifold(name=None, latex_name=None, start_index=0, ambient_space=None,
ambient_chart=None, names=None, **kwds)

Return the affine hull of self as a manifold.

If self is full-dimensional, it is just the ambient Euclidean space. Otherwise, it is a Riemannian submanifold
of the ambient Euclidean space.

INPUT:

• ambient_space – a EuclideanSpace of the ambient dimension (default: the manifold of am-
bient_chart, if provided; otherwise, a new instance of EuclideanSpace).

• ambient_chart – a chart on ambient_space.

• names – names for the coordinates on the affine hull.

• optional arguments accepted by affine_hull_projection().

The default chart is determined by the optional arguments of affine_hull_projection().

EXAMPLES:

sage: # needs sage.symbolic
sage: triangle = Polyhedron([(1, 0, 0), (0, 1, 0), (0, 0, 1)]); triangle
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: A = triangle.affine_hull_manifold(name= A ); A
2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3
sage: A.embedding().display()
A → E^3

(x0, x1) ↦ (x, y, z) = (t0 + x0, t0 + x1, t0 - x0 - x1 + 1)
sage: A.embedding().inverse().display()
E^3 → A

(x, y, z) ↦ (x0, x1) = (x, y)
sage: A.adapted_chart()
[Chart (E^3, (x0_E3, x1_E3, t0_E3))]
sage: A.normal().display()
n = 1/3*sqrt(3) e_x + 1/3*sqrt(3) e_y + 1/3*sqrt(3) e_z
sage: A.induced_metric() # Need to call this before volume_form
Riemannian metric gamma on the
2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3

sage: A.volume_form()
2-form eps_gamma on the
2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3

Orthogonal version:

sage: A = triangle.affine_hull_manifold(name= A , orthogonal=True); A #␣
→˓needs sage.symbolic
2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3
sage: A.embedding().display() #␣
→˓needs sage.symbolic
A → E^3

(x0, x1) ↦ (x, y, z) = (t0 - 1/2*x0 - 1/3*x1 + 1,
t0 + 1/2*x0 - 1/3*x1, t0 + 2/3*x1)

sage: A.embedding().inverse().display() #␣

(continues on next page)

2.6. Base classes for polyhedra 603

../../../../../../../html/en/reference/manifolds/sage/manifolds/differentiable/examples/euclidean.html#sage.manifolds.differentiable.examples.euclidean.EuclideanSpace


Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

→˓needs sage.symbolic
E^3 → A

(x, y, z) ↦ (x0, x1) = (-x + y + 1, -1/2*x - 1/2*y + z + 1/2)

Arrangement of affine hull of facets:

sage: # needs sage.rings.number_field sage.symbolic
sage: D = polytopes.dodecahedron()
sage: E3 = EuclideanSpace(3)
sage: submanifolds = [ # long time
....: F.as_polyhedron().affine_hull_manifold(name=f F{i} ,
....: orthogonal=True, ambient_
→˓space=E3)
....: for i, F in enumerate(D.facets())]
sage: sum(FM.plot({}, # long time, not tested #␣
→˓needs sage.plot
....: srange(-2, 2, 0.1), srange(-2, 2, 0.1),
....: opacity=0.2)
....: for FM in submanifolds) + D.plot()
Graphics3d Object

Full-dimensional case:

sage: cube = polytopes.cube(); cube
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: cube.affine_hull_manifold() #␣
→˓needs sage.symbolic
Euclidean space E^3

affine_hull_projection(as_polyhedron, as_affine_map=None, orthogonal=False, orthonormal=False,
extend=False, minimal=False, return_all_data=False, as_convex_set=False)

Return the polyhedron projected into its affine hull.

Each polyhedron is contained in some smallest affine subspace (possibly the entire ambient space) – its affine
hull. We provide an affine linear map that projects the ambient space of the polyhedron to the standard
Euclidean space of dimension of the polyhedron, which restricts to a bijection from the affine hull.

The projection map is not unique; some parameters control the choice of the map. Other parameters control
the output of the function.

INPUT:

• as_polyhedron (or as_convex_set) – (boolean or the default None) and

• as_affine_map – (boolean, default False) control the output

The default as_polyhedron=None translates to as_polyhedron=not as_affine_map,
therefore to as_polyhedron=True if nothing is specified.

If exactly one of either as_polyhedron or as_affine_map is set, then either a polyhedron or the
affine transformation is returned. The affine transformation sends the embedded polytope to a fulldimen-
sional one. It is given as a pair (A, b), where A is a linear transformation and 𝑏 is a vector, and the
affine transformation sends v to A(v)+b.

If both as_polyhedron and as_affine_map are set, then both are returned, encapsulated in an
instance of AffineHullProjectionData.

• return_all_data – (boolean, default False)
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If set, then as_polyhedron and as_affine_map will set (possibly overridden) and additional
(internal) data concerning the transformation is returned. Everything is encapsulated in an instance of
AffineHullProjectionData in this case.

• orthogonal – boolean (default: False); if True, provide an orthogonal transformation.

• orthonormal – boolean (default: False); if True, provide an orthonormal transformation. If the
base ring does not provide the necessary square roots, the extend parameter needs to be set to True.

• extend – boolean (default: False); if True, allow base ring to be extended if necessary. This
becomes relevant when requiring an orthonormal transformation.

• minimal – boolean (default: False); if True, when doing an extension, it computes the minimal
base ring of the extension, otherwise the base ring is AA.

OUTPUT:

A full-dimensional polyhedron or an affine transformation, depending on the parameters as_polyhedron
and as_affine_map, or an instance of AffineHullProjectionData containing all data (param-
eter return_all_data).

If the output is an instance of AffineHullProjectionData, the following fields may be set:

• image – the projection of the original polyhedron

• projection_map – the affine map as a pair whose first component is a linear transformation and its
second component a shift; see above.

• section_map – an affine map as a pair whose first component is a linear transformation and its second
component a shift. It maps the codomain ofaffine_map to the affine hull ofself. It is a right inverse
of projection_map.

Note that all of these data are compatible.

Todo:

• make the parameters orthogonal and orthonormal work with unbounded polyhedra.

EXAMPLES:

sage: triangle = Polyhedron([(1,0,0), (0,1,0), (0,0,1)]); triangle
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: triangle.affine_hull_projection()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices

sage: half3d = Polyhedron(vertices=[(3,2,1)], rays=[(1,0,0)])
sage: half3d.affine_hull_projection().Vrepresentation()
(A ray in the direction (1), A vertex at (3))

The resulting affine hulls depend on the parameter orthogonal and orthonormal:

sage: L = Polyhedron([[1,0], [0,1]]); L
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: A = L.affine_hull_projection(); A
A 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices
sage: A.vertices()
(A vertex at (0), A vertex at (1))
sage: A = L.affine_hull_projection(orthogonal=True); A
A 1-dimensional polyhedron in QQ^1 defined as the convex hull of 2 vertices
sage: A.vertices()

(continues on next page)
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(A vertex at (0), A vertex at (2))
sage: A = L.affine_hull_projection(orthonormal=True) #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
ValueError: the base ring needs to be extended; try with "extend=True"
sage: A = L.affine_hull_projection(orthonormal=True, extend=True); A #␣
→˓needs sage.rings.number_field
A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices
sage: A.vertices() #␣
→˓needs sage.rings.number_field
(A vertex at (1.414213562373095?), A vertex at (0.?e-18))

More generally:

sage: S = polytopes.simplex(); S
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
sage: S.vertices()
(A vertex at (0, 0, 0, 1),
A vertex at (0, 0, 1, 0),
A vertex at (0, 1, 0, 0),
A vertex at (1, 0, 0, 0))

sage: A = S.affine_hull_projection(); A
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices
sage: A.vertices()
(A vertex at (0, 0, 0),
A vertex at (0, 0, 1),
A vertex at (0, 1, 0),
A vertex at (1, 0, 0))

sage: A = S.affine_hull_projection(orthogonal=True); A
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
sage: A.vertices()
(A vertex at (0, 0, 0),
A vertex at (2, 0, 0),
A vertex at (1, 3/2, 0),
A vertex at (1, 1/2, 4/3))

sage: A = S.affine_hull_projection(orthonormal=True, extend=True); A #␣
→˓needs sage.rings.number_field
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 4 vertices
sage: A.vertices() #␣
→˓needs sage.rings.number_field
(A vertex at (0.7071067811865475?, 0.4082482904638630?, 1.154700538379252?),
A vertex at (0.7071067811865475?, 1.224744871391589?, 0.?e-18),
A vertex at (1.414213562373095?, 0.?e-18, 0.?e-18),
A vertex at (0.?e-18, 0.?e-18, 0.?e-18))

With the parameter minimal one can get a minimal base ring:

sage: # needs sage.rings.number_field
sage: s = polytopes.simplex(3)
sage: s_AA = s.affine_hull_projection(orthonormal=True, extend=True)
sage: s_AA.base_ring()
Algebraic Real Field
sage: s_full = s.affine_hull_projection(orthonormal=True, extend=True,
....: minimal=True)
sage: s_full.base_ring()
Number Field in a with defining polynomial y^4 - 4*y^2 + 1

(continues on next page)
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with a = 0.5176380902050415?

More examples with the orthonormal parameter:

sage: P = polytopes.permutahedron(3); P
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: set([F.as_polyhedron().affine_hull_projection( #␣
→˓needs sage.combinat sage.rings.number_field
....: orthonormal=True, extend=True).volume()
....: for F in P.affine_hull_projection().faces(1)]) == {1, sqrt(AA(2))}
True
sage: set([F.as_polyhedron().affine_hull_projection( #␣
→˓needs sage.combinat sage.rings.number_field
....: orthonormal=True, extend=True).volume()
....: for F in P.affine_hull_projection(
....: orthonormal=True, extend=True).faces(1)]) == {sqrt(AA(2))}
True

sage: # needs sage.rings.number_field
sage: D = polytopes.dodecahedron()
sage: F = D.faces(2)[0].as_polyhedron()
sage: F.affine_hull_projection(orthogonal=True)
A 2-dimensional polyhedron in
(Number Field in sqrt5 with defining polynomial x^2 - 5
with sqrt5 = 2.236067977499790?)^2

defined as the convex hull of 5 vertices
sage: F.affine_hull_projection(orthonormal=True, extend=True)
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 5 vertices

sage: # needs sage.rings.number_field
sage: K.<sqrt2> = QuadraticField(2)
sage: P = Polyhedron([2*[K.zero()],2*[sqrt2]]); P
A 1-dimensional polyhedron in
(Number Field in sqrt2 with defining polynomial x^2 - 2
with sqrt2 = 1.414213562373095?)^2

defined as the convex hull of 2 vertices
sage: P.vertices()
(A vertex at (0, 0), A vertex at (sqrt2, sqrt2))
sage: A = P.affine_hull_projection(orthonormal=True); A
A 1-dimensional polyhedron in
(Number Field in sqrt2 with defining polynomial x^2 - 2
with sqrt2 = 1.414213562373095?)^1

defined as the convex hull of 2 vertices
sage: A.vertices()
(A vertex at (0), A vertex at (2))

sage: # needs sage.rings.number_field
sage: K.<sqrt3> = QuadraticField(3)
sage: P = Polyhedron([2*[K.zero()], 2*[sqrt3]]); P
A 1-dimensional polyhedron in
(Number Field in sqrt3 with defining polynomial x^2 - 3
with sqrt3 = 1.732050807568878?)^2

defined as the convex hull of 2 vertices
sage: P.vertices()
(A vertex at (0, 0), A vertex at (sqrt3, sqrt3))
sage: A = P.affine_hull_projection(orthonormal=True)
Traceback (most recent call last):

(continues on next page)
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...
ValueError: the base ring needs to be extended; try with "extend=True"
sage: A = P.affine_hull_projection(orthonormal=True, extend=True); A
A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices
sage: A.vertices()
(A vertex at (0), A vertex at (2.449489742783178?))
sage: sqrt(6).n()
2.44948974278318

The affine hull is combinatorially equivalent to the input:

sage: P.is_combinatorially_isomorphic(P.affine_hull_projection()) #␣
→˓needs sage.rings.number_field
True
sage: P.is_combinatorially_isomorphic(P.affine_hull_projection( #␣
→˓needs sage.rings.number_field
....: orthogonal=True))
True
sage: P.is_combinatorially_isomorphic(P.affine_hull_projection( #␣
→˓needs sage.rings.number_field
....: orthonormal=True, extend=True))
True

The orthonormal=True parameter preserves volumes; it provides an isometric copy of the polyhedron:

sage: # needs sage.rings.number_field
sage: Pentagon = polytopes.dodecahedron().faces(2)[0].as_polyhedron()
sage: P = Pentagon.affine_hull_projection(orthonormal=True, extend=True)
sage: _, c= P.is_inscribed(certificate=True)
sage: c
(0.4721359549995794?, 0.6498393924658126?)
sage: circumradius = (c - vector(P.vertices()[0])).norm()
sage: p = polytopes.regular_polygon(5)
sage: p.volume()
2.377641290737884?
sage: P.volume()
1.53406271079097?
sage: p.volume()*circumradius^2
1.534062710790965?
sage: P.volume() == p.volume()*circumradius^2
True

One can also use orthogonal parameter to calculate volumes; in this case we don’t need to switch base
rings. One has to divide by the square root of the determinant of the linear part of the affine transformation
times its transpose:

sage: # needs sage.rings.number_field
sage: Pentagon = polytopes.dodecahedron().faces(2)[0].as_polyhedron()
sage: Pnormal = Pentagon.affine_hull_projection(orthonormal=True,
....: extend=True)
sage: Pgonal = Pentagon.affine_hull_projection(orthogonal=True)
sage: A, b = Pentagon.affine_hull_projection(orthogonal=True,
....: as_affine_map=True)
sage: Adet = (A.matrix().transpose()*A.matrix()).det()
sage: Pnormal.volume()
1.53406271079097?

(continues on next page)
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sage: Pgonal.volume()/Adet.sqrt(extend=True)
-80*(55*sqrt(5) - 123)/sqrt(-6368*sqrt(5) + 14240)
sage: Pgonal.volume()/AA(Adet).sqrt().n(digits=20)
1.5340627107909646813
sage: AA(Pgonal.volume()^2) == (Pnormal.volume()^2)*AA(Adet)
True

Another example with as_affine_map=True:

sage: # needs sage.combinat sage.rings.number_field
sage: P = polytopes.permutahedron(4)
sage: Q = P.affine_hull_projection(orthonormal=True, extend=True)
sage: A, b = P.affine_hull_projection(orthonormal=True, extend=True,
....: as_affine_map=True)
sage: Q.center()
(0.7071067811865475?, 1.224744871391589?, 1.732050807568878?)
sage: A(P.center()) + b == Q.center()
True

For unbounded, non full-dimensional polyhedra, the orthogonal=True and orthonormal=True is
not implemented:

sage: P = Polyhedron(ieqs=[[0, 1, 0], [0, 0, 1], [0, 0, -1]]); P
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and␣
→˓1 ray
sage: P.is_compact()
False
sage: P.is_full_dimensional()
False
sage: P.affine_hull_projection(orthogonal=True)
Traceback (most recent call last):
...
NotImplementedError: "orthogonal=True" and "orthonormal=True"
work only for compact polyhedra
sage: P.affine_hull_projection(orthonormal=True)
Traceback (most recent call last):
...
NotImplementedError: "orthogonal=True" and "orthonormal=True"
work only for compact polyhedra

Setting as_affine_map to True without orthogonal or orthonormal set to True:

sage: S = polytopes.simplex()
sage: S.affine_hull_projection(as_affine_map=True)
(Vector space morphism represented by the matrix:
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0]
Domain: Vector space of dimension 4 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field,
(0, 0, 0))

If the polyhedron is full-dimensional, it is returned:

sage: polytopes.cube().affine_hull_projection()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices

(continues on next page)
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sage: polytopes.cube().affine_hull_projection(as_affine_map=True)
(Vector space morphism represented by the matrix:
[1 0 0]
[0 1 0]
[0 0 1]
Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field,
(0, 0, 0))

Return polyhedron and affine map:

sage: S = polytopes.simplex(2)
sage: data = S.affine_hull_projection(orthogonal=True,
....: as_polyhedron=True,
....: as_affine_map=True); data
AffineHullProjectionData(image=A 2-dimensional polyhedron in QQ^2

defined as the convex hull of 3 vertices,
projection_linear_map=Vector space morphism represented by the matrix:

[ -1 -1/2]
[ 1 -1/2]
[ 0 1]
Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field,

projection_translation=(1, 1/2),
section_linear_map=None,
section_translation=None)

Return all data:

sage: data = S.affine_hull_projection(orthogonal=True, return_all_data=True);␣
→˓data
AffineHullProjectionData(image=A 2-dimensional polyhedron in QQ^2

defined as the convex hull of 3 vertices,
projection_linear_map=Vector space morphism represented by the matrix:

[ -1 -1/2]
[ 1 -1/2]
[ 0 1]
Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field,

projection_translation=(1, 1/2),
section_linear_map=Vector space morphism represented by the matrix:

[-1/2 1/2 0]
[-1/3 -1/3 2/3]
Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field,

section_translation=(1, 0, 0))

The section map is a right inverse of the projection map:

sage: mat = data.section_linear_map.matrix().transpose()
sage: data.image.linear_transformation(mat) + data.section_translation == S
True

Same without orthogonal=True:

sage: data = S.affine_hull_projection(return_all_data=True); data
AffineHullProjectionData(image=A 2-dimensional polyhedron in ZZ^2

(continues on next page)
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defined as the convex hull of 3 vertices,
projection_linear_map=Vector space morphism represented by the matrix:

[1 0]
[0 1]
[0 0]
Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field,

projection_translation=(0, 0),
section_linear_map=Vector space morphism represented by the matrix:

[ 1 0 -1]
[ 0 1 -1]
Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field,

section_translation=(0, 0, 1))
sage: mat = data.section_linear_map.matrix().transpose()
sage: data.image.linear_transformation(mat) + data.section_translation == S
True

sage: P0 = Polyhedron(
....: ieqs=[(0, -1, 0, 1, 1, 1), (0, 1, 1, 0, -1, -1), (0, -1, 1, 1, 0,␣
→˓0),
....: (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, -1, -1), (0, 0, 0, 0, 0, 1),
....: (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, -1), (0, 0, 1, 0, 0, 0)])
sage: P = P0.intersection(Polyhedron(eqns=[(-1, 1, 1, 1, 1, 1)]))
sage: P.dim()
4
sage: P.affine_hull_projection(orthogonal=True, as_affine_map=True)[0]
Vector space morphism represented by the matrix:
[ 0 0 0 1/3]
[ -2/3 -1/6 0 -1/12]
[ 1/3 -1/6 1/2 -1/12]
[ 0 1/2 0 -1/12]
[ 1/3 -1/6 -1/2 -1/12]
Domain: Vector space of dimension 5 over Rational Field
Codomain: Vector space of dimension 4 over Rational Field

gale_transform()

Return the Gale transform of a polytope as described in the reference below.

OUTPUT:

A list of vectors, the Gale transform. The dimension is the dimension of the affine dependencies of the vertices
of the polytope.

EXAMPLES:

This is from the reference, for a triangular prism:

sage: p = Polyhedron(vertices = [[0,0],[0,1],[1,0]])
sage: p2 = p.prism()
sage: p2.gale_transform()
((-1, 0), (0, -1), (1, 1), (-1, -1), (1, 0), (0, 1))

REFERENCES:

Lectures in Geometric Combinatorics, R.R.Thomas, 2006, AMS Press.
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See also:

gale_transform_to_polyhedron().

plot(point=None, line=None, polygon=None, wireframe='blue', fill='green', position=None,
orthonormal=True, **kwds)

Return a graphical representation.

INPUT:

• point, line, polygon – Parameters to pass to point (0d), line (1d), and polygon (2d) plot com-
mands. Allowed values are:

– A Python dictionary to be passed as keywords to the plot commands.

– A string or triple of numbers: The color. This is equivalent to passing the dictionary { color :.
..}.

– False: Switches off the drawing of the corresponding graphics object

• wireframe, fill – Similar to point, line, and polygon, but fill is used for the graph-
ics objects in the dimension of the polytope (or of dimension 2 for higher dimensional polytopes) and
wireframe is used for all lower-dimensional graphics objects (default: ‘green’ for fill and ‘blue’ for
wireframe)

• position – positive number; the position to take the projection point in Schlegel diagrams.

• orthonormal – Boolean (default: True); whether to use orthonormal projections.

• **kwds – optional keyword parameters that are passed to all graphics objects.

OUTPUT:

A (multipart) graphics object.

EXAMPLES:

sage: square = polytopes.hypercube(2)
sage: point = Polyhedron([[1,1]])
sage: line = Polyhedron([[1,1],[2,1]])
sage: cube = polytopes.hypercube(3)
sage: hypercube = polytopes.hypercube(4)

By default, the wireframe is rendered in blue and the fill in green:

sage: # needs sage.plot
sage: square.plot()
Graphics object consisting of 6 graphics primitives
sage: point.plot()
Graphics object consisting of 1 graphics primitive
sage: line.plot()
Graphics object consisting of 2 graphics primitives
sage: cube.plot()
Graphics3d Object
sage: hypercube.plot()
Graphics3d Object

Draw the lines in red and nothing else:

sage: # needs sage.plot
sage: square.plot(point=False, line= red , polygon=False)
Graphics object consisting of 4 graphics primitives

(continues on next page)
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sage: point.plot(point=False, line= red , polygon=False)
Graphics object consisting of 0 graphics primitives
sage: line.plot(point=False, line= red , polygon=False)
Graphics object consisting of 1 graphics primitive
sage: cube.plot(point=False, line= red , polygon=False)
Graphics3d Object
sage: hypercube.plot(point=False, line= red , polygon=False)
Graphics3d Object

Draw points in red, no lines, and a blue polygon:

sage: # needs sage.plot
sage: square.plot(point={ color : red }, line=False, polygon=(0,0,1))
Graphics object consisting of 2 graphics primitives
sage: point.plot(point={ color : red }, line=False, polygon=(0,0,1))
Graphics object consisting of 1 graphics primitive
sage: line.plot(point={ color : red }, line=False, polygon=(0,0,1))
Graphics object consisting of 1 graphics primitive
sage: cube.plot(point={ color : red }, line=False, polygon=(0,0,1))
Graphics3d Object
sage: hypercube.plot(point={ color : red }, line=False, polygon=(0,0,1))
Graphics3d Object

If we instead use the fill and wireframe options, the coloring depends on the dimension of the object:

sage: # needs sage.plot
sage: square.plot(fill= green , wireframe= red )
Graphics object consisting of 6 graphics primitives
sage: point.plot(fill= green , wireframe= red )
Graphics object consisting of 1 graphics primitive
sage: line.plot(fill= green , wireframe= red )
Graphics object consisting of 2 graphics primitives
sage: cube.plot(fill= green , wireframe= red )
Graphics3d Object
sage: hypercube.plot(fill= green , wireframe= red )
Graphics3d Object

It is possible to draw polyhedra up to dimension 4, no matter what the ambient dimension is:

sage: hcube = polytopes.hypercube(5)
sage: facet = hcube.facets()[0].as_polyhedron(); facet
A 4-dimensional polyhedron in ZZ^5 defined as the convex hull of 16 vertices
sage: facet.plot() #␣
→˓needs sage.plot
Graphics3d Object

For a 3d plot, we may draw the polygons with rainbow colors, using any of the following ways:

sage: cube.plot(polygon= rainbow ) #␣
→˓needs sage.plot
Graphics3d Object
sage: cube.plot(polygon={ color : rainbow }) #␣
→˓needs sage.plot
Graphics3d Object
sage: cube.plot(fill= rainbow ) #␣
→˓needs sage.plot
Graphics3d Object
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For a 3d plot, the size of a point, the thickness of a line and the width of an arrow are controlled by the
respective parameters:

sage: prism = Polyhedron(vertices=[[0,0,0],[1,0,0],[0,1,0]], rays=[[0,0,1]])
sage: prism.plot(size=20, thickness=30, width=1) #␣
→˓needs sage.plot
Graphics3d Object
sage: prism.plot(point={ size :20, color : black }, #␣
→˓needs sage.plot
....: line={ thickness :30, width :1, color : black },
....: polygon= rainbow )
Graphics3d Object

projection(projection=None)

Return a projection object.

INPUT:

• proj – a projection function

OUTPUT:

The identity projection. This is useful for plotting polyhedra.

See also:

schlegel_projection() for a more interesting projection.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj
The projection of a polyhedron into 3 dimensions

render_solid(**kwds)
Return a solid rendering of a 2- or 3-d polytope.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: p_solid = p.render_solid(opacity=.7) #␣
→˓needs sage.plot
sage: type(p_solid) #␣
→˓needs sage.plot
<class sage.plot.plot3d.index_face_set.IndexFaceSet >

render_wireframe(**kwds)

For polytopes in 2 or 3 dimensions, return the edges as a list of lines.

EXAMPLES:

sage: p = Polyhedron([[1,2,],[1,1],[0,0]])
sage: p_wireframe = p.render_wireframe() #␣
→˓needs sage.plot
sage: p_wireframe._objects #␣
→˓needs sage.plot
[Line defined by 2 points, Line defined by 2 points, Line defined by 2 points]
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schlegel_projection(facet=None, position=None)
Return the Schlegel projection.

• The facet is orthonormally transformed into its affine hull.

• The position specifies a point coming out of the barycenter of the facet from which the other vertices
will be projected into the facet.

INPUT:

• facet – a PolyhedronFace. The facet into which the Schlegel diagram is created. The default is
the first facet.

• position – a positive number. Determines a relative distance from the barycenter of facet. A value
close to 0 will place the projection point close to the facet and a large value further away. Default is 1.
If the given value is too large, an error is returned.

OUTPUT:

A Projection object.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: sch_proj = p.schlegel_projection()
sage: schlegel_edge_indices = sch_proj.lines
sage: schlegel_edges = [sch_proj.coordinates_of(x) for x in schlegel_edge_
→˓indices]
sage: len([x for x in schlegel_edges if x[0][0] > 0])
8

The Schlegel projection preserves the convexity of facets, see Issue #30015:

sage: fcube = polytopes.hypercube(4)
sage: tfcube = fcube.face_truncation(fcube.faces(0)[0])
sage: tfcube.facets()[-1]
A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 8␣
→˓vertices
sage: sp = tfcube.schlegel_projection(tfcube.facets()[-1])
sage: sp.plot() #␣
→˓needs sage.plot
Graphics3d Object

The same truncated cube but see inside the tetrahedral facet:

sage: tfcube.facets()[4]
A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 4␣
→˓vertices
sage: sp = tfcube.schlegel_projection(tfcube.facets()[4]) #␣
→˓needs sage.symbolic
sage: sp.plot() #␣
→˓needs sage.plot sage.symbolic
Graphics3d Object

A different values of position changes the projection:

sage: # needs sage.symbolic
sage: sp = tfcube.schlegel_projection(tfcube.facets()[4], 1/2)
sage: sp.plot() #␣
→˓needs sage.plot

(continues on next page)
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Graphics3d Object
sage: sp = tfcube.schlegel_projection(tfcube.facets()[4], 4)
sage: sp.plot() #␣
→˓needs sage.plot
Graphics3d Object

A value which is too large give a projection point that sees more than one facet resulting in a error:

sage: sp = tfcube.schlegel_projection(tfcube.facets()[4], 5)
Traceback (most recent call last):
...
ValueError: the chosen position is too large

show(**kwds)
Display graphics immediately

This method attempts to display the graphics immediately, without waiting for the currently running code (if
any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large
number of external viewer programs.

INPUT:

• kwds – optional keyword arguments. See plot() for the description of available options.

OUTPUT:

This method does not return anything. Use plot() if you want to generate a graphics object that can be
saved or further transformed.

EXAMPLES:

sage: square = polytopes.hypercube(2)
sage: square.show(point= red ) #␣
→˓needs sage.plot

tikz(view=[0, 0, 1], angle=0, scale=1, edge_color='blue!95!black', facet_color='blue!95!black', opacity=0.8,
vertex_color='green', axis=False, output_type=None)

Return a tikz picture of self as a string or as a TikzPicture according to a projection view and an
angle angle obtained via the threejs viewer. self must be bounded.

INPUT:

• view – list (default: [0,0,1]) representing the rotation axis (see note below).

• angle – integer (default: 0) angle of rotation in degree from 0 to 360 (see note below).

• scale – integer (default: 1) specifying the scaling of the tikz picture.

• edge_color – string (default: ‘blue!95!black’) representing colors which tikz recognize.

• facet_color – string (default: ‘blue!95!black’) representing colors which tikz recognize.

• vertex_color – string (default: ‘green’) representing colors which tikz recognize.

• opacity – real number (default: 0.8) between 0 and 1 giving the opacity of the front facets.

• axis – Boolean (default: False) draw the axes at the origin or not.

• output_type – string (default: None), valid values are None (deprecated), LatexExpr and
TikzPicture , whether to return a LatexExpr object (which inherits from Python str) or a

TikzPicture object from module sage.misc.latex_standalone
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OUTPUT:

• LatexExpr object or TikzPicture object

Note: This is a wrapper of a method of the projection object self.projection(). See tikz() for
more detail.

The inputs view and angle can be obtained by visualizing it using .show(aspect_ratio=1). This
will open an interactive view in your default browser, where you can rotate the polytope. Once the desired
view angle is found, click on the information icon in the lower right-hand corner and select Get Viewpoint.
This will copy a string of the form ‘[x,y,z],angle’ to your local clipboard. Go back to Sage and type Img =
P.tikz([x,y,z],angle).

The inputs view and angle can also be obtained from the viewer Jmol:

1) Right click on the image
2) Select Console
3) Select the tab State
4) Scroll to the line moveto

It reads something like:

moveto 0.0 {x y z angle} Scale

The view is then [x,y,z] and angle is angle. The following number is the scale.

Jmol performs a rotation of angle degrees along the vector [x,y,z] and show the result from the z-axis.

EXAMPLES:

sage: # needs sage.plot
sage: co = polytopes.cuboctahedron()
sage: Img = co.tikz([0, 0, 1], 0, output_type= TikzPicture )
sage: Img
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%

[x={(1.000000cm, 0.000000cm)},
y={(0.000000cm, 1.000000cm)},
z={(0.000000cm, 0.000000cm)},
scale=1.000000,

...
Use print to see the full content.
...
\node[vertex] at (1.00000, 0.00000, 1.00000) {};
\node[vertex] at (1.00000, 1.00000, 0.00000) {};
%%
%%
\end{tikzpicture}
\end{document}
sage: print( \n .join(Img.content().splitlines()[12:21]))
%% with the command: ._tikz_3d_in_3d and parameters:
%% view = [0, 0, 1]
%% angle = 0
%% scale = 1
%% edge_color = blue!95!black
%% facet_color = blue!95!black

(continues on next page)
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%% opacity = 0.8
%% vertex_color = green
%% axis = False
sage: print( \n .join(Img.content().splitlines()[22:26]))
%% Coordinate of the vertices:
%%
\coordinate (-1.00000, -1.00000, 0.00000) at (-1.00000, -1.00000, 0.00000);
\coordinate (-1.00000, 0.00000, -1.00000) at (-1.00000, 0.00000, -1.00000);

When output type is a sage.misc.latex_standalone.TikzPicture:

sage: # needs sage.plot
sage: co = polytopes.cuboctahedron()
sage: t = co.tikz([674, 108, -731], 112, output_type= TikzPicture ); t
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%

[x={(0.249656cm, -0.577639cm)},
y={(0.777700cm, -0.358578cm)},
z={(-0.576936cm, -0.733318cm)},
scale=1.000000,

...
Use print to see the full content.
...
\node[vertex] at (1.00000, 0.00000, 1.00000) {};
\node[vertex] at (1.00000, 1.00000, 0.00000) {};
%%
%%
\end{tikzpicture}
\end{document}
sage: path_to_file = t.pdf() # not tested

2.6.8 Base class for polyhedra: Methods for triangulation and volume computation

class sage.geometry.polyhedron.base7.Polyhedron_base7(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base6

Methods related to triangulation and volume.

centroid(engine='auto', **kwds)
Return the center of the mass of the polytope.

The mass is taken with respect to the induced Lebesgue measure, see volume().

If the polyhedron is not compact, a NotImplementedError is raised.

INPUT:

• engine – either ‘auto’ (default), ‘internal’, ‘TOPCOM’, or ‘normaliz’. The ‘internal’ and ‘TOPCOM’ in-
struct this package to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively.
By default (‘auto’), TOPCOM is used if it is available and internal routines otherwise.

• **kwds – keyword arguments that are passed to the triangulation engine (see triangulate()).
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OUTPUT: The centroid as vector.

ALGORITHM:

We triangulate the polytope and find the barycenter of the simplices. We add the individual barycenters
weighted by the fraction of the total mass.

EXAMPLES:

sage: P = polytopes.hypercube(2).pyramid()
sage: P.centroid()
(1/4, 0, 0)

sage: P = polytopes.associahedron([ A , 2]) #␣
→˓needs sage.combinat
sage: P.centroid() #␣
→˓needs sage.combinat
(2/21, 2/21)

sage: P = polytopes.permutahedron(4, backend= normaliz ) # optional -␣
→˓pynormaliz
sage: P.centroid() # optional -␣
→˓pynormaliz
(5/2, 5/2, 5/2, 5/2)

The method is not implemented for unbounded polyhedra:

sage: P = Polyhedron(vertices=[(0, 0)], rays=[(1, 0), (0, 1)])
sage: P.centroid()
Traceback (most recent call last):
...
NotImplementedError: the polyhedron is not compact

The centroid of an empty polyhedron is not defined:

sage: Polyhedron().centroid()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

integrate(function, measure='ambient', **kwds)
Return the integral of function over this polytope.

INPUT:

• self – Polyhedron

• function – a multivariate polynomial or a valid LattE description string for polynomials

• measure – string, the measure to use

Allowed values are:

– ambient (default): Lebesgue measure of ambient space,

– induced: Lebesgue measure of the affine hull,

– induced_nonnormalized: Lebesgue measure of the affine hull without the normalization by√︀
det(𝐴⊤𝐴) (with 𝐴 being the affine transformation matrix; see affine_hull()).

• **kwds – additional keyword arguments that are passed to the engine
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OUTPUT:

The integral of the polynomial over the polytope

Note: The polytope triangulation algorithm is used. This function depends on LattE (i.e., the latte_int
optional package).

EXAMPLES:

sage: P = polytopes.cube()
sage: x, y, z = polygens(QQ, x, y, z )
sage: P.integrate(x^2*y^2*z^2) # optional -␣
→˓latte_int
8/27

If the polyhedron has floating point coordinates, an inexact result can be obtained if we transform to rational
coordinates:

sage: P = 1.4142*polytopes.cube()
sage: P_QQ = Polyhedron(vertices=[[QQ(vi) for vi in v] for v in P.vertex_
→˓generator()])
sage: RDF(P_QQ.integrate(x^2*y^2*z^2)) # optional -␣
→˓latte_int
6.703841212195228

Integral over a non full-dimensional polytope:

sage: x, y = polygens(QQ, x, y )
sage: P = Polyhedron(vertices=[[0,0], [1,1]])
sage: P.integrate(x*y)
0
sage: ixy = P.integrate(x*y, measure= induced ); ixy # optional -␣
→˓latte_int
0.4714045207910317?
sage: ixy.parent() # optional -␣
→˓latte_int
Algebraic Real Field

Convert to a symbolic expression:

sage: ixy.radical_expression() # optional -␣
→˓latte_int
1/3*sqrt(2)

Another non full-dimensional polytope integration:

sage: R.<x, y, z> = QQ[]
sage: P = polytopes.simplex(2)
sage: V = AA(P.volume(measure= induced )) #␣
→˓needs sage.rings.number_field
sage: V.radical_expression() #␣
→˓needs sage.rings.number_field sage.symbolic
1/2*sqrt(3)
sage: P.integrate(R(1), measure= induced ) == V # optional -␣
→˓latte_int, needs sage.rings.number_field sage.symbolic
True
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Computing the mass center:

sage: (P.integrate(x, measure= induced ) # optional -␣
→˓latte_int, needs sage.rings.number_field sage.symbolic
....: / V).radical_expression()
1/3
sage: (P.integrate(y, measure= induced ) # optional -␣
→˓latte_int, needs sage.rings.number_field sage.symbolic
....: / V).radical_expression()
1/3
sage: (P.integrate(z, measure= induced ) # optional -␣
→˓latte_int, needs sage.rings.number_field sage.symbolic
....: / V).radical_expression()
1/3

triangulate(engine='auto', connected=True, fine=False, regular=None, star=None)
Return a triangulation of the polytope.

INPUT:

• engine – either ‘auto’ (default), ‘internal’, ‘TOPCOM’, or ‘normaliz’. The ‘internal’ and ‘TOPCOM’ in-
struct this package to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively.
By default (‘auto’), TOPCOM is used if it is available and internal routines otherwise.

The remaining keyword parameters are passed through to the PointConfiguration constructor:

• connected – boolean (default: True). Whether the triangulations should be connected to the regular
triangulations via bistellar flips. These are much easier to compute than all triangulations.

• fine – boolean (default: False). Whether the triangulations must be fine, that is, make use of all
points of the configuration.

• regular – boolean or None (default: None). Whether the triangulations must be regular. A regular
triangulation is one that is induced by a piecewise-linear convex support function. In other words, the
shadows of the faces of a polyhedron in one higher dimension.

– True: Only regular triangulations.

– False: Only non-regular triangulations.

– None (default): Both kinds of triangulation.

• star – either None (default) or a point. Whether the triangulations must be star. A triangulation is
star if all maximal simplices contain a common point. The central point can be specified by its index (an
integer) in the given points or by its coordinates (anything iterable.)

OUTPUT:

A triangulation of the convex hull of the vertices as a Triangulation. The indices in the triangulation
correspond to the Vrepresentation() objects.

EXAMPLES:

sage: cube = polytopes.hypercube(3)
sage: triangulation = cube.triangulate(
....: engine= internal ) # to make doctest independent of TOPCOM
sage: triangulation
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: simplex_indices = triangulation[0]; simplex_indices
(0, 1, 2, 7)
sage: simplex_vertices = [cube.Vrepresentation(i) for i in simplex_indices]
sage: simplex_vertices

(continues on next page)
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[A vertex at (1, -1, -1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
A vertex at (-1, 1, 1)]

sage: Polyhedron(simplex_vertices)
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices

It is possible to use normaliz as an engine. For this, the polyhedron should have the backend set to
normaliz:

sage: P = Polyhedron(vertices=[[0,0,1], [1,0,1], # optional -␣
→˓pynormaliz
....: [0,1,1], [1,1,1]],
....: backend= normaliz )
sage: P.triangulate(engine= normaliz ) # optional -␣
→˓pynormaliz
(<0,1,2>, <1,2,3>)

sage: P = Polyhedron(vertices=[[0,0,1], [1,0,1],
....: [0,1,1], [1,1,1]])
sage: P.triangulate(engine= normaliz )
Traceback (most recent call last):
...
TypeError: the polyhedron s backend should be normaliz

The normaliz engine can triangulate pointed cones:

sage: # optional - pynormaliz
sage: C1 = Polyhedron(rays=[[0,0,1], [1,0,1],
....: [0,1,1], [1,1,1]],
....: backend= normaliz )
sage: C1.triangulate(engine= normaliz )
(<0,1,2>, <1,2,3>)
sage: C2 = Polyhedron(rays=[[1,0,1], [0,0,1],
....: [0,1,1], [1,1,10/9]],
....: backend= normaliz )
sage: C2.triangulate(engine= normaliz )
(<0,1,2>, <1,2,3>)

They can also be affine cones:

sage: K = Polyhedron(vertices=[[1,1,1]], # optional -␣
→˓pynormaliz
....: rays=[[1,0,0], [0,1,0], [1,1,-1], [1,1,1]],
....: backend= normaliz )
sage: K.triangulate(engine= normaliz ) # optional -␣
→˓pynormaliz
(<0,1,2>, <0,1,3>)

volume(measure='ambient', engine='auto', **kwds)
Return the volume of the polytope.

INPUT:

• measure – string. The measure to use. Allowed values are:

– ambient (default): Lebesgue measure of ambient space (volume)

622 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

– induced: Lebesgue measure of the affine hull (relative volume)

– induced_rational: Scaling of the Lebesgue measure for rational polytopes, such that the unit
hypercube has volume 1

– induced_lattice: Scaling of the Lebesgue measure, such that the volume of the hypercube is
factorial(n)

• engine – string. The backend to use. Allowed values are:

– auto (default): choose engine according to measure

– internal : see triangulate()

– TOPCOM : see triangulate()

– lrs : use David Avis’s lrs program (optional)

– latte : use LattE integrale program (optional)

– normaliz : use Normaliz program (optional)

• **kwds – keyword arguments that are passed to the triangulation engine

OUTPUT:

The volume of the polytope

EXAMPLES:

sage: polytopes.hypercube(3).volume()
8
sage: (polytopes.hypercube(3)*2).volume()
64
sage: polytopes.twenty_four_cell().volume()
2

Volume of the same polytopes, using the optional package lrslib (which requires a rational polytope):

sage: I3 = polytopes.hypercube(3)
sage: I3.volume(engine= lrs ) # optional -␣
→˓lrslib
8
sage: C24 = polytopes.twenty_four_cell()
sage: C24.volume(engine= lrs ) # optional -␣
→˓lrslib
2

If the base ring is exact, the answer is exact:

sage: P5 = polytopes.regular_polygon(5) #␣
→˓needs sage.rings.number_field
sage: P5.volume() #␣
→˓needs sage.rings.number_field
2.377641290737884?

sage: polytopes.icosahedron().volume() #␣
→˓needs sage.groups sage.rings.number_field
5/12*sqrt5 + 5/4
sage: numerical_approx(_) # abs tol 1e9 #␣
→˓needs sage.groups sage.rings.number_field
2.18169499062491
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When considering lower-dimensional polytopes, we can ask for the ambient (full-dimensional), the induced
measure (of the affine hull) or, in the case of lattice polytopes, for the induced rational measure. This is
controlled by the parameter measure. Different engines may have different ideas on the definition of volume
of a lower-dimensional object:

sage: P = Polyhedron([[0, 0], [1, 1]])
sage: P.volume()
0
sage: P.volume(measure= induced ) #␣
→˓needs sage.rings.number_field
1.414213562373095?
sage: P.volume(measure= induced_rational ) # optional -␣
→˓latte_int
1

sage: # needs sage.rings.number_field
sage: S = polytopes.regular_polygon(6); S
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 6 vertices
sage: edge = S.faces(1)[4].as_polyhedron()
sage: edge.vertices()
(A vertex at (0.866025403784439?, 1/2), A vertex at (0, 1))
sage: edge.volume()
0
sage: edge.volume(measure= induced )
1

sage: # optional - pynormaliz
sage: P = Polyhedron(backend= normaliz ,
....: vertices=[[1,0,0], [0,0,1],
....: [-1,1,1], [-1,2,0]])
sage: P.volume()
0
sage: P.volume(measure= induced ) #␣
→˓needs sage.rings.number_field
2.598076211353316?
sage: P.volume(measure= induced , engine= normaliz )
2.598076211353316
sage: P.volume(measure= induced_rational ) # optional -␣
→˓latte_int
3/2
sage: P.volume(measure= induced_rational ,
....: engine= normaliz )
3/2
sage: P.volume(measure= induced_lattice )
3

The same polytope without normaliz backend:

sage: P = Polyhedron(vertices=[[1,0,0], [0,0,1], [-1,1,1], [-1,2,0]])
sage: P.volume(measure= induced_lattice , engine= latte ) # optional -␣
→˓latte_int
3

sage: # needs sage.groups sage.rings.number_field
sage: Dexact = polytopes.dodecahedron()
sage: F0 = Dexact.faces(2)[0].as_polyhedron()
sage: v = F0.volume(measure= induced , engine= internal ); v
1.53406271079097?

(continues on next page)
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sage: F4 = Dexact.faces(2)[4].as_polyhedron()
sage: v = F4.volume(measure= induced , engine= internal ); v
1.53406271079097?
sage: RDF(v) # abs tol 1e-9
1.53406271079044

sage: # needs sage.groups
sage: Dinexact = polytopes.dodecahedron(exact=False)
sage: F2 = Dinexact.faces(2)[2].as_polyhedron()
sage: w = F2.volume(measure= induced , engine= internal )
sage: RDF(w) # abs tol 1e-9
1.5340627082974878

sage: all(polytopes.simplex(d).volume(measure= induced ) #␣
→˓needs sage.rings.number_field sage.symbolic
....: == sqrt(d+1)/factorial(d)
....: for d in range(1,5))
True

sage: I = Polyhedron([[-3, 0], [0, 9]])
sage: I.volume(measure= induced ) #␣
→˓needs sage.rings.number_field
9.48683298050514?
sage: I.volume(measure= induced_rational ) # optional -␣
→˓latte_int
3

sage: T = Polyhedron([[3, 0, 0], [0, 4, 0], [0, 0, 5]])
sage: T.volume(measure= induced ) #␣
→˓needs sage.rings.number_field
13.86542462386205?
sage: T.volume(measure= induced_rational ) # optional -␣
→˓latte_int
1/2

sage: Q = Polyhedron(vertices=[(0, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 0)])
sage: Q.volume(measure= induced )
1
sage: Q.volume(measure= induced_rational ) # optional -␣
→˓latte_int
1/2

The volume of a full-dimensional unbounded polyhedron is infinity:

sage: P = Polyhedron(vertices=[[1, 0], [0, 1]], rays=[[1, 1]])
sage: P.volume()
+Infinity

The volume of a non full-dimensional unbounded polyhedron depends on the measure used:

sage: P = Polyhedron(ieqs = [[1,1,1], [-1,-1,-1], [3,1,0]]); P
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and␣
→˓1 ray
sage: P.volume()
0
sage: P.volume(measure= induced )
+Infinity

(continues on next page)
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sage: P.volume(measure= ambient )
0
sage: P.volume(measure= induced_rational ) # optional -␣
→˓pynormaliz
+Infinity
sage: P.volume(measure= induced_rational ,engine= latte )
+Infinity

The volume in 0-dimensional space is taken by counting measure:

sage: P = Polyhedron(vertices=[[]]); P
A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex
sage: P.volume()
1
sage: P = Polyhedron(vertices=[]); P
The empty polyhedron in ZZ^0
sage: P.volume()
0

2.6.9 Base class for polyhedra: Miscellaneous methods

class sage.geometry.polyhedron.base.Polyhedron_base(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None, pref_rep=None,
mutable=False, **kwds)

Bases: Polyhedron_base7

Base class for Polyhedron objects

INPUT:

• parent – the parent, an instance of Polyhedra.

• Vrep – a list [vertices, rays, lines] or None. The V-representation of the polyhedron. If
None, the polyhedron is determined by the H-representation.

• Hrep – a list [ieqs, eqns] or None. The H-representation of the polyhedron. If None, the polyhedron
is determined by the V-representation.

• Vrep_minimal (optional) – see below

• Hrep_minimal (optional) – see below

• pref_rep – string (default: None); one of Vrep or Hrep to pick this in case the backend cannot initialize
from complete double description

• mutable – ignored

If both Vrep and Hrep are provided, then Vrep_minimal and Hrep_minimal must be set to True.

barycentric_subdivision(subdivision_frac=None)
Return the barycentric subdivision of a compact polyhedron.

DEFINITION:

The barycentric subdivision of a compact polyhedron is a standard way to triangulate its faces in such a way
that maximal faces correspond to flags of faces of the starting polyhedron (i.e. a maximal chain in the face
lattice of the polyhedron). As a simplicial complex, this is known as the order complex of the face lattice of
the polyhedron.
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REFERENCE:

See Wikipedia article Barycentric_subdivision

Section 6.6, Handbook of Convex Geometry, Volume A, edited by P.M. Gruber and J.M. Wills. 1993,
North-Holland Publishing Co..

INPUT:

• subdivision_frac – number. Gives the proportion how far the new vertices are pulled out of the
polytope. Default is 1

3 and the value should be smaller than
1
2 . The subdivision is computed on the polar

polyhedron.

OUTPUT:

A Polyhedron object, subdivided as described above.

EXAMPLES:

sage: P = polytopes.hypercube(3)
sage: P.barycentric_subdivision()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull
of 26 vertices
sage: P = Polyhedron(vertices=[[0,0,0],[0,1,0],[1,0,0],[0,0,1]])
sage: P.barycentric_subdivision()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull
of 14 vertices
sage: P = Polyhedron(vertices=[[0,1,0],[0,0,1],[1,0,0]])
sage: P.barycentric_subdivision()
A 2-dimensional polyhedron in QQ^3 defined as the convex hull
of 6 vertices
sage: P = polytopes.regular_polygon(4, base_ring=QQ) #␣
→˓needs sage.rings.number_field
sage: P.barycentric_subdivision() #␣
→˓needs sage.rings.number_field
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 8
vertices

boundary_complex()

Return the simplicial complex given by the boundary faces of self, if it is simplicial.

OUTPUT:

A (spherical) simplicial complex

EXAMPLES:

The boundary complex of the octahedron:

sage: # needs sage.graphs
sage: oc = polytopes.octahedron()
sage: sc_oc = oc.boundary_complex()
sage: fl_oc = oc.face_lattice() #␣
→˓needs sage.combinat
sage: fl_sc = sc_oc.face_poset() #␣
→˓needs sage.combinat
sage: [len(x) for x in fl_oc.level_sets()] #␣
→˓needs sage.combinat
[1, 6, 12, 8, 1]
sage: [len(x) for x in fl_sc.level_sets()] #␣
→˓needs sage.combinat

(continues on next page)
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[6, 12, 8]
sage: sc_oc.euler_characteristic()
2
sage: sc_oc.homology()
{0: 0, 1: 0, 2: Z}

The polyhedron should be simplicial:

sage: c = polytopes.cube()
sage: c.boundary_complex()
Traceback (most recent call last):
...
NotImplementedError: this function is only implemented for simplicial␣
→˓polytopes

bounding_box(integral=False, integral_hull=False)
Return the coordinates of a rectangular box containing the non-empty polytope.

INPUT:

• integral – Boolean (default: False). Whether to only allow integral coordinates in the bounding
box.

• integral_hull – Boolean (default: False). If True, return a box containing the integral points
of the polytope, or None, None if it is known that the polytope has no integral points.

OUTPUT:

A pair of tuples (box_min, box_max) where box_min are the coordinates of a point bounding the
coordinates of the polytope from below and box_max bounds the coordinates from above.

EXAMPLES:

sage: Polyhedron([(1/3,2/3), (2/3, 1/3)]).bounding_box()
((1/3, 1/3), (2/3, 2/3))
sage: Polyhedron([(1/3,2/3), (2/3, 1/3)]).bounding_box(integral=True)
((0, 0), (1, 1))
sage: Polyhedron([(1/3,2/3), (2/3, 1/3)]).bounding_box(integral_hull=True)
(None, None)
sage: Polyhedron([(1/3,2/3), (3/3, 4/3)]).bounding_box(integral_hull=True)
((1, 1), (1, 1))
sage: polytopes.buckyball(exact=False).bounding_box() #␣
→˓needs sage.groups
((-0.8090169944, -0.8090169944, -0.8090169944),
(0.8090169944, 0.8090169944, 0.8090169944))

center()

Return the average of the vertices.

See also:

sage.geometry.polyhedron.base1.Polyhedron_base1.representative_point().

OUTPUT:

The center of the polyhedron. All rays and lines are ignored. Raises a ZeroDivisionError for the
empty polytope.

EXAMPLES:
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sage: p = polytopes.hypercube(3)
sage: p = p + vector([1,0,0])
sage: p.center()
(1, 0, 0)

face_fan()

Return the face fan of a compact rational polyhedron.

OUTPUT:

A fan of the ambient space as a RationalPolyhedralFan.

See also:

normal_fan().

EXAMPLES:

sage: T = polytopes.cuboctahedron()
sage: T.face_fan()
Rational polyhedral fan in 3-d lattice M

The polytope should contain the origin in the interior:

sage: P = Polyhedron(vertices=[[1/2, 1], [1, 1/2]])
sage: P.face_fan()
Traceback (most recent call last):
...
ValueError: face fans are defined only for polytopes
containing the origin as an interior point!

sage: Q = Polyhedron(vertices=[[-1, 1/2], [1, -1/2]])
sage: Q.contains([0,0])
True
sage: FF = Q.face_fan(); FF
Rational polyhedral fan in 2-d lattice M

The polytope has to have rational coordinates:

sage: S = polytopes.dodecahedron() #␣
→˓needs sage.groups sage.rings.number_field
sage: S.face_fan() #␣
→˓needs sage.groups sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: face fan handles only polytopes over the rationals

REFERENCES:

For more information, see Chapter 7 of [Zie2007].

hyperplane_arrangement()

Return the hyperplane arrangement defined by the equations and inequalities.

OUTPUT:

A hyperplane arrangement consisting of the hyperplanes defined by the Hrepresentation().
If the polytope is full-dimensional, this is the hyperplane arrangement spanned by the facets of the polyhedron.

EXAMPLES:
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sage: p = polytopes.hypercube(2)
sage: p.hyperplane_arrangement()
Arrangement <-t0 + 1 | -t1 + 1 | t1 + 1 | t0 + 1>

is_inscribed(certificate=False)

This function tests whether the vertices of the polyhedron are inscribed on a sphere.

The polyhedron is expected to be compact and full-dimensional. A full-dimensional compact polytope is
inscribed if there exists a point in space which is equidistant to all its vertices.

ALGORITHM:

The function first computes the circumsphere of a full-dimensional simplex with vertices of self. It is found
by lifting the points on a paraboloid to find the hyperplane on which the circumsphere is lifted. Then, it checks
if all other vertices are equidistant to the circumcenter of that simplex.

INPUT:

• certificate – (default: False) boolean; specifies whether to return the circumcenter, if found.

OUTPUT:

If certificate is true, returns a tuple containing:

1. Boolean.

2. The circumcenter of the polytope or None.

If certificate is false:

• a Boolean.

EXAMPLES:

sage: q = Polyhedron(vertices=[[1,1,1,1],[-1,-1,1,1],[1,-1,-1,1],
....: [-1,1,-1,1],[1,1,1,-1],[-1,-1,1,-1],
....: [1,-1,-1,-1],[-1,1,-1,-1],[0,0,10/13,-24/13],
....: [0,0,-10/13,-24/13]])
sage: q.is_inscribed(certificate=True)
(True, (0, 0, 0, 0))

sage: cube = polytopes.cube()
sage: cube.is_inscribed()
True

sage: translated_cube = Polyhedron(vertices=[v.vector() + vector([1,2,3])
....: for v in cube.vertices()])
sage: translated_cube.is_inscribed(certificate=True)
(True, (1, 2, 3))

sage: truncated_cube = cube.face_truncation(cube.faces(0)[0])
sage: truncated_cube.is_inscribed()
False

The method is not implemented for non-full-dimensional polytope or unbounded polyhedra:

sage: square = Polyhedron(vertices=[[1,0,0],[0,1,0],[1,1,0],[0,0,0]])
sage: square.is_inscribed()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for full-dimensional␣

(continues on next page)
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→˓polyhedra only

sage: p = Polyhedron(vertices=[(0,0)],rays=[(1,0),(0,1)])
sage: p.is_inscribed()
Traceback (most recent call last):
...
NotImplementedError: this function is not implemented for unbounded polyhedra

is_minkowski_summand(Y)
Test whether Y is a Minkowski summand.

See minkowski_sum().

OUTPUT:

Boolean. Whether there exists another polyhedron 𝑍 such that self can be written as 𝑌 ⊕ 𝑍.

EXAMPLES:

sage: A = polytopes.hypercube(2)
sage: B = Polyhedron(vertices=[(0,1), (1/2,1)])
sage: C = Polyhedron(vertices=[(1,1)])
sage: A.is_minkowski_summand(B)
True
sage: A.is_minkowski_summand(C)
True
sage: B.is_minkowski_summand(C)
True
sage: B.is_minkowski_summand(A)
False
sage: C.is_minkowski_summand(A)
False
sage: C.is_minkowski_summand(B)
False

normal_fan(direction='inner')
Return the normal fan of a compact full-dimensional rational polyhedron.

This returns the inner normal fan of self. For the outer normal fan, use direction= outer .

INPUT:

• direction – either inner (default) or outer ; if set to inner , use the inner normal
vectors to span the cones of the fan, if set to outer , use the outer normal vectors.

OUTPUT:

A complete fan of the ambient space as a RationalPolyhedralFan.

See also:

face_fan().

EXAMPLES:

sage: S = Polyhedron(vertices=[[0, 0], [1, 0], [0, 1]])
sage: S.normal_fan()
Rational polyhedral fan in 2-d lattice N

sage: C = polytopes.hypercube(4)

(continues on next page)
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sage: NF = C.normal_fan(); NF
Rational polyhedral fan in 4-d lattice N

Currently, it is only possible to get the normal fan of a bounded rational polytope:

sage: P = Polyhedron(rays=[[1, 0], [0, 1]])
sage: P.normal_fan()
Traceback (most recent call last):
...
NotImplementedError: the normal fan is only supported for polytopes (compact␣
→˓polyhedra).

sage: Q = Polyhedron(vertices=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: Q.normal_fan()
Traceback (most recent call last):
...
ValueError: the normal fan is only defined for full-dimensional polytopes

sage: R = Polyhedron(vertices=[[0, 0], #␣
→˓needs sage.rings.number_field sage.symbolic
....: [AA(sqrt(2)), 0],
....: [0, AA(sqrt(2))]])
sage: R.normal_fan() #␣
→˓needs sage.rings.number_field sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: normal fan handles only polytopes over the rationals

sage: P = Polyhedron(vertices=[[0,0], [2,0], [0,2], [2,1], [1,2]])
sage: P.normal_fan(direction=None)
Traceback (most recent call last):
...
TypeError: the direction should be inner or outer

sage: inner_nf = P.normal_fan()
sage: inner_nf.rays()
N( 1, 0),
N( 0, -1),
N( 0, 1),
N(-1, 0),
N(-1, -1)
in 2-d lattice N

sage: outer_nf = P.normal_fan(direction= outer )
sage: outer_nf.rays()
N( 1, 0),
N( 1, 1),
N( 0, 1),
N(-1, 0),
N( 0, -1)
in 2-d lattice N

REFERENCES:

For more information, see Chapter 7 of [Zie2007].

permutations_to_matrices(conj_class_reps, acting_group=None, additional_elts=None)
Return a dictionary between different representations of elements in the acting_group, with group el-
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ements represented as permutations of the vertices of this polytope (keys) or matrices (values).

The dictionary has entries for the generators of the acting_group and the representatives of conjugacy
classes in conj_class_reps. By default, the acting_group is the restricted_automor-
phism_group() of the polytope. Each element in additional_elts also becomes a key.

INPUT:

• conj_class_reps – list. A list of representatives of the conjugacy classes of the acting_group.

• acting_group – a subgroup of polytope’s restricted_automorphism_group().

• additional_elts – list (default=None). A subset of the restricted_automor-
phism_group() of the polytope expressed as permutations.

OUTPUT:

A dictionary between elements of the acting_group expressed as permutations (keys) and matrices (val-
ues).

EXAMPLES:

This example shows the dictionary between permutations and matrices for the generators of the re-
stricted_automorphism_group of the ±1 2-dimensional square. The permutations are written in
terms of the vertices of the square:

sage: # optional - pynormaliz, needs sage.groups
sage: square = Polyhedron(vertices=[[1,1], [-1,1],
....: [-1,-1], [1,-1]],
....: backend= normaliz )
sage: square.vertices()
(A vertex at (-1, -1),
A vertex at (-1, 1),
A vertex at (1, -1),
A vertex at (1, 1))

sage: aut_square = square.restricted_automorphism_group(output= permutation )
sage: conj_reps = aut_square.conjugacy_classes_representatives()
sage: gens_dict = square.permutations_to_matrices(conj_reps)
sage: rotation_180 = aut_square([(0,3),(1,2)])
sage: rotation_180, gens_dict[rotation_180]
(

[-1 0 0]
[ 0 -1 0]

(0,3)(1,2), [ 0 0 1]
)

This example tests the functionality for additional elements:

sage: # needs sage.groups sage.rings.real_mpfr
sage: C = polytopes.cross_polytope(2)
sage: G = C.restricted_automorphism_group(output= permutation )
sage: conj_reps = G.conjugacy_classes_representatives()
sage: add_elt = G([(0, 2, 3, 1)])
sage: dict = C.permutations_to_matrices(conj_reps,
....: additional_elts=[add_elt])
sage: dict[add_elt]
[ 0 1 0]
[-1 0 0]
[ 0 0 1]
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radius()

Return the maximal distance from the center to a vertex. All rays and lines are ignored.

OUTPUT:

The radius for a rational polyhedron is, in general, not rational. use radius_square() if you need a
rational distance measure.

EXAMPLES:

sage: p = polytopes.hypercube(4)
sage: p.radius()
2

radius_square()

Return the square of the maximal distance from the center() to a vertex. All rays and lines are ignored.

OUTPUT:

The square of the radius, which is in base_ring().

EXAMPLES:

sage: p = polytopes.permutahedron(4, project = False)
sage: p.radius_square()
5

to_linear_program(solver=None, return_variable=False, base_ring=None)
Return a linear optimization problem over the polyhedron in the form of a MixedIntegerLinearPro-
gram.

INPUT:

• solver – select a solver (MIP backend). See the documentation of for MixedIntegerLin-
earProgram. Set to None by default.

• return_variable – (default: False) If True, return a tuple (p, x), where p is the Mixed-
IntegerLinearProgram object and x is the vector-valued MIP variable in this problem, indexed
from 0. If False, only return p.

• base_ring – select a field over which the linear program should be set up. Use RDF to request a fast
inexact (floating point) solver even if self is exact.

Note that the MixedIntegerLinearProgram object will have the null function as an objective to be
maximized.

See also:

polyhedron() – return the polyhedron associated with a MixedIntegerLinearProgram object.

EXAMPLES:

Exact rational linear program:

sage: p = polytopes.cube()
sage: p.to_linear_program()
Linear Program (no objective, 3 variables, 6 constraints)
sage: lp, x = p.to_linear_program(return_variable=True)
sage: lp.set_objective(2*x[0] + 1*x[1] + 39*x[2])
sage: lp.solve()
42

(continues on next page)
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(continued from previous page)

sage: lp.get_values(x[0], x[1], x[2])
[1, 1, 1]

Floating-point linear program:

sage: lp, x = p.to_linear_program(return_variable=True, base_ring=RDF)
sage: lp.set_objective(2*x[0] + 1*x[1] + 39*x[2])
sage: lp.solve()
42.0

Irrational algebraic linear program over an embedded number field:

sage: # needs sage.groups sage.rings.number_field
sage: p = polytopes.icosahedron()
sage: lp, x = p.to_linear_program(return_variable=True)
sage: lp.set_objective(x[0] + x[1] + x[2])
sage: lp.solve()
1/4*sqrt5 + 3/4

Same example with floating point:

sage: # needs sage.groups sage.rings.number_field
sage: lp, x = p.to_linear_program(return_variable=True, base_ring=RDF)
sage: lp.set_objective(x[0] + x[1] + x[2])
sage: lp.solve() # tol 1e-5
1.3090169943749475

Same example with a specific floating point solver:

sage: # needs sage.groups sage.rings.number_field
sage: lp, x = p.to_linear_program(return_variable=True, solver= GLPK )
sage: lp.set_objective(x[0] + x[1] + x[2])
sage: lp.solve() # tol 1e-8
1.3090169943749475

Irrational algebraic linear program over 𝐴𝐴:

sage: # needs sage.groups sage.rings.number_field
sage: p = polytopes.icosahedron(base_ring=AA)
sage: lp, x = p.to_linear_program(return_variable=True)
sage: lp.set_objective(x[0] + x[1] + x[2])
sage: lp.solve() # long time
1.309016994374948?

sage.geometry.polyhedron.base.is_Polyhedron(X)

Test whether X is a Polyhedron.

INPUT:

• X – anything.

OUTPUT:

Boolean.

EXAMPLES:
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sage: p = polytopes.hypercube(2)
sage: from sage.geometry.polyhedron.base import is_Polyhedron
sage: is_Polyhedron(p)
doctest:warning...
DeprecationWarning: is_Polyhedron is deprecated, use isinstance instead
See https://github.com/sagemath/sage/issues/34307 for details.
True
sage: is_Polyhedron(123456)
False

2.6.10 Base class for polyhedra over

class sage.geometry.polyhedron.base_QQ.Polyhedron_QQ(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None, pref_rep=None,
mutable=False, **kwds)

Bases: Polyhedron_base

Base class for Polyhedra over

Hstar_function(acting_group=None, output=None)
Return𝐻* as a rational function in 𝑡 with coefficients in the ring of class functions of the acting_group
of this polytope.

Here, 𝐻*(𝑡) =
∑︀

𝑚 𝜒𝑚self𝑡
𝑚 det(𝐼𝑑 − 𝜌(𝑡)). The irreducible characters of acting_group form an

orthonormal basis for the ring of class functions with values in C. The coefficients of𝐻*(𝑡) are expressed in
this basis.

INPUT:

• acting_group – (default=None) a permgroup object. A subgroup of the polytope’s re-
stricted_automorphism_group. If None, it is set to the full restricted_automor-
phism_group of the polytope. The acting group should always use output= permutation .

• output – string. an output option. The allowed values are:

– None (default): returns the rational function 𝐻*(𝑡). 𝐻* is a rational function in 𝑡 with coefficients
in the ring of class functions.

– e_series_list : Returns a list of the ehrhart_series for the fixed_subpolytopes of each con-
jugacy class representative.

– determinant_vec : Returns a list of the determinants of 𝐼𝑑− 𝜌 * 𝑡 for each conjugacy class
representative.

– Hstar_as_lin_comb : Returns a vector of the coefficients of the irreducible representations
in the expression of 𝐻*.

– prod_det_es : Returns a vector of the product of determinants and the Ehrhart series.

– complete : Returns a list with Hstar, Hstar_as_lin_comb, character table of the acting
group, and whether Hstar is effective.

OUTPUT:

The default output is the rational function 𝐻*. 𝐻* is a rational function in 𝑡 with coefficients in the ring of
class functions. There are several output options to see the intermediary outputs of the function.

EXAMPLES:
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The 𝐻*-polynomial of the standard (𝑑 − 1)-dimensional simplex 𝑆 = 𝑐𝑜𝑛𝑣(𝑒1, . . . , 𝑒𝑑) under its re-
stricted_automorphism_group() is equal to 1 = 𝜒𝑡𝑟𝑖𝑣𝑖𝑎𝑙 (Prop 6.1 [Stap2011]). Here is the com-
putation for the 3-dimensional standard simplex:

sage: # optional - pynormaliz
sage: S = polytopes.simplex(3, backend= normaliz ); S
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
sage: G = S.restricted_automorphism_group(
....: output= permutation )
sage: G.is_isomorphic(SymmetricGroup(4))
True
sage: Hstar = S._Hstar_function_normaliz(G); Hstar
chi_4
sage: G.character_table()
[ 1 -1 1 1 -1]
[ 3 -1 0 -1 1]
[ 2 0 -1 2 0]
[ 3 1 0 -1 -1]
[ 1 1 1 1 1]

The next example is Example 7.6 in [Stap2011], and shows that𝐻* is not always a polynomial. Let P be the
polytope with vertices ±(0, 0, 1),±(1, 0, 1),±(0, 1, 1),±(1, 1, 1) and let G = /2 act on P as follows:

sage: # optional - pynormaliz
sage: P = Polyhedron(vertices=[[0,0,1], [0,0,-1], [1,0,1],
....: [-1,0,-1], [0,1,1],
....: [0,-1,-1], [1,1,1], [-1,-1,-1]],
....: backend= normaliz )
sage: K = P.restricted_automorphism_group(
....: output= permutation )
sage: G = K.subgroup(gens=[K([(0,2),(1,3),(4,6),(5,7)])])
sage: conj_reps = G.conjugacy_classes_representatives()
sage: Dict = P.permutations_to_matrices(conj_reps,
....: acting_group=G)
sage: list(Dict.keys())[0]
(0,2)(1,3)(4,6)(5,7)
sage: list(Dict.values())[0]
[-1 0 1 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 1]
sage: len(G)
2
sage: G.character_table()
[ 1 1]
[ 1 -1]

Then we calculate the rational function 𝐻*(𝑡):

sage: Hst = P._Hstar_function_normaliz(G); Hst # optional -␣
→˓pynormaliz
(chi_0*t^4 + (3*chi_0 + 3*chi_1)*t^3

+ (8*chi_0 + 2*chi_1)*t^2 + (3*chi_0 + 3*chi_1)*t + chi_0)/(t + 1)

To see the exact as written in [Stap2011], we can format it as Hstar_as_lin_comb . The first coordi-
nate is the coefficient of the trivial character; the second is the coefficient of the sign character:
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sage: lin = P._Hstar_function_normaliz( # optional -␣
→˓pynormaliz
....: G, output= Hstar_as_lin_comb ); lin
((t^4 + 3*t^3 + 8*t^2 + 3*t + 1)/(t + 1),
(3*t^3 + 2*t^2 + 3*t)/(t + 1))

ehrhart_polynomial(engine=None, variable='t', verbose=False, dual=None, irrational_primal=None,
irrational_all_primal=None, maxdet=None, no_decomposition=None,
compute_vertex_cones=None, smith_form=None, dualization=None,
triangulation=None, triangulation_max_height=None, **kwds)

Return the Ehrhart polynomial of this polyhedron.

The polyhedronmust be a lattice polytope. Let𝑃 be a lattice polytope inR𝑑 and define𝐿(𝑃, 𝑡) = #(𝑡𝑃∩ 𝑑).
Then E. Ehrhart proved in 1962 that 𝐿 coincides with a rational polynomial of degree 𝑑 for integer 𝑡. 𝐿 is
called the Ehrhart polynomial of 𝑃 . For more information see the Wikipedia article Ehrhart_polynomial.
The Ehrhart polynomial may be computed using either LattE Integrale or Normaliz by setting engine to
‘latte’ or ‘normaliz’ respectively.

INPUT:

• engine – string; The backend to use. Allowed values are:

– None (default); When no input is given the Ehrhart polynomial is computed using LattE Integrale
(optional)

– latte ; use LattE integrale program (optional)

– normaliz ; use Normaliz program (optional package pynormaliz). The backend of selfmust
be set to normaliz .

• variable – string (default: t ); The variable in which the Ehrhart polynomial should be expressed.

• When the engine is latte , the additional input values are:

– verbose – boolean (default: False); If True, print the whole output of the LattE command.

The following options are passed to the LattE command, for details consult the LattE documentation:

– dual – boolean; triangulate and signed-decompose in the dual space

– irrational_primal – boolean; triangulate in the dual space, signed-decompose in the primal
space using irrationalization.

– irrational_all_primal – boolean; triangulate and signed-decompose in the primal space
using irrationalization.

– maxdet – integer; decompose down to an index (determinant) of maxdet instead of index 1
(unimodular cones).

– no_decomposition – boolean; do not signed-decompose simplicial cones.

– compute_vertex_cones – string; either ‘cdd’ or ‘lrs’ or ‘4ti2’

– smith_form – string; either ‘ilio’ or ‘lidia’

– dualization – string; either ‘cdd’ or ‘4ti2’

– triangulation – string; ‘cddlib’, ‘4ti2’ or ‘topcom’

– triangulation_max_height – integer; use a uniform distribution of height from 1 to this
number
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OUTPUT:

A univariate polynomial in variable over a rational field.

See also:

latte the interface to LattE Integrale PyNormaliz

EXAMPLES:

To start, we find the Ehrhart polynomial of a three-dimensional simplex, first using engine= latte .
Leaving the engine unspecified sets the engine to latte by default:

sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
sage: simplex = simplex.change_ring(QQ)
sage: poly = simplex.ehrhart_polynomial(engine= latte ) # optional -␣
→˓latte_int
sage: poly # optional -␣
→˓latte_int
7/2*t^3 + 2*t^2 - 1/2*t + 1
sage: poly(1) # optional -␣
→˓latte_int
6
sage: len(simplex.integral_points())
6
sage: poly(2) # optional -␣
→˓latte_int
36
sage: len((2*simplex).integral_points())
36

Now we find the same Ehrhart polynomial, this time using engine= normaliz . To use the Normaliz
engine, the simplex must be defined with backend= normaliz :

sage: # optional - pynormaliz
sage: simplex = Polyhedron(vertices=[(0,0,0), (3,3,3),
....: (-3,2,1), (1,-1,-2)],
....: backend= normaliz )
sage: simplex = simplex.change_ring(QQ)
sage: poly = simplex.ehrhart_polynomial(engine= normaliz )
sage: poly
7/2*t^3 + 2*t^2 - 1/2*t + 1

If the engine= normaliz , the backend should be normaliz , otherwise it returns an error:

sage: simplex = Polyhedron(vertices=[(0,0,0), (3,3,3),
....: (-3,2,1), (1,-1,-2)])
sage: simplex = simplex.change_ring(QQ)
sage: simplex.ehrhart_polynomial(engine= normaliz )
Traceback (most recent call last):
...
TypeError: The backend of the polyhedron should be normaliz

The polyhedron should be compact:

sage: C = Polyhedron(rays=[[1,2], [2,1]], # optional -␣
→˓pynormaliz
....: backend= normaliz )
sage: C = C.change_ring(QQ) # optional -␣
→˓pynormaliz

(continues on next page)
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sage: C.ehrhart_polynomial() # optional -␣
→˓pynormaliz
Traceback (most recent call last):
...
ValueError: Ehrhart polynomial only defined for compact polyhedra

The polyhedron should have integral vertices:

sage: L = Polyhedron(vertices=[[0], [1/2]])
sage: L.ehrhart_polynomial()
Traceback (most recent call last):
...
TypeError: the polytope has nonintegral vertices, use ehrhart_quasipolynomial␣
→˓with backend normaliz

ehrhart_quasipolynomial(variable='t', engine=None, verbose=False, dual=None,
irrational_primal=None, irrational_all_primal=None, maxdet=None,
no_decomposition=None, compute_vertex_cones=None, smith_form=None,
dualization=None, triangulation=None, triangulation_max_height=None,
**kwds)

Compute the Ehrhart quasipolynomial of this polyhedron with rational vertices.

If the polyhedron is a lattice polytope, returns the Ehrhart polynomial, a univariate polynomial in variable
over a rational field. If the polyhedron has rational, nonintegral vertices, returns a tuple of polynomials in
variable over a rational field. The Ehrhart counting function of a polytope 𝑃 with rational vertices is given
by a quasipolynomial. That is, there exists a positive integer 𝑙 and 𝑙 polynomials 𝑒ℎ𝑟𝑃,𝑖 for 𝑖 ∈ {1, . . . , 𝑙}
such that if 𝑡 is equivalent to 𝑖 mod 𝑙 then 𝑡𝑃 ∩ Z𝑑 = 𝑒ℎ𝑟𝑃,𝑖(𝑡).

INPUT:

• variable – string (default: t ); The variable in which the Ehrhart polynomial should be expressed.

• engine – string; The backend to use. Allowed values are:

– None (default); When no input is given the Ehrhart polynomial is computed using Normaliz (op-
tional)

– latte ; use LattE Integrale program (requires optional package ‘latte_int’)

– normaliz ; use the Normaliz program (requires optional package ‘pynormaliz’). The backend
of self must be set to ‘normaliz’.

• When the engine is ‘latte’, the additional input values are:

– verbose – boolean (default: False); If True, print the whole output of the LattE command.

The following options are passed to the LattE command, for details consult the LattE documentation:

– dual – boolean; triangulate and signed-decompose in the dual space

– irrational_primal – boolean; triangulate in the dual space, signed-decompose in the primal
space using irrationalization.

– irrational_all_primal – boolean; triangulate and signed-decompose in the primal space
using irrationalization.

– maxdet – integer; decompose down to an index (determinant) of maxdet instead of index 1
(unimodular cones).

– no_decomposition – boolean; do not signed-decompose simplicial cones.
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– compute_vertex_cones – string; either cdd or lrs or 4ti2

– smith_form – string; either ilio or lidia

– dualization – string; either cdd or 4ti2

– triangulation – string; cddlib , 4ti2 or topcom

– triangulation_max_height – integer; use a uniform distribution of height from 1 to this
number

OUTPUT:

A univariate polynomial over a rational field or a tuple of such polynomials.

See also:

latte the interface to LattE Integrale PyNormaliz

Warning: If the polytope has rational, non integral vertices, it must have backend= normaliz .

EXAMPLES:

As a first example, consider the line segment [0,1/2]. If we dilate this line segment by an even integral factor
𝑘, then the dilated line segment will contain 𝑘/2 + 1 lattice points. If 𝑘 is odd then there will be 𝑘/2 + 1/2
lattice points in the dilated line segment. Note that it is necessary to set the backend of the polytope to
‘normaliz’:

sage: line_seg = Polyhedron(vertices=[[0], [1/2]], # optional -␣
→˓pynormaliz
....: backend= normaliz ); line_seg
A 1-dimensional polyhedron in QQ^1 defined as the convex hull of 2 vertices
sage: line_seg.ehrhart_quasipolynomial() # optional -␣
→˓pynormaliz
(1/2*t + 1, 1/2*t + 1/2)

For a more exciting example, let us look at the subpolytope of the 3 dimensional permutahedron fixed by the
reflection across the hyperplane 𝑥1 = 𝑥4:

sage: verts = [[3/2, 3, 4, 3/2],
....: [3/2, 4, 3, 3/2],
....: [5/2, 1, 4, 5/2],
....: [5/2, 4, 1, 5/2],
....: [7/2, 1, 2, 7/2],
....: [7/2, 2, 1, 7/2]]
sage: subpoly = Polyhedron(vertices=verts, # optional -␣
→˓pynormaliz
....: backend= normaliz )
sage: eq = subpoly.ehrhart_quasipolynomial(); eq # optional -␣
→˓pynormaliz
(4*t^2 + 3*t + 1, 4*t^2 + 2*t)
sage: eq = subpoly.ehrhart_quasipolynomial(); eq # optional -␣
→˓pynormaliz
(4*t^2 + 3*t + 1, 4*t^2 + 2*t)
sage: even_ep = eq[0] # optional -␣
→˓pynormaliz
sage: odd_ep = eq[1] # optional -␣
→˓pynormaliz
sage: even_ep(2) # optional -␣

(continues on next page)
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→˓pynormaliz
23
sage: ts = 2*subpoly # optional -␣
→˓pynormaliz
sage: ts.integral_points_count() # optional -␣
→˓pynormaliz latte_int
23
sage: odd_ep(1) # optional -␣
→˓pynormaliz
6
sage: subpoly.integral_points_count() # optional -␣
→˓pynormaliz latte_int
6

A polytope with rational nonintegral vertices must have backend= normaliz :

sage: line_seg = Polyhedron(vertices=[[0], [1/2]])
sage: line_seg.ehrhart_quasipolynomial()
Traceback (most recent call last):
...
TypeError: The backend of the polyhedron should be normaliz

The polyhedron should be compact:

sage: C = Polyhedron(rays=[[1/2,2], [2,1]], # optional -␣
→˓pynormaliz
....: backend= normaliz )
sage: C.ehrhart_quasipolynomial() # optional -␣
→˓pynormaliz
Traceback (most recent call last):
...
ValueError: Ehrhart quasipolynomial only defined for compact polyhedra

If the polytope happens to be a lattice polytope, the Ehrhart polynomial is returned:

sage: # optional - pynormaliz
sage: simplex = Polyhedron(vertices=[(0,0,0), (3,3,3),
....: (-3,2,1), (1,-1,-2)],
....: backend= normaliz )
sage: simplex = simplex.change_ring(QQ)
sage: poly = simplex.ehrhart_quasipolynomial(
....: engine= normaliz ); poly
7/2*t^3 + 2*t^2 - 1/2*t + 1
sage: simplex.ehrhart_polynomial() # optional -␣
→˓latte_int
7/2*t^3 + 2*t^2 - 1/2*t + 1

fixed_subpolytope(vertex_permutation)

Return the fixed subpolytope of this polytope by the cyclic action of vertex_permutation.

The fixed subpolytope of this polytope under the vertex_permutation is the subset of this polytope
that is fixed pointwise.

INPUT:

• vertex_permutation – permutation; a permutation of the vertices of self.

OUTPUT:

642 Chapter 2. Polyhedral computations



Combinatorial and Discrete Geometry, Release 10.4.rc1

A subpolytope of self.

Note: The vertex_permutation is obtained as a permutation of the vertices represented as a permutation.
For example, vertex_permutation = self.restricted_automorphism_group(output=’permutation’).

Requiring a lattice polytope as opposed to a rational polytope as input is purely conventional.

EXAMPLES:

The fixed subpolytopes of the cube can be obtained as follows:

sage: Cube = polytopes.cube(backend = normaliz ) # optional -␣
→˓pynormaliz
sage: AG = Cube.restricted_automorphism_group( # optional -␣
→˓pynormaliz
....: output= permutation )
sage: reprs = AG.conjugacy_classes_representatives() # optional -␣
→˓pynormaliz

The fixed subpolytope of the identity element of the group is the entire cube:

sage: reprs[0] # optional -␣
→˓pynormaliz
()
sage: Cube.fixed_subpolytope(vertex_permutation=reprs[0]) # optional -␣
→˓pynormaliz
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 8
vertices
sage: _.vertices() # optional -␣
→˓pynormaliz
(A vertex at (-1, -1, -1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1),
A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1))

You can obtain non-trivial examples:

sage: G = AG([(0,1),(2,3),(4,5),(6,7)]) # optional -␣
→˓pynormaliz
sage: fsp = Cube.fixed_subpolytope(G); fsp # optional -␣
→˓pynormaliz
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
sage: fsp.vertices() # optional -␣
→˓pynormaliz
(A vertex at (-1, -1, 0),
A vertex at (-1, 1, 0),
A vertex at (1, -1, 0),
A vertex at (1, 1, 0))

The next example shows that fixed_subpolytope() works for rational polytopes:

sage: # optional - pynormaliz
sage: P = Polyhedron(vertices=[[0], [1/2]],

(continues on next page)
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....: backend= normaliz )
sage: P.vertices()
(A vertex at (0), A vertex at (1/2))
sage: G = P.restricted_automorphism_group(
....: output= permutation ); G
Permutation Group with generators [(0,1)]
sage: len(G)
2
sage: fixed_set = P.fixed_subpolytope(G.gens()[0])
sage: fixed_set
A 0-dimensional polyhedron in QQ^1 defined as the convex hull of 1 vertex
sage: fixed_set.vertices_list()
[[1/4]]

fixed_subpolytopes(conj_class_reps)
Return the fixed subpolytopes of this polytope under the actions of the given conjugacy class representatives.

The conj_class_reps are representatives of the conjugacy classes of a subgroup of the automorphism
group of this polytope. For an element of the automorphism group, the fixed subpolytope is the subset of this
polytope that is fixed pointwise.

INPUT:

• conj_class_reps – a list of representatives of the conjugacy classes of the subgroup of the re-
stricted_automorphism_group() of the polytope. Each element is written as a permutation
of the vertices of the polytope.

OUTPUT:

A dictionary where the elements of conj_class_reps are keys and the fixed subpolytopes are values.

Note: Two elements in the same conjugacy class fix lattice-isomorphic subpolytopes.

EXAMPLES:

Here is an example for the square:

sage: # optional - pynormaliz, needs sage.groups
sage: p = polytopes.hypercube(2, backend= normaliz ); p
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: aut_p = p.restricted_automorphism_group(
....: output= permutation )
sage: aut_p.order()
8
sage: conj_list = aut_p.conjugacy_classes_representatives()
sage: fixedpolytopes_dict = p.fixed_subpolytopes(conj_list)
sage: fixedpolytopes_dict[aut_p([(0,3),(1,2)])]
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex

integral_points_count(verbose=False, use_Hrepresentation=False,
explicit_enumeration_threshold=1000, preprocess=True, **kwds)

Return the number of integral points in the polyhedron.

This method uses the optional package latte_int if an estimate for lattice points based on bounding boxes
exceeds explicit_enumeration_threshold.

INPUT:
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• verbose – (boolean; False by default) whether to display verbose output.

• use_Hrepresentation – (boolean; False by default) – whether to send the H or V representation
to LattE

• preprocess – (boolean; True by default) whether, if the integral hull is known to lie in a coordinate
hyperplane, to tighten bounds to reduce dimension

See also:

latte the interface to LattE interfaces

EXAMPLES:

sage: P = polytopes.cube()
sage: P.integral_points_count()
27
sage: P.integral_points_count(explicit_enumeration_threshold=0) # optional -␣
→˓latte_int
27

Weenlarge the polyhedron to force the use of the generating functionmethods implemented in LattE integrale,
rather than explicit enumeration:

sage: (1000000000*P).integral_points_count(verbose=True) # optional -␣
→˓latte_int
This is LattE integrale...
...
Total time:...
8000000012000000006000000001

We shrink the polyhedron a little bit:

sage: Q = P*(8/9)
sage: Q.integral_points_count()
1
sage: Q.integral_points_count(explicit_enumeration_threshold=0)
1

Unbounded polyhedra (with or without lattice points) are not supported:

sage: P = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]])
sage: P.integral_points_count()
Traceback (most recent call last):
...
NotImplementedError: ...
sage: P = Polyhedron(vertices=[[1, 1]], rays=[[1, 1]])
sage: P.integral_points_count()
Traceback (most recent call last):
...
NotImplementedError: ...

“Fibonacci” knapsacks (preprocessing helps a lot):

sage: def fibonacci_knapsack(d, b, backend=None):
....: lp = MixedIntegerLinearProgram(base_ring=QQ)
....: x = lp.new_variable(nonnegative=True)
....: lp.add_constraint(lp.sum(fibonacci(i+3)*x[i] for i in range(d)) <=␣
→˓b)

(continues on next page)
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....: return lp.polyhedron(backend=backend)
sage: fibonacci_knapsack(20, 12).integral_points_count() # does not finish␣
→˓with preprocess=False # needs sage.combinat
33

is_effective(Hstar, Hstar_as_lin_comb)
Test for the effectiveness of the Hstar series of this polytope.

The Hstar series of the polytope is determined by the action of a subgroup of the polytope’s re-
stricted_automorphism_group(). The Hstar series is effective if it is a polynomial in 𝑡 and
the coefficient of each 𝑡𝑖 is an effective character in the ring of class functions of the acting group. A charac-
ter 𝜌 is effective if the coefficients of the irreducible representations in the expression of 𝜌 are non-negative
integers.

INPUT:

• Hstar – a rational function in 𝑡 with coefficients in the ring of class functions.

• Hstar_as_lin_comb – vector. The coefficients of the irreducible representations of the acting group
in the expression of Hstar as a linear combination of irreducible representations with coefficients in
the field of rational functions in 𝑡.

OUTPUT:

Boolean. Whether the Hstar series is effective.

See also:

Hstar_function()

EXAMPLES:

The 𝐻* series of the two-dimensional permutahedron under the action of the symmetric group is effective:

sage: # optional - pynormaliz
sage: p3 = polytopes.permutahedron(3, backend= normaliz )
sage: G = p3.restricted_automorphism_group(
....: output= permutation )
sage: reflection12 = G([(0,2),(1,4),(3,5)])
sage: reflection23 = G([(0,1),(2,3),(4,5)])
sage: S3 = G.subgroup(gens=[reflection12, reflection23])
sage: S3.is_isomorphic(SymmetricGroup(3))
True
sage: Hstar = p3.Hstar_function(S3)
sage: Hlin = p3.Hstar_function(S3,
....: output= Hstar_as_lin_comb )
sage: p3.is_effective(Hstar, Hlin)
True

If the 𝐻*-series is not polynomial, then it is not effective:

sage: # optional - pynormaliz
sage: P = Polyhedron(vertices=[[0,0,1], [0,0,-1], [1,0,1],
....: [-1,0,-1], [0,1,1],
....: [0,-1,-1], [1,1,1], [-1,-1,-1]],
....: backend= normaliz )
sage: G = P.restricted_automorphism_group(
....: output= permutation )
sage: H = G.subgroup(gens=[G([(0,2),(1,3),(4,6),(5,7)])])

(continues on next page)
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sage: Hstar = P.Hstar_function(H); Hstar
(chi_0*t^4 + (3*chi_0 + 3*chi_1)*t^3

+ (8*chi_0 + 2*chi_1)*t^2 + (3*chi_0 + 3*chi_1)*t + chi_0)/(t + 1)
sage: Hstar_lin = P.Hstar_function(H,
....: output= Hstar_as_lin_comb )
sage: P.is_effective(Hstar, Hstar_lin)
False

2.6.11 Base class for polyhedra over

class sage.geometry.polyhedron.base_ZZ.Polyhedron_ZZ(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None, pref_rep=None,
mutable=False, **kwds)

Bases: Polyhedron_QQ

Base class for Polyhedra over

ehrhart_polynomial(engine=None, variable='t', verbose=False, dual=None, irrational_primal=None,
irrational_all_primal=None, maxdet=None, no_decomposition=None,
compute_vertex_cones=None, smith_form=None, dualization=None,
triangulation=None, triangulation_max_height=None, **kwds)

Return the Ehrhart polynomial of this polyhedron.

Let 𝑃 be a lattice polytope in R𝑑 and define 𝐿(𝑃, 𝑡) = #(𝑡𝑃 ∩ 𝑑). Then E. Ehrhart proved in 1962 that 𝐿
coincides with a rational polynomial of degree 𝑑 for integer 𝑡. 𝐿 is called the Ehrhart polynomial of 𝑃 . For
more information see the Wikipedia article Ehrhart_polynomial.

The Ehrhart polynomial may be computed using either LattE Integrale or Normaliz by setting engine to
‘latte’ or ‘normaliz’ respectively.

INPUT:

• engine – string; The backend to use. Allowed values are:

– None (default); When no input is given the Ehrhart polynomial is computed using LattE Integrale
(optional)

– latte ; use LattE integrale program (optional)

– normaliz ; use Normaliz program (optional). The backend of self must be set to ‘normaliz’.

• variable – string (default: ‘t’); The variable in which the Ehrhart polynomial should be expressed.

• When the engine is ‘latte’ or None, the additional input values are:

– verbose – boolean (default: False); if True, print the whole output of the LattE command.

The following options are passed to the LattE command, for details consult the LattE documentation:

– dual – boolean; triangulate and signed-decompose in the dual space

– irrational_primal – boolean; triangulate in the dual space, signed-decompose in the primal
space using irrationalization.

– irrational_all_primal – boolean; Triangulate and signed-decompose in the primal space
using irrationalization.

– maxdet – integer; decompose down to an index (determinant) of maxdet instead of index 1
(unimodular cones).
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– no_decomposition – boolean; do not signed-decompose simplicial cones.

– compute_vertex_cones – string; either ‘cdd’ or ‘lrs’ or ‘4ti2’

– smith_form – string; either ‘ilio’ or ‘lidia’

– dualization – string; either ‘cdd’ or ‘4ti2’

– triangulation – string; ‘cddlib’, ‘4ti2’ or ‘topcom’

– triangulation_max_height – integer; use a uniform distribution of height from 1 to this
number

OUTPUT:

The Ehrhart polynomial as a univariate polynomial in variable over a rational field.

See also:

latte the interface to LattE Integrale PyNormaliz

EXAMPLES:

To start, we find the Ehrhart polynomial of a three-dimensional simplex, first using engine= latte .
Leaving the engine unspecified sets the engine to ‘latte’ by default:

sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
sage: poly = simplex.ehrhart_polynomial(engine = latte ) # optional - latte_
→˓int
sage: poly # optional - latte_
→˓int
7/2*t^3 + 2*t^2 - 1/2*t + 1
sage: poly(1) # optional - latte_
→˓int
6
sage: len(simplex.integral_points())
6
sage: poly(2) # optional - latte_
→˓int
36
sage: len((2*simplex).integral_points())
36

Now we find the same Ehrhart polynomial, this time using engine= normaliz . To use the Normaliz
engine, the simplex must be defined with backend= normaliz :

sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)],␣
→˓backend= normaliz ) # optional - pynormaliz
sage: poly = simplex.ehrhart_polynomial(engine= normaliz ) # optional -␣
→˓pynormaliz
sage: poly # optional -␣
→˓pynormaliz
7/2*t^3 + 2*t^2 - 1/2*t + 1

If the engine= normaliz , the backend should be normaliz , otherwise it returns an error:

sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
sage: simplex.ehrhart_polynomial(engine= normaliz )
Traceback (most recent call last):
...
TypeError: The polyhedron s backend should be normaliz
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Now we find the Ehrhart polynomials of the unit hypercubes of dimensions three through six. They are
computed first withengine= latte and then withengine= normaliz . The degree of the Ehrhart
polynomial matches the dimension of the hypercube, and the coefficient of the leading monomial equals the
volume of the unit hypercube:

sage: # optional - latte_int
sage: from itertools import product
sage: def hypercube(d):
....: return Polyhedron(vertices=list(product([0,1],repeat=d)))
sage: hypercube(3).ehrhart_polynomial()
t^3 + 3*t^2 + 3*t + 1
sage: hypercube(4).ehrhart_polynomial()
t^4 + 4*t^3 + 6*t^2 + 4*t + 1
sage: hypercube(5).ehrhart_polynomial()
t^5 + 5*t^4 + 10*t^3 + 10*t^2 + 5*t + 1
sage: hypercube(6).ehrhart_polynomial()
t^6 + 6*t^5 + 15*t^4 + 20*t^3 + 15*t^2 + 6*t + 1

sage: # optional - pynormaliz
sage: from itertools import product
sage: def hypercube(d):
....: return Polyhedron(vertices=list(product([0,1],repeat=d)),backend=
→˓ normaliz )
sage: hypercube(3).ehrhart_polynomial(engine= normaliz )
t^3 + 3*t^2 + 3*t + 1
sage: hypercube(4).ehrhart_polynomial(engine= normaliz )
t^4 + 4*t^3 + 6*t^2 + 4*t + 1
sage: hypercube(5).ehrhart_polynomial(engine= normaliz )
t^5 + 5*t^4 + 10*t^3 + 10*t^2 + 5*t + 1
sage: hypercube(6).ehrhart_polynomial(engine= normaliz )
t^6 + 6*t^5 + 15*t^4 + 20*t^3 + 15*t^2 + 6*t + 1

An empty polyhedron:

sage: p = Polyhedron(ambient_dim=3, vertices=[])
sage: p.ehrhart_polynomial()
0
sage: parent(_)
Univariate Polynomial Ring in t over Rational Field

The polyhedron should be compact:

sage: C = Polyhedron(rays=[[1,2],[2,1]])
sage: C.ehrhart_polynomial()
Traceback (most recent call last):
...
ValueError: Ehrhart polynomial only defined for compact polyhedra

fibration_generator(dim)

Generate the lattice polytope fibrations.

For the purposes of this function, a lattice polytope fiber is a sub-lattice polytope. Projecting the plane spanned
by the subpolytope to a point yields another lattice polytope, the base of the fibration.

INPUT:

• dim – integer. The dimension of the lattice polytope fiber.

OUTPUT:
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A generator yielding the distinct lattice polytope fibers of given dimension.

EXAMPLES:

sage: P = Polyhedron(toric_varieties.P4_11169().fan().rays(), base_ring=ZZ) ␣
→˓ # needs palp sage.graphs
sage: list(P.fibration_generator(2)) #␣
→˓needs palp sage.graphs
[A 2-dimensional polyhedron in ZZ^4 defined as the convex hull of 3 vertices]

find_translation(translated_polyhedron)
Return the translation vector to translated_polyhedron.

INPUT:

• translated_polyhedron – a polyhedron.

OUTPUT:

A -vector that translates self to translated_polyhedron. A ValueError is raised if trans-
lated_polyhedron is not a translation of self, this can be used to check that two polyhedra are not
translates of each other.

EXAMPLES:

sage: X = polytopes.cube()
sage: X.find_translation(X + vector([2,3,5]))
(2, 3, 5)
sage: X.find_translation(2*X)
Traceback (most recent call last):
...
ValueError: polyhedron is not a translation of self

has_IP_property()

Test whether the polyhedron has the IP property.

The IP (interior point) property means that

• self is compact (a polytope).

• self contains the origin as an interior point.

This implies that

• self is full-dimensional.

• The dual polyhedron is again a polytope (that is, a compact polyhedron), though not necessarily a lattice
polytope.

EXAMPLES:

sage: Polyhedron([(1,1),(1,0),(0,1)], base_ring=ZZ).has_IP_property()
False
sage: Polyhedron([(0,0),(1,0),(0,1)], base_ring=ZZ).has_IP_property()
False
sage: Polyhedron([(-1,-1),(1,0),(0,1)], base_ring=ZZ).has_IP_property()
True

REFERENCES:

• [PALP]
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is_lattice_polytope()

Return whether the polyhedron is a lattice polytope.

OUTPUT:

True if the polyhedron is compact and has only integral vertices, False otherwise.

EXAMPLES:

sage: polytopes.cross_polytope(3).is_lattice_polytope()
True
sage: polytopes.regular_polygon(5).is_lattice_polytope() #␣
→˓needs sage.rings.number_field
False

is_reflexive()

A lattice polytope is reflexive if it contains the origin in its interior and its polar with respect to the origin is
a lattice polytope.

Equivalently, it is reflexive if it is of the form {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 1} for some integer matrix 𝐴 and 𝑑 the
ambient dimension.

EXAMPLES:

sage: p = Polyhedron(vertices=[(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)], base_
→˓ring=ZZ)
sage: p.is_reflexive()
True
sage: polytopes.hypercube(4).is_reflexive()
True
sage: p = Polyhedron(vertices=[(1,0), (0,2), (-1,0), (0,-1)], base_ring=ZZ)
sage: p.is_reflexive()
False
sage: p = Polyhedron(vertices=[(1,0), (0,2), (-1,0)], base_ring=ZZ)
sage: p.is_reflexive()
False

An error is raised, if the polyhedron is not compact:

sage: p = Polyhedron(rays=[(1,)], base_ring=ZZ)
sage: p.is_reflexive()
Traceback (most recent call last):
...
ValueError: the polyhedron is not compact

minkowski_decompositions()

Return all Minkowski sums that add up to the polyhedron.

OUTPUT:

A tuple consisting of pairs (𝑋,𝑌 ) of -polyhedra that add up to self. All pairs up to exchange of the
summands are returned, that is, (𝑌,𝑋) is not included if (𝑋,𝑌 ) already is.

EXAMPLES:

sage: square = Polyhedron(vertices=[(0,0),(1,0),(0,1),(1,1)])
sage: square.minkowski_decompositions()
((A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex,

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4␣

(continues on next page)
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(continued from previous page)

→˓vertices),
(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices,
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2␣

→˓vertices))

Example from http://cgi.di.uoa.gr/~amantzaf/geo/

sage: Q = Polyhedron(vertices=[(4,0), (6,0), (0,3), (4,3)])
sage: R = Polyhedron(vertices=[(0,0), (5,0), (8,4), (3,2)])
sage: (Q+R).minkowski_decompositions()
((A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex,

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7␣
→˓vertices),
(A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4␣

→˓vertices),
(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7␣

→˓vertices),
(A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 5␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4␣

→˓vertices),
(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7␣

→˓vertices),
(A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 5␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3␣

→˓vertices),
(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7␣

→˓vertices),
(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2␣

→˓vertices,
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 6␣

→˓vertices))

sage: [ len(square.dilation(i).minkowski_decompositions())
....: for i in range(6) ]
[1, 2, 5, 8, 13, 18]
sage: [ integer_ceil((i^2 + 2*i - 1) / 2) + 1 for i in range(10) ]
[1, 2, 5, 8, 13, 18, 25, 32, 41, 50]

normal_form(algorithm='palp_native', permutation=False)
Return the normal form of vertices of the lattice polytope self.

INPUT:

• algorithm – must be "palp_native", the default.

• permutation – boolean (default: False); if True, the permutation applied to vertices to obtain the
normal form is returned as well.
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For more more detail, see normal_form().

EXAMPLES:

We compute the normal form of the “diamond”:

sage: d = Polyhedron([(1,0), (0,1), (-1,0), (0,-1)])
sage: d.vertices()
(A vertex at (-1, 0),
A vertex at (0, -1),
A vertex at (0, 1),
A vertex at (1, 0))

sage: d.normal_form() #␣
→˓needs sage.groups
[(1, 0), (0, 1), (0, -1), (-1, 0)]
sage: d.lattice_polytope().normal_form("palp_native") #␣
→˓needs sage.groups
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M

Using permutation=True:

sage: d.normal_form(permutation=True) #␣
→˓needs sage.groups
([(1, 0), (0, 1), (0, -1), (-1, 0)], ())

It is not possible to compute normal forms for polytopes which do not span the space:

sage: p = Polyhedron([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.normal_form()
Traceback (most recent call last):
...
ValueError: normal form is not defined for lower-dimensional polyhedra, got
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices

The normal form is also not defined for unbounded polyhedra:

sage: p = Polyhedron(vertices=[[1, 1]], rays=[[1, 0], [0, 1]], base_ring=ZZ)
sage: p.normal_form()
Traceback (most recent call last):
...
ValueError: normal form is not defined for unbounded polyhedra, got
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and␣
→˓2 rays

See Issue #15280 for proposed extensions to these cases.

polar()

Return the polar (dual) polytope.

The polytope must have the IP-property (see has_IP_property()), that is, the origin must be an interior
point. In particular, it must be full-dimensional.

OUTPUT:

The polytope whose vertices are the coefficient vectors of the inequalities of self with inhomogeneous term
normalized to unity.
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EXAMPLES:

sage: p = Polyhedron(vertices=[(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)], base_
→˓ring=ZZ)
sage: p.polar()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices
sage: type(_)
<class sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category.
→˓element_class >
sage: p.polar().base_ring()
Integer Ring

2.6.12 Base class for polyhedra over RDF

class sage.geometry.polyhedron.base_RDF.Polyhedron_RDF(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None, mutable=False,
**kwds)

Bases: Polyhedron_base

Base class for polyhedra over RDF.

2.7 Backends for Polyhedra

2.7.1 The cdd backend for polyhedral computations

class sage.geometry.polyhedron.backend_cdd.Polyhedron_QQ_cdd(parent, Vrep, Hrep,
**kwds)

Bases: Polyhedron_cdd, Polyhedron_QQ

Polyhedra over QQ with cdd

INPUT:

• parent – the parent, an instance of Polyhedra.

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: parent = Polyhedra(QQ, 2, backend= cdd )
sage: from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd
sage: Polyhedron_QQ_cdd(parent, [ [(1,0),(0,1),(0,0)], [], []], None,␣
→˓verbose=False)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices

class sage.geometry.polyhedron.backend_cdd.Polyhedron_cdd(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None,
mutable=False, **kwds)
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Bases: Polyhedron_base

Base class for the cdd backend.

2.7.2 The cdd backend for polyhedral computations, floating point version

class sage.geometry.polyhedron.backend_cdd_rdf.Polyhedron_RDF_cdd(parent, Vrep,
Hrep, **kwds)

Bases: Polyhedron_cdd, Polyhedron_RDF

Polyhedra over RDF with cdd

INPUT:

• ambient_dim – integer. The dimension of the ambient space.

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: parent = Polyhedra(RDF, 2, backend= cdd )
sage: from sage.geometry.polyhedron.backend_cdd_rdf import Polyhedron_RDF_cdd
sage: Polyhedron_RDF_cdd(parent, [ [(1,0),(0,1),(0,0)], [], []], None,␣
→˓verbose=False)
A 2-dimensional polyhedron in RDF^2 defined as the convex hull of 3 vertices

2.7.3 The Python backend

While slower than specialized C/C++ implementations, the implementation is general and works with any exact field in
Sage that allows you to define polyhedra.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: p0 = (0, 0)
sage: p1 = (1, 0)
sage: p2 = (1/2, AA(3).sqrt()/2)
sage: equilateral_triangle = Polyhedron([p0, p1, p2])
sage: equilateral_triangle.vertices()
(A vertex at (0, 0),
A vertex at (1, 0),
A vertex at (0.500000000000000?, 0.866025403784439?))

sage: equilateral_triangle.inequalities()
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
An inequality (0, 1.154700538379252?) x + 0 >= 0)

class sage.geometry.polyhedron.backend_field.Polyhedron_field(parent, Vrep, Hrep,
Vrep_minimal=None,
Hrep_minimal=None,
pref_rep=None,
mutable=False,
**kwds)
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Bases: Polyhedron_base

Polyhedra over all fields supported by Sage

INPUT:

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], #␣
→˓needs sage.rings.number_field
....: rays=[(1,1)], lines=[], backend= field , base_ring=AA)
sage: TestSuite(p).run() #␣
→˓needs sage.rings.number_field

2.7.4 The Python backend, using number fields internally

class sage.geometry.polyhedron.backend_number_field.Polyhedron_number_field(par-
ent,
Vrep,
Hrep,
Vrep_min-
i-
mal=None,
Hrep_min-
i-
mal=None,
pref_rep=None,
mu-
ta-
ble=False,
**kwds)

Bases: Polyhedron_field, Polyhedron_base_number_field

Polyhedra whose data can be converted to number field elements

All computations are done internally using a fixed real embedded number field, which is determined automatically.

INPUT:

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: P = Polyhedron(vertices=[[1], [sqrt(2)]], backend= number_field ); P #␣
→˓needs sage.rings.number_field sage.symbolic
A 1-dimensional polyhedron
in (Symbolic Ring)^1 defined as the convex hull of 2 vertices
sage: P.vertices() #␣
→˓needs sage.rings.number_field sage.symbolic
(A vertex at (1), A vertex at (sqrt(2)))

(continues on next page)
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sage: P = polytopes.icosahedron(exact=True, backend= number_field ) #␣
→˓needs sage.rings.number_field
sage: P #␣
→˓needs sage.rings.number_field
A 3-dimensional polyhedron
in (Number Field in sqrt5 with defining polynomial x^2 - 5

with sqrt5 = 2.236067977499790?)^3
defined as the convex hull of 12 vertices

sage: x = polygen(ZZ); P = Polyhedron( #␣
→˓needs sage.rings.number_field sage.symbolic
....: vertices=[[sqrt(2)], [AA.polynomial_root(x^3-2, RIF(0,3))]],
....: backend= number_field )
sage: P #␣
→˓needs sage.rings.number_field sage.symbolic
A 1-dimensional polyhedron
in (Symbolic Ring)^1 defined as the convex hull of 2 vertices
sage: P.vertices() #␣
→˓needs sage.rings.number_field sage.symbolic
(A vertex at (sqrt(2)), A vertex at (2^(1/3)))

2.7.5 The Normaliz backend for polyhedral computations

Note: This backend requires PyNormaliz. To install PyNormaliz, type sage -i pynormaliz in the terminal.

AUTHORS:

• Matthias Köppe (2016-12): initial version

• Jean-Philippe Labbé (2019-04): Expose normaliz features and added functionalities

class sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz(parent,
Vrep,
Hrep, nor-
maliz_cone=None,
nor-
maliz_data=None,
inter-
nal_base_ring=None,
**kwds)

Bases: Polyhedron_normaliz, Polyhedron_QQ

Polyhedra over with normaliz.

INPUT:

• Vrep – a list [vertices, rays, lines] or None

• Hrep – a list [ieqs, eqns] or None

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0), (1,0), (0,1)],
....: rays=[(1,1)], lines=[],

(continues on next page)
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....: backend= normaliz , base_ring=QQ)
sage: TestSuite(p).run()

ehrhart_series(variable='t')

Return the Ehrhart series of a compact rational polyhedron.

The Ehrhart series is the generating function where the coefficient of 𝑡𝑘 is number of integer lattice points
inside the 𝑘-th dilation of the polytope.

INPUT:

• variable – string (default: t )

OUTPUT:

A rational function.

EXAMPLES:

sage: S = Polyhedron(vertices=[[0,1], [1,0]], backend= normaliz )
sage: ES = S.ehrhart_series()
sage: ES.numerator()
1
sage: ES.denominator().factor()
(t - 1)^2

sage: C = Polyhedron(vertices=[[0,0,0], [0,0,1], [0,1,0], [0,1,1],
....: [1,0,0], [1,0,1], [1,1,0], [1,1,1]],
....: backend= normaliz )
sage: ES = C.ehrhart_series()
sage: ES.numerator()
t^2 + 4*t + 1
sage: ES.denominator().factor()
(t - 1)^4

The following example is from the Normaliz manual contained in the file rational.in:

sage: rat_poly = Polyhedron(vertices=[[1/2,1/2], [-1/3,-1/3], [1/4,-1/2]],
....: backend= normaliz )
sage: ES = rat_poly.ehrhart_series()
sage: ES.numerator()
2*t^6 + 3*t^5 + 4*t^4 + 3*t^3 + t^2 + t + 1
sage: ES.denominator().factor()
(-1) * (t + 1)^2 * (t - 1)^3 * (t^2 + 1) * (t^2 + t + 1)

The polyhedron should be compact:

sage: C = Polyhedron(rays=[[1,2], [2,1]], backend= normaliz )
sage: C.ehrhart_series()
Traceback (most recent call last):
...
NotImplementedError: Ehrhart series can only be computed for compact␣
→˓polyhedron

See also:

hilbert_series()
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hilbert_series(grading, variable='t')
Return the Hilbert series of the polyhedron with respect to grading.

INPUT:

• grading – vector. The grading to use to form the Hilbert series

• variable – string (default: t )

OUTPUT:

A rational function.

EXAMPLES:

sage: C = Polyhedron(backend= normaliz ,
....: rays=[[0,0,1], [0,1,1], [1,0,1], [1,1,1]])
sage: HS = C.hilbert_series([1,1,1])
sage: HS.numerator()
t^2 + 1
sage: HS.denominator().factor()
(-1) * (t + 1) * (t - 1)^3 * (t^2 + t + 1)

By changing the grading, you can get the Ehrhart series of the square lifted at height 1:

sage: C.hilbert_series([0,0,1])
(t + 1)/(-t^3 + 3*t^2 - 3*t + 1)

Here is an example 2cone.in from the Normaliz manual:

sage: C = Polyhedron(backend= normaliz , rays=[[1,3], [2,1]])
sage: HS = C.hilbert_series([1,1])
sage: HS.numerator()
t^5 + t^4 + t^3 + t^2 + 1
sage: HS.denominator().factor()
(t + 1) * (t - 1)^2 * (t^2 + 1) * (t^2 + t + 1)

sage: HS = C.hilbert_series([1,2])
sage: HS.numerator()
t^8 + t^6 + t^5 + t^3 + 1
sage: HS.denominator().factor()
(t + 1) * (t - 1)^2 * (t^2 + 1) * (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)

Here is the magic square example form the Normaliz manual:

sage: eq = [[0,1,1,1,-1,-1,-1, 0, 0, 0],
....: [0,1,1,1, 0, 0, 0,-1,-1,-1],
....: [0,0,1,1,-1, 0, 0,-1, 0, 0],
....: [0,1,0,1, 0,-1, 0, 0,-1, 0],
....: [0,1,1,0, 0, 0,-1, 0, 0,-1],
....: [0,0,1,1, 0,-1, 0, 0, 0,-1],
....: [0,1,1,0, 0,-1, 0,-1, 0, 0]]
sage: magic_square = (Polyhedron(eqns=eq, backend= normaliz )
....: & Polyhedron(rays=identity_matrix(9).rows()))
sage: grading = [1,1,1,0,0,0,0,0,0]
sage: magic_square.hilbert_series(grading)
(t^6 + 2*t^3 + 1)/(-t^9 + 3*t^6 - 3*t^3 + 1)

See also:

ehrhart_series()
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integral_points(threshold=10000)
Return the integral points in the polyhedron.

Uses either the naive algorithm (iterate over a rectangular bounding box) or triangulation + Smith form.

INPUT:

• threshold – integer (default: 10000); use the naïve algorithm as long as the bounding box is smaller
than this

OUTPUT:

The list of integral points in the polyhedron. If the polyhedron is not compact, a ValueError is raised.

EXAMPLES:

sage: Polyhedron(vertices=[(-1,-1), (1,0), (1,1), (0,1)],
....: backend= normaliz ).integral_points()
((-1, -1), (0, 0), (0, 1), (1, 0), (1, 1))

sage: simplex = Polyhedron([(1,2,3), (2,3,7), (-2,-3,-11)],
....: backend= normaliz )
sage: simplex.integral_points()
((-2, -3, -11), (0, 0, -2), (1, 2, 3), (2, 3, 7))

The polyhedron need not be full-dimensional:

sage: simplex = Polyhedron([(1,2,3,5), (2,3,7,5), (-2,-3,-11,5)],
....: backend= normaliz )
sage: simplex.integral_points()
((-2, -3, -11, 5), (0, 0, -2, 5), (1, 2, 3, 5), (2, 3, 7, 5))

sage: point = Polyhedron([(2,3,7)],
....: backend= normaliz )
sage: point.integral_points()
((2, 3, 7),)

sage: empty = Polyhedron(backend= normaliz )
sage: empty.integral_points()
()

Here is a simplex where the naive algorithm of running over all points in a rectangular bounding box no longer
works fast enough:

sage: v = [(1,0,7,-1), (-2,-2,4,-3), (-1,-1,-1,4), (2,9,0,-5), (-2,-1,5,1)]
sage: simplex = Polyhedron(v, backend= normaliz ); simplex
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: len(simplex.integral_points())
49

A rather thin polytope for which the bounding box method would be a very bad idea (note this is a rational
(non-lattice) polytope, so the other backends use the bounding box method):

sage: P = Polyhedron(vertices=((0, 0), (178933,37121))) + 1/1000*polytopes.
→˓hypercube(2)
sage: P = Polyhedron(vertices=P.vertices_list(),
....: backend= normaliz )
sage: len(P.integral_points())
434
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Finally, the 3-d reflexive polytope number 4078:

sage: v = [(1,0,0), (0,1,0), (0,0,1), (0,0,-1), (0,-2,1),
....: (-1,2,-1), (-1,2,-2), (-1,1,-2), (-1,-1,2), (-1,-3,2)]
sage: P = Polyhedron(v, backend= normaliz )
sage: pts1 = P.integral_points()
sage: all(P.contains(p) for p in pts1)
True
sage: pts2 = LatticePolytope(v).points() #␣
→˓needs palp
sage: for p in pts1: p.set_immutable()
sage: set(pts1) == set(pts2) #␣
→˓needs palp
True

sage: timeit( Polyhedron(v, backend= normaliz ).integral_points() ) # not␣
→˓tested - random
625 loops, best of 3: 1.41 ms per loop
sage: timeit( LatticePolytope(v).points() ) # not␣
→˓tested - random
25 loops, best of 3: 17.2 ms per loop

integral_points_generators()

Return the integral points generators of the polyhedron.

Every integral point in the polyhedron can be written as a (unique) non-negative linear combination of integral
points contained in the three defining parts of the polyhedron: the integral points (the compact part), the
recession cone, and the lineality space.

OUTPUT:

A tuple consisting of the integral points, the Hilbert basis of the recession cone, and an integral basis for the
lineality space.

EXAMPLES:

Normaliz gives a nonnegative integer basis of the lineality space:

sage: P = Polyhedron(backend= normaliz , lines=[[2,2]])
sage: P.integral_points_generators()
(((0, 0),), (), ((1, 1),))

A recession cone generated by two rays:

sage: C = Polyhedron(backend= normaliz , rays=[[1,2], [2,1]])
sage: C.integral_points_generators()
(((0, 0),), ((1, 1), (1, 2), (2, 1)), ())

Empty polyhedron:

sage: P = Polyhedron(backend= normaliz )
sage: P.integral_points_generators()
((), (), ())
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class sage.geometry.polyhedron.backend_normaliz.Polyhedron_ZZ_normaliz(parent,
Vrep,
Hrep, nor-
maliz_cone=None,
nor-
maliz_data=None,
inter-
nal_base_ring=None,
**kwds)

Bases: Polyhedron_QQ_normaliz, Polyhedron_ZZ

Polyhedra over with normaliz.

INPUT:

• Vrep – a list [vertices, rays, lines] or None

• Hrep – a list [ieqs, eqns] or None

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0), (1,0), (0,1)],
....: rays=[(1,1)], lines=[],
....: backend= normaliz , base_ring=ZZ)
sage: TestSuite(p).run()

class sage.geometry.polyhedron.backend_normaliz.Polyhedron_normaliz(parent, Vrep,
Hrep, nor-
maliz_cone=None,
nor-
maliz_data=None,
inter-
nal_base_ring=None,
**kwds)

Bases: Polyhedron_base_number_field

Polyhedra with normaliz

INPUT:

• parent – Polyhedra the parent

• Vrep – a list [vertices, rays, lines] or None; the V-representation of the polyhedron; if None,
the polyhedron is determined by the H-representation

• Hrep – a list [ieqs, eqns] or None; the H-representation of the polyhedron; if None, the polyhedron
is determined by the V-representation

• normaliz_cone – a PyNormaliz wrapper of a normaliz cone

Only one of Vrep, Hrep, or normaliz_cone can be different from None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0), (1,0), (0,1)],
....: rays=[(1,1)], lines=[],
....: backend= normaliz )
sage: TestSuite(p).run()

Two ways to get the full space:
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sage: Polyhedron(eqns=[[0, 0, 0]], backend= normaliz )
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2␣
→˓lines
sage: Polyhedron(ieqs=[[0, 0, 0]], backend= normaliz )
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2␣
→˓lines

A lower-dimensional affine cone; we test that there are no mysterious inequalities coming in from the homogeniza-
tion:

sage: P = Polyhedron(vertices=[(1, 1)], rays=[(0, 1)],
....: backend= normaliz )
sage: P.n_inequalities()
1
sage: P.equations()
(An equation (1, 0) x - 1 == 0,)

The empty polyhedron:

sage: P = Polyhedron(ieqs=[[-2, 1, 1], [-3, -1, -1], [-4, 1, -2]],
....: backend= normaliz )
sage: P
The empty polyhedron in QQ^2
sage: P.Vrepresentation()
()
sage: P.Hrepresentation()
(An equation -1 == 0,)

integral_hull()

Return the integral hull in the polyhedron.

This is a new polyhedron that is the convex hull of all integral points.

EXAMPLES:

Unbounded example from Normaliz manual, “a dull polyhedron”:

sage: P = Polyhedron(ieqs=[[1, 0, 2], [3, 0, -2], [3, 2, -2]],
....: backend= normaliz )
sage: PI = P.integral_hull()
sage: P.plot(color= yellow ) + PI.plot(color= green ) #␣
→˓needs sage.plot
Graphics object consisting of 10 graphics primitives
sage: PI.Vrepresentation()
(A vertex at (-1, 0),
A vertex at (0, 1),
A ray in the direction (1, 0))

Nonpointed case:

sage: P = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]],
....: lines=[[-1, 1]], backend= normaliz )
sage: PI = P.integral_hull()
sage: PI.Vrepresentation()
(A vertex at (1, 0),
A ray in the direction (1, 0),
A line in the direction (1, -1))

Empty polyhedron:
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sage: P = Polyhedron(backend= normaliz )
sage: PI = P.integral_hull()
sage: PI.Vrepresentation()
()

2.7.6 The polymake backend for polyhedral computations

Note: This backend requires polymake. To install it, type sage -i polymake in the terminal.

AUTHORS:

• Matthias Köppe (2017-03): initial version

class sage.geometry.polyhedron.backend_polymake.Polyhedron_QQ_polymake(parent,
Vrep,
Hrep, poly-
make_poly-
tope=None,
**kwds)

Bases: Polyhedron_polymake, Polyhedron_QQ

Polyhedra over with polymake.

INPUT:

• Vrep – a list [vertices, rays, lines] or None

• Hrep – a list [ieqs, eqns] or None

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], # optional -␣
→˓jupymake
....: rays=[(1,1)], lines=[],
....: backend= polymake , base_ring=QQ)
sage: TestSuite(p).run() # optional -␣
→˓jupymake

class sage.geometry.polyhedron.backend_polymake.Polyhedron_ZZ_polymake(parent,
Vrep,
Hrep, poly-
make_poly-
tope=None,
**kwds)

Bases: Polyhedron_polymake, Polyhedron_ZZ

Polyhedra over with polymake.

INPUT:

• Vrep – a list [vertices, rays, lines] or None

• Hrep – a list [ieqs, eqns] or None

EXAMPLES:
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sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], # optional -␣
→˓jupymake
....: rays=[(1,1)], lines=[],
....: backend= polymake , base_ring=ZZ)
sage: TestSuite(p).run() # optional -␣
→˓jupymake

class sage.geometry.polyhedron.backend_polymake.Polyhedron_polymake(parent, Vrep,
Hrep,
polymake_poly-
tope=None,
**kwds)

Bases: Polyhedron_base

Polyhedra with polymake

INPUT:

• parent – Polyhedra the parent

• Vrep – a list [vertices, rays, lines] or None; the V-representation of the polyhedron; if None,
the polyhedron is determined by the H-representation

• Hrep – a list [ieqs, eqns] or None; the H-representation of the polyhedron; if None, the polyhedron
is determined by the V-representation

• polymake_polytope – a polymake polytope object

Only one of Vrep, Hrep, or polymake_polytope can be different from None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], # optional -␣
→˓jupymake
....: lines=[], backend= polymake )
sage: TestSuite(p).run() # optional -␣
→˓jupymake

A lower-dimensional affine cone; we test that there are no mysterious inequalities coming in from the homogeniza-
tion:

sage: P = Polyhedron(vertices=[(1, 1)], rays=[(0, 1)], # optional -␣
→˓jupymake
....: backend= polymake )
sage: P.n_inequalities() # optional -␣
→˓jupymake
1
sage: P.equations() # optional -␣
→˓jupymake
(An equation (1, 0) x - 1 == 0,)

The empty polyhedron:

sage: Polyhedron(eqns=[[1, 0, 0]], backend= polymake ) # optional -␣
→˓jupymake
The empty polyhedron in QQ^2

It can also be obtained differently:
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sage: # optional - jupymake
sage: P=Polyhedron(ieqs=[[-2, 1, 1], [-3, -1, -1], [-4, 1, -2]],
....: backend= polymake )
sage: P
The empty polyhedron in QQ^2
sage: P.Vrepresentation()
()
sage: P.Hrepresentation()
(An equation -1 == 0,)

The full polyhedron:

sage: Polyhedron(eqns=[[0, 0, 0]], backend= polymake ) # optional -␣
→˓jupymake
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2␣
→˓lines
sage: Polyhedron(ieqs=[[0, 0, 0]], backend= polymake ) # optional -␣
→˓jupymake
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2␣
→˓lines

Quadratic fields work:

sage: V = polytopes.dodecahedron().vertices_list() #␣
→˓needs sage.groups sage.rings.number_field
sage: Polyhedron(vertices=V, backend= polymake ) # optional - jupymake,␣
→˓needs sage.groups sage.rings.number_field
A 3-dimensional polyhedron
in (Number Field in sqrt5 with defining polynomial x^2 - 5

with sqrt5 = 2.236067977499790?)^3
defined as the convex hull of 20 vertices

2.7.7 The PPL (Parma Polyhedra Library) backend for polyhedral computations

class sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl(parent, Vrep, Hrep,
ppl_polyhedron=None,
mutable=False, **kwds)

Bases: Polyhedron_ppl, Polyhedron_QQ

Polyhedra over with ppl

INPUT:

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[],
....: backend= ppl , base_ring=QQ)
sage: TestSuite(p).run()

class sage.geometry.polyhedron.backend_ppl.Polyhedron_ZZ_ppl(parent, Vrep, Hrep,
ppl_polyhedron=None,
mutable=False, **kwds)

Bases: Polyhedron_ppl, Polyhedron_ZZ
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Polyhedra over with ppl

INPUT:

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[],
....: backend= ppl , base_ring=ZZ)
sage: TestSuite(p).run()

class sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl(parent, Vrep, Hrep,
ppl_polyhedron=None,
mutable=False, **kwds)

Bases: Polyhedron_mutable

Polyhedra with ppl

INPUT:

• Vrep – a list [vertices, rays, lines] or None.

• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[],␣
→˓backend= ppl )
sage: TestSuite(p).run()

Hrepresentation(index=None)
Return the objects of the H-representation. Each entry is either an inequality or a equation.

INPUT:

• index – either an integer or None

OUTPUT:

The optional argument is an index running from 0 to self.n_Hrepresentation()-1. If present,
the H-representation object at the given index will be returned. Without an argument, returns the list of all
H-representation objects.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: p.Hrepresentation(0)
An inequality (-1, 0, 0) x + 1 >= 0
sage: p.Hrepresentation(0) == p.Hrepresentation()[0]
True

sage: P = p.parent()
sage: p = P._element_constructor_(p, mutable=True)
sage: p.Hrepresentation(0)
An inequality (0, 0, -1) x + 1 >= 0
sage: p._clear_cache()
sage: p.Hrepresentation(0)
An inequality (0, 0, -1) x + 1 >= 0
sage: TestSuite(p).run()
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Vrepresentation(index=None)
Return the objects of the V-representation. Each entry is either a vertex, a ray, or a line.

See sage.geometry.polyhedron.constructor for a definition of vertex/ray/line.

INPUT:

• index – either an integer or None

OUTPUT:

The optional argument is an index running from 0 to self.n_Vrepresentation()-1. If present,
the V-representation object at the given index will be returned. Without an argument, returns the list of all
V-representation objects.

EXAMPLES:

sage: p = polytopes.cube()
sage: p.Vrepresentation(0)
A vertex at (1, -1, -1)

sage: P = p.parent()
sage: p = P._element_constructor_(p, mutable=True)
sage: p.Vrepresentation(0)
A vertex at (-1, -1, -1)
sage: p._clear_cache()
sage: p.Vrepresentation(0)
A vertex at (-1, -1, -1)
sage: TestSuite(p).run()

set_immutable()

Make this polyhedron immutable. This operation cannot be undone.

EXAMPLES:

sage: p = Polyhedron([[1, 1]], mutable=True)
sage: p.is_mutable()
True
sage: hasattr(p, "_Vrepresentation")
False
sage: p.set_immutable()
sage: hasattr(p, "_Vrepresentation")
True

2.7.8 Double Description Algorithm for Cones

This module implements the double description algorithm for extremal vertex enumeration in a pointed cone following
[FP1996]. With a little bit of preprocessing (see double_description_inhomogeneous) this defines a backend
for polyhedral computations. But as far as this module is concerned, inequality always means without a constant term and
the origin is always a point of the cone.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: alg = StandardAlgorithm(A); alg
Pointed cone with inequalities

(continues on next page)
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(1, 0, 1)
(0, 1, 1)
(-1, -1, 1)
sage: DD, _ = alg.initial_pair(); DD
Double description pair (A, R) defined by

[ 1 0 1] [ 2/3 -1/3 -1/3]
A = [ 0 1 1], R = [-1/3 2/3 -1/3]

[-1 -1 1] [ 1/3 1/3 1/3]

The implementation works over any exact field that is embedded in R, for example:

sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(AA, [(1,0,1), (0,1,1), (-AA(2).sqrt(),-AA(3).sqrt(),1), #␣
→˓needs sage.rings.number_field
....: (-AA(3).sqrt(),-AA(2).sqrt(),1)])
sage: alg = StandardAlgorithm(A)
sage: alg.run().R #␣
→˓needs sage.rings.number_field
[(-0.4177376677004119?, 0.5822623322995881?, 0.4177376677004119?),
(-0.2411809548974793?, -0.2411809548974793?, 0.2411809548974793?),
(0.07665629029830300?, 0.07665629029830300?, 0.2411809548974793?),
(0.5822623322995881?, -0.4177376677004119?, 0.4177376677004119?)]

class sage.geometry.polyhedron.double_description.DoubleDescriptionPair(problem,
A_rows,
R_cols)

Bases: object

Base class for a double description pair (𝐴,𝑅)

Warning: You should use the Problem.initial_pair() or Problem.run() to generate double
description pairs for a set of inequalities, and not generate DoubleDescriptionPair instances directly.

INPUT:

• problem – instance of Problem.

• A_rows – list of row vectors of the matrix 𝐴. These encode the inequalities.

• R_cols – list of column vectors of the matrix 𝑅. These encode the rays.

R_by_sign(a)
Classify the rays into those that are positive, zero, and negative on 𝑎.

INPUT:

• a – vector. Coefficient vector of a homogeneous inequality.

OUTPUT:

A triple consisting of the rays (columns of 𝑅) that are positive, zero, and negative on 𝑎. In that order.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])

(continues on next page)
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sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD.R_by_sign(vector([1,-1,0]))
([(2/3, -1/3, 1/3)], [(-1/3, -1/3, 1/3)], [(-1/3, 2/3, 1/3)])
sage: DD.R_by_sign(vector([1,1,1]))
([(2/3, -1/3, 1/3), (-1/3, 2/3, 1/3)], [], [(-1/3, -1/3, 1/3)])

are_adjacent(r1, r2)
Return whether the two rays are adjacent.

INPUT:

• r1, r2 – two rays.

OUTPUT:

Boolean. Whether the two rays are adjacent.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: DD = StandardAlgorithm(A).run()
sage: DD.are_adjacent(DD.R[0], DD.R[1])
True
sage: DD.are_adjacent(DD.R[0], DD.R[2])
True
sage: DD.are_adjacent(DD.R[0], DD.R[3])
False

cone()

Return the cone defined by 𝐴.

This method is for debugging only. Assumes that the base ring is .

OUTPUT:

The cone defined by the inequalities as a Polyhedron(), using the PPL backend.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD.cone().Hrepresentation()
(An inequality (-1, -1, 1) x + 0 >= 0,
An inequality (0, 1, 1) x + 0 >= 0,
An inequality (1, 0, 1) x + 0 >= 0)

dual()

Return the dual.

OUTPUT:

For the double description pair (𝐴,𝑅) this method returns the dual double description pair (𝑅𝑇 , 𝐴𝑇 )

EXAMPLES:
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sage: from sage.geometry.polyhedron.double_description import Problem
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: DD, _ = Problem(A).initial_pair()
sage: DD
Double description pair (A, R) defined by

[ 0 1 0] [0 1 0]
A = [ 1 0 0], R = [1 0 0]

[ 0 -1 1] [1 0 1]
sage: DD.dual()
Double description pair (A, R) defined by

[0 1 1] [ 0 1 0]
A = [1 0 0], R = [ 1 0 -1]

[0 0 1] [ 0 0 1]

first_coordinate_plane()

Restrict to the first coordinate plane.

OUTPUT:

A new double description pair with the constraint 𝑥0 = 0 added.

EXAMPLES:

sage: A = matrix([(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD
Double description pair (A, R) defined by
A = [ 1 1], R = [ 1/2 -1/2]

[-1 1] [ 1/2 1/2]
sage: DD.first_coordinate_plane()
Double description pair (A, R) defined by

[ 1 1]
A = [-1 1], R = [ 0]

[-1 0] [1/2]
[ 1 0]

inner_product_matrix()

Return the inner product matrix between the rows of 𝐴 and the columns of 𝑅.

OUTPUT:

A matrix over the base ring. There is one row for each row of 𝐴 and one column for each column of 𝑅.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: alg = StandardAlgorithm(A)
sage: DD, _ = alg.initial_pair()
sage: DD.inner_product_matrix()
[1 0 0]
[0 1 0]
[0 0 1]

is_extremal(ray)
Test whether the ray is extremal.
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EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: DD = StandardAlgorithm(A).run()
sage: DD.is_extremal(DD.R[0])
True

matrix_space(nrows, ncols)
Return a matrix space of size nrows and ncols over the base ring of self.

These matrix spaces are cached to avoid their creation in the very demanding add_inequality() and
more precisely are_adjacent().

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import Problem
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: DD, _ = Problem(A).initial_pair()
sage: DD.matrix_space(2,2)
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: DD.matrix_space(3,2)
Full MatrixSpace of 3 by 2 dense matrices over Rational Field

sage: # needs sage.rings.number_field
sage: K.<sqrt2> = QuadraticField(2)
sage: A = matrix([[1,sqrt2],[2,0]])
sage: DD, _ = Problem(A).initial_pair()
sage: DD.matrix_space(1,2)
Full MatrixSpace of 1 by 2 dense matrices
over Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.
→˓414213562373095?

verify()

Validate the double description pair.

This method used the PPL backend to check that the double description pair is valid. An assertion is triggered
if it is not. Does nothing if the base ring is not .

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import \
....: DoubleDescriptionPair, Problem
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: alg = Problem(A)
sage: DD = DoubleDescriptionPair(alg,
....: [(1, 0, 3), (0, 1, 1), (-1, -1, 1)],
....: [(2/3, -1/3, 1/3), (-1/3, 2/3, 1/3), (-1/3, -1/3, 1/3)])
sage: DD.verify()
Traceback (most recent call last):
...

assert A_cone == R_cone
AssertionError

zero_set(ray)
Return the zero set (active set) 𝑍(𝑟).

INPUT:
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• ray – a ray vector.

OUTPUT:

A set containing the inequality vectors that are zero on ray.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import Problem
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: DD, _ = Problem(A).initial_pair()
sage: r = DD.R[0]; r
(2/3, -1/3, 1/3)
sage: DD.zero_set(r)
{(-1, -1, 1), (0, 1, 1)}

class sage.geometry.polyhedron.double_description.Problem(A)

Bases: object

Base class for implementations of the double description algorithm

It does not make sense to instantiate the base class directly, it just provides helpers for implementations.

INPUT:

• A – a matrix. The rows of the matrix are interpreted as homogeneous inequalities 𝐴𝑥 ≥ 0. Must have
maximal rank.

A()

Return the rows of the defining matrix 𝐴.

OUTPUT:

The matrix 𝐴 whose rows are the inequalities.

EXAMPLES:

sage: A = matrix([(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import Problem
sage: Problem(A).A()
((1, 1), (-1, 1))

A_matrix()

Return the defining matrix 𝐴.

OUTPUT:

Matrix whose rows are the inequalities.

EXAMPLES:

sage: A = matrix([(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import Problem
sage: Problem(A).A_matrix()
[ 1 1]
[-1 1]

base_ring()

Return the base field.

OUTPUT:

A field.
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EXAMPLES:

sage: A = matrix(AA, [(1, 1), (-1, 1)]) #␣
→˓needs sage.rings.number_field
sage: from sage.geometry.polyhedron.double_description import Problem
sage: Problem(A).base_ring() #␣
→˓needs sage.rings.number_field
Algebraic Real Field

dim()

Return the ambient space dimension.

OUTPUT:

Integer. The ambient space dimension of the cone.

EXAMPLES:

sage: A = matrix(QQ, [(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import Problem
sage: Problem(A).dim()
2

initial_pair()

Return an initial double description pair.

Picks an initial set of rays by selecting a basis. This is probably the most efficient way to select the initial set.

INPUT:

• pair_class – subclass of DoubleDescriptionPair.

OUTPUT:

A pair consisting of aDoubleDescriptionPair instance and the tuple of remaining unused inequalities.

EXAMPLES:

sage: A = matrix([(-1, 1), (-1, 2), (1/2, -1/2), (1/2, 2)])
sage: from sage.geometry.polyhedron.double_description import Problem
sage: DD, remaining = Problem(A).initial_pair()
sage: DD.verify()
sage: remaining
[(1/2, -1/2), (1/2, 2)]

pair_class

alias of DoubleDescriptionPair

class sage.geometry.polyhedron.double_description.StandardAlgorithm(A)
Bases: Problem

Standard implementation of the double description algorithm

See [FP1996] for the definition of the “Standard Algorithm”.

EXAMPLES:

sage: A = matrix(QQ, [(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: DD = StandardAlgorithm(A).run()
sage: DD.R # the extremal rays
[(1/2, 1/2), (-1/2, 1/2)]
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pair_class

alias of StandardDoubleDescriptionPair

run()

Run the Standard Algorithm.

OUTPUT:

A double description pair (𝐴,𝑅) of all inequalities as a DoubleDescriptionPair. By virtue of the
double description algorithm, the columns of 𝑅 are the extremal rays.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: StandardAlgorithm(A).run()
Double description pair (A, R) defined by

[ 0 1 0] [0 0 1 1]
A = [ 1 0 0], R = [1 0 1 0]

[ 0 -1 1] [1 1 1 1]
[-1 0 1]

class sage.geometry.polyhedron.double_description.StandardDoubleDescriptionPair(prob-
lem,
A_rows,
R_cols)

Bases: DoubleDescriptionPair

Double description pair for the “Standard Algorithm”.

See StandardAlgorithm.

add_inequality(a)
Add the inequality a to the matrix 𝐴 of the double description.

INPUT:

• a – vector. An inequality.

EXAMPLES:

sage: A = matrix([(-1, 1, 0), (-1, 2, 1), (1/2, -1/2, -1)])
sage: from sage.geometry.polyhedron.double_description import␣
→˓StandardAlgorithm
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD.add_inequality(vector([1,0,0]))
sage: DD
Double description pair (A, R) defined by

[ -1 1 0] [ 1 1 0 0]
A = [ -1 2 1], R = [ 1 1 1 1]

[ 1/2 -1/2 -1] [ 0 -1 -1/2 -2]
[ 1 0 0]

sage.geometry.polyhedron.double_description.random_inequalities(d, n)
Random collections of inequalities for testing purposes.

INPUT:

• d – integer. The dimension.
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• n – integer. The number of random inequalities to generate.

OUTPUT:

A random set of inequalities as a StandardAlgorithm instance.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import random_inequalities
sage: P = random_inequalities(5, 10)
sage: P.run().verify()

2.7.9 Double Description for Arbitrary Polyhedra

This module is part of the python backend for polyhedra. It uses the double description method for cones double_de-
scription to find minimal H/V-representations of polyhedra. The latter works with cones only. This is sufficient to
treat general polyhedra by the following construction: Any polyhedron can be embedded in one dimension higher in the
hyperplane (1, *, . . . , *). The cone over the embedded polyhedron will be called the homogenized cone in the following.
Conversely, intersecting the homogenized cone with the hyperplane 𝑥0 = 1 gives you back the original polyhedron.

While slower than specialized C/C++ implementations, the implementation is general and works with any field in Sage
that allows you to define polyhedra.

Note: If you just want polyhedra over arbitrary fields then you should just use the Polyhedron() constructor.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous \
....: import Hrep2Vrep, Vrep2Hrep
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,4,3)], [])
[-1/2|-1/2 1/2|]
[ 0| 2/3 -1/3|]

Note that the columns of the printed matrix are the vertices, rays, and lines of the minimal V-representation. Dually, the
rows of the following are the inequalities and equations:

sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [(-1/2,2/3), (1/2,-1/3)], [])
[1 2 3]
[2 4 3]
[-----]

class sage.geometry.polyhedron.double_description_inhomogeneous.Hrep2Vrep(base_ring,
dim,
in-
equal-
ities,
equa-
tions)

Bases: PivotedInequalities

Convert H-representation to a minimal V-representation.

INPUT:

• base_ring – a field.

• dim – integer. The ambient space dimension.
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• inequalities – list of inequalities. Each inequality is given as constant term, dim coefficients.

• equations – list of equations. Same notation as for inequalities.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import␣
→˓Hrep2Vrep
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,4,3)], [])
[-1/2|-1/2 1/2|]
[ 0| 2/3 -1/3|]
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,-2,-3)], [])
[ 1 -1/2|| 1]
[ 0 0||-2/3]
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,2,3)], [])
[-1/2| 1/2| 1]
[ 0| 0|-2/3]
sage: Hrep2Vrep(QQ, 2, [(8,7,-2), (1,-4,3), (4,-3,-1)], [])
[ 1 0 -2||]
[ 1 4 -3||]
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,4,3), (5,-1,-2)], [])
[-19/5 -1/2| 2/33 1/11|]
[ 22/5 0|-1/33 -2/33|]
sage: Hrep2Vrep(QQ, 2, [(0,2,3), (0,4,3), (0,-1,-2)], [])
[ 0| 1/2 1/3|]
[ 0|-1/3 -1/6|]
sage: Hrep2Vrep(QQ, 2, [], [(1,2,3), (7,8,9)])
[-2||]
[ 1||]
sage: Hrep2Vrep(QQ, 2, [(1,0,0)], []) # universe
[0||1 0]
[0||0 1]
sage: Hrep2Vrep(QQ, 2, [(-1,0,0)], []) # empty
[]
sage: Hrep2Vrep(QQ, 2, [], []) # universe
[0||1 0]
[0||0 1]

verify(inequalities, equations)
Compare result to PPL if the base ring is QQ.

This method is for debugging purposes and compares the computation with another backend if available.

INPUT:

• inequalities, equations – see Hrep2Vrep.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import␣
→˓Hrep2Vrep
sage: H = Hrep2Vrep(QQ, 1, [(1,2)], [])
sage: H.verify([(1,2)], [])

class sage.geometry.polyhedron.double_description_inhomogeneous.PivotedInequalities(base_ring,
dim)

Bases: SageObject

Base class for inequalities that may contain linear subspaces

INPUT:
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• base_ring – a field.

• dim – integer. The ambient space dimension.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous .
→˓...: import PivotedInequalities
sage: piv = PivotedInequalities(QQ, 2)
sage: piv._pivot_inequalities(matrix([(1,1,3), (5,5,7)]))
[1 3]
[5 7]
sage: piv._pivots
(0, 2)
sage: piv._linear_subspace
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1 -1 0]

class sage.geometry.polyhedron.double_description_inhomogeneous.Vrep2Hrep(base_ring,
dim,
ver-
tices,
rays,
lines)

Bases: PivotedInequalities

Convert V-representation to a minimal H-representation.

INPUT:

• base_ring – a field.

• dim – integer. The ambient space dimension.

• vertices – list of vertices. Each vertex is given as list of dim coordinates.

• rays – list of rays. Each ray is given as list of dim coordinates, not all zero.

• lines – list of line generators. Each line is given as list of dim coordinates, not all zero.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import␣
→˓Vrep2Hrep
sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [(-1/2,2/3), (1/2,-1/3)], [])
[1 2 3]
[2 4 3]
[-----]

sage: Vrep2Hrep(QQ, 2, [(1,0), (-1/2,0)], [], [(1,-2/3)])
[ 1/3 2/3 1]
[ 2/3 -2/3 -1]
[--------------]

sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [(1/2,0)], [(1,-2/3)])
[1 2 3]
[-----]

sage: Vrep2Hrep(QQ, 2, [(1,1), (0,4), (-2,-3)], [], [])
[ 8/13 7/13 -2/13]

(continues on next page)
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[ 1/13 -4/13 3/13]
[ 4/13 -3/13 -1/13]
[-----------------]

sage: Vrep2Hrep(QQ, 2, [(-19/5,22/5), (-1/2,0)], [(2/33,-1/33), (1/11,-2/33)], [])
[10/11 -2/11 -4/11]
[ 66/5 132/5 99/5]
[ 2/11 4/11 6/11]
[-----------------]

sage: Vrep2Hrep(QQ, 2, [(0,0)], [(1/2,-1/3), (1/3,-1/6)], [])
[ 0 -6 -12]
[ 0 12 18]
[-----------]

sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [], [(1,-2/3)])
[-----]
[1 2 3]

sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [], [(1,-2/3), (1,0)])
[]

verify(vertices, rays, lines)
Compare result to PPL if the base ring is QQ.

This method is for debugging purposes and compares the computation with another backend if available.

INPUT:

• vertices, rays, lines – see Vrep2Hrep.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import␣
→˓Vrep2Hrep
sage: vertices = [(-1/2,0)]
sage: rays = [(-1/2,2/3), (1/2,-1/3)]
sage: lines = []
sage: V2H = Vrep2Hrep(QQ, 2, vertices, rays, lines)
sage: V2H.verify(vertices, rays, lines)
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CHAPTER

THREE

TRIANGULATIONS

3.1 Triangulations of a point configuration

A point configuration is a finite set of points in Euclidean space or, more generally, in projective space. A triangulation is
a simplicial decomposition of the convex hull of a given point configuration such that all vertices of the simplices end up
lying on points of the configuration. That is, there are no new vertices apart from the initial points.

Note that points that are not vertices of the convex hull need not be used in the triangulation. A triangulation that does
make use of all points of the configuration is called fine, and you can restrict yourself to such triangulations if you want.
See PointConfiguration and restrict_to_fine_triangulations() for more details.

Finding a single triangulation and listing all connected triangulations is implemented natively in this package. However,
for more advanced options [TOPCOM] needs to be installed. It is available as an optional package for Sage, and you can
install it with the shell command

sage -i topcom

Note: TOPCOM and the internal algorithms tend to enumerate triangulations in a different order. This is why we
always explicitly specify the engine as engine= topcom or engine= internal in the doctests. In your own
applications, you do not need to specify the engine. By default, TOPCOM is used if it is available and the internal
algorithms are used otherwise.

EXAMPLES:

First, we select the internal implementation for enumerating triangulations:

sage: PointConfiguration.set_engine( internal ) # to make doctests independent of␣
→˓TOPCOM

A 2-dimensional point configuration:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]]); p
A point configuration in affine 2-space over Integer Ring consisting
of 5 points. The triangulations of this point configuration are
assumed to be connected, not necessarily fine, not necessarily regular.

A triangulation of it:

sage: t = p.triangulate(); t # a single triangulation
(<1,3,4>, <2,3,4>)
sage: len(t)
2

(continues on next page)

681



Combinatorial and Discrete Geometry, Release 10.4.rc1

(continued from previous page)

sage: t[0]
(1, 3, 4)
sage: t[1]
(2, 3, 4)
sage: list(t)
[(1, 3, 4), (2, 3, 4)]
sage: t.plot(axes=False) #␣
→˓needs sage.plot
Graphics object consisting of 12 graphics primitives

List triangulations of it:

sage: list(p.triangulations())
[(<1,3,4>, <2,3,4>),
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
(<1,2,3>, <1,2,4>),
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]

sage: p_fine = p.restrict_to_fine_triangulations(); p_fine
A point configuration in affine 2-space over Integer Ring consisting
of 5 points. The triangulations of this point configuration are
assumed to be connected, fine, not necessarily regular.
sage: list(p_fine.triangulations())
[(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),

(continues on next page)
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(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]

A 3-dimensional point configuration:

sage: p = [[0,-1,-1], [0,0,1], [0,1,0], [1,-1,-1], [1,0,1], [1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate()
sage: triang.plot(axes=False) #␣
→˓needs sage.plot
Graphics3d Object

The standard example of a non-regular triangulation (requires TOPCOM):

sage: # optional - topcom
sage: PointConfiguration.set_engine( topcom )
sage: p = PointConfiguration([[-1,-5/9], [0,10/9], [1,-5/9],
....: [-2,-10/9], [0,20/9], [2,-10/9]])
sage: p_regular = p.restrict_to_regular_triangulations(True)
sage: regular = p_regular.triangulations_list()
sage: p_nonregular = p.restrict_to_regular_triangulations(False)
sage: nonregular = p_nonregular.triangulations_list()
sage: len(regular)
16
sage: len(nonregular)
2
sage: nonregular[0].plot(aspect_ratio=1, axes=False) #␣
→˓needs sage.plot
Graphics object consisting of 25 graphics primitives
sage: PointConfiguration.set_engine( internal ) # to make doctests independent of␣
→˓TOPCOM

Note that the points need not be in general position. That is, the points may lie in a hyperplane and the linear dependencies
will be removed before passing the data to TOPCOM which cannot handle it:

sage: points = [[0,0,0,1], [0,3,0,1], [3,0,0,1], [0,0,1,1],
....: [0,3,1,1], [3,0,1,1], [1,1,2,1]]
sage: points = [p + [1,2,3] for p in points]
sage: pc = PointConfiguration(points)
sage: pc.ambient_dim()
7

(continues on next page)
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sage: pc.dim()
3
sage: pc.triangulate()
(<0,1,2,6>, <0,1,3,6>, <0,2,3,6>, <1,2,4,6>, <1,3,4,6>, <2,3,5,6>, <2,4,5,6>)
sage: _ in pc.triangulations()
True
sage: len(pc.triangulations_list())
26

AUTHORS:

• Volker Braun: initial version, 2010

• Josh Whitney: added functionality for computing volumes and secondary polytopes of PointConfigurations

• Marshall Hampton: improved documentation and doctest coverage

• Volker Braun: rewrite using Parent/Element and categories. Added a Point class. More doctests. Less zombies.

• Volker Braun: Cythonized parts of it, added a C++ implementation of the bistellar flip algorithm to enumerate all
connected triangulations.

• Volker Braun 2011: switched the triangulate() method to the placing triangulation (faster).

class sage.geometry.triangulation.point_configuration.PointConfiguration(points,
con-
nected,
fine,
regular,
star, de-
fined_affine)

Bases: UniqueRepresentation, PointConfiguration_base

A collection of points in Euclidean (or projective) space.

This is the parent class for the triangulations of the point configuration. There are a few options to specifically select
what kind of triangulations are admissible.

INPUT:

The constructor accepts the following arguments:

• points – the points. Technically, any iterable of iterables will do. In particular, a PointConfigura-
tion can be passed.

• projective – boolean (default: False). Whether the point coordinates should be interpreted as pro-
jective (True) or affine (False) coordinates. If necessary, points are projectivized by setting the last ho-
mogeneous coordinate to one and/or affine patches are chosen internally.

• connected – boolean (default: True). Whether the triangulations should be connected to the regular
triangulations via bistellar flips. These are much easier to compute than all triangulations.

• fine – boolean (default: False). Whether the triangulations must be fine, that is, make use of all points
of the configuration.

• regular – boolean or None (default: None). Whether the triangulations must be regular. A regular
triangulation is one that is induced by a piecewise-linear convex support function. In other words, the shadows
of the faces of a polyhedron in one higher dimension.

– True: Only regular triangulations.

– False: Only non-regular triangulations.
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– None (default): Both kinds of triangulation.

• star – either None or a point. Whether the triangulations must be star. A triangulation is star if all maximal
simplices contain a common point. The central point can be specified by its index (an integer) in the given
points or by its coordinates (anything iterable.)

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]]); p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily fine,
not necessarily regular.
sage: p.triangulate() # a single triangulation
(<1,3,4>, <2,3,4>)

Element

alias of Triangulation

Gale_transform(points=None)
Return the Gale transform of self.

INPUT:

• points – a tuple of points or point indices or None (default). A subset of points for which to compute
the Gale transform. By default, all points are used.

OUTPUT:

A matrix over base_ring().

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (2,1), (1,1), (0,1)])
sage: pc.Gale_transform()
[ 1 -1 0 1 -1]
[ 0 0 1 -2 1]

sage: pc.Gale_transform((0,1,3,4))
[ 1 -1 1 -1]

sage: points = (pc.point(0), pc.point(1), pc.point(3), pc.point(4))
sage: pc.Gale_transform(points)
[ 1 -1 1 -1]

an_element()

Synonymous for triangulate().

bistellar_flips()

Return the bistellar flips.

OUTPUT:

The bistellar flips as a tuple. Each flip is a pair (𝑇+, 𝑇−) where 𝑇+ and 𝑇− are partial triangulations of the
point configuration.

EXAMPLES:

sage: pc = PointConfiguration([(0,0),(1,0),(0,1),(1,1)])
sage: pc.bistellar_flips()
(((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),)

(continues on next page)
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sage: Tpos, Tneg = pc.bistellar_flips()[0]
sage: Tpos.plot(axes=False) #␣
→˓needs sage.plot
Graphics object consisting of 11 graphics primitives
sage: Tneg.plot(axes=False) #␣
→˓needs sage.plot
Graphics object consisting of 11 graphics primitives

The 3d analog:

sage: pc = PointConfiguration([(0,0,0),(0,2,0),(0,0,2),(-1,0,0),(1,1,1)])
sage: pc.bistellar_flips()
(((<0,1,2,3>, <0,1,2,4>), (<0,1,3,4>, <0,2,3,4>, <1,2,3,4>)),)

A 2d flip on the base of the pyramid over a square:

sage: pc = PointConfiguration([(0,0,0),(0,2,0),(0,0,2),(0,2,2),(1,1,1)])
sage: pc.bistellar_flips()
(((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),)
sage: Tpos, Tneg = pc.bistellar_flips()[0]
sage: Tpos.plot(axes=False) #␣
→˓needs sage.plot
Graphics3d Object

circuits()

Return the circuits of the point configuration.

Roughly, a circuit is a minimal linearly dependent subset of the points. That is, a circuit is a partition

{0, 1, . . . , 𝑛− 1} = 𝐶+ ∪ 𝐶0 ∪ 𝐶−

such that there is an (unique up to an overall normalization) affine relation∑︁
𝑖∈𝐶+

𝛼𝑖𝑝𝑖 =
∑︁
𝑗∈𝐶−

𝛼𝑗𝑝𝑗

with all positive (or all negative) coefficients, where 𝑝𝑖 = (𝑝1, . . . , 𝑝𝑘, 1) are the projective coordinates of the
𝑖-th point.

OUTPUT:

The list of (unsigned) circuits as triples (𝐶+, 𝐶0, 𝐶−). The swapped circuit (𝐶−, 𝐶0, 𝐶+) is not returned
separately.

EXAMPLES:

sage: p = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)])
sage: sorted(p.circuits())
[((0,), (1, 2), (3, 4)), ((0,), (3, 4), (1, 2)), ((1, 2), (0,), (3, 4))]

circuits_support()

A generator for the supports of the circuits of the point configuration.

See circuits() for details.

OUTPUT:

A generator for the supports 𝐶− ∪𝐶+ (returned as a Python tuple) for all circuits of the point configuration.

EXAMPLES:
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sage: p = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)])
sage: sorted(p.circuits_support())
[(0, 1, 2), (0, 3, 4), (1, 2, 3, 4)]

contained_simplex(large=True, initial_point=None, point_order=None)
Return a simplex contained in the point configuration.

INPUT:

• large – boolean. Whether to attempt to return a large simplex.

• initial_point – a Point or None (default). A specific point to start with when picking the
simplex vertices.

• point_order – a list or tuple of (some or all) Point s or None (default).

OUTPUT:

A tuple of points that span a simplex of dimension dim(). If large==True, the simplex is constructed by
successively picking the farthest point. This will ensure that the simplex is not unnecessarily small, but will in
general not return a maximal simplex. If a point_order is specified, the simplex is greedily constructed
by considering the points in this order. The large option and initial_point is ignored in this case.
The point_order may contain only a subset of the points; in this case, the dimension of the simplex will
be the dimension of this subset.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (2,1), (1,1), (0,1)])
sage: pc.contained_simplex()
(P(0, 1), P(2, 1), P(1, 0))
sage: pc.contained_simplex(large=False)
(P(0, 1), P(1, 1), P(1, 0))
sage: pc.contained_simplex(initial_point=pc.point(2))
(P(2, 1), P(0, 0), P(1, 0))

sage: pc = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: pc.contained_simplex()
(P(-1, -1), P(1, 1), P(0, 1))
sage: pc.contained_simplex(point_order=[pc[1], pc[3], pc[4], pc[2], pc[0]])
(P(0, 1), P(1, 1), P(-1, -1))

Lower-dimensional example:

sage: pc.contained_simplex(point_order=[pc[0], pc[3], pc[4]])
(P(0, 0), P(1, 1))

convex_hull()

Return the convex hull of the point configuration.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: p.convex_hull()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices

distance(x, y)
Returns the distance between two points.

INPUT:
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• x, y – two points of the point configuration.

OUTPUT:

The distance between x and y, measured either with distance_affine() or distance_FS() de-
pending on whether the point configuration is defined by affine or projective points. These are related, but not
equal to the usual flat and Fubini-Study distance.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (2,1), (1,2), (0,1)])
sage: [pc.distance(pc.point(0), p) for p in pc.points()]
[0, 1, 5, 5, 1]

sage: pc = PointConfiguration([(0,0,1), (1,0,1), (2,1,1), (1,2,1), (0,1,1)],
....: projective=True)
sage: [pc.distance(pc.point(0), p) for p in pc.points()]
[0, 1/2, 5/6, 5/6, 1/2]

distance_FS(x, y)
Returns the distance between two points.

The distance function used in this method is 1− cos 𝑑𝐹𝑆(𝑥, 𝑦)
2, where 𝑑𝐹𝑆 is the Fubini-Study distance of

projective points. Recall the Fubini-Studi distance function

𝑑𝐹𝑆(𝑥, 𝑦) = arccos

√︃
(𝑥 · 𝑦)2
|𝑥|2|𝑦|2

INPUT:

• x, y – two points of the point configuration.

OUTPUT:

The distance 1− cos 𝑑𝐹𝑆(𝑥, 𝑦)
2. Note that this distance lies in the same field as the entries of x, y. That is,

the distance of rational points will be rational and so on.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (2,1), (1,2), (0,1)])
sage: [pc.distance_FS(pc.point(0), p) for p in pc.points()]
[0, 1/2, 5/6, 5/6, 1/2]

distance_affine(x, y)
Returns the distance between two points.

The distance function used in this method is 𝑑𝑎𝑓𝑓 (𝑥, 𝑦)2, the square of the usual affine distance function

𝑑𝑎𝑓𝑓 (𝑥, 𝑦) = |𝑥− 𝑦|

INPUT:

• x, y – two points of the point configuration.

OUTPUT:

The metric distance-square 𝑑𝑎𝑓𝑓 (𝑥, 𝑦)2. Note that this distance lies in the same field as the entries of x, y.
That is, the distance of rational points will be rational and so on.

EXAMPLES:
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sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)])
sage: [pc.distance_affine(pc.point(0), p) for p in pc.points()]
[0, 1, 5, 5, 1]

exclude_points(point_idx_list)
Return a new point configuration with the given points removed.

INPUT:

• point_idx_list – a list of integers. The indices of points to exclude.

OUTPUT:

A new PointConfiguration with the given points removed.

EXAMPLES:

sage: p = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]])
sage: list(p)
[P(-1, 0), P(0, 0), P(1, -1), P(1, 0), P(1, 1)]
sage: q = p.exclude_points([3])
sage: list(q)
[P(-1, 0), P(0, 0), P(1, -1), P(1, 1)]
sage: p.exclude_points(p.face_interior(codim=1)).points()
(P(-1, 0), P(0, 0), P(1, -1), P(1, 1))

face_codimension(point)
Return the smallest 𝑑 ∈ such that point is contained in the interior of a codimension-𝑑 face.

EXAMPLES:

sage: triangle = PointConfiguration([[0,0], [1,-1], [1,0], [1,1]])
sage: triangle.point(2)
P(1, 0)
sage: triangle.face_codimension(2)
1
sage: triangle.face_codimension([1,0])
1

This also works for degenerate cases like the tip of the pyramid over a square (which saturates four inequali-
ties):

sage: pyramid = PointConfiguration([[1,0,0], [0,1,1], [0,1,-1],
....: [0,-1,-1], [0,-1,1]])
sage: pyramid.face_codimension(0)
3

face_interior(dim=None, codim=None)
Return points by the codimension of the containing face in the convex hull.

EXAMPLES:

sage: triangle = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]])
sage: triangle.face_interior()
((1,), (3,), (0, 2, 4))
sage: triangle.face_interior(dim=0) # the vertices of the convex hull
(0, 2, 4)
sage: triangle.face_interior(codim=1) # interior of facets
(3,)
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farthest_point(points, among=None)
Return the point with the most distance from points.

INPUT:

• points – a list of points.

• among – a list of points or None (default). The set of points from which to pick the farthest one. By
default, all points of the configuration are considered.

OUTPUT:

A Point with largest minimal distance from all given points.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (1,1), (0,1)])
sage: pc.farthest_point([pc.point(0)])
P(1, 1)

lexicographic_triangulation()

Return the lexicographic triangulation.

The algorithm was taken from [PUNTOS].

EXAMPLES:

sage: p = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)])
sage: p.lexicographic_triangulation()
(<1,3,4>, <2,3,4>)

placing_triangulation(point_order=None)
Construct the placing (pushing) triangulation.

INPUT:

• point_order – list of points or integers. The order in which the points are to be placed. If not given,
the points will be placed in some arbitrary order that attempts to produce a small number of simplices.

OUTPUT:

A Triangulation.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (2,1), (1,2), (0,1)])
sage: pc.placing_triangulation()
(<0,1,2>, <0,2,4>, <2,3,4>)
sage: pc.placing_triangulation(point_order=(3,2,1,4,0))
(<0,1,4>, <1,2,3>, <1,3,4>)
sage: pc.placing_triangulation(point_order=[pc[1], pc[3], pc[4], pc[0]])
(<0,1,4>, <1,3,4>)
sage: U = matrix([
....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],
....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],
....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],
....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]
....: ])
sage: p = PointConfiguration(U.columns())
sage: triangulation = p.placing_triangulation(); triangulation

(continues on next page)
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(<0,2,3,4,6,7>, <0,2,3,4,6,12>, <0,2,3,4,7,13>, <0,2,3,4,12,13>,
<0,2,3,6,7,13>, <0,2,3,6,12,13>, <0,2,4,6,7,13>, <0,2,4,6,12,13>,
<0,3,4,6,7,12>, <0,3,4,7,12,13>, <0,3,6,7,12,13>, <0,4,6,7,12,13>,
<1,3,4,5,6,12>, <1,3,4,6,11,12>, <1,3,4,7,11,13>, <1,3,4,11,12,13>,
<1,3,6,7,11,13>, <1,3,6,11,12,13>, <1,4,6,7,11,13>, <1,4,6,11,12,13>,
<3,4,6,7,11,12>, <3,4,7,11,12,13>, <3,6,7,11,12,13>, <4,6,7,11,12,13>)

sage: sum(p.volume(t) for t in triangulation)
42
sage: p0 = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)])
sage: p0.pushing_triangulation(point_order=[1,2,0,3,4])
(<1,2,3>, <1,2,4>)
sage: p0.pushing_triangulation(point_order=[0,1,2,3,4])
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)

The same triangulation with renumbered points 0->4, 1->0, etc:

sage: p1 = PointConfiguration([(+1,0), (-1,0), (0,+1), (0,-1), (0,0)])
sage: p1.pushing_triangulation(point_order=[4,0,1,2,3])
(<0,2,4>, <0,3,4>, <1,2,4>, <1,3,4>)

plot(**kwds)
Produce a graphical representation of the point configuration.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: p.plot(axes=False) #␣
→˓needs sage.plot
Graphics object consisting of 5 graphics primitives

positive_circuits(*negative)
Returns the positive part of circuits with fixed negative part.

A circuit is a pair (𝐶+, 𝐶−), each consisting of a subset (actually, an ordered tuple) of point indices.

INPUT:

• *negative – integer. The indices of points.

OUTPUT:

A tuple of all circuits with 𝐶− = negative.
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EXAMPLES:

sage: p = PointConfiguration([(1,0,0), (0,1,0), (0,0,1), (-2,0,-1), (-2,-1,0),
....: (-3,-1,-1), (1,1,1), (-1,0,0), (0,0,0)])
sage: sorted(p.positive_circuits(8))
[(0, 1, 2, 5), (0, 1, 4), (0, 2, 3), (0, 3, 4, 6), (0, 5, 6), (0, 7)]
sage: p.positive_circuits(0,5,6)
((8,),)

pushing_triangulation(point_order=None)
Construct the placing (pushing) triangulation.

INPUT:

• point_order – list of points or integers. The order in which the points are to be placed. If not given,
the points will be placed in some arbitrary order that attempts to produce a small number of simplices.

OUTPUT:

A Triangulation.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (2,1), (1,2), (0,1)])
sage: pc.placing_triangulation()
(<0,1,2>, <0,2,4>, <2,3,4>)
sage: pc.placing_triangulation(point_order=(3,2,1,4,0))
(<0,1,4>, <1,2,3>, <1,3,4>)
sage: pc.placing_triangulation(point_order=[pc[1], pc[3], pc[4], pc[0]])
(<0,1,4>, <1,3,4>)
sage: U = matrix([
....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],
....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],
....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],
....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]
....: ])
sage: p = PointConfiguration(U.columns())
sage: triangulation = p.placing_triangulation(); triangulation
(<0,2,3,4,6,7>, <0,2,3,4,6,12>, <0,2,3,4,7,13>, <0,2,3,4,12,13>,
<0,2,3,6,7,13>, <0,2,3,6,12,13>, <0,2,4,6,7,13>, <0,2,4,6,12,13>,
<0,3,4,6,7,12>, <0,3,4,7,12,13>, <0,3,6,7,12,13>, <0,4,6,7,12,13>,
<1,3,4,5,6,12>, <1,3,4,6,11,12>, <1,3,4,7,11,13>, <1,3,4,11,12,13>,
<1,3,6,7,11,13>, <1,3,6,11,12,13>, <1,4,6,7,11,13>, <1,4,6,11,12,13>,
<3,4,6,7,11,12>, <3,4,7,11,12,13>, <3,6,7,11,12,13>, <4,6,7,11,12,13>)

sage: sum(p.volume(t) for t in triangulation)
42
sage: p0 = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)])
sage: p0.pushing_triangulation(point_order=[1,2,0,3,4])
(<1,2,3>, <1,2,4>)
sage: p0.pushing_triangulation(point_order=[0,1,2,3,4])
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)

The same triangulation with renumbered points 0->4, 1->0, etc:

sage: p1 = PointConfiguration([(+1,0), (-1,0), (0,+1), (0,-1), (0,0)])
sage: p1.pushing_triangulation(point_order=[4,0,1,2,3])
(<0,2,4>, <0,3,4>, <1,2,4>, <1,3,4>)
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restrict_to_connected_triangulations(connected=True)
Restrict to connected triangulations.

NOTE:

Finding non-connected triangulations requires the optional TOPCOM package.

INPUT:

• connected – boolean. Whether to restrict to triangulations that are connected by bistellar flips to the
regular triangulations.

OUTPUT:

A new PointConfiguration with the same points, but whose triangulations will all be in the connected
component. See PointConfiguration for details.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]]); p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.
sage: len(p.triangulations_list())
4
sage: PointConfiguration.set_engine( topcom )
sage: p_all = p.restrict_to_connected_triangulations(connected=False) #␣
→˓optional - topcom
sage: len(p_all.triangulations_list()) #␣
→˓optional - topcom
4
sage: p == p_all.restrict_to_connected_triangulations(connected=True) #␣
→˓optional - topcom
True
sage: PointConfiguration.set_engine( internal )

restrict_to_fine_triangulations(fine=True)
Restrict to fine triangulations.

INPUT:

• fine – boolean. Whether to restrict to fine triangulations.

OUTPUT:

A new PointConfiguration with the same points, but whose triangulations will all be fine. See
PointConfiguration for details.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.

sage: len(p.triangulations_list())
4
sage: p_fine = p.restrict_to_fine_triangulations()

(continues on next page)
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sage: len(p.triangulations_list())
4
sage: p == p_fine.restrict_to_fine_triangulations(fine=False)
True

restrict_to_regular_triangulations(regular=True)
Restrict to regular triangulations.

NOTE:

Regularity testing requires the optional TOPCOM package.

INPUT:

• regular – True, False, or None. Whether to restrict to regular triangulations, irregular triangula-
tions, or lift any restrictions on regularity.

OUTPUT:

A new PointConfiguration with the same points, but whose triangulations will all be regular as spec-
ified. See PointConfiguration for details.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]]); p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.
sage: len(p.triangulations_list())
4
sage: PointConfiguration.set_engine( topcom )
sage: p_regular = p.restrict_to_regular_triangulations() # optional - topcom
sage: len(p_regular.triangulations_list()) # optional - topcom
4
sage: p == p_regular.restrict_to_regular_triangulations(regular=None) #␣
→˓optional - topcom
True
sage: PointConfiguration.set_engine( internal )

restrict_to_star_triangulations(star)
Restrict to star triangulations with the given point as the center.

INPUT:

• origin – None or an integer or the coordinates of a point. An integer denotes the index of the central
point. If None is passed, any restriction on the starshape will be removed.

OUTPUT:

A new PointConfiguration with the same points, but whose triangulations will all be star. See
PointConfiguration for details.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: len(list(p.triangulations()))
4
sage: p_star = p.restrict_to_star_triangulations(0)
sage: p_star is p.restrict_to_star_triangulations((0,0))

(continues on next page)
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True
sage: p_star.triangulations_list()
[(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)]
sage: p_newstar = p_star.restrict_to_star_triangulations(1) # pick different␣
→˓origin
sage: p_newstar.triangulations_list()
[(<1,2,3>, <1,2,4>)]
sage: p == p_star.restrict_to_star_triangulations(star=None)
True

restricted_automorphism_group()

Return the restricted automorphism group.

First, let the linear automorphism group be the subgroup of the affine group 𝐴𝐺𝐿(𝑑,R) = 𝐺𝐿(𝑑,R)n R𝑑

preserving the 𝑑-dimensional point configuration. The affine group acts in the usual way �⃗� ↦→ 𝐴�⃗�+ 𝑏 on the
ambient space.

The restricted automorphism group is the subgroup of the linear automorphism group generated by permuta-
tions of points. See [BSS2009] for more details and a description of the algorithm.

OUTPUT:

A PermutationGroup that is isomorphic to the restricted automorphism group is returned.

Note that in Sage, permutation groups always act on positive integers while lists etc. are indexed by nonneg-
ative integers. The indexing of the permutation group is chosen to be shifted by +1. That is, the transposition
(i,j) in the permutation group corresponds to exchange of self[i-1] and self[j-1].

EXAMPLES:

sage: pyramid = PointConfiguration([[1,0,0], [0,1,1], [0,1,-1],
....: [0,-1,-1], [0,-1,1]])
sage: G = pyramid.restricted_automorphism_group() #␣
→˓needs sage.graphs sage.groups
sage: G == PermutationGroup([[(3,5)], [(2,3),(4,5)], [(2,4)]]) #␣
→˓needs sage.graphs sage.groups
True
sage: DihedralGroup(4).is_isomorphic(G) #␣
→˓needs sage.graphs sage.groups
True

The square with an off-center point in the middle. Note that the middle point breaks the restricted automor-
phism group 𝐷4 of the convex hull:

sage: square = PointConfiguration([(3/4,3/4), (1,1), (1,-1), (-1,-1), (-1,1)])
sage: square.restricted_automorphism_group() #␣
→˓needs sage.graphs sage.groups
Permutation Group with generators [(3,5)]
sage: DihedralGroup(1).is_isomorphic(_) #␣
→˓needs sage.graphs sage.groups
True

secondary_polytope()

Calculate the secondary polytope of the point configuration.

For a definition of the secondary polytope, see [GKZ1994] page 220 Definition 1.6.

Note that if you restricted the admissible triangulations of the point configuration then the output will be the
corresponding face of the whole secondary polytope.
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OUTPUT:

The secondary polytope of the point configuration as an instance of Polyhedron_base.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [1,0], [2,1], [1,2], [0,1]])
sage: poly = p.secondary_polytope()
sage: poly.vertices_matrix()
[1 1 3 3 5]
[3 5 1 4 1]
[4 2 5 2 4]
[2 4 2 5 4]
[5 3 4 1 1]
sage: poly.Vrepresentation()
(A vertex at (1, 3, 4, 2, 5),
A vertex at (1, 5, 2, 4, 3),
A vertex at (3, 1, 5, 2, 4),
A vertex at (3, 4, 2, 5, 1),
A vertex at (5, 1, 4, 4, 1))

sage: poly.Hrepresentation()
(An equation (0, 0, 1, 2, 1) x - 13 == 0,
An equation (1, 0, 0, 2, 2) x - 15 == 0,
An equation (0, 1, 0, -3, -2) x + 13 == 0,
An inequality (0, 0, 0, -1, -1) x + 7 >= 0,
An inequality (0, 0, 0, 1, 0) x - 2 >= 0,
An inequality (0, 0, 0, -2, -1) x + 11 >= 0,
An inequality (0, 0, 0, 0, 1) x - 1 >= 0,
An inequality (0, 0, 0, 3, 2) x - 14 >= 0)

classmethod set_engine(engine='auto')
Set the engine used to compute triangulations.

INPUT:

• engine – either auto (default), internal , or topcom . The latter two instruct this pack-
age to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively. By default
( auto ), internal routines are used.

EXAMPLES:

sage: # optional - topcom
sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: p.set_engine( internal ) # to make doctests independent of TOPCOM
sage: p.triangulate()
(<1,3,4>, <2,3,4>)
sage: p.set_engine( topcom )
sage: p.triangulate()
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: p.set_engine( internal )

star_center()

Return the center used for star triangulations.

See also:

restrict_to_star_triangulations().

OUTPUT:

A Point if a distinguished star central point has been fixed. ValueError exception is raised otherwise.
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EXAMPLES:

sage: pc = PointConfiguration([(1,0), (-1,0), (0,1), (0,2)], star=(0,1)); pc
A point configuration in affine 2-space over Integer Ring
consisting of 4 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular, and star with center P(0, 1).
sage: pc.star_center()
P(0, 1)

sage: pc_nostar = pc.restrict_to_star_triangulations(None); pc_nostar
A point configuration in affine 2-space over Integer Ring
consisting of 4 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.
sage: pc_nostar.star_center()
Traceback (most recent call last):
...
ValueError: The point configuration has no star center defined.

triangulate(verbose=False)
Return one (in no particular order) triangulation.

INPUT:

• verbose – boolean. Whether to print out the TOPCOM interaction, if any.

OUTPUT:

A Triangulation satisfying all restrictions imposed. This raises a ValueError if no such triangulation
exists.

EXAMPLES:

sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: p.triangulate()
(<1,3,4>, <2,3,4>)
sage: list( p.triangulate() )
[(1, 3, 4), (2, 3, 4)]

Using TOPCOM yields a different, but equally good, triangulation:

sage: # optional - topcom
sage: p.set_engine( topcom )
sage: p.triangulate()
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: list(p.triangulate())
[(0, 1, 2), (0, 1, 4), (0, 2, 4), (1, 2, 3)]
sage: p.set_engine( internal )

triangulations(verbose=False)
Returns all triangulations.

• verbose – boolean (default: False). Whether to print out the TOPCOM interaction, if any.

OUTPUT:

A generator for the triangulations satisfying all the restrictions imposed. Each triangulation is returned as a
Triangulation object.

EXAMPLES:
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sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1], [-1,-1]])
sage: iter = p.triangulations()
sage: next(iter)
(<1,3,4>, <2,3,4>)
sage: next(iter)
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
sage: next(iter)
(<1,2,3>, <1,2,4>)
sage: next(iter)
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: p.triangulations_list()
[(<1,3,4>, <2,3,4>),
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
(<1,2,3>, <1,2,4>),
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]

sage: p_fine = p.restrict_to_fine_triangulations()
sage: p_fine.triangulations_list()
[(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]

Note that we explicitly asked the internal algorithm to
compute the triangulations. Using TOPCOM, we obtain the same
triangulations but in a different order::

sage: # optional - topcom
sage: p.set_engine( topcom )
sage: iter = p.triangulations()
sage: next(iter)
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: next(iter)
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
sage: next(iter)
(<1,2,3>, <1,2,4>)
sage: next(iter)
(<1,3,4>, <2,3,4>)
sage: p.triangulations_list()
[(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>),
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
(<1,2,3>, <1,2,4>),
(<1,3,4>, <2,3,4>)]

sage: p_fine = p.restrict_to_fine_triangulations()
sage: p_fine.set_engine( topcom )
sage: p_fine.triangulations_list()
[(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>),
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)]

sage: p.set_engine( internal )

triangulations_list(verbose=False)

Return all triangulations.

INPUT:

• verbose – boolean. Whether to print out the TOPCOM interaction, if any.

OUTPUT:

A list of triangulations (see Triangulation) satisfying all restrictions imposed previously.

EXAMPLES:
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sage: p = PointConfiguration([[0,0], [0,1], [1,0], [1,1]])
sage: p.triangulations_list()
[(<0,1,2>, <1,2,3>), (<0,1,3>, <0,2,3>)]
sage: list(map(list, p.triangulations_list()))
[[(0, 1, 2), (1, 2, 3)], [(0, 1, 3), (0, 2, 3)]]
sage: p.set_engine( topcom )
sage: p.triangulations_list() # optional - topcom
[(<0,1,2>, <1,2,3>), (<0,1,3>, <0,2,3>)]
sage: p.set_engine( internal )

volume(simplex=None)
Find 𝑛! times the 𝑛-volume of a simplex of dimension 𝑛.

INPUT:

• simplex (optional argument) – a simplex from a triangulation T specified as a list of point indices.

OUTPUT:

• If a simplex was passed as an argument: 𝑛! * (volume of simplex).

• Without argument: 𝑛! * (the total volume of the convex hull).

EXAMPLES:

The volume of the standard simplex should always be 1:

sage: p = PointConfiguration([[0,0], [1,0], [0,1], [1,1]])
sage: p.volume([0,1,2])
1
sage: simplex = p.triangulate()[0] # first simplex of triangulation
sage: p.volume(simplex)
1

The square can be triangulated into two minimal simplices, so in the “integral” normalization its volume
equals two:

sage: p.volume()
2

Note: We return 𝑛! * (metric volume of the simplex) to ensure that the volume is an integer. Essentially,
this normalizes things so that the volume of the standard 𝑛-simplex is 1. See [GKZ1994] page 182.

3.2 Base classes for triangulations

We provide (fast) cython implementations here.

AUTHORS:

• Volker Braun (2010-09-14): initial version.

class sage.geometry.triangulation.base.ConnectedTriangulationsIterator

Bases: SageObject

A Python shim for the C++-class ‘triangulations’

INPUT:
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• point_configuration – a PointConfiguration.

• seed – a regular triangulation or None (default). In the latter case, a suitable triangulation is generated
automatically. Otherwise, you can explicitly specify the seed triangulation as

– A Triangulation object, or

– an iterable of iterables specifying the vertices of the simplices, or

– an iterable of integers, which are then considered the enumerated simplices (seesimplex_to_int().

• star – either None (default) or an integer. If an integer is passed, all returned triangulations will be star
with respect to the

• fine – boolean (default: False). Whether to return only fine triangulations, that is, simplicial decomposi-
tions that make use of all the points of the configuration.

OUTPUT:

An iterator. The generated values are tuples of integers, which encode simplices of the triangulation. The output
is a suitable input to Triangulation.

EXAMPLES:

sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: from sage.geometry.triangulation.base import ConnectedTriangulationsIterator
sage: ci = ConnectedTriangulationsIterator(p)
sage: next(ci)
(9, 10)
sage: next(ci)
(2, 3, 4, 5)
sage: next(ci)
(7, 8)
sage: next(ci)
(1, 3, 5, 7)
sage: next(ci)
Traceback (most recent call last):
...
StopIteration

You can reconstruct the triangulation from the compressed output via:

sage: from sage.geometry.triangulation.element import Triangulation
sage: Triangulation((2, 3, 4, 5), p)
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)

How to use the restrictions:

sage: ci = ConnectedTriangulationsIterator(p, fine=True)
sage: list(ci)
[(2, 3, 4, 5), (1, 3, 5, 7)]
sage: ci = ConnectedTriangulationsIterator(p, star=1)
sage: list(ci)
[(7, 8)]
sage: ci = ConnectedTriangulationsIterator(p, star=1, fine=True)
sage: list(ci)
[]

class sage.geometry.triangulation.base.Point

Bases: SageObject

A point of a point configuration.
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Note that the coordinates of the points of a point configuration are somewhat arbitrary. What counts are the abstract
linear relations between the points, for example encoded by the circuits().

Warning: You should not create Point objects manually. The constructor of PointConfigura-
tion_base takes care of this for you.

INPUT:

• point_configuration – PointConfiguration_base. The point configuration to which the
point belongs.

• i – integer. The index of the point in the point configuration.

• projective – the projective coordinates of the point.

• affine – the affine coordinates of the point.

• reduced – the reduced (with linearities removed) coordinates of the point.

EXAMPLES:

sage: pc = PointConfiguration([(0,0)])
sage: from sage.geometry.triangulation.base import Point
sage: Point(pc, 123, (0,0,1), (0,0), ())
P(0, 0)

affine()

Return the affine coordinates of the point in the ambient space.

OUTPUT:

A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

index()

Return the index of the point in the point configuration.

EXAMPLES:

sage: pc = PointConfiguration([[0, 1], [0, 0], [1, 0]])
sage: p = pc.point(2); p
P(1, 0)
sage: p.index()
2
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point_configuration()

Return the point configuration to which the point belongs.

OUTPUT:

A PointConfiguration.

EXAMPLES:

sage: pc = PointConfiguration([ (0,0), (1,0), (0,1) ])
sage: p = pc.point(0)
sage: p is pc.point(0)
True
sage: p.point_configuration() is pc
True

projective()

Return the projective coordinates of the point in the ambient space.

OUTPUT:

A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_affine()

Return the affine coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:

A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)
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reduced_affine_vector()

Return the affine coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:

A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_projective()

Return the projective coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:

A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_projective_vector()

Return the affine coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:

A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)

(continues on next page)
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sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)
sage: type(p.reduced_affine_vector())
<class sage.modules.vector_rational_dense.Vector_rational_dense >

class sage.geometry.triangulation.base.PointConfiguration_base

Bases: Parent

The cython abstract base class for PointConfiguration.

Warning: You should not instantiate this base class, but only its derived class PointConfiguration.

ambient_dim()

Return the dimension of the ambient space of the point configuration.

See also dimension()

EXAMPLES:

sage: p = PointConfiguration([[0,0,0]])
sage: p.ambient_dim()
3
sage: p.dim()
0

base_ring()

Return the base ring, that is, the ring containing the coordinates of the points.

OUTPUT:

A ring.

EXAMPLES:

sage: p = PointConfiguration([(0,0)])
sage: p.base_ring()
Integer Ring

sage: p = PointConfiguration([(1/2,3)])
sage: p.base_ring()
Rational Field

sage: p = PointConfiguration([(0.2, 5)])
sage: p.base_ring()
Real Field with 53 bits of precision

dim()

Return the actual dimension of the point configuration.

See also ambient_dim()
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EXAMPLES:

sage: p = PointConfiguration([[0,0,0]])
sage: p.ambient_dim()
3
sage: p.dim()
0

int_to_simplex(s)
Reverse the enumeration of possible simplices in simplex_to_int().

The enumeration is compatible with [PUNTOS].

INPUT:

• s – int. An integer that uniquely specifies a simplex.

OUTPUT:

An ordered tuple consisting of the indices of the vertices of the simplex.

EXAMPLES:

sage: U=matrix([
....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],
....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],
....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],
....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]
....: ])
sage: pc = PointConfiguration(U.columns())
sage: pc.simplex_to_int([1,3,4,7,10,13])
1678
sage: pc.int_to_simplex(1678)
(1, 3, 4, 7, 10, 13)

is_affine()

Return whether the configuration is defined by affine points.

OUTPUT:

Boolean. If true, the homogeneous coordinates all have 1 as their last entry.

EXAMPLES:

sage: p = PointConfiguration([(0.2, 5), (3, 0.1)])
sage: p.is_affine()
True

sage: p = PointConfiguration([(0.2, 5, 1), (3, 0.1, 1)], projective=True)
sage: p.is_affine()
False

n_points()

Return the number of points.

Same as len(self).

EXAMPLES:
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sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.
sage: len(p)
5
sage: p.n_points()
5

point(i)
Return the i-th point of the configuration.

Same as __getitem__()

INPUT:

• i – integer.

OUTPUT:

A point of the point configuration.

EXAMPLES:

sage: pconfig = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: list(pconfig)
[P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)]
sage: [ p for p in pconfig.points() ]
[P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)]
sage: pconfig.point(0)
P(0, 0)
sage: pconfig[0]
P(0, 0)
sage: pconfig.point(1)
P(0, 1)
sage: pconfig.point( pconfig.n_points()-1 )
P(-1, -1)

points()

Return a list of the points.

OUTPUT:

A list of the points. See also the __iter__() method, which returns the corresponding generator.

EXAMPLES:

sage: pconfig = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: list(pconfig)
[P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)]
sage: [ p for p in pconfig.points() ]
[P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)]
sage: pconfig.point(0)
P(0, 0)
sage: pconfig.point(1)
P(0, 1)
sage: pconfig.point( pconfig.n_points()-1 )
P(-1, -1)
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reduced_affine_vector_space()

Return the vector space that contains the affine points.

OUTPUT:

A vector space over the fraction field of base_ring().

EXAMPLES:

sage: p = PointConfiguration([[0,0,0], [1,2,3]])
sage: p.base_ring()
Integer Ring
sage: p.reduced_affine_vector_space()
Vector space of dimension 1 over Rational Field
sage: p.reduced_projective_vector_space()
Vector space of dimension 2 over Rational Field

reduced_projective_vector_space()

Return the vector space that is spanned by the homogeneous coordinates.

OUTPUT:

A vector space over the fraction field of base_ring().

EXAMPLES:

sage: p = PointConfiguration([[0,0,0], [1,2,3]])
sage: p.base_ring()
Integer Ring
sage: p.reduced_affine_vector_space()
Vector space of dimension 1 over Rational Field
sage: p.reduced_projective_vector_space()
Vector space of dimension 2 over Rational Field

simplex_to_int(simplex)
Return an integer that uniquely identifies the given simplex.

See also the inverse method int_to_simplex().

The enumeration is compatible with [PUNTOS].

INPUT:

• simplex – iterable, for example a list. The elements are the vertex indices of the simplex.

OUTPUT:

An integer that uniquely specifies the simplex.

EXAMPLES:

sage: U=matrix([
....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],
....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],
....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],
....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]
....: ])
sage: pc = PointConfiguration(U.columns())
sage: pc.simplex_to_int([1,3,4,7,10,13])
1678

(continues on next page)
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sage: pc.int_to_simplex(1678)
(1, 3, 4, 7, 10, 13)

3.3 A triangulation

In Sage, the PointConfiguration and Triangulation satisfy a parent/element relationship. In particular, each
triangulation refers back to its point configuration. If you want to triangulate a point configuration, you should construct
a point configuration first and then use one of its methods to triangulate it according to your requirements. You should
never have to construct a Triangulation object directly.

EXAMPLES:

First, we select the internal implementation for enumerating triangulations:

sage: PointConfiguration.set_engine( internal ) # to make doctests independent of␣
→˓TOPCOM

Here is a simple example of how to triangulate a point configuration:

sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate(); triang
(<0,1,2,5>, <0,1,3,5>, <1,3,4,5>)
sage: triang.plot(axes=False) #␣
→˓needs sage.plot
Graphics3d Object

See sage.geometry.triangulation.point_configuration for more details.

class sage.geometry.triangulation.element.Triangulation(triangulation, parent,
check=True)

Bases: Element

A triangulation of a PointConfiguration.

Warning: You should never create Triangulation objects manually. See triangulate() and tri-
angulations() to triangulate point configurations.

adjacency_graph()

Return a graph showing which simplices are adjacent in the triangulation.

OUTPUT:

A graph consisting of vertices referring to the simplices in the triangulation, and edges showing which sim-
plices are adjacent to each other.

See also:

• To obtain the triangulation’s 1-skeleton, use SimplicialComplex.graph() through
MyTriangulation.simplicial_complex().graph().

AUTHORS:

• Stephen Farley (2013-08-10): initial version
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EXAMPLES:

sage: p = PointConfiguration([[1,0,0], [0,1,0], [0,0,1], [-1,0,1],
....: [1,0,-1], [-1,0,0], [0,-1,0], [0,0,-1]])
sage: t = p.triangulate()
sage: t.adjacency_graph() #␣
→˓needs sage.graphs
Graph on 8 vertices

boundary()

Return the boundary of the triangulation.

OUTPUT:

The outward-facing boundary simplices (of dimension 𝑑−1) of the 𝑑-dimensional triangulation as a set. Each
boundary is returned by a tuple of point indices.

EXAMPLES:

sage: triangulation = polytopes.cube().triangulate(engine= internal )
sage: triangulation
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: triangulation.boundary()
frozenset({(0, 1, 2),

(0, 1, 5),
(0, 2, 3),
(0, 3, 4),
(0, 4, 5),
(1, 2, 7),
(1, 5, 6),
(1, 6, 7),
(2, 3, 7),
(3, 4, 7),
(4, 5, 7),
(5, 6, 7)})

sage: triangulation.interior_facets()
frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})

boundary_polyhedral_complex(**kwds)
Return the boundary of self as a PolyhedralComplex.

OUTPUT:

A PolyhedralComplex whose maximal cells are the simplices of the boundary of self.

EXAMPLES:

sage: P = polytopes.cube()
sage: pc = PointConfiguration(P.vertices())
sage: T = pc.placing_triangulation(); T
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: bd_C = T.boundary_polyhedral_complex(); bd_C #␣
→˓needs sage.graphs
Polyhedral complex with 12 maximal cells
sage: [P.vertices_list() for P in bd_C.maximal_cells_sorted()] #␣
→˓needs sage.graphs
[[[-1, -1, -1], [-1, -1, 1], [-1, 1, 1]],
[[-1, -1, -1], [-1, -1, 1], [1, -1, -1]],
[[-1, -1, -1], [-1, 1, -1], [-1, 1, 1]],

(continues on next page)
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[[-1, -1, -1], [-1, 1, -1], [1, 1, -1]],
[[-1, -1, -1], [1, -1, -1], [1, 1, -1]],
[[-1, -1, 1], [-1, 1, 1], [1, -1, 1]],
[[-1, -1, 1], [1, -1, -1], [1, -1, 1]],
[[-1, 1, -1], [-1, 1, 1], [1, 1, -1]],
[[-1, 1, 1], [1, -1, 1], [1, 1, 1]],
[[-1, 1, 1], [1, 1, -1], [1, 1, 1]],
[[1, -1, -1], [1, -1, 1], [1, 1, 1]],
[[1, -1, -1], [1, 1, -1], [1, 1, 1]]]

It is a subcomplex of self as a polyhedral_complex():

sage: C = T.polyhedral_complex() #␣
→˓needs sage.graphs
sage: bd_C.is_subcomplex(C) #␣
→˓needs sage.graphs
True

boundary_simplicial_complex()

Return the boundary of self as an (abstract) simplicial complex.

OUTPUT:

A SimplicialComplex.

EXAMPLES:

sage: p = polytopes.cuboctahedron()
sage: triangulation = p.triangulate(engine= internal )
sage: bd_sc = triangulation.boundary_simplicial_complex(); bd_sc #␣
→˓needs sage.graphs
Simplicial complex with 12 vertices and 20 facets

The boundary of every convex set is a topological sphere, so it has spherical homology:

sage: bd_sc.homology() #␣
→˓needs sage.graphs
{0: 0, 1: 0, 2: Z}

It is a subcomplex of self as a simplicial_complex():

sage: sc = triangulation.simplicial_complex() #␣
→˓needs sage.graphs
sage: all(f in sc for f in bd_sc.maximal_faces()) #␣
→˓needs sage.graphs
True

enumerate_simplices()

Return the enumerated simplices.

OUTPUT:

A tuple of integers that uniquely specifies the triangulation.

EXAMPLES:

sage: pc = PointConfiguration(matrix([
....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],

(continues on next page)
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....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],

....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],

....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],

....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]

....: ]).columns())
sage: triangulation = pc.lexicographic_triangulation()
sage: triangulation.enumerate_simplices()
(1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143, 2234, 2360, 2555, 2580,
2610, 2626, 2650, 2652, 2654, 2661, 2663, 2667, 2685, 2755, 2757, 2759,
2766, 2768, 2772, 2811, 2881, 2883, 2885, 2892, 2894, 2898)

You can recreate the triangulation from this list by passing it to the constructor:

sage: from sage.geometry.triangulation.point_configuration import␣
→˓Triangulation
sage: Triangulation([1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143,
....: 2234, 2360, 2555, 2580, 2610, 2626, 2650, 2652, 2654, 2661, 2663,
....: 2667, 2685, 2755, 2757, 2759, 2766, 2768, 2772, 2811, 2881, 2883,
....: 2885, 2892, 2894, 2898], pc)
(<1,3,4,7,10,13>, <1,3,4,8,10,13>, <1,3,6,7,10,13>, <1,3,6,8,10,13>,
<1,4,6,7,10,13>, <1,4,6,8,10,13>, <2,3,4,6,7,12>, <2,3,4,7,12,13>,
<2,3,6,7,12,13>, <2,4,6,7,12,13>, <3,4,5,6,9,12>, <3,4,5,8,9,12>,
<3,4,6,7,11,12>, <3,4,6,9,11,12>, <3,4,7,10,11,13>, <3,4,7,11,12,13>,
<3,4,8,9,10,12>, <3,4,8,10,12,13>, <3,4,9,10,11,12>, <3,4,10,11,12,13>,
<3,5,6,8,9,12>, <3,6,7,10,11,13>, <3,6,7,11,12,13>, <3,6,8,9,10,12>,
<3,6,8,10,12,13>, <3,6,9,10,11,12>, <3,6,10,11,12,13>, <4,5,6,8,9,12>,
<4,6,7,10,11,13>, <4,6,7,11,12,13>, <4,6,8,9,10,12>, <4,6,8,10,12,13>,
<4,6,9,10,11,12>, <4,6,10,11,12,13>)

fan(origin=None)
Construct the fan of cones over the simplices of the triangulation.

INPUT:

• origin – None (default) or coordinates of a point. The common apex of all cones of the fan. If None,
the triangulation must be a star triangulation and the distinguished central point is used as the origin.

OUTPUT:

A RationalPolyhedralFan. The coordinates of the points are shifted so that the apex of the fan is the
origin of the coordinate system.

Note: If the set of cones over the simplices is not a fan, a suitable exception is raised.

EXAMPLES:

sage: pc = PointConfiguration([(0,0), (1,0), (0,1), (-1,-1)], star=0,␣
→˓fine=True)
sage: triangulation = pc.triangulate()
sage: fan = triangulation.fan(); fan
Rational polyhedral fan in 2-d lattice N
sage: fan.is_equivalent(toric_varieties.P2().fan()) #␣
→˓needs palp sage.graphs
True

Toric diagrams (the 5 hyperconifold):
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sage: vertices=[(0, 1, 0), (0, 3, 1), (0, 2, 3), (0, 0, 2)]
sage: interior=[(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)]
sage: points = vertices + interior
sage: pc = PointConfiguration(points, fine=True)
sage: triangulation = pc.triangulate()
sage: fan = triangulation.fan((-1,0,0)); fan
Rational polyhedral fan in 3-d lattice N
sage: fan.rays()
N(1, 1, 0),
N(1, 3, 1),
N(1, 2, 3),
N(1, 0, 2),
N(1, 1, 1),
N(1, 1, 2),
N(1, 2, 1),
N(1, 2, 2)
in 3-d lattice N

gkz_phi()

Calculate the GKZ phi vector of the triangulation.

The phi vector is a vector of length equals to the number of points in the point configuration. For a fixed
triangulation 𝑇 , the entry corresponding to the 𝑖-th point 𝑝𝑖 is

𝜑𝑇 (𝑝𝑖) =
∑︁

𝑡∈𝑇,𝑡∋𝑝𝑖

𝑉 𝑜𝑙(𝑡)

that is, the total volume of all simplices containing 𝑝𝑖. See also [GKZ1994] page 220 equation 1.4.

OUTPUT:

The phi vector of self.

EXAMPLES:

sage: p = PointConfiguration([[0,0],[1,0],[2,1],[1,2],[0,1]])
sage: p.triangulate().gkz_phi()
(3, 1, 5, 2, 4)
sage: p.lexicographic_triangulation().gkz_phi()
(1, 3, 4, 2, 5)

interior_facets()

Return the interior facets of the triangulation.

OUTPUT:

The inward-facing boundary simplices (of dimension 𝑑− 1) of the 𝑑-dimensional triangulation as a set. Each
boundary is returned by a tuple of point indices.

EXAMPLES:

sage: triangulation = polytopes.cube().triangulate(engine= internal )
sage: triangulation
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: triangulation.boundary()
frozenset({(0, 1, 2),

(0, 1, 5),
(0, 2, 3),
(0, 3, 4),

(continues on next page)
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(0, 4, 5),
(1, 2, 7),
(1, 5, 6),
(1, 6, 7),
(2, 3, 7),
(3, 4, 7),
(4, 5, 7),
(5, 6, 7)})

sage: triangulation.interior_facets()
frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})

normal_cone()

Return the (closure of the) normal cone of the triangulation.

Recall that a regular triangulation is one that equals the “crease lines” of a convex piecewise-linear function.
This support function is not unique, for example, you can scale it by a positive constant. The set of all
piecewise-linear functions with fixed creases forms an open cone. This cone can be interpreted as the cone
of normal vectors at a point of the secondary polytope, which is why we call it normal cone. See [GKZ1994]
Section 7.1 for details.

OUTPUT:

The closure of the normal cone. The 𝑖-th entry equals the value of the piecewise-linear function at the 𝑖-th
point of the configuration.

For an irregular triangulation, the normal cone is empty. In this case, a single point (the origin) is returned.

EXAMPLES:

sage: triangulation = polytopes.hypercube(2).triangulate(engine= internal )
sage: triangulation
(<0,1,3>, <1,2,3>)
sage: N = triangulation.normal_cone(); N
4-d cone in 4-d lattice
sage: N.rays()
( 0, 0, 0, -1),
( 0, 0, 1, 1),
( 0, 0, -1, -1),
( 1, 0, 0, 1),
(-1, 0, 0, -1),
( 0, 1, 0, -1),
( 0, -1, 0, 1)
in Ambient free module of rank 4
over the principal ideal domain Integer Ring
sage: N.dual().rays()
(1, -1, 1, -1)
in Ambient free module of rank 4
over the principal ideal domain Integer Ring

plot(**kwds)
Produce a graphical representation of the triangulation.

EXAMPLES:

sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: triangulation = p.triangulate()
sage: triangulation
(<1,3,4>, <2,3,4>)

(continues on next page)
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sage: triangulation.plot(axes=False) #␣
→˓needs sage.plot
Graphics object consisting of 12 graphics primitives

point_configuration()

Returns the point configuration underlying the triangulation.

EXAMPLES:

sage: pconfig = PointConfiguration([[0,0],[0,1],[1,0]])
sage: pconfig
A point configuration in affine 2-space over Integer Ring
consisting of 3 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.
sage: triangulation = pconfig.triangulate()
sage: triangulation
(<0,1,2>)
sage: triangulation.point_configuration()
A point configuration in affine 2-space over Integer Ring
consisting of 3 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.
sage: pconfig == triangulation.point_configuration()
True

polyhedral_complex(**kwds)
Return self as a PolyhedralComplex.

OUTPUT:

A PolyhedralComplex whose maximal cells are the simplices of the triangulation.

EXAMPLES:

sage: P = polytopes.cube()
sage: pc = PointConfiguration(P.vertices())
sage: T = pc.placing_triangulation(); T
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: C = T.polyhedral_complex(); C #␣
→˓needs sage.graphs
Polyhedral complex with 6 maximal cells
sage: [P.vertices_list() for P in C.maximal_cells_sorted()] #␣
→˓needs sage.graphs
[[[-1, -1, -1], [-1, -1, 1], [-1, 1, 1], [1, -1, -1]],
[[-1, -1, -1], [-1, 1, -1], [-1, 1, 1], [1, 1, -1]],
[[-1, -1, -1], [-1, 1, 1], [1, -1, -1], [1, 1, -1]],
[[-1, -1, 1], [-1, 1, 1], [1, -1, -1], [1, -1, 1]],
[[-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, 1]],
[[-1, 1, 1], [1, -1, -1], [1, 1, -1], [1, 1, 1]]]

simplicial_complex()

Return self as an (abstract) simplicial complex.

OUTPUT:

A SimplicialComplex.

EXAMPLES:
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sage: p = polytopes.cuboctahedron()
sage: sc = p.triangulate(engine= internal ).simplicial_complex(); sc #␣
→˓needs sage.graphs
Simplicial complex with 12 vertices and 16 facets

Any convex set is contractable, so its reduced homology groups vanish:

sage: sc.homology() #␣
→˓needs sage.graphs
{0: 0, 1: 0, 2: 0, 3: 0}

sage.geometry.triangulation.element.triangulation_render_2d(triangulation, **kwds)
Return a graphical representation of a 2-d triangulation.

INPUT:

• triangulation – a Triangulation.

• **kwds – keywords that are passed on to the graphics primitives.

OUTPUT:

A 2-d graphics object.

EXAMPLES:

sage: points = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: triang = points.triangulate()
sage: triang.plot(axes=False, aspect_ratio=1) # indirect doctest #␣
→˓needs sage.plot
Graphics object consisting of 12 graphics primitives

sage.geometry.triangulation.element.triangulation_render_3d(triangulation, **kwds)
Return a graphical representation of a 3-d triangulation.

INPUT:

• triangulation – a Triangulation.

• **kwds – keywords that are passed on to the graphics primitives.

OUTPUT:

A 3-d graphics object.

EXAMPLES:

sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate()
sage: triang.plot(axes=False) # indirect doctest #␣
→˓needs sage.plot
Graphics3d Object
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CHAPTER

FOUR

MISCELLANEOUS

4.1 Abstract base classes for classes in geometry

class sage.geometry.abc.ConvexRationalPolyhedralCone

Bases: object

Abstract base class for ConvexRationalPolyhedralCone

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.geometry.abc
sage: C = cones.nonnegative_orthant(2) #␣
→˓needs sage.geometry.polyhedron
sage: isinstance(C, sage.geometry.abc.ConvexRationalPolyhedralCone) #␣
→˓needs sage.geometry.polyhedron
True

By design, there is a unique direct subclass:

sage: sage.geometry.abc.ConvexRationalPolyhedralCone.__subclasses__() #␣
→˓needs sage.geometry.polyhedron
[<class sage.geometry.cone.ConvexRationalPolyhedralCone >]

sage: len(sage.geometry.abc.Polyhedron.__subclasses__()) <= 1
True

class sage.geometry.abc.LatticePolytope

Bases: object

Abstract base class for LatticePolytopeClass

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.geometry.abc
sage: P = LatticePolytope([(1,2,3), (4,5,6)]) #␣
→˓needs sage.geometry.polyhedron
sage: isinstance(P, sage.geometry.abc.LatticePolytope) #␣
→˓needs sage.geometry.polyhedron
True

By design, there is a unique direct subclass:
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sage: sage.geometry.abc.LatticePolytope.__subclasses__() #␣
→˓needs sage.geometry.polyhedron
[<class sage.geometry.lattice_polytope.LatticePolytopeClass >]

sage: len(sage.geometry.abc.Polyhedron.__subclasses__()) <= 1
True

class sage.geometry.abc.Polyhedron

Bases: object

Abstract base class for Polyhedron_base

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.geometry.abc
sage: P = polytopes.cube() #␣
→˓needs sage.geometry.polyhedron
sage: isinstance(P, sage.geometry.abc.Polyhedron) #␣
→˓needs sage.geometry.polyhedron
True

By design, there is a unique direct subclass:

sage: sage.geometry.abc.Polyhedron.__subclasses__() #␣
→˓needs sage.geometry.polyhedron
[<class sage.geometry.polyhedron.base0.Polyhedron_base0 >]

sage: len(sage.geometry.abc.Polyhedron.__subclasses__()) <= 1
True

4.2 Convex Sets

class sage.geometry.convex_set.AffineHullProjectionData(image: Any | None = None,
projection_linear_map: Any |
None = None,
projection_translation: Any | None
= None, section_linear_map: Any
| None = None,
section_translation: Any | None =
None)

Bases: object

image: Any = None

projection_linear_map: Any = None

projection_translation: Any = None

section_linear_map: Any = None

section_translation: Any = None
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class sage.geometry.convex_set.ConvexSet_base

Bases: SageObject, Set_base

Abstract base class for convex sets.

affine_hull(*args, **kwds)
Return the affine hull of self as a polyhedron.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_compact
sage: class EmbeddedDisk(ConvexSet_compact):
....: def an_affine_basis(self):
....: return [vector([1, 0, 0]), vector([1, 1, 0]), vector([1, 0, 1])]
sage: O = EmbeddedDisk()
sage: O.dim()
2
sage: O.affine_hull()
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and␣
→˓2 lines

affine_hull_projection(as_convex_set=None, as_affine_map=False, orthogonal=False,
orthonormal=False, extend=False, minimal=False, return_all_data=False,
**kwds)

Return self projected into its affine hull.

Each convex set is contained in some smallest affine subspace (possibly the entire ambient space) – its affine
hull. We provide an affine linear map that projects the ambient space of the convex set to the standard
Euclidean space of dimension of the convex set, which restricts to a bijection from the affine hull.

The projection map is not unique; some parameters control the choice of the map. Other parameters control
the output of the function.

EXAMPLES:

sage: P = Polyhedron(vertices=[[1, 0], [0, 1]])
sage: ri_P = P.relative_interior(); ri_P
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex␣
→˓hull of 2 vertices
sage: ri_P.affine_hull_projection(as_affine_map=True)
(Vector space morphism represented by the matrix:
[1]
[0]
Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 1 over Rational Field,
(0))
sage: P_aff = P.affine_hull_projection(); P_aff
A 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices
sage: ri_P_aff = ri_P.affine_hull_projection(); ri_P_aff
Relative interior of a 1-dimensional polyhedron in QQ^1 defined as the convex␣
→˓hull of 2 vertices
sage: ri_P_aff.closure() == P_aff
True

ambient()

Return the ambient convex set or space.

The default implementation delegates to ambient_vector_space().

EXAMPLES:
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sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def ambient_vector_space(self, base_field=None):
....: return (base_field or QQ)^2001
sage: ExampleSet().ambient()
Vector space of dimension 2001 over Rational Field

ambient_dim()

Return the dimension of the ambient convex set or space.

The default implementation obtains it from ambient().

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def ambient(self):
....: return QQ^7
sage: ExampleSet().ambient_dim()
7

ambient_dimension()

Return the dimension of the ambient convex set or space.

This is the same as ambient_dim().

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def ambient_dim(self):
....: return 91
sage: ExampleSet().ambient_dimension()
91

ambient_vector_space(base_field=None)
Return the ambient vector space.

Subclasses must provide an implementation of this method.

The default implementations of ambient(), ambient_dim(), ambient_dimension() use this
method.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: C = ConvexSet_base()
sage: C.ambient_vector_space()
Traceback (most recent call last):
...
NotImplementedError: <abstract method ambient_vector_space at ...>

an_affine_basis()

Return points that form an affine basis for the affine hull.

The points are guaranteed to lie in the topological closure of self.

EXAMPLES:
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sage: from sage.geometry.convex_set import ConvexSet_base
sage: C = ConvexSet_base()
sage: C.an_affine_basis()
Traceback (most recent call last):
...
TypeError: NotImplementedType object is not callable

an_element()

Return a point of self.

If self is empty, an EmptySetError will be raised.

The default implementation delegates to _some_elements_().

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_compact
sage: class BlueBox(ConvexSet_compact):
....: def _some_elements_(self):
....: yield blue
....: yield cyan
sage: BlueBox().an_element()
blue

cardinality()

Return the cardinality of this set.

OUTPUT:

Either an integer or Infinity.

EXAMPLES:

sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.cardinality()
0
sage: q = Polyhedron(ambient_dim=2); q
The empty polyhedron in ZZ^2
sage: q.cardinality()
0
sage: r = Polyhedron(rays=[(1, 0)]); r
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and␣
→˓1 ray
sage: r.cardinality()
+Infinity

cartesian_product(other)

Return the Cartesian product.

INPUT:

• other – another convex set

OUTPUT:

The Cartesian product of self and other.

closure()

Return the topological closure of self.
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EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_closed
sage: C = ConvexSet_closed()
sage: C.closure() is C
True

codim()

Return the codimension of self in self.ambient().

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,2,3)], rays=[(1,0,0)])
sage: P.codimension()
2

An alias is codim():

sage: P.codim()
2

codimension()

Return the codimension of self in self.ambient().

EXAMPLES:

sage: P = Polyhedron(vertices=[(1,2,3)], rays=[(1,0,0)])
sage: P.codimension()
2

An alias is codim():

sage: P.codim()
2

contains(point)
Test whether self contains the given point.

INPUT:

• point – a point or its coordinates

dilation(scalar)

Return the dilated (uniformly stretched) set.

INPUT:

• scalar – A scalar, not necessarily in base_ring()

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_compact
sage: class GlorifiedPoint(ConvexSet_compact):
....: def __init__(self, p):
....: self._p = p
....: def ambient_vector_space(self):
....: return self._p.parent().vector_space()
....: def linear_transformation(self, linear_transf):
....: return GlorifiedPoint(linear_transf * self._p)

(continues on next page)
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sage: P = GlorifiedPoint(vector([2, 3]))
sage: P.dilation(10)._p
(20, 30)

dim()

Return the dimension of self.

Subclasses must provide an implementation of this method or of the method an_affine_basis().

dimension()

Return the dimension of self.

This is the same as dim().

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def dim(self):
....: return 42
sage: ExampleSet().dimension()
42

interior()

Return the topological interior of self.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_open
sage: C = ConvexSet_open()
sage: C.interior() is C
True

intersection(other)
Return the intersection of self and other.

INPUT:

• other – another convex set

OUTPUT:

The intersection.

is_closed()

Return whether self is closed.

The default implementation of this method only knows that the empty set, a singleton set, and the ambient
space are closed.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def dim(self):
....: return 0

(continues on next page)
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sage: ExampleSet().is_closed()
True

is_compact()

Return whether self is compact.

The default implementation of this method only knows that a non-closed set cannot be compact, and that the
empty set and a singleton set are compact.

OUTPUT:

Boolean.

sage: from sage.geometry.convex_set import ConvexSet_base sage: class ExampleSet(Con-
vexSet_base): ….: def dim(self): ….: return 0 sage: ExampleSet().is_compact() True

is_empty()

Test whether self is the empty set.

OUTPUT:

Boolean.

EXAMPLES:

sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.is_empty()
True

is_finite()

Test whether self is a finite set.

OUTPUT:

Boolean.

EXAMPLES:

sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.is_finite()
True
sage: q = Polyhedron(ambient_dim=2); q
The empty polyhedron in ZZ^2
sage: q.is_finite()
True
sage: r = Polyhedron(rays=[(1, 0)]); r
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and␣
→˓1 ray
sage: r.is_finite()
False

is_full_dimensional()

Return whether self is full dimensional.

OUTPUT:

Boolean. Whether the polyhedron is not contained in any strict affine subspace.

EXAMPLES:
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sage: c = Cone([(1,0)])
sage: c.is_full_dimensional()
False

sage: polytopes.hypercube(3).is_full_dimensional()
True
sage: Polyhedron(vertices=[(1,2,3)], rays=[(1,0,0)]).is_full_dimensional()
False

is_open()

Return whether self is open.

The default implementation of this method only knows that the empty set and the ambient space are open.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def is_empty(self):
....: return False
....: def is_universe(self):
....: return True
sage: ExampleSet().is_open()
True

is_relatively_open()

Return whether self is relatively open.

The default implementation of this method only knows that open sets are also relatively open, and in addition
singletons are relatively open.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
....: def is_open(self):
....: return True
sage: ExampleSet().is_relatively_open()
True

is_universe()

Test whether self is the whole ambient space.

OUTPUT:

Boolean.

linear_transformation(linear_transf)
Return the linear transformation of self.

INPUT:

• linear_transf – a matrix
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relative_interior()

Return the relative interior of self.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_relatively_open
sage: C = ConvexSet_relatively_open()
sage: C.relative_interior() is C
True

representative_point()

Return a “generic” point of self.

OUTPUT:

A point in the relative interior of self as a coordinate vector.

EXAMPLES:

sage: C = Cone([[1, 2, 0], [2, 1, 0]])
sage: C.representative_point()
(1, 1, 0)

some_elements()

Return a list of some points of self.

If self is empty, an empty list is returned; no exception will be raised.

The default implementation delegates to _some_elements_().

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_compact
sage: class BlueBox(ConvexSet_compact):
....: def _some_elements_(self):
....: yield blue
....: yield cyan
sage: BlueBox().some_elements()
[ blue , cyan ]

translation(displacement)
Return the translation of self by a displacement vector.

INPUT:

• displacement – a displacement vector or a list/tuple of coordinates that determines a displacement
vector

class sage.geometry.convex_set.ConvexSet_closed

Bases: ConvexSet_base

Abstract base class for closed convex sets.

is_closed()

Return whether self is closed.

OUTPUT:

Boolean.

EXAMPLES:
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sage: hcube = polytopes.hypercube(5)
sage: hcube.is_closed()
True

is_open()

Return whether self is open.

OUTPUT:

Boolean.

EXAMPLES:

sage: hcube = polytopes.hypercube(5)
sage: hcube.is_open()
False

sage: zerocube = polytopes.hypercube(0)
sage: zerocube.is_open()
True

class sage.geometry.convex_set.ConvexSet_compact

Bases: ConvexSet_closed

Abstract base class for compact convex sets.

is_compact()

Return whether self is compact.

OUTPUT:

Boolean.

EXAMPLES:

sage: cross3 = lattice_polytope.cross_polytope(3)
sage: cross3.is_compact()
True

is_relatively_open()

Return whether self is open.

OUTPUT:

Boolean.

EXAMPLES:

sage: hcube = polytopes.hypercube(5)
sage: hcube.is_open()
False

sage: zerocube = polytopes.hypercube(0)
sage: zerocube.is_open()
True

is_universe()

Return whether self is the whole ambient space

OUTPUT:
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Boolean.

EXAMPLES:

sage: cross3 = lattice_polytope.cross_polytope(3)
sage: cross3.is_universe()
False
sage: point0 = LatticePolytope([[]]); point0
0-d reflexive polytope in 0-d lattice M
sage: point0.is_universe()
True

class sage.geometry.convex_set.ConvexSet_open

Bases: ConvexSet_relatively_open

Abstract base class for open convex sets.

is_closed()

Return whether self is closed.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_open
sage: class OpenBall(ConvexSet_open):
....: def dim(self):
....: return 3
....: def is_universe(self):
....: return False
sage: OpenBall().is_closed()
False

is_open()

Return whether self is open.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_open
sage: b = ConvexSet_open()
sage: b.is_open()
True

class sage.geometry.convex_set.ConvexSet_relatively_open

Bases: ConvexSet_base

Abstract base class for relatively open convex sets.

is_open()

Return whether self is open.

OUTPUT:

Boolean.

EXAMPLES:
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sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior()
sage: ri_segment.is_open()
False

is_relatively_open()

Return whether self is relatively open.

OUTPUT:

Boolean.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior()
sage: ri_segment.is_relatively_open()
True

4.3 Linear Expressions

A linear expression is just a linear polynomial in some (fixed) variables (allowing a nonzero constant term). This class
only implements linear expressions for others to use.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ); L
Module of linear expressions in variables x, y, z over Rational Field
sage: x + 2*y + 3*z + 4
x + 2*y + 3*z + 4
sage: L(4)
0*x + 0*y + 0*z + 4

You can also pass coefficients and a constant term to construct linear expressions:

sage: L([1, 2, 3], 4)
x + 2*y + 3*z + 4
sage: L([(1, 2, 3), 4])
x + 2*y + 3*z + 4
sage: L([4, 1, 2, 3]) # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4

The linear expressions are a module over the base ring, so you can add them and multiply them with scalars:

sage: m = x + 2*y + 3*z + 4
sage: 2*m
2*x + 4*y + 6*z + 8
sage: m+m
2*x + 4*y + 6*z + 8
sage: m-m
0*x + 0*y + 0*z + 0

class sage.geometry.linear_expression.LinearExpression(parent, coefficients, constant,
check=True)

Bases: ModuleElement

4.3. Linear Expressions 729

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement


Combinatorial and Discrete Geometry, Release 10.4.rc1

A linear expression.

A linear expression is just a linear polynomial in some (fixed) variables.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: m = L([1, 2, 3], 4); m
x + 2*y + 3*z + 4
sage: m2 = L([(1, 2, 3), 4]); m2
x + 2*y + 3*z + 4
sage: m3 = L([4, 1, 2, 3]); m3 # note: constant is first in single-tuple␣
→˓notation
x + 2*y + 3*z + 4
sage: m == m2
True
sage: m2 == m3
True
sage: L.zero()
0*x + 0*y + 0*z + 0
sage: a = L([12, 2/3, -1], -2)
sage: a - m
11*x - 4/3*y - 4*z - 6
sage: LZ.<x,y,z> = LinearExpressionModule(ZZ)
sage: a - LZ([2, -1, 3], 1)
10*x + 5/3*y - 4*z - 3

A()

Return the coefficient vector.

OUTPUT:

The coefficient vector of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4

b()

Return the constant term.

OUTPUT:

The constant term of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.A()

(continues on next page)
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(1, 2, 3)
sage: linear.b()
4

change_ring(base_ring)
Change the base ring of this linear expression.

INPUT:

• base_ring – a ring; the new base ring

OUTPUT:

A new linear expression over the new base ring.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: a = x + 2*y + 3*z + 4; a
x + 2*y + 3*z + 4
sage: a.change_ring(RDF)
1.0*x + 2.0*y + 3.0*z + 4.0

coefficients()

Return all coefficients.

OUTPUT:

The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.coefficients()
[4, 1, 2, 3]

constant_term()

Return the constant term.

OUTPUT:

The constant term of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4
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dense_coefficient_list()

Return all coefficients.

OUTPUT:

The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.coefficients()
[4, 1, 2, 3]

evaluate(point)
Evaluate the linear expression.

INPUT:

• point – list/tuple/iterable of coordinates; the coordinates of a point

OUTPUT:

The linear expression 𝐴𝑥+ 𝑏 evaluated at the point 𝑥.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y> = LinearExpressionModule(QQ)
sage: ex = 2*x + 3* y + 4
sage: ex.evaluate([1,1])
9
sage: ex([1,1]) # syntactic sugar
9
sage: ex([pi, e]) #␣
→˓needs sage.symbolic
2*pi + 3*e + 4

monomial_coefficients(copy=True)
Return a dictionary whose keys are indices of basis elements in the support of self and whose values are
the corresponding coefficients.

INPUT:

• copy – ignored

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4)
sage: sorted(linear.monomial_coefficients().items(), key=lambda x: str(x[0]))
[(0, 1), (1, 2), (2, 3), ( b , 4)]

class sage.geometry.linear_expression.LinearExpressionModule(base_ring, names=())
Bases: Parent, UniqueRepresentation

The module of linear expressions.

This is the module of linear polynomials which is the parent for linear expressions.
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EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: L
Module of linear expressions in variables x, y, z over Rational Field
sage: L.an_element()
x + 0*y + 0*z + 0

Element

alias of LinearExpression

ambient_module()

Return the ambient module.

See also:

ambient_vector_space()

OUTPUT:

The domain of the linear expressions as a free module over the base ring.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: L.ambient_module()
Vector space of dimension 3 over Rational Field
sage: M = LinearExpressionModule(ZZ, ( r , s ))
sage: M.ambient_module()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: M.ambient_vector_space()
Vector space of dimension 2 over Rational Field

ambient_vector_space()

Return the ambient vector space.

See also:

ambient_module()

OUTPUT:

The vector space (over the fraction field of the base ring) where the linear expressions live.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: L.ambient_vector_space()
Vector space of dimension 3 over Rational Field
sage: M = LinearExpressionModule(ZZ, ( r , s ))
sage: M.ambient_module()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: M.ambient_vector_space()
Vector space of dimension 2 over Rational Field

basis()

Return a basis of self.

EXAMPLES:
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sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: list(L.basis())
[x + 0*y + 0*z + 0,
0*x + y + 0*z + 0,
0*x + 0*y + z + 0,
0*x + 0*y + 0*z + 1]

change_ring(base_ring)
Return a new module with a changed base ring.

INPUT:

• base_ring – a ring; the new base ring

OUTPUT:

A new linear expression over the new base ring.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: M.<y> = LinearExpressionModule(ZZ)
sage: L = M.change_ring(QQ); L
Module of linear expressions in variable y over Rational Field

gen(i)
Return the 𝑖-th generator.

INPUT:

• i – integer

OUTPUT:

A linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: L.gen(0)
x + 0*y + 0*z + 0

gens()

Return the generators of self.

OUTPUT:

A tuple of linear expressions, one for each linear variable.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: L.gens()
(x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0)

ngens()

Return the number of linear variables.

OUTPUT:
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An integer.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ( x , y , z ))
sage: L.ngens()
3

random_element()

Return a random element.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: L.random_element() in L
True

4.4 Newton Polygons

This module implements finite Newton polygons and infinite Newton polygons having a finite number of slopes (and hence
a last infinite slope).

class sage.geometry.newton_polygon.NewtonPolygon_element(polyhedron, parent)
Bases: Element

Class for infinite Newton polygons with last slope.

last_slope()

Returns the last (infinite) slope of this Newton polygon if it is infinite and +Infinity otherwise.

EXAMPLES:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP1 = NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3)
sage: NP1.last_slope()
3

sage: NP2 = NewtonPolygon([ (0,0), (1,1), (2,5) ])
sage: NP2.last_slope()
+Infinity

We check that the last slope of a sum (resp. a product) is the minimum of the last slopes of the summands
(resp. the factors):

sage: (NP1 + NP2).last_slope()
3
sage: (NP1 * NP2).last_slope()
3

plot(**kwargs)
Plot this Newton polygon.

Note: All usual rendering options (color, thickness, etc.) are available.
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EXAMPLES:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ])
sage: polygon = NP.plot() #␣
→˓needs sage.plot

reverse(degree=None)

Returns the symmetric of self

INPUT:

• degree – an integer (default: the top right abscissa of this Newton polygon)

OUTPUT:

The image this Newton polygon under the symmetry ‘(x,y) mapsto (degree-x, y)`

EXAMPLES:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (2,5) ])
sage: NP2 = NP.reverse(); NP2
Finite Newton polygon with 3 vertices: (0, 5), (1, 1), (2, 0)

We check that the slopes of the symmetric Newton polygon are the opposites of the slopes of the original
Newton polygon:

sage: NP.slopes()
[1, 4]
sage: NP2.slopes()
[-4, -1]

slopes(repetition=True)
Returns the slopes of this Newton polygon

INPUT:

• repetition – a boolean (default: True)

OUTPUT:

The consecutive slopes (not including the last slope if the polygon is infinity) of this Newton polygon.

If repetition is True, each slope is repeated a number of times equal to its length. Otherwise, it appears
only one time.

EXAMPLES:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (3,6) ]); NP
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 6)

sage: NP.slopes()
[1, 5/2, 5/2]

sage: NP.slopes(repetition=False)
[1, 5/2]
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vertices(copy=True)
Returns the list of vertices of this Newton polygon

INPUT:

• copy – a boolean (default: True)

OUTPUT:

The list of vertices of this Newton polygon (or a copy of it if copy is set to True)

EXAMPLES:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (2,5) ]); NP
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 5)

sage: v = NP.vertices(); v
[(0, 0), (1, 1), (2, 5)]

class sage.geometry.newton_polygon.ParentNewtonPolygon

Bases: Parent, UniqueRepresentation

Construct a Newton polygon.

INPUT:

• arg – a list/tuple/iterable of vertices or of slopes. Currently, slopes must be rational numbers.

• sort_slopes – boolean (default: True). Specifying whether slopes must be first sorted

• last_slope – rational or infinity (default: Infinity). The last slope of the Newton polygon

OUTPUT:

The corresponding Newton polygon.

Note: By convention, a Newton polygon always contains the point at infinity (0,∞). These polygons are attached
to polynomials or series over discrete valuation rings (e.g. padics).

EXAMPLES:

We specify here a Newton polygon by its vertices:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NewtonPolygon([ (0,0), (1,1), (3,5) ])
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

We note that the convex hull of the vertices is automatically computed:

sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ])
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

Note that the value +Infinity is allowed as the second coordinate of a vertex:

sage: NewtonPolygon([ (0,0), (1,Infinity), (2,8), (3,5) ])
Finite Newton polygon with 2 vertices: (0, 0), (3, 5)

If last_slope is set, the returned Newton polygon is infinite and ends with an infinite line having the specified slope:
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sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3)
Infinite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5) ending by an␣
→˓infinite line of slope 3

Specifying a last slope may discard some vertices:

sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3/2)
Infinite Newton polygon with 2 vertices: (0, 0), (1, 1) ending by an infinite␣
→˓line of slope 3/2

Next, we define a Newton polygon by its slopes:

sage: NP = NewtonPolygon([0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1])
sage: NP
Finite Newton polygon with 5 vertices: (0, 0), (1, 0), (3, 1), (6, 3), (8, 5)
sage: NP.slopes()
[0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1]

By default, slopes are automatically sorted:

sage: NP2 = NewtonPolygon([0, 1, 1/2, 2/3, 1/2, 2/3, 1, 2/3])
sage: NP2
Finite Newton polygon with 5 vertices: (0, 0), (1, 0), (3, 1), (6, 3), (8, 5)
sage: NP == NP2
True

except if the contrary is explicitly mentioned:

sage: NewtonPolygon([0, 1, 1/2, 2/3, 1/2, 2/3, 1, 2/3], sort_slopes=False)
Finite Newton polygon with 4 vertices: (0, 0), (1, 0), (6, 10/3), (8, 5)

Slopes greater that or equal last_slope (if specified) are discarded:

sage: NP = NewtonPolygon([0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1], last_slope=2/3)
sage: NP
Infinite Newton polygon with 3 vertices: (0, 0), (1, 0), (3, 1) ending by an␣
→˓infinite line of slope 2/3
sage: NP.slopes()
[0, 1/2, 1/2]

Be careful, do not confuse Newton polygons provided by this class with Newton polytopes. Compare:

sage: NP = NewtonPolygon([ (0,0), (1,45), (3,6) ]); NP
Finite Newton polygon with 2 vertices: (0, 0), (3, 6)

sage: x, y = polygen(QQ, x, y )
sage: p = 1 + x*y**45 + x**3*y**6
sage: p.newton_polytope()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: p.newton_polytope().vertices()
(A vertex at (0, 0), A vertex at (1, 45), A vertex at (3, 6))

Element

alias of NewtonPolygon_element
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4.5 Relative Interiors of Polyhedra and Cones

class sage.geometry.relative_interior.RelativeInterior(polyhedron)
Bases: ConvexSet_relatively_open

The relative interior of a polyhedron or cone

This class should not be used directly. Use methods relative_interior(), interior(), rela-
tive_interior(), interior() instead.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: segment.relative_interior()
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.relative_interior()
Relative interior of 3-d cone in 3-d lattice N

ambient()

Return the ambient convex set or space.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.ambient()
Vector space of dimension 2 over Rational Field

ambient_dim()

Return the dimension of the ambient space.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: segment.ambient_dim()
2
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.ambient_dim()
2

ambient_vector_space(base_field=None)

Return the ambient vector space.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.ambient_vector_space()
Vector space of dimension 2 over Rational Field
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an_affine_basis()

Return points that form an affine basis for the affine hull.

The points are guaranteed to lie in the topological closure of self.

EXAMPLES:

sage: segment = Polyhedron([[1, 0], [0, 1]])
sage: segment.relative_interior().an_affine_basis()
[A vertex at (1, 0), A vertex at (0, 1)]

closure()

Return the topological closure of self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.closure() is segment
True

dilation(scalar)
Return the dilated (uniformly stretched) set.

INPUT:

• scalar – A scalar

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a
1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: A = ri_segment.dilation(2); A
Relative interior of a
1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: A.closure().vertices()
(A vertex at (2, 4), A vertex at (6, 8))
sage: B = ri_segment.dilation(-1/3); B
Relative interior of a
1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices

sage: B.closure().vertices()
(A vertex at (-1, -4/3), A vertex at (-1/3, -2/3))
sage: C = ri_segment.dilation(0); C
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex
sage: C.vertices()
(A vertex at (0, 0),)

dim()

Return the dimension of self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: segment.dim()
1

(continues on next page)
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(continued from previous page)

sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.dim()
1

interior()

Return the interior of self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.interior()
The empty polyhedron in ZZ^2

sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: ri_octant = octant.relative_interior(); ri_octant
Relative interior of 3-d cone in 3-d lattice N
sage: ri_octant.interior() is ri_octant
True

is_closed()

Return whether self is closed.

OUTPUT:

Boolean.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex␣
→˓hull of 2 vertices
sage: ri_segment.is_closed()
False

is_universe()

Return whether self is the whole ambient space

OUTPUT:

Boolean.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.is_universe()
False

linear_transformation(linear_transf , **kwds)
Return the linear transformation of self.
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By [Roc1970], Theorem 6.6, the linear transformation of a relative interior is the relative interior of the linear
transformation.

INPUT:

• linear_transf – a matrix

• **kwds – passed to the linear_transformation() method of the closure of self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a
1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: T = matrix([[1, 1]])
sage: A = ri_segment.linear_transformation(T); A
Relative interior of a
1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices

sage: A.closure().vertices()
(A vertex at (3), A vertex at (7))

relative_interior()

Return the relative interior of self.

As self is already relatively open, this method just returns self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of
a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.relative_interior() is ri_segment
True

representative_point()

Return a “generic” point of self.

OUTPUT:

A point in self (thus, in the relative interior of self) as a coordinate vector.

EXAMPLES:

sage: C = Cone([[1, 2, 0], [2, 1, 0]])
sage: C.relative_interior().representative_point()
(1, 1, 0)

translation(displacement)
Return the translation of self by a displacement vector.

INPUT:

• displacement – a displacement vector or a list/tuple of coordinates that determines a displacement
vector

EXAMPLES:
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sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a
1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: t = vector([100, 100])
sage: ri_segment.translation(t)
Relative interior of a
1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices

sage: ri_segment.closure().vertices()
(A vertex at (1, 2), A vertex at (3, 4))

4.6 Ribbon Graphs

This file implements objects called ribbon graphs. These are graphs together with a cyclic ordering of the darts adjacent
to each vertex. This data allows us to unambiguously “thicken” the ribbon graph to an orientable surface with boundary.
Also, every orientable surface with non-empty boundary is the thickening of a ribbon graph.

AUTHORS:

• Pablo Portilla (2016)

class sage.geometry.ribbon_graph.RibbonGraph(sigma, rho)
Bases: SageObject, UniqueRepresentation

A ribbon graph codified as two elements of a certain permutation group.

A comprehensive introduction on the topic can be found in the beginning of [GGD2011] Chapter 4. More con-
cretely, we will use a variation of what is called in the reference “The permutation representation pair of a dessin”.
Note that in that book, ribbon graphs are called “dessins d’enfant”. For the sake on completeness we reproduce an
adapted version of that introduction here.

Brief introduction

Let Σ be an orientable surface with non-empty boundary and let Γ be the topological realization of a graph that is
embedded in Σ in such a way that the graph is a strong deformation retract of the surface.

Let 𝑣(Γ) be the set of vertices of Γ, suppose that these are white vertices. Now wemark black vertices in an interior
point of each edge. In this way we get a bipartite graph where all the black vertices have valency 2 and there is no
restriction on the valency of the white vertices. We call the edges of this new graph darts (sometimes they are also
called half edges of the original graph). Observe that each edge of the original graph is formed by two darts.

Given a white vertex 𝑣 ∈ 𝑣(Γ), let 𝑑(𝑣) be the set of darts adjacent to 𝑣. Let 𝐷(Γ) be the set of all the darts of Γ
and suppose that we enumerate the set 𝐷(Γ) and that it has 𝑛 elements.

With the orientation of the surface and the embedding of the graph in the surface we can produce two permutations:

• A permutation that we denote by 𝜎. This permutation is a product of as many cycles as white vertices (that is
vertices in Γ). For each vertex consider a small topological circle around it in Σ. This circle intersects each
adjacent dart once. The circle has an orientation induced by the orientation on Σ and so defines a cycle that
sends the number associated to one dart to the number associated to the next dart in the positive orientation
of the circle.

• A permutation that we denote by 𝜌. This permutation is a product of as many 2-cycles as edges has Γ. It just
tells which two darts belong to the same edge.
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Abstract definition

Consider a graph Γ (not a priori embedded in any surface). Now we can again consider one vertex in the interior
of each edge splitting each edge in two darts. We label the darts with numbers.

We say that a ribbon structure on Γ is a set of two permutations (𝜎, 𝜌). Where 𝜎 is formed by as many disjoint
cycles as vertices had Γ. And each cycle is a cyclic ordering of the darts adjacent to a vertex. The permutation 𝜌
just tell us which two darts belong to the same edge.

For any two such permutations there is a way of “thickening” the graph to a surface with boundary in such a way
that the surface retracts (by a strong deformation retract) to the graph and hence the graph is embedded in the
surface in a such a way that we could recover 𝜎 and 𝜌.

INPUT:

• sigma – a permutation a product of disjoint cycles of any length; singletons (vertices of valency 1) need not
be specified

• rho – a permutation which is a product of disjoint 2-cycles

Alternatively, one can pass in 2 integers and this will construct a ribbon graph with genus sigma and rho boundary
components. See make_ribbon().

One can also construct the bipartite graph modeling the corresponding Brieskorn-Pham singularity by passing 2
integers and the keyword bipartite=True. See bipartite_ribbon_graph().

EXAMPLES:

Consider the ribbon graph consisting of just 1 edge and 2 vertices of valency 1:

sage: s0 = PermutationGroupElement( (1)(2) )
sage: r0 = PermutationGroupElement( (1,2) )
sage: R0 = RibbonGraph(s0,r0); R0
Ribbon graph of genus 0 and 1 boundary components

Consider a graph that has 2 vertices of valency 3 (and hence 3 edges). That is represented by the following two
permutations:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1, r1); R1
Ribbon graph of genus 1 and 1 boundary components

By drawing the picture in a piece of paper, one can see that its thickening has only 1 boundary component. Since
the thickening is homotopically equivalent to the graph and the graph has Euler characteristic −1, we find that the
thickening has genus 1:

sage: R1.number_boundaries()
1
sage: R1.genus()
1

The following example corresponds to the complete bipartite graph of type (2, 3), where we have added one more
edge (8, 15) that ends at a vertex of valency 1. Observe that it is not necessary to specify the vertex (15) of valency
1 when we define sigma:

sage: s2 = PermutationGroupElement( (1,3,5,8)(2,4,6) )
sage: r2 = PermutationGroupElement( (1,2)(3,4)(5,6)(8,15) )
sage: R2 = RibbonGraph(s2, r2); R1
Ribbon graph of genus 1 and 1 boundary components

(continues on next page)
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sage: R2.sigma()
(1,3,5,8)(2,4,6)

This example is constructed by taking the bipartite graph of type (3, 3):

sage: s3 = PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,
→˓17,18) )
sage: r3 = PermutationGroupElement( (1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,
→˓15)(9,12) )
sage: R3 = RibbonGraph(s3, r3); R3
Ribbon graph of genus 1 and 3 boundary components

The labeling of the darts can omit some numbers:

sage: s4 = PermutationGroupElement( (3,5,10,12) )
sage: r4 = PermutationGroupElement( (3,10)(5,12) )
sage: R4 = RibbonGraph(s4,r4); R4
Ribbon graph of genus 1 and 1 boundary components

The next example is the complete bipartite graph of type (3, 3), where we have added an edge that ends at a vertex
of valency 1:

sage: s5 = PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,
→˓17,18,19) )
sage: r5 = PermutationGroupElement( (1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,
→˓15)(9,12)(19,20) )
sage: R5 = RibbonGraph(s5,r5); R5
Ribbon graph of genus 1 and 3 boundary components
sage: C = R5.contract_edge(9); C
Ribbon graph of genus 1 and 3 boundary components
sage: C.sigma()
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)
sage: C.rho()
(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)
sage: S = R5.reduced(); S
Ribbon graph of genus 1 and 3 boundary components
sage: S.sigma()
(5,6,8,9,14,15,11,12)
sage: S.rho()
(5,14)(6,11)(8,15)(9,12)
sage: R5.boundary()
[[1, 16, 17, 4, 5, 14, 15, 8, 9, 12, 10, 3],
[2, 13, 14, 5, 6, 11, 12, 9, 7, 18, 19, 20, 20, 19, 16, 1],
[3, 10, 11, 6, 4, 17, 18, 7, 8, 15, 13, 2]]
sage: S.boundary()
[[5, 14, 15, 8, 9, 12], [6, 11, 12, 9, 14, 5], [8, 15, 11, 6]]
sage: R5.homology_basis()
[[[5, 14], [13, 2], [1, 16], [17, 4]],
[[6, 11], [10, 3], [1, 16], [17, 4]],
[[8, 15], [13, 2], [1, 16], [18, 7]],
[[9, 12], [10, 3], [1, 16], [18, 7]]]
sage: S.homology_basis()
[[[5, 14]], [[6, 11]], [[8, 15]], [[9, 12]]]

We construct a ribbon graph corresponding to a genus 0 surface with 5 boundary components:
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sage: R = RibbonGraph(0, 5); R
Ribbon graph of genus 0 and 5 boundary components
sage: R.sigma()
(1,9,7,5,3)(2,4,6,8,10)
sage: R.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)

We construct the Brieskorn-Pham singularity of type (2, 3):

sage: B23 = RibbonGraph(2, 3, bipartite=True); B23
Ribbon graph of genus 1 and 1 boundary components
sage: B23.sigma()
(1,2,3)(4,5,6)(7,8)(9,10)(11,12)
sage: B23.rho()
(1,8)(2,10)(3,12)(4,7)(5,9)(6,11)

boundary()

Return the labeled boundaries of self.

If you cut the thickening of the graph along the graph. you get a collection of cylinders (recall that the graph
was a strong deformation retract of the thickening). In each cylinder one of the boundary components has a
labelling of its edges induced by the labelling of the darts.

OUTPUT:

A list of lists. The number of inner lists is the number of boundary components of the surface. Each list
in the list consists of an ordered tuple of numbers, each number comes from the number assigned to the
corresponding dart before cutting.

EXAMPLES:

We start with a ribbon graph whose thickening has one boundary component. We compute its labeled bound-
ary, then reduce it and compute the labeled boundary of the reduced ribbon graph:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: R1.boundary()
[[1, 2, 4, 3, 5, 6, 2, 1, 3, 4, 6, 5]]
sage: H1 = R1.reduced(); H1
Ribbon graph of genus 1 and 1 boundary components
sage: H1.sigma()
(3,5,4,6)
sage: H1.rho()
(3,4)(5,6)
sage: H1.boundary()
[[3, 4, 6, 5, 4, 3, 5, 6]]

We now consider a ribbon graph whose thickening has 3 boundary components. Also observe that in one of
the labeled boundary components, a numbers appears twice in a row. That is because the ribbon graph has a
vertex of valency 1:

sage: s2=PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,
→˓15)(16,17,18,19) )
sage: r2=PermutationGroupElement( (1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,
→˓18)(8,15)(9,12)(19,20) )
sage: R2 = RibbonGraph(s2,r2)

(continues on next page)
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sage: R2.number_boundaries()
3
sage: R2.boundary()
[[1, 16, 17, 4, 5, 14, 15, 8, 9, 12, 10, 3],
[2, 13, 14, 5, 6, 11, 12, 9, 7, 18, 19, 20, 20, 19, 16, 1],
[3, 10, 11, 6, 4, 17, 18, 7, 8, 15, 13, 2]]

contract_edge(k)

Return the ribbon graph resulting from the contraction of the k-th edge in self.

For a ribbon graph (𝜎, 𝜌), we contract the edge corresponding to the 𝑘-th transposition of 𝜌.

INPUT:

• k – non-negative integer; the position in 𝜌 of the transposition that is going to be contracted

OUTPUT:

• a ribbon graph resulting from the contraction of that edge

EXAMPLES:

We start again with the one-holed torus ribbon graph:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: S1 = R1.contract_edge(1); S1
Ribbon graph of genus 1 and 1 boundary components
sage: S1.sigma()
(1,6,2,5)
sage: S1.rho()
(1,2)(5,6)

However, this ribbon graphs is formed only by loops and hence it cannot be longer reduced, we get an error
if we try to contract a loop:

sage: S1.contract_edge(1)
Traceback (most recent call last):
...
ValueError: the edge is a loop and cannot be contracted

In this example, we consider a graph that has one edge (19,20) such that one of its ends is a vertex of
valency 1. This is the vertex (20) that is not specified when defining 𝜎. We contract precisely this edge and
get a ribbon graph with no vertices of valency 1:

sage: s2 = PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,
→˓15)(16,17,18,19) )
sage: r2 = PermutationGroupElement( (1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,
→˓18)(8,15)(9,12)(19,20) )
sage: R2 = RibbonGraph(s2,r2); R2
Ribbon graph of genus 1 and 3 boundary components
sage: R2.sigma()
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)
sage: R2c = R2.contract_edge(9); R2; R2c.sigma(); R2c.rho()
Ribbon graph of genus 1 and 3 boundary components
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)
(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)
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extrude_edge(vertex, dart1, dart2)
Return a ribbon graph resulting from extruding an edge from a vertex, pulling from it, all darts from dart1
to dart2 including both.

INPUT:

• vertex – the position of the vertex in the permutation 𝜎, which must have valency at least 2

• dart1 – the position of the first in the cycle corresponding to vertex

• dart2 – the position of the second dart in the cycle corresponding to vertex

OUTPUT:

A ribbon graph resulting from extruding a new edge that pulls from vertex a new vertex that is, now,
adjacent to all the darts from dart1 to dart2 (not including dart2) in the cyclic ordering given
by the cycle corresponding to vertex. Note that dart1 may be equal to dart2 allowing thus to extrude
a contractible edge from a vertex.

EXAMPLES:

We try several possibilities in the same graph:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: E1 = R1.extrude_edge(1,1,2); E1
Ribbon graph of genus 1 and 1 boundary components
sage: E1.sigma()
(1,3,5)(2,8,6)(4,7)
sage: E1.rho()
(1,2)(3,4)(5,6)(7,8)
sage: E2 = R1.extrude_edge(1,1,3); E2
Ribbon graph of genus 1 and 1 boundary components
sage: E2.sigma()
(1,3,5)(2,8)(4,6,7)
sage: E2.rho()
(1,2)(3,4)(5,6)(7,8)

We can also extrude a contractible edge from a vertex. This new edge will end at a vertex of valency 1:

sage: E1p = R1.extrude_edge(0,0,0); E1p
Ribbon graph of genus 1 and 1 boundary components
sage: E1p.sigma()
(1,3,5,8)(2,4,6)
sage: E1p.rho()
(1,2)(3,4)(5,6)(7,8)

In the following example we first extrude one edge from a vertex of valency 3 generating a new vertex of
valency 2. Then we extrude a new edge from this vertex of valency 2:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: E1 = R1.extrude_edge(0,0,1); E1
Ribbon graph of genus 1 and 1 boundary components
sage: E1.sigma()
(1,7)(2,4,6)(3,5,8)

(continues on next page)
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sage: E1.rho()
(1,2)(3,4)(5,6)(7,8)
sage: F1 = E1.extrude_edge(0,0,1); F1
Ribbon graph of genus 1 and 1 boundary components
sage: F1.sigma()
(1,9)(2,4,6)(3,5,8)(7,10)
sage: F1.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)

genus()

Return the genus of the thickening of self.

OUTPUT:

• g – non-negative integer representing the genus of the thickening of the ribbon graph

EXAMPLES:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1)
sage: R1.genus()
1

sage: s3=PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,
→˓16)(17,18,19,20)(21,22,23,24) )
sage: r3=PermutationGroupElement( (1,21)(2,17)(3,13)(4,22)(7,23)(5,18)(6,
→˓14)(8,19)(9,15)(10,24)(11,20)(12,16) )
sage: R3 = RibbonGraph(s3,r3); R3.genus()
3

homology_basis()

Return an oriented basis of the first homology group of the graph.

OUTPUT:

• A 2-dimensional array of ordered edges in the graph (given by pairs). The length of the first dimension
is 𝜇. Each row corresponds to an element of the basis and is a circle contained in the graph.

EXAMPLES:

sage: R = RibbonGraph(0,6); R
Ribbon graph of genus 0 and 6 boundary components
sage: R.mu()
5
sage: R.homology_basis()
[[[3, 4], [2, 1]],
[[5, 6], [2, 1]],
[[7, 8], [2, 1]],
[[9, 10], [2, 1]],
[[11, 12], [2, 1]]]

sage: R = RibbonGraph(1,1); R
Ribbon graph of genus 1 and 1 boundary components
sage: R.mu()
2
sage: R.homology_basis()
[[[2, 5], [4, 1]], [[3, 6], [4, 1]]]

(continues on next page)
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sage: H = R.reduced(); H
Ribbon graph of genus 1 and 1 boundary components
sage: H.sigma()
(2,3,5,6)
sage: H.rho()
(2,5)(3,6)
sage: H.homology_basis()
[[[2, 5]], [[3, 6]]]

sage: s3 = PermutationGroupElement( (1,2,3,4,5,6,7,8,9,10,11,27,25,23)(12,24,
→˓26,28,13,14,15,16,17,18,19,20,21,22) )
sage: r3 = PermutationGroupElement( (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,
→˓18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,26)(27,28) )
sage: R3 = RibbonGraph(s3,r3); R3
Ribbon graph of genus 5 and 4 boundary components
sage: R3.mu()
13
sage: R3.homology_basis()
[[[2, 13], [12, 1]],
[[3, 14], [12, 1]],
[[4, 15], [12, 1]],
[[5, 16], [12, 1]],
[[6, 17], [12, 1]],
[[7, 18], [12, 1]],
[[8, 19], [12, 1]],
[[9, 20], [12, 1]],
[[10, 21], [12, 1]],
[[11, 22], [12, 1]],
[[23, 24], [12, 1]],
[[25, 26], [12, 1]],
[[27, 28], [12, 1]]]

sage: H3 = R3.reduced(); H3
Ribbon graph of genus 5 and 4 boundary components
sage: H3.sigma()
(2,3,4,5,6,7,8,9,10,11,27,25,23,24,26,28,13,14,15,16,17,18,19,20,21,22)
sage: H3.rho()
(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,
→˓26)(27,28)
sage: H3.homology_basis()
[[[2, 13]],
[[3, 14]],
[[4, 15]],
[[5, 16]],
[[6, 17]],
[[7, 18]],
[[8, 19]],
[[9, 20]],
[[10, 21]],
[[11, 22]],
[[23, 24]],
[[25, 26]],
[[27, 28]]]

make_generic()

Return a ribbon graph equivalent to self but where every vertex has valency 3.

OUTPUT:
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• a ribbon graph that is equivalent to self but is generic in the sense that all vertices have valency 3

EXAMPLES:

sage: R = RibbonGraph(1,3); R
Ribbon graph of genus 1 and 3 boundary components
sage: R.sigma()
(1,2,3,9,7)(4,8,10,5,6)
sage: R.rho()
(1,4)(2,5)(3,6)(7,8)(9,10)
sage: G = R.make_generic(); G
Ribbon graph of genus 1 and 3 boundary components
sage: G.sigma()
(2,3,11)(5,6,13)(7,8,15)(9,16,17)(10,14,19)(12,18,21)(20,22)
sage: G.rho()
(2,5)(3,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
sage: R.genus() == G.genus() and R.number_boundaries() == G.number_
→˓boundaries()
True

sage: R = RibbonGraph(5,4); R
Ribbon graph of genus 5 and 4 boundary components
sage: R.sigma()
(1,2,3,4,5,6,7,8,9,10,11,27,25,23)(12,24,26,28,13,14,15,16,17,18,19,20,21,22)
sage: R.rho()
(1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,
→˓24)(25,26)(27,28)
sage: G = R.reduced(); G
Ribbon graph of genus 5 and 4 boundary components
sage: G.sigma()
(2,3,4,5,6,7,8,9,10,11,27,25,23,24,26,28,13,14,15,16,17,18,19,20,21,22)
sage: G.rho()
(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,
→˓26)(27,28)
sage: G.genus() == R.genus() and G.number_boundaries() == R.number_
→˓boundaries()
True

sage: R = RibbonGraph(0,6); R
Ribbon graph of genus 0 and 6 boundary components
sage: R.sigma()
(1,11,9,7,5,3)(2,4,6,8,10,12)
sage: R.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)
sage: G = R.reduced(); G
Ribbon graph of genus 0 and 6 boundary components
sage: G.sigma()
(3,4,6,8,10,12,11,9,7,5)
sage: G.rho()
(3,4)(5,6)(7,8)(9,10)(11,12)
sage: G.genus() == R.genus() and G.number_boundaries() == R.number_
→˓boundaries()
True

mu()

Return the rank of the first homology group of the thickening of the ribbon graph.

EXAMPLES:
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sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1);R1
Ribbon graph of genus 1 and 1 boundary components
sage: R1.mu()
2

normalize()

Return an equivalent graph such that the enumeration of its darts exhausts all numbers from 1 to the number
of darts.

OUTPUT:

• a ribbon graph equivalent to self such that the enumeration of its darts exhausts all numbers from 1 to
the number of darts.

EXAMPLES:

sage: s0 = PermutationGroupElement( (1,22,3,4,5,6,7,15)(8,16,9,10,11,12,13,14)
→˓ )
sage: r0 = PermutationGroupElement( (1,8)(22,9)(3,10)(4,11)(5,12)(6,13)(7,
→˓14)(15,16) )
sage: R0 = RibbonGraph(s0,r0); R0
Ribbon graph of genus 3 and 2 boundary components
sage: RN0 = R0.normalize(); RN0; RN0.sigma(); RN0.rho()
Ribbon graph of genus 3 and 2 boundary components
(1,16,2,3,4,5,6,14)(7,15,8,9,10,11,12,13)
(1,7)(2,9)(3,10)(4,11)(5,12)(6,13)(8,16)(14,15)

sage: s1 = PermutationGroupElement( (5,10,12)(30,34,78) )
sage: r1 = PermutationGroupElement( (5,30)(10,34)(12,78) )
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: RN1 = R1.normalize(); RN1; RN1.sigma(); RN1.rho()
Ribbon graph of genus 1 and 1 boundary components
(1,2,3)(4,5,6)
(1,4)(2,5)(3,6)

number_boundaries()

Return number of boundary components of the thickening of the ribbon graph.

EXAMPLES:

The first example is the ribbon graph corresponding to the torus with one hole:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1)
sage: R1.number_boundaries()
1

This example is constructed by taking the bipartite graph of type (3, 3):

sage: s2 = PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,
→˓15)(16,17,18) )
sage: r2 = PermutationGroupElement( (1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,
→˓18)(8,15)(9,12) )
sage: R2 = RibbonGraph(s2,r2)

(continues on next page)
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sage: R2.number_boundaries()
3

reduced()

Return a ribbon graph with 1 vertex and 𝜇 edges (where 𝜇 is the first betti number of the graph).

OUTPUT:

• a ribbon graph whose 𝜎 permutation has only 1 non-singleton cycle and whose 𝜌 permutation is a product
of 𝜇 disjoint 2-cycles

EXAMPLES:

sage: s1 = PermutationGroupElement( (1,3,5)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6) )
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: G1 = R1.reduced(); G1
Ribbon graph of genus 1 and 1 boundary components
sage: G1.sigma()
(3,5,4,6)
sage: G1.rho()
(3,4)(5,6)

sage: s2 = PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,
→˓15)(16,17,18,19) )
sage: r2 = PermutationGroupElement( (1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,
→˓18)(8,15)(9,12)(19,20) )
sage: R2 = RibbonGraph(s2,r2); R2
Ribbon graph of genus 1 and 3 boundary components
sage: G2 = R2.reduced(); G2
Ribbon graph of genus 1 and 3 boundary components
sage: G2.sigma()
(5,6,8,9,14,15,11,12)
sage: G2.rho()
(5,14)(6,11)(8,15)(9,12)

sage: s3 = PermutationGroupElement( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,
→˓16)(17,18,19,20)(21,22,23,24) )
sage: r3 = PermutationGroupElement( (1,21)(2,17)(3,13)(4,22)(7,23)(5,18)(6,
→˓14)(8,19)(9,15)(10,24)(11,20)(12,16) )
sage: R3 = RibbonGraph(s3,r3); R3
Ribbon graph of genus 3 and 1 boundary components
sage: G3 = R3.reduced(); G3
Ribbon graph of genus 3 and 1 boundary components
sage: G3.sigma()
(5,6,8,9,11,12,18,19,20,14,15,16)
sage: G3.rho()
(5,18)(6,14)(8,19)(9,15)(11,20)(12,16)

rho()

Return the permutation 𝜌 of self.

EXAMPLES:

sage: s1 = PermutationGroupElement( (1,3,5,8)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6)(8,15) )

(continues on next page)
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sage: R = RibbonGraph(s1, r1)
sage: R.rho()
(1,2)(3,4)(5,6)(8,15)

sigma()

Return the permutation 𝜎 of self.

EXAMPLES:

sage: s1 = PermutationGroupElement( (1,3,5,8)(2,4,6) )
sage: r1 = PermutationGroupElement( (1,2)(3,4)(5,6)(8,15) )
sage: R = RibbonGraph(s1, r1)
sage: R.sigma()
(1,3,5,8)(2,4,6)

sage.geometry.ribbon_graph.bipartite_ribbon_graph(p, q)
Return the bipartite graph modeling the corresponding Brieskorn-Pham singularity.

Take two parallel lines in the plane, and consider 𝑝 points in one of them and 𝑞 points in the other. Join with a line
each point from the first set with every point with the second set. The resulting is a planar projection of the complete
bipartite graph of type (𝑝, 𝑞). If you consider the cyclic ordering at each vertex induced by the positive orientation
of the plane, the result is a ribbon graph whose associated orientable surface with boundary is homeomorphic to
the Milnor fiber of the Brieskorn-Pham singularity 𝑥𝑝 + 𝑦𝑞 . It satisfies that it has gcd(𝑝, 𝑞) number of boundary
components and genus (𝑝𝑞 − 𝑝− 𝑞 − gcd(𝑝, 𝑞)− 2)/2.

INPUT:

• p – a positive integer

• q – a positive integer

EXAMPLES:

sage: B23 = RibbonGraph(2,3,bipartite=True); B23; B23.sigma(); B23.rho()
Ribbon graph of genus 1 and 1 boundary components
(1,2,3)(4,5,6)(7,8)(9,10)(11,12)
(1,8)(2,10)(3,12)(4,7)(5,9)(6,11)

sage: B32 = RibbonGraph(3,2,bipartite=True); B32; B32.sigma(); B32.rho()
Ribbon graph of genus 1 and 1 boundary components
(1,2)(3,4)(5,6)(7,8,9)(10,11,12)
(1,9)(2,12)(3,8)(4,11)(5,7)(6,10)

sage: B33 = RibbonGraph(3,3,bipartite=True); B33; B33.sigma(); B33.rho()
Ribbon graph of genus 1 and 3 boundary components
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)
(1,12)(2,15)(3,18)(4,11)(5,14)(6,17)(7,10)(8,13)(9,16)

sage: B24 = RibbonGraph(2,4,bipartite=True); B24; B24.sigma(); B24.rho()
Ribbon graph of genus 1 and 2 boundary components
(1,2,3,4)(5,6,7,8)(9,10)(11,12)(13,14)(15,16)
(1,10)(2,12)(3,14)(4,16)(5,9)(6,11)(7,13)(8,15)

sage: B47 = RibbonGraph(4,7, bipartite=True); B47; B47.sigma(); B47.rho()
Ribbon graph of genus 9 and 1 boundary components
(1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,
→˓28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,
→˓52)(53,54,55,56)

(continues on next page)
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(1,32)(2,36)(3,40)(4,44)(5,48)(6,52)(7,56)(8,31)(9,35)(10,39)(11,43)(12,47)(13,
→˓51)(14,55)(15,30)(16,34)(17,38)(18,42)(19,46)(20,50)(21,54)(22,29)(23,33)(24,
→˓37)(25,41)(26,45)(27,49)(28,53)

sage.geometry.ribbon_graph.make_ribbon(g, r)
Return a ribbon graph whose thickening has genus g and r boundary components.

INPUT:

• g – non-negative integer representing the genus of the thickening

• r – positive integer representing the number of boundary components of the thickening

OUTPUT:

• a ribbon graph that has 2 vertices (two non-trivial cycles in its sigma permutation) of valency 2𝑔 + 𝑟 and it
has 2𝑔 + 𝑟 edges (and hence 4𝑔 + 2𝑟 darts)

EXAMPLES:

sage: from sage.geometry.ribbon_graph import make_ribbon
sage: R = make_ribbon(0,1); R
Ribbon graph of genus 0 and 1 boundary components
sage: R.sigma()
()
sage: R.rho()
(1,2)

sage: R = make_ribbon(0,5); R
Ribbon graph of genus 0 and 5 boundary components
sage: R.sigma()
(1,9,7,5,3)(2,4,6,8,10)
sage: R.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)

sage: R = make_ribbon(1,1); R
Ribbon graph of genus 1 and 1 boundary components
sage: R.sigma()
(1,2,3)(4,5,6)
sage: R.rho()
(1,4)(2,5)(3,6)

sage: R = make_ribbon(7,3); R
Ribbon graph of genus 7 and 3 boundary components
sage: R.sigma()
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,33,31)(16,32,34,17,18,19,20,21,22,23,24,25,
→˓26,27,28,29,30)
sage: R.rho()
(1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,
→˓28)(14,29)(15,30)(31,32)(33,34)

4.6. Ribbon Graphs 755



Combinatorial and Discrete Geometry, Release 10.4.rc1

4.7 Pseudolines

This module gathers everything that has to do with pseudolines, and for a start a PseudolineArrangement class
that can be used to describe an arrangement of pseudolines in several different ways, and to translate one description into
another, as well as to displayWiring diagrams via the show method.

In the following, we try to stick to the terminology given in [Fe1997], which can be checked in case of doubt. And please
fix this module’s documentation afterwards :-)

Definition

A pseudoline can not be defined by itself, though it can be thought of as a 𝑥-monotone curve in the plane. A set of
pseudolines, however, represents a set of such curves that pairwise intersect exactly once (and hence mimic the behaviour
of straight lines in general position). We also assume that those pseudolines are in general position, that is that no three
of them cross at the same point.

The present class is made to deal with a combinatorial encoding of a pseudolines arrangement, that is the ordering in
which a pseudoline 𝑙𝑖 of an arrangement 𝑙0, ..., 𝑙𝑛−1 crosses the 𝑛− 1 other lines.

Warning: It is assumed through all the methods that the given lines are numbered according to their 𝑦-coordinate
on the vertical line 𝑥 = −∞. For instance, it is not possible that the first transposition be (0,2) (or equivalently
that the first line 𝑙0 crosses is 𝑙2 and conversely), because one of them would have to cross 𝑙1 first.

4.7.1 Encodings

Permutations

An arrangement of pseudolines can be described by a sequence of 𝑛 lists of length 𝑛−1, where the 𝑖 list is a permutation
of {0, ..., 𝑛− 1}∖𝑖 representing the ordering in which the 𝑖 th pseudoline meets the other ones.

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p
Arrangement of pseudolines of size 4
sage: p.show() #␣
→˓needs sage.plot

Sequence of transpositions

An arrangement of pseudolines can also be described as a sequence of
(︀
𝑛
2

)︀
transpositions (permutations of two elements).

In this sequence, the transposition (2, 3) appears before (8, 2) iif 𝑙2 crosses 𝑙3 before it crosses 𝑙8. This encoding is easy
to obtain by reading the wiring diagram from left to right (see the show method).

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: transpositions = [(3, 2), (3, 1), (0, 3), (2, 1), (0, 2), (0, 1)]
sage: p = PseudolineArrangement(transpositions)
sage: p
Arrangement of pseudolines of size 4
sage: p.show() #␣
→˓needs sage.plot

Note that this ordering is not necessarily unique.

Felsner’s Matrix
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Felser gave an encoding of an arrangement of pseudolines that takes 𝑛2 bits instead of the 𝑛2 log(𝑛) bits required by the
two previous encodings.

Instead of storing the permutation [3, 2, 1] to remember that line 𝑙0 crosses 𝑙3 then 𝑙2 then 𝑙1, it is sufficient to
remember the positions for which each line 𝑙𝑖 meets a line 𝑙𝑗 with 𝑗 < 𝑖. As 𝑙0 – the first of the lines – can only meet
pseudolines with higher index, we can store [0, 0, 0] instead of [3, 2, 1] stored previously. For 𝑙1’s permutation
[3, 2, 0] we only need to remember that 𝑙1 first crosses 2 pseudolines of higher index, and then a pseudoline with
smaller index, which yields the bit vector [0, 0, 1]. Hence we can transform the list of permutations above into a list
of 𝑛 bit vectors of length 𝑛− 1, that is

3 2 1
3 2 0
3 1 0
2 1 0

⇒

0 0 0
0 0 1
0 1 1
1 1 1

In order to go back from Felsner’s matrix to an encoding by a sequence of transpositions, it is sufficient to look for

occurrences of 0
1

in the first column of the matrix, as it corresponds in the wiring diagram to a line going up while the

line immediately above it goes down – those two lines cross. Each time such a pattern is found it yields a new transposition,
and the matrix can be updated so that this pattern disappears. A more detailed description of this algorithm is given in
[Fe1997].

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: felsner_matrix = [[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]
sage: p = PseudolineArrangement(felsner_matrix)
sage: p
Arrangement of pseudolines of size 4

4.7.2 Example

Let us define in the plane several lines 𝑙𝑖 of equation 𝑦 = 𝑎𝑥 + 𝑏 by picking a coefficient 𝑎 and 𝑏 for each of them. We
make sure that no two of them are parallel by making sure all of the 𝑎 chosen are different, and we avoid a common
crossing of three lines by adding a random noise to 𝑏:

sage: n = 20
sage: l = sorted(zip(Subsets(20*n, n).random_element(),
....: [randint(0, 20*n) + random() for i in range(n)]))
sage: print(l[:5]) # not tested #␣
→˓needs sage.combinat
[(96, 278.0130613051349), (74, 332.92512282478714), (13, 155.65820951249867),
(209, 34.753946221755307), (147, 193.51376457741441)]

We can now compute for each 𝑖 the order in which line 𝑖 meets the other lines:

sage: permutations = [[0..i-1] + [i+1..n-1] for i in range(n)]
sage: def a(x): return l[x][0]
sage: def b(x): return l[x][1]
sage: for i, perm in enumerate(permutations):
....: perm.sort(key=lambda j: (b(j)-b(i))/(a(i)-a(j)))

And finally build the line arrangement:

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: p = PseudolineArrangement(permutations)
sage: print(p)

(continues on next page)
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Arrangement of pseudolines of size 20
sage: p.show(figsize=[20,8]) #␣
→˓needs sage.combinat sage.plot

Author

Nathann Cohen

4.7.3 Methods

class sage.geometry.pseudolines.PseudolineArrangement(seq, encoding='auto')
Bases: object

Creates an arrangement of pseudolines.

INPUT:

• seq (a sequence describing the line arrangement). It can be:

– A list of 𝑛 permutations of size 𝑛− 1.

– A list of
(︀
𝑛
2

)︀
transpositions

– A Felsner matrix, given as a sequence of 𝑛 binary vectors of length 𝑛− 1.

• encoding (information on how the data should be interpreted), and can assume any value among ‘transpo-
sitions’, ‘permutations’, ‘Felsner’ or ‘auto’. In the latter case, the type will be guessed (default behaviour).

Note:

• The pseudolines are assumed to be integers 0, . . . , 𝑛− 1.

• For more information on the different encodings, see the pseudolines module’s documentation.

felsner_matrix()

Return a Felsner matrix describing the arrangement.

See the pseudolines module’s documentation for more information on this encoding.

EXAMPLES:

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p.felsner_matrix()
[[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]

permutations()

Return the arrangements as 𝑛 permutations of size 𝑛− 1.

See the pseudolines module’s documentation for more information on this encoding.

EXAMPLES:
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sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p.permutations()
[[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]

show(**args)

Displays the pseudoline arrangement as a wiring diagram.

INPUT:

• **args – any arguments to be forwarded to the show method. In particular, to tune the dimensions,
use the figsize argument (example below).

EXAMPLES:

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p.show(figsize=[7,5]) #␣
→˓needs sage.plot

transpositions()

Return the arrangement as
(︀
𝑛
2

)︀
transpositions.

See the pseudolines module’s documentation for more information on this encoding.

EXAMPLES:

sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p1 = PseudolineArrangement(permutations)
sage: transpositions = [(3, 2), (3, 1), (0, 3), (2, 1), (0, 2), (0, 1)]
sage: p2 = PseudolineArrangement(transpositions)
sage: p1 == p2
True
sage: p1.transpositions()
[(3, 2), (3, 1), (0, 3), (2, 1), (0, 2), (0, 1)]
sage: p2.transpositions()
[(3, 2), (3, 1), (0, 3), (2, 1), (0, 2), (0, 1)]

4.8 Voronoi diagram

This module provides the class VoronoiDiagram for computing the Voronoi diagram of a finite list of points in R𝑑.

class sage.geometry.voronoi_diagram.VoronoiDiagram(points)
Bases: SageObject

Base class for the Voronoi diagram.

Compute the Voronoi diagram of a list of points.

INPUT:

• points – a list of points. Any valid input for the PointConfiguration will do.

OUTPUT:
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An instance of the VoronoiDiagram class.

EXAMPLES:

Get the Voronoi diagram for some points in R3:

sage: V = VoronoiDiagram([[1, 3, .3], [2, -2, 1], [-1, 2, -.1]]); V
The Voronoi diagram of 3 points of dimension 3 in the Real Double Field

sage: VoronoiDiagram([])
The empty Voronoi diagram.

Get the Voronoi diagram of a regular pentagon in AA^2. All cells meet at the origin:

sage: DV = VoronoiDiagram([[AA(c) for c in v] #␣
→˓needs sage.rings.number_field
....: for v in polytopes.regular_polygon(5).vertices_
→˓list()]); DV
The Voronoi diagram of 5 points of dimension 2 in the Algebraic Real Field
sage: all(P.contains([0, 0]) for P in DV.regions().values()) #␣
→˓needs sage.rings.number_field
True
sage: any(P.interior_contains([0, 0]) for P in DV.regions().values()) #␣
→˓needs sage.rings.number_field
False

If the vertices are not converted to AA before, the method throws an error:

sage: polytopes.dodecahedron().vertices_list()[0][0].parent() #␣
→˓needs sage.groups sage.rings.number_field
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.
→˓236067977499790?
sage: VoronoiDiagram(polytopes.dodecahedron().vertices_list()) #␣
→˓needs sage.groups sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: Base ring of the Voronoi diagram must be
one of QQ, RDF, AA.

ALGORITHM:

We use hyperplanes tangent to the paraboloid one dimension higher to get a convex polyhedron and then project
back to one dimension lower.

Todo:

• The dual construction: Delaunay triangulation

• improve 2d-plotting

• implement 3d-plotting

• more general constructions, like Voroi diagrams with weights (power diagrams)

REFERENCES:

• [Mat2002] Ch.5.7, p.118.

AUTHORS:

• Moritz Firsching (2012-09-21)
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ambient_dim()

Return the ambient dimension of the points.

EXAMPLES:

sage: V = VoronoiDiagram([[.5, 3], [2, 5], [4, 5], [4, -1]])
sage: V.ambient_dim()
2
sage: V = VoronoiDiagram([[1, 2, 3, 4, 5, 6]]); V.ambient_dim()
6

base_ring()

Return the base_ring of the regions of the Voronoi diagram.

EXAMPLES:

sage: V = VoronoiDiagram([[1, 3, 1], [2, -2, 1], [-1, 2, 1/2]]); V.base_ring()
Rational Field
sage: V = VoronoiDiagram([[1, 3.14], [2, -2/3], [-1, 22]]); V.base_ring()
Real Double Field
sage: V = VoronoiDiagram([[1, 3], [2, 4]]); V.base_ring()
Rational Field

plot(cell_colors=None, **kwds)
Return a graphical representation for 2-dimensional Voronoi diagrams.

INPUT:

• cell_colors – (default: None) provide the colors for the cells, either as dictionary. Randomly
colored cells are provided with None.

• **kwds – optional keyword parameters, passed on as arguments for plot().

OUTPUT:

A graphics object.

EXAMPLES:

sage: # needs sage.plot
sage: P = [[0.671, 0.650], [0.258, 0.767], [0.562, 0.406],
....: [0.254, 0.709], [0.493, 0.879]]
sage: V = VoronoiDiagram(P); S=V.plot()
sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false)
sage: S = V.plot(cell_colors={0: red , 1: blue , 2: green ,
....: 3: white , 4: yellow })
sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false)
sage: S = V.plot(cell_colors=[ red , blue , red , white , white ])
sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false)
sage: S = V.plot(cell_colors= something else )
Traceback (most recent call last):
...
AssertionError: cell_colors must be a list or a dictionary

Trying to plot a Voronoi diagram of dimension other than 2 gives an error:

sage: VoronoiDiagram([[1, 2, 3], [6, 5, 4]]).plot() #␣
→˓needs sage.plot
Traceback (most recent call last):
...

(continues on next page)
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NotImplementedError: Plotting of 3-dimensional Voronoi diagrams not
implemented

points()

Return the input points (as a PointConfiguration).

EXAMPLES:

sage: V = VoronoiDiagram([[.5, 3], [2, 5], [4, 5], [4, -1]]); V.points()
A point configuration in affine 2-space over Real Field
with 53 bits of precision consisting of 4 points.
The triangulations of this point configuration are
assumed to be connected, not necessarily fine,
not necessarily regular.

regions()

Return the Voronoi regions of the Voronoi diagram as a dictionary of polyhedra.

EXAMPLES:

sage: V = VoronoiDiagram([[1, 3, .3], [2, -2, 1], [-1, 2, -.1]])
sage: P = V.points()
sage: V.regions() == {P[0]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375),␣
→˓RDF(0.13888888890000001), RDF(1.5277777779999999))],
....: rays=[(RDF(9), -RDF(1),␣
→˓-RDF(20)), (RDF(4.5), RDF(1), -RDF(25))],
....: vertices=[(-RDF(1.
→˓1074999999999999), RDF(1.149444444), RDF(9.0138888890000004))]),
....: P[1]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375),␣
→˓RDF(0.13888888890000001), RDF(1.5277777779999999))],
....: rays=[(RDF(9), -RDF(1),␣
→˓-RDF(20)), (-RDF(2.25), -RDF(1), RDF(2.5))],
....: vertices=[(-RDF(1.
→˓1074999999999999), RDF(1.149444444), RDF(9.0138888890000004))]),
....: P[2]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375),␣
→˓RDF(0.13888888890000001), RDF(1.5277777779999999))],
....: rays=[(RDF(4.5), RDF(1),
→˓ -RDF(25)), (-RDF(2.25), -RDF(1), RDF(2.5))],
....: vertices=[(-RDF(1.
→˓1074999999999999), RDF(1.149444444), RDF(9.0138888890000004))])}
True
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FIVE

HELPER FUNCTIONS

5.1 Find isomorphisms between fans

exception sage.geometry.fan_isomorphism.FanNotIsomorphicError

Bases: Exception

Exception to return if there is no fan isomorphism

sage.geometry.fan_isomorphism.fan_2d_cyclically_ordered_rays(fan)
Return the rays of a 2-dimensional fan in cyclic order.

INPUT:

• fan – a 2-dimensional fan.

OUTPUT:

A PointCollection containing the rays in one particular cyclic order.

EXAMPLES:

sage: rays = ((1, 1), (-1, -1), (-1, 1), (1, -1))
sage: cones = [(0,2), (2,1), (1,3), (3,0)]
sage: fan = Fan(cones, rays)
sage: fan.rays()
N( 1, 1),
N(-1, -1),
N(-1, 1),
N( 1, -1)
in 2-d lattice N
sage: from sage.geometry.fan_isomorphism import fan_2d_cyclically_ordered_rays
sage: fan_2d_cyclically_ordered_rays(fan)
N(-1, -1),
N(-1, 1),
N( 1, 1),
N( 1, -1)
in 2-d lattice N

sage.geometry.fan_isomorphism.fan_2d_echelon_form(fan)

Return echelon form of a cyclically ordered ray matrix.

INPUT:

• fan – a fan.

OUTPUT:
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A matrix. The echelon form of the rays in one particular cyclic order.

EXAMPLES:

sage: fan = toric_varieties.P2().fan() #␣
→˓needs palp sage.graphs
sage: from sage.geometry.fan_isomorphism import fan_2d_echelon_form
sage: fan_2d_echelon_form(fan) #␣
→˓needs palp sage.graphs
[ 1 0 -1]
[ 0 1 -1]

sage.geometry.fan_isomorphism.fan_2d_echelon_forms(fan)
Return echelon forms of all cyclically ordered ray matrices.

Note that the echelon form of the ordered ray matrices are unique up to different cyclic orderings.

INPUT:

• fan – a fan.

OUTPUT:

A set of matrices. The set of all echelon forms for all different cyclic orderings.

EXAMPLES:

sage: fan = toric_varieties.P2().fan() #␣
→˓needs palp sage.graphs
sage: from sage.geometry.fan_isomorphism import fan_2d_echelon_forms
sage: fan_2d_echelon_forms(fan) #␣
→˓needs palp sage.graphs
frozenset({[ 1 0 -1]

[ 0 1 -1]})

sage: fan = toric_varieties.dP7().fan() #␣
→˓needs palp sage.graphs
sage: sorted(fan_2d_echelon_forms(fan)) #␣
→˓needs palp sage.graphs
[
[ 1 0 -1 -1 0] [ 1 0 -1 -1 0] [ 1 0 -1 -1 1] [ 1 0 -1 0 1]
[ 0 1 0 -1 -1], [ 0 1 1 0 -1], [ 0 1 1 0 -1], [ 0 1 0 -1 -1],

[ 1 0 -1 0 1]
[ 0 1 1 -1 -1]
]

sage.geometry.fan_isomorphism.fan_isomorphic_necessary_conditions(fan1, fan2)
Check necessary (but not sufficient) conditions for the fans to be isomorphic.

INPUT:

• fan1, fan2 – two fans.

OUTPUT:

Boolean. False if the two fans cannot be isomorphic. True if the two fans may be isomorphic.

EXAMPLES:
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sage: fan1 = toric_varieties.P2().fan() #␣
→˓needs palp sage.graphs
sage: fan2 = toric_varieties.dP8().fan() #␣
→˓needs palp sage.graphs
sage: from sage.geometry.fan_isomorphism import fan_isomorphic_necessary_
→˓conditions
sage: fan_isomorphic_necessary_conditions(fan1, fan2) #␣
→˓needs palp sage.graphs
False

sage.geometry.fan_isomorphism.fan_isomorphism_generator(fan1, fan2)
Iterate over the isomorphisms from fan1 to fan2.

ALGORITHM:

The sage.geometry.fan.Fan.vertex_graph() of the two fans is compared. For each graph isomor-
phism, we attempt to lift it to an actual isomorphism of fans.

INPUT:

• fan1, fan2 – two fans.

OUTPUT:

Yields the fan isomorphisms as matrices acting from the right on rays.

EXAMPLES:

sage: fan = toric_varieties.P2().fan() #␣
→˓needs palp sage.graphs
sage: from sage.geometry.fan_isomorphism import fan_isomorphism_generator
sage: sorted(fan_isomorphism_generator(fan, fan)) #␣
→˓needs palp sage.graphs
[
[-1 -1] [-1 -1] [ 0 1] [0 1] [ 1 0] [1 0]
[ 0 1], [ 1 0], [-1 -1], [1 0], [-1 -1], [0 1]
]
sage: m1 = matrix([(1, 0), (0, -5), (-3, 4)])
sage: m2 = matrix([(3, 0), (1, 0), (-2, 1)])
sage: m1.elementary_divisors() == m2.elementary_divisors() == [1,1,0]
True
sage: fan1 = Fan([Cone([m1*vector([23, 14]), m1*vector([ 3,100])]),
....: Cone([m1*vector([-1,-14]), m1*vector([-100, -5])])])
sage: fan2 = Fan([Cone([m2*vector([23, 14]), m2*vector([ 3,100])]),
....: Cone([m2*vector([-1,-14]), m2*vector([-100, -5])])])
sage: sorted(fan_isomorphism_generator(fan1, fan2)) #␣
→˓needs sage.graphs
[
[-12 1 -5]
[ -4 0 -1]
[ -5 0 -1]
]

sage: m0 = identity_matrix(ZZ, 2)
sage: m1 = matrix([(1, 0), (0, -5), (-3, 4)])
sage: m2 = matrix([(3, 0), (1, 0), (-2, 1)])
sage: m1.elementary_divisors() == m2.elementary_divisors() == [1,1,0]
True
sage: fan0 = Fan([Cone([m0*vector([1,0]), m0*vector([1,1])]),

(continues on next page)
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....: Cone([m0*vector([1,1]), m0*vector([0,1])])])
sage: fan1 = Fan([Cone([m1*vector([1,0]), m1*vector([1,1])]),
....: Cone([m1*vector([1,1]), m1*vector([0,1])])])
sage: fan2 = Fan([Cone([m2*vector([1,0]), m2*vector([1,1])]),
....: Cone([m2*vector([1,1]), m2*vector([0,1])])])
sage: sorted(fan_isomorphism_generator(fan0, fan0)) #␣
→˓needs sage.graphs
[
[0 1] [1 0]
[1 0], [0 1]
]
sage: sorted(fan_isomorphism_generator(fan1, fan1)) #␣
→˓needs sage.graphs
[
[ -3 -20 28] [1 0 0]
[ -1 -4 7] [0 1 0]
[ -1 -5 8], [0 0 1]
]
sage: sorted(fan_isomorphism_generator(fan1, fan2)) #␣
→˓needs sage.graphs
[
[-24 -3 7] [-12 1 -5]
[ -7 -1 2] [ -4 0 -1]
[ -8 -1 2], [ -5 0 -1]
]
sage: sorted(fan_isomorphism_generator(fan2, fan1)) #␣
→˓needs sage.graphs
[
[ 0 1 -1] [ 0 1 -1]
[ 1 -13 8] [ 2 -8 1]
[ 0 -5 4], [ 1 0 -3]
]

sage.geometry.fan_isomorphism.find_isomorphism(fan1, fan2, check=False)
Find an isomorphism of the two fans.

INPUT:

• fan1, fan2 – two fans.

• check – boolean (default: False). Passed to the fan morphism constructor, see FanMorphism().

OUTPUT:

A fan isomorphism. If the fans are not isomorphic, a FanNotIsomorphicError is raised.

EXAMPLES:

sage: rays = ((1, 1), (0, 1), (-1, -1), (3, 1))
sage: cones = [(0,1), (1,2), (2,3), (3,0)]
sage: fan1 = Fan(cones, rays)

sage: m = matrix([[-2,3],[1,-1]])
sage: m.det() == -1
True
sage: fan2 = Fan(cones, [vector(r)*m for r in rays])

sage: from sage.geometry.fan_isomorphism import find_isomorphism

(continues on next page)
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sage: find_isomorphism(fan1, fan2, check=True) #␣
→˓needs sage.graphs
Fan morphism defined by the matrix
[-2 3]
[ 1 -1]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N

sage: find_isomorphism(fan1, toric_varieties.P2().fan()) #␣
→˓needs palp sage.graphs
Traceback (most recent call last):
...
FanNotIsomorphicError

sage: fan1 = Fan(cones=[[1,3,4,5],[0,1,2,3],[2,3,4],[0,1,5]],
....: rays=[(-1,-1,0),(-1,-1,3),(-1,1,-1),(-1,3,-1),(0,2,-1),(1,-1,1)])
sage: fan2 = Fan(cones=[[0,2,3,5],[0,1,4,5],[0,1,2],[3,4,5]],
....: rays=[(-1,-1,-1),(-1,-1,0),(-1,1,-1),(0,2,-1),(1,-1,1),(3,-1,-
→˓1)])
sage: fan1.is_isomorphic(fan2) #␣
→˓needs sage.graphs
True

5.2 Construction of finite atomic and coatomic lattices from inci-
dences

This module provides the function lattice_from_incidences() for computing finite atomic and coatomic lat-
tices in the sense of partially ordered sets where any two elements have meet and joint. For example, the face lattice of a
polyhedron.

sage.geometry.hasse_diagram.lattice_from_incidences(atom_to_coatoms, coatom_to_atoms,
face_constructor=None,
required_atoms=None, key=None,
**kwds)

Compute an atomic and coatomic lattice from the incidence between atoms and coatoms.

INPUT:

• atom_to_coatoms – list, atom_to_coatom[i] should list all coatoms over the i-th atom;

• coatom_to_atoms – list, coatom_to_atom[i] should list all atoms under the i-th coatom;

• face_constructor – function or class taking as the first two arguments sorted tuple of integers and
any keyword arguments. It will be called to construct a face over atoms passed as the first argument and under
coatoms passed as the second argument. Default implementation will just return these two tuples as a tuple;

• required_atoms – list of atoms (default:None). Each non-empty “face” requires at least one of the
specified atoms present. Used to ensure that each face has a vertex.

• key – any hashable value (default: None). It is passed down to FinitePoset.

• all other keyword arguments will be passed to face_constructor on each call.

OUTPUT:

• finite poset with elements constructed by face_constructor.
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Note: In addition to the specified partial order, finite posets in Sage have internal total linear order of elements
which extends the partial one. This function will try to make this internal order to start with the bottom and atoms
in the order corresponding to atom_to_coatoms and to finish with coatoms in the order corresponding to
coatom_to_atoms and the top. This may not be possible if atoms and coatoms are the same, in which case
the preference is given to the first list.

ALGORITHM:

The detailed description of the used algorithm is given in [KP2002].

The code of this function follows the pseudo-code description in the section 2.5 of the paper, although it is mostly
based on frozen sets instead of sorted lists - this makes the implementation easier and should not cost a big perfor-
mance penalty. (If one wants to make this function faster, it should be probably written in Cython.)

While the title of the paper mentions only polytopes, the algorithm (and the implementation provided here) is
applicable to any atomic and coatomic lattice if both incidences are given, see Section 3.4.

In particular, this function can be used for strictly convex cones and complete fans.

REFERENCES: [KP2002]

AUTHORS:

• Andrey Novoseltsev (2010-05-13) with thanks to Marshall Hampton for the reference.

EXAMPLES:

Let us construct the lattice of subsets of {0, 1, 2}. Our atoms are {0}, {1}, and {2}, while our coatoms are {0,1},
{0,2}, and {1,2}. Then incidences are

sage: atom_to_coatoms = [(0,1), (0,2), (1,2)]
sage: coatom_to_atoms = [(0,1), (0,2), (1,2)]

and we can compute the lattice as

sage: from sage.geometry.cone import lattice_from_incidences
sage: L = lattice_from_incidences(atom_to_coatoms, coatom_to_atoms); L #␣
→˓needs sage.graphs
Finite lattice containing 8 elements with distinguished linear extension
sage: for level in L.level_sets(): print(level) #␣
→˓needs sage.graphs
[((), (0, 1, 2))]
[((0,), (0, 1)), ((1,), (0, 2)), ((2,), (1, 2))]
[((0, 1), (0,)), ((0, 2), (1,)), ((1, 2), (2,))]
[((0, 1, 2), ())]

For more involved examples see the source code of sage.geometry.cone.
ConvexRationalPolyhedralCone.face_lattice() and sage.geometry.fan.
RationalPolyhedralFan._compute_cone_lattice().
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5.3 MISSING TITLE

5.4 Helper Functions For Freeness Of Hyperplane Arrangements

This contains the algorithms to check for freeness of a hyperplane arrangement. See sage.geometry.
hyperplane_arrangement.HyperplaneArrangementElement.is_free() for details.

Note: This could be extended to a freeness check for more general modules over a polynomial ring.

sage.geometry.hyperplane_arrangement.check_freeness.construct_free_chain(A)

Construct the free chain for the hyperplanes A.

ALGORITHM:

We follow Algorithm 6.5 in [BC2012].

INPUT:

• A – a hyperplane arrangement

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.check_freeness import construct_
→˓free_chain
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H(z, y+z, x+y+z)
sage: construct_free_chain(A)
[
[1 0 0] [ 1 0 0] [ 0 1 0]
[0 1 0] [ 0 z -1] [y + z 0 -1]
[0 0 z], [ 0 y 1], [ x 0 1]
]

sage.geometry.hyperplane_arrangement.check_freeness.less_generators(X)
Reduce the generator matrix of the module defined by X.

This is Algorithm 6.4 in [BC2012] and relies on the row syzygies of the matrix X.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.check_freeness import less_
→˓generators
sage: R.<x,y,z> = QQ[]
sage: m = matrix([[1, 0, 0], [0, z, -1], [0, 0, 0], [0, y, 1]])
sage: less_generators(m)
[ 1 0 0]
[ 0 z -1]
[ 0 y 1]
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dron_base0 method), 521

equations_list() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 521

essentialization() (sage.geometry.hyperplane_ar-
rangement.arrangement.HyperplaneArrange-
mentElement method), 19

eval() (sage.geometry.polyhedron.representation.Hrep-
resentation method), 133

evaluate() (sage.geometry.linear_expression.Linear-
Expression method), 732

evaluated_on() (sage.geometry.polyhedron.represen-
tation.Line method), 138

evaluated_on() (sage.geometry.polyhedron.represen-
tation.Ray method), 140
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evaluated_on() (sage.geometry.polyhedron.represen-
tation.Vertex method), 141

exclude_points() (sage.geometry.triangula-
tion.point_configuration.PointConfiguration
method), 689

exploded_plot() (in module sage.geometry.polyhe-
dral_complex), 347

extrude_edge() (sage.geometry.ribbon_graph.Rib-
bonGraph method), 747
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f_vector() (sage.geometry.fan.RationalPolyhedralFan

method), 457
f_vector() (sage.geometry.polyhedron.base3.Polyhe-

dron_base3 method), 549
f_vector() (sage.geometry.polyhedron.combinato-

rial_polyhedron.base.CombinatorialPolyhedron
method), 262

f_vector() (sage.rings.polynomial.groebner_fan.Poly-
hedralFan method), 510

face_by_face_lattice_index() (sage.ge-
ometry.polyhedron.combinatorial_polyhe-
dron.base.CombinatorialPolyhedron method),
262

face_codimension() (sage.geometry.triangula-
tion.point_configuration.PointConfiguration
method), 689

face_fan() (sage.geometry.polyhedron.base.Polyhe-
dron_base method), 629

face_generator() (sage.geometry.polyhe-
dron.base3.Polyhedron_base3 method), 550

face_generator() (sage.geometry.polyhedron.com-
binatorial_polyhedron.base.CombinatorialPoly-
hedron method), 263

face_interior() (sage.geometry.triangula-
tion.point_configuration.PointConfiguration
method), 689

face_iter() (sage.geometry.polyhedron.combinato-
rial_polyhedron.base.CombinatorialPolyhedron
method), 265

face_lattice() (sage.geometry.cone.ConvexRa-
tionalPolyhedralCone method), 381

face_lattice() (sage.geometry.lattice_polytope.Latti-
cePolytopeClass method), 182

face_lattice() (sage.geometry.polyhe-
dron.base4.Polyhedron_base4 method), 574

face_lattice() (sage.geometry.polyhedron.combi-
natorial_polyhedron.base.CombinatorialPolyhe-
dron method), 266

face_poset() (sage.geometry.polyhedral_com-
plex.PolyhedralComplex method), 333

face_product() (sage.geometry.hyperplane_arrange-
ment.arrangement.HyperplaneArrangementEle-
ment method), 19

face_semigroup_algebra() (sage.geometry.hy-
perplane_arrangement.arrangement.Hyperplan-
eArrangementElement method), 20

face_split() (sage.geometry.polyhedron.base5.Poly-
hedron_base5 method), 589

face_truncation() (sage.geometry.polyhe-
dron.base5.Polyhedron_base5 method), 589

face_vector() (sage.geometry.hyperplane_arrange-
ment.arrangement.HyperplaneArrangementEle-
ment method), 21

FaceFan() (in module sage.geometry.fan), 442
FaceIterator (class in sage.geometry.polyhedron.com-

binatorial_polyhedron.face_iterator), 301
FaceIterator_base (class in sage.geometry.polyhe-

dron.combinatorial_polyhedron.face_iterator),
305

FaceIterator_geom (class in sage.geometry.polyhe-
dron.combinatorial_polyhedron.face_iterator),
312

faces() (sage.geometry.cone.ConvexRationalPolyhe-
dralCone method), 383

faces() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 184

faces() (sage.geometry.polyhedron.base3.Polyhe-
dron_base3 method), 554

facet_adjacency_matrix() (sage.geometry.poly-
hedron.base3.Polyhedron_base3 method), 555

facet_adjacency_matrix() (sage.geometry.poly-
hedron.combinatorial_polyhedron.base.Combi-
natorialPolyhedron method), 267

facet_constant() (sage.geometry.lattice_poly-
tope.LatticePolytopeClass method), 185

facet_constants() (sage.geometry.lattice_poly-
tope.LatticePolytopeClass method), 186

facet_graph() (sage.geometry.polyhedron.combinato-
rial_polyhedron.base.CombinatorialPolyhedron
method), 267

facet_normal() (sage.geometry.lattice_polytope.Latti-
cePolytopeClass method), 186

facet_normals() (sage.geometry.cone.ConvexRa-
tionalPolyhedralCone method), 384

facet_normals() (sage.geometry.lattice_poly-
tope.LatticePolytopeClass method), 187

facet_of() (sage.geometry.cone.ConvexRationalPoly-
hedralCone method), 386

facet_of() (sage.geometry.lattice_polytope.Lattice-
PolytopeClass method), 188

facets() (sage.geometry.cone.ConvexRationalPolyhe-
dralCone method), 386

facets() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 188

facets() (sage.geometry.polyhedron.base3.Polyhe-
dron_base3 method), 556

facets() (sage.geometry.polyhedron.combinato-
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rial_polyhedron.base.CombinatorialPolyhedron
method), 268

facets() (sage.rings.polynomial.groebner_fan.Polyhe-
dralCone method), 509

facets_tuple_to_bit_rep_of_facets() (in
module sage.geometry.polyhedron.combinato-
rial_polyhedron.conversions), 321

facets_tuple_to_bit_rep_of_Vrep() (in
module sage.geometry.polyhedron.combinato-
rial_polyhedron.conversions), 320

factor() (sage.geometry.fan_morphism.FanMorphism
method), 472

Fan() (in module sage.geometry.fan), 442
fan() (sage.geometry.triangulation.element.Triangulation

method), 711
Fan2d() (in module sage.geometry.fan), 446
fan_2d_cyclically_ordered_rays() (in mod-

ule sage.geometry.fan_isomorphism), 763
fan_2d_echelon_form() (in module sage.geome-

try.fan_isomorphism), 763
fan_2d_echelon_forms() (in module sage.geome-

try.fan_isomorphism), 764
fan_isomorphic_necessary_conditions()

(in module sage.geometry.fan_isomorphism),
764

fan_isomorphism_generator() (in module
sage.geometry.fan_isomorphism), 765

FanMorphism (class in sage.geometry.fan_morphism),
469

FanNotIsomorphicError, 763
farthest_point() (sage.geometry.triangula-

tion.point_configuration.PointConfiguration
method), 689

felsner_matrix() (sage.geometry.pseudolines.Pseu-
dolineArrangement method), 758

fibration_generator() (sage.geometry.polyhe-
dron.base_ZZ.Polyhedron_ZZ method), 649

fibration_generator() (sage.geometry.poly-
hedron.ppl_lattice_polytope.LatticePoly-
tope_PPL_class method), 240

find_isomorphism() (in module sage.geome-
try.fan_isomorphism), 766

find_isomorphism() (sage.geometry.poly-
hedron.ppl_lattice_polygon.LatticePoly-
gon_PPL_class method), 230

find_translation() (sage.geometry.polyhe-
dron.base_ZZ.Polyhedron_ZZ method), 650

first_coordinate_plane() (sage.geometry.poly-
hedron.double_description.DoubleDescription-
Pair method), 671

fixed_subpolytope() (sage.geometry.polyhe-
dron.base_QQ.Polyhedron_QQ method), 642

fixed_subpolytopes() (sage.geometry.polyhe-
dron.base_QQ.Polyhedron_QQ method), 644

flag_f_vector() (sage.geometry.polyhe-
dron.base4.Polyhedron_base4 method), 575

flag_f_vector() (sage.geometry.polyhedron.combi-
natorial_polyhedron.base.CombinatorialPolyhe-
dron method), 268

flow_polytope() (sage.geometry.polyhedron.li-
brary.Polytopes static method), 81

FormalPolyhedraModule (class in sage.geome-
try.polyhedron.modules.formal_polyhedra_mod-
ule), 169
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G_semiorder() (sage.geometry.hyperplane_arrange-

ment.library.HyperplaneArrangementLibrary
method), 50

G_Shi() (sage.geometry.hyperplane_arrangement.li-
brary.HyperplaneArrangementLibrary method),
49

Gale_transform() (sage.geometry.fan.RationalPoly-
hedralFan method), 448

gale_transform() (sage.geometry.polyhe-
dron.base6.Polyhedron_base6 method), 611

Gale_transform() (sage.geometry.triangula-
tion.point_configuration.PointConfiguration
method), 685

gale_transform_to_polytope() (in module
sage.geometry.polyhedron.library), 112

gale_transform_to_primal() (in module
sage.geometry.polyhedron.library), 114

gen() (sage.geometry.hyperplane_arrangement.arrange-
ment.HyperplaneArrangements method), 41

gen() (sage.geometry.linear_expression.LinearExpres-
sionModule method), 734

generalized_permutahedron() (sage.geom-
etry.polyhedron.library.Polytopes method),
83

generating_cone() (sage.geometry.fan.Ratio-
nalPolyhedralFan method), 457

generating_cones() (sage.geometry.fan.Ratio-
nalPolyhedralFan method), 457

generating_function_of_inte-
gral_points() (in module sage.geome-
try.polyhedron.generating_function), 247

generating_function_of_inte-
gral_points() (sage.geometry.polyhe-
dron.base2.Polyhedron_base2 method), 538

gens() (sage.geometry.hyperplane_arrangement.ar-
rangement.HyperplaneArrangements method),
41

gens() (sage.geometry.linear_expression.LinearExpres-
sionModule method), 734

gens() (sage.geometry.toric_lattice.ToricLattice_quotient
method), 359
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genus() (sage.geometry.ribbon_graph.RibbonGraph
method), 749

get_face() (sage.geometry.polyhedron.combinato-
rial_polyhedron.polyhedron_face_lattice.Polyhe-
dronFaceLattice method), 298

get_integral_point() (sage.geometry.polyhe-
dron.base2.Polyhedron_base2 method), 540

gevp_licis() (in module sage.geometry.cone_criti-
cal_angles), 434

gfan() (sage.rings.polynomial.groebner_fan.Groebner-
Fan method), 502

gkz_phi() (sage.geometry.triangulation.element.Trian-
gulation method), 712

Gosset_3_21() (sage.geometry.polyhedron.li-
brary.Polytopes method), 73

grand_antiprism() (sage.geometry.polyhedron.li-
brary.Polytopes method), 87

graph() (sage.geometry.polyhedral_complex.Polyhedral-
Complex method), 333

graph() (sage.geometry.polyhedron.base4.Polyhe-
dron_base4 method), 577

graph() (sage.geometry.polyhedron.combinatorial_poly-
hedron.base.CombinatorialPolyhedron method),
270

graphical() (sage.geometry.hyperplane_arrange-
ment.library.HyperplaneArrangementLibrary
method), 54

great_rhombicuboctahedron() (sage.geom-
etry.polyhedron.library.Polytopes method),
88

greatest_common_subface_of_Hrep()
(sage.geometry.polyhedron.base3.Polyhe-
dron_base3 method), 557

groebner_cone() (sage.rings.polynomial.groeb-
ner_fan.ReducedGroebnerBasis method), 512

GroebnerFan (class in sage.rings.polynomial.groeb-
ner_fan), 501
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h_star_vector() (sage.geometry.polyhe-

dron.base2.Polyhedron_base2 method), 541
has_good_reduction() (sage.geometry.hyper-

plane_arrangement.arrangement.HyperplaneAr-
rangementElement method), 22

has_IP_property() (sage.geometry.polyhe-
dron.base_ZZ.Polyhedron_ZZ method), 650

has_IP_property() (sage.geometry.polyhe-
dron.ppl_lattice_polytope.LatticePoly-
tope_PPL_class method), 240

hasse_diagram() (sage.geometry.polyhe-
dron.base4.Polyhedron_base4 method), 578

hasse_diagram() (sage.geometry.polyhedron.combi-
natorial_polyhedron.base.CombinatorialPolyhe-
dron method), 270

Hilbert_basis() (sage.geometry.cone.ConvexRa-
tionalPolyhedralCone method), 370

Hilbert_coefficients() (sage.geome-
try.cone.ConvexRationalPolyhedralCone
method), 372

hilbert_series() (sage.geometry.polyhedron.back-
end_normaliz.Polyhedron_QQ_normaliz
method), 658

hodge_numbers() (sage.geometry.lattice_poly-
tope.NefPartition method), 213

homogeneity_space() (sage.rings.polynomial.groeb-
ner_fan.GroebnerFan method), 502

homogeneous_vector() (sage.geometry.polyhe-
dron.representation.Line method), 138

homogeneous_vector() (sage.geometry.polyhe-
dron.representation.Ray method), 140

homogeneous_vector() (sage.geometry.polyhe-
dron.representation.Vertex method), 142

homology_basis() (sage.geometry.ribbon_graph.Rib-
bonGraph method), 749

Hrep2Vrep (class in sage.geometry.polyhedron.dou-
ble_description_inhomogeneous), 676

Hrep_generator() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 515

Hrepresentation (class in sage.geometry.polyhe-
dron.representation), 133

Hrepresentation() (sage.geometry.polyhe-
dron.backend_ppl.Polyhedron_ppl method),
667

Hrepresentation() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 515

Hrepresentation() (sage.geometry.polyhedron.com-
binatorial_polyhedron.base.CombinatorialPoly-
hedron method), 256

Hrepresentation_space() (sage.geometry.polyhe-
dron.base1.Polyhedron_base1 method), 530

Hrepresentation_space() (sage.geometry.polyhe-
dron.parent.Polyhedra_base method), 127

Hrepresentation_str() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 516

Hstar_function() (sage.geometry.polyhe-
dron.base_QQ.Polyhedron_QQ method), 636

hypercube() (sage.geometry.polyhedron.library.Poly-
topes method), 88

Hyperplane (class in sage.geometry.hyperplane_ar-
rangement.hyperplane), 58

hyperplane_arrangement() (sage.geometry.poly-
hedron.base.Polyhedron_base method), 629

hyperplane_section() (sage.geometry.hyper-
plane_arrangement.ordered_arrangement.Or-
deredHyperplaneArrangementElement method),
44

HyperplaneArrangementElement (class in
sage.geometry.hyperplane_arrangement.arrange-
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ment), 8
HyperplaneArrangementLibrary (class in

sage.geometry.hyperplane_arrangement.library),
48

HyperplaneArrangements (class in sage.geome-
try.hyperplane_arrangement.arrangement), 39

hyperplanes() (sage.geometry.hyperplane_arrange-
ment.arrangement.HyperplaneArrangementEle-
ment method), 22

hypersimplex() (sage.geometry.polyhedron.li-
brary.Polytopes method), 89

I
icosahedron() (sage.geometry.polyhedron.li-

brary.Polytopes method), 90
icosidodecahedron() (sage.geometry.polyhedron.li-

brary.Polytopes method), 91
icosidodecahedron_V2() (sage.geometry.polyhe-

dron.library.Polytopes method), 91
ideal() (sage.rings.polynomial.groebner_fan.Groebner-

Fan method), 502
ideal() (sage.rings.polynomial.groebner_fan.Reduced-

GroebnerBasis method), 513
ideal_to_gfan_format() (in module

sage.rings.polynomial.groebner_fan), 514
identity() (sage.geometry.polyhedron.plot.Projection

method), 146
ignore_subfaces() (sage.geometry.polyhedron.com-

binatorial_polyhedron.face_iterator.FaceItera-
tor_base method), 306

ignore_supfaces() (sage.geometry.polyhedron.com-
binatorial_polyhedron.face_iterator.FaceItera-
tor_base method), 307

image (sage.geometry.convex_set.AffineHullProjection-
Data attribute), 718

image_cone() (sage.geometry.fan_morphism.FanMor-
phism method), 474

incidence_matrix() (sage.geometry.cone.Con-
vexRationalPolyhedralCone method), 386

incidence_matrix() (sage.geometry.lattice_poly-
tope.LatticePolytopeClass method), 189

incidence_matrix() (sage.geometry.polyhe-
dron.base3.Polyhedron_base3 method), 558

incidence_matrix() (sage.geometry.polyhe-
dron.combinatorial_polyhedron.base.Combina-
torialPolyhedron method), 271

incidence_matrix_to_bit_rep_of_facets()
(in module sage.geometry.polyhedron.combinato-
rial_polyhedron.conversions), 322

incidence_matrix_to_bit_rep_of_Vrep()
(in module sage.geometry.polyhedron.combinato-
rial_polyhedron.conversions), 321

incident() (sage.geometry.polyhedron.representa-
tion.Hrepresentation method), 134

incident() (sage.geometry.polyhedron.representa-
tion.Vrepresentation method), 143

include_points() (sage.geometry.toric_plot-
ter.ToricPlotter method), 493

index() (sage.geometry.fan_morphism.FanMorphism
method), 475

index() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 189

index() (sage.geometry.point_collection.PointCollection
method), 486

index() (sage.geometry.polyhedron.representation.Poly-
hedronRepresentation method), 139

index() (sage.geometry.triangulation.base.Point
method), 701

inequalities() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 521

inequalities_list() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 522

Inequality (class in sage.geometry.polyhedron.repre-
sentation), 135

INEQUALITY (sage.geometry.polyhedron.representa-
tion.PolyhedronRepresentation attribute), 139

inequality_generator() (sage.geometry.polyhe-
dron.base0.Polyhedron_base0 method), 522

initial_form_systems() (sage.rings.polyno-
mial.groebner_fan.TropicalPrevariety method),
513

initial_forms() (sage.rings.polynomial.groeb-
ner_fan.InitialForm method), 507

initial_pair() (sage.geometry.polyhedron.dou-
ble_description.Problem method), 674

InitialForm (class in sage.rings.polynomial.groeb-
ner_fan), 507

inner_product_matrix() (sage.geometry.polyhe-
dron.double_description.DoubleDescriptionPair
method), 671

int_to_simplex() (sage.geometry.triangula-
tion.base.PointConfiguration_base method),
705

integral_hull() (sage.geometry.polyhedron.back-
end_normaliz.Polyhedron_normaliz method),
663

integral_length() (in module sage.geometry.cone),
421

integral_points() (sage.geometry.polyhe-
dron.backend_normaliz.Polyhedron_QQ_nor-
maliz method), 659

integral_points() (sage.geometry.polyhe-
dron.base2.Polyhedron_base2 method), 542

integral_points() (sage.geometry.polyhe-
dron.ppl_lattice_polytope.LatticePoly-
tope_PPL_class method), 241

integral_points_count() (sage.geometry.polyhe-
dron.base2.Polyhedron_base2 method), 543
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integral_points_count() (sage.geometry.polyhe-
dron.base_QQ.Polyhedron_QQ method), 644

integral_points_generators() (sage.geom-
etry.polyhedron.backend_normaliz.Polyhe-
dron_QQ_normaliz method), 661

integral_points_not_inte-
rior_to_facets() (sage.geometry.poly-
hedron.ppl_lattice_polytope.LatticePoly-
tope_PPL_class method), 242

IntegralRayCollection (class in sage.geome-
try.cone), 414

integrate() (sage.geometry.polyhedron.base7.Polyhe-
dron_base7 method), 619

interactive() (sage.rings.polynomial.groeb-
ner_fan.GroebnerFan method), 502

interactive() (sage.rings.polynomial.groeb-
ner_fan.ReducedGroebnerBasis method),
513

interior() (sage.geometry.cone.ConvexRationalPoly-
hedralCone method), 387

interior() (sage.geometry.convex_set.ConvexSet_base
method), 723

interior() (sage.geometry.polyhedron.base1.Polyhe-
dron_base1 method), 534

interior() (sage.geometry.relative_interior.RelativeIn-
terior method), 741

interior_contains() (sage.geometry.cone.Con-
vexRationalPolyhedralCone method), 387

interior_contains() (sage.geometry.polyhe-
dron.base1.Polyhedron_base1 method), 535

interior_contains() (sage.geometry.polyhe-
dron.representation.Equation method), 132

interior_contains() (sage.geometry.polyhe-
dron.representation.Inequality method), 136

interior_facets() (sage.geometry.triangulation.ele-
ment.Triangulation method), 712

interior_point_indices() (sage.geometry.lat-
tice_polytope.LatticePolytopeClass method),
190

interior_points() (sage.geometry.lattice_poly-
tope.LatticePolytopeClass method), 191

internal_ray() (sage.rings.polynomial.groeb-
ner_fan.InitialForm method), 508

intersection() (sage.geometry.cone.ConvexRa-
tionalPolyhedralCone method), 388

intersection() (sage.geometry.convex_set.Con-
vexSet_base method), 723

intersection() (sage.geometry.hyperplane_arrange-
ment.affine_subspace.AffineSubspace method),
64

intersection() (sage.geometry.hyperplane_arrange-
ment.hyperplane.Hyperplane method), 59

intersection() (sage.geometry.polyhe-
dron.base5.Polyhedron_base5 method), 591

intersection() (sage.geometry.toric_lattice.ToricLat-
tice_generic method), 354

intersection_poset() (sage.geometry.hyper-
plane_arrangement.arrangement.HyperplaneAr-
rangementElement method), 22

is_affine() (sage.geometry.triangulation.base.Point-
Configuration_base method), 705

is_bipyramid() (sage.geometry.polyhe-
dron.base3.Polyhedron_base3 method), 560

is_bipyramid() (sage.geometry.polyhedron.combi-
natorial_polyhedron.base.CombinatorialPolyhe-
dron method), 272

is_birational() (sage.geometry.fan_morphism.Fan-
Morphism method), 476

is_bounded() (sage.geometry.polyhedron.ppl_lat-
tice_polytope.LatticePolytope_PPL_class
method), 242

is_bundle() (sage.geometry.fan_morphism.FanMor-
phism method), 476

is_cell() (sage.geometry.polyhedral_complex.Polyhe-
dralComplex method), 334

is_central() (sage.geometry.hyperplane_arrange-
ment.arrangement.HyperplaneArrangementEle-
ment method), 24

is_closed() (sage.geometry.convex_set.Con-
vexSet_base method), 723

is_closed() (sage.geometry.convex_set.Con-
vexSet_closed method), 726

is_closed() (sage.geometry.convex_set.Con-
vexSet_open method), 728

is_closed() (sage.geometry.relative_interior.Rela-
tiveInterior method), 741

is_combinatorially_isomorphic() (sage.ge-
ometry.polyhedron.base4.Polyhedron_base4
method), 579

is_compact() (sage.geometry.cone.ConvexRa-
tionalPolyhedralCone method), 389

is_compact() (sage.geometry.convex_set.Con-
vexSet_base method), 724

is_compact() (sage.geometry.convex_set.Con-
vexSet_compact method), 727

is_compact() (sage.geometry.polyhedral_com-
plex.PolyhedralComplex method), 334

is_compact() (sage.geometry.polyhedron.base0.Poly-
hedron_base0 method), 523

is_compact() (sage.geometry.polyhedron.combinato-
rial_polyhedron.base.CombinatorialPolyhedron
method), 273

is_compact() (sage.geometry.polyhedron.face.Polyhe-
dronFace method), 162

is_complete() (sage.geometry.fan.RationalPolyhe-
dralFan method), 458

is_Cone() (in module sage.geometry.cone), 422
is_connected() (sage.geometry.polyhedral_com-
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plex.PolyhedralComplex method), 334
is_convex() (sage.geometry.polyhedral_complex.Poly-

hedralComplex method), 335
is_dominant() (sage.geometry.fan_morphism.Fan-

Morphism method), 477
is_effective() (sage.geometry.polyhe-

dron.base_QQ.Polyhedron_QQ method), 646
is_empty() (sage.geometry.cone.ConvexRationalPoly-

hedralCone method), 389
is_empty() (sage.geometry.convex_set.ConvexSet_base

method), 724
is_empty() (sage.geometry.polyhedron.base1.Polyhe-

dron_base1 method), 535
is_equation() (sage.geometry.polyhedron.representa-

tion.Equation method), 132
is_equation() (sage.geometry.polyhedron.representa-

tion.Hrepresentation method), 134
is_equivalent() (sage.geometry.cone.ConvexRa-

tionalPolyhedralCone method), 389
is_equivalent() (sage.geometry.fan.RationalPolyhe-

dralFan method), 458
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ment.arrangement.HyperplaneArrangementEle-
ment method), 25
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scription.DoubleDescriptionPair method), 671

is_face_of() (sage.geometry.cone.ConvexRa-
tionalPolyhedralCone method), 390

is_facet_defining_inequality() (sage.ge-
ometry.polyhedron.representation.Inequality
method), 136

is_Fan() (in module sage.geometry.fan), 468
is_fibration() (sage.geometry.fan_morphism.Fan-

Morphism method), 477
is_finite() (sage.geometry.convex_set.Con-

vexSet_base method), 724
is_formal() (sage.geometry.hyperplane_arrange-

ment.arrangement.HyperplaneArrangementEle-
ment method), 25

is_free() (sage.geometry.hyperplane_arrangement.ar-
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tion.Hrepresentation method), 135
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tion.Vrepresentation method), 144
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try.newton_polygon), 735
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310
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topeClass method), 195
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nalPolyhedralFan method), 463

ngens() (sage.geometry.hyperplane_arrangement.ar-
rangement.HyperplaneArrangements method),
41

ngens() (sage.geometry.linear_expression.LinearExpres-
sionModule method), 734
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normal() (sage.geometry.hyperplane_arrangement.hy-
perplane.Hyperplane method), 60

normal_cone() (sage.geometry.polyhedron.face.Poly-
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normal_cone() (sage.geometry.triangulation.ele-
ment.Triangulation method), 713

normal_fan() (sage.geometry.polyhedron.base.Polyhe-
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normal_form() (sage.geometry.lattice_polytope.Latti-
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normal_form() (sage.geometry.polyhe-
dron.base_ZZ.Polyhedron_ZZ method), 652

NormalFan() (in module sage.geometry.fan), 447
normalize() (sage.geometry.ribbon_graph.Ribbon-
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normalize_rays() (in module sage.geometry.cone),

422
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method), 215
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method), 419
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bon_graph.RibbonGraph method), 752
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(sage.rings.polynomial.groebner_fan.Groebner-
Fan method), 503

number_of_variables() (sage.rings.polyno-

mial.groebner_fan.GroebnerFan method),
504

nvertices() (sage.geometry.lattice_polytope.Lattice-
PolytopeClass method), 200
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topes method), 92
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dred_twenty_cell() (sage.geome-
try.polyhedron.library.Polytopes method), 92
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ometry.polyhedron.library.Polytopes method), 93

one_hundred_twenty_cell() (sage.geome-
try.polyhedron.library.Polytopes method), 93

one_point_suspension() (sage.geometry.polyhe-
dron.base5.Polyhedron_base5 method), 596

only_subfaces() (sage.geometry.polyhedron.com-
binatorial_polyhedron.face_iterator.FaceItera-
tor_base method), 310

only_supfaces() (sage.geometry.polyhedron.com-
binatorial_polyhedron.face_iterator.FaceItera-
tor_base method), 311

options() (in module sage.geometry.toric_plotter), 497
ordered_vertices() (sage.geometry.poly-

hedron.ppl_lattice_polygon.LatticePoly-
gon_PPL_class method), 231

OrderedHyperplaneArrangementElement
(class in sage.geometry.hyperplane_arrange-
ment.ordered_arrangement), 43

OrderedHyperplaneArrangements (class in
sage.geometry.hyperplane_arrangement.or-
dered_arrangement), 47

oriented_boundary() (sage.geometry.fan.Ratio-
nalPolyhedralFan method), 463

origin() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 200

orlik_solomon_algebra() (sage.geometry.hyper-
plane_arrangement.arrangement.HyperplaneAr-
rangementElement method), 29

orlik_terao_algebra() (sage.geometry.hyper-
plane_arrangement.arrangement.HyperplaneAr-
rangementElement method), 29

orthogonal_projection() (sage.geometry.hy-
perplane_arrangement.hyperplane.Hyperplane
method), 60

orthogonal_sublattice() (sage.geome-
try.cone.ConvexRationalPolyhedralCone
method), 402

outer_normal() (sage.geometry.polyhedron.represen-
tation.Inequality method), 137

output_format() (sage.geometry.point_collec-
tion.PointCollection static method), 487
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P (sage.geometry.polyhedron.combinatorial_polyhe-

dron.face_iterator.FaceIterator_geom attribute),
315

pair_class (sage.geometry.polyhedron.double_descrip-
tion.Problem attribute), 674

pair_class (sage.geometry.polyhedron.double_descrip-
tion.StandardAlgorithm attribute), 674

PALPreader (class in sage.geometry.polyhe-
dron.palp_database), 229

parallelotope() (sage.geometry.polyhedron.li-
brary.Polytopes method), 94

parent() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 201

ParentNewtonPolygon (class in sage.geometry.new-
ton_polygon), 737

part() (sage.geometry.lattice_polytope.NefPartition
method), 215

part_of() (sage.geometry.lattice_polytope.NefPartition
method), 216

part_of_point() (sage.geometry.lattice_poly-
tope.NefPartition method), 216

parts() (sage.geometry.lattice_polytope.NefPartition
method), 217
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dron.library.Polytopes method), 94
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brary.Polytopes method), 95

permutations() (sage.geometry.pseudolines.Pseudo-
lineArrangement method), 758

permutations_to_matrices() (sage.geome-
try.polyhedron.base.Polyhedron_base method),
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PivotedInequalities (class in sage.geometry.poly-
hedron.double_description_inhomogeneous), 677

placing_triangulation() (sage.geometry.trian-
gulation.point_configuration.PointConfiguration
method), 690

plot() (in module sage.geometry.hyperplane_arrange-
ment.plot), 68

plot() (sage.geometry.cone.ConvexRationalPolyhedral-
Cone method), 402

plot() (sage.geometry.cone.IntegralRayCollection
method), 419

plot() (sage.geometry.fan.RationalPolyhedralFan
method), 464

plot() (sage.geometry.hyperplane_arrangement.ar-
rangement.HyperplaneArrangementElement
method), 29

plot() (sage.geometry.hyperplane_arrangement.hyper-
plane.Hyperplane method), 61

plot() (sage.geometry.newton_polygon.NewtonPoly-
gon_element method), 735

plot() (sage.geometry.polyhedral_complex.Polyhedral-

Complex method), 342
plot() (sage.geometry.polyhedron.base6.Polyhe-

dron_base6 method), 612
plot() (sage.geometry.polyhedron.ppl_lattice_poly-
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plot() (sage.geometry.toric_lattice.ToricLattice_ambient

method), 353
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plot() (sage.geometry.triangulation.element.Triangula-

tion method), 713
plot() (sage.geometry.triangulation.point_configura-

tion.PointConfiguration method), 691
plot() (sage.geometry.voronoi_diagram.VoronoiDia-

gram method), 761
plot3d() (sage.geometry.lattice_polytope.LatticePoly-

topeClass method), 201
plot_generators() (sage.geometry.toric_plot-

ter.ToricPlotter method), 493
plot_hyperplane() (in module sage.geometry.hyper-

plane_arrangement.plot), 69
plot_labels() (sage.geometry.toric_plotter.ToricPlot-

ter method), 493
plot_lattice() (sage.geometry.toric_plotter.Toric-

Plotter method), 494
plot_points() (sage.geometry.toric_plotter.ToricPlot-

ter method), 494
plot_ray_labels() (sage.geometry.toric_plot-

ter.ToricPlotter method), 494
plot_rays() (sage.geometry.toric_plotter.ToricPlotter

method), 495
plot_walls() (sage.geometry.toric_plotter.ToricPlotter

method), 495
poincare_polynomial() (sage.geometry.hyper-

plane_arrangement.arrangement.HyperplaneAr-
rangementElement method), 30

Point (class in sage.geometry.triangulation.base), 700
point() (sage.geometry.hyperplane_arrange-

ment.affine_subspace.AffineSubspace method),
65

point() (sage.geometry.hyperplane_arrangement.hyper-
plane.Hyperplane method), 61

point() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 202

point() (sage.geometry.triangulation.base.PointConfigu-
ration_base method), 706

point_configuration() (sage.geometry.triangula-
tion.base.Point method), 701

point_configuration() (sage.geometry.triangula-
tion.element.Triangulation method), 714

PointCollection (class in sage.geometry.point_col-
lection), 484

PointConfiguration (class in sage.geometry.triangu-
lation.point_configuration), 684
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PointConfiguration_base (class in sage.geome-
try.triangulation.base), 704

points() (sage.geometry.lattice_polytope.LatticePoly-
topeClass method), 203

points() (sage.geometry.triangulation.base.PointConfig-
uration_base method), 706
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gram method), 762
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polar() (sage.geometry.lattice_polytope.LatticePoly-
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polar() (sage.geometry.polyhedron.base5.Polyhe-
dron_base5 method), 596
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dron_ZZ method), 653
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try.polyhedron.ppl_lattice_polygon), 232

polar_P2_112_polytope() (in module sage.geome-
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topeClass method), 205
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Polyhedra_normaliz (class in sage.geometry.polyhe-
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Polyhedra_polymake (class in sage.geometry.polyhe-
dron.parent), 131

Polyhedra_QQ_cdd (class in sage.geometry.polyhe-
dron.parent), 126
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ner_fan), 508

PolyhedralFan (class in sage.rings.polynomial.groeb-
ner_fan), 509

polyhedralfan() (sage.rings.polynomial.groeb-
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rangement.arrangement.HyperplaneArrange-
mentElement method), 30
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method), 691
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try.cone.ConvexRationalPolyhedralCone
method), 403

prefix_check() (in module sage.rings.polyno-
mial.groebner_fan), 514

preimage_cones() (sage.geometry.fan_mor-
phism.FanMorphism method), 480

preimage_fan() (sage.geometry.fan_morphism.Fan-
Morphism method), 481
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ment.hyperplane.Hyperplane method), 62
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dralComplex method), 343

product() (sage.geometry.polyhedron.base5.Polyhe-
dron_base5 method), 597

project_points() (in module sage.geometry.polyhe-
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Projection (class in sage.geometry.polyhedron.plot),
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hedron_base6 method), 614

projection_func_identity() (in module
sage.geometry.polyhedron.plot), 156

projection_linear_map (sage.geometry.con-
vex_set.AffineHullProjectionData attribute),
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projection_translation (sage.geometry.con-
vex_set.AffineHullProjectionData attribute),
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projective() (sage.geometry.triangulation.base.Point
method), 702
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etry.hyperplane_arrangement.ordered_arrange-
ment.OrderedHyperplaneArrangementElement
method), 46
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try.pseudolines), 758
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method), 318
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tice_generic method), 355

R
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radius() (sage.geometry.polyhedron.base.Polyhe-
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dron.base.Polyhedron_base method), 634
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method), 360
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try.fan), 448
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RAY (sage.geometry.polyhedron.representation.Polyhedron-
Representation attribute), 139
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ray_generator() (sage.geometry.polyhe-
dron.face.PolyhedronFace method), 166
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method), 419
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dron_base0 method), 526
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method), 166
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Fan method), 511
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read_palp_matrix() (in module sage.geometry.lat-
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sage.geometry.point_collection), 490

rearrangement() (in module sage.geometry.cone_cat-
alog), 428
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(sage.geometry.polyhedron.library.Polytopes
method), 96
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etry.polyhedron.library.Polytopes method),
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method), 753
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gulation.base.Point method), 702
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etry.triangulation.base.PointConfiguration_base
method), 706

reduced_groebner_bases() (sage.rings.poly-
nomial.groebner_fan.GroebnerFan method),
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tion.base.Point method), 703
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try.triangulation.base.Point method), 703
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(sage.geometry.triangulation.base.PointCon-
figuration_base method), 707
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mial.groebner_fan), 512
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dron.palp_database), 230
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perplane_arrangement.arrangement.Hyperplan-
eArrangementElement method), 33

regions() (sage.geometry.hyperplane_arrangement.ar-
rangement.HyperplaneArrangementElement
method), 33
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agram method), 762
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brary.Polytopes method), 97
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try.polyhedral_complex.PolyhedralComplex
method), 343
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relative_interior() (sage.geometry.polyhe-
dron.base1.Polyhedron_base1 method), 537

relative_interior() (sage.geometry.relative_inte-
rior.RelativeInterior method), 742

relative_interior_contains() (sage.ge-
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method), 406
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method), 537
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method), 407
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method), 147
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method), 147
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dron.plot.Projection method), 149
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dron.plot.Projection method), 149
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dron.base6.Polyhedron_base6 method), 614
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dron.plot.Projection method), 149
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method), 315
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