
Elliptic curves
Release 10.4.rc1

The Sage Development Team

Jun 27, 2024

CONTENTS

1 Elliptic curve constructor 1

2 Construct elliptic curves as Jacobians 17

3 Points on elliptic curves 21

4 Elliptic curves over a general ring 59

5 Elliptic curves over a general field 91

6 Elliptic curves over finite fields 121

7 Formal groups of elliptic curves 153

8 Elliptic-curve morphisms 159

9 Composite morphisms of elliptic curves 173

10 Sums of morphisms of elliptic curves 181

11 Isomorphisms between Weierstrass models of elliptic curves 187

12 Isogenies 193

13 Square‑root Vélu algorithm for elliptic-curve isogenies 215

14 Scalar-multiplication morphisms of elliptic curves 223

15 Frobenius isogenies of elliptic curves 229

16 Isogenies of small prime degree 235

17 Modular polynomials for elliptic curves 267

18 Elliptic curves over number fields 269

19 To be sorted 627

20 Hyperelliptic curves 641

21 Indices and Tables 743

Python Module Index 745

i

Index 747

ii

CHAPTER

ONE

ELLIPTIC CURVE CONSTRUCTOR

AUTHORS:

• William Stein (2005): Initial version

• John Cremona (2008-01): EllipticCurve(j) fixed for all cases

class sage.schemes.elliptic_curves.constructor.EllipticCurveFactory

Bases: UniqueFactory

Construct an elliptic curve.

In Sage, an elliptic curve is always specified by (the coefficients of) a long Weierstrass equation

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6.

INPUT:

There are several ways to construct an elliptic curve:

• EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given 𝑎-invariants. The invariants are
coerced into a common parent. If all are integers, they are coerced into the rational numbers.

• EllipticCurve([a4,a6]): Same as above, but 𝑎1 = 𝑎2 = 𝑎3 = 0.

• EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given
label. The label is a string, such as "11a" or "37b2". The letters in the labelmust be lower case (Cremona’s
new labeling).

• EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over𝑅 with given 𝑎-invariants.
Here 𝑅 can be an arbitrary commutative ring, although most functionality is only implemented over fields.

• EllipticCurve(j=j0) or EllipticCurve_from_j(j0): Return an elliptic curve with
𝑗-invariant j0.

• EllipticCurve(polynomial): Read off the 𝑎-invariants from the polynomial coefficients, see El-
lipticCurve_from_Weierstrass_polynomial().

• EllipticCurve(cubic, point): The elliptic curve defined by a plane cubic (homogeneous polyno-
mial in three variables), with a rational point.

Instead of giving the coefficients as a list of length 2 or 5, one can also give a tuple.

EXAMPLES:

We illustrate creating elliptic curves:

sage: EllipticCurve([0,0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

1

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Elliptic curves, Release 10.4.rc1

We create a curve from a Cremona label:

sage: EllipticCurve(37b2)
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field
sage: EllipticCurve(5077a)
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: EllipticCurve(389a)
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

Old Cremona labels are allowed:

sage: EllipticCurve(2400FF)
Elliptic Curve defined by y^2 = x^3 + x^2 + 2*x + 8 over Rational Field

Unicode labels are allowed:

sage: EllipticCurve(u 389a)
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

We create curves over a finite field as follows:

sage: EllipticCurve([GF(5)(0),0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
sage: EllipticCurve(GF(5), [0, 0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

Elliptic curves over /𝑁 with 𝑁 prime are of type “elliptic curve over a finite field”:

sage: F = Zmod(101)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_
→˓with_category >
sage: E.category()
Category of abelian varieties over Ring of integers modulo 101

In contrast, elliptic curves over /𝑁 with 𝑁 composite are of type “generic elliptic curve”:

sage: F = Zmod(95)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_
→˓category >
sage: E.category()
Category of schemes over Ring of integers modulo 95

The following is a curve over the complex numbers:

sage: E = EllipticCurve(CC, [0,0,1,-1,0])
sage: E
Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x
over Complex Field with 53 bits of precision
sage: E.j_invariant()
2988.97297297297

2 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 10.4.rc1

We can also create elliptic curves by giving the Weierstrass equation:

sage: R2.<x,y> = PolynomialRing(QQ,2)
sage: EllipticCurve(y^2 + y - (x^3 + x - 9))
Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field

sage: R.<x,y> = GF(5)[]
sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x)
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5

We can also create elliptic curves by giving a smooth plane cubic with a rational point:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: F = x^3 + y^3 + 30*z^3
sage: P = [1,-1,0]
sage: EllipticCurve(F,P)
Elliptic Curve defined by y^2 - 270*y = x^3 - 24300 over Rational Field

We can explicitly specify the 𝑗-invariant:

sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 = x^3 - x over Rational Field
1728
32a2

sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
2

See Issue #6657

sage: EllipticCurve(GF(144169), j=1728) #␣
→˓needs sage.rings.finite_rings
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169

Elliptic curves over the same ring with the same Weierstrass coefficients are identical, even when they are con-
structed in different ways (see Issue #11474):

sage: EllipticCurve(11a3) is EllipticCurve(QQ, [0, -1, 1, 0, 0])
True

By default, when a rational value of 𝑗 is given, the constructed curve is a minimal twist (minimal conductor for
curves with that 𝑗-invariant). This can be changed by setting the optional parameter minimal_twist, which is
True by default, to False:

sage: EllipticCurve(j=100)
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: E =EllipticCurve(j=100); E
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: E.conductor()
33129800
sage: E.j_invariant()
100
sage: E =EllipticCurve(j=100, minimal_twist=False); E
Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field
sage: E.conductor()
298168200

(continues on next page)

3

https://github.com/sagemath/sage/issues/6657
https://github.com/sagemath/sage/issues/11474

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.j_invariant()
100

Without this option, constructing the curve could take a long time since both 𝑗 and 𝑗 − 1728 have to be factored
to compute the minimal twist (see Issue #13100):

sage: E = EllipticCurve_from_j(2^256+1, minimal_twist=False)
sage: E.j_invariant() == 2^256+1
True

create_key_and_extra_args(x=None, y=None, j=None, minimal_twist=True, **kwds)
Return a UniqueFactory key and possibly extra parameters.

INPUT: See the documentation for EllipticCurveFactory.

OUTPUT:

A pair (key, extra_args):

• key has the form (𝑅, (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6)), representing a ring and the Weierstrass coefficients of an
elliptic curve over that ring;

• extra_args is a dictionary containing additional data to be inserted into the elliptic curve structure.

EXAMPLES:

sage: EllipticCurve.create_key_and_extra_args(j=8000)
((Rational Field, (0, 1, 0, -3, 1)), {})

When constructing a curve over Q from a Cremona or LMFDB label, the invariants from the database are
returned as extra_args:

sage: key, data = EllipticCurve.create_key_and_extra_args(389.a1)
sage: key
(Rational Field, (0, 1, 1, -2, 0))
sage: data[conductor]
389
sage: data[cremona_label]
389a1

sage: data[lmfdb_label]
389.a1

sage: data[rank]
2
sage: data[torsion_order]
1

User-specified keywords are also included in extra_args:

sage: key, data = EllipticCurve.create_key_and_extra_args((0, 0, 1, -23737,␣
→˓960366), rank=4)
sage: data[rank]
4

Furthermore, keywords takes precedence over data from the database, which can be used to specify an alter-
native set of generators for the Mordell-Weil group:

sage: key, data = EllipticCurve.create_key_and_extra_args(5077a1 , gens=[[1,␣
→˓-1], [-2, 3], [4, -7]])

(continues on next page)

4 Chapter 1. Elliptic curve constructor

https://github.com/sagemath/sage/issues/13100

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: data[gens]
[[1, -1], [-2, 3], [4, -7]]
sage: E = EllipticCurve.create_object(0, key, **data)
sage: E.gens()
[(-2 : 3 : 1), (1 : -1 : 1), (4 : -7 : 1)]

Note that elliptic curves are equal if and only they have the same base ring and Weierstrass equation; the
data in extra_args do not influence comparison of elliptic curves. A consequence of this is that passing
keyword arguments only works when constructing an elliptic curve the first time:

sage: E = EllipticCurve(433a1 , gens=[[-1, 1], [3, 4]])
sage: E.gens()
[(-1 : 1 : 1), (3 : 4 : 1)]
sage: E = EllipticCurve(433a1 , gens=[[-1, 0], [0, 1]])
sage: E.gens()
[(-1 : 1 : 1), (3 : 4 : 1)]

Warning: Manually specifying extra data is almost never necessary and is not guaranteed to have any
effect, as the above example shows. Almost no checking is done, so specifying incorrect data may lead to
wrong results of computations instead of errors or warnings.

create_object(version, key, **kwds)
Create an object from a UniqueFactory key.

EXAMPLES:

sage: E = EllipticCurve.create_object(0, (GF(3), (1, 2, 0, 1, 2)))
sage: type(E)
<class sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_
→˓field_with_category >

Note: Keyword arguments are currently only passed to the constructor for elliptic curves over Q; elliptic
curves over other fields do not support them.

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_Weierstrass_polynomial(f)
Return the elliptic curve defined by a cubic in (long) Weierstrass form.

INPUT:

• f – a inhomogeneous cubic polynomial in long Weierstrass form.

OUTPUT: The elliptic curve defined by it.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = y^2 + 1*x*y + 3*y - (x^3 + 2*x^2 + 4*x + 6)
sage: EllipticCurve(f)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 6 over Rational␣
→˓Field
sage: EllipticCurve(f).a_invariants()
(1, 2, 3, 4, 6)

The polynomial ring may have extra variables as long as they do not occur in the polynomial itself:

5

Elliptic curves, Release 10.4.rc1

sage: R.<x,y,z,w> = QQ[]
sage: EllipticCurve(-y^2 + x^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: EllipticCurve(-x^2 + y^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: EllipticCurve(-w^2 + z^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_c4c6(c4, c6)
Return an elliptic curve with given 𝑐4 and 𝑐6 invariants.

EXAMPLES:

sage: E = EllipticCurve_from_c4c6(17, -2005)
sage: E
Elliptic Curve defined by y^2 = x^3 - 17/48*x + 2005/864 over Rational Field
sage: E.c_invariants()
(17, -2005)

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_cubic(F , P=None,
morphism=True)

Construct an elliptic curve from a ternary cubic with a rational point.

If you just want the Weierstrass form and are not interested in the morphism then it is easier to use the function
Jacobian() instead. If there is a rational point on the given cubic, this function will construct the same elliptic
curve but you do not have to supply the point P.

INPUT:

• F – a homogeneous cubic in three variables with rational coefficients, as a polynomial ring element, defining
a smooth plane cubic curve 𝐶.

• P – a 3-tuple (𝑥, 𝑦, 𝑧) defining a projective point on 𝐶, or None. If None then a rational flex will be used as
a base point if one exists, otherwise an error will be raised.

• morphism – boolean (default: True). If True returns a birational isomorphism from 𝐶 to a Weierstrass
elliptic curve 𝐸, otherwise just returns 𝐸.

OUTPUT:

Either (when morphism = False) an elliptic curve 𝐸 in long Weierstrass form isomorphic to the plane
cubic curve 𝐶 defined by the equation 𝐹 = 0.

Or (when morphism=True), a birational isomorphism from 𝐶 to the elliptic curve 𝐸. If the given point is a
flex, this is a linear isomorphism.

Note: The function Jacobian()may be used instead. It constructs the same elliptic curve (which is in all cases
the Jacobian of (𝐹 = 0)) and needs no base point to be provided, but also returns no isomorphism since in general
there is none: the plane cubic is only isomorphic to its Jacobian when it has a rational point.

Note: When morphism=True, a birational isomorphism between the curve 𝐹 = 0 and the Weierstrass curve
is returned. If the point happens to be a flex, then this is a linear isomorphism. The morphism does not necessarily
take the given point 𝑃 to the point at infinity on 𝐸, since we always use a rational flex on 𝐶 as base-point when one
exists.

EXAMPLES:

6 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 10.4.rc1

First we find that the Fermat cubic is isomorphic to the curve with Cremona label 27a1:

sage: R.<x,y,z> = QQ[]
sage: cubic = x^3 + y^3 + z^3
sage: P = [1,-1,0]
sage: E = EllipticCurve_from_cubic(cubic, P, morphism=False); E
Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
sage: E.cremona_label()
27a1

sage: EllipticCurve_from_cubic(cubic, [0,1,-1], morphism=False).cremona_label()
27a1

sage: EllipticCurve_from_cubic(cubic, [1,0,-1], morphism=False).cremona_label()
27a1

Next we find the minimal model and conductor of the Jacobian of the Selmer curve:

sage: R.<a,b,c> = QQ[]
sage: cubic = a^3 + b^3 + 60*c^3
sage: P = [1,-1,0]
sage: E = EllipticCurve_from_cubic(cubic, P, morphism=False); E
Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
sage: E.minimal_model()
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
sage: E.conductor()
24300

We can also get the birational isomorphism to and from the Weierstrass form. We start with an example where P
is a flex and the equivalence is a linear isomorphism:

sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True)
sage: f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
To: Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
Defn: Defined on coordinates by sending (a : b : c) to

(-c : 3*a : 1/180*a + 1/180*b)

sage: finv = f.inverse(); finv
Scheme morphism:
From: Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
To: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
Defn: Defined on coordinates by sending (x : y : z) to

(1/3*y : -1/3*y + 180*z : -x)

Scheme morphism:
From: Elliptic Curve defined by y^2 + 2*x*y + 20*y = x^3 - x^2 - 20*x - 400/3

over Rational Field
To: Closed subscheme of Projective Space of dimension 2 over Rational Field

defined by: a^3 + b^3 + 60*c^3
Defn: Defined on coordinates by sending (x : y : z) to

(x + y + 20*z : -x - y : -x)

We verify that 𝑓 maps the chosen point 𝑃 = (1,−1, 0) on the cubic to the origin of the elliptic curve:

sage: f([1,-1,0])
(0 : 1 : 0)
sage: finv([0,1,0])
(-1 : 1 : 0)

7

Elliptic curves, Release 10.4.rc1

To verify the output, we plug in the polynomials to check that this indeed transforms the cubic into Weierstrass
form:

sage: cubic(finv.defining_polynomials()) * finv.post_rescaling()
-x^3 + y^2*z - 540*y*z^2 + 97200*z^3

sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
a^3 + b^3 + 60*c^3

If the given point is not a flex and the cubic has no rational flexes, then the cubic can not be transformed to a Weier-
strass equation by a linear transformation. The general birational transformation is still a birational isomorphism,
but is quadratic:

sage: R.<x,y,z> = QQ[]
sage: cubic = x^2*y + 4*x*y^2 + x^2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
sage: f = EllipticCurve_from_cubic(cubic, [1,-1,1], morphism=True); f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined

by x^2*y + 4*x*y^2 + x^2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
To: Elliptic Curve defined

by y^2 + 7560/19*x*y + 552960000000/2352637*y = x^3 - 3445200/133*x^2
over Rational Field

Defn: Defined on coordinates by sending (x : y : z) to
(2527/17280*x^2 + 133/2160*x*y + 133/108000*y^2 + 133/2880*x*z

+ 931/18000*y*z - 3857/48000*z^2
: -6859/288*x^2 + 323/36*x*y + 359/1800*y^2 + 551/48*x*z

+ 2813/300*y*z + 24389/800*z^2
: -2352637/99532800000*x^2 - 2352637/124416000000*x*y

- 2352637/622080000000*y^2 + 2352637/82944000000*x*z
+ 2352637/207360000000*y*z - 2352637/276480000000*z^2)

Note that the morphism returned cannot be evaluated directly at the given point P=(1:-1:1) since the polyno-
mials defining it all vanish there:

sage: f([1,-1,1])
Traceback (most recent call last):
...
ValueError: [0, 0, 0] does not define a valid projective point since all entries␣
→˓are zero

Using the group law on the codomain elliptic curve, which has rank 1 and full 2-torsion, and the inverse morphism,
we can find many points on the cubic. First we find the preimages of multiples of the generator:

sage: E = f.codomain()
sage: E.label()
720e2

sage: E.rank()
1
sage: R = E.gens()[0]; R
(-17280000/2527 : 9331200000/6859 : 1)
sage: finv = f.inverse()
sage: [finv(k*R) for k in range(1,10)]
[(-4 : 1 : 0),
(-1 : 4 : 1),
(-20 : -55/76 : 1),
(319/399 : -11339/7539 : 1),
(159919/14360 : -4078139/1327840 : 1),
(-27809119/63578639 : 1856146436/3425378659 : 1),

(continues on next page)

8 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(-510646582340/56909753439 : 424000923715/30153806197284 : 1),
(-56686114363679/4050436059492161 : -2433034816977728281/1072927821085503881 : 1),
(650589589099815846721/72056273157352822480 : -347376189546061993109881/
→˓194127383495944026752320 : 1)]

The elliptic curve also has torsion, which we can map back:

sage: E.torsion_points()
[(0 : 1 : 0),
(-144000000/17689 : 3533760000000/2352637 : 1),
(-92160000/17689 : 2162073600000/2352637 : 1),
(-5760000/17689 : -124070400000/2352637 : 1)]
sage: [finv(Q) for Q in E.torsion_points() if Q]
[(9 : -9/4 : 1), (-9 : 0 : 1), (0 : 1 : 0)]

In this example, the given point P is not a flex but the cubic does have a rational flex, (-4:0:1). We return a
linear isomorphism which maps this flex to the point at infinity on the Weierstrass model:

sage: R.<a,b,c> = QQ[]
sage: cubic = a^3 + 7*b^3 + 64*c^3
sage: P = [2,2,-1]
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True)
sage: E = f.codomain(); E
Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational Field
sage: E.minimal_model()
Elliptic Curve defined by y^2 + y = x^3 - 331 over Rational Field

sage: f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + 7*b^3 + 64*c^3
To: Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over␣

→˓Rational Field
Defn: Defined on coordinates by sending (a : b : c) to

(b : -48*a : -1/5376*a - 1/1344*c)

sage: finv = f.inverse(); finv
Scheme morphism:
From: Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over␣

→˓Rational Field
To: Projective Plane Curve over Rational Field defined by a^3 + 7*b^3 + 64*c^3
Defn: Defined on coordinates by sending (x : y : z) to

(-1/48*y : x : 1/192*y - 1344*z)

sage: cubic(finv.defining_polynomials()) * finv.post_rescaling()
-x^3 + y^2*z - 258048*y*z^2 + 22196256768*z^3

sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
a^3 + 7*b^3 + 64*c^3

sage: f(P)
(5376 : -258048 : 1)
sage: f([-4,0,1])
(0 : 1 : 0)

It is possible to not provide a base point P provided that the cubic has a rational flex. In this case the flexes will be
found and one will be used as a base point:

9

Elliptic curves, Release 10.4.rc1

sage: R.<x,y,z> = QQ[]
sage: cubic = x^3 + y^3 + z^3
sage: f = EllipticCurve_from_cubic(cubic, morphism=True)
sage: f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
To: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to

(y : -3*x : -1/3*x - 1/3*z)

An error will be raised if no point is given and there are no rational flexes:

sage: R.<x,y,z> = QQ[]
sage: cubic = 3*x^3 + 4*y^3 + 5*z^3
sage: EllipticCurve_from_cubic(cubic)
Traceback (most recent call last):
...
ValueError: A point must be given when the cubic has no rational flexes

An example over a finite field, using a flex:

sage: K = GF(17)
sage: R.<x,y,z> = K[]
sage: cubic = 2*x^3 + 3*y^3 + 4*z^3
sage: EllipticCurve_from_cubic(cubic, [0,3,1])
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 17

defined by 2*x^3 + 3*y^3 + 4*z^3
To: Elliptic Curve defined by y^2 + 16*y = x^3 + 11 over Finite Field of size␣

→˓17
Defn: Defined on coordinates by sending (x : y : z) to

(-x : 4*y : 4*y + 5*z)

An example in characteristic 3:

sage: K = GF(3)
sage: R.<x,y,z> = K[]
sage: cubic = x^3 + y^3 + z^3 + x*y*z
sage: EllipticCurve_from_cubic(cubic, [0,1,-1])
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 3

defined by x^3 + y^3 + x*y*z + z^3
To: Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Finite Field of size 3
Defn: Defined on coordinates by sending (x : y : z) to

(y + z : -y : x)

An example over a number field, using a non-flex and where there are no rational flexes:

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-3)
sage: R.<x,y,z> = K[]
sage: cubic = 2*x^3 + 3*y^3 + 5*z^3
sage: EllipticCurve_from_cubic(cubic, [1,1,-1])
Scheme morphism:
From: Projective Plane Curve over Number Field in a

with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
defined by 2*x^3 + 3*y^3 + 5*z^3

(continues on next page)

10 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 10.4.rc1

(continued from previous page)

To: Elliptic Curve defined by
y^2 + 1754460/2053*x*y + 5226454388736000/8653002877*y
= x^3 + (-652253285700/4214809)*x^2
over Number Field in a with defining polynomial x^2 + 3
with a = 1.732050807568878?*I

Defn: Defined on coordinates by sending (x : y : z) to
(-16424/127575*x^2 - 231989/680400*x*y - 14371/64800*y^2 - 26689/

→˓81648*x*z - 10265/27216*y*z - 2053/163296*z^2
: 24496/315*x^2 + 119243/840*x*y + 4837/80*y^2 + 67259/504*x*z + 25507/

→˓168*y*z + 5135/1008*z^2
: 8653002877/2099914709760000*x^2 + 8653002877/699971569920000*x*y +␣

→˓8653002877/933295426560000*y^2 + 8653002877/419982941952000*x*z + 8653002877/
→˓279988627968000*y*z + 8653002877/335986353561600*z^2)

An example over a function field, using a non-flex:

sage: K.<t> = FunctionField(QQ)
sage: R.<x,y,z> = K[]
sage: cubic = x^3 + t*y^3 + (1+t)*z^3
sage: EllipticCurve_from_cubic(cubic, [1,1,-1], morphism=False) #␣
→˓needs sage.libs.singular
Elliptic Curve defined by y^2 + ((162*t^6+486*t^5+810*t^4+810*t^3+486*t^2+162*t)/
→˓(t^6+12*t^5-3*t^4-20*t^3-3*t^2+12*t+1))*x*y + ((314928*t^14+4094064*t^
→˓13+23462136*t^12+78102144*t^11+167561379*t^10+243026001*t^9+243026001*t^
→˓8+167561379*t^7+78102144*t^6+23462136*t^5+4094064*t^4+314928*t^3)/(t^14+40*t^
→˓13+577*t^12+3524*t^11+8075*t^10+5288*t^9-8661*t^8-17688*t^7-8661*t^6+5288*t^
→˓5+8075*t^4+3524*t^3+577*t^2+40*t+1))*y = x^3 + ((2187*t^12+13122*t^11-17496*t^
→˓10-207765*t^9-516132*t^8-673596*t^7-516132*t^6-207765*t^5-17496*t^4+13122*t^
→˓3+2187*t^2)/(t^12+24*t^11+138*t^10-112*t^9-477*t^8+72*t^7+708*t^6+72*t^5-477*t^
→˓4-112*t^3+138*t^2+24*t+1))*x^2
over Rational function field in t over Rational Field

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_j(j, minimal_twist=True)
Return an elliptic curve with given 𝑗-invariant.

INPUT:

• j – an element of some field.

• minimal_twist (boolean, default: True) – If True and j is in Q, the curve returned is a minimal twist,
i.e. has minimal conductor; when there is more than one curve with minimal conductor, the curve returned is
the one whose label comes first if the curves are in the CremonaDatabase, otherwise the one whose minimal
a-invariants are first lexicographically. If 𝑗 is not in Q this parameter is ignored.

OUTPUT:

An elliptic curve with 𝑗-invariant 𝑗.

EXAMPLES:

sage: E = EllipticCurve_from_j(0); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 + y = x^3 over Rational Field
0
27a3

sage: E = EllipticCurve_from_j(1728); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 = x^3 - x over Rational Field
1728

(continues on next page)

11

Elliptic curves, Release 10.4.rc1

(continued from previous page)

32a2

sage: E = EllipticCurve_from_j(1); E; E.j_invariant()
Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field
1

The minimal_twist parameter (ignored except overQ and True by default) controls whether or not a minimal
twist is computed:

sage: EllipticCurve_from_j(100)
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: _.conductor()
33129800
sage: EllipticCurve_from_j(100, minimal_twist=False)
Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field
sage: _.conductor()
298168200

Since computing the minimal twist requires factoring both 𝑗 and 𝑗−1728 the following example would take a long
time without setting minimal_twist to False:

sage: E = EllipticCurve_from_j(2^256+1, minimal_twist=False)
sage: E.j_invariant() == 2^256+1
True

sage.schemes.elliptic_curves.constructor.EllipticCurves_with_good_reduction_outside_S(S=[],
proof=None,
ver-
bose=False)

Return a sorted list of all elliptic curves defined over Q with good reduction outside the set 𝑆 of primes.

INPUT:

• S – list of primes (default: empty list)

• proof – boolean (default True): the MW basis for auxiliary curves will be computed with this proof flag

• verbose – boolean (default False): if True, some details of the computation will be output

Note: Proof flag: The algorithm used requires determining all S-integral points on several auxiliary curves, which
in turn requires the computation of their generators. This is not always possible (even in theory) using current
knowledge.

The value of this flag is passed to the function which computes generators of various auxiliary elliptic curves, in
order to find their S-integral points. Set to False if the default (True) causes warning messages, but note that
you can then not rely on the set of curves returned being complete.

EXAMPLES:

sage: EllipticCurves_with_good_reduction_outside_S([])
[]
sage: elist = EllipticCurves_with_good_reduction_outside_S([2])
sage: elist
[Elliptic Curve defined by y^2 = x^3 + 4*x over Rational Field,
Elliptic Curve defined by y^2 = x^3 - x over Rational Field,
...

(continues on next page)

12 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic Curve defined by y^2 = x^3 - x^2 - 13*x + 21 over Rational Field]
sage: len(elist)
24
sage: , .join(e.label() for e in elist)
32a1, 32a2, 32a3, 32a4, 64a1, 64a2, 64a3, 64a4, 128a1, 128a2, 128b1, 128b2,␣
→˓128c1, 128c2, 128d1, 128d2, 256a1, 256a2, 256b1, 256b2, 256c1, 256c2, 256d1,␣
→˓256d2

Without Proof=False, this example gives two warnings:

sage: elist = EllipticCurves_with_good_reduction_outside_S([11], proof=False) #␣
→˓long time (14s on sage.math, 2011)
sage: len(elist) #␣
→˓long time
12
sage: , .join(e.label() for e in elist) #␣
→˓long time
11a1, 11a2, 11a3, 121a1, 121a2, 121b1, 121b2, 121c1, 121c2, 121d1, 121d2, 121d3

sage: # long time
sage: elist = EllipticCurves_with_good_reduction_outside_S([2,3]) #␣
→˓long time (26s on sage.math, 2011)
sage: len(elist)
752
sage: conds = sorted(set([e.conductor() for e in elist]))
sage: max(conds)
62208
sage: [N.factor() for N in conds]
[2^3 * 3,
3^3,
2^5,
2^2 * 3^2,
2^4 * 3,
2 * 3^3,
2^6,
2^3 * 3^2,
2^5 * 3,
2^2 * 3^3,
2^7,
2^4 * 3^2,
2 * 3^4,
2^6 * 3,
2^3 * 3^3,
3^5,
2^8,
2^5 * 3^2,
2^2 * 3^4,
2^7 * 3,
2^4 * 3^3,
2 * 3^5,
2^6 * 3^2,
2^3 * 3^4,
2^8 * 3,
2^5 * 3^3,
2^2 * 3^5,
2^7 * 3^2,
2^4 * 3^4,

(continues on next page)

13

Elliptic curves, Release 10.4.rc1

(continued from previous page)

2^6 * 3^3,
2^3 * 3^5,
2^8 * 3^2,
2^5 * 3^4,
2^7 * 3^3,
2^4 * 3^5,
2^6 * 3^4,
2^8 * 3^3,
2^5 * 3^5,
2^7 * 3^4,
2^6 * 3^5,
2^8 * 3^4,
2^7 * 3^5,
2^8 * 3^5]

sage.schemes.elliptic_curves.constructor.are_projectively_equivalent(P, Q,
base_ring)

Test whether P and Q are projectively equivalent.

INPUT:

• P, Q – list/tuple of projective coordinates.

• base_ring – the base ring.

OUTPUT: A boolean.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import are_projectively_
→˓equivalent
sage: are_projectively_equivalent([0,1,2,3], [0,1,2,2], base_ring=QQ)
False
sage: are_projectively_equivalent([0,1,2,3], [0,2,4,6], base_ring=QQ)
True

sage.schemes.elliptic_curves.constructor.chord_and_tangent(F , P)
Return the third point of intersection of a cubic with the tangent at one point.

INPUT:

• F – a homogeneous cubic in three variables with rational coefficients, as a polynomial ring element, defining
a smooth plane cubic curve.

• P – a 3-tuple (𝑥, 𝑦, 𝑧) defining a projective point on the curve 𝐹 = 0.

OUTPUT:

A point Q such that F(Q)=0, namely the third point of intersection of the tangent at P with the curve F=0, so
Q=P if and only if P is a flex.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: from sage.schemes.elliptic_curves.constructor import chord_and_tangent
sage: F = x^3 + y^3 + 60*z^3
sage: chord_and_tangent(F, [1,-1,0])
(-1 : 1 : 0)

(continues on next page)

14 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: F = x^3 + 7*y^3 + 64*z^3
sage: p0 = [2,2,-1]
sage: p1 = chord_and_tangent(F, p0); p1
(5 : -3 : 1)
sage: p2 = chord_and_tangent(F, p1); p2
(-1265/314 : 183/314 : 1)

sage.schemes.elliptic_curves.constructor.coefficients_from_Weierstrass_polynomial(f)

Return the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of a cubic in Weierstrass form.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import coefficients_from_
→˓Weierstrass_polynomial
sage: R.<w,z> = QQ[]
sage: coefficients_from_Weierstrass_polynomial(-w^2 + z^3 + 1)
[0, 0, 0, 0, 1]

sage.schemes.elliptic_curves.constructor.coefficients_from_j(j, minimal_twist=True)
Return Weierstrass coefficients (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6) for an elliptic curve with given 𝑗-invariant.

INPUT: See EllipticCurve_from_j().

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import coefficients_from_j
sage: coefficients_from_j(0)
[0, 0, 1, 0, 0]
sage: coefficients_from_j(1728)
[0, 0, 0, -1, 0]
sage: coefficients_from_j(1)
[1, 0, 0, 36, 3455]

The minimal_twist parameter (ignored except overQ and True by default) controls whether or not a minimal
twist is computed:

sage: coefficients_from_j(100)
[0, 1, 0, 3392, 307888]
sage: coefficients_from_j(100, minimal_twist=False)
[0, 0, 0, 488400, -530076800]

sage.schemes.elliptic_curves.constructor.projective_point(p)

Return equivalent point with denominators removed

INPUT:

• P, Q – list/tuple of projective coordinates.

OUTPUT:

List of projective coordinates.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import projective_point
sage: projective_point([4/5, 6/5, 8/5])
[2, 3, 4]
sage: F = GF(11)

(continues on next page)

15

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: projective_point([F(4), F(8), F(2)])
[4, 8, 2]

sage.schemes.elliptic_curves.constructor.tangent_at_smooth_point(C, P)
Return the tangent at the smooth point 𝑃 of projective curve 𝐶.

INPUT:

• C – a projective plane curve.

• P – a 3-tuple (𝑥, 𝑦, 𝑧) defining a projective point on 𝐶.

OUTPUT:

The linear form defining the tangent at 𝑃 to 𝐶.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: from sage.schemes.elliptic_curves.constructor import tangent_at_smooth_point
sage: C = Curve(x^3 + y^3 + 60*z^3)
sage: tangent_at_smooth_point(C, [1,-1,0])
x + y

sage: K.<t> = FunctionField(QQ)
sage: R.<x,y,z> = K[]
sage: C = Curve(x^3 + 2*y^3 + 3*z^3)
sage: from sage.schemes.elliptic_curves.constructor import tangent_at_smooth_point
sage: tangent_at_smooth_point(C,[1,1,-1])
3*x + 6*y + 9*z

16 Chapter 1. Elliptic curve constructor

CHAPTER

TWO

CONSTRUCT ELLIPTIC CURVES AS JACOBIANS

An elliptic curve is a genus one curve with a designated point. The Jacobian of a genus-one curve can be defined as the set
of line bundles on the curve, and is isomorphic to the original genus-one curve. It is also an elliptic curve with the trivial
line bundle as designated point. The utility of this construction is that we can construct elliptic curves without having to
specify which point we take as the origin.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: Jacobian(u^3 + v^3 + w^3)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: Jacobian(u^4 + v^4 + w^2)
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field

sage: C = Curve(u^3 + v^3 + w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: P2.<u,v,w> = ProjectiveSpace(2, QQ)
sage: C = P2.subscheme(u^3 + v^3 + w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

One can also define Jacobians of varieties that are not genus-one curves. These are not implemented in this module, but
we call the relevant functionality:

sage: R.<x> = PolynomialRing(QQ)
sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560
sage: C = HyperellipticCurve(f)
sage: Jacobian(C)
Jacobian of Hyperelliptic Curve over Rational Field defined
by y^2 = x^5 + 1184*x^3 + 1846*x^2 + 956*x + 560

REFERENCES:

• Wikipedia article Jacobian_variety

sage.schemes.elliptic_curves.jacobian.Jacobian(X, **kwds)
Return the Jacobian.

INPUT:

• X – polynomial, algebraic variety, or anything else that has a Jacobian elliptic curve.

• kwds – optional keyword arguments.

The input X can be one of the following:

17

https://en.wikipedia.org/wiki/Jacobian_variety

Elliptic curves, Release 10.4.rc1

• A polynomial, see Jacobian_of_equation() for details.

• A curve, see Jacobian_of_curve() for details.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: Jacobian(u^3 + v^3 + w^3)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: C = Curve(u^3 + v^3 + w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: P2.<u,v,w> = ProjectiveSpace(2, QQ)
sage: C = P2.subscheme(u^3 + v^3 + w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: Jacobian(C, morphism=True)
Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-u^4*v^4*w - u^4*v*w^4 - u*v^4*w^4 :
1/2*u^6*v^3 - 1/2*u^3*v^6 - 1/2*u^6*w^3 + 1/2*v^6*w^3 + 1/2*u^3*w^6 - 1/

→˓2*v^3*w^6 :
u^3*v^3*w^3)

sage.schemes.elliptic_curves.jacobian.Jacobian_of_curve(curve, morphism=False)
Return the Jacobian of a genus-one curve

INPUT:

• curve – a one-dimensional algebraic variety of genus one.

OUTPUT: Its Jacobian elliptic curve.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: C = Curve(u^3 + v^3 + w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage.schemes.elliptic_curves.jacobian.Jacobian_of_equation(polynomial, variables=None,
curve=None)

Construct the Jacobian of a genus-one curve given by a polynomial.

INPUT:

• F – a polynomial defining a plane curve of genus one. May be homogeneous or inhomogeneous.

• variables – list of two or three variables or None (default). The inhomogeneous or homogeneous coor-
dinates. By default, all variables in the polynomial are used.

• curve – the genus-one curve defined by polynomial or # None (default). If specified, suitable morphism
from the jacobian elliptic curve to the curve is returned.

18 Chapter 2. Construct elliptic curves as Jacobians

Elliptic curves, Release 10.4.rc1

OUTPUT:

An elliptic curve in short Weierstrass form isomorphic to the curve polynomial=0. If the optional argument
curve is specified, a rational multicover from the Jacobian elliptic curve to the genus-one curve is returned.

EXAMPLES:

sage: R.<a,b,c> = QQ[]
sage: f = a^3 + b^3 + 60*c^3
sage: Jacobian(f)
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
sage: Jacobian(f.subs(c=1))
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field

If we specify the domain curve, the birational covering is returned:

sage: h = Jacobian(f, curve=Curve(f)); h
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
To: Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
Defn: Defined on coordinates by sending (a : b : c) to

(-216000*a^4*b^4*c - 12960000*a^4*b*c^4 - 12960000*a*b^4*c^4
: 108000*a^6*b^3 - 108000*a^3*b^6 - 6480000*a^6*c^3 + 6480000*b^6*c^3

+ 388800000*a^3*c^6 - 388800000*b^3*c^6
: 216000*a^3*b^3*c^3)

sage: h([1,-1,0])
(0 : 1 : 0)

Plugging in the polynomials defining ℎ allows us to verify that it is indeed a rational morphism to the elliptic curve:

sage: E = h.codomain()
sage: E.defining_polynomial()(h.defining_polynomials()).factor()
(2519424000000000) * c^3 * b^3 * a^3 * (a^3 + b^3 + 60*c^3)
* (a^9*b^6 + a^6*b^9 - 120*a^9*b^3*c^3 + 900*a^6*b^6*c^3 - 120*a^3*b^9*c^3

+ 3600*a^9*c^6 + 54000*a^6*b^3*c^6 + 54000*a^3*b^6*c^6 + 3600*b^9*c^6
+ 216000*a^6*c^9 - 432000*a^3*b^3*c^9 + 216000*b^6*c^9)

By specifying the variables, we can also construct an elliptic curve over a polynomial ring:

sage: R.<u,v,t> = QQ[]
sage: Jacobian(u^3 + v^3 + t, variables=[u,v])
Elliptic Curve defined by y^2 = x^3 + (-27/4*t^2) over
Multivariate Polynomial Ring in u, v, t over Rational Field

19

Elliptic curves, Release 10.4.rc1

20 Chapter 2. Construct elliptic curves as Jacobians

CHAPTER

THREE

POINTS ON ELLIPTIC CURVES

The base class EllipticCurvePoint currently provides little functionality of its own. Its derived class Elliptic-
CurvePoint_field provides support for points on elliptic curves over general fields. The derived classes Ellip-
ticCurvePoint_number_field and EllipticCurvePoint_finite_field provide further support for
points on curves over number fields (including the rational field Q) and over finite fields.

EXAMPLES:

An example over Q:

sage: E = EllipticCurve(389a1)
sage: P = E(-1,1); P
(-1 : 1 : 1)
sage: Q = E(0,-1); Q
(0 : -1 : 1)
sage: P+Q
(4 : 8 : 1)
sage: P-Q
(1 : 0 : 1)
sage: 3*P-5*Q
(328/361 : -2800/6859 : 1)

An example over a number field:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [1,0,0,0,-1])
sage: P = E(0,i); P
(0 : i : 1)
sage: P.order()
+Infinity
sage: 101*P - 100*P == P
True

An example over a finite field:

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF((101,3))
sage: E = EllipticCurve(K, [1,0,0,0,-1])
sage: P = E(40*a^2 + 69*a + 84 , 58*a^2 + 73*a + 45)
sage: P.order()
1032210
sage: E.cardinality()
1032210

Arithmetic with a point over an extension of a finite field:

21

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF((5,2))
sage: E = EllipticCurve(k,[1,0]); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field in a of size 5^2
sage: P = E([a,2*a+4])
sage: 5*P
(2*a + 3 : 2*a : 1)
sage: P*5
(2*a + 3 : 2*a : 1)
sage: P + P + P + P + P
(2*a + 3 : 2*a : 1)

sage: F = Zmod(3)
sage: E = EllipticCurve(F, [1,0]);
sage: P = E([2,1])
sage: import sys
sage: n = sys.maxsize
sage: P*(n+1)-P*n == P
True

Arithmetic over /𝑁 with composite 𝑁 is supported. When an operation tries to invert a non-invertible element, a
ZeroDivisionError is raised and a factorization of the modulus appears in the error message:

sage: N = 1715761513
sage: E = EllipticCurve(Integers(N), [3,-13])
sage: P = E(2,1)
sage: LCM([2..60])*P
Traceback (most recent call last):
...
ZeroDivisionError: Inverse of 26927 does not exist
(characteristic = 1715761513 = 26927*63719)

AUTHORS:

• William Stein (2005) – Initial version

• Robert Bradshaw et al….

• John Cremona (Feb 2008) – Point counting and group structure for non-prime fields, Frobenius endomorphism and
order, elliptic logs

• John Cremona (Aug 2008) – Introduced EllipticCurvePoint_number_field class

• Tobias Nagel, Michael Mardaus, John Cremona (Dec 2008) – 𝑝-adic elliptic logarithm over Q

• David Hansen (Jan 2009) – Added weil_pairing function to EllipticCurvePoint_finite_field
class

• Mariah Lenox (March 2011) – Added tate_pairing and ate_pairing functions to EllipticCurve-
Point_finite_field class

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint(X, v, check=True)
Bases: AdditiveGroupElement, SchemeMorphism_point_projective_ring

A point on an elliptic curve.

curve()

Return the curve that this point is on.

This is a synonym for scheme().

22 Chapter 3. Points on elliptic curves

https://docs.python.org/library/exceptions.html#ZeroDivisionError
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AdditiveGroupElement
../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_point.html#sage.schemes.projective.projective_point.SchemeMorphism_point_projective_ring

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: P = E([-1, 1])
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: E = EllipticCurve(QQ, [1, 1])
sage: P = E(0, 1)
sage: P.scheme()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: P.scheme() == P.curve()
True
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 - 3, a) #␣
→˓needs sage.rings.number_field
sage: P = E.base_extend(K)(1, a) #␣
→˓needs sage.rings.number_field
sage: P.scheme() #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + x + 1 over Number Field in a with␣
→˓defining polynomial x^2 - 3

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field(curve, v,
check=True)

Bases: EllipticCurvePoint, SchemeMorphism_point_abelian_variety_field

A point on an elliptic curve over a field. The point has coordinates in the base field.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E([0,0])
(0 : 0 : 1)
sage: E(0,0) # brackets are optional
(0 : 0 : 1)
sage: E([GF(5)(0), 0]) # entries are coerced
(0 : 0 : 1)

sage: E(0.000, 0)
(0 : 0 : 1)

sage: E(1,0,0)
Traceback (most recent call last):
...
TypeError: Coordinates [1, 0, 0] do not define a point on
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: E = EllipticCurve([0,0,1,-1,0])
sage: S = E(QQ); S
Abelian group of points on
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,1,0,-160,308])
sage: P = E(26, -120)

(continues on next page)

23

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_point.html#sage.schemes.projective.projective_point.SchemeMorphism_point_abelian_variety_field

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: Q = E(2+12*i, -36+48*i)
sage: P.order() == Q.order() == 4 # long time
True
sage: 2*P == 2*Q
False

sage: K.<t> = FractionField(PolynomialRing(QQ, t))
sage: E = EllipticCurve([0,0,0,0,t^2])
sage: P = E(0,t)
sage: P, 2*P, 3*P
((0 : t : 1), (0 : -t : 1), (0 : 1 : 0))

additive_order()

Return the order of this point on the elliptic curve.

If the point is zero, returns 1, otherwise raise a NotImplementedError.

For curves over number fields and finite fields, see below.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: K.<t> = FractionField(PolynomialRing(QQ, t))
sage: E = EllipticCurve([0, 0, 0, -t^2, 0])
sage: P = E(t,0)
sage: P.order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented
over general fields.
sage: E(0).additive_order()
1
sage: E(0).order() == 1
True

ate_pairing(Q, n, k, t, q=None)
Return ate pairing of 𝑛-torsion points 𝑃 (=self) and 𝑄.

Also known as the 𝑛-th modified ate pairing. 𝑃 is𝐺𝐹 (𝑞)-rational, and𝑄must be an element of𝐾𝑒𝑟(𝜋−𝑝),
where 𝜋 is the 𝑞-frobenius map (and hence 𝑄 is 𝐺𝐹 (𝑞𝑘)-rational).

INPUT:

• 𝑃 (=self) – a point of order 𝑛, in 𝑘𝑒𝑟(𝜋 − 1), where 𝜋 is the 𝑞-Frobenius map (e.g., 𝑃 is 𝑞-rational).

• Q – a point of order 𝑛 in 𝑘𝑒𝑟(𝜋 − 𝑞)

• n – the order of 𝑃 and 𝑄.

• k – the embedding degree.

• t – the trace of Frobenius of the curve over 𝐺𝐹 (𝑞).

• q – (default: None) the size of base field (the “big” field is 𝐺𝐹 (𝑞𝑘)). 𝑞 needs to be set only if its value
cannot be deduced.

OUTPUT:

24 Chapter 3. Points on elliptic curves

https://docs.python.org/library/exceptions.html#NotImplementedError

Elliptic curves, Release 10.4.rc1

FiniteFieldElement in 𝐺𝐹 (𝑞𝑘) – the ate pairing of 𝑃 and 𝑄.

EXAMPLES:

An example with embedding degree 6:

sage: # needs sage.rings.finite_rings
sage: p = 7549; A = 0; B = 1; n = 157; k = 6; t = 14
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF((p,k), modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(3050, 5371); Q = EK(6908*a^4, 3231*a^3)
sage: P.ate_pairing(Q, n, k, t)
6708*a^5 + 4230*a^4 + 4350*a^3 + 2064*a^2 + 4022*a + 6733
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Another example with embedding degree 7 and positive trace:

sage: # needs sage.rings.finite_rings
sage: p = 2213; A = 1; B = 49; n = 1093; k = 7; t = 28
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF((p,k), modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(1583, 1734)
sage: Qx = 1729*a^6+1767*a^5+245*a^4+980*a^3+1592*a^2+1883*a+722
sage: Qy = 1299*a^6+1877*a^5+1030*a^4+1513*a^3+1457*a^2+309*a+1636
sage: Q = EK(Qx, Qy)
sage: P.ate_pairing(Q, n, k, t)
1665*a^6 + 1538*a^5 + 1979*a^4 + 239*a^3 + 2134*a^2 + 2151*a + 654
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Another example with embedding degree 7 and negative trace:

sage: # needs sage.rings.finite_rings
sage: p = 2017; A = 1; B = 30; n = 29; k = 7; t = -70
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF((p,k), modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(369, 716)
sage: Qx = 1226*a^6+1778*a^5+660*a^4+1791*a^3+1750*a^2+867*a+770
sage: Qy = 1764*a^6+198*a^5+1206*a^4+406*a^3+1200*a^2+273*a+1712
sage: Q = EK(Qx, Qy)
sage: P.ate_pairing(Q, n, k, t)
1794*a^6 + 1161*a^5 + 576*a^4 + 488*a^3 + 1950*a^2 + 1905*a + 1315
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Using the same data, we show that the ate pairing is a power of the Tate pairing (see [HSV2006] end of

25

Elliptic curves, Release 10.4.rc1

section 3.1):

sage: # needs sage.rings.finite_rings
sage: c = (k*p^(k-1)).mod(n); T = t - 1
sage: N = gcd(T^k - 1, p^k - 1)
sage: s = Integer(N/n)
sage: L = Integer((T^k - 1)/N)
sage: M = (L*s*c.inverse_mod(n)).mod(n)
sage: P.ate_pairing(Q, n, k, t) == Q.tate_pairing(P, n, k)^M
True

An example where we have to pass the base field size (and we again have agreement with the Tate pairing).
Note that though 𝑃𝑥 is not 𝐹 -rational, (it is the homomorphic image of an 𝐹 -rational point) it is nonetheless
in 𝑘𝑒𝑟(𝜋 − 1), and so is a legitimate input:

sage: # needs sage.rings.finite_rings
sage: q = 2^5; F.<a> = GF(q)
sage: n = 41; k = 4; t = -8
sage: E = EllipticCurve(F,[0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)
sage: Fx. = GF(q^k)
sage: Ex = EllipticCurve(Fx, [0,0,1,1,1])
sage: phi = Hom(F, Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px = Ex(phi(P.x()), phi(P.y()))
sage: Qx = Ex(b^19+b^18+b^16+b^12+b^10+b^9+b^8+b^5+b^3+1,
....: b^18+b^13+b^10+b^8+b^5+b^4+b^3+b)
sage: Qx = Ex(Qx[0]^q, Qx[1]^q) - Qx # ensure Qx is in ker(pi - q)
sage: Px.ate_pairing(Qx, n, k, t)
Traceback (most recent call last):
...
ValueError: Unexpected field degree: set keyword argument q equal to
the size of the base field (big field is GF(q^4)).
sage: Px.ate_pairing(Qx, n, k, t, q)
b^19 + b^18 + b^17 + b^16 + b^15 + b^14 + b^13 + b^12
+ b^11 + b^9 + b^8 + b^5 + b^4 + b^2 + b + 1
sage: s = Integer(randrange(1, n))
sage: (s*Px).ate_pairing(Qx, n, k, t, q) == Px.ate_pairing(s*Qx, n, k, t, q)
True
sage: Px.ate_pairing(s*Qx, n, k, t, q) == Px.ate_pairing(Qx, n, k, t, q)^s
True
sage: c = (k*q^(k-1)).mod(n); T = t - 1
sage: N = gcd(T^k - 1, q^k - 1)
sage: s = Integer(N/n)
sage: L = Integer((T^k - 1)/N)
sage: M = (L*s*c.inverse_mod(n)).mod(n)
sage: Px.ate_pairing(Qx, n, k, t, q) == Qx.tate_pairing(Px, n, k, q)^M
True

It is an error if 𝑄 is not in the kernel of 𝜋 − 𝑝, where 𝜋 is the Frobenius automorphism:

sage: # needs sage.rings.finite_rings
sage: p = 29; A = 1; B = 0; n = 5; k = 2; t = 10
sage: F = GF(p); R.<x> = F[]
sage: E = EllipticCurve(F, [A, B]);
sage: K.<a> = GF((p,k), modulus=x^k+2); EK = E.base_extend(K)
sage: P = EK(13, 8); Q = EK(13, 21)
sage: P.ate_pairing(Q, n, k, t)
Traceback (most recent call last):

(continues on next page)

26 Chapter 3. Points on elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

...
ValueError: Point (13 : 21 : 1) not in Ker(pi - q)

It is also an error if 𝑃 is not in the kernel os 𝜋 − 1:

sage: # needs sage.rings.finite_rings
sage: p = 29; A = 1; B = 0; n = 5; k = 2; t = 10
sage: F = GF(p); R.<x> = F[]
sage: E = EllipticCurve(F, [A, B]);
sage: K.<a> = GF((p,k), modulus=x^k+2); EK = E.base_extend(K)
sage: P = EK(14, 10*a); Q = EK(13, 21)
sage: P.ate_pairing(Q, n, k, t)
Traceback (most recent call last):
...
ValueError: This point (14 : 10*a : 1) is not in Ker(pi - 1)

Note: First defined in the paper of [HSV2006], the ate pairing can be computationally effective in those
cases when the trace of the curve over the base field is significantly smaller than the expected value. This
implementation is simply Miller’s algorithm followed by a naive exponentiation, and makes no claims towards
efficiency.

AUTHORS:

• Mariah Lenox (2011-03-08)

division_points(m, poly_only=False)
Return a list of all points 𝑄 such that𝑚𝑄 = 𝑃 where 𝑃 = self.

Only points on the elliptic curve containing self and defined over the base field are included.

INPUT:

• m – a positive integer

• poly_only – bool (default: False); if True return polynomial whose roots give all possible
𝑥-coordinates of𝑚-th roots of self.

OUTPUT:

(list) – a (possibly empty) list of solutions 𝑄 to𝑚𝑄 = 𝑃 , where 𝑃 = self.

EXAMPLES:

We find the five 5-torsion points on an elliptic curve:

sage: E = EllipticCurve(11a); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: P = E(0); P
(0 : 1 : 0)
sage: P.division_points(5)
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]

Note above that 0 is included since [5]*0 = 0.

We create a curve of rank 1 with no torsion and do a consistency check:

27

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a).quadratic_twist(-7)
sage: Q = E([44,-270])
sage: (4*Q).division_points(4)
[(44 : -270 : 1)]

We create a curve over a non-prime finite field with group of order 18:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF((5,2))
sage: E = EllipticCurve(k, [1,2+a,3,4*a,2])
sage: P = E([3, 3*a+4])
sage: factor(E.order())
2 * 3^2
sage: P.order()
9

We find the 1-division points as a consistency check – there is just one, of course:

sage: P.division_points(1) #␣
→˓needs sage.rings.finite_rings
[(3 : 3*a + 4 : 1)]

The point 𝑃 has order coprime to 2 but divisible by 3, so:

sage: P.division_points(2) #␣
→˓needs sage.rings.finite_rings
[(2*a + 1 : 3*a + 4 : 1), (3*a + 1 : a : 1)]

We check that each of the 2-division points works as claimed:

sage: [2*Q for Q in P.division_points(2)] #␣
→˓needs sage.rings.finite_rings
[(3 : 3*a + 4 : 1), (3 : 3*a + 4 : 1)]

Some other checks:

sage: P.division_points(3) #␣
→˓needs sage.rings.finite_rings
[]
sage: P.division_points(4) #␣
→˓needs sage.rings.finite_rings
[(0 : 3*a + 2 : 1), (1 : 0 : 1)]
sage: P.division_points(5) #␣
→˓needs sage.rings.finite_rings
[(1 : 1 : 1)]

An example over a number field (see Issue #3383):

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(19a1)
sage: x = polygen(ZZ, x)
sage: K.<t> = NumberField(x^9 - 3*x^8 - 4*x^7 + 16*x^6 - 3*x^5
....: - 21*x^4 + 5*x^3 + 7*x^2 - 7*x + 1)
sage: EK = E.base_extend(K)
sage: E(0).division_points(3)
[(0 : 1 : 0), (5 : -10 : 1), (5 : 9 : 1)]
sage: EK(0).division_points(3)

(continues on next page)

28 Chapter 3. Points on elliptic curves

https://github.com/sagemath/sage/issues/3383

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[(0 : 1 : 0), (5 : 9 : 1), (5 : -10 : 1)]
sage: E(0).division_points(9)
[(0 : 1 : 0), (5 : -10 : 1), (5 : 9 : 1)]
sage: EK(0).division_points(9)
[(0 : 1 : 0), (5 : 9 : 1), (5 : -10 : 1), (-150/121*t^8 + 414/121*t^7 + 1481/
→˓242*t^6 - 2382/121*t^5 - 103/242*t^4 + 629/22*t^3 - 367/242*t^2 - 1307/
→˓121*t + 625/121 : 35/484*t^8 - 133/242*t^7 + 445/242*t^6 - 799/242*t^5 +␣
→˓373/484*t^4 + 113/22*t^3 - 2355/484*t^2 - 753/242*t + 1165/484 : 1), (-150/
→˓121*t^8 + 414/121*t^7 + 1481/242*t^6 - 2382/121*t^5 - 103/242*t^4 + 629/
→˓22*t^3 - 367/242*t^2 - 1307/121*t + 625/121 : -35/484*t^8 + 133/242*t^7 -␣
→˓445/242*t^6 + 799/242*t^5 - 373/484*t^4 - 113/22*t^3 + 2355/484*t^2 + 753/
→˓242*t - 1649/484 : 1), (-1383/484*t^8 + 970/121*t^7 + 3159/242*t^6 - 5211/
→˓121*t^5 + 37/484*t^4 + 654/11*t^3 - 909/484*t^2 - 4831/242*t + 6791/484 :␣
→˓927/121*t^8 - 5209/242*t^7 - 8187/242*t^6 + 27975/242*t^5 - 1147/242*t^4 -␣
→˓1729/11*t^3 + 1566/121*t^2 + 12873/242*t - 10871/242 : 1), (-1383/484*t^8 +␣
→˓970/121*t^7 + 3159/242*t^6 - 5211/121*t^5 + 37/484*t^4 + 654/11*t^3 - 909/
→˓484*t^2 - 4831/242*t + 6791/484 : -927/121*t^8 + 5209/242*t^7 + 8187/242*t^
→˓6 - 27975/242*t^5 + 1147/242*t^4 + 1729/11*t^3 - 1566/121*t^2 - 12873/242*t␣
→˓+ 10629/242 : 1), (-4793/484*t^8 + 6791/242*t^7 + 10727/242*t^6 - 18301/
→˓121*t^5 + 2347/484*t^4 + 2293/11*t^3 - 7311/484*t^2 - 17239/242*t + 26767/
→˓484 : 30847/484*t^8 - 21789/121*t^7 - 34605/121*t^6 + 117164/121*t^5 -␣
→˓10633/484*t^4 - 29437/22*t^3 + 39725/484*t^2 + 55428/121*t - 176909/484 :␣
→˓1), (-4793/484*t^8 + 6791/242*t^7 + 10727/242*t^6 - 18301/121*t^5 + 2347/
→˓484*t^4 + 2293/11*t^3 - 7311/484*t^2 - 17239/242*t + 26767/484 : -30847/
→˓484*t^8 + 21789/121*t^7 + 34605/121*t^6 - 117164/121*t^5 + 10633/484*t^4 +␣
→˓29437/22*t^3 - 39725/484*t^2 - 55428/121*t + 176425/484 : 1)]

has_finite_order()

Return True if this point has finite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:

sage: K.<t> = FractionField(PolynomialRing(QQ, t))
sage: E = EllipticCurve([0, 0, 0, -t^2, 0])
sage: P = E(0)
sage: P.has_finite_order()
True
sage: P = E(t,0)
sage: P.has_finite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented
over general fields.
sage: (2*P).is_zero()
True

has_infinite_order()

Return True if this point has infinite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:

sage: K.<t> = FractionField(PolynomialRing(QQ, t))
sage: E = EllipticCurve([0, 0, 0, -t^2, 0])

(continues on next page)

29

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P = E(0)
sage: P.has_infinite_order()
False
sage: P = E(t,0)
sage: P.has_infinite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over␣
→˓general fields.
sage: (2*P).is_zero()
True

has_order(n)

Test if this point has order exactly 𝑛.

INPUT:

• n – integer, or its Factorization

ALGORITHM:

Compare a cached order if available, otherwise use sage.groups.generic.has_order().

EXAMPLES:

sage: E = EllipticCurve(26b1)
sage: P = E(1, 0)
sage: P.has_order(7)
True
sage: P._order
7
sage: P.has_order(7)
True

It also works with a Factorization object:

sage: E = EllipticCurve(GF(419), [1,0])
sage: P = E(-33, 8)
sage: P.has_order(factor(21))
True
sage: P._order
21
sage: P.has_order(factor(21))
True

This method can be much faster than computing the order and comparing:

sage: # not tested -- timings are different each time
sage: p = 4 * prod(primes(3,377)) * 587 - 1
sage: E = EllipticCurve(GF(p), [1,0])
sage: %timeit P = E.random_point(); P.set_order(multiple=p+1)
72.4 ms ± 773 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
sage: %timeit P = E.random_point(); P.has_order(p+1)
32.8 ms ± 3.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
sage: fac = factor(p+1)
sage: %timeit P = E.random_point(); P.has_order(fac)
30.6 ms ± 3.48 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The order is cached once it has been confirmed once, and the cache is shared with order():

30 Chapter 3. Points on elliptic curves

../../../../../../../html/en/reference/structure/sage/structure/factorization.html#sage.structure.factorization.Factorization
../../../../../../../html/en/reference/groups/sage/groups/generic.html#sage.groups.generic.has_order
../../../../../../../html/en/reference/structure/sage/structure/factorization.html#sage.structure.factorization.Factorization

Elliptic curves, Release 10.4.rc1

sage: # not tested -- timings are different each time
sage: P, = E.gens()
sage: delattr(P, _order)
sage: %time P.has_order(p+1)
CPU times: user 83.6 ms, sys: 30 µs, total: 83.6 ms
Wall time: 83.8 ms
True
sage: %time P.has_order(p+1)
CPU times: user 31 µs, sys: 2 µs, total: 33 µs
Wall time: 37.9 µs
True
sage: %time P.order()
CPU times: user 11 µs, sys: 0 ns, total: 11 µs
Wall time: 16 µs
5326738796327623094747867617954605554069371494832722337612446642054009560026576537626892113026381253624626941643949444792662881241621373288942880288065660
sage: delattr(P, _order)
sage: %time P.has_order(fac)
CPU times: user 68.6 ms, sys: 17 µs, total: 68.7 ms
Wall time: 68.7 ms
True
sage: %time P.has_order(fac)
CPU times: user 92 µs, sys: 0 ns, total: 92 µs
Wall time: 97.5 µs
True
sage: %time P.order()
CPU times: user 10 µs, sys: 1e+03 ns, total: 11 µs
Wall time: 14.5 µs
5326738796327623094747867617954605554069371494832722337612446642054009560026576537626892113026381253624626941643949444792662881241621373288942880288065660

is_divisible_by(m)
Return True if there exists a point 𝑄 defined over the same field as self such that𝑚𝑄 == self.

INPUT:

• m – a positive integer.

OUTPUT:

(bool) – True if there is a solution, else False.

Warning: This function usually triggers the computation of the 𝑚-th division polynomial of the asso-
ciated elliptic curve, which will be expensive if 𝑚 is large, though it will be cached for subsequent calls
with the same𝑚.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: Q = 5*E(0,0); Q
(-2739/1444 : -77033/54872 : 1)
sage: Q.is_divisible_by(4)
False
sage: Q.is_divisible_by(5)
True

A finite field example:

31

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(101), [23,34])
sage: E.cardinality().factor()
2 * 53
sage: Set([T.order() for T in E.points()])
{1, 106, 2, 53}
sage: len([T for T in E.points() if T.is_divisible_by(2)])
53
sage: len([T for T in E.points() if T.is_divisible_by(3)])
106

is_finite_order()

Return True if this point has finite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:

sage: K.<t> = FractionField(PolynomialRing(QQ, t))
sage: E = EllipticCurve([0, 0, 0, -t^2, 0])
sage: P = E(0)
sage: P.has_finite_order()
True
sage: P = E(t,0)
sage: P.has_finite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented
over general fields.
sage: (2*P).is_zero()
True

order()

Return the order of this point on the elliptic curve.

If the point is zero, returns 1, otherwise raise a NotImplementedError.

For curves over number fields and finite fields, see below.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: K.<t> = FractionField(PolynomialRing(QQ, t))
sage: E = EllipticCurve([0, 0, 0, -t^2, 0])
sage: P = E(t,0)
sage: P.order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented
over general fields.
sage: E(0).additive_order()
1
sage: E(0).order() == 1
True

plot(**args)

Plot this point on an elliptic curve.

32 Chapter 3. Points on elliptic curves

https://docs.python.org/library/exceptions.html#NotImplementedError

Elliptic curves, Release 10.4.rc1

INPUT:

• **args – all arguments get passed directly onto the point plotting function.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: P = E([-1,1])
sage: P.plot(pointsize=30, rgbcolor=(1,0,0)) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

point_of_jacobian_of_curve()

Return the point in the Jacobian of the curve.

The Jacobian is the one attached to the projective curve associated with this elliptic curve.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF((5,2))
sage: E = EllipticCurve(k,[1,0]); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field in a of size 5^2
sage: E.order()
32
sage: P = E([a, 2*a + 4])
sage: P
(a : 2*a + 4 : 1)
sage: P.order()
8
sage: p = P.point_of_jacobian_of_curve()
sage: p
[Place (x + 4*a, y + 3*a + 1)]
sage: p.order()
8
sage: Q = 3*P
sage: q = Q.point_of_jacobian_of_curve()
sage: q == 3*p
True
sage: G = p.parent()
sage: G.order()
32
sage: G
Group of rational points of Jacobian over Finite Field in a of size 5^2 (Hess␣
→˓model)
sage: J = G.parent(); J
Jacobian of Projective Plane Curve over Finite Field in a of size 5^2
defined by x^2*y + y^3 - x*z^2 (Hess model)

sage: J.curve() == E.affine_patch(2).projective_closure()
True

set_order(value, multiple, check=None)
Set the cached order of this point (i.e., the value of self._order) to the given value.

Alternatively, when multiple is given, this method will first run order_from_multiple() to deter-
mine the exact order from the given multiple of the point order, then cache the result.

Use this when you know a priori the order of this point, or a multiple of the order, to avoid a potentially
expensive order calculation.

INPUT:

33

../../../../../../../html/en/reference/groups/sage/groups/generic.html#sage.groups.generic.order_from_multiple

Elliptic curves, Release 10.4.rc1

• value – positive integer

• multiple – positive integer; mutually exclusive with value

OUTPUT: None

EXAMPLES:

This example illustrates basic usage.

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E(5, 0)
sage: G.set_order(2)
sage: 2*G
(0 : 1 : 0)
sage: G = E(0, 6)
sage: G.set_order(multiple=12)
sage: G._order
3

We now give a more interesting case, the NIST-P521 curve. Its order is too big to calculate with Sage, and
takes a long time using other packages, so it is very useful here.

sage: # needs sage.rings.finite_rings
sage: p = 2^521 - 1
sage: prev_proof_state = proof.arithmetic()
sage: proof.arithmetic(False) # turn off primality checking
sage: F = GF(p)
sage: A = p - 3
sage: B =␣
→˓1093849038073734274511112390766805569936207598951683748994586394495953116150735016013708737573759623248592132296706313309438452531591012912142327488478985984
sage: q =␣
→˓6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
sage: E = EllipticCurve([F(A), F(B)])
sage: G = E.random_point()
sage: G.set_order(q)
sage: G.order() * G # This takes practically no time.
(0 : 1 : 0)
sage: proof.arithmetic(prev_proof_state) # restore state

Using .set_order() with a multiple= argument can be used to compute a point’s order significantly
faster than calling order() if the point is already known to be𝑚-torsion:

sage: F.<a> = GF((10007, 23))
sage: E = EllipticCurve(F, [9,9])
sage: n = E.order()
sage: m = 5 * 47 * 139 * 1427 * 2027 * 4831 * 275449 * 29523031
sage: assert m.divides(n)
sage: P = n/m * E.lift_x(6747+a)
sage: assert m * P == 0
sage: P.set_order(multiple=m) # compute exact order
sage: factor(m // P.order()) # order is now cached
47 * 139

The algorithm used internally for this functionality is order_from_multiple(). Indeed, simply calling
order() on P would take much longer since factoring n is fairly expensive:

sage: n == m * 6670822796985115651 * 441770032618665681677 *␣
→˓9289973478285634606114927
True

34 Chapter 3. Points on elliptic curves

Elliptic curves, Release 10.4.rc1

It is an error to pass a value equal to 0:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E.random_point()
sage: G.set_order(0)
Traceback (most recent call last):
...
ValueError: Value 0 illegal for point order
sage: G.set_order(1000)
Traceback (most recent call last):
...
ValueError: Value 1000 illegal: outside max Hasse bound

It is also very likely an error to pass a value which is not the actual order of this point. How unlikely is
determined by the factorization of the actual order, and the actual group structure:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E(5, 0) # G has order 2
sage: G.set_order(11)
Traceback (most recent call last):
...
ValueError: Value 11 illegal: 11 * (5 : 0 : 1) is not the identity

However, set_order can be fooled. For instance, the order can be set to a multiple the actual order:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E(5, 0) # G has order 2
sage: G.set_order(8)
sage: G.order()
8

AUTHORS:

• Mariah Lenox (2011-02-16)

• Lorenz Panny (2022): add multiple= option

tate_pairing(Q, n, k, q=None)
Return Tate pairing of 𝑛-torsion point 𝑃 = 𝑠𝑒𝑙𝑓 and point 𝑄.

The value returned is 𝑓𝑛,𝑃 (𝑄)𝑒 where 𝑓𝑛,𝑃 is a function with divisor 𝑛[𝑃] − 𝑛[𝑂].. This is also known as
the “modified Tate pairing”. It is a well-defined bilinear map.

INPUT:

• P=self – Elliptic curve point having order n

• Q – Elliptic curve point on same curve as P (can be any order)

• n – positive integer: order of P

• k – positive integer: embedding degree

• q – positive integer: size of base field (the “big” field is𝐺𝐹 (𝑞𝑘). 𝑞 needs to be set only if its value cannot
be deduced.)

OUTPUT:

An 𝑛’th root of unity in the base field self.curve().base_field()

EXAMPLES:

35

Elliptic curves, Release 10.4.rc1

A simple example, pairing a point with itself, and pairing a point with another rational point:

sage: p = 103; A = 1; B = 18; E = EllipticCurve(GF(p), [A, B])
sage: P = E(33, 91); n = P.order(); n
19
sage: k = GF(n)(p).multiplicative_order(); k
6
sage: P.tate_pairing(P, n, k)
1
sage: Q = E(87, 51)
sage: P.tate_pairing(Q, n, k)
1
sage: set_random_seed(35)
sage: P.tate_pairing(P, n, k)
1

We now let𝑄 be a point on the same curve as above, but defined over the pairing extension field, and we also
demonstrate the bilinearity of the pairing:

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF((p,k))
sage: EK = E.base_extend(K); P = EK(P)
sage: Qx = 69*a^5 + 96*a^4 + 22*a^3 + 86*a^2 + 6*a + 35
sage: Qy = 34*a^5 + 24*a^4 + 16*a^3 + 41*a^2 + 4*a + 40
sage: Q = EK(Qx, Qy);

Multiply by cofactor so Q has order n:

sage: # needs sage.rings.finite_rings
sage: h = 551269674; Q = h*Q
sage: P = EK(P); P.tate_pairing(Q, n, k)
24*a^5 + 34*a^4 + 3*a^3 + 69*a^2 + 86*a + 45
sage: s = Integer(randrange(1,n))
sage: ans1 = (s*P).tate_pairing(Q, n, k)
sage: ans2 = P.tate_pairing(s*Q, n, k)
sage: ans3 = P.tate_pairing(Q, n, k)^s
sage: ans1 == ans2 == ans3
True
sage: (ans1 != 1) and (ans1^n == 1)
True

Here is an example of using the Tate pairing to compute the Weil pairing (using the same data as above):

sage: # needs sage.rings.finite_rings
sage: e = Integer((p^k-1)/n); e
62844857712
sage: P.weil_pairing(Q, n)^e
94*a^5 + 99*a^4 + 29*a^3 + 45*a^2 + 57*a + 34
sage: P.tate_pairing(Q, n, k) == P._miller_(Q, n)^e
True
sage: Q.tate_pairing(P, n, k) == Q._miller_(P, n)^e
True
sage: P.tate_pairing(Q, n, k)/Q.tate_pairing(P, n, k)
94*a^5 + 99*a^4 + 29*a^3 + 45*a^2 + 57*a + 34

An example where we have to pass the base field size (and we again have agreement with the Weil pairing):

36 Chapter 3. Points on elliptic curves

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF((2,5))
sage: E = EllipticCurve(F, [0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)
sage: Fx. = GF((2,4*5))
sage: Ex = EllipticCurve(Fx,[0,0,1,1,1])
sage: phi = Hom(F, Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px = Ex(phi(P.x()), phi(P.y()))
sage: Qx = Ex(b^19 + b^18 + b^16 + b^12 + b^10 + b^9 + b^8 + b^5 + b^3 + 1,
....: b^18 + b^13 + b^10 + b^8 + b^5 + b^4 + b^3 + b)
sage: Px.tate_pairing(Qx, n=41, k=4)
Traceback (most recent call last):
...
ValueError: Unexpected field degree: set keyword argument q equal to
the size of the base field (big field is GF(q^4)).
sage: num = Px.tate_pairing(Qx, n=41, k=4, q=32); num
b^19 + b^14 + b^13 + b^12 + b^6 + b^4 + b^3
sage: den = Qx.tate_pairing(Px, n=41, k=4, q=32); den
b^19 + b^17 + b^16 + b^15 + b^14 + b^10 + b^6 + b^2 + 1
sage: e = Integer((32^4-1)/41); e
25575
sage: Px.weil_pairing(Qx, 41)^e == num/den
True

An example over a large base field:

sage: F = GF(65537^2, modulus=[3,46810,1], name= z2)
sage: F.inject_variables()
Defining z2
sage: E = EllipticCurve(F, [0,1])
sage: P = E(22, 28891)
sage: Q = E(-93, 40438*z2 + 31573)
sage: P.tate_pairing(Q, 7282, 2)
34585*z2 + 4063

ALGORITHM:

• pari:elltatepairing computes the non-reduced tate pairing and the exponentiation is handled by Sage using
user input for 𝑘 (and optionally 𝑞).

AUTHORS:

• Mariah Lenox (2011-03-07)

• Giacomo Pope (2024): Use of PARI for the non-reduced Tate pairing

weil_pairing(Q, n, algorithm=None)
Compute the Weil pairing of this point with another point 𝑄 on the same curve.

INPUT:

• Q – another point on the same curve as self.

• n – an integer 𝑛 such that 𝑛𝑃 = 𝑛𝑄 = (0 : 1 : 0), where 𝑃 is self.

• algorithm (default: None) – choices are pari and sage. PARI is usually significantly faster, but
it only works over finite fields. When None is given, a suitable algorithm is chosen automatically.

OUTPUT:

An 𝑛’th root of unity in the base field of the curve.

37

https://pari.math.u-bordeaux.fr/dochtml/help/elltatepairing

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF((2,5))
sage: E = EllipticCurve(F, [0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)
sage: Fx. = GF((2, 4*5))
sage: Ex = EllipticCurve(Fx, [0,0,1,1,1])
sage: phi = Hom(F, Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px = Ex(phi(P.x()), phi(P.y()))
sage: O = Ex(0)
sage: Qx = Ex(b^19 + b^18 + b^16 + b^12 + b^10 + b^9 + b^8 + b^5 + b^3 + 1,
....: b^18 + b^13 + b^10 + b^8 + b^5 + b^4 + b^3 + b)
sage: Px.weil_pairing(Qx, 41) == b^19 + b^15 + b^9 + b^8 + b^6 + b^4 + b^3 +␣
→˓b^2 + 1
True
sage: Px.weil_pairing(17*Px, 41) == Fx(1)
True
sage: Px.weil_pairing(O, 41) == Fx(1)
True

An error is raised if either point is not 𝑛-torsion:

sage: Px.weil_pairing(O, 40) #␣
→˓needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: points must both be n-torsion

A larger example (see Issue #4964):

sage: # needs sage.rings.finite_rings
sage: P, Q = EllipticCurve(GF((19,4), a), [-1,0]).gens()
sage: P.order(), Q.order()
(360, 360)
sage: z = P.weil_pairing(Q, 360)
sage: z.multiplicative_order()
360

Another larger example:

sage: F = GF(65537^2, modulus=[3,-1,1], name= a)
sage: F.inject_variables()
Defining a
sage: E = EllipticCurve(F, [0,1])
sage: P = E(22, 28891)
sage: Q = E(-93, 2728*a + 64173)
sage: P.weil_pairing(Q, 7282, algorithm= sage)
53278*a + 36700

An example over a number field:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(11a1).change_ring(CyclotomicField(5))
sage: P, Q = E.torsion_subgroup().gens()
sage: P, Q = (P.element(), Q.element())
sage: (P.order(), Q.order())
(5, 5)

(continues on next page)

38 Chapter 3. Points on elliptic curves

https://github.com/sagemath/sage/issues/4964

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P.weil_pairing(Q, 5)
zeta5^2
sage: Q.weil_pairing(P, 5)
zeta5^3

ALGORITHM:

• For algorithm= pari : pari:ellweilpairing.

• For algorithm= sage : Implemented using Proposition 8 in [Mil2004]. The value 1 is returned
for linearly dependent input points. This condition is caught via a ZeroDivisionError, since the
use of a discrete logarithm test for linear dependence is much too slow for large 𝑛.

AUTHORS:

• David Hansen (2009-01-25)

• Lorenz Panny (2022): algorithm= pari

x()

Return the 𝑥 coordinate of this point, as an element of the base field. If this is the point at infinity, a Zero-
DivisionError is raised.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: P = E([-1,1])
sage: P.x()
-1
sage: Q = E(0); Q
(0 : 1 : 0)
sage: Q.x()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

xy()

Return the 𝑥 and 𝑦 coordinates of this point, as a 2-tuple. If this is the point at infinity, a ZeroDivision-
Error is raised.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: P = E([-1,1])
sage: P.xy()
(-1, 1)
sage: Q = E(0); Q
(0 : 1 : 0)
sage: Q.xy()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

y()

Return the 𝑦 coordinate of this point, as an element of the base field. If this is the point at infinity, a Zero-
DivisionError is raised.

EXAMPLES:

39

https://pari.math.u-bordeaux.fr/dochtml/help/ellweilpairing
https://docs.python.org/library/exceptions.html#ZeroDivisionError
https://docs.python.org/library/exceptions.html#ZeroDivisionError
https://docs.python.org/library/exceptions.html#ZeroDivisionError
https://docs.python.org/library/exceptions.html#ZeroDivisionError
https://docs.python.org/library/exceptions.html#ZeroDivisionError
https://docs.python.org/library/exceptions.html#ZeroDivisionError
https://docs.python.org/library/exceptions.html#ZeroDivisionError

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a)
sage: P = E([-1,1])
sage: P.y()
1
sage: Q = E(0); Q
(0 : 1 : 0)
sage: Q.y()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field(curve,
v,
check=True)

Bases: EllipticCurvePoint_field

Class for elliptic curve points over finite fields.

additive_order()

Return the order of this point on the elliptic curve.

ALGORITHM: Use PARI function pari:ellorder.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF((5,5))
sage: E = EllipticCurve(k,[2,4]); E
Elliptic Curve defined by y^2 = x^3 + 2*x + 4 over Finite Field in a of size␣
→˓5^5
sage: P = E(3*a^4 + 3*a, 2*a + 1)
sage: P.order()
3227
sage: Q = E(0,2)
sage: Q.order()
7
sage: Q.additive_order()
7

sage: # needs sage.rings.finite_rings
sage: p = next_prime(2^150)
sage: E = EllipticCurve(GF(p), [1,1])
sage: P = E(831623307675610677632782670796608848711856078,
....: 42295786042873366706573292533588638217232964)
sage: P.order()
1427247692705959881058262545272474300628281448
sage: P.order() == E.cardinality()
True

The next example has 𝑗(𝐸) = 0:

sage: # needs sage.rings.finite_rings
sage: p = 33554501
sage: F.<u> = GF((p,2))

(continues on next page)

40 Chapter 3. Points on elliptic curves

https://pari.math.u-bordeaux.fr/dochtml/help/ellorder

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(F, [0,1])
sage: E.j_invariant()
0
sage: P = E.random_point()
sage: P.order() # random
16777251

Similarly when 𝑗(𝐸) = 1728:

sage: # needs sage.rings.finite_rings
sage: p = 33554473
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F, [1,0])
sage: E.j_invariant()
1728
sage: P = E.random_point()
sage: P.order() # random
46912611635760

discrete_log(Q)
Legacy version of log() with its arguments swapped.

Note that this method uses the opposite argument ordering of all other logarithm methods in Sage; see Issue
#37150.

EXAMPLES:

sage: E = EllipticCurve(j=GF(101)(5))
sage: P, = E.gens()
sage: (2*P).log(P)
2
sage: (2*P).discrete_log(P)
doctest:warning ...
DeprecationWarning: The syntax P.discrete_log(Q) ... Please update your code.␣
→˓...
45
sage: P.discrete_log(2*P)
2

has_finite_order()

Return True if this point has finite additive order as an element of the group of points on this curve.

Since the base field is finite, the answer will always be True.

EXAMPLES:

sage: E = EllipticCurve(GF(7), [1,3])
sage: P = E.points()[3]
sage: P.has_finite_order()
True

log(base)
Return the discrete logarithm of this point to the given base. In other words, return an integer 𝑥 such that
𝑥𝑃 = 𝑄 where 𝑃 is base and 𝑄 is this point.

A ValueError is raised if there is no solution.

ALGORITHM:

41

https://github.com/sagemath/sage/issues/37150
https://github.com/sagemath/sage/issues/37150
https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

To compute the actual logarithm, pari:elllog is called.

However, elllog() does not guarantee termination if 𝑄 is not a multiple of 𝑃 , so we first need to check
subgroup membership. This is done as follows:

• Let 𝑛 denote the order of 𝑃 . First check that 𝑛𝑄 equals the point at infinity (and hence the order of 𝑄
divides 𝑛).

• If the curve order #𝐸 has been cached, check whether gcd(𝑛2, #𝐸) = 𝑛. If this holds, the curve has
cyclic 𝑛-torsion, hence all points whose order divides 𝑛 must be multiples of 𝑃 and we are done.

• Otherwise (if this test is inconclusive), check that the Weil pairing of 𝑃 and 𝑄 is trivial.

For anomalous curves with #𝐸 = 𝑝, the padic_elliptic_logarithm() function is called.

INPUT:

• base (point) – another point on the same curve as self.

OUTPUT:

(integer) – The discrete logarithm of 𝑄 with respect to 𝑃 , which is an integer 𝑥 with 0 ≤ 𝑥 < ord(𝑃) such
that 𝑥𝑃 = 𝑄, if one exists.

AUTHORS:

• John Cremona. Adapted to use generic functions 2008-04-05.

• Lorenz Panny (2022): switch to PARI.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F = GF((3,6), a)
sage: a = F.gen()
sage: E = EllipticCurve([0,1,1,a,a])
sage: E.cardinality()
762
sage: P = E.gens()[0]
sage: Q = 400*P
sage: Q.log(P)
400

order()

Return the order of this point on the elliptic curve.

ALGORITHM: Use PARI function pari:ellorder.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF((5,5))
sage: E = EllipticCurve(k,[2,4]); E
Elliptic Curve defined by y^2 = x^3 + 2*x + 4 over Finite Field in a of size␣
→˓5^5
sage: P = E(3*a^4 + 3*a, 2*a + 1)
sage: P.order()
3227
sage: Q = E(0,2)

(continues on next page)

42 Chapter 3. Points on elliptic curves

https://pari.math.u-bordeaux.fr/dochtml/help/elllog
https://pari.math.u-bordeaux.fr/dochtml/help/ellorder

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: Q.order()
7
sage: Q.additive_order()
7

sage: # needs sage.rings.finite_rings
sage: p = next_prime(2^150)
sage: E = EllipticCurve(GF(p), [1,1])
sage: P = E(831623307675610677632782670796608848711856078,
....: 42295786042873366706573292533588638217232964)
sage: P.order()
1427247692705959881058262545272474300628281448
sage: P.order() == E.cardinality()
True

The next example has 𝑗(𝐸) = 0:

sage: # needs sage.rings.finite_rings
sage: p = 33554501
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F, [0,1])
sage: E.j_invariant()
0
sage: P = E.random_point()
sage: P.order() # random
16777251

Similarly when 𝑗(𝐸) = 1728:

sage: # needs sage.rings.finite_rings
sage: p = 33554473
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F, [1,0])
sage: E.j_invariant()
1728
sage: P = E.random_point()
sage: P.order() # random
46912611635760

padic_elliptic_logarithm(Q, p)
Return the discrete logarithm of 𝑄 to base 𝑃 = self, that is, an integer 𝑥 such that 𝑥𝑃 = 𝑄 only for
anomalous curves.

ALGORITHM:

Discrete logarithm computed as in [Sma1999] with a loop to avoid the canonical lift.

INPUT:

• Q (point) – another point on the same curve as self.

• p (integer) – a prime equal to the order of the curve.

OUTPUT:

(integer) – The discrete logarithm of 𝑄 with respect to 𝑃 , which is an integer 𝑥 with 0 ≤ 𝑥 < ord(𝑃) such
that 𝑥𝑃 = 𝑄.

AUTHORS:

43

Elliptic curves, Release 10.4.rc1

• Sylvain Pelissier (2022) based on Samuel Neves code.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: p = 235322474717419
sage: b = 8856682
sage: E = EllipticCurve(GF(p), [0, b])
sage: P = E(200673830421813, 57025307876612)
sage: Q = E(40345734829479, 211738132651297)
sage: x = P.padic_elliptic_logarithm(Q, p) #␣
→˓needs sage.rings.padics
sage: x * P == Q #␣
→˓needs sage.rings.padics
True

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field(curve,
v,
check=True)

Bases: EllipticCurvePoint_field

A point on an elliptic curve over a number field.

Most of the functionality is derived from the parent class EllipticCurvePoint_field. In addition we have
support for orders, heights, reduction modulo primes, and elliptic logarithms.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E([0,0])
(0 : 0 : 1)
sage: E(0,0) # brackets are optional
(0 : 0 : 1)
sage: E([GF(5)(0), 0]) # entries are coerced
(0 : 0 : 1)

sage: E(0.000, 0)
(0 : 0 : 1)

sage: E(1,0,0)
Traceback (most recent call last):
...
TypeError: Coordinates [1, 0, 0] do not define a point on
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: E = EllipticCurve([0,0,1,-1,0])
sage: S = E(QQ); S
Abelian group of points on
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

additive_order()

Return the order of this point on the elliptic curve.

If the point has infinite order, returns +Infinity. For curves defined over Q, we call PARI; over other number
fields we implement the function here.

Note: additive_order() is a synonym for order()

44 Chapter 3. Points on elliptic curves

https://crypto.stackexchange.com/questions/70454/why-smarts-attack-doesnt-work-on-this-ecdlp/70508#70508

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.order()
+Infinity

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.order()
2
sage: P.additive_order()
2

archimedean_local_height(v=None, prec=None, weighted=False)
Compute the local height of self at the archimedean place 𝑣.

INPUT:

• self – a point on an elliptic curve over a number field𝐾.

• v – a real or complex embedding of K, or None (default). If 𝑣 is a real or complex embedding, return
the local height of self at 𝑣. If 𝑣 is None, return the total archimedean contribution to the global height.

• prec – integer, or None (default). The precision of the computation. If None, the precision is deduced
from 𝑣.

• weighted – boolean. If False (default), the height is normalised to be invariant under extension of
𝐾. If True, return this normalised height multiplied by the local degree if 𝑣 is a single place, or by the
degree of𝐾 if 𝑣 is None.

OUTPUT:

A real number. The normalisation is twice that in Silverman’s paper [Sil1988]. Note that this local height
depends on the model of the curve.

ALGORITHM:

See [Sil1988], Section 4.

EXAMPLES:

Examples 1, 2, and 3 from [Sil1988]:

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-2)
sage: E = EllipticCurve(K, [0,-1,1,0,0]); E
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field
in a with defining polynomial x^2 + 2 with a = 1.414213562373095?*I

sage: P = E.lift_x(2 + a); P
(a + 2 : -2*a - 2 : 1)
sage: P.archimedean_local_height(K.places(prec=170)[0]) / 2
0.45754773287523276736211210741423654346576029814695

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0]); E
Elliptic Curve defined by y^2 + 4*y = x^3 + 6*i*x
over Number Field in i with defining polynomial x^2 + 1

(continues on next page)

45

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P = E((0,0))
sage: P.archimedean_local_height(K.places()[0]) / 2
0.510184995162373

sage: Q = E.lift_x(-9/4); Q #␣
→˓needs sage.rings.number_field
(-9/4 : 27/8*i - 4 : 1)
sage: Q.archimedean_local_height(K.places()[0]) / 2 #␣
→˓needs sage.rings.number_field
0.654445619529600

An example over the rational numbers:

sage: E = EllipticCurve([0, 0, 0, -36, 0])
sage: P = E([-3, 9])
sage: P.archimedean_local_height()
1.98723816350773

Local heights of torsion points can be non-zero (unlike the global height):

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, K(1), 0])
sage: P = E(i, 0)
sage: P.archimedean_local_height()
0.346573590279973

elliptic_logarithm(embedding=None, precision=100, algorithm='pari')
Return the elliptic logarithm of this elliptic curve point.

An embedding of the base field into R or C (with arbitrary precision) may be given; otherwise the first real
embedding is used (with the specified precision) if any, else the first complex embedding.

INPUT:

• embedding: an embedding of the base field into R or C

• precision: a positive integer (default 100) setting the number of bits of precision for the computation

• algorithm: either pari (default for real embeddings) to use PARI’s pari:ellpointtoz, or sage
for a native implementation. Ignored for complex embeddings.

ALGORITHM:

See [Coh1993] for the case of real embeddings, and Cremona, J.E. and Thongjunthug, T. 2010 for the
complex case.

AUTHORS:

• Michael Mardaus (2008-07),

• Tobias Nagel (2008-07) – original version from [Coh1993].

• John Cremona (2008-07) – revision following eclib code.

• John Cremona (2010-03) – implementation for complex embeddings.

EXAMPLES:

46 Chapter 3. Points on elliptic curves

https://pari.math.u-bordeaux.fr/dochtml/help/ellpointtoz

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a)
sage: E.discriminant() > 0
True
sage: P = E([-1,1])
sage: P.is_on_identity_component ()
False
sage: P.elliptic_logarithm (precision=96)
0.4793482501902193161295330101 + 0.985868850775824102211203849...*I
sage: Q = E([3,5])
sage: Q.is_on_identity_component()
True
sage: Q.elliptic_logarithm (precision=96)
1.931128271542559442488585220

An example with negative discriminant, and a torsion point:

sage: E = EllipticCurve(11a1)
sage: E.discriminant() < 0
True
sage: P = E([16,-61])
sage: P.elliptic_logarithm(precision=70)
0.25384186085591068434
sage: E.period_lattice().real_period(prec=70) / P.elliptic_
→˓logarithm(precision=70)
5.0000000000000000000

A larger example. The default algorithm uses PARI and makes sure the result has the requested precision:

sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) #18074g1
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])
sage: P.elliptic_logarithm() # 100 bits
0.27656204014107061464076203097

The native algorithm sage used to have trouble with precision in this example, but no longer:

sage: P.elliptic_logarithm(algorithm= sage) # 100 bits
0.27656204014107061464076203097

This shows that the bug reported at Issue #4901 has been fixed:

sage: E = EllipticCurve("4390c2")
sage: P = E(683762969925/44944,-565388972095220019/9528128)
sage: P.elliptic_logarithm()
0.00025638725886520225353198932529
sage: P.elliptic_logarithm(precision=64)
0.000256387258865202254
sage: P.elliptic_logarithm(precision=65)
0.0002563872588652022535
sage: P.elliptic_logarithm(precision=128)
0.00025638725886520225353198932528666427412
sage: P.elliptic_logarithm(precision=129)
0.00025638725886520225353198932528666427412
sage: P.elliptic_logarithm(precision=256)
0.
→˓0002563872588652022535319893252866642741168388008346370015005142128009610936373
sage: P.elliptic_logarithm(precision=257)
0.
→˓00025638725886520225353198932528666427411683880083463700150051421280096109363730

47

https://github.com/sagemath/sage/issues/4901

Elliptic curves, Release 10.4.rc1

Examples over number fields:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: embs = K.embeddings(CC)
sage: E = EllipticCurve([0,1,0,a,a])
sage: Ls = [E.period_lattice(e) for e in embs]
sage: [L.real_flag for L in Ls]
[0, 0, -1]
sage: P = E(-1,0) # order 2
sage: [L.elliptic_logarithm(P) for L in Ls]
[-1.73964256006716 - 1.07861534489191*I,
-0.363756518406398 - 1.50699412135253*I, 1.90726488608927]

sage: # needs sage.rings.number_field
sage: E = EllipticCurve([-a^2 - a - 1, a^2 + a])
sage: Ls = [E.period_lattice(e) for e in embs]
sage: pts = [E(2*a^2 - a - 1 , -2*a^2 - 2*a + 6),
....: E(-2/3*a^2 - 1/3 , -4/3*a - 2/3),
....: E(5/4*a^2 - 1/2*a , -a^2 - 1/4*a + 9/4),
....: E(2*a^2 + 3*a + 4 , -7*a^2 - 10*a - 12)]
sage: [[L.elliptic_logarithm(P) for P in pts] for L in Ls]
[[0.250819591818930 - 0.411963479992219*I, -0.290994550611374 - 1.
→˓37239400324105*I,
-0.693473752205595 - 2.45028458830342*I, -0.151659609775291 - 1.

→˓48985406505459*I],
[1.33444787667954 - 1.50889756650544*I, 0.792633734249234 - 0.
→˓548467043256610*I,
0.390154532655013 + 0.529423541805758*I, 0.931968675085317 - 0.

→˓431006981443071*I],
[1.14758249500109 + 0.853389664016075*I, 2.59823462472518 + 0.
→˓853389664016075*I,
1.75372176444709, 0.303069634723001]]

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,9*i-10,21-i])
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2-i, 4+2*i)
sage: L.elliptic_logarithm(P, prec=100)
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I

has_finite_order()

Return True iff this point has finite order on the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.has_finite_order()
False

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])

(continues on next page)

48 Chapter 3. Points on elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P.has_finite_order()
True

has_good_reduction(P=None)

Returns True iff this point has good reduction modulo a prime.

INPUT:

• P – a prime of the base_field of the point’s curve, or None (default)

OUTPUT:

(bool) If a prime 𝑃 of the base field is specified, returns True iff the point has good reduction at 𝑃 ; otherwise,
return true if the point has god reduction at all primes in the support of the discriminant of this model.

EXAMPLES:

sage: E = EllipticCurve(990e1)
sage: P = E.gen(0); P
(15 : 51 : 1)
sage: [E.has_good_reduction(p) for p in [2,3,5,7]]
[False, False, False, True]
sage: [P.has_good_reduction(p) for p in [2,3,5,7]]
[True, False, True, True]
sage: [E.tamagawa_exponent(p) for p in [2,3,5,7]]
[2, 2, 1, 1]
sage: [(2*P).has_good_reduction(p) for p in [2,3,5,7]]
[True, True, True, True]
sage: P.has_good_reduction()
False
sage: (2*P).has_good_reduction()
True
sage: (3*P).has_good_reduction()
False

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,1,0,-160,308])
sage: P = E(26, -120)
sage: E.discriminant().support()
[Fractional ideal (i + 1),
Fractional ideal (-i - 2),
Fractional ideal (2*i + 1),
Fractional ideal (3)]

sage: [E.tamagawa_exponent(p) for p in E.discriminant().support()]
[1, 4, 4, 4]
sage: P.has_good_reduction()
False
sage: (2*P).has_good_reduction()
False
sage: (4*P).has_good_reduction()
True

has_infinite_order()

Return True iff this point has infinite order on the elliptic curve.

EXAMPLES:

49

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.has_infinite_order()
True

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.has_infinite_order()
False

height(precision=None, normalised=True, algorithm='pari')
Return the Néron-Tate canonical height of the point.

INPUT:

• self – a point on an elliptic curve over a number field𝐾.

• precision – positive integer, or None (default). The precision in bits of the result. If None, the
default real precision is used.

• normalised – boolean. If True (default), the height is normalised to be invariant under extension of
𝐾. If False, return this normalised height multiplied by the degree of𝐾.

• algorithm – string: either pari (default) or sage . If pari and the base field is Q, use
the PARI library function; otherwise use the Sage implementation.

OUTPUT:

The rational number 0, or a non-negative real number.

There are two normalisations used in the literature, one of which is double the other. We use the larger of
the two, which is the one appropriate for the BSD conjecture. This is consistent with [Cre1997] and double
that of [Sil2009].

See Wikipedia article Néron-Tate height.

Note: The correct height to use for the regulator in the BSD formula is the non-normalised height.

EXAMPLES:

sage: E = EllipticCurve(11a); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: P = E([5,5]); P
(5 : 5 : 1)
sage: P.height()
0
sage: Q = 5*P
sage: Q.height()
0

sage: E = EllipticCurve(37a); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: P.height()
0.0511114082399688
sage: P.order()

(continues on next page)

50 Chapter 3. Points on elliptic curves

https://en.wikipedia.org/wiki/Néron-Tate height

Elliptic curves, Release 10.4.rc1

(continued from previous page)

+Infinity
sage: E.regulator()
0.0511114082399688...

sage: def naive_height(P):
....: return log(RR(max(abs(P[0].numerator()), abs(P[0].denominator()))))
sage: for n in [1..10]:
....: print(naive_height(2^n*P)/4^n)
0.000000000000000
0.0433216987849966
0.0502949347635656
0.0511006335618645
0.0511007834799612
0.0511013666152466
0.0511034199907743
0.0511106492906471
0.0511114081541082
0.0511114081541180

sage: E = EllipticCurve(4602a1); E
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 37746035*x - 89296920339
over Rational Field
sage: x = 77985922458974949246858229195945103471590
sage: y = 19575260230015313702261379022151675961965157108920263594545223
sage: d = 2254020761884782243
sage: E([x / d^2, y / d^3]).height()
86.7406561381275

sage: E = EllipticCurve([17, -60, -120, 0, 0]); E
Elliptic Curve defined by y^2 + 17*x*y - 120*y = x^3 - 60*x^2 over Rational␣
→˓Field
sage: E([30, -90]).height()
0

sage: E = EllipticCurve(389a1); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: P, Q = E(-1,1), E(0,-1)
sage: P.height(precision=100)
0.68666708330558658572355210295
sage: (3*Q).height(precision=100)/Q.height(precision=100)
9.0000000000000000000000000000
sage: _.parent()
Real Field with 100 bits of precision

Canonical heights over number fields are implemented as well:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3 - 2) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([a, 4]); E #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + a*x + 4
over Number Field in a with defining polynomial x^3 - 2

sage: P = E((0,2)) #␣
→˓needs sage.rings.number_field
sage: P.height() #␣

(continues on next page)

51

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.rings.number_field
0.810463096585925
sage: P.height(precision=100) #␣
→˓needs sage.rings.number_field
0.81046309658592536863991810577
sage: P.height(precision=200) #␣
→˓needs sage.rings.number_field
0.81046309658592536863991810576865158896130286417155832378086
sage: (2*P).height() / P.height() #␣
→˓needs sage.rings.number_field
4.00000000000000
sage: (100*P).height() / P.height() #␣
→˓needs sage.rings.number_field
10000.0000000000

Setting normalised=False multiplies the height by the degree of𝐾:

sage: E = EllipticCurve(37a)
sage: P = E([0,0])
sage: P.height()
0.0511114082399688
sage: P.height(normalised=False)
0.0511114082399688
sage: K.<z> = CyclotomicField(5) #␣
→˓needs sage.rings.number_field
sage: EK = E.change_ring(K) #␣
→˓needs sage.rings.number_field
sage: PK = EK([0,0]) #␣
→˓needs sage.rings.number_field
sage: PK.height() #␣
→˓needs sage.rings.number_field
0.0511114082399688
sage: PK.height(normalised=False) #␣
→˓needs sage.rings.number_field
0.204445632959875

Some consistency checks:

sage: E = EllipticCurve(5077a1)
sage: P = E([-2,3,1])
sage: P.height()
1.36857250535393

sage: EK = E.change_ring(QuadraticField(-3, a)) #␣
→˓needs sage.rings.number_field
sage: PK = EK([-2,3,1]) #␣
→˓needs sage.rings.number_field
sage: PK.height() #␣
→˓needs sage.rings.number_field
1.36857250535393

sage: # needs sage.rings.number_field
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0])
sage: Q = E.lift_x(-9/4); Q
(-9/4 : 27/8*i - 4 : 1)
sage: Q.height()

(continues on next page)

52 Chapter 3. Points on elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

2.69518560017909
sage: (15*Q).height() / Q.height()
225.000000000000

sage: E = EllipticCurve(37a)
sage: P = E([0,-1])
sage: P.height()
0.0511114082399688
sage: K.<a> = QuadraticField(-7) #␣
→˓needs sage.rings.number_field
sage: ED = E.quadratic_twist(-7) #␣
→˓needs sage.rings.number_field
sage: Q = E.isomorphism_to(ED.change_ring(K))(P); Q #␣
→˓needs sage.rings.number_field
(0 : -7/2*a - 1/2 : 1)
sage: Q.height() #␣
→˓needs sage.rings.number_field
0.0511114082399688
sage: Q.height(precision=100) #␣
→˓needs sage.rings.number_field
0.051111408239968840235886099757

An example to show that the bug at Issue #5252 is fixed:

sage: E = EllipticCurve([1, -1, 1, -2063758701246626370773726978,␣
→˓32838647793306133075103747085833809114881])
sage: P = E([-30987785091199, 258909576181697016447])
sage: P.height()
25.8603170675462
sage: P.height(precision=100)
25.860317067546190743868840741
sage: P.height(precision=250)
25.860317067546190743868840740735110323098872903844416215577171041783572513
sage: P.height(precision=500)
25.
→˓8603170675461907438688407407351103230988729038444162155771710417835725129551130570889813281792157278507639909972112856019190236125362914195452321720

sage: P.height(precision=100) == P.non_archimedean_local_height(prec=100)+P.
→˓archimedean_local_height(prec=100)
True

An example to show that the bug at Issue #8319 is fixed (correct height when the curve is not minimal):

sage: E = EllipticCurve([-5580472329446114952805505804593498080000,-
→˓157339733785368110382973689903536054787700497223306368000000])
sage: xP =␣
→˓204885147732879546487576840131729064308289385547094673627174585676211859152978311600/
→˓23625501907057948132262217188983681204856907657753178415430361
sage: P = E.lift_x(xP)
sage: P.height()
157.432598516754
sage: Q = 2*P
sage: Q.height() # long time (4s)
629.730394067016
sage: Q.height()-4*P.height() # long time
0.000000000000000

53

https://github.com/sagemath/sage/issues/5252
https://github.com/sagemath/sage/issues/8319

Elliptic curves, Release 10.4.rc1

An example to show that the bug at Issue #12509 is fixed (precision issues):

sage: # needs sage.rings.number_field
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 - x - 1)
sage: v = [0, a + 1, 1, 28665*a - 46382, 2797026*a - 4525688]
sage: E = EllipticCurve(v)
sage: P = E([72*a - 509/5, -682/25*a - 434/25])
sage: P.height()
1.38877711688727
sage: (2*P).height()/P.height()
4.00000000000000
sage: (2*P).height(precision=100)/P.height(precision=100)
4.0000000000000000000000000000
sage: (2*P).height(precision=1000)/P.height(precision=1000)
4.
→˓000

This shows that the bug reported at Issue #13951 has been fixed:

sage: E = EllipticCurve([0,17])
sage: P1 = E(2,5)
sage: P1.height()
1.06248137652528
sage: F = E.change_ring(QuadraticField(-3, a)) #␣
→˓needs sage.rings.number_field
sage: P2 = F([2,5]) #␣
→˓needs sage.rings.number_field
sage: P2.height() #␣
→˓needs sage.rings.number_field
1.06248137652528

is_on_identity_component(embedding=None)
Return True iff this point is on the identity component of its curve with respect to a given (real or complex)
embedding.

INPUT:

• self – a point on a curve over any ordered field (e.g. Q)

• embedding – an embedding from the base_field of the point’s curve intoR orC; if None (the default)
it uses the first embedding of the base_field into R if any, else the first embedding into C.

OUTPUT:

(bool) – True iff the point is on the identity component of the curve. (If the point is zero then the result is
True.)

EXAMPLES:

For𝐾 = Q there is no need to specify an embedding:

sage: E = EllipticCurve(5077a1)
sage: [E.lift_x(x).is_on_identity_component() for x in srange(-3,5)]
[False, False, False, False, False, True, True, True]

An example over a field with two real embeddings:

sage: # needs sage.rings.number_field
sage: L.<a> = QuadraticField(2)

(continues on next page)

54 Chapter 3. Points on elliptic curves

https://github.com/sagemath/sage/issues/12509
https://github.com/sagemath/sage/issues/13951

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(L, [0,1,0,a,a])
sage: P = E(-1,0)
sage: [P.is_on_identity_component(e) for e in L.embeddings(RR)]
[False, True]

We can check this as follows:

sage: # needs sage.rings.number_field
sage: [e(E.discriminant()) > 0 for e in L.embeddings(RR)]
[True, False]
sage: e = L.embeddings(RR)[0]
sage: E1 = EllipticCurve(RR, [e(ai) for ai in E.ainvs()])
sage: e1, e2, e3 = E1.two_division_polynomial().roots(RR,
....: multiplicities=False)
sage: e1 < e2 < e3 and e(P[0]) < e3
True

non_archimedean_local_height(v=None, prec=None, weighted=False, is_minimal=None)
Compute the local height of self at the non-archimedean place 𝑣.

INPUT:

• self – a point on an elliptic curve over a number field𝐾.

• v – a non-archimedean place of𝐾, or None (default). If 𝑣 is a non-archimedean place, return the local
height of self at 𝑣. If 𝑣 is None, return the total non-archimedean contribution to the global height.

• prec – integer, or None (default). The precision of the computation. If None, the height is returned
symbolically.

• weighted – boolean. If False (default), the height is normalised to be invariant under extension of
𝐾. If True, return this normalised height multiplied by the local degree if 𝑣 is a single place, or by the
degree of𝐾 if 𝑣 is None.

OUTPUT:

A real number. The normalisation is twice that in Silverman’s paper [Sil1988]. Note that this local height
depends on the model of the curve.

ALGORITHM:

See [Sil1988], Section 5.

EXAMPLES:

Examples 2 and 3 from [Sil1988]:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0]); E
Elliptic Curve defined by y^2 + 4*y = x^3 + 6*i*x
over Number Field in i with defining polynomial x^2 + 1

sage: P = E((0,0))
sage: P.non_archimedean_local_height(K.ideal(i+1))
-1/2*log(2)
sage: P.non_archimedean_local_height(K.ideal(3))
0
sage: P.non_archimedean_local_height(K.ideal(1-2*i))
0

(continues on next page)

55

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: # needs sage.rings.number_field
sage: Q = E.lift_x(-9/4); Q
(-9/4 : 27/8*i - 4 : 1)
sage: Q.non_archimedean_local_height(K.ideal(1+i))
2*log(2)
sage: Q.non_archimedean_local_height(K.ideal(3))
0
sage: Q.non_archimedean_local_height(K.ideal(1-2*i))
0
sage: Q.non_archimedean_local_height()
2*log(2)

An example over the rational numbers:

sage: E = EllipticCurve([0, 0, 0, -36, 0])
sage: P = E([-3, 9])
sage: P.non_archimedean_local_height()
-log(3)

Local heights of torsion points can be non-zero (unlike the global height):

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, K(1), 0])
sage: P = E(i, 0)
sage: P.non_archimedean_local_height()
-1/2*log(2)

order()

Return the order of this point on the elliptic curve.

If the point has infinite order, returns +Infinity. For curves defined over Q, we call PARI; over other number
fields we implement the function here.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.order()
+Infinity

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.order()
2
sage: P.additive_order()
2

padic_elliptic_logarithm(p, absprec=20)
Computes the 𝑝-adic elliptic logarithm of this point.

INPUT:

56 Chapter 3. Points on elliptic curves

Elliptic curves, Release 10.4.rc1

• p – integer: a prime absprec – integer (default: 20): the initial 𝑝-adic absolute precision of the
computation

OUTPUT:

The 𝑝-adic elliptic logarithm of self, with precision absprec.

AUTHORS:

• Tobias Nagel

• Michael Mardaus

• John Cremona

ALGORITHM:

For points in the formal group (i.e. not integral at 𝑝) we take the log() function from the formal groups
module and evaluate it at−𝑥/𝑦. Otherwise we first multiply the point to get into the formal group, and divide
the result afterwards.

Todo: See comments at Issue #4805. Currently the absolute precision of the result may be less than the
given value of absprec, and error-handling is imperfect.

EXAMPLES:

sage: E = EllipticCurve([0,1,1,-2,0])
sage: E(0).padic_elliptic_logarithm(3) #␣
→˓needs sage.rings.padics
0
sage: P = E(0, 0) #␣
→˓needs sage.rings.padics
sage: P.padic_elliptic_logarithm(3) #␣
→˓needs sage.rings.padics
2 + 2*3 + 3^3 + 2*3^7 + 3^8 + 3^9 + 3^11 + 3^15 + 2*3^17 + 3^18 + O(3^19)
sage: P.padic_elliptic_logarithm(3).lift() #␣
→˓needs sage.rings.padics
660257522
sage: P = E(-11/9, 28/27) #␣
→˓needs sage.rings.padics
sage: [(2*P).padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p␣
→˓in prime_range(20)] # long time, needs sage.rings.padics
[2 + O(2^19), 2 + O(3^20), 2 + O(5^19), 2 + O(7^19), 2 + O(11^19), 2 + O(13^
→˓19), 2 + O(17^19), 2 + O(19^19)]
sage: [(3*P).padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p␣
→˓in prime_range(12)] # long time, needs sage.rings.padics
[1 + 2 + O(2^19), 3 + 3^20 + O(3^21), 3 + O(5^19), 3 + O(7^19), 3 + O(11^19)]
sage: [(5*P).padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p␣
→˓in prime_range(12)] # long time, needs sage.rings.padics
[1 + 2^2 + O(2^19), 2 + 3 + O(3^20), 5 + O(5^19), 5 + O(7^19), 5 + O(11^19)]

An example which arose during reviewing Issue #4741:

sage: E = EllipticCurve(794a1)
sage: P = E(-1,2)
sage: P.padic_elliptic_logarithm(2) # default precision=20 #␣
→˓needs sage.rings.padics
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + O(2^16)
sage: P.padic_elliptic_logarithm(2, absprec=30) #␣

(continues on next page)

57

https://github.com/sagemath/sage/issues/4805
https://github.com/sagemath/sage/issues/4741

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.rings.padics
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + 2^22 + 2^23 + 2^24 + O(2^
→˓26)
sage: P.padic_elliptic_logarithm(2, absprec=40) #␣
→˓needs sage.rings.padics
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + 2^22 + 2^23 + 2^24
+ 2^28 + 2^29 + 2^31 + 2^34 + O(2^35)

reduction(p)
This finds the reduction of a point 𝑃 on the elliptic curve modulo the prime 𝑝.

INPUT:

• self – A point on an elliptic curve.

• p – a prime number

OUTPUT:

The point reduced to be a point on the elliptic curve modulo 𝑝.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,0])
sage: P = E(0,0)
sage: P.reduction(5)
(0 : 0 : 1)
sage: Q = E(98,931)
sage: Q.reduction(5)
(3 : 1 : 1)
sage: Q.reduction(5).curve() == E.reduction(5)
True

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: F.<a> = NumberField(x^2 + 5)
sage: E = EllipticCurve(F, [1,2,3,4,0])
sage: Q = E(98, 931)
sage: Q.reduction(a)
(3 : 1 : 1)
sage: Q.reduction(11)
(10 : 7 : 1)

sage: # needs sage.rings.number_field
sage: F.<a> = NumberField(x^3 + x^2 + 1)
sage: E = EllipticCurve(F, [a,2])
sage: P = E(a, 1)
sage: P.reduction(F.ideal(5))
(abar : 1 : 1)
sage: P.reduction(F.ideal(a^2 - 4*a - 2))
(abar : 1 : 1)

58 Chapter 3. Points on elliptic curves

CHAPTER

FOUR

ELLIPTIC CURVES OVER A GENERAL RING

Sage defines an elliptic curve over a ring 𝑅 as aWeierstrass Model with five coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] in 𝑅 given by

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6.

Note that the (usual) scheme-theoretic definition of an elliptic curve over𝑅 would require the discriminant to be a unit in
𝑅; Sage only imposes that the discriminant is non-zero. Also note that in Magma, “Weierstrass Model” refers to a model
with 𝑎1 = 𝑎2 = 𝑎3 = 0, which is called Short Weierstrass Model in Sage; these do not always exist in characteristics 2
and 3.

EXAMPLES:

We construct an elliptic curve over an elaborate base ring:

sage: p, a, b = 97, 1, 3
sage: R.<u> = GF(p)[]
sage: S.<v> = R[]
sage: T = S.fraction_field()
sage: E = EllipticCurve(T, [a, b]); E
Elliptic Curve defined by y^2 = x^3 + x + 3 over Fraction Field of Univariate
Polynomial Ring in v over Univariate Polynomial Ring in u over Finite Field of size 97
sage: latex(E)
y^2 = x^{3} + x + 3

AUTHORS:

• William Stein (2005): Initial version

• Robert Bradshaw et al….

• John Cremona (2008-01): isomorphisms, automorphisms and twists in all characteristics

• Julian Rueth (2014-04-11): improved caching

• Lorenz Panny (2022-04-14): added .montgomery_model()

class sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic(K , ainvs, cat-
egory=None)

Bases: WithEqualityById, ProjectivePlaneCurve

Elliptic curve over a generic base ring.

EXAMPLES:

sage: E = EllipticCurve([1,2,3/4,7,19]); E
Elliptic Curve defined by y^2 + x*y + 3/4*y = x^3 + 2*x^2 + 7*x + 19 over␣
→˓Rational Field
sage: loads(E.dumps()) == E

(continues on next page)

59

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 10.4.rc1

(continued from previous page)

True
sage: E = EllipticCurve([1,3])
sage: P = E([-1,1,1])
sage: -5*P
(179051/80089 : -91814227/22665187 : 1)

a1()

Return the 𝑎1 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a1()
1

a2()

Return the 𝑎2 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a2()
2

a3()

Return the 𝑎3 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a3()
3

a4()

Return the 𝑎4 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a4()
4

a6()

Return the 𝑎6 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a6()
6

a_invariants()

The 𝑎-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 5-tuple of the 𝑎-invariants of this elliptic curve.

60 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.a_invariants()
(1, 2, 3, 4, 5)

sage: E = EllipticCurve([0,1]); E
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: E.a_invariants()
(0, 0, 0, 0, 1)

sage: E = EllipticCurve([GF(7)(3),5])
sage: E.a_invariants()
(0, 0, 0, 3, 5)

ainvs()

The 𝑎-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 5-tuple of the 𝑎-invariants of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.a_invariants()
(1, 2, 3, 4, 5)

sage: E = EllipticCurve([0,1]); E
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: E.a_invariants()
(0, 0, 0, 0, 1)

sage: E = EllipticCurve([GF(7)(3),5])
sage: E.a_invariants()
(0, 0, 0, 3, 5)

automorphisms(field=None)
Return the set of isomorphisms from self to itself (as a list).

The identity and negation morphisms are guaranteed to appear as the first and second entry of the returned
list.

INPUT:

• field (default None) – a field into which the coefficients of the curve may be coerced (by default, uses
the base field of the curve).

OUTPUT:

(list) A list of WeierstrassIsomorphism objects consisting of all the isomorphisms from the curve
self to itself defined over field.

EXAMPLES:

sage: E = EllipticCurve_from_j(QQ(0)) # a curve with j=0 over QQ
sage: E.automorphisms()
[Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3

over Rational Field
Via: (u,r,s,t) = (1, 0, 0, 0),

(continues on next page)

61

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Rational Field
Via: (u,r,s,t) = (-1, 0, 0, -1)]

We can also find automorphisms defined over extension fields:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 + 3) # adjoin roots of unity #␣
→˓needs sage.rings.number_field
sage: E.automorphisms(K) #␣
→˓needs sage.rings.number_field
[Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3

over Number Field in a with defining polynomial x^2 + 3
Via: (u,r,s,t) = (1, 0, 0, 0),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Number Field in a with defining polynomial x^2 + 3
Via: (u,r,s,t) = (-1, 0, 0, -1),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Number Field in a with defining polynomial x^2 + 3
Via: (u,r,s,t) = (-1/2*a - 1/2, 0, 0, 0),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Number Field in a with defining polynomial x^2 + 3
Via: (u,r,s,t) = (1/2*a + 1/2, 0, 0, -1),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Number Field in a with defining polynomial x^2 + 3
Via: (u,r,s,t) = (1/2*a - 1/2, 0, 0, 0),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Number Field in a with defining polynomial x^2 + 3
Via: (u,r,s,t) = (-1/2*a + 1/2, 0, 0, -1)]

sage: [len(EllipticCurve_from_j(GF(q, a)(0)).automorphisms()) #␣
→˓needs sage.rings.finite_rings
....: for q in [2,4,3,9,5,25,7,49]]
[2, 24, 2, 12, 2, 6, 6, 6]

b2()

Return the 𝑏2 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b2()
9

b4()

Return the 𝑏4 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b4()
11

b6()

Return the 𝑏6 invariant of this elliptic curve.

EXAMPLES:

62 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b6()
29

b8()

Return the 𝑏8 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b8()
35

b_invariants()

Return the 𝑏-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 4-tuple of the 𝑏-invariants of this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.b_invariants()
(-4, -20, -79, -21)

sage: E = EllipticCurve([-4,0])
sage: E.b_invariants()
(0, -8, 0, -16)

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b_invariants()
(9, 11, 29, 35)
sage: E.b2()
9
sage: E.b4()
11
sage: E.b6()
29
sage: E.b8()
35

ALGORITHM:

These are simple functions of the 𝑎-invariants.

AUTHORS:

• William Stein (2005-04-25)

base_extend(R)

Return the base extension of self to 𝑅.

INPUT:

• R – either a ring into which the 𝑎-invariants of self may be converted, or a morphism which may be
applied to them.

63

Elliptic curves, Release 10.4.rc1

OUTPUT:

An elliptic curve over the new ring whose 𝑎-invariants are the images of the 𝑎-invariants of self.

EXAMPLES:

sage: E = EllipticCurve(GF(5), [1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
sage: E1 = E.base_extend(GF(125, a)); E1 #␣
→˓needs sage.rings.finite_rings
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of size 5^3

base_ring()

Return the base ring of the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(GF(49, a), [3,5]) #␣
→˓needs sage.rings.finite_rings
sage: E.base_ring() #␣
→˓needs sage.rings.finite_rings
Finite Field in a of size 7^2

sage: E = EllipticCurve([1,1])
sage: E.base_ring()
Rational Field

sage: E = EllipticCurve(ZZ, [3,5])
sage: E.base_ring()
Integer Ring

c4()

Return the 𝑐4 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c4()
496

c6()

Return the 𝑐6 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c6()
20008

c_invariants()

Return the 𝑐-invariants of this elliptic curve, as a tuple.

This method is cached.

OUTPUT:

(tuple) - a 2-tuple of the 𝑐-invariants of the elliptic curve.

EXAMPLES:

64 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c_invariants()
(496, 20008)

sage: E = EllipticCurve([-4,0])
sage: E.c_invariants()
(192, 0)

ALGORITHM:

These are simple functions of the 𝑎-invariants.

AUTHORS:

• William Stein (2005-04-25)

change_ring(R)

Return the base change of self to 𝑅.

This has the same effect as self.base_extend(R).

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F2 = GF(5^2, a); a = F2.gen()
sage: F4 = GF(5^4, b); b = F4.gen()
sage: roots = a.charpoly().roots(ring=F4, multiplicities=False)
sage: h = F2.hom([roots[0]], F4)
sage: E = EllipticCurve(F2, [1,a]); E
Elliptic Curve defined by y^2 = x^3 + x + a
over Finite Field in a of size 5^2
sage: E.change_ring(h)
Elliptic Curve defined by y^2 = x^3 + x + (4*b^3+4*b^2+4*b+3)
over Finite Field in b of size 5^4

change_weierstrass_model(*urst)
Return a new Weierstrass model of self under the standard transformation (𝑢, 𝑟, 𝑠, 𝑡)

(𝑥, 𝑦) ↦→ (𝑥′, 𝑦′) = (𝑢2𝑥+ 𝑟, 𝑢3𝑦 + 𝑠𝑢2𝑥+ 𝑡).

EXAMPLES:

sage: E = EllipticCurve(15a)
sage: F1 = E.change_weierstrass_model([1/2,0,0,0]); F1
Elliptic Curve defined by y^2 + 2*x*y + 8*y = x^3 + 4*x^2 - 160*x - 640
over Rational Field
sage: F2 = E.change_weierstrass_model([7,2,1/3,5]); F2
Elliptic Curve defined by
y^2 + 5/21*x*y + 13/343*y = x^3 + 59/441*x^2 - 10/7203*x - 58/117649
over Rational Field
sage: F1.is_isomorphic(F2)
True

discriminant()

Return the discriminant of this elliptic curve.

This method is cached.

EXAMPLES:

65

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.discriminant()
37

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.discriminant()
-161051

sage: E = EllipticCurve([GF(7)(2),1])
sage: E.discriminant()
1

division_polynomial(m, x=None, two_torsion_multiplicity=2, force_evaluate=None)
Return the𝑚𝑡ℎ division polynomial of this elliptic curve evaluated at 𝑥.

The division polynomial is cached if 𝑥 is None.

INPUT:

• m – positive integer.

• x – optional ring element to use as the 𝑥 variable. If 𝑥 is None (omitted), then a new polynomial ring
will be constructed over the base ring of the elliptic curve, and its generator will be used as 𝑥. Note
that 𝑥 does not need to be a generator of a polynomial ring; any ring element works. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

• two_torsion_multiplicity – 0, 1, or 2

If 0: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which omits factors whose roots are the 𝑥-coordinates of the 2-torsion points. When 𝑥 is not None, the
evaluation of such a polynomial at 𝑥 is returned.

If 2: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which includes a factor of degree 3 whose roots are the 𝑥-coordinates of the 2-torsion points. Similarly,
when 𝑥 is not None, the evaluation of such a polynomial at 𝑥 is returned.

If 1: For even 𝑚 when 𝑥 is None, a bivariate polynomial over the base ring of the curve is returned,
which includes a factor 2𝑦+𝑎1𝑥+𝑎3 having simple zeros at the 2-torsion points. When 𝑥 is not None,
it should be a tuple of length 2, and the evaluation of such a polynomial at 𝑥 is returned.

• force_evaluate (optional) – 0, 1, or 2

By default, this method makes use of previously cached generic division polynomials to compute the
value of the polynomial at a given element 𝑥 whenever it appears beneficial to do so. Explicitly setting
this flag overrides the default behavior.

Note that the complexity of evaluating a generic division polynomial scales much worse than that of
computing the value at a point directly (using the recursive formulas), hence setting this flag can be
detrimental to performance.

If 0: Do not use cached generic division polynomials.

If 1: If the generic division polynomial for this 𝑚 has been cached before, evaluate it at 𝑥 to compute
the result.

If 2: Compute the value at 𝑥 by evaluating the generic division polynomial. If the generic 𝑚-division
polynomial has not yet been cached, compute and cache it first.

EXAMPLES:

66 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.division_polynomial(1)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=0)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=1)
2*y + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=2)
4*x^3 - 4*x + 1
sage: E.division_polynomial(2)
4*x^3 - 4*x + 1
sage: [E.division_polynomial(3, two_torsion_multiplicity=i) for i in range(3)]
[3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1]
sage: [type(E.division_polynomial(3, two_torsion_multiplicity=i)) for i in␣
→˓range(3)]
[<... sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_
→˓flint >,
<... sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_
→˓libsingular >,
<... sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_
→˓flint >]

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z> = PolynomialRing(QQ)
sage: E.division_polynomial(4, z, 0)
2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821
sage: E.division_polynomial(4, z)
8*z^9 - 24*z^8 - 464*z^7 - 2758*z^6 + 6636*z^5 + 34356*z^4
+ 53510*z^3 + 99714*z^2 + 351024*z + 459859

This does not work, since when two_torsion_multiplicity is 1, we compute a bivariate polynomial, and must
evaluate at a tuple of length 2:

sage: E.division_polynomial(4,z,1)
Traceback (most recent call last):
...
ValueError: x should be a tuple of length 2 (or None)
when two_torsion_multiplicity is 1
sage: R.<z,w> = PolynomialRing(QQ, 2)
sage: E.division_polynomial(4, (z,w), 1).factor()
(2*w + 1) * (2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821)

We can also evaluate this bivariate polynomial at a point:

sage: P = E(5,5)
sage: E.division_polynomial(4,P,two_torsion_multiplicity=1)
-1771561

division_polynomial_0(n, x=None)
Return the 𝑛𝑡ℎ torsion (division) polynomial, without the 2-torsion factor if 𝑛 is even, as a polynomial in 𝑥.

These are the polynomials 𝑔𝑛 defined in [MT1991], but with the sign flipped for even 𝑛, so that the leading
coefficient is always positive.

Note: This function is intended for internal use; users should use division_polynomial().

67

Elliptic curves, Release 10.4.rc1

See also:

• division_polynomial()

• _multiple_x_numerator()

• _multiple_x_denominator()

INPUT:

• n – positive integer, or the special values -1 and -2 which mean 𝐵6 = (2𝑦 + 𝑎1𝑥 + 𝑎3)
2 and 𝐵2

6

respectively (in the notation of [MT1991]); or a list of integers.

• x – a ring element to use as the “x” variable or None (default: None). If None, then a new polynomial
ring will be constructed over the base ring of the elliptic curve, and its generator will be used as x. Note
that x does not need to be a generator of a polynomial ring; any ring element is ok. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

ALGORITHM:

Recursion described in [MT1991]. The recursive formulae are evaluated 𝑂(log2 𝑛) times.

AUTHORS:

• David Harvey (2006-09-24): initial version

• John Cremona (2008-08-26): unified division polynomial code

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.division_polynomial_0(1)
1
sage: E.division_polynomial_0(2)
1
sage: E.division_polynomial_0(3)
3*x^4 - 6*x^2 + 3*x - 1
sage: E.division_polynomial_0(4)
2*x^6 - 10*x^4 + 10*x^3 - 10*x^2 + 2*x + 1
sage: E.division_polynomial_0(5)
5*x^12 - 62*x^10 + 95*x^9 - 105*x^8 - 60*x^7 + 285*x^6 - 174*x^5 - 5*x^4 -␣
→˓5*x^3 + 35*x^2 - 15*x + 2
sage: E.division_polynomial_0(6)
3*x^16 - 72*x^14 + 168*x^13 - 364*x^12 + 1120*x^10 - 1144*x^9 + 300*x^8 -␣
→˓540*x^7 + 1120*x^6 - 588*x^5 - 133*x^4 + 252*x^3 - 114*x^2 + 22*x - 1
sage: E.division_polynomial_0(7)
7*x^24 - 308*x^22 + 986*x^21 - 2954*x^20 + 28*x^19 + 17171*x^18 - 23142*x^17␣
→˓+ 511*x^16 - 5012*x^15 + 43804*x^14 - 7140*x^13 - 96950*x^12 + 111356*x^11 -
→˓ 19516*x^10 - 49707*x^9 + 40054*x^8 - 124*x^7 - 18382*x^6 + 13342*x^5 -␣
→˓4816*x^4 + 1099*x^3 - 210*x^2 + 35*x - 3
sage: E.division_polynomial_0(8)
4*x^30 - 292*x^28 + 1252*x^27 - 5436*x^26 + 2340*x^25 + 39834*x^24 - 79560*x^
→˓23 + 51432*x^22 - 142896*x^21 + 451596*x^20 - 212040*x^19 - 1005316*x^18 +␣
→˓1726416*x^17 - 671160*x^16 - 954924*x^15 + 1119552*x^14 + 313308*x^13 -␣
→˓1502818*x^12 + 1189908*x^11 - 160152*x^10 - 399176*x^9 + 386142*x^8 -␣
→˓220128*x^7 + 99558*x^6 - 33528*x^5 + 6042*x^4 + 310*x^3 - 406*x^2 + 78*x - 5

sage: E.division_polynomial_0(18) % E.division_polynomial_0(6) == 0
True

An example to illustrate the relationship with torsion points:

68 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: F = GF(11)
sage: E = EllipticCurve(F, [0, 2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field of size 11
sage: f = E.division_polynomial_0(5); f
5*x^12 + x^9 + 8*x^6 + 4*x^3 + 7
sage: f.factor()
(5) * (x^2 + 5) * (x^2 + 2*x + 5) * (x^2 + 5*x + 7)
* (x^2 + 7*x + 7) * (x^2 + 9*x + 5) * (x^2 + 10*x + 7)

This indicates that the 𝑥-coordinates of all the 5-torsion points of 𝐸 are in F112 , and therefore the
𝑦-coordinates are in F114 :

sage: # needs sage.rings.finite_rings
sage: K = GF(11^4, a)
sage: X = E.change_ring(K)
sage: f = X.division_polynomial_0(5)
sage: x_coords = f.roots(multiplicities=False); x_coords
[10*a^3 + 4*a^2 + 5*a + 6,
9*a^3 + 8*a^2 + 10*a + 8,
8*a^3 + a^2 + 4*a + 10,
8*a^3 + a^2 + 4*a + 8,
8*a^3 + a^2 + 4*a + 4,
6*a^3 + 9*a^2 + 3*a + 4,
5*a^3 + 2*a^2 + 8*a + 7,
3*a^3 + 10*a^2 + 7*a + 8,
3*a^3 + 10*a^2 + 7*a + 3,
3*a^3 + 10*a^2 + 7*a + 1,
2*a^3 + 3*a^2 + a + 7,
a^3 + 7*a^2 + 6*a]

Now we check that these are exactly the 𝑥-coordinates of the 5-torsion points of 𝐸:

sage: for x in x_coords: #␣
→˓needs sage.rings.finite_rings
....: assert X.lift_x(x).order() == 5

The roots of the polynomial are the 𝑥-coordinates of the points 𝑃 such that𝑚𝑃 = 0 but 2𝑃 ̸= 0:

sage: E = EllipticCurve(14a1)
sage: T = E.torsion_subgroup()
sage: [n*T.0 for n in range(6)]
[(0 : 1 : 0),
(9 : 23 : 1),
(2 : 2 : 1),
(1 : -1 : 1),
(2 : -5 : 1),
(9 : -33 : 1)]
sage: pol = E.division_polynomial_0(6)
sage: xlist = pol.roots(multiplicities=False); xlist
[9, 2, -1/3, -5]
sage: [E.lift_x(x, all=True) for x in xlist]
[[(9 : -33 : 1), (9 : 23 : 1)], [(2 : -5 : 1), (2 : 2 : 1)], [], []]

Note: The point of order 2 and the identity do not appear. The points with 𝑥 = −1/3 and 𝑥 = −5 are not
rational.

69

Elliptic curves, Release 10.4.rc1

formal()

Return the formal group associated to this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.formal_group()
Formal Group associated to the Elliptic Curve
defined by y^2 + y = x^3 - x over Rational Field

formal_group()

Return the formal group associated to this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.formal_group()
Formal Group associated to the Elliptic Curve
defined by y^2 + y = x^3 - x over Rational Field

frobenius_isogeny(n=1)
Return the 𝑛-power Frobenius isogeny from this curve to its Galois conjugate.

The Frobenius endomorphism is the special case where 𝑛 is divisible by the degree of the base ring of the
curve.

See also:

frobenius_endomorphism()

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: z3, = GF(13^3).gens()
sage: E = EllipticCurve([z3, z3^2])
sage: E.frobenius_isogeny()
Frobenius isogeny of degree 13:

From: Elliptic Curve defined by y^2 = x^3 + z3*x + z3^2
over Finite Field in z3 of size 13^3

To: Elliptic Curve defined by y^2 = x^3 + (5*z3^2+7*z3+11)*x + (5*z3^
→˓2+12*z3+1)

over Finite Field in z3 of size 13^3
sage: E.frobenius_isogeny(3)
Frobenius endomorphism of degree 2197 = 13^3:

From: Elliptic Curve defined by y^2 = x^3 + z3*x + z3^2
over Finite Field in z3 of size 13^3

To: Elliptic Curve defined by y^2 = x^3 + z3*x + z3^2
over Finite Field in z3 of size 13^3

gen(i)
Function returning the i’th generator of this elliptic curve.

Note: Relies on gens() being implemented.

EXAMPLES:

70 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: R.<a1,a2,a3,a4,a6> = QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.gen(0)
Traceback (most recent call last):
...
NotImplementedError: not implemented.

gens()

Placeholder function to return generators of an elliptic curve.

Note: This functionality is implemented in certain derived classes, such as EllipticCurve_rational_field.

EXAMPLES:

sage: R.<a1,a2,a3,a4,a6> = QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.gens()
Traceback (most recent call last):
...
NotImplementedError: not implemented.
sage: E = EllipticCurve(QQ, [1,1])
sage: E.gens()
[(0 : 1 : 1)]

hyperelliptic_polynomials()

Return a pair of polynomials 𝑔(𝑥), ℎ(𝑥) such that this elliptic curve can be defined by the standard hyperel-
liptic equation

𝑦2 + ℎ(𝑥)𝑦 = 𝑔(𝑥).

EXAMPLES:

sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.hyperelliptic_polynomials()
(x^3 + a2*x^2 + a4*x + a6, a1*x + a3)

identity_morphism()

Return the identity endomorphism of this elliptic curve as an EllipticCurveHom object.

EXAMPLES:

sage: E = EllipticCurve(j=42)
sage: E.identity_morphism()
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + 5901*x +␣
→˓1105454 over Rational Field
Via: (u,r,s,t) = (1, 0, 0, 0)

sage: E.identity_morphism() == E.scalar_multiplication(1)
True

is_isomorphic(other, field=None)
Return whether or not self is isomorphic to other.

INPUT:

• other – another elliptic curve.

71

Elliptic curves, Release 10.4.rc1

• field (default None) – a field into which the coefficients of the curves may be coerced (by default, uses
the base field of the curves).

OUTPUT:

(bool) True if there is an isomorphism from curve self to curve other defined over field.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: F = E.change_weierstrass_model([2,3,4,5]); F
Elliptic Curve defined by y^2 + 4*x*y + 11/8*y = x^3 - 3/2*x^2 - 13/16*x
over Rational Field
sage: E.is_isomorphic(F)
True
sage: E.is_isomorphic(F.change_ring(CC))
False

is_on_curve(x, y)
Return True if (𝑥, 𝑦) is an affine point on this curve.

INPUT:

• x, y – elements of the base ring of the curve.

EXAMPLES:

sage: E = EllipticCurve(QQ,[1,1])
sage: E.is_on_curve(0,1)
True
sage: E.is_on_curve(1,1)
False

is_x_coord(x)
Return True if x is the 𝑥-coordinate of a point on this curve.

Note: See also lift_x() to find the point(s) with a given 𝑥-coordinate. This function may be useful in
cases where testing an element of the base field for being a square is faster than finding its square root.

EXAMPLES:

sage: E = EllipticCurve(37a); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.is_x_coord(1)
True
sage: E.is_x_coord(2)
True

There are no rational points with x-coordinate 3:

sage: E.is_x_coord(3)
False

However, there are such points in 𝐸(R):

sage: E.change_ring(RR).is_x_coord(3)
True

72 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

And of course it always works in 𝐸(C):

sage: E.change_ring(RR).is_x_coord(-3)
False
sage: E.change_ring(CC).is_x_coord(-3)
True

AUTHORS:

• John Cremona (2008-08-07): adapted from lift_x()

isomorphism(u, r, s=0, t=0, is_codomain=0)
Given four values 𝑢, 𝑟, 𝑠, 𝑡 in the base ring of this curve, return the WeierstrassIsomorphism defined
by 𝑢, 𝑟, 𝑠, 𝑡 with this curve as its codomain. (The value 𝑢 must be a unit; the values 𝑟, 𝑠, 𝑡 default to zero.)

Optionally, if the keyword argument is_codomain is set to True, return the isomorphism defined by
𝑢, 𝑟, 𝑠, 𝑡 with this curve as its codomain.

EXAMPLES:

sage: E = EllipticCurve([1, 2, 3, 4, 5])
sage: iso = E.isomorphism(6); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5␣
→˓over Rational Field
To: Elliptic Curve defined by y^2 + 1/6*x*y + 1/72*y = x^3 + 1/18*x^2 + 1/

→˓324*x + 5/46656 over Rational Field
Via: (u,r,s,t) = (6, 0, 0, 0)

sage: iso.domain() == E
True
sage: iso.codomain() == E.scale_curve(1 / 6)
True

sage: iso = E.isomorphism(1, 7, 8, 9); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5␣
→˓over Rational Field
To: Elliptic Curve defined by y^2 + 17*x*y + 28*y = x^3 - 49*x^2 - 54*x +␣

→˓303 over Rational Field
Via: (u,r,s,t) = (1, 7, 8, 9)

sage: iso.domain() == E
True
sage: iso.codomain() == E.rst_transform(7, 8, 9)
True

sage: iso = E.isomorphism(6, 7, 8, 9); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5␣
→˓over Rational Field
To: Elliptic Curve defined by y^2 + 17/6*x*y + 7/54*y = x^3 - 49/36*x^2 -␣

→˓1/24*x + 101/15552 over Rational Field
Via: (u,r,s,t) = (6, 7, 8, 9)

sage: iso.domain() == E
True
sage: iso.codomain() == E.rst_transform(7, 8, 9).scale_curve(1 / 6)
True

The is_codomain argument reverses the role of domain and codomain:

73

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1, 2, 3, 4, 5])
sage: iso = E.isomorphism(6, is_codomain=True); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + 6*x*y + 648*y = x^3 + 72*x^2 + 5184*x␣
→˓+ 233280 over Rational Field
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5␣

→˓over Rational Field
Via: (u,r,s,t) = (6, 0, 0, 0)

sage: iso.domain() == E.scale_curve(6)
True
sage: iso.codomain() == E
True

sage: iso = E.isomorphism(1, 7, 8, 9, is_codomain=True); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 - 15*x*y + 90*y = x^3 - 75*x^2 + 796*x -
→˓ 2289 over Rational Field
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5␣

→˓over Rational Field
Via: (u,r,s,t) = (1, 7, 8, 9)

sage: iso.domain().rst_transform(7, 8, 9) == E
True
sage: iso.codomain() == E
True

sage: iso = E.isomorphism(6, 7, 8, 9, is_codomain=True); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 - 10*x*y + 700*y = x^3 + 35*x^2 +␣
→˓9641*x + 169486 over Rational Field
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5␣

→˓over Rational Field
Via: (u,r,s,t) = (6, 7, 8, 9)

sage: iso.domain().rst_transform(7, 8, 9) == E.scale_curve(6)
True
sage: iso.codomain() == E
True

See also:

• WeierstrassIsomorphism

• rst_transform()

• scale_curve()

isomorphism_to(other)

Given another weierstrass model other of self, return an isomorphism from self to other.

INPUT:

• other – an elliptic curve isomorphic to self.

OUTPUT:

(Weierstrassmorphism) An isomorphism from self to other.

Note: If the curves in question are not isomorphic, a ValueError is raised.

74 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: F = E.short_weierstrass_model()
sage: w = E.isomorphism_to(F); w
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
To: Elliptic Curve defined by y^2 = x^3 - 16*x + 16 over Rational Field
Via: (u,r,s,t) = (1/2, 0, 0, -1/2)

sage: P = E(0,-1,1)
sage: w(P)
(0 : -4 : 1)
sage: w(5*P)
(1 : 1 : 1)
sage: 5*w(P)
(1 : 1 : 1)
sage: 120*w(P) == w(120*P)
True

We can also handle injections to different base rings:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 7) #␣
→˓needs sage.rings.number_field
sage: E.isomorphism_to(E.change_ring(K)) #␣
→˓needs sage.rings.number_field
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
To: Elliptic Curve defined by y^2 + y = x^3 + (-1)*x

over Number Field in a with defining polynomial x^3 - 7
Via: (u,r,s,t) = (1, 0, 0, 0)

isomorphisms(other, field=None)
Return the set of isomorphisms from self to other (as a list).

INPUT:

• other – another elliptic curve.

• field (default None) – a field into which the coefficients of the curves may be coerced (by default,
uses the base field of the curves).

OUTPUT:

(list) A list of WeierstrassIsomorphism objects consisting of all the isomorphisms from the curve
self to the curve other defined over field.

EXAMPLES:

sage: E = EllipticCurve_from_j(QQ(0)) # a curve with j=0 over QQ
sage: F = EllipticCurve(27a3) # should be the same one
sage: E.isomorphisms(F)
[Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3

over Rational Field
Via: (u,r,s,t) = (1, 0, 0, 0),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3
over Rational Field
Via: (u,r,s,t) = (-1, 0, 0, -1)]

We can also find isomorphisms defined over extension fields:

75

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(7), [0,0,0,1,1])
sage: F = EllipticCurve(GF(7), [0,0,0,1,-1])
sage: E.isomorphisms(F)
[]
sage: E.isomorphisms(F, GF(49, a))
[Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 = x^3 + x + 1
over Finite Field in a of size 7^2

To: Elliptic Curve defined by y^2 = x^3 + x + 6
over Finite Field in a of size 7^2

Via: (u,r,s,t) = (a + 3, 0, 0, 0),
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 = x^3 + x + 1
over Finite Field in a of size 7^2

To: Elliptic Curve defined by y^2 = x^3 + x + 6
over Finite Field in a of size 7^2

Via: (u,r,s,t) = (6*a + 4, 0, 0, 0)]

j_invariant()

Return the 𝑗-invariant of this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.j_invariant()
110592/37

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.j_invariant()
-122023936/161051

sage: E = EllipticCurve([-4,0])
sage: E.j_invariant()
1728

sage: E = EllipticCurve([GF(7)(2),1])
sage: E.j_invariant()
1

lift_x(x, all=False, extend=False)
Return one or all points with given 𝑥-coordinate.

This method is deterministic: It returns the same data each time when called again with the same 𝑥.

INPUT:

• x – an element of the base ring of the curve, or of an extension.

• all (bool, default: False) – if True, return a (possibly empty) list of all points; if False, return just
one point, or raise a ValueError if there are none.

• extend (bool, default: False) –

– if False, extend the base if necessary and possible to include 𝑥, and only return point(s) defined
over this ring, or raise an error when there are none with this 𝑥-coordinate;

76 Chapter 4. Elliptic curves over a general ring

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

– If True, the base ring will be extended if necessary to contain the 𝑦-coordinates of the point(s)
with this 𝑥-coordinate, in addition to a possible base change to include 𝑥.

OUTPUT:

A point or list of up to 2 points on this curve, or a base-change of this curve to a larger ring.

See also:

is_x_coord()

EXAMPLES:

sage: E = EllipticCurve(37a); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.lift_x(1)
(1 : -1 : 1)
sage: E.lift_x(2)
(2 : -3 : 1)
sage: E.lift_x(1/4, all=True)
[(1/4 : -5/8 : 1), (1/4 : -3/8 : 1)]

There are no rational points with 𝑥-coordinate 3:

sage: E.lift_x(3)
Traceback (most recent call last):
...
ValueError: No point with x-coordinate 3
on Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

We can use the extend parameter to make the necessary quadratic extension. Note that in such cases the
returned point is a point on a new curve object, the result of changing the base ring to the parent of 𝑥:

sage: P = E.lift_x(3, extend=True); P #␣
→˓needs sage.rings.number_field
(3 : -y - 1 : 1)
sage: P.curve() #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x
over Number Field in y with defining polynomial y^2 + y - 24

Or we can extend scalars. There are two such points in 𝐸(R):

sage: E.change_ring(RR).lift_x(3, all=True)
[(3.00000000000000 : -5.42442890089805 : 1.00000000000000),
(3.00000000000000 : 4.42442890089805 : 1.00000000000000)]

And of course it always works in 𝐸(C):

sage: E.change_ring(RR).lift_x(.5, all=True)
[]
sage: E.change_ring(CC).lift_x(.5)
(0.500000000000000 : -0.500000000000000 - 0.353553390593274*I : 1.
→˓00000000000000)

In this example we start with a curve defined over Q which has no rational points with 𝑥 = 0, but using
extend = True we can construct such a point over a quadratic field:

77

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0,0,0,0,2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Rational Field
sage: P = E.lift_x(0, extend=True); P #␣
→˓needs sage.rings.number_field
(0 : -y : 1)
sage: P.curve() #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + 2
over Number Field in y with defining polynomial y^2 - 2

We can perform these operations over finite fields too:

sage: E = EllipticCurve(37a).change_ring(GF(17)); E
Elliptic Curve defined by y^2 + y = x^3 + 16*x over Finite Field of size 17
sage: E.lift_x(7)
(7 : 5 : 1)
sage: E.lift_x(3)
Traceback (most recent call last):
...
ValueError: No point with x-coordinate 3 on
Elliptic Curve defined by y^2 + y = x^3 + 16*x over Finite Field of size 17

Note that there is only one lift with 𝑥-coordinate 10 in 𝐸(F17):

sage: E.lift_x(10, all=True)
[(10 : 8 : 1)]

We can lift over more exotic rings too. If the supplied x value is in an extension of the base, note that the
point returned is on the base-extended curve:

sage: E = EllipticCurve(37a)
sage: P = E.lift_x(pAdicField(17, 5)(6)); P #␣
→˓needs sage.rings.padics
(6 + O(17^5) : 14 + O(17^5) : 1 + O(17^5))
sage: P.curve() #␣
→˓needs sage.rings.padics
Elliptic Curve defined by
y^2 + (1+O(17^5))*y = x^3 + (16+16*17+16*17^2+16*17^3+16*17^4+O(17^5))*x
over 17-adic Field with capped relative precision 5
sage: K.<t> = PowerSeriesRing(QQ, t , 5)
sage: P = E.lift_x(1 + t); P
(1 + t : -1 - 2*t + t^2 - 5*t^3 + 21*t^4 + O(t^5) : 1)
sage: K.<a> = GF(16) #␣
→˓needs sage.rings.finite_rings
sage: P = E.change_ring(K).lift_x(a^3); P #␣
→˓needs sage.rings.finite_rings
(a^3 : a^3 + a : 1)
sage: P.curve() #␣
→˓needs sage.rings.finite_rings
Elliptic Curve defined by y^2 + y = x^3 + x over Finite Field in a of size 2^4

We can extend the base field to include the associated 𝑦 value(s):

sage: E = EllipticCurve([0,0,0,0,2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Rational Field
sage: x = polygen(QQ)
sage: P = E.lift_x(x, extend=True); P
(x : -y : 1)

78 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

This point is a generic point on E:

sage: P.curve()
Elliptic Curve defined by y^2 = x^3 + 2
over Univariate Quotient Polynomial Ring in y
over Fraction Field of Univariate Polynomial Ring in x over Rational Field
with modulus y^2 - x^3 - 2
sage: -P
(x : y : 1)
sage: 2*P
((1/4*x^4 - 4*x)/(x^3 + 2) : ((-1/8*x^6 - 5*x^3 + 4)/(x^6 + 4*x^3 + 4))*y : 1)

Check that Issue #30297 is fixed:

sage: K = Qp(5) #␣
→˓needs sage.rings.padics
sage: E = EllipticCurve([K(0), K(1)]) #␣
→˓needs sage.rings.padics
sage: E.lift_x(1, extend=True) #␣
→˓needs sage.rings.padics
(1 + O(5^20) : y + O(5^20) : 1 + O(5^20))

AUTHORS:

• Robert Bradshaw (2007-04-24)

• John Cremona (2017-11-10)

montgomery_model(twisted=False, morphism=False)
Return a (twisted or untwisted) Montgomery model for this elliptic curve, if possible.

A Montgomery curve is a smooth projective curve of the form

𝐵𝑌 2 = 𝑋3 +𝐴𝑋2 +𝑋.

The Montgomery curve is called untwisted if 𝐵 = 1.

INPUT:

• twisted – boolean (default: False); allow 𝐵 ̸= 1

• morphism – boolean (default: False); also return an isomorphism from this curve to the computed
Montgomery model

OUTPUT:

If twisted is False (the default), an EllipticCurve_generic object encapsulating an untwisted
Montgomery curve. Otherwise, a ProjectivePlaneCurve object encapsulating a (potentially twisted)
Montgomery curve.

If morphism is True, this method returns a tuple consisting of such a curve together with an isomorphism
of suitable type (either WeierstrassIsomorphism or WeierstrassTransformationWith-
Inverse) from this curve to the Montgomery model.

EXAMPLES:

sage: E = EllipticCurve(QQbar, 11a1) #␣
→˓needs sage.rings.number_field
sage: E.montgomery_model() #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + (-1.953522420987248?)*x^2 + x
over Algebraic Field

79

https://github.com/sagemath/sage/issues/30297
../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(431^2), [7,7]) #␣
→˓needs sage.rings.finite_rings
sage: E.montgomery_model() #␣
→˓needs sage.rings.finite_rings
Elliptic Curve defined by y^2 = x^3 + (51*z2+190)*x^2 + x
over Finite Field in z2 of size 431^2

An isomorphism between the Montgomery and Weierstrass form can be obtained using the morphism
parameter:

sage: E.montgomery_model(morphism=True) #␣
→˓needs sage.rings.finite_rings
(Elliptic Curve defined by y^2 = x^3 + (51*z2+190)*x^2 + x

over Finite Field in z2 of size 431^2,
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 = x^3 + 7*x + 7
over Finite Field in z2 of size 431^2

To: Elliptic Curve defined by y^2 = x^3 + (51*z2+190)*x^2 + x
over Finite Field in z2 of size 431^2

Via: (u,r,s,t) = (64*z2 + 407, 159, 0, 0))

Not all elliptic curves have a Montgomery model over their field of definition:

sage: E = EllipticCurve(GF(257), [1,1])
sage: E.montgomery_model()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 = x^3 + x + 1
over Finite Field of size 257 has no Montgomery model

sage: E = EllipticCurve(GF(257), [10,10])
sage: E.montgomery_model()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 = x^3 + 10*x + 10
over Finite Field of size 257 has no untwisted Montgomery model

However, as hinted by the error message, the latter curve does admit a twistedMontgomery model, which can
be computed by passing twisted=True:

sage: E.montgomery_model(twisted=True)
Projective Plane Curve over Finite Field of size 257
defined by -x^3 + 8*x^2*z - 127*y^2*z - x*z^2

Since Sage internally represents elliptic curves as (long) Weierstrass curves, which do not feature the Mont-
gomery 𝐵 coefficient, the returned curve in this case is merely a ProjectivePlaneCurve rather than
the usual EllipticCurve_generic.

Arithmetic on curves of this type is not implemented natively, but can easily be emulated by mapping back
and forth to the corresponding Weierstrass curve:

sage: C, f = E.montgomery_model(twisted=True, morphism=True)
sage: f
Scheme morphism:

From: Elliptic Curve defined by y^2 = x^3 + 10*x + 10
over Finite Field of size 257

To: Projective Plane Curve over Finite Field of size 257

(continues on next page)

80 Chapter 4. Elliptic curves over a general ring

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 10.4.rc1

(continued from previous page)

defined by -x^3 + 8*x^2*z - 127*y^2*z - x*z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x + 116*z : -y : -85*z)
sage: g = f.inverse(); g
Scheme morphism:

From: Projective Plane Curve over Finite Field of size 257
defined by -x^3 + 8*x^2*z - 127*y^2*z - x*z^2

To: Elliptic Curve defined by y^2 = x^3 + 10*x + 10
over Finite Field of size 257

Defn: Defined on coordinates by sending (x : y : z) to
(-85*x - 116*z : 85*y : z)

sage: P = C(70, 8)
sage: Q = C(17, 17)
sage: P + Q # this doesn t work...
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: ...
sage: f(g(P) + g(Q)) # ...but this does
(107 : 168 : 1)

Using the fact that the Weil pairing satisfies 𝑒(𝜓(𝑃), 𝜓(𝑄)) = 𝑒(𝑃,𝑄)deg𝜓 , even pairings can be emulated
in this way (note that isomorphisms have degree 1):

sage: # needs sage.rings.finite_rings
sage: F.<z2> = GF(257^2)
sage: C_ = C.change_ring(F)
sage: g_ = g.change_ring(F)
sage: g_(P).order()
12
sage: T = C_(-7 * z2 - 57, 31 * z2 - 52, 1)
sage: g_(T).order()
12
sage: g_(P).weil_pairing(g_(T), 12)
15*z2 + 204

Another alternative is to simply extend the base field enough for the curve to have an untwisted Montgomery
model:

sage: C_ = E.change_ring(F).montgomery_model(); C_ #␣
→˓needs sage.rings.finite_rings
Elliptic Curve defined by y^2 = x^3 + 249*x^2 + x
over Finite Field in z2 of size 257^2
sage: h = C.defining_polynomial().change_ring(F); h #␣
→˓needs sage.rings.finite_rings
-x^3 + 8*x^2*z - 127*y^2*z - x*z^2
sage: C_.is_isomorphic(EllipticCurve_from_cubic(h).codomain()) #␣
→˓needs sage.rings.finite_rings
True

See also:

The inverse conversion— computing aWeierstrass model for a givenMontgomery curve— can be performed
using EllipticCurve_from_cubic().

ALGORITHM: [CS2018], §2.4

REFERENCES:

• Original publication: [Mont1987], §10.3.1

81

Elliptic curves, Release 10.4.rc1

• More recent survey article: [CS2018]

multiplication_by_m(m, x_only=False)
Return the multiplication-by-𝑚 map from self to self

The result is a pair of rational functions in two variables 𝑥, 𝑦 (or a rational function in one variable 𝑥 if
x_only is True).

INPUT:

• m – a nonzero integer

• x_only – boolean (default: False) if True, return only the 𝑥-coordinate of the map (as a rational
function in one variable).

OUTPUT:

• a pair (𝑓(𝑥), 𝑔(𝑥, 𝑦)), where 𝑓 and 𝑔 are rational functions with the degree of 𝑦 in 𝑔(𝑥, 𝑦) exactly 1,

• or just 𝑓(𝑥) if x_only is True

Note:

• The result is not cached.

• m is allowed to be negative (but not 0).

EXAMPLES:

sage: E = EllipticCurve([-1,3])

We verify that multiplication by 1 is just the identity:

sage: E.multiplication_by_m(1)
(x, y)

Multiplication by 2 is more complicated:

sage: f = E.multiplication_by_m(2)
sage: f
((x^4 + 2*x^2 - 24*x + 1)/(4*x^3 - 4*x + 12),
(8*x^6*y - 40*x^4*y + 480*x^3*y - 40*x^2*y + 96*x*y - 568*y)/(64*x^6 - 128*x^
→˓4 + 384*x^3 + 64*x^2 - 384*x + 576))

Grab only the x-coordinate (less work):

sage: mx = E.multiplication_by_m(2, x_only=True); mx
(1/4*x^4 + 1/2*x^2 - 6*x + 1/4)/(x^3 - x + 3)
sage: mx.parent()
Fraction Field of Univariate Polynomial Ring in x over Rational Field

We check that it works on a point:

sage: P = E([2,3])
sage: eval = lambda f,P: [fi(P[0],P[1]) for fi in f]
sage: assert E(eval(f,P)) == 2*P

We do the same but with multiplication by 3:

82 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: f = E.multiplication_by_m(3)
sage: assert E(eval(f,P)) == 3*P

And the same with multiplication by 4:

sage: f = E.multiplication_by_m(4)
sage: assert E(eval(f,P)) == 4*P

And the same with multiplication by -1,-2,-3,-4:

sage: for m in [-1,-2,-3,-4]:
....: f = E.multiplication_by_m(m)
....: assert E(eval(f,P)) == m*P

multiplication_by_m_isogeny(m)
Return the EllipticCurveIsogeny object associated to the multiplication-by-𝑚 map on this elliptic
curve.

The resulting isogeny will have the associated rational maps (i.e., those returned by multiplica-
tion_by_m()) already computed.

NOTE: This function is currently much slower than the result of self.multiplication_by_m(),
because constructing an isogeny precomputes a significant amount of information. See Issue #7368 and Issue
#8014 for the status of improving this situation.

INPUT:

• m – a nonzero integer

OUTPUT:

• An EllipticCurveIsogeny object associated to the multiplication-by-𝑚 map on this elliptic
curve.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.multiplication_by_m_isogeny(7)
doctest:warning ... DeprecationWarning: ...
Isogeny of degree 49
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20

over Rational Field

pari_curve()

Return the PARI curve corresponding to this elliptic curve.

The result is cached.

EXAMPLES:

sage: # needs sage.libs.pari
sage: E = EllipticCurve([RR(0), RR(0), RR(1), RR(-1), RR(0)])
sage: e = E.pari_curve()
sage: type(e)
<... cypari2.gen.Gen >
sage: e.type()
t_VEC

(continues on next page)

83

https://github.com/sagemath/sage/issues/7368
https://github.com/sagemath/sage/issues/8014
https://github.com/sagemath/sage/issues/8014

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: e.disc()
37.0000000000000

Over a finite field:

sage: EllipticCurve(GF(41), [2,5]).pari_curve() #␣
→˓needs sage.libs.pari
[Mod(0, 41), Mod(0, 41), Mod(0, 41), Mod(2, 41), Mod(5, 41),
Mod(0, 41), Mod(4, 41), Mod(20, 41), Mod(37, 41), Mod(27, 41),
Mod(26, 41), Mod(4, 41), Mod(11, 41),
Vecsmall([3]),
[41, [9, 31, [6, 0, 0, 0]]], [0, 0, 0, 0]]

Over a 𝑝-adic field:

sage: # needs sage.libs.pari sage.rings.padics
sage: Qp = pAdicField(5, prec=3)
sage: E = EllipticCurve(Qp, [3, 4])
sage: E.pari_curve()
[0, 0, 0, 3, 4, 0, 6, 16, -9, -144, -3456, -8640, 1728/5,
Vecsmall([2]), [O(5^3)], [0, 0]]

sage: E.j_invariant()
3*5^-1 + O(5)

Over a number field:

sage: K.<a> = QuadraticField(2) #␣
→˓needs sage.libs.pari sage.rings.number_field
sage: E = EllipticCurve([1,a]) #␣
→˓needs sage.libs.pari sage.rings.number_field
sage: E.pari_curve() #␣
→˓needs sage.libs.pari sage.rings.number_field
[0, 0, 0, Mod(1, y^2 - 2),
Mod(y, y^2 - 2), 0, Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2),
Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2),
Vecsmall([5]),
[[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310; 1, 1.41421356237310],
[1, -1.41421356237310; 1, 1.41421356237310],
[16, -23; 16, 23], [2, 0; 0, 4], [4, 0; 0, 2], [2, 0; 0, 1],
[2, [0, 2; 1, 0]], [2]], [-1.41421356237310, 1.41421356237310],
[1, y], [1, 0; 0, 1], [1, 0, 0, 2; 0, 1, 1, 0]]], [0, 0, 0, 0, 0]]

PARI no longer requires that the 𝑗-invariant has negative 𝑝-adic valuation:

sage: E = EllipticCurve(Qp,[1, 1]) #␣
→˓needs sage.libs.pari sage.rings.padics
sage: E.j_invariant() # the j-invariant is a p-adic integer #␣
→˓needs sage.libs.pari sage.rings.padics
2 + 4*5^2 + O(5^3)
sage: E.pari_curve() #␣
→˓needs sage.libs.pari sage.rings.padics
[0, 0, 0, 1, 1, 0, 2, 4, -1, -48, -864, -496, 6912/31,
Vecsmall([2]), [O(5^3)], [0, 0]]

plot(xmin=None, xmax=None, components='both', **args)
Draw a graph of this elliptic curve.

84 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

The plot method is only implemented when there is a natural coercion from the base ring of self to RR. In
this case, self is plotted as if it was defined over RR.

INPUT:

• xmin, xmax – (optional) points will be computed at least within this range, but possibly farther.

• components – a string, one of the following:

– both – (default), scale so that both bounded and unbounded components appear

– bounded – scale the plot to show the bounded component. Raises an error if there is only one real
component.

– unbounded – scale the plot to show the unbounded component, including the two flex points.

• plot_points – passed to sage.plot.generate_plot_points()

• adaptive_tolerance – passed to sage.plot.generate_plot_points()

• adaptive_recursion – passed to sage.plot.generate_plot_points()

• randomize – passed to sage.plot.generate_plot_points()

• **args – all other options are passed to sage.plot.line.Line

EXAMPLES:

sage: E = EllipticCurve([0, -1])
sage: plot(E, rgbcolor=hue(0.7)) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: E = EllipticCurve(37a)
sage: plot(E) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives
sage: plot(E, xmin=25, xmax=26) #␣
→˓needs sage.plot
Graphics object consisting of 2 graphics primitives

With Issue #12766 we added the components keyword:

sage: E.real_components()
2
sage: E.plot(components= bounded) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: E.plot(components= unbounded) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

If there is only one component then specifying components=’bounded’ raises a ValueError:

sage: E = EllipticCurve(9990be2)
sage: E.plot(components= bounded) #␣
→˓needs sage.plot
Traceback (most recent call last):
...
ValueError: no bounded component for this curve

An elliptic curve defined over the Complex Field can not be plotted:

85

../../../../../../../html/en/reference/plotting/sage/plot/line.html#sage.plot.line.Line
https://github.com/sagemath/sage/issues/12766

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(CC, [0,0,1,-1,0])
sage: E.plot() #␣
→˓needs sage.plot
Traceback (most recent call last):
...
NotImplementedError: plotting of curves over Complex Field
with 53 bits of precision is not implemented yet

rst_transform(r, s, t)
Return the transform of the curve by (𝑟, 𝑠, 𝑡) (with 𝑢 = 1).

INPUT:

• r, s, t – three elements of the base ring.

OUTPUT:

The elliptic curve obtained from self by the standard Weierstrass transformation (𝑢, 𝑟, 𝑠, 𝑡) with 𝑢 = 1.

Note: This is just a special case of change_weierstrass_model(), with 𝑢 = 1.

EXAMPLES:

sage: R.<r,s,t> = QQ[]
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.rst_transform(r, s, t)
Elliptic Curve defined by y^2 + (2*s+1)*x*y + (r+2*t+3)*y
= x^3 + (-s^2+3*r-s+2)*x^2 + (3*r^2-r*s-2*s*t+4*r-3*s-t+4)*x

+ (r^3+2*r^2-r*t-t^2+4*r-3*t+5)
over Multivariate Polynomial Ring in r, s, t over Rational Field

scalar_multiplication(m)
Return the scalar-multiplication map [𝑚] on this elliptic curve as a sage.schemes.
elliptic_curves.hom_scalar.EllipticCurveHom_scalar object.

EXAMPLES:

sage: E = EllipticCurve(77a1)
sage: m = E.scalar_multiplication(-7); m
Scalar-multiplication endomorphism [-7]
of Elliptic Curve defined by y^2 + y = x^3 + 2*x over Rational Field
sage: m.degree()
49
sage: P = E(2,3)
sage: m(P)
(-26/225 : -2132/3375 : 1)
sage: m.rational_maps() == E.multiplication_by_m(-7)
True

scale_curve(u)

Return the transform of the curve by scale factor 𝑢.

INPUT:

• u – an invertible element of the base ring.

OUTPUT:

86 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

The elliptic curve obtained from self by the standard Weierstrass transformation (𝑢, 𝑟, 𝑠, 𝑡) with 𝑟 = 𝑠 =
𝑡 = 0.

Note: This is just a special case of change_weierstrass_model(), with 𝑟 = 𝑠 = 𝑡 = 0.

EXAMPLES:

sage: K = Frac(PolynomialRing(QQ, u))
sage: u = K.gen()
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.scale_curve(u)
Elliptic Curve defined by
y^2 + u*x*y + 3*u^3*y = x^3 + 2*u^2*x^2 + 4*u^4*x + 5*u^6
over Fraction Field of Univariate Polynomial Ring in u over Rational Field

short_weierstrass_model(complete_cube=True)
Return a short Weierstrass model for self.

INPUT:

• complete_cube – boolean (default: True); for meaning, see below.

OUTPUT:

An elliptic curve.

If complete_cube=True: Return a model of the form 𝑦2 = 𝑥3 + 𝑎 * 𝑥 + 𝑏 for this curve. The
characteristic must not be 2; in characteristic 3, it is only possible if 𝑏2 = 0.

If complete_cube=False: Return a model of the form 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for this curve. The
characteristic must not be 2.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over␣
→˓Rational Field
sage: F = E.short_weierstrass_model()
sage: F
Elliptic Curve defined by y^2 = x^3 + 4941*x + 185166 over Rational Field
sage: E.is_isomorphic(F)
True
sage: F = E.short_weierstrass_model(complete_cube=False)
sage: F
Elliptic Curve defined by y^2 = x^3 + 9*x^2 + 88*x + 464 over Rational Field
sage: E.is_isomorphic(F)
True

sage: E = EllipticCurve(GF(3), [1,2,3,4,5])
sage: E.short_weierstrass_model(complete_cube=False)
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 3

This used to be different see Issue #3973:

sage: E.short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 3

More tests in characteristic 3:

87

https://github.com/sagemath/sage/issues/3973

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(3), [0,2,1,2,1])
sage: E.short_weierstrass_model()
Traceback (most recent call last):
...
ValueError: short_weierstrass_model(): no short model for Elliptic Curve
defined by y^2 + y = x^3 + 2*x^2 + 2*x + 1 over Finite Field of size 3
(characteristic is 3)
sage: E.short_weierstrass_model(complete_cube=False)
Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2*x + 2
over Finite Field of size 3
sage: E.short_weierstrass_model(complete_cube=False).is_isomorphic(E)
True

torsion_polynomial(m, x=None, two_torsion_multiplicity=2, force_evaluate=None)
Return the𝑚𝑡ℎ division polynomial of this elliptic curve evaluated at 𝑥.

The division polynomial is cached if 𝑥 is None.

INPUT:

• m – positive integer.

• x – optional ring element to use as the 𝑥 variable. If 𝑥 is None (omitted), then a new polynomial ring
will be constructed over the base ring of the elliptic curve, and its generator will be used as 𝑥. Note
that 𝑥 does not need to be a generator of a polynomial ring; any ring element works. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

• two_torsion_multiplicity – 0, 1, or 2

If 0: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which omits factors whose roots are the 𝑥-coordinates of the 2-torsion points. When 𝑥 is not None, the
evaluation of such a polynomial at 𝑥 is returned.

If 2: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which includes a factor of degree 3 whose roots are the 𝑥-coordinates of the 2-torsion points. Similarly,
when 𝑥 is not None, the evaluation of such a polynomial at 𝑥 is returned.

If 1: For even 𝑚 when 𝑥 is None, a bivariate polynomial over the base ring of the curve is returned,
which includes a factor 2𝑦+𝑎1𝑥+𝑎3 having simple zeros at the 2-torsion points. When 𝑥 is not None,
it should be a tuple of length 2, and the evaluation of such a polynomial at 𝑥 is returned.

• force_evaluate (optional) – 0, 1, or 2

By default, this method makes use of previously cached generic division polynomials to compute the
value of the polynomial at a given element 𝑥 whenever it appears beneficial to do so. Explicitly setting
this flag overrides the default behavior.

Note that the complexity of evaluating a generic division polynomial scales much worse than that of
computing the value at a point directly (using the recursive formulas), hence setting this flag can be
detrimental to performance.

If 0: Do not use cached generic division polynomials.

If 1: If the generic division polynomial for this 𝑚 has been cached before, evaluate it at 𝑥 to compute
the result.

If 2: Compute the value at 𝑥 by evaluating the generic division polynomial. If the generic 𝑚-division
polynomial has not yet been cached, compute and cache it first.

EXAMPLES:

88 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.division_polynomial(1)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=0)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=1)
2*y + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=2)
4*x^3 - 4*x + 1
sage: E.division_polynomial(2)
4*x^3 - 4*x + 1
sage: [E.division_polynomial(3, two_torsion_multiplicity=i) for i in range(3)]
[3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1]
sage: [type(E.division_polynomial(3, two_torsion_multiplicity=i)) for i in␣
→˓range(3)]
[<... sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_
→˓flint >,
<... sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_
→˓libsingular >,
<... sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_
→˓flint >]

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z> = PolynomialRing(QQ)
sage: E.division_polynomial(4, z, 0)
2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821
sage: E.division_polynomial(4, z)
8*z^9 - 24*z^8 - 464*z^7 - 2758*z^6 + 6636*z^5 + 34356*z^4
+ 53510*z^3 + 99714*z^2 + 351024*z + 459859

This does not work, since when two_torsion_multiplicity is 1, we compute a bivariate polynomial, and must
evaluate at a tuple of length 2:

sage: E.division_polynomial(4,z,1)
Traceback (most recent call last):
...
ValueError: x should be a tuple of length 2 (or None)
when two_torsion_multiplicity is 1
sage: R.<z,w> = PolynomialRing(QQ, 2)
sage: E.division_polynomial(4, (z,w), 1).factor()
(2*w + 1) * (2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821)

We can also evaluate this bivariate polynomial at a point:

sage: P = E(5,5)
sage: E.division_polynomial(4,P,two_torsion_multiplicity=1)
-1771561

two_division_polynomial(x=None)
Return the 2-division polynomial of this elliptic curve evaluated at x.

INPUT:

• x – optional ring element to use as the 𝑥 variable. If x is None, then a new polynomial ring will be
constructed over the base ring of the elliptic curve, and its generator will be used as x. Note that x
does not need to be a generator of a polynomial ring; any ring element is acceptable. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

89

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(5077a1)
sage: E.two_division_polynomial()
4*x^3 - 28*x + 25
sage: E = EllipticCurve(GF(3^2, a), [1,1,1,1,1]) #␣
→˓needs sage.rings.finite_rings
sage: E.two_division_polynomial() #␣
→˓needs sage.rings.finite_rings
x^3 + 2*x^2 + 2
sage: E.two_division_polynomial().roots() #␣
→˓needs sage.rings.finite_rings
[(2, 1), (2*a, 1), (a + 2, 1)]

sage.schemes.elliptic_curves.ell_generic.is_EllipticCurve(x)
Utility function to test if x is an instance of an Elliptic Curve class.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_generic import is_EllipticCurve
sage: E = EllipticCurve([1,2,3/4,7,19])
sage: is_EllipticCurve(E)
doctest:warning...
DeprecationWarning: The function is_EllipticCurve is deprecated; use isinstance(.
→˓.., EllipticCurve_generic) instead.
See https://github.com/sagemath/sage/issues/38022 for details.
True
sage: is_EllipticCurve(0)
False

90 Chapter 4. Elliptic curves over a general ring

CHAPTER

FIVE

ELLIPTIC CURVES OVER A GENERAL FIELD

This module defines the class EllipticCurve_field, based on EllipticCurve_generic, for elliptic curves
over general fields.

class sage.schemes.elliptic_curves.ell_field.EllipticCurve_field(R, data,
category=None)

Bases: EllipticCurve_generic, ProjectivePlaneCurve_field

Constructor for elliptic curves over fields.

Identical to the constructor for elliptic curves over general rings, except for setting the default category to
AbelianVarieties.

EXAMPLES:

sage: E = EllipticCurve(QQ, [1,1])
sage: E.category()
Category of abelian varieties over Rational Field
sage: E = EllipticCurve(GF(101), [1,1])
sage: E.category()
Category of abelian varieties over Finite Field of size 101

base_field()

Return the base ring of the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(GF(49, a), [3,5]) #␣
→˓needs sage.rings.finite_rings
sage: E.base_ring() #␣
→˓needs sage.rings.finite_rings
Finite Field in a of size 7^2

sage: E = EllipticCurve([1,1])
sage: E.base_ring()
Rational Field

sage: E = EllipticCurve(ZZ, [3,5])
sage: E.base_ring()
Integer Ring

descend_to(K , f=None)
Given an elliptic curve self defined over a field 𝐿 and a subfield 𝐾 of 𝐿, return all elliptic curves over 𝐾
which are isomorphic over 𝐿 to self.

INPUT:

91

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field
../../../../../../../html/en/reference/categories/sage/categories/schemes.html#sage.categories.schemes.AbelianVarieties

Elliptic curves, Release 10.4.rc1

• 𝐾 – a field which embeds into the base field 𝐿 of self.

• 𝑓 (optional) – an embedding of𝐾 into 𝐿. Ignored if𝐾 is Q.

OUTPUT:

A list (possibly empty) of elliptic curves defined over 𝐾 which are isomorphic to self over 𝐿, up to isomor-
phism over𝐾.

Note: Currently only implemented over number fields. To extend to other fields of characteristic not 2
or 3, what is needed is a method giving the preimages in 𝐾*/(𝐾*)𝑚 of an element of the base field, for
𝑚 = 2, 4, 6.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.descend_to(ZZ)
Traceback (most recent call last):
...
TypeError: Input must be a field.

sage: # needs sage.rings.number_field
sage: F. = QuadraticField(23)
sage: x = polygen(ZZ, x)
sage: G.<a> = F.extension(x^3 + 5)
sage: E = EllipticCurve(j=1728*b).change_ring(G)
sage: EF = E.descend_to(F); EF
[Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484)

over Number Field in b with defining polynomial x^2 - 23
with b = 4.795831523312720?]

sage: all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF)
True

sage: # needs sage.rings.number_field
sage: L.<a> = NumberField(x^4 - 7)
sage: K. = NumberField(x^2 - 7, embedding=a^2)
sage: E = EllipticCurve([a^6, 0])
sage: EK = E.descend_to(K); EK
[Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b

with defining polynomial x^2 - 7 with b = a^2,
Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b
with defining polynomial x^2 - 7 with b = a^2]

sage: all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK)
True

sage: K.<a> = QuadraticField(17) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(j=2*a) #␣
→˓needs sage.rings.number_field
sage: E.descend_to(QQ) #␣
→˓needs sage.rings.number_field
[]

division_field(n, names='t', map=False, **kwds)
Given an elliptic curve over a number field or finite field 𝐹 and a positive integer 𝑛, construct the 𝑛-division
field 𝐹 (𝐸[𝑛]).

92 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

The 𝑛-division field is the smallest extension of 𝐹 over which all 𝑛-torsion points of 𝐸 are defined.

INPUT:

• 𝑛 – a positive integer

• names – (default: t) a variable name for the division field

• map – (default: False) also return an embedding of the base_field() into the resulting field

• kwds – additional keyword arguments passed to splitting_field()

OUTPUT:

If map is False, the division field 𝐾 as an absolute number field or a finite field. If map is True, a tuple
(𝐾,𝜑) where 𝜑 is an embedding of the base field in the division field𝐾.

Warning: This can take a very long time when the degree of the division field is large (e.g. when 𝑛
is large or when the Galois representation is surjective). The simplify flag also has a big influence
on the running time over number fields: sometimes simplify=False is faster, sometimes the default
simplify=True is faster.

EXAMPLES:

The 2-division field is the same as the splitting field of the 2-division polynomial (therefore, it has degree 1,
2, 3 or 6):

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(15a1)
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x
sage: E = EllipticCurve(14a1)
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^2 + 5*x + 92
sage: E = EllipticCurve(196b1)
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127
sage: E = EllipticCurve(19a1)
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial
x^6 + 10*x^5 + 24*x^4 - 212*x^3 + 1364*x^2 + 24072*x + 104292

For odd primes 𝑛, the division field is either the splitting field of the 𝑛-division polynomial, or a quadratic
extension of it.

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(50a1)
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3

sage: K. = E.division_field(3, simplify_all=True); K
Number Field in b
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3

If we take any quadratic twist, the splitting field of the 3-division polynomial remains the same, but the
3-division field becomes a quadratic extension:

93

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.number_field
sage: E = E.quadratic_twist(5) # 50b3
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a
with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2 + 3*x + 3

sage: K. = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9
+ 30*x^8 - 63*x^7 + 109*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4

Try another quadratic twist, this time over a subfield of 𝐹 :

sage: # needs sage.rings.number_field
sage: G.<c>,_,_ = F.subfields(3)[0]
sage: E = E.base_extend(G).quadratic_twist(c); E
Elliptic Curve defined
by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000)
over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9

sage: K. = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 25*x^10 + 130*x^8 + 645*x^6␣
→˓+ 1050*x^4 + 675*x^2 + 225

Some higher-degree examples:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(11a1)
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial
x^6 + 2*x^5 - 48*x^4 - 436*x^3 + 1668*x^2 + 28792*x + 73844

sage: K. = E.division_field(3); K # long time
Number Field in b with defining polynomial x^48 ...
sage: K. = E.division_field(5); K
Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1
sage: E.division_field(5, b , simplify=False)
Number Field in b with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
sage: E.base_extend(K).torsion_subgroup() # long time
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(27a1)
sage: K. = E.division_field(3); K
Number Field in b with defining polynomial x^2 + 3*x + 9
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial
x^6 + 6*x^5 + 24*x^4 - 52*x^3 - 228*x^2 + 744*x + 3844

sage: K. = E.division_field(2, simplify_all=True); K
Number Field in b with defining polynomial x^6 - 3*x^5 + 5*x^3 - 3*x + 1
sage: K. = E.division_field(5); K # long time
Number Field in b with defining polynomial x^48 ...
sage: K. = E.division_field(7); K # long time
Number Field in b with defining polynomial x^72 ...

Over a number field:

sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)

(continues on next page)

94 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0,0,0,0,i])
sage: L. = E.division_field(2); L
Number Field in b with defining polynomial x^4 - x^2 + 1
sage: L., phi = E.division_field(2, map=True); phi
Ring morphism:

From: Number Field in i with defining polynomial x^2 + 1
To: Number Field in b with defining polynomial x^4 - x^2 + 1
Defn: i |--> -b^3

sage: L., phi = E.division_field(3, map=True)
sage: L
Number Field in b with defining polynomial x^24 - 6*x^22 - 12*x^21
- 21*x^20 + 216*x^19 + 48*x^18 + 804*x^17 + 1194*x^16 - 13488*x^15
+ 21222*x^14 + 44196*x^13 - 47977*x^12 - 102888*x^11 + 173424*x^10
- 172308*x^9 + 302046*x^8 + 252864*x^7 - 931182*x^6 + 180300*x^5
+ 879567*x^4 - 415896*x^3 + 1941012*x^2 + 650220*x + 443089

sage: phi
Ring morphism:

From: Number Field in i with defining polynomial x^2 + 1
To: Number Field in b with defining polynomial x^24 ...
Defn: i |--> -215621657062634529/183360797284413355040732*b^23 ...

Over a finite field:

sage: E = EllipticCurve(GF(431^2), [1,0]) #␣
→˓needs sage.rings.finite_rings
sage: E.division_field(5, map=True) #␣
→˓needs sage.rings.finite_rings
(Finite Field in t of size 431^4,
Ring morphism:

From: Finite Field in z2 of size 431^2
To: Finite Field in t of size 431^4
Defn: z2 |--> 52*t^3 + 222*t^2 + 78*t + 105)

sage: E = EllipticCurve(GF(433^2), [1,0]) #␣
→˓needs sage.rings.finite_rings
sage: K.<v> = E.division_field(7); K #␣
→˓needs sage.rings.finite_rings
Finite Field in v of size 433^16

It also works for composite orders:

sage: E = EllipticCurve(GF(11), [5,5])
sage: E.change_ring(E.division_field(8)).abelian_group().torsion_subgroup(8).
→˓invariants()
(8, 8)
sage: E.change_ring(E.division_field(9)).abelian_group().torsion_subgroup(9).
→˓invariants()
(9, 9)
sage: E.change_ring(E.division_field(10)).abelian_group().torsion_
→˓subgroup(10).invariants()
(10, 10)
sage: E.change_ring(E.division_field(36)).abelian_group().torsion_
→˓subgroup(36).invariants()
(36, 36)
sage: E.change_ring(E.division_field(11)).abelian_group().torsion_

(continues on next page)

95

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓subgroup(11).invariants()
(11,)
sage: E.change_ring(E.division_field(66)).abelian_group().torsion_
→˓subgroup(66).invariants()
(6, 66)

…also over number fields:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0,0,0,0,i])
sage: L,emb = E.division_field(6, names= b , map=True); L
Number Field in b with defining polynomial x^24 + 12*x^23 + ...
sage: E.change_ring(emb).torsion_subgroup().invariants()
(6, 6)

See also:

To compute a basis of the 𝑛-torsion once the base field has been extended, you may use sage.
schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field.
torsion_subgroup() or sage.schemes.elliptic_curves.ell_finite_field.
EllipticCurve_finite_field.torsion_basis().

AUTHORS:

• Jeroen Demeyer (2014-01-06): Issue #11905, use splitting_field method, moved from
gal_reps.py, make it work over number fields.

• Lorenz Panny (2022): extend to finite fields

• Lorenz Panny (2023): extend to composite 𝑛.

endomorphism_ring_is_commutative()

Check whether the endomorphism ring of this elliptic curve over its base field is commutative.

ALGORITHM: The endomorphism ring is always commutative in characteristic zero. Over finite fields, it is
commutative if and only if the Frobenius endomorphism is not in . All elliptic curves with non-commutative
endomorphism ring are supersingular. (The converse holds over the algebraic closure, but here we consider
endomorphisms over the field of definition.)

EXAMPLES:

sage: EllipticCurve(QQ, [1,1]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(QQ, [1,0]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19), [1,1]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19^2), [1,1]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19), [1,0]).endomorphism_ring_is_commutative()
True
sage: EllipticCurve(GF(19^2), [1,0]).endomorphism_ring_is_commutative()
False
sage: EllipticCurve(GF(19^3), [1,0]).endomorphism_ring_is_commutative()
True

genus()

Return 1 for elliptic curves.

96 Chapter 5. Elliptic curves over a general field

https://github.com/sagemath/sage/issues/11905

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(GF(3), [0, -1, 0, -346, 2652])
sage: E.genus()
1

sage: R = FractionField(QQ[z])
sage: E = EllipticCurve(R, [0, -1, 0, -346, 2652])
sage: E.genus()
1

hasse_invariant()

Return the Hasse invariant of this elliptic curve.

OUTPUT:

The Hasse invariant of this elliptic curve, as an element of the base field. This is only defined over fields of
positive characteristic, and is an element of the field which is zero if and only if the curve is supersingular.
Over a field of characteristic zero, where the Hasse invariant is undefined, a ValueError is raised.

EXAMPLES:

sage: E = EllipticCurve([Mod(1,2), Mod(1,2), 0, 0, Mod(1,2)])
sage: E.hasse_invariant()
1
sage: E = EllipticCurve([0, 0, Mod(1,3), Mod(1,3), Mod(1,3)])
sage: E.hasse_invariant()
0
sage: E = EllipticCurve([0, 0, Mod(1,5), 0, Mod(2,5)])
sage: E.hasse_invariant()
0
sage: E = EllipticCurve([0, 0, Mod(1,5), Mod(1,5), Mod(2,5)])
sage: E.hasse_invariant()
2

Some examples over larger fields:

sage: # needs sage.rings.finite_rings
sage: EllipticCurve(GF(101), [0,0,0,0,1]).hasse_invariant()
0
sage: EllipticCurve(GF(101), [0,0,0,1,1]).hasse_invariant()
98
sage: EllipticCurve(GF(103), [0,0,0,0,1]).hasse_invariant()
20
sage: EllipticCurve(GF(103), [0,0,0,1,1]).hasse_invariant()
17
sage: F.<a> = GF(107^2)
sage: EllipticCurve(F, [0,0,0,a,1]).hasse_invariant()
62*a + 75
sage: EllipticCurve(F, [0,0,0,0,a]).hasse_invariant()
0

Over fields of characteristic zero, the Hasse invariant is undefined:

sage: E = EllipticCurve([0,0,0,0,1])
sage: E.hasse_invariant()
Traceback (most recent call last):
...
ValueError: Hasse invariant only defined in positive characteristic

97

Elliptic curves, Release 10.4.rc1

is_isogenous(other, field=None)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• field (default None) – Currently not implemented. A field containing the base fields of the two elliptic
curves onto which the two curves may be extended to test if they are isogenous over this field. By default
is_isogenous will not try to find this field unless one of the curves can be be extended into the base
field of the other, in which case it will test over the larger base field.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other defined over field.

METHOD:

Over general fields this is only implemented in trivial cases.

EXAMPLES:

sage: E1 = EllipticCurve(CC, [1,18]); E1
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
over Complex Field with 53 bits of precision

sage: E2 = EllipticCurve(CC, [2,7]); E2
Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000
over Complex Field with 53 bits of precision

sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general␣
→˓fields.

sage: E1 = EllipticCurve(Frac(PolynomialRing(ZZ, t)), [2,19]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 19
over Fraction Field of Univariate Polynomial Ring in t over Integer Ring

sage: E2 = EllipticCurve(CC, [23,4]); E2
Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000
over Complex Field with 53 bits of precision

sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general␣
→˓fields.

is_quadratic_twist(other)
Determine whether this curve is a quadratic twist of another.

INPUT:

• other – an elliptic curve with the same base field as self.

OUTPUT:

Either 0, if the curves are not quadratic twists, or 𝐷 if other is self.quadratic_twist(D) (up to
isomorphism). If self and other are isomorphic, returns 1.

If the curves are defined over Q, the output 𝐷 is a squarefree integer.

Note: Not fully implemented in characteristic 2, or in characteristic 3 when both 𝑗-invariants are 0.

98 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: Et = E.quadratic_twist(-24)
sage: E.is_quadratic_twist(Et)
-6

sage: E1 = EllipticCurve([0,0,1,0,0])
sage: E1.j_invariant()
0
sage: E2 = EllipticCurve([0,0,0,0,2])
sage: E1.is_quadratic_twist(E2)
2
sage: E1.is_quadratic_twist(E1)
1
sage: type(E1.is_quadratic_twist(E1)) == type(E1.is_quadratic_twist(E2)) #␣
→˓Issue #6574
True

sage: E1 = EllipticCurve([0,0,0,1,0])
sage: E1.j_invariant()
1728
sage: E2 = EllipticCurve([0,0,0,2,0])
sage: E1.is_quadratic_twist(E2)
0
sage: E2 = EllipticCurve([0,0,0,25,0])
sage: E1.is_quadratic_twist(E2)
5

sage: # needs sage.rings.finite_rings
sage: F = GF(101)
sage: E1 = EllipticCurve(F, [4,7])
sage: E2 = E1.quadratic_twist()
sage: D = E1.is_quadratic_twist(E2); D != 0
True
sage: F = GF(101)
sage: E1 = EllipticCurve(F, [4,7])
sage: E2 = E1.quadratic_twist()
sage: D = E1.is_quadratic_twist(E2)
sage: E1.quadratic_twist(D).is_isomorphic(E2)
True
sage: E1.is_isomorphic(E2)
False
sage: F2 = GF(101^2, a)
sage: E1.change_ring(F2).is_isomorphic(E2.change_ring(F2))
True

A characteristic 3 example:

sage: # needs sage.rings.finite_rings
sage: F = GF(3^5, a)
sage: E1 = EllipticCurve_from_j(F(1))
sage: E2 = E1.quadratic_twist(-1)
sage: D = E1.is_quadratic_twist(E2); D != 0
True
sage: E1.quadratic_twist(D).is_isomorphic(E2)
True

99

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: E1 = EllipticCurve_from_j(F(0))
sage: E2 = E1.quadratic_twist()
sage: D = E1.is_quadratic_twist(E2); D
1
sage: E1.is_isomorphic(E2)
True

is_quartic_twist(other)
Determine whether this curve is a quartic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not quartic twists, or 𝐷 if other is self.quartic_twist(D) (up to iso-
morphism). If self and other are isomorphic, returns 1.

Note: Not fully implemented in characteristics 2 or 3.

EXAMPLES:

sage: E = EllipticCurve_from_j(GF(13)(1728))
sage: E1 = E.quartic_twist(2)
sage: D = E.is_quartic_twist(E1); D!=0
True
sage: E.quartic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(1728)
sage: E1 = E.quartic_twist(12345)
sage: D = E.is_quartic_twist(E1); D
15999120
sage: (D/12345).is_perfect_power(4)
True

is_sextic_twist(other)

Determine whether this curve is a sextic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not sextic twists, or 𝐷 if other is self.sextic_twist(D) (up to isomor-
phism). If self and other are isomorphic, returns 1.

Note: Not fully implemented in characteristics 2 or 3.

EXAMPLES:

sage: E = EllipticCurve_from_j(GF(13)(0))
sage: E1 = E.sextic_twist(2)

(continues on next page)

100 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: D = E.is_sextic_twist(E1); D != 0
True
sage: E.sextic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(0)
sage: E1 = E.sextic_twist(12345)
sage: D = E.is_sextic_twist(E1); D
575968320
sage: (D/12345).is_perfect_power(6)
True

isogenies_prime_degree(l=None, max_l=31)
Return a list of all separable isogenies of given prime degree(s) with domain equal to self, which are defined
over the base field of self.

INPUT:

• l – a prime or a list of primes.

• max_l – (default: 31) a bound on the primes to be tested. This is only used if l is None.

OUTPUT:

(list) All separable 𝑙-isogenies for the given 𝑙 with domain self.

ALGORITHM:

Calls the generic function isogenies_prime_degree(). This is generic code, valid for all fields. It
requires that certain operations have been implemented over the base field, such as root-finding for univariate
polynomials.

EXAMPLES:

Examples over finite fields:

sage: # needs sage.libs.pari
sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣
→˓size 1000003

to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite␣
→˓Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field␣

→˓of size 1000003]
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(7)

(continues on next page)

101

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13

from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣
→˓size 1000003

to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite␣
→˓Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite␣

→˓Field of size 1000003]
sage: E.isogenies_prime_degree(max_l=13)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣
→˓size 1000003

to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite␣
→˓Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field␣

→˓of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite␣

→˓Field of size 1000003]
sage: E.isogenies_prime_degree() # Default limit of 31
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣
→˓size 1000003

to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite␣
→˓Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field␣

→˓of size 1000003,
Isogeny of degree 13

(continues on next page)

102 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

(continued from previous page)

from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣
→˓size 1000003

to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite␣
→˓Field of size 1000003,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 347438*x + 594729 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 674846*x + 7392 over Finite␣

→˓Field of size 1000003,
Isogeny of degree 23
from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of␣

→˓size 1000003
to Elliptic Curve defined by y^2 = x^3 + 390065*x + 605596 over Finite␣

→˓Field of size 1000003]

sage: E = EllipticCurve(GF(17), [2,0])
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite Field of size 17,

Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite Field of size␣

→˓17,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17
to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite Field of size␣

→˓17]

The base field matters, over a field extension we find more isogenies:

sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of␣
→˓size 13

to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field of␣
→˓size 13,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field of␣

→˓size 13]

sage: # needs sage.rings.finite_rings
(continues on next page)

103

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(GF(13^6), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣
→˓of size 13^6

to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field in z6␣
→˓of size 13^6,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣

→˓of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x␣

→˓+ (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite Field in z6 of size 13^6,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣

→˓of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (11*z6^5+7*z6^4+4*z6^3+5*z6+9)*x␣

→˓+ (10*z6^5+4*z6^4+6*z6^3+z6+10) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣

→˓of size 13^6
to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field in z6␣

→˓of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣

→˓of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (3*z6^5+5*z6^4+8*z6^3+11*z6^

→˓2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^2+7*z6+6) over Finite Field in␣
→˓z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣

→˓of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (7*z6^4+12*z6^3+7*z6^2+4)*x +␣

→˓(6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite Field in z6 of size 13^6,
Isogeny of degree 3
from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6␣

→˓of size 13^6
to Elliptic Curve defined by y^2 = x^3 + (10*z6^5+z6^4+6*z6^3+8*z6^

→˓2+8*z6)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7) over Finite Field in z6␣
→˓of size 13^6]

If the degree equals the characteristic, we find only separable isogenies:

sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13

from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of␣
→˓size 13

to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field of␣
→˓size 13]
sage: E = EllipticCurve(GF(5), [1,1])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5

from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
to Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size␣

→˓5]

sage: # needs sage.rings.finite_rings
(continues on next page)

104 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: k.<a> = GF(3^4)
sage: E = EllipticCurve(k, [0,1,0,0,a])
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3

from Elliptic Curve defined by y^2 = x^3 + x^2 + a
over Finite Field in a of size 3^4

to Elliptic Curve defined by y^2 = x^3 + x^2 + (2*a^3+a^2+2)*x + (a^2+2)
over Finite Field in a of size 3^4]

In the supersingular case, there are no separable isogenies of degree equal to the characteristic:

sage: E = EllipticCurve(GF(5), [0,1])
sage: E.isogenies_prime_degree(5)
[]

An example over a rational function field:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: E = EllipticCurve(K, [1, t^5])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5

from Elliptic Curve defined by y^2 = x^3 + x + t^5 over Fraction Field
of Univariate Polynomial Ring in t over Finite Field of size 5

to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field
of Univariate Polynomial Ring in t over Finite Field of size 5]

Examples over number fields (other than QQ):

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: QQroot2.<e> = NumberField(x^2 - 2)
sage: E = EllipticCurve(QQroot2, j=8000)
sage: E.isogenies_prime_degree()
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)
over Number Field in e with defining polynomial x^2 - 2

to Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 2401000
over Number Field in e with defining polynomial x^2 - 2,

Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)

over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x +␣

→˓(54022500*e-88837000)
over Number Field in e with defining polynomial x^2 - 2,

Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000)

over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 = x^3 + (-220500*e-257250)*x + (-

→˓54022500*e-88837000)
over Number Field in e with defining polynomial x^2 - 2]

sage: E = EllipticCurve(QQroot2, [1,0,1,4, -6]); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2

sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
(continues on next page)

105

Elliptic curves, Release 10.4.rc1

(continued from previous page)

over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70)

over Number Field in e with defining polynomial x^2 - 2]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3

from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)
over Number Field in e with defining polynomial x^2 - 2

to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-1)*x
over Number Field in e with defining polynomial x^2 - 2,

Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6)

over Number Field in e with defining polynomial x^2 - 2
to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874)

over Number Field in e with defining polynomial x^2 - 2]

These are not implemented yet:

sage: E = EllipticCurve(QQbar, [1,18]); E #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + x + 18 over Algebraic Field
sage: E.isogenies_prime_degree() #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for QQbar, but has not␣
→˓been yet.

sage: E = EllipticCurve(CC, [1,18]); E
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
over Complex Field with 53 bits of precision
sage: E.isogenies_prime_degree(11)
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for general complex␣
→˓fields,
but has not been yet.

isogeny(kernel, codomain=None, degree=None, model=None, check=True, algorithm=None,
velu_sqrt_bound=None)

Return an elliptic-curve isogeny from this elliptic curve.

The isogeny can be specified in two ways, by passing either a polynomial or a set of torsion points. The
methods used are:

• Factored Isogenies (see hom_composite): Given a point, or a list of points which generate a
composite-order subgroup, decomposes the isogeny into prime-degree steps. This can be used to con-
struct isogenies of extremely large, smooth degree. When applicable, this algorithm is selected as default
(see below). After factoring the degree single isogenies are computed using the other methods. This
algorithm is selected using algorithm="factored".

• Vélu’s Formulas: Vélu’s original formulas for computing isogenies. This algorithm is selected by giving
as the kernel parameter a single point generating a finite subgroup.

• Kohel’s Formulas: Kohel’s original formulas for computing isogenies. This algorithm is selected by
giving as the kernel parameter a monic polynomial (or a coefficient list in little endian) which will
define the kernel of the isogeny. Kohel’s algorithm is currently only implemented for cyclic isogenies,
with the exception of [2].

106 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

• √éluAlgorithm (seehom_velusqrt): A variant of Vélu’s formulas with essentially square-root instead
of linear complexity (in the degree). Currently only available over finite fields. The input must be a single
kernel point of odd order ≥ 5. This algorithm is selected using algorithm="velusqrt".

INPUT:

• kernel – a kernel: either a point on this curve, a list of points on this curve, a monic kernel polynomial,
or None. If initializing from a codomain, this must be None.

• codomain – an elliptic curve (default: None).

– If kernel is None, then degree must be given as well and the given codomain must be the
codomain of a cyclic, separable, normalized isogeny of the given degree.

– If kernel is not None, then this must be isomorphic to the codomain of the separable isogeny
defined by kernel; in this case, the isogeny is post-composed with an isomorphism so that the
codomain equals the given curve.

• degree – an integer (default: None).

– If kernel is None, then this is the degree of the isogeny from this curve to codomain.

– If kernel is not None, then this is used to determine whether or not to skip a gcd of the given
kernel polynomial with the two-torsion polynomial of this curve.

• model – a string (default: None). Supported values (cf. compute_model()):

– "minimal": If self is a curve over the rationals or over a number field, then the codomain is a
global minimal model where this exists.

– "short_weierstrass": The codomain is a short Weierstrass curve, assuming one exists.

– "montgomery": The codomain is an (untwisted) Montgomery curve, assuming one exists over
this field.

• check (default: True) – check whether the input is valid. Setting this to False can lead to significant
speedups.

• algorithm – string (optional). The possible choices are:

– "velusqrt": Use EllipticCurveHom_velusqrt.

– "factored": Use EllipticCurveHom_composite to decompose the isogeny into
prime-degree steps.

– "traditional": Use EllipticCurveIsogeny.

When algorithm is not specified, and kernel is not None, an algorithm is selected using the fol-
lowing criteria:

– if kernel is a list of multiple points, "factored" is selected.

– If kernel is a single point, or a list containing a single point:

∗ if the order of the point is unknown, "traditional" is selected.

∗ If the order is known and composite, "factored" is selected.

∗ If the order is known and prime, a choice between "velusqrt" and "traditional" is
done according to the velu_sqrt_bound parameter (see below).

If none of the previous apply, "traditional" is selected.

• velu_sqrt_bound – an integer (default: None). Establish the highest (prime) degree for which the
"traditional" algorithm should be selected instead of "velusqrt". If None, the default value
from _VeluBoundObj is used. This value is initially set to 1000, but can be modified by the user. If

107

Elliptic curves, Release 10.4.rc1

an integer is supplied and the isogeny computation goes through the "factored" algorithm, the same
integer is supplied to each factor.

The degree parameter is not supported when an algorithm is specified.

OUTPUT:

An isogeny between elliptic curves. This is a morphism of curves. (In all cases, the returned object will be
an instance of EllipticCurveHom.)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F = GF(2^5, alpha); alpha = F.gen()
sage: E = EllipticCurve(F, [1,0,1,1,1])
sage: R.<x> = F[]
sage: phi = E.isogeny(x + 1)
sage: phi.rational_maps()
((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))

sage: E = EllipticCurve(11a1)
sage: P = E.torsion_points()[1]
sage: E.isogeny(P)
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580

over Rational Field

sage: E = EllipticCurve(GF(19),[1,1])
sage: P = E(15,3); Q = E(2,12)
sage: (P.order(), Q.order())
(7, 3)
sage: phi = E.isogeny([P,Q]); phi
Composite morphism of degree 21 = 7*3:

From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size␣
→˓19
To: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size␣

→˓19
sage: phi(E.random_point()) # all points defined over GF(19) are in the␣
→˓kernel
(0 : 1 : 0)

sage: E = EllipticCurve(GF(2^32 - 5), [170246996, 2036646110]) #␣
→˓needs sage.rings.finite_rings
sage: P = E.lift_x(2) #␣
→˓needs sage.rings.finite_rings
sage: E.isogeny(P, algorithm="factored") #␣
→˓needs sage.rings.finite_rings
Composite morphism of degree 1073721825 = 3^4*5^2*11*19*43*59:

From: Elliptic Curve defined by y^2 = x^3 + 170246996*x + 2036646110
over Finite Field of size 4294967291

To: Elliptic Curve defined by y^2 = x^3 + 272790262*x + 1903695400
over Finite Field of size 4294967291

Not all polynomials define a finite subgroup (Issue #6384):

108 Chapter 5. Elliptic curves over a general field

https://github.com/sagemath/sage/issues/6384

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: phi = E.isogeny([14,27,4,1])
Traceback (most recent call last):
...
ValueError: the polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite
subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2
over Finite Field of size 31

Order of the point known and composite:

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: P = E(26, 4)
sage: assert P.order() == 12
sage: print(P._order)
12
sage: E.isogeny(P)
Composite morphism of degree 12 = 2^2*3:

From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field␣
→˓of size 31
To: Elliptic Curve defined by y^2 + x*y = x^3 + 26*x + 8 over Finite␣

→˓Field of size 31

kernel is a list of points:

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: P = E(21,2)
sage: Q = E(7, 12)
sage: print(P.order())
6
sage: print(Q.order())
2
sage: E.isogeny([P, Q])
Composite morphism of degree 12 = 2*3*2:

From: Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field␣
→˓of size 31
To: Elliptic Curve defined by y^2 + x*y = x^3 + 2*x + 26 over Finite␣

→˓Field of size 31

Multiple ways to set the 𝑣𝑒𝑙𝑢𝑠𝑞𝑟𝑡𝑏𝑜𝑢𝑛𝑑:

sage: E = EllipticCurve_from_j(GF(97)(42))
sage: P = E.gens()[0]*4
sage: print(P.order())
23
sage: E.isogeny(P)
Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over␣
→˓Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 72*x + 29␣
→˓over Finite Field of size 97
sage: E.isogeny(P, velu_sqrt_bound=10)
Elliptic-curve isogeny (using square-root Vélu) of degree 23:

From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of␣
→˓size 97
To: Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of␣

→˓size 97
sage: from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound
sage: _velu_sqrt_bound.set(10)
sage: E.isogeny(P)

(continues on next page)

109

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic-curve isogeny (using square-root Vélu) of degree 23:
From: Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over Finite Field of␣

→˓size 97
To: Elliptic Curve defined by y^2 = x^3 + 95*x + 68 over Finite Field of␣

→˓size 97
sage: _velu_sqrt_bound.set(1000) # Reset bound

If the order of the point is unknown, fall back to "traditional":

sage: E = EllipticCurve_from_j(GF(97)(42))
sage: P = E(2, 39)
sage: from sage.schemes.elliptic_curves.hom_velusqrt import _velu_sqrt_bound
sage: _velu_sqrt_bound.set(1)
sage: E.isogeny(P)
Isogeny of degree 46 from Elliptic Curve defined by y^2 = x^3 + 6*x + 46 over␣
→˓Finite Field of size 97 to Elliptic Curve defined by y^2 = x^3 + 87*x + 47␣
→˓over Finite Field of size 97
sage: _velu_sqrt_bound.set(1000) # Reset bound

See also:

• EllipticCurveHom

• EllipticCurveIsogeny

• EllipticCurveHom_composite

isogeny_codomain(kernel)
Return the codomain of the isogeny from self with given kernel.

INPUT:

• kernel – Either a list of points in the kernel of the isogeny, or a kernel polynomial (specified as either
a univariate polynomial or a coefficient list.)

OUTPUT:

An elliptic curve, the codomain of the separable normalized isogeny defined by this kernel.

EXAMPLES:

sage: E = EllipticCurve(17a1)
sage: R.<x> = QQ[]
sage: E2 = E.isogeny_codomain(x - 11/4); E2
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64
over Rational Field

isogeny_ell_graph(l, directed=True, label_by_j=False)
Return a graph representing the l-degree K-isogenies between K-isomorphism classes of elliptic curves for
K = self.base_field().

INPUT:

• l – prime degree of isogenies

• directed – boolean (default: True); whether to return a directed or undirected graph. In the undi-
rected case, the in-degrees and out-degrees of the vertices must be balanced and therefore the number
of out-edges from the vertices corresponding to j-invariants 0 and 1728 (if they are part of the graph)
are reduced to match the number of in-edges.

110 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

• label_by_j – boolean (default: False); whether to label graph vertices by the j-invariant corre-
sponding to the isomorphism class of curves. If the j-invariant is not unique in the isogeny class, append
* to it to indicate a twist. Otherwise, if False label vertices by the equation of a representative curve.

OUTPUT: A Graph or DiGraph.

EXAMPLES:

Ordinary curve over finite extension field of degree 2:

sage: # needs sage.graphs sage.rings.finite_rings
sage: x = polygen(ZZ, x)
sage: E = EllipticCurve(GF(59^2, "i", x^2 + 1), j=5)
sage: G = E.isogeny_ell_graph(5, directed=False, label_by_j=True); G
Graph on 20 vertices
sage: G.vertices(sort=True)
[1 ,
12 ,

...
i + 55]

sage: G.edges(sort=True)
[(1 , 28*i + 11 , None),
(1 , 31*i + 11 , None),
...
(8 , i + 1 , None)]

Supersingular curve over prime field:

sage: # needs sage.graphs sage.rings.finite_rings
sage: E = EllipticCurve(GF(419), j=1728)
sage: G3 = E.isogeny_ell_graph(3, directed=False, label_by_j=True); G3
Graph on 27 vertices
sage: G3.vertices(sort=True)
[0 ,
0* ,

...
98*]

sage: G3.edges(sort=True)
[(0 , 0* , None),
(0 , 13 , None),
...
(48* , 98* , None)]
sage: G5 = E.isogeny_ell_graph(5, directed=False, label_by_j=True); G5
Graph on 9 vertices
sage: G5.vertices(sort=True)
[13 , 13* , 407 , 407* , 52 , 62 , 62* , 98 , 98*]
sage: G5.edges(sort=True)
[(13 , 52 , None),
(13 , 98 , None),
...
(62* , 98* , None)]

Supersingular curve over finite extension field of degree 2:

sage: # needs sage.graphs sage.rings.finite_rings
sage: K = GF(431^2, "i", x^2 + 1)
sage: E = EllipticCurve(K, j=0)
sage: E.is_supersingular()
True

(continues on next page)

111

../../../../../../../html/en/reference/graphs/sage/graphs/graph.html#sage.graphs.graph.Graph
../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: G = E.isogeny_ell_graph(2, directed=True, label_by_j=True); G
Looped multi-digraph on 37 vertices
sage: G.vertices(sort=True)
[0 ,
102 ,

...
87*i + 190]

sage: G.edges(sort=True)
[(0 , 125 , None),
(0 , 125 , None),
...
81*i + 65 , None)]

sage: H = E.isogeny_ell_graph(2, directed=False, label_by_j=True); H
Looped multi-graph on 37 vertices
sage: H.vertices(sort=True)
[0 ,
102 ,

...
87*i + 190]

sage: H.edges(sort=True)
[(0 , 125 , None),
(102 , 125 , None),
...
(81*i + 65 , 87*i + 190 , None)]

Curve over a quadratic number field:

sage: # needs sage.graphs sage.rings.finite_rings sage.rings.number_field
sage: K.<e> = NumberField(x^2 - 2)
sage: E = EllipticCurve(K, [1, 0, 1, 4, -6])
sage: G2 = E.isogeny_ell_graph(2, directed=False)
sage: G2.vertices(sort=True)
[y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038) ,
y^2 + x*y + y = x^3 + (-36)*x + (-70) ,
y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038) ,
y^2 + x*y + y = x^3 + 4*x + (-6)]

sage: G2.edges(sort=True)
[(y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038) ,

y^2 + x*y + y = x^3 + (-36)*x + (-70) , None),
(y^2 + x*y + y = x^3 + (-36)*x + (-70) ,
y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038) , None),

(y^2 + x*y + y = x^3 + (-36)*x + (-70) ,
y^2 + x*y + y = x^3 + 4*x + (-6) , None)]

sage: G3 = E.isogeny_ell_graph(3, directed=False)
sage: G3.vertices(sort=True)
[y^2 + x*y + y = x^3 + (-1)*x ,
y^2 + x*y + y = x^3 + (-171)*x + (-874) ,
y^2 + x*y + y = x^3 + 4*x + (-6)]

sage: G3.edges(sort=True)
[(y^2 + x*y + y = x^3 + (-1)*x ,

y^2 + x*y + y = x^3 + 4*x + (-6) , None),
(y^2 + x*y + y = x^3 + (-171)*x + (-874) ,
y^2 + x*y + y = x^3 + 4*x + (-6) , None)]

kernel_polynomial_from_divisor(f , l, check)
Given an irreducible divisor 𝑓 of the 𝑙-division polynomial on this curve, return the kernel polynomial defining
the subgroup defined by 𝑓 .

112 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

If the given polynomial does not define a rational subgroup, a ValueError is raised.

This method is currently only implemented for prime 𝑙.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [0,1])
sage: f,_ = E.division_polynomial(5).factor()[0]
sage: ker = E.kernel_polynomial_from_divisor(f, 5); ker
x^2 + (49*z2 + 10)*x + 30*z2 + 80
sage: E.isogeny(ker)
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size␣
→˓101^2
to Elliptic Curve defined by y^2 = x^3 + (6*z2+16)*x + 18 over Finite Field␣
→˓in z2 of size 101^2

The method detects invalid inputs:

sage: E = EllipticCurve(GF(101), [0,1])
sage: f,_ = E.division_polynomial(5).factor()[-1]
sage: E.kernel_polynomial_from_divisor(f, 5)
Traceback (most recent call last):
...
ValueError: given polynomial does not define a rational 5-isogeny

sage: E = EllipticCurve(GF(101), [1,1])
sage: f,_ = E.division_polynomial(7).factor()[-1]
sage: E.kernel_polynomial_from_divisor(f, 7)
Traceback (most recent call last):
...
ValueError: given polynomial does not define a rational 7-isogeny

sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^12 - 2*x^10 + 3*x^8 + 228/13*x^6 + 235/13*x^4 +␣
→˓22/13*x^2 + 1/13)
sage: E = EllipticCurve(K, [1,0])
sage: ker = E.kernel_polynomial_from_divisor(x - t, 13); ker
x^6 + (-169/64*t^10 + 169/32*t^8 - 247/32*t^6 - 377/8*t^4 - 2977/64*t^2 - 105/
→˓32)*x^4 + (-169/32*t^10 + 169/16*t^8 - 247/16*t^6 - 377/4*t^4 - 2977/32*t^2␣
→˓- 89/16)*x^2 - 13/64*t^10 + 13/32*t^8 - 19/32*t^6 - 29/8*t^4 - 229/64*t^2 -␣
→˓13/32
sage: phi = E.isogeny(ker, check=True); phi
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + x
over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/

→˓13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13
to Elliptic Curve defined by y^2 = x^3 + (-2535/16*t^10+2535/8*t^8-3705/8*t^
→˓6-5655/2*t^4-44655/16*t^2-2047/8)*x
over Number Field in t with defining polynomial x^12 - 2*x^10 + 3*x^8 + 228/

→˓13*x^6 + 235/13*x^4 + 22/13*x^2 + 1/13

ALGORITHM: [EPSV2023], Algorithm 3 (KernelPolynomialFromDivisor).

kernel_polynomial_from_point(P, algorithm)
Given a point 𝑃 on this curve which generates a rational subgroup, return the kernel polynomial of that sub-
group as a polynomial over the base field of the curve. (The point 𝑃 itself may be defined over an extension.)

EXAMPLES:

113

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(101), [1,1])
sage: F = GF(101^3)
sage: EE = E.change_ring(F)
sage: xK = F([77, 28, 8]); xK
8*z3^2 + 28*z3 + 77
sage: K = EE.lift_x(xK); K.order()
43
sage: E.kernel_polynomial_from_point(K)
x^21 + 7*x^20 + 22*x^19 + 4*x^18 + 7*x^17 + 81*x^16 + 41*x^15 + 68*x^14 +␣
→˓18*x^13 + 58*x^12 + 31*x^11 + 26*x^10 + 62*x^9 + 20*x^8 + 73*x^7 + 23*x^6 +␣
→˓66*x^5 + 79*x^4 + 12*x^3 + 40*x^2 + 50*x + 93

The "minpoly" algorithm is often much faster than the "basic" algorithm:

sage: from sage.schemes.elliptic_curves.ell_field import EllipticCurve_field,␣
→˓point_of_order
sage: p = 2^127 - 1
sage: E = EllipticCurve(GF(p), [1,0])
sage: P = point_of_order(E, 31)
sage: %timeit E.kernel_polynomial_from_point(P, algorithm= basic) # not␣
→˓tested
4.38 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
sage: %timeit E.kernel_polynomial_from_point(P, algorithm= minpoly) # not␣
→˓tested
854 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Example of finding all the rational isogenies using this method:

sage: E = EllipticCurve(GF(71), [1,2,3,4,5])
sage: F = E.division_field(11)
sage: EE = E.change_ring(F)
sage: fs = set()
sage: for K in EE(0).division_points(11):
....: if not K:
....: continue
....: Kp = EE.frobenius_isogeny()(K)
....: if Kp.weil_pairing(K, 11) == 1:
....: fs.add(E.kernel_polynomial_from_point(K))
sage: fs = sorted(fs); fs
[x^5 + 10*x^4 + 18*x^3 + 10*x^2 + 43*x + 46,
x^5 + 65*x^4 + 39*x^2 + 20*x + 63]

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_
→˓polynomial
sage: {is_kernel_polynomial(E, 11, f) for f in fs}
{True}
sage: isogs = [E.isogeny(f) for f in fs]
sage: isogs[0]
Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 +␣
→˓2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^
→˓2 + x*y + 3*y = x^3 + 2*x^2 + 34*x + 42 over Finite Field of size 71
sage: isogs[1]
Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 +␣
→˓2*x^2 + 4*x + 5 over Finite Field of size 71 to Elliptic Curve defined by y^
→˓2 + x*y + 3*y = x^3 + 2*x^2 + 12*x + 40 over Finite Field of size 71
sage: set(isogs) == set(E.isogenies_prime_degree(11))
True

ALGORITHM:

114 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

• The "basic" algorithm is to multiply together all the linear factors (𝑋 − 𝑥([𝑖]𝑃)) of the kernel poly-
nomial using a product tree, then converting the result to the base field of the curve. Its complexity is̃︀𝑂(ℓ𝑘) where 𝑘 is the extension degree.

• The"minpoly" algorithm is [EPSV2023], Algorithm 4 (KernelPolynomialFromIrrationalX).
Over finite fields, its complexity is 𝑂(ℓ𝑘) + ̃︀𝑂(ℓ) where 𝑘 is the extension degree.

quadratic_twist(D=None)

Return the quadratic twist of this curve by D.

INPUT:

• D (default None) the twisting parameter (see below).

In characteristics other than 2, 𝐷 must be nonzero, and the twist is isomorphic to self after adjoining
√︀
(𝐷)

to the base.

In characteristic 2,𝐷 is arbitrary, and the twist is isomorphic to self after adjoining a root of 𝑥2 + 𝑥+𝐷 to
the base.

In characteristic 2 when 𝑗 = 0, this is not implemented.

If the base field 𝐹 is finite, 𝐷 need not be specified, and the curve returned is the unique curve (up to
isomorphism) defined over 𝐹 isomorphic to the original curve over the quadratic extension of 𝐹 but not over
𝐹 itself. Over infinite fields, an error is raised if 𝐷 is not given.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve([GF(1103)(1), 0, 0, 107, 340]); E
Elliptic Curve defined by y^2 + x*y = x^3 + 107*x + 340
over Finite Field of size 1103

sage: F = E.quadratic_twist(-1); F
Elliptic Curve defined by y^2 = x^3 + 1102*x^2 + 609*x + 300
over Finite Field of size 1103

sage: E.is_isomorphic(F)
False
sage: E.is_isomorphic(F, GF(1103^2, a))
True

A characteristic 2 example:

sage: E = EllipticCurve(GF(2), [1,0,1,1,1])
sage: E1 = E.quadratic_twist(1)
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1, GF(4, a))
True

Over finite fields, the twisting parameter may be omitted:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(2^10)
sage: E = EllipticCurve(k, [a^2,a,1,a+1,1])
sage: Et = E.quadratic_twist()
sage: Et # random (only determined up to isomorphism)
Elliptic Curve defined
by y^2 + x*y = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^6+a^4+1)
over Finite Field in a of size 2^10

sage: E.is_isomorphic(Et)

(continues on next page)

115

Elliptic curves, Release 10.4.rc1

(continued from previous page)

False
sage: E.j_invariant() == Et.j_invariant()
True

sage: # needs sage.rings.finite_rings
sage: p = next_prime(10^10)
sage: k = GF(p)
sage: E = EllipticCurve(k, [1,2,3,4,5])
sage: Et = E.quadratic_twist()
sage: Et # random (only determined up to isomorphism)
Elliptic Curve defined
by y^2 = x^3 + 7860088097*x^2 + 9495240877*x + 3048660957
over Finite Field of size 10000000019

sage: E.is_isomorphic(Et)
False
sage: k2 = GF(p^2, a)
sage: E.change_ring(k2).is_isomorphic(Et.change_ring(k2))
True

quartic_twist(D)
Return the quartic twist of this curve by 𝐷.

INPUT:

• D (must be nonzero) – the twisting parameter

Note: The characteristic must not be 2 or 3, and the 𝑗-invariant must be 1728.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve_from_j(GF(13)(1728)); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13
sage: E1 = E.quartic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1, GF(13^2, a))
False
sage: E.is_isomorphic(E1, GF(13^4, a))
True

sextic_twist(D)

Return the sextic twist of this curve by 𝐷.

INPUT:

• D (must be nonzero) – the twisting parameter

Note: The characteristic must not be 2 or 3, and the 𝑗-invariant must be 0.

EXAMPLES:

116 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve_from_j(GF(13)(0)); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13
sage: E1 = E.sextic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1, GF(13^2, a))
False
sage: E.is_isomorphic(E1, GF(13^4, a))
False
sage: E.is_isomorphic(E1, GF(13^6, a))
True

two_torsion_rank()

Return the dimension of the 2-torsion subgroup of 𝐸(𝐾).

This will be 0, 1 or 2.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.two_torsion_rank()
0
sage: K.<alpha> = QQ.extension(E.division_polynomial(2).monic()) #␣
→˓needs sage.rings.number_field
sage: E.base_extend(K).two_torsion_rank() #␣
→˓needs sage.rings.number_field
1
sage: E.reduction(53).two_torsion_rank()
2

sage: E = EllipticCurve(14a1)
sage: E.two_torsion_rank()
1
sage: f = E.division_polynomial(2).monic().factor()[1][0]
sage: K.<alpha> = QQ.extension(f) #␣
→˓needs sage.rings.number_field
sage: E.base_extend(K).two_torsion_rank() #␣
→˓needs sage.rings.number_field
2

sage: EllipticCurve(15a1).two_torsion_rank()
2

weierstrass_p(prec=20, algorithm=None)
Compute the Weierstrass ℘-function of this elliptic curve.

ALGORITHM: sage.schemes.elliptic_curves.ell_wp.weierstrass_p()

INPUT:

• prec – precision

• algorithm – string or None (default: None): a choice of algorithm among "pari", "fast",
"quadratic"; or None to let this function determine the best algorithm to use.

OUTPUT:

117

Elliptic curves, Release 10.4.rc1

A Laurent series in one variable 𝑧 with coefficients in the base field 𝑘 of 𝐸.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)
sage: E.weierstrass_p(prec=20, algorithm= fast)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/
→˓43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)
sage: E.weierstrass_p(prec=20, algorithm= pari)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/
→˓43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)
sage: E.weierstrass_p(prec=20, algorithm= quadratic)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8
+ 1202285717/928746000*z^10 + 2403461/2806650*z^12 + 30211462703/
→˓43418875500*z^14
+ 3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)

sage.schemes.elliptic_curves.ell_field.compute_model(E , name)
Return a model of an elliptic curve E of the type specified in the name parameter.

Used as a helper function in EllipticCurveIsogeny.

INPUT:

• E (elliptic curve)

• name (string) – current options:

– "minimal": Return a global minimal model of E if it exists, and a semi-global minimal model other-
wise. For this choice, E must be defined over a number field. See global_minimal_model().

– "short_weierstrass": Return a short Weierstrass model of E assuming one exists. See
short_weierstrass_model().

– "montgomery": Return an (untwisted) Montgomery model of E assuming one exists over this field.
See montgomery_model().

OUTPUT:

An elliptic curve of the specified type isomorphic to 𝐸.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_field import compute_model
sage: E = EllipticCurve([12/7, 405/49, 0, -81/8, 135/64])
sage: compute_model(E, minimal)
Elliptic Curve defined by y^2 = x^3 - x^2 - 7*x + 10 over Rational Field

(continues on next page)

118 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: compute_model(E, short_weierstrass)
Elliptic Curve defined by y^2 = x^3 - 48114*x + 4035015 over Rational Field
sage: compute_model(E, montgomery)
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x over Rational Field

sage.schemes.elliptic_curves.ell_field.point_of_order(E , n)
Given an elliptic curve 𝐸 over a finite field or a number field and an integer 𝑛 ≥ 1, construct a point of order 𝑛 on
𝐸, possibly defined over an extension of the base field of 𝐸.

Currently only prime powers 𝑛 are supported.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_field import point_of_order
sage: E = EllipticCurve(GF(101), [1,2,3,4,5])
sage: P = point_of_order(E, 5); P # random
(50*Y^5 + 48*Y^4 + 26*Y^3 + 37*Y^2 + 48*Y + 15 : 25*Y^5 + 31*Y^4 + 79*Y^3 + 39*Y^
→˓2 + 3*Y + 20 : 1)
sage: P.base_ring()
Finite Field in Y of size 101^6
sage: P.order()
5
sage: P.curve().a_invariants()
(1, 2, 3, 4, 5)

sage: Q = point_of_order(E, 8); Q # random
(69*x^5 + 24*x^4 + 100*x^3 + 65*x^2 + 88*x + 97 : 65*x^5 + 28*x^4 + 5*x^3 + 45*x^
→˓2 + 42*x + 18 : 1)
sage: 8*Q == 0 and 4*Q != 0
True

sage: from sage.schemes.elliptic_curves.ell_field import point_of_order
sage: E = EllipticCurve(QQ, [7,7])
sage: P = point_of_order(E, 3); P # random
(x : -Y : 1)
sage: P.base_ring()
Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field
sage: P.base_ring().base_field()
Number Field in x with defining polynomial x^4 + 14*x^2 + 28*x - 49/3
sage: P.order()
3
sage: P.curve().a_invariants()
(0, 0, 0, 7, 7)

sage: Q = point_of_order(E, 4); Q # random
(x : Y : 1)
sage: Q.base_ring()
Number Field in Y with defining polynomial Y^2 - x^3 - 7*x - 7 over its base field
sage: Q.base_ring().base_field()
Number Field in x with defining polynomial x^6 + 35*x^4 + 140*x^3 - 245*x^2 -␣
→˓196*x - 735
sage: Q.order()
4

119

Elliptic curves, Release 10.4.rc1

120 Chapter 5. Elliptic curves over a general field

CHAPTER

SIX

ELLIPTIC CURVES OVER FINITE FIELDS

AUTHORS:

• William Stein (2005): Initial version

• Robert Bradshaw et al….

• John Cremona (2008-02): Point counting and group structure for non-prime fields, Frobenius endomorphism and
order, elliptic logs

• Mariah Lenox (2011-03): Added set_order method

• Lorenz Panny, John Cremona (2023-02): .twists()

• Lorenz Panny (2023): special_supersingular_curve()

class sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field(R,
data,
cat-
e-
gory=None)

Bases: EllipticCurve_field

Elliptic curve over a finite field.

EXAMPLES:

sage: EllipticCurve(GF(101),[2,3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Finite Field of size 101

sage: # needs sage.rings.finite_rings
sage: F = GF(101^2, a)
sage: EllipticCurve([F(2),F(3)])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Finite Field in a of size 101^
→˓2

Elliptic curves over /𝑁 with 𝑁 prime are of type “elliptic curve over a finite field”:

sage: F = Zmod(101)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_
→˓with_category >
sage: E.category()
Category of abelian varieties over Ring of integers modulo 101

121

Elliptic curves, Release 10.4.rc1

Elliptic curves over /𝑁 with 𝑁 composite are of type “generic elliptic curve”:

sage: F = Zmod(95)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_
→˓category >
sage: E.category()
Category of schemes over Ring of integers modulo 95
sage: TestSuite(E).run(skip=["_test_elements"])

abelian_group()

Return the abelian group structure of the group of points on this elliptic curve.

See also:

If you do not need the complete abelian group structure but only generators of the group, use gens() which
can be much faster in some cases.

This method relies on gens(), which uses random points on the curve and hence the generators are likely
to differ from one run to another. However, the group is cached, so the generators will not change in any one
run of Sage.

OUTPUT:

• an AdditiveAbelianGroupWrapper object encapsulating the abelian group of rational points on
this elliptic curve

ALGORITHM:

We first call gens() to obtain a generating set (𝑃,𝑄). Letting 𝑃 denote the point of larger order 𝑛1, we
extend 𝑃 to a basis (𝑃,𝑄′) by computing a scalar 𝑥 such that 𝑄′ = 𝑄 − [𝑥]𝑃 has order 𝑛2 = #𝐸/𝑛1.
Finding 𝑥 involves a (typically easy) discrete-logarithm computation.

The complexity of the algorithm is the cost of factoring the group order, plus Θ(
√
ℓ) for each prime ℓ such

that the rational ℓ∞-torsion of self is isomorphic to /ℓ𝑟 × /ℓ𝑠 with 𝑟 > 𝑠 > 0, times a polynomial in
the logarithm of the base-field size.

AUTHORS:

• John Cremona: original implementation

• Lorenz Panny (2021): current implementation

See also:

AdditiveAbelianGroupWrapper.from_generators()

EXAMPLES:

sage: E = EllipticCurve(GF(11),[2,5])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/10 embedded in
Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 2*x + 5
over Finite Field of size 11

sage: E = EllipticCurve(GF(41),[2,5])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/22 + Z/2 ...

122 Chapter 6. Elliptic curves over finite fields

../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper
../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper.from_generators

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(3^6, a)
sage: E = EllipticCurve([a^4 + a^3 + 2*a^2 + 2*a, 2*a^5 + 2*a^3 + 2*a^2 + 1])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/26 + Z/26 ...

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(101^3, a)
sage: E = EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/1031352 ...

The group can be trivial:

sage: E = EllipticCurve(GF(2), [0,0,1,1,1])
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on
Elliptic Curve defined by y^2 + y = x^3 + x + 1 over Finite Field of size 2

Of course, there are plenty of points if we extend the field:

sage: E.cardinality(extension_degree=100)
1267650600228231653296516890625

This tests the patch for Issue #3111, using 10 primes randomly selected:

sage: E = EllipticCurve(389a)
sage: for p in [5927, 2297, 1571, 1709, 3851, 127, 3253, 5783, 3499, 4817]:
....: G = E.change_ring(GF(p)).abelian_group()
sage: for p in prime_range(10000): # long time (19s on sage.math, 2011)
....: if p != 389:
....: G = E.change_ring(GF(p)).abelian_group()

This tests that the bug reported in Issue #3926 has been fixed:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: OK = K.ring_of_integers()
sage: P = K.factor(10007)[0][0]
sage: OKmodP = OK.residue_field(P)
sage: E = EllipticCurve([0, 0, 0, i, i + 3])
sage: Emod = E.change_ring(OKmodP); Emod
Elliptic Curve defined by y^2 = x^3 + ibar*x + (ibar+3)
over Residue field in ibar of Fractional ideal (10007)

sage: Emod.abelian_group() #random generators
(Multiplicative Abelian group isomorphic to C50067594 x C2,
((3152*ibar + 7679 : 7330*ibar + 7913 : 1), (8466*ibar + 1770 : 0 : 1)))

cardinality(algorithm=None, extension_degree=1)
Return the number of points on this elliptic curve.

INPUT:

• algorithm – (optional) string:

– pari – use the PARI C-library function ellcard.

– bsgs – use the baby-step giant-step method as
implemented in Sage, with the Cremona-Sutherland version of Mestre’s trick.

123

https://github.com/sagemath/sage/issues/3111
https://github.com/sagemath/sage/issues/3926

Elliptic curves, Release 10.4.rc1

– exhaustive – naive point counting.

– subfield – reduce to a smaller field, provided that the j-invariant lies in a subfield.

– all – compute cardinality with both pari and bsgs ; return result if they agree or raise
a AssertionError if they do not

• extension_degree – an integer 𝑑 (default: 1): if the base field is F𝑞 , return the cardinality of self
over the extension F𝑞𝑑 of degree 𝑑.

OUTPUT:

The order of the group of rational points of self over its base field, or over an extension field of degree 𝑑
as above. The result is cached.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: EllipticCurve(GF(4, a), [1,2,3,4,5]).cardinality()
8
sage: k.<a> = GF(3^3)
sage: l = [a^2 + 1, 2*a^2 + 2*a + 1, a^2 + a + 1, 2, 2*a]
sage: EllipticCurve(k,l).cardinality()
29

sage: # needs sage.rings.finite_rings
sage: l = [1, 1, 0, 2, 0]
sage: EllipticCurve(k, l).cardinality()
38

An even bigger extension (which we check against Magma):

sage: # needs sage.rings.finite_rings
sage: EllipticCurve(GF(3^100, a), [1,2,3,4,5]).cardinality()
515377520732011331036459693969645888996929981504
sage: magma.eval("Order(EllipticCurve([GF(3^100)|1,2,3,4,5]))") # optional␣
→˓- magma
515377520732011331036459693969645888996929981504

sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality()
10076
sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality(algorithm= pari)
10076
sage: EllipticCurve(GF(next_prime(10**20)), [1,2,3,4,5]).cardinality()
100000000011093199520

The cardinality is cached:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(3^100, a), [1,2,3,4,5])
sage: E.cardinality() is E.cardinality()
True

The following is very fast since the curve is actually defined over the prime field:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(11^100)
sage: E1 = EllipticCurve(k, [3,3])
sage: N1 = E1.cardinality(algorithm="subfield"); N1

(continues on next page)

124 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

137806123398222701841183371720896367762643312000384671846835266941791510341065565176497846502742959856128
sage: E1.cardinality_pari() == N1
True
sage: E2 = E1.quadratic_twist()
sage: N2 = E2.cardinality(algorithm="subfield"); N2
137806123398222701841183371720896367762643312000384656816094284101308193849980588362304472492174093035876
sage: E2.cardinality_pari() == N2
True
sage: N1 + N2 == 2*(k.cardinality() + 1)
True

We can count points over curves defined as a reduction:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ)
sage: K.<w> = NumberField(x^2 + x + 1)
sage: EK = EllipticCurve(K, [0, 0, w, 2, 1])
sage: E = EK.base_extend(K.residue_field(2))
sage: E
Elliptic Curve defined by y^2 + wbar*y = x^3 + 1
over Residue field in wbar of Fractional ideal (2)

sage: E.cardinality()
7
sage: E = EK.base_extend(K.residue_field(w - 1))
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined
by y^2 + y = x^3 + 2*x + 1 over Residue field of Fractional ideal (w - 1)

sage: R.<x> = GF(17)[]
sage: pol = R.irreducible_element(5)
sage: k.<a> = R.residue_field(pol)
sage: E = EllipticCurve(R, [1, x]).base_extend(k)
sage: E
Elliptic Curve defined by y^2 = x^3 + x + a
over Residue field in a of Principal ideal (x^5 + x + 14)
of Univariate Polynomial Ring in x over Finite Field of size 17

sage: E.cardinality()
1421004

cardinality_bsgs(verbose=False)

Return the cardinality of self over the base field.

ALGORITHM: A variant of “Mestre’s trick” extended to all finite fields by Cremona and Sutherland, 2008.

Note:

1. The Mestre-Schoof-Cremona-Sutherland algorithm may fail for a small finite number of curves over 𝐹𝑞
for 𝑞 at most 49, so for 𝑞 < 50 we use an exhaustive count.

2. Quadratic twists are not implemented in characteristic 2 when 𝑗 = 0(= 1728); but this case is treated
separately.

EXAMPLES:

125

Elliptic curves, Release 10.4.rc1

sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p), [3,4])
sage: E.cardinality_bsgs()
1020
sage: E = EllipticCurve(GF(3^4, a), [1,1])
sage: E.cardinality_bsgs()
64
sage: F.<a> = GF(101^3, a)
sage: E = EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])
sage: E.cardinality_bsgs()
1031352

cardinality_exhaustive()

Return the cardinality of self over the base field.

This simply adds up the number of points with each x-coordinate: only used for small field sizes!

EXAMPLES:

sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p), [3,4])
sage: E.cardinality_exhaustive()
1020
sage: E = EllipticCurve(GF(3^4, a), [1,1])
sage: E.cardinality_exhaustive()
64

cardinality_pari()

Return the cardinality of self using PARI.

This uses pari:ellcard.

EXAMPLES:

sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p),[3,4])
sage: E.cardinality_pari()
1020
sage: K = GF(next_prime(10^6))
sage: E = EllipticCurve(K,[1,0,0,1,1])
sage: E.cardinality_pari()
999945

Since Issue #16931, this now works over finite fields which are not prime fields:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(7^3)
sage: E = EllipticCurve_from_j(a)
sage: E.cardinality_pari()
318
sage: K.<a> = GF(3^20)
sage: E = EllipticCurve(K,[1,0,0,1,a])
sage: E.cardinality_pari()
3486794310

count_points(n=1)
Return the cardinality of this elliptic curve over the base field or extensions.

INPUT:

126 Chapter 6. Elliptic curves over finite fields

https://pari.math.u-bordeaux.fr/dochtml/help/ellcard
https://github.com/sagemath/sage/issues/16931

Elliptic curves, Release 10.4.rc1

• n (int) – a positive integer

OUTPUT:

If 𝑛 = 1, returns the cardinality of the curve over its base field.

If 𝑛 > 1, returns a list [𝑐1, 𝑐2, ..., 𝑐𝑛] where 𝑐𝑑 is the cardinality of the curve over the extension of degree 𝑑
of its base field.

EXAMPLES:

sage: p = 101
sage: F = GF(p)
sage: E = EllipticCurve(F, [2,3])
sage: E.count_points(1)
96
sage: E.count_points(5)
[96, 10368, 1031904, 104053248, 10509895776]

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(p^2)
sage: E = EllipticCurve(F, [a,a])
sage: E.cardinality()
10295
sage: E.count_points()
10295
sage: E.count_points(1)
10295
sage: E.count_points(5)
[10295, 104072155, 1061518108880, 10828567126268595, 110462212555439192375]

endomorphism_discriminant_from_class_number(h)
Return the endomorphism order discriminant of this ordinary elliptic curve, given its class number h.

INPUT:

• h – a positive integer

OUTPUT:

(integer) The discriminant of the endomorphism ring End(𝐸), if this has class number h. If End(𝐸) does
not have class number h, a ValueError is raised.

ALGORITHM:

Compute the trace of Frobenius and hence the discriminant 𝐷0 and class number ℎ0 of the maximal order
containing the endomorphism order. From the given value of ℎ, which must be a multiple of ℎ0, compute
the possible conductors, using height_above_floor() for each prime ℓ dividing the quotient ℎ/ℎ0. If
exactly one conductor 𝑓 remains, return 𝑓2𝐷0, otherwise raise a ValueError; this can onlyhappen when
the input value of ℎ was incorrect.

Note: Adapted from [RouSuthZur2022]. The application for which one knows the class number in ad-
vance is in the recognition of Hilbert Class Polynomials: see sage.schemes.elliptic_curves.
cm.is_HCP().

EXAMPLES:

127

Elliptic curves, Release 10.4.rc1

sage: F = GF(312401)
sage: E = EllipticCurve(F,(0, 0, 0, 309381, 93465))
sage: E.endomorphism_discriminant_from_class_number(30)
-671

We check that this is the correct discriminant, and the input value of ℎ was correct:

sage: H = hilbert_class_polynomial(-671)
sage: H(E.j_invariant()) == 0 and H.degree()==30
True

frobenius()

Return the frobenius of self as an element of a quadratic order.

Note: This computes the curve cardinality, which may be time-consuming.

Frobenius is only determined up to conjugacy.

EXAMPLES:

sage: E = EllipticCurve(GF(11),[3,3])
sage: E.frobenius()
phi
sage: E.frobenius().minpoly()
x^2 - 4*x + 11

For some supersingular curves, Frobenius is in Z:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(25, a),[0,0,0,0,1])
sage: E.frobenius()
-5

frobenius_discriminant()

Return the discriminant of the ring [𝜋𝐸] where 𝜋𝐸 is the Frobenius endomorphism.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<t> = GF(11^4)
sage: E = EllipticCurve([t,t])
sage: E.frobenius_discriminant()
-57339

frobenius_endomorphism()

Return the 𝑞-power Frobenius endomorphism of this elliptic curve, where 𝑞 is the cardinality of the (finite)
base field.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<t> = GF(11^4)
sage: E = EllipticCurve([t,t])
sage: E.frobenius_endomorphism()
Frobenius endomorphism of degree 14641 = 11^4:

From: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t␣

(continues on next page)

128 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓of size 11^4
To: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t␣

→˓of size 11^4
sage: E.frobenius_endomorphism() == E.frobenius_isogeny(4)
True

See also:

frobenius_isogeny()

frobenius_order()

Return the quadratic order Z[phi] where phi is the Frobenius endomorphism of the elliptic curve.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

sage: E = EllipticCurve(GF(11),[3,3])
sage: E.frobenius_order()
Order of conductor 2 generated by phi
in Number Field in phi with defining polynomial x^2 - 4*x + 11

For some supersingular curves, Frobenius is in Z and the Frobenius order is Z:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(25, a),[0,0,0,0,1])
sage: R = E.frobenius_order()
sage: R
Order generated by []
in Number Field in phi with defining polynomial x + 5

sage: R.degree()
1

frobenius_polynomial()

Return the characteristic polynomial of Frobenius.

The Frobenius endomorphism of the elliptic curve has quadratic characteristic polynomial. In most cases this
is irreducible and defines an imaginary quadratic order; for some supersingular curves, Frobenius is an integer
a and the polynomial is (𝑥− 𝑎)2.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

sage: E = EllipticCurve(GF(11),[3,3])
sage: E.frobenius_polynomial()
x^2 - 4*x + 11

For some supersingular curves, Frobenius is in Z and the polynomial is a square:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(25, a),[0,0,0,0,1])
sage: E.frobenius_polynomial().factor()
(x + 5)^2

129

Elliptic curves, Release 10.4.rc1

gens()

Return points which generate the abelian group of points on this elliptic curve.

The algorithm involves factoring the group order of self, but is otherwise (randomized) polynomial-time.

(The points returned by this function are not guaranteed to be the same each time, although they should remain
fixed within a single run of Sage unless abelian_group() is called.)

OUTPUT: a tuple of points on the curve.

• if the group is trivial: an empty tuple.

• if the group is cyclic: a tuple with 1 point, a generator.

• if the group is not cyclic: a tuple with 2 points, where the order of the first point equals the exponent of
the group.

Warning: In the case of 2 generators 𝑃 and𝑄, it is not guaranteed that the group is the cartesian product
of the 2 cyclic groups ⟨𝑃 ⟩ and ⟨𝑄⟩. In other words, the order of 𝑄 is not as small as possible. If you
really need a basis (rather than just a generating set) of the group, use abelian_group().

EXAMPLES:

sage: E = EllipticCurve(GF(11),[2,5])
sage: P = E.gens()[0]; P # random
(0 : 7 : 1)
sage: E.cardinality(), P.order()
(10, 10)
sage: E = EllipticCurve(GF(41),[2,5])
sage: E.gens() # random
((20 : 38 : 1), (25 : 31 : 1))
sage: E.cardinality()
44

If the abelian group has been computed, return those generators instead:

sage: E.abelian_group()
Additive abelian group isomorphic to Z/22 + Z/2
embedded in Abelian group of points on Elliptic Curve
defined by y^2 = x^3 + 2*x + 5 over Finite Field of size 41

sage: ab_gens = E.abelian_group().gens()
sage: ab_gens == E.gens()
True
sage: E.gens()[0].order()
22
sage: E.gens()[1].order()
2

Examples with 1 and 0 generators:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(3^6)
sage: E = EllipticCurve([a, a+1])
sage: pts = E.gens()
sage: len(pts)
1
sage: pts[0].order() == E.cardinality()
True

(continues on next page)

130 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(GF(2), [0,0,1,1,1])
sage: E.gens()
()

This works over larger finite fields where abelian_group() may be too expensive:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(5^60)
sage: E = EllipticCurve([a, a])
sage: len(E.gens())
2
sage: E.cardinality()
867361737988403547206134229616487867594472
sage: a = E.gens()[0].order(); a # random
433680868994201773603067114808243933797236
sage: b = E.gens()[1].order(); b # random
30977204928157269543076222486303138128374
sage: lcm(a,b)
433680868994201773603067114808243933797236

height_above_floor(ell, e)
Return the height of the 𝑗-invariant of this ordinary elliptic curve on its ℓ-volcano.

INPUT:

• ell – a prime number

• e – a non-negative integer, the ell-adic valuation of the conductor the Frobenius order

Note: For an ordinary 𝐸/F𝑞 , and a prime ℓ, the height 𝑒 of the ℓ-volcano containing 𝑗(𝐸) is the ℓ-adic
valuation of the conductor of the order generated by the Frobenius 𝜋𝐸 ; the height of 𝑗(𝐸) on its ell-volcano
is the ℓ-adic valuation of the conductor of the order End(𝐸).

ALGORITHM:

See [RouSuthZur2022].

EXAMPLES:

sage: F = GF(312401)
sage: E = EllipticCurve(F,(0, 0, 0, 309381, 93465))
sage: D = E.frobenius_discriminant(); D
-687104
sage: D.factor()
-1 * 2^10 * 11 * 61
sage: E.height_above_floor(2,8)
5

is_isogenous(other, field=None, proof=True)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• field (default None) – a field containing the base fields of the two elliptic curves into which the two
curves may be extended to test if they are isogenous over this field. By default is_isogenous will not try

131

Elliptic curves, Release 10.4.rc1

to find this field unless one of the curves can be extended into the base field of the other, in which case
it will test over the larger base field.

• proof (default: True) – this parameter is here only to be consistent with versions for other types of
elliptic curves.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other defined over field.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E1 = EllipticCurve(GF(11^2, a),[2,7]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 7 over Finite Field in a of size␣
→˓11^2
sage: E1.is_isogenous(5)
Traceback (most recent call last):
...
ValueError: Second argument is not an Elliptic Curve.
sage: E1.is_isogenous(E1)
True

sage: # needs sage.rings.finite_rings
sage: E2 = EllipticCurve(GF(7^3, b),[3,1]); E2
Elliptic Curve defined by y^2 = x^3 + 3*x + 1 over Finite Field in b of size␣
→˓7^3
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
ValueError: The base fields must have the same characteristic.

sage: # needs sage.rings.finite_rings
sage: E3 = EllipticCurve(GF(11^2, c),[4,3]); E3
Elliptic Curve defined by y^2 = x^3 + 4*x + 3 over Finite Field in c of size␣
→˓11^2
sage: E1.is_isogenous(E3)
False

sage: # needs sage.rings.finite_rings
sage: E4 = EllipticCurve(GF(11^6, d),[6,5]); E4
Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field in d of size␣
→˓11^6
sage: E1.is_isogenous(E4)
True

sage: # needs sage.rings.finite_rings
sage: E5 = EllipticCurve(GF(11^7, e),[4,2]); E5
Elliptic Curve defined by y^2 = x^3 + 4*x + 2 over Finite Field in e of size␣
→˓11^7
sage: E1.is_isogenous(E5)
Traceback (most recent call last):
...
ValueError: Curves have different base fields: use the field parameter.

When the field is given:

sage: # needs sage.rings.finite_rings
sage: E1 = EllipticCurve(GF(13^2, a),[2,7]); E1

(continues on next page)

132 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic Curve defined by y^2 = x^3 + 2*x + 7 over Finite Field in a of size␣
→˓13^2
sage: E1.is_isogenous(5,GF(13^6, f))
Traceback (most recent call last):
...
ValueError: Second argument is not an Elliptic Curve.
sage: E6 = EllipticCurve(GF(11^3, g),[9,3]); E6
Elliptic Curve defined by y^2 = x^3 + 9*x + 3 over Finite Field in g of size␣
→˓11^3
sage: E1.is_isogenous(E6,QQ)
Traceback (most recent call last):
...
ValueError: The base fields must have the same characteristic.
sage: E7 = EllipticCurve(GF(13^5, h),[2,9]); E7
Elliptic Curve defined by y^2 = x^3 + 2*x + 9 over Finite Field in h of size␣
→˓13^5
sage: E1.is_isogenous(E7,GF(13^4, i))
Traceback (most recent call last):
...
ValueError: Field must be an extension of the base fields of both curves
sage: E1.is_isogenous(E7,GF(13^10, j))
False
sage: E1.is_isogenous(E7,GF(13^30, j))
False

is_ordinary(proof=True)
Return True if this elliptic curve is ordinary, else False.

INPUT:

• proof (boolean, default: True) – If True, returns a proved result. If False, then a return value of True
is certain but a return value of False may be based on a probabilistic test. See the documentation of the
function is_j_supersingular() for more details.

EXAMPLES:

sage: F = GF(101)
sage: EllipticCurve(j=F(0)).is_ordinary()
False
sage: EllipticCurve(j=F(1728)).is_ordinary()
True
sage: EllipticCurve(j=F(66)).is_ordinary()
False
sage: EllipticCurve(j=F(99)).is_ordinary()
True

is_supersingular(proof=True)

Return True if this elliptic curve is supersingular, else False.

INPUT:

• proof (boolean, default: True) – If True, returns a proved result. If False, then a return value of False
is certain but a return value of True may be based on a probabilistic test. See the documentation of the
function is_j_supersingular() for more details.

EXAMPLES:

133

Elliptic curves, Release 10.4.rc1

sage: F = GF(101)
sage: EllipticCurve(j=F(0)).is_supersingular()
True
sage: EllipticCurve(j=F(1728)).is_supersingular()
False
sage: EllipticCurve(j=F(66)).is_supersingular()
True
sage: EllipticCurve(j=F(99)).is_supersingular()
False

multiplication_by_p_isogeny()

Return the multiplication-by-𝑝 isogeny.

EXAMPLES:

sage: p = 23
sage: K.<a> = GF(p^3)
sage: E = EllipticCurve(j=K.random_element())
sage: phi = E.multiplication_by_p_isogeny()
sage: assert phi.degree() == p**2
sage: P = E.random_element()
sage: assert phi(P) == P * p

order(algorithm=None, extension_degree=1)
Return the number of points on this elliptic curve.

INPUT:

• algorithm – (optional) string:

– pari – use the PARI C-library function ellcard.

– bsgs – use the baby-step giant-step method as
implemented in Sage, with the Cremona-Sutherland version of Mestre’s trick.

– exhaustive – naive point counting.

– subfield – reduce to a smaller field, provided that the j-invariant lies in a subfield.

– all – compute cardinality with both pari and bsgs ; return result if they agree or raise
a AssertionError if they do not

• extension_degree – an integer 𝑑 (default: 1): if the base field is F𝑞 , return the cardinality of self
over the extension F𝑞𝑑 of degree 𝑑.

OUTPUT:

The order of the group of rational points of self over its base field, or over an extension field of degree 𝑑
as above. The result is cached.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: EllipticCurve(GF(4, a), [1,2,3,4,5]).cardinality()
8
sage: k.<a> = GF(3^3)
sage: l = [a^2 + 1, 2*a^2 + 2*a + 1, a^2 + a + 1, 2, 2*a]
sage: EllipticCurve(k,l).cardinality()
29

134 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: l = [1, 1, 0, 2, 0]
sage: EllipticCurve(k, l).cardinality()
38

An even bigger extension (which we check against Magma):

sage: # needs sage.rings.finite_rings
sage: EllipticCurve(GF(3^100, a), [1,2,3,4,5]).cardinality()
515377520732011331036459693969645888996929981504
sage: magma.eval("Order(EllipticCurve([GF(3^100)|1,2,3,4,5]))") # optional␣
→˓- magma
515377520732011331036459693969645888996929981504

sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality()
10076
sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality(algorithm= pari)
10076
sage: EllipticCurve(GF(next_prime(10**20)), [1,2,3,4,5]).cardinality()
100000000011093199520

The cardinality is cached:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(3^100, a), [1,2,3,4,5])
sage: E.cardinality() is E.cardinality()
True

The following is very fast since the curve is actually defined over the prime field:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(11^100)
sage: E1 = EllipticCurve(k, [3,3])
sage: N1 = E1.cardinality(algorithm="subfield"); N1
137806123398222701841183371720896367762643312000384671846835266941791510341065565176497846502742959856128
sage: E1.cardinality_pari() == N1
True
sage: E2 = E1.quadratic_twist()
sage: N2 = E2.cardinality(algorithm="subfield"); N2
137806123398222701841183371720896367762643312000384656816094284101308193849980588362304472492174093035876
sage: E2.cardinality_pari() == N2
True
sage: N1 + N2 == 2*(k.cardinality() + 1)
True

We can count points over curves defined as a reduction:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ)
sage: K.<w> = NumberField(x^2 + x + 1)
sage: EK = EllipticCurve(K, [0, 0, w, 2, 1])
sage: E = EK.base_extend(K.residue_field(2))
sage: E
Elliptic Curve defined by y^2 + wbar*y = x^3 + 1
over Residue field in wbar of Fractional ideal (2)

sage: E.cardinality()
7

(continues on next page)

135

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EK.base_extend(K.residue_field(w - 1))
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined
by y^2 + y = x^3 + 2*x + 1 over Residue field of Fractional ideal (w - 1)

sage: R.<x> = GF(17)[]
sage: pol = R.irreducible_element(5)
sage: k.<a> = R.residue_field(pol)
sage: E = EllipticCurve(R, [1, x]).base_extend(k)
sage: E
Elliptic Curve defined by y^2 = x^3 + x + a
over Residue field in a of Principal ideal (x^5 + x + 14)
of Univariate Polynomial Ring in x over Finite Field of size 17

sage: E.cardinality()
1421004

plot(*args, **kwds)
Draw a graph of this elliptic curve over a prime finite field.

INPUT:

• *args, **kwds – all other options are passed to the circle graphing primitive.

EXAMPLES:

sage: E = EllipticCurve(FiniteField(17), [0,1])
sage: P = plot(E, rgbcolor=(0,0,1)) #␣
→˓needs sage.plot

points()

Return all rational points on this elliptic curve. The list of points is cached so subsequent calls are free.

EXAMPLES:

sage: p = 5
sage: F = GF(p)
sage: E = EllipticCurve(F, [1, 3])
sage: len(E.points())
4
sage: E.order()
4
sage: E.points()
[(0 : 1 : 0), (1 : 0 : 1), (4 : 1 : 1), (4 : 4 : 1)]

sage: K = GF((p, 2), a)
sage: E = E.change_ring(K)
sage: len(E.points())
32
sage: E.order()
32
sage: w = E.points(); w
[(0 : 1 : 0), (0 : 2*a + 4 : 1), (0 : 3*a + 1 : 1), (1 : 0 : 1), (2 : 2*a + 4␣
→˓: 1), (2 : 3*a + 1 : 1), (3 : 2*a + 4 : 1), (3 : 3*a + 1 : 1), (4 : 1 : 1),␣
→˓(4 : 4 : 1), (a : 1 : 1), (a : 4 : 1), (a + 2 : a + 1 : 1), (a + 2 : 4*a +␣
→˓4 : 1), (a + 3 : a : 1), (a + 3 : 4*a : 1), (a + 4 : 0 : 1), (2*a : 2*a :␣
→˓1), (2*a : 3*a : 1), (2*a + 4 : a + 1 : 1), (2*a + 4 : 4*a + 4 : 1), (3*a +␣
→˓1 : a + 3 : 1), (3*a + 1 : 4*a + 2 : 1), (3*a + 2 : 2*a + 3 : 1), (3*a + 2␣

(continues on next page)

136 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓: 3*a + 2 : 1), (4*a : 0 : 1), (4*a + 1 : 1 : 1), (4*a + 1 : 4 : 1), (4*a +␣
→˓3 : a + 3 : 1), (4*a + 3 : 4*a + 2 : 1), (4*a + 4 : a + 4 : 1), (4*a + 4 :␣
→˓4*a + 1 : 1)]

Note that the returned list is an immutable sorted Sequence:

sage: w[0] = 9
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

random_element()

Return a random point on this elliptic curve, uniformly chosen among all rational points.

ALGORITHM:

Choose the point at infinity with probability 1/(2𝑞 + 1). Otherwise, take a random element from the field
as x-coordinate and compute the possible y-coordinates. Return the i’th possible y-coordinate, where i is
randomly chosen to be 0 or 1. If the i’th y-coordinate does not exist (either there is no point with the given
x-coordinate or we hit a 2-torsion point with i == 1), try again.

This gives a uniform distribution because you can imagine 2𝑞 + 1 buckets, one for the point at infinity and 2
for each element of the field (representing the x-coordinates). This gives a 1-to-1 map of elliptic curve points
into buckets. At every iteration, we simply choose a random bucket until we find a bucket containing a point.

AUTHORS:

• Jeroen Demeyer (2014-09-09): choose points uniformly random, see Issue #16951.

EXAMPLES:

sage: k = GF(next_prime(7^5))
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(16740 : 12486 : 1)
sage: type(P)
<class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
→˓ >
sage: P in E
True

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(7^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(5*a^4 + 3*a^3 + 2*a^2 + a + 4 : 2*a^4 + 3*a^3 + 4*a^2 + a + 5 : 1)
sage: type(P)
<class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
→˓ >
sage: P in E
True

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(2^5)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: P = E.random_element(); P # random
(a^4 + a : a^4 + a^3 + a^2 : 1)

(continues on next page)

137

https://github.com/sagemath/sage/issues/16951

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: type(P)
<class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
→˓ >
sage: P in E
True

Ensure that the entire point set is reachable:

sage: E = EllipticCurve(GF(11), [2,1])
sage: S = set()
sage: while len(S) < E.cardinality():
....: S.add(E.random_element())

random_point()

Return a random point on this elliptic curve, uniformly chosen among all rational points.

ALGORITHM:

Choose the point at infinity with probability 1/(2𝑞 + 1). Otherwise, take a random element from the field
as x-coordinate and compute the possible y-coordinates. Return the i’th possible y-coordinate, where i is
randomly chosen to be 0 or 1. If the i’th y-coordinate does not exist (either there is no point with the given
x-coordinate or we hit a 2-torsion point with i == 1), try again.

This gives a uniform distribution because you can imagine 2𝑞 + 1 buckets, one for the point at infinity and 2
for each element of the field (representing the x-coordinates). This gives a 1-to-1 map of elliptic curve points
into buckets. At every iteration, we simply choose a random bucket until we find a bucket containing a point.

AUTHORS:

• Jeroen Demeyer (2014-09-09): choose points uniformly random, see Issue #16951.

EXAMPLES:

sage: k = GF(next_prime(7^5))
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(16740 : 12486 : 1)
sage: type(P)
<class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
→˓ >
sage: P in E
True

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(7^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(5*a^4 + 3*a^3 + 2*a^2 + a + 4 : 2*a^4 + 3*a^3 + 4*a^2 + a + 5 : 1)
sage: type(P)
<class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
→˓ >
sage: P in E
True

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(2^5)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])

(continues on next page)

138 Chapter 6. Elliptic curves over finite fields

https://github.com/sagemath/sage/issues/16951

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P = E.random_element(); P # random
(a^4 + a : a^4 + a^3 + a^2 : 1)
sage: type(P)
<class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
→˓ >
sage: P in E
True

Ensure that the entire point set is reachable:

sage: E = EllipticCurve(GF(11), [2,1])
sage: S = set()
sage: while len(S) < E.cardinality():
....: S.add(E.random_element())

rational_points()

Return all rational points on this elliptic curve. The list of points is cached so subsequent calls are free.

EXAMPLES:

sage: p = 5
sage: F = GF(p)
sage: E = EllipticCurve(F, [1, 3])
sage: len(E.points())
4
sage: E.order()
4
sage: E.points()
[(0 : 1 : 0), (1 : 0 : 1), (4 : 1 : 1), (4 : 4 : 1)]

sage: K = GF((p, 2), a)
sage: E = E.change_ring(K)
sage: len(E.points())
32
sage: E.order()
32
sage: w = E.points(); w
[(0 : 1 : 0), (0 : 2*a + 4 : 1), (0 : 3*a + 1 : 1), (1 : 0 : 1), (2 : 2*a + 4␣
→˓: 1), (2 : 3*a + 1 : 1), (3 : 2*a + 4 : 1), (3 : 3*a + 1 : 1), (4 : 1 : 1),␣
→˓(4 : 4 : 1), (a : 1 : 1), (a : 4 : 1), (a + 2 : a + 1 : 1), (a + 2 : 4*a +␣
→˓4 : 1), (a + 3 : a : 1), (a + 3 : 4*a : 1), (a + 4 : 0 : 1), (2*a : 2*a :␣
→˓1), (2*a : 3*a : 1), (2*a + 4 : a + 1 : 1), (2*a + 4 : 4*a + 4 : 1), (3*a +␣
→˓1 : a + 3 : 1), (3*a + 1 : 4*a + 2 : 1), (3*a + 2 : 2*a + 3 : 1), (3*a + 2␣
→˓: 3*a + 2 : 1), (4*a : 0 : 1), (4*a + 1 : 1 : 1), (4*a + 1 : 4 : 1), (4*a +␣
→˓3 : a + 3 : 1), (4*a + 3 : 4*a + 2 : 1), (4*a + 4 : a + 4 : 1), (4*a + 4 :␣
→˓4*a + 1 : 1)]

Note that the returned list is an immutable sorted Sequence:

sage: w[0] = 9
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

set_order(value, check, num_checks)
Set the value of self._order to value.

139

Elliptic curves, Release 10.4.rc1

Use this when you know a priori the order of the curve to avoid a potentially expensive order calculation.

INPUT:

• value – integer in the Hasse-Weil range for this curve.

• check (boolean, default: True) – whether or not to run sanity checks on the input.

• num_checks (integer, default: 8) – if check is True, the number of times to check whether value
times a random point on this curve equals the identity.

OUTPUT:

None

EXAMPLES:

This example illustrates basic usage:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: E.set_order(12)
sage: E.order()
12
sage: E.order() * E.random_point()
(0 : 1 : 0)

We now give a more interesting case, the NIST-P521 curve. Its order is too big to calculate with Sage, and
takes a long time using other packages, so it is very useful here:

sage: p = 2^521 - 1
sage: prev_proof_state = proof.arithmetic()
sage: proof.arithmetic(False) # turn off primality checking
sage: F = GF(p)
sage: A = p - 3
sage: B =␣
→˓1093849038073734274511112390766805569936207598951683748994586394495953116150735016013708737573759623248592132296706313309438452531591012912142327488478985984
sage: q =␣
→˓6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
sage: E = EllipticCurve([F(A), F(B)])
sage: E.set_order(q)
sage: G = E.random_point()
sage: G.order() * G # This takes practically no time.
(0 : 1 : 0)
sage: proof.arithmetic(prev_proof_state) # restore state

It is an error to pass a value which is not an integer in the Hasse-Weil range:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: E.set_order("hi")
Traceback (most recent call last):
...
TypeError: unable to convert hi to an integer
sage: E.set_order(0)
Traceback (most recent call last):
...
ValueError: Value 0 illegal (not an integer in the Hasse range)
sage: E.set_order(1000)
Traceback (most recent call last):
...
ValueError: Value 1000 illegal (not an integer in the Hasse range)

140 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

It is also very likely an error to pass a value which is not the actual order of this curve. How unlikely is
determined by num_checks, the factorization of the actual order, and the actual group structure:

sage: E = EllipticCurve(GF(1009), [0, 1]) # This curve has order 948
sage: E.set_order(947)
Traceback (most recent call last):
...
ValueError: Value 947 illegal (multiple of random point not the identity)

For curves over small finite fields, the order is cheap to compute, so it is computed directly and compared:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: E.set_order(11)
Traceback (most recent call last):
...
ValueError: Value 11 illegal (correct order is 12)

Todo: Add provable correctness check by computing the abelian group structure and comparing.

AUTHORS:

• Mariah Lenox (2011-02-16): Initial implementation

• Gareth Ma (2024-01-21): Fix bug for small curves

torsion_basis(n)
Return a basis of the 𝑛-torsion subgroup of this elliptic curve, assuming it is fully rational.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(62207^2), [1,0])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/62208 + Z/62208 embedded in
Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x
over Finite Field in z2 of size 62207^2

sage: PA,QA = E.torsion_basis(2^8)
sage: PA.weil_pairing(QA, 2^8).multiplicative_order()
256
sage: PB,QB = E.torsion_basis(3^5)
sage: PB.weil_pairing(QB, 3^5).multiplicative_order()
243

sage: E = EllipticCurve(GF(101), [4,4])
sage: E.torsion_basis(23)
Traceback (most recent call last):
...
ValueError: curve does not have full rational 23-torsion
sage: F = E.division_field(23); F
Finite Field in t of size 101^11
sage: EE = E.change_ring(F)
sage: P, Q = EE.torsion_basis(23)
sage: P # random
(89*z11^10 + 51*z11^9 + 96*z11^8 + 8*z11^7 + 67*z11^6
+ 31*z11^5 + 55*z11^4 + 59*z11^3 + 28*z11^2 + 8*z11 + 88
: 40*z11^10 + 33*z11^9 + 80*z11^8 + 87*z11^7 + 97*z11^6
+ 69*z11^5 + 56*z11^4 + 17*z11^3 + 26*z11^2 + 69*z11 + 11

(continues on next page)

141

Elliptic curves, Release 10.4.rc1

(continued from previous page)

: 1)
sage: Q # random
(25*z11^10 + 61*z11^9 + 49*z11^8 + 17*z11^7 + 80*z11^6
+ 20*z11^5 + 49*z11^4 + 52*z11^3 + 61*z11^2 + 27*z11 + 61
: 60*z11^10 + 91*z11^9 + 89*z11^8 + 7*z11^7 + 63*z11^6
+ 55*z11^5 + 23*z11^4 + 17*z11^3 + 90*z11^2 + 91*z11 + 68
: 1)

See also:

Use division_field() to determine a field extension containing the full ℓ-torsion subgroup.

ALGORITHM:

This method currently uses abelian_group() and AdditiveAbelianGroupWrapper.
torsion_subgroup().

trace_of_frobenius()

Return the trace of Frobenius acting on this elliptic curve.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

sage: E = EllipticCurve(GF(101),[2,3])
sage: E.trace_of_frobenius()
6
sage: E = EllipticCurve(GF(11^5, a),[2,5]) #␣
→˓needs sage.rings.finite_rings
sage: E.trace_of_frobenius() #␣
→˓needs sage.rings.finite_rings
802

The following shows that the issue from Issue #2849 is fixed:

sage: E = EllipticCurve(GF(3^5, a),[-1,-1]) #␣
→˓needs sage.rings.finite_rings
sage: E.trace_of_frobenius() #␣
→˓needs sage.rings.finite_rings
-27

twists()

Return a list of 𝑘-isomorphism representatives of all twists of this elliptic curve, where 𝑘 is the base field.

The input curve appears as the first entry of the result.

Note: A twist of𝐸/𝑘 is an elliptic curve𝐸′ defined over 𝑘 that is isomorphic to𝐸 over the algebraic closure
𝑘.

Most elliptic curves over a finite field only admit a single nontrivial twist (the quadratic twist); the only ex-
ceptions are curves with 𝑗-invariant 0 or 1728.

In all cases the sum over all the twists 𝐸′ of 1/|𝐴𝑢𝑡(𝐸′)| is 1.

See also:

142 Chapter 6. Elliptic curves over finite fields

../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper.torsion_subgroup
../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper.torsion_subgroup
https://github.com/sagemath/sage/issues/2849

Elliptic curves, Release 10.4.rc1

• quadratic_twist()

• quartic_twist()

• sextic_twist()

EXAMPLES:

sage: E = EllipticCurve(GF(97), [1,1])
sage: E.j_invariant()
54
sage: E.twists()
[Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97]

sage: E = EllipticCurve(GF(97), [1,0])
sage: E.j_invariant()
79
sage: E.twists()
[Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97]

sage: E = EllipticCurve(GF(97), [0,1])
sage: E.j_invariant()
0
sage: E.twists()
[Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 97]

This can be useful to quickly compute a list of all elliptic curves over a finite field 𝑘 up to 𝑘-isomorphism:

sage: Es = [E for j in GF(13) for E in EllipticCurve(j=j).twists()]
sage: len(Es)
32
sage: Es
[Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13,
...
Elliptic Curve defined by y^2 = x^3 + ... over Finite Field of size 13]

In characteristic 3, the number of twists is 2 except for 𝑗 = 0 = 1728, when there are either 4 or 6 depending
on whether the field has odd or even degree over F3:

sage: # needs sage.rings.finite_rings
sage: K = GF(3**5)
sage: [E.ainvs() for E in EllipticCurve(j=K(1)).twists()]
[(0, 1, 0, 0, 2), (0, z5, 0, 0, 2*z5^3)]

sage: # needs sage.rings.finite_rings
sage: K = GF(3**5)
sage: [E.ainvs() for E in EllipticCurve(j=K(0)).twists()] # random
[(0, 0, 0, 1, 0),
(0, 0, 0, 2, 0),

(continues on next page)

143

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(0, 0, 0, 2, z5^4 + z5^3 + z5^2),
(0, 0, 0, 2, 2*z5^4 + 2*z5^3 + 2*z5^2)]

sage: # needs sage.rings.finite_rings
sage: K = GF(3**4)
sage: [E.ainvs() for E in EllipticCurve(j=K(1)).twists()]
[(0, 1, 0, 0, 2), (0, z4, 0, 0, 2*z4^3)]

sage: # needs sage.rings.finite_rings
sage: K = GF(3**4)
sage: [E.ainvs() for E in EllipticCurve(j=K(0)).twists()] # random
[(0, 0, 0, 1, 0),
(0, 0, 0, 2, 2*z4^3 + 2*z4^2 + 2*z4 + 2),
(0, 0, 0, 1, 0),
(0, 0, 0, 1, 2*z4^3 + 2*z4^2 + 2*z4 + 2),
(0, 0, 0, z4, 0),
(0, 0, 0, z4^3, 0)]

In characteristic 2, the number of twists is 2 except for 𝑗 = 0 = 1728, when there are either 3 or 7 depending
on whether the field has odd or even degree over F2:

sage: # needs sage.rings.finite_rings
sage: K = GF(2**7)
sage: [E.ainvs() for E in EllipticCurve(j=K(1)).twists()]
[(1, 0, 0, 0, 1), (1, 1, 0, 0, 1)]

sage: # needs sage.rings.finite_rings
sage: K = GF(2**7)
sage: [E.ainvs() for E in EllipticCurve(j=K(0)).twists()]
[(0, 0, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 1, 1, 1)]

sage: # needs sage.rings.finite_rings
sage: K = GF(2**8)
sage: [E.ainvs() for E in EllipticCurve(j=K(1)).twists()] # random
[(1, 0, 0, 0, 1), (1, z8^7 + z8^6 + z8^5 + z8^4 + z8^2 + z8, 0, 0, 1)]

sage: # needs sage.rings.finite_rings
sage: K = GF(2**8)
sage: [E.ainvs() for E in EllipticCurve(j=K(0)).twists()] # random
[(0, 0, 1, 0, 0),
(0, 0, 1, 0, z8^5 + z8^4 + z8^3),
(0, 0, 1, z8^6 + z8^5 + z8^2 + 1, 0),
(0, 0, z8^4 + z8^3 + z8^2 + 1, 0, 0),
(0, 0, z8^4 + z8^3 + z8^2 + 1, 0, z8^3 + z8^2 + 1),
(0, 0, z8^6 + z8^3 + z8^2, 0, 0),
(0, 0, z8^6 + z8^3 + z8^2, 0, z8^3 + z8^2)]

sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_with_order(m, D)
Return an iterator for elliptic curves over finite fields with the given order. The curves are computed using the
Complex Multiplication (CM) method.

A : 𝑠𝑎𝑔𝑒 : ` 𝑠𝑎𝑔𝑒.𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒.𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛.𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 can be passed for m, in which case the algorithm is
more efficient.

If D is specified, it is used as the discriminant.

EXAMPLES:

144 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.elliptic_curves.ell_finite_field import EllipticCurve_
→˓with_order
sage: E = next(EllipticCurve_with_order(1234)); E # random
Elliptic Curve defined by y^2 = x^3 + 1142*x + 1209 over Finite Field of size 1237
sage: E.order() == 1234
True

When iter is set, the function returns an iterator of all elliptic curves with the given order:

sage: from sage.schemes.elliptic_curves.ell_finite_field import EllipticCurve_
→˓with_order
sage: it = EllipticCurve_with_order(21); it
<generator object EllipticCurve_with_order at 0x...>
sage: E = next(it); E # random
Elliptic Curve defined by y^2 = x^3 + 6*x + 14 over Finite Field of size 23
sage: E.order() == 21
True
sage: Es = [E] + list(it); Es # random
[Elliptic Curve defined by y^2 = x^3 + 6*x + 14 over Finite Field of size 23,
Elliptic Curve defined by y^2 = x^3 + 12*x + 4 over Finite Field of size 23,
Elliptic Curve defined by y^2 = x^3 + 5*x + 2 over Finite Field of size 23,
Elliptic Curve defined by y^2 = x^3 + (z2+3) over Finite Field in z2 of size 5^2,
Elliptic Curve defined by y^2 = x^3 + (2*z2+2) over Finite Field in z2 of size 5^
→˓2,
Elliptic Curve defined by y^2 = x^3 + 7*x + 1 over Finite Field of size 19,
Elliptic Curve defined by y^2 = x^3 + 17*x + 10 over Finite Field of size 19,
Elliptic Curve defined by y^2 = x^3 + 5*x + 12 over Finite Field of size 17,
Elliptic Curve defined by y^2 = x^3 + 9*x + 1 over Finite Field of size 17,
Elliptic Curve defined by y^2 = x^3 + 7*x + 6 over Finite Field of size 17,
Elliptic Curve defined by y^2 = x^3 + z3^2*x^2 + (2*z3^2+z3) over Finite Field␣
→˓in z3 of size 3^3,
Elliptic Curve defined by y^2 = x^3 + (z3^2+2*z3+1)*x^2 + (2*z3^2+2*z3) over␣
→˓Finite Field in z3 of size 3^3,
Elliptic Curve defined by y^2 = x^3 + (z3^2+z3+1)*x^2 + (2*z3^2+1) over Finite␣
→˓Field in z3 of size 3^3,
Elliptic Curve defined by y^2 + (z4^2+z4+1)*y = x^3 over Finite Field in z4 of␣
→˓size 2^4,
Elliptic Curve defined by y^2 + (z4^2+z4)*y = x^3 over Finite Field in z4 of␣
→˓size 2^4,
Elliptic Curve defined by y^2 = x^3 + 18*x + 26 over Finite Field of size 29,
Elliptic Curve defined by y^2 = x^3 + 11*x + 19 over Finite Field of size 29,
Elliptic Curve defined by y^2 = x^3 + 4 over Finite Field of size 19,
Elliptic Curve defined by y^2 = x^3 + 19 over Finite Field of size 31,
Elliptic Curve defined by y^2 = x^3 + 4 over Finite Field of size 13]
sage: all(E.order() == 21 for E in Es)
True

Indeed, we can verify that this is correct. Hasse’s bounds tell us that 𝑝 ≤ 50 (approximately), and the rest can be
checked via bruteforce:

sage: for p in prime_range(50):
....: for j in range(p):
....: E0 = EllipticCurve(GF(p), j=j)
....: for Et in E0.twists():
....: if Et.order() == 21:
....: assert any(Et.is_isomorphic(E) for E in Es)

145

Elliptic curves, Release 10.4.rc1

Note: The output curves are not deterministic, as EllipticCurve_finite_field.twists() is not
deterministic. However, the order of the j-invariants and base fields is fixed.

AUTHORS:

• Gareth Ma and Giacomo Pope (Sage Days 123): initial version

sage.schemes.elliptic_curves.ell_finite_field.curves_with_j_0(K)

Return a complete list of pairwise nonisomorphic elliptic curves with 𝑗-invariant 0 over the finite field𝐾.

Note: In characteristics 2 and 3 this function simply calls curves_with_j_0_char2 or
curves_with_j_0_char3. Otherwise there are either 2 or 6 curves, parametrised by𝐾*/(𝐾*)6.

Examples:

For𝐾 = F𝑞 where 𝑞 ≡ 1 mod 6 there are six curves, the sextic twists of 𝑦2 = 𝑥3 + 1:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_0
sage: sorted(curves_with_j_0(GF(7)), key = lambda E: E.a_invariants())
[Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7,
Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field of size 7,
Elliptic Curve defined by y^2 = x^3 + 3 over Finite Field of size 7,
Elliptic Curve defined by y^2 = x^3 + 4 over Finite Field of size 7,
Elliptic Curve defined by y^2 = x^3 + 5 over Finite Field of size 7,
Elliptic Curve defined by y^2 = x^3 + 6 over Finite Field of size 7]
sage: curves = curves_with_j_0(GF(25)); len(curves)
6
sage: all(not curves[i].is_isomorphic(curves[j]) for i in range(6) for j in␣
→˓range(i + 1, 6))
True
sage: set(E.j_invariant() for E in curves)
{0}

For 𝐾 = F𝑞 where 𝑞 ≡ 5 mod 6 there are two curves, quadratic twists of each other by −3: 𝑦2 = 𝑥3 + 1 and
𝑦2 = 𝑥3 − 27:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_0
sage: curves_with_j_0(GF(5))
[Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 5,
Elliptic Curve defined by y^2 = x^3 + 3 over Finite Field of size 5]
sage: curves_with_j_0(GF(11))
[Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 11,
Elliptic Curve defined by y^2 = x^3 + 6 over Finite Field of size 11]

sage.schemes.elliptic_curves.ell_finite_field.curves_with_j_0_char2(K)
Return a complete list of pairwise nonisomorphic elliptic curves with 𝑗-invariant 0 over the finite field𝐾 of char-
acteristic 2.

Note: The number of twists is either 3 or 7 depending on whether the field has odd or even degree
over F2. See [Connell1999], pages 429-431.

Examples:

146 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

In odd degree, there are three isomorphism classes all with representatives defined over F2:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_0_
→˓char2
sage: # needs sage.rings.finite_rings
sage: K = GF(2**7)
sage: curves = curves_with_j_0_char2(K)
sage: len(curves)
3
sage: [E.ainvs() for E in curves]
[(0, 0, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 1, 1, 1)]

Check that the curves are mutually non-isomorphic:

sage: all((e1 == e2 or not e1.is_isomorphic(e2)) #␣
→˓needs sage.rings.finite_rings
....: for e1 in curves for e2 in curves)
True

Check that the weight formula holds:

sage: sum(1/len(E.automorphisms()) for E in curves) == 1 #␣
→˓needs sage.rings.finite_rings
True

In even degree there are seven isomorphism classes:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_0_
→˓char2
sage: # needs sage.rings.finite_rings
sage: K = GF(2**8)
sage: curves = EllipticCurve(j=K(0)).twists()
sage: len(curves)
7
sage: [E.ainvs() for E in curves] # random
[(0, 0, 1, 0, 0),
(0, 0, 1, 0, z8^5 + z8^4 + z8^3),
(0, 0, 1, z8^6 + z8^5 + z8^2 + 1, 0),
(0, 0, z8^4 + z8^3 + z8^2 + 1, 0, 0),
(0, 0, z8^4 + z8^3 + z8^2 + 1, 0, z8^3 + z8^2 + 1),
(0, 0, z8^6 + z8^3 + z8^2, 0, 0),
(0, 0, z8^6 + z8^3 + z8^2, 0, z8^3 + z8^2)]

Check that the twists are mutually non-isomorphic:

sage: all((e1 == e2 or not e1.is_isomorphic(e2)) #␣
→˓needs sage.rings.finite_rings
....: for e1 in curves for e2 in curves)
True

Check that the weight formula holds:

sage: sum(1/len(E.automorphisms()) for E in curves) == 1 #␣
→˓needs sage.rings.finite_rings
True

sage.schemes.elliptic_curves.ell_finite_field.curves_with_j_0_char3(K)

147

Elliptic curves, Release 10.4.rc1

Return a complete list of pairwise nonisomorphic elliptic curves with 𝑗-invariant 0 over the finite field𝐾 of char-
acteristic 3.

Note: The number of twists is either 4 or 6 depending on whether the field has odd or even degree
over F3. See [Connell1999], pages 429-431.

Examples:

In odd degree, there are four isomorphism classes:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_0_
→˓char3
sage: # needs sage.rings.finite_rings
sage: K = GF(3**5)
sage: curves = curves_with_j_0_char3(K)
sage: len(curves)
4
sage: [E.ainvs() for E in curves] # random
[(0, 0, 0, 1, 0),
(0, 0, 0, 2, 0),
(0, 0, 0, 2, z5^4 + z5^3 + z5^2),
(0, 0, 0, 2, 2*z5^4 + 2*z5^3 + 2*z5^2)]

Check that the twists are mutually non-isomorphic:

sage: all((e1 == e2 or not e1.is_isomorphic(e2)) #␣
→˓needs sage.rings.finite_rings
....: for e1 in curves for e2 in curves)
True

Check that the weight formula holds:

sage: sum(1/len(E.automorphisms()) for E in curves) == 1 #␣
→˓needs sage.rings.finite_rings
True

In even degree, there are six isomorphism classes:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_0_
→˓char3
sage: # needs sage.rings.finite_rings
sage: K = GF(3**4)
sage: curves = EllipticCurve(j=K(0)).twists()
sage: len(curves)
6
sage: [E.ainvs() for E in curves] # random
[(0, 0, 0, 1, 0),
(0, 0, 0, 2, 2*z4^3 + 2*z4^2 + 2*z4 + 2),
(0, 0, 0, 1, 0),
(0, 0, 0, 1, 2*z4^3 + 2*z4^2 + 2*z4 + 2),
(0, 0, 0, z4, 0),
(0, 0, 0, z4^3, 0)]

Check that the twists are mutually non-isomorphic:

sage: all((e1 == e2 or not e1.is_isomorphic(e2)) #␣
→˓needs sage.rings.finite_rings

(continues on next page)

148 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

....: for e1 in curves for e2 in curves)
True

Check that the weight formula holds:

sage: sum(1/len(E.automorphisms()) for E in curves) == 1 #␣
→˓needs sage.rings.finite_rings
True

sage.schemes.elliptic_curves.ell_finite_field.curves_with_j_1728(K)
Return a complete list of pairwise nonisomorphic elliptic curves with 𝑗-invariant 1728 over the finite field𝐾.

Note: In characteristics 2 and 3 (so 0=1728) this function simply calls curves_with_j_0_char2
or curves_with_j_0_char3. Otherwise there are either 2 or 4 curves, parametrised by
𝐾*/(𝐾*)4.

EXAMPLES:

For𝐾 = F𝑞 where 𝑞 ≡ 1 mod 4, there are four curves, the quartic twists of 𝑦2 = 𝑥3 + 𝑥:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_1728
sage: sorted(curves_with_j_1728(GF(5)), key = lambda E: E.a_invariants())
[Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 5,
Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 5,
Elliptic Curve defined by y^2 = x^3 + 3*x over Finite Field of size 5,
Elliptic Curve defined by y^2 = x^3 + 4*x over Finite Field of size 5]
sage: curves_with_j_1728(GF(49)) # random #␣
→˓needs sage.rings.finite_rings
[Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 7^2,
Elliptic Curve defined by y^2 = x^3 + z2*x over Finite Field in z2 of size 7^2,
Elliptic Curve defined by y^2 = x^3 + (z2+4)*x over Finite Field in z2 of size 7^
→˓2,
Elliptic Curve defined by y^2 = x^3 + (5*z2+4)*x over Finite Field in z2 of size␣
→˓7^2]

For 𝐾 = F𝑞 where 𝑞 ≡ 3 mod 4, there are two curves, quadratic twists of each other by −1: 𝑦2 = 𝑥3 + 𝑥 and
𝑦2 = 𝑥3 − 𝑥:

sage: from sage.schemes.elliptic_curves.ell_finite_field import curves_with_j_1728
sage: curves_with_j_1728(GF(7))
[Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 7,
Elliptic Curve defined by y^2 = x^3 + 6*x over Finite Field of size 7]
sage: curves_with_j_1728(GF(11))
[Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 11,
Elliptic Curve defined by y^2 = x^3 + 10*x over Finite Field of size 11]

sage.schemes.elliptic_curves.ell_finite_field.fill_ss_j_dict()

Fill the global cache of supersingular j-_polynomials.

This function does nothing except the first time it is called, when it fills supersingular_j_polynomials
with precomputed values for 𝑝 < 300. Setting the values this way avoids start-up costs.

sage.schemes.elliptic_curves.ell_finite_field.is_j_supersingular(j, proof=True)
Return True if 𝑗 is a supersingular 𝑗-invariant.

INPUT:

149

Elliptic curves, Release 10.4.rc1

• j (finite field element) – an element of a finite field

• proof (boolean, default: True) – If True, returns a proved result. If False, then a return value of False is
certain but a return value of True may be based on a probabilistic test. See the ALGORITHM section below
for more details.

OUTPUT:

(boolean) True if 𝑗 is supersingular, else False.

ALGORITHM:

For small characteristics 𝑝 we check whether the 𝑗-invariant is in a precomputed list of supersingular values. Oth-
erwise we next check the 𝑗-invariant. If 𝑗 = 0, the curve is supersingular if and only if 𝑝 = 2 or 𝑝 ≡ 3 (mod 4); if
𝑗 = 1728, the curve is supersingular if and only if 𝑝 = 3 or 𝑝 ≡ 2 (mod 3). Next, if the base field is the prime field
GF(𝑝), we check that (𝑝+ 1)𝑃 = 0 for several random points 𝑃 , returning False if any fail: supersingular curves
over GF(𝑝) have cardinality 𝑝 + 1. If Proof is false we now return True. Otherwise we compute the cardinality
and return True if and only if it is divisible by 𝑝.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_finite_field import is_j_
→˓supersingular, supersingular_j_polynomials
sage: [(p,[j for j in GF(p) if is_j_supersingular(j)]) for p in prime_range(30)]
[(2, [0]), (3, [0]), (5, [0]), (7, [6]), (11, [0, 1]), (13, [5]),
(17, [0, 8]), (19, [7, 18]), (23, [0, 3, 19]), (29, [0, 2, 25])]

sage: [j for j in GF(109) if is_j_supersingular(j)]
[17, 41, 43]
sage: PolynomialRing(GF(109), j)(supersingular_j_polynomials[109]).roots()
[(43, 1), (41, 1), (17, 1)]

sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(0))]
[2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89]
sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(1728))]
[2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83]
sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(123456))]
[2, 3, 59, 89]

sage.schemes.elliptic_curves.ell_finite_field.special_supersingular_curve(F ,
endo-
mor-
phism)

Given a finite field F, construct a “special” supersingular elliptic curve 𝐸 defined over F.

Such a curve

• has coefficients in F𝑝;

• has group structure 𝐸(F𝑝) ∼= /(𝑝+ 1) and 𝐸(F𝑝2) ∼= /(𝑝+ 1)× /(𝑝+ 1);

• has an endomorphism 𝜗 of small degree 𝑞 that anticommutes with the F𝑝-Frobenius on 𝐸.

(The significance of 𝜗 is that any such endomorphism, together with the F𝑝-Frobenius, generates the endomorphism
algebra End(𝐸)⊗Q.)

INPUT:

• F – finite field F𝑝𝑟 ;

• endomorphism – boolean (default: False): When set to True, it is required that 2 | 𝑟, and the function
then additionally returns 𝜗.

150 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: special_supersingular_curve(GF(1013^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size 1013^2,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in z2 of size 1013^2 to Elliptic Curve defined by y^2 = x^3 + 1 over␣
→˓Finite Field in z2 of size 1013^2)

sage: special_supersingular_curve(GF(1019^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 1019^2,
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field in z2 of size 1019^2

Via: (u,r,s,t) = (389*z2 + 241, 0, 0, 0))

sage: special_supersingular_curve(GF(1021^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + 785*x + 794 over Finite Field in z2 of␣
→˓size 1021^2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 785*x + 794 over␣
→˓Finite Field in z2 of size 1021^2 to Elliptic Curve defined by y^2 = x^3 +␣
→˓785*x + 794 over Finite Field in z2 of size 1021^2)

sage: special_supersingular_curve(GF(1031^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 1031^2,
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field in z2 of size 1031^2

Via: (u,r,s,t) = (747*z2 + 284, 0, 0, 0))

sage: special_supersingular_curve(GF(1033^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + 53*x + 980 over Finite Field in z2 of size␣
→˓1033^2,
Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + 53*x + 980 over␣
→˓Finite Field in z2 of size 1033^2 to Elliptic Curve defined by y^2 = x^3 + 53*x␣
→˓+ 980 over Finite Field in z2 of size 1033^2)

sage: special_supersingular_curve(GF(1039^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 1039^2,
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field in z2 of size 1039^2

Via: (u,r,s,t) = (626*z2 + 200, 0, 0, 0))

sage: special_supersingular_curve(GF(1049^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in z2 of size 1049^2,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in z2 of size 1049^2 to Elliptic Curve defined by y^2 = x^3 + 1 over␣
→˓Finite Field in z2 of size 1049^2)

sage: special_supersingular_curve(GF(1051^2), endomorphism=True)
(Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 1051^2,
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field in z2 of size 1051^2

Via: (u,r,s,t) = (922*z2 + 129, 0, 0, 0))

Note: This function makes no guarantees about the distribution of the output. The current implementation is
deterministic in many cases.

ALGORITHM: [Bro2009], Algorithm 2.4

151

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.ell_finite_field.supersingular_j_polynomial(p,
use_cache=True)

Return a polynomial whose roots are the supersingular 𝑗-invariants in characteristic 𝑝, other than 0, 1728.

INPUT:

• 𝑝 (integer) – a prime number.

• use_cache (boolean, default True) – use cached coefficients if they exist

ALGORITHM:

First compute H(X) whose roots are the Legendre 𝜆-invariants of supersingular curves (Silverman V.4.1(b)) in
characteristic 𝑝. Then, using a resultant computation with the polynomial relating 𝜆 and 𝑗 (Silverman III.1.7(b)),
we recover the polynomial (in variable j) whose roots are the 𝑗-invariants. Factors of 𝑗 and 𝑗− 1728 are removed
if present.

Note: The only point of the use_cache parameter is to allow checking the precomputed coefficients.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_finite_field import supersingular_j_
→˓polynomial
sage: f = supersingular_j_polynomial(67); f
j^5 + 53*j^4 + 4*j^3 + 47*j^2 + 36*j + 8
sage: f.factor()
(j + 1) * (j^2 + 8*j + 45) * (j^2 + 44*j + 24)

sage: [supersingular_j_polynomial(p) for p in prime_range(30)]
[1, 1, 1, 1, 1, j + 8, j + 9, j + 12, j + 4, j^2 + 2*j + 21]

152 Chapter 6. Elliptic curves over finite fields

CHAPTER

SEVEN

FORMAL GROUPS OF ELLIPTIC CURVES

AUTHORS:

• William Stein: original implementations

• David Harvey: improved asymptotics of some methods

• Nick Alexander: separation from ell_generic.py, bugfixes and docstrings

class sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup(E)
Bases: SageObject

The formal group associated to an elliptic curve.

curve()

Return the elliptic curve this formal group is associated to.

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: F = E.formal_group()
sage: F.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

differential(prec=20)
Return the power series 𝑓(𝑡) = 1+ · · · such that 𝑓(𝑡)𝑑𝑡 is the usual invariant differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3).

INPUT:

• prec – nonnegative integer (default: 20), answer will be returned 𝑂(𝑡prec)

OUTPUT: a power series with given precision

Return the formal series

𝑓(𝑡) = 1 + 𝑎1𝑡+ (𝑎1
2 + 𝑎2)𝑡

2 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 113 of [Sil2009].

The result is cached, and a cached version is returned if possible.

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have default
precision 20 (or whatever the default default is).

EXAMPLES:

153

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

sage: EllipticCurve([-1, 1/4]).formal_group().differential(15)
1 - 2*t^4 + 3/4*t^6 + 6*t^8 - 5*t^10 - 305/16*t^12 + 105/4*t^14 + O(t^15)

sage: EllipticCurve(Integers(53), [-1, 1/4]).formal_group().differential(15)
1 + 51*t^4 + 14*t^6 + 6*t^8 + 48*t^10 + 24*t^12 + 13*t^14 + O(t^15)

AUTHORS:

• David Harvey (2006-09-10): factored out of log

group_law(prec=10)
Return the formal group law.

INPUT:

• prec – integer (default: 10)

OUTPUT: a power series with given precision in 𝑅[[𝑡1, 𝑡2]], where the curve is defined over 𝑅.

Return the formal power series

𝐹 (𝑡1, 𝑡2) = 𝑡1 + 𝑡2 − 𝑎1𝑡1𝑡2 − · · ·

to precision 𝑂(𝑡1, 𝑡2)
𝑝𝑟𝑒𝑐 of page 115 of [Sil2009].

The result is cached, and a cached version is returned if possible.

AUTHORS:

• Nick Alexander: minor fixes, docstring

• Francis Clarke (2012-08): modified to use two-variable power series ring

EXAMPLES:

sage: e = EllipticCurve([1, 2])
sage: e.formal_group().group_law(6)
t1 + t2 - 2*t1^4*t2 - 4*t1^3*t2^2 - 4*t1^2*t2^3 - 2*t1*t2^4 + O(t1, t2)^6

sage: e = EllipticCurve(14a1)
sage: ehat = e.formal()
sage: ehat.group_law(3)
t1 + t2 - t1*t2 + O(t1, t2)^3
sage: ehat.group_law(5)
t1 + t2 - t1*t2 - 2*t1^3*t2 - 3*t1^2*t2^2 - 2*t1*t2^3 + O(t1, t2)^5

sage: e = EllipticCurve(GF(7), [3, 4])
sage: ehat = e.formal()
sage: ehat.group_law(3)
t1 + t2 + O(t1, t2)^3
sage: F = ehat.group_law(7); F
t1 + t2 + t1^4*t2 + 2*t1^3*t2^2 + 2*t1^2*t2^3 + t1*t2^4 + O(t1, t2)^7

inverse(prec=20)

Return the formal group inverse law 𝑖(𝑡), which satisfies 𝐹 (𝑡, 𝑖(𝑡)) = 0.

INPUT:

• prec – integer (default: 20)

OUTPUT: a power series with given precision

154 Chapter 7. Formal groups of elliptic curves

Elliptic curves, Release 10.4.rc1

Return the formal power series

𝑖(𝑡) = −𝑡+ 𝑎1𝑡
2 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 114 of [Sil2009].

The result is cached, and a cached version is returned if possible.

Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will have
default precision 20 (or whatever the default default is).

EXAMPLES:

sage: P.<a1, a2, a3, a4, a6> = ZZ[]
sage: E = EllipticCurve(list(P.gens()))
sage: i = E.formal_group().inverse(6); i
-t - a1*t^2 - a1^2*t^3 + (-a1^3 - a3)*t^4 + (-a1^4 - 3*a1*a3)*t^5 + O(t^6)
sage: F = E.formal_group().group_law(6)
sage: F(i.parent().gen(), i)
O(t^6)

log(prec=20)
Return the power series 𝑓(𝑡) = 𝑡+ · · · which is an isomorphism to the additive formal group.

Generally this only makes sense in characteristic zero, although the terms before 𝑡𝑝 may work in characteristic
𝑝.

INPUT:

• prec – nonnegative integer (default: 20)

OUTPUT: a power series with given precision

EXAMPLES:

sage: EllipticCurve([-1, 1/4]).formal_group().log(15)
t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 - 5/11*t^11 - 305/208*t^13 + O(t^15)

AUTHORS:

• David Harvey (2006-09-10): rewrote to use differential

mult_by_n(n, prec=10)
Return the formal ‘multiplication by n’ endomorphism [𝑛].

INPUT:

• prec – integer (default: 10)

OUTPUT: a power series with given precision

Return the formal power series

[𝑛](𝑡) = 𝑛𝑡+ · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of Proposition 2.3 of [Sil2009].

Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will have
default precision 20 (or whatever the default default is).

155

Elliptic curves, Release 10.4.rc1

AUTHORS:

• Nick Alexander: minor fixes, docstring

• David Harvey (2007-03): faster algorithm for char 0 field case

• Hamish Ivey-Law (2009-06): double-and-add algorithm for non char 0 field case.

• Tom Boothby (2009-06): slight improvement to double-and-add

• Francis Clarke (2012-08): adjustments and simplifications using group_law code as modified to yield a
two-variable power series.

EXAMPLES:

sage: e = EllipticCurve([1, 2, 3, 4, 6])
sage: e.formal_group().mult_by_n(0, 5)
O(t^5)

sage: e.formal_group().mult_by_n(1, 5)
t + O(t^5)

We verify an identity of low degree:

sage: none = e.formal_group().mult_by_n(-1, 5)
sage: two = e.formal_group().mult_by_n(2, 5)
sage: ntwo = e.formal_group().mult_by_n(-2, 5)
sage: ntwo - none(two)
O(t^5)

sage: ntwo - two(none)
O(t^5)

It’s quite fast:

sage: E = EllipticCurve("37a"); F = E.formal_group()
sage: F.mult_by_n(100, 20)
100*t - 49999950*t^4 + 3999999960*t^5 + 14285614285800*t^7 -␣
→˓2999989920000150*t^8 + 133333325333333400*t^9 - 3571378571674999800*t^10 +␣
→˓1402585362624965454000*t^11 - 146666057066712847999500*t^12 +␣
→˓5336978000014213190385000*t^13 - 519472790950932256570002000*t^14 +␣
→˓93851927683683567270392002800*t^15 - 6673787211563812368630730325175*t^16 +␣
→˓320129060335050875009191524993000*t^17 -␣
→˓45670288869783478472872833214986000*t^18 +␣
→˓5302464956134111125466184947310391600*t^19 + O(t^20)

sigma(prec=10)
Return the Weierstrass sigma function as a formal power series solution to the differential equation

𝑑2 log𝜎
𝑑𝑧2

= −℘(𝑧)

with initial conditions 𝜎(𝑂) = 0 and 𝜎′(𝑂) = 1, expressed in the variable 𝑡 = log𝐸(𝑧) of the formal group.

INPUT:

• prec – integer (default: 10)

OUTPUT: a power series with given precision

Other solutions can be obtained by multiplication with a function of the form exp(𝑐𝑧2). If the curve has good
ordinary reduction at a prime 𝑝 then there is a canonical choice of 𝑐 that produces the canonical 𝑝-adic sigma
function. To obtain that, please use E.padic_sigma(p) instead. See padic_sigma()

EXAMPLES:

156 Chapter 7. Formal groups of elliptic curves

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(14a)
sage: F = E.formal_group()
sage: F.sigma(5)
t + 1/2*t^2 + 1/3*t^3 + 3/4*t^4 + O(t^5)

w(prec=20)
Return the formal group power series 𝑤.

INPUT:

• prec – integer (default: 20)

OUTPUT: a power series with given precision

Return the formal power series

𝑤(𝑡) = 𝑡3 + 𝑎1𝑡
4 + (𝑎2 + 𝑎21)𝑡

5 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of Proposition IV.1.1 of [Sil2009]. This is the formal expansion of 𝑤 = −1/𝑦 about
the formal parameter 𝑡 = −𝑥/𝑦 at∞.

The result is cached, and a cached version is returned if possible.

Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will have
default precision 20 (or whatever the default default is).

ALGORITHM:Uses Newton’s method to solve the elliptic curve equation at the origin. Complexity is roughly
𝑂(𝑀(𝑛)) where 𝑛 is the precision and𝑀(𝑛) is the time required to multiply polynomials of length 𝑛 over
the coefficient ring of 𝐸.

AUTHORS:

• David Harvey (2006-09-09): modified to use Newton’s method instead of a recurrence formula.

EXAMPLES:

sage: e = EllipticCurve([0, 0, 1, -1, 0])
sage: e.formal_group().w(10)
t^3 + t^6 - t^7 + 2*t^9 + O(t^10)

Check that caching works:

sage: e = EllipticCurve([3, 2, -4, -2, 5])
sage: e.formal_group().w(20)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + 237*t^8 + 312*t^9 - 949*t^10 -␣
→˓10389*t^11 - 57087*t^12 - 244092*t^13 - 865333*t^14 - 2455206*t^15 -␣
→˓4366196*t^16 + 6136610*t^17 + 109938783*t^18 + 688672497*t^19 + O(t^20)
sage: e.formal_group().w(7)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + O(t^7)

sage: e.formal_group().w(35)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + 237*t^8 + 312*t^9 - 949*t^10 -␣
→˓10389*t^11 - 57087*t^12 - 244092*t^13 - 865333*t^14 - 2455206*t^15 -␣
→˓4366196*t^16 + 6136610*t^17 + 109938783*t^18 + 688672497*t^19 +␣
→˓3219525807*t^20 + 12337076504*t^21 + 38106669615*t^22 + 79452618700*t^23 -␣
→˓33430470002*t^24 - 1522228110356*t^25 - 10561222329021*t^26 -␣
→˓52449326572178*t^27 - 211701726058446*t^28 - 693522772940043*t^29 -␣
→˓1613471639599050*t^30 - 421817906421378*t^31 + 23651687753515182*t^32 +␣
→˓181817896829144595*t^33 + 950887648021211163*t^34 + O(t^35)

157

Elliptic curves, Release 10.4.rc1

x(prec=20)
Return the formal series 𝑥(𝑡) = 𝑡/𝑤(𝑡) in terms of the local parameter 𝑡 = −𝑥/𝑦 at infinity.

INPUT:

• prec – integer (default: 20)

OUTPUT: a Laurent series with given precision

Return the formal series

𝑥(𝑡) = 𝑡−2 − 𝑎1𝑡
−1 − 𝑎2 − 𝑎3𝑡− · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 113 of [Sil2009].

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have default
precision 20 (or whatever the default default is).

EXAMPLES:

sage: EllipticCurve([0, 0, 1, -1, 0]).formal_group().x(10)
t^-2 - t + t^2 - t^4 + 2*t^5 - t^6 - 2*t^7 + 6*t^8 - 6*t^9 + O(t^10)

y(prec=20)
Return the formal series 𝑦(𝑡) = −1/𝑤(𝑡) in terms of the local parameter 𝑡 = −𝑥/𝑦 at infinity.

INPUT:

• prec – integer (default: 20)

OUTPUT: a Laurent series with given precision

Return the formal series

𝑦(𝑡) = −𝑡−3 + 𝑎1𝑡
−2 + 𝑎2𝑡+ 𝑎3 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 113 of [Sil2009].

The result is cached, and a cached version is returned if possible.

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have default
precision 20 (or whatever the default default is).

EXAMPLES:

sage: EllipticCurve([0, 0, 1, -1, 0]).formal_group().y(10)
-t^-3 + 1 - t + t^3 - 2*t^4 + t^5 + 2*t^6 - 6*t^7 + 6*t^8 + 3*t^9 + O(t^10)

Maps between them

158 Chapter 7. Formal groups of elliptic curves

CHAPTER

EIGHT

ELLIPTIC-CURVE MORPHISMS

This class serves as a common parent for various specializations of morphisms between elliptic curves, with the aim of
providing a common interface regardless of implementation details.

Current implementations of elliptic-curve morphisms (child classes):

• EllipticCurveIsogeny

• WeierstrassIsomorphism

• EllipticCurveHom_composite

• EllipticCurveHom_sum

• EllipticCurveHom_scalar

• EllipticCurveHom_frobenius

• EllipticCurveHom_velusqrt

AUTHORS:

• See authors of EllipticCurveIsogeny. Some of the code in this class was lifted from there.

• Lorenz Panny (2021): Refactor isogenies and isomorphisms into the common EllipticCurveHom interface.

• Lorenz Panny (2022): matrix_on_subgroup()

• Lorenz Panny (2023): trace(), characteristic_polynomial()

class sage.schemes.elliptic_curves.hom.EllipticCurveHom(*args, **kwds)
Bases: Morphism

Base class for elliptic-curve morphisms.

as_morphism()

Return self as a morphism of projective schemes.

EXAMPLES:

sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: Q = E(6,5)
sage: phi = E.isogeny(Q)
sage: mor = phi.as_morphism()
sage: mor.domain() == E
True
sage: mor.codomain() == phi.codomain()
True
sage: mor(Q) == phi(Q)
True

159

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Elliptic curves, Release 10.4.rc1

characteristic_polynomial()

Return the characteristic polynomial of this elliptic-curve morphism, which must be an endomorphism.

See also:

• degree()

• trace()

EXAMPLES:

sage: E = EllipticCurve(QQ, [42, 42])
sage: m5 = E.scalar_multiplication(5)
sage: m5.characteristic_polynomial()
x^2 - 10*x + 25

sage: E = EllipticCurve(GF(71), [42, 42])
sage: pi = E.frobenius_endomorphism()
sage: pi.characteristic_polynomial()
x^2 - 8*x + 71
sage: E.frobenius().charpoly()
x^2 - 8*x + 71

degree()

Return the degree of this elliptic-curve morphism.

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.degree()
2
sage: phi = EllipticCurveIsogeny(E, [0,1,0,1])
sage: phi.degree()
4

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: phi = EllipticCurveIsogeny(E, [17, 1])
sage: phi.degree()
3

Degrees are multiplicative, so the degree of a composite isogeny is the product of the degrees of the individual
factors:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(419), [1,0])
sage: P, = E.gens()
sage: phi = EllipticCurveHom_composite(E, P+P)
sage: phi.degree()
210
sage: phi.degree() == prod(f.degree() for f in phi.factors())
True

Isomorphisms always have degree 1 by definition:

160 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 10.4.rc1

sage: E1 = EllipticCurve([1,2,3,4,5])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: E1.isomorphism_to(E2).degree()
1

dual()

Return the dual of this elliptic-curve morphism.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.dual()

• sage.schemes.elliptic_curves.weierstrass_morphism.
WeierstrassIsomorphism.dual()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
dual()

• sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum.dual()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
dual()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
dual()

formal(prec=20)
Return the formal isogeny associated to this elliptic-curve morphism as a power series in the variable 𝑡 =
−𝑥/𝑦 on the domain curve.

INPUT:

• prec – (default: 20), the precision with which the computations in the formal group are carried out.

EXAMPLES:

sage: E = EllipticCurve(GF(13),[1,7])
sage: phi = E.isogeny(E(10,4))
sage: phi.formal()
t + 12*t^13 + 2*t^17 + 8*t^19 + 2*t^21 + O(t^23)

sage: E = EllipticCurve([0,1])
sage: phi = E.isogeny(E(2,3))
sage: phi.formal(prec=10)
t + 54*t^5 + 255*t^7 + 2430*t^9 + 19278*t^11 + O(t^13)

sage: E = EllipticCurve(11a2)
sage: R.<x> = QQ[]
sage: phi = E.isogeny(x^2 + 101*x + 12751/5)
sage: phi.formal(prec=7)
t - 2724/5*t^5 + 209046/5*t^7 - 4767/5*t^8 + 29200946/5*t^9 + O(t^10)

inseparable_degree()

Return the inseparable degree of this isogeny.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.inseparable_degree()

• sage.schemes.elliptic_curves.weierstrass_morphism.
WeierstrassIsomorphism.inseparable_degree()

161

Elliptic curves, Release 10.4.rc1

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
inseparable_degree()

• sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum.
inseparable_degree()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
inseparable_degree()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
inseparable_degree()

is_injective()

Determine whether or not this morphism has trivial kernel.

The kernel is trivial if and only if this morphism is a purely inseparable isogeny.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: R.<x> = QQ[]
sage: f = x^2 + x - 29/5
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi.is_injective()
False
sage: phi = EllipticCurveIsogeny(E, R(1))
sage: phi.is_injective()
True

sage: F = GF(7)
sage: E = EllipticCurve(j=F(0))
sage: phi = EllipticCurveIsogeny(E, [E((0,-1)), E((0,1))])
sage: phi.is_injective()
False
sage: phi = EllipticCurveIsogeny(E, E(0))
sage: phi.is_injective()
True

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve([1,0])
sage: phi = EllipticCurveHom_composite(E, E(0,0))
sage: phi.is_injective()
False
sage: E = EllipticCurve_from_j(GF(3).algebraic_closure()(0))
sage: nu = EllipticCurveHom_composite.from_factors(E.automorphisms())
sage: nu
Composite morphism of degree 1 = 1^12:

From: Elliptic Curve defined by y^2 = x^3 + x
over Algebraic closure of Finite Field of size 3

To: Elliptic Curve defined by y^2 = x^3 + x
over Algebraic closure of Finite Field of size 3

sage: nu.is_injective()
True

sage: E = EllipticCurve(GF(23), [1,0])
sage: E.scalar_multiplication(4).is_injective()
False

(continues on next page)

162 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.scalar_multiplication(5).is_injective()
False
sage: E.scalar_multiplication(1).is_injective()
True
sage: E.scalar_multiplication(-1).is_injective()
True
sage: E.scalar_multiplication(23).is_injective()
True
sage: E.scalar_multiplication(-23).is_injective()
True
sage: E.scalar_multiplication(0).is_injective()
False

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 5)
sage: pi.is_injective()
True

is_normalized()

Determine whether this morphism is a normalized isogeny.

Note: An isogeny 𝜙 : 𝐸1 → 𝐸2 between two given Weierstrass equations is said to be normalized if the
𝜙*(𝜔2) = 𝜔1, where 𝜔1 and 𝜔2 are the invariant differentials on 𝐸1 and 𝐸2 corresponding to the given
equation.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: R.<x> = GF(7)[]
sage: phi = EllipticCurveIsogeny(E, x)
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (3, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (5, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi = isom * phi
sage: phi.is_normalized()
True

sage: F = GF(2^5, alpha); alpha = F.gen()
sage: E = EllipticCurve(F, [1,0,1,1,1])
sage: R.<x> = F[]
sage: phi = EllipticCurveIsogeny(E, x+1)
sage: isom = WeierstrassIsomorphism(phi.codomain(), (alpha, 0, 0, 0))

(continues on next page)

163

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: phi.is_normalized()
True
sage: phi = isom * phi
sage: phi.is_normalized()
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1/alpha, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi = isom * phi
sage: phi.is_normalized()
True

sage: E = EllipticCurve(11a1)
sage: R.<x> = QQ[]
sage: f = x^3 - x^2 - 10*x - 79/4
sage: phi = EllipticCurveIsogeny(E, f)
sage: isom = WeierstrassIsomorphism(phi.codomain(), (2, 0, 0, 0))
sage: phi.is_normalized()
True
sage: phi = isom * phi
sage: phi.is_normalized()
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1/2, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi = isom * phi
sage: phi.is_normalized()
True

ALGORITHM: We check if scaling_factor() returns 1.

is_separable()

Determine whether or not this morphism is a separable isogeny.

EXAMPLES:

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.is_separable()
True

sage: E = EllipticCurve(11a1)
sage: phi = EllipticCurveIsogeny(E, E.torsion_points())
sage: phi.is_separable()
True

sage: E = EllipticCurve(GF(31337), [0,1]) #␣
→˓needs sage.rings.finite_rings
sage: {f.is_separable() for f in E.automorphisms()} #␣
→˓needs sage.rings.finite_rings
{True}

164 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(7^2), [3,2])
sage: P = E.lift_x(1)
sage: phi = EllipticCurveHom_composite(E, P); phi
Composite morphism of degree 7:

From: Elliptic Curve defined by y^2 = x^3 + 3*x + 2 over Finite Field in z2␣
→˓of size 7^2
To: Elliptic Curve defined by y^2 = x^3 + 3*x + 2 over Finite Field in z2␣

→˓of size 7^2
sage: phi.is_separable()
True

sage: E = EllipticCurve(GF(11), [4,4])
sage: E.scalar_multiplication(11).is_separable()
False
sage: E.scalar_multiplication(-11).is_separable()
False
sage: E.scalar_multiplication(777).is_separable()
True
sage: E.scalar_multiplication(-1).is_separable()
True
sage: E.scalar_multiplication(77).is_separable()
False
sage: E.scalar_multiplication(121).is_separable()
False

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E)
sage: pi.degree()
11
sage: pi.is_separable()
False
sage: pi = EllipticCurveHom_frobenius(E, 0)
sage: pi.degree()
1
sage: pi.is_separable()
True

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = E.isogeny(E((1,2)), algorithm= velusqrt)
sage: phi.is_separable()
True

is_surjective()

Determine whether or not this morphism is surjective.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: R.<x> = QQ[]
sage: f = x^2 + x - 29/5
sage: phi = EllipticCurveIsogeny(E, f)

(continues on next page)

165

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: phi.is_surjective()
True

sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.is_surjective()
True

sage: F = GF(2^5, omega)
sage: E = EllipticCurve(j=F(0))
sage: R.<x> = F[]
sage: phi = EllipticCurveIsogeny(E, x)
sage: phi.is_surjective()
True

is_zero()

Check whether this elliptic-curve morphism is the zero map.

EXAMPLES:

sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = EllipticCurveIsogeny(E, [E(0,1), E(0,-1)])
sage: phi.is_zero()
False

kernel_polynomial()

Return the kernel polynomial of this elliptic-curve morphism.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.kernel_polynomial()

• sage.schemes.elliptic_curves.weierstrass_morphism.
WeierstrassIsomorphism.kernel_polynomial()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
kernel_polynomial()

• sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum.
kernel_polynomial()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
kernel_polynomial()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
kernel_polynomial()

matrix_on_subgroup(domain_gens, codomain_gens=None)
Return the matrix by which this isogeny acts on the 𝑛-torsion subgroup with respect to the given bases.

INPUT:

• domain_gens – basis (𝑃,𝑄) of some 𝑛-torsion subgroup on the domain of this elliptic-curve mor-
phism

• codomain_gens – basis (𝑅,𝑆) of the 𝑛-torsion on the codomain of this morphism, or (default) None
if self is an endomorphism

166 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 10.4.rc1

OUTPUT:

A 2 × 2 matrix 𝑀 over /𝑛, such that the image of any point [𝑎]𝑃 + [𝑏]𝑄 under this morphism equals
[𝑐]𝑅+ [𝑑]𝑆 where (𝑐 𝑑)𝑇 = (𝑎 𝑏)𝑀 .

EXAMPLES:

sage: F.<i> = GF(419^2, modulus=[1,0,1])
sage: E = EllipticCurve(F, [1,0])
sage: P = E(3, 176*i)
sage: Q = E(i+7, 67*i+48)
sage: P.weil_pairing(Q, 420).multiplicative_order()
420
sage: iota = E.automorphisms()[2]; iota
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field in i of size 419^2
Via: (u,r,s,t) = (i, 0, 0, 0)

sage: iota^2 == E.scalar_multiplication(-1)
True
sage: mat = iota.matrix_on_subgroup((P,Q)); mat
[301 386]
[83 119]
sage: mat.parent()
Full MatrixSpace of 2 by 2 dense matrices over Ring of integers modulo 420
sage: iota(P) == 301*P + 386*Q
True
sage: iota(Q) == 83*P + 119*Q
True
sage: a,b = 123, 456
sage: c,d = vector((a,b)) * mat; (c,d)
(111, 102)
sage: iota(a*P + b*Q) == c*P + d*Q
True

One important application of this is to compute generators of the kernel subgroup of an isogeny, when the
𝑛-torsion subgroup containing the kernel is accessible:

sage: K = E(83*i-16, 9*i-147)
sage: K.order()
7
sage: phi = E.isogeny(K)
sage: R,S = phi.codomain().gens()
sage: mat = phi.matrix_on_subgroup((P,Q), (R,S))
sage: mat # random -- depends on R,S
[124 263]
[115 141]
sage: kermat = mat.left_kernel_matrix(); kermat
[300 60]
sage: ker = [ZZ(v[0])*P + ZZ(v[1])*Q for v in kermat]
sage: {phi(T) for T in ker}
{(0 : 1 : 0)}
sage: phi == E.isogeny(ker)
True

We can also compute the matrix of a Frobenius endomorphism (EllipticCurveHom_frobenius) on
a large enough subgroup to verify point-counting results:

sage: F.<a> = GF((101, 36))

(continues on next page)

167

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(GF(101), [1,1])
sage: EE = E.change_ring(F)
sage: P,Q = EE.torsion_basis(37)
sage: pi = EE.frobenius_isogeny()
sage: M = pi.matrix_on_subgroup((P,Q))
sage: M.parent()
Full MatrixSpace of 2 by 2 dense matrices over Ring of integers modulo 37
sage: M.trace()
34
sage: E.trace_of_frobenius()
-3

See also:

To compute a basis of the 𝑛-torsion, you may use torsion_basis().

rational_maps()

Return the pair of explicit rational maps defining this elliptic-curve morphism as fractions of bivariate poly-
nomials in 𝑥 and 𝑦.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.rational_maps()

• sage.schemes.elliptic_curves.weierstrass_morphism.
WeierstrassIsomorphism.rational_maps()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
rational_maps()

• sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum.
rational_maps()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
rational_maps()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
rational_maps()

scaling_factor()

Return the Weierstrass scaling factor associated to this elliptic-curve morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.scaling_factor()

• sage.schemes.elliptic_curves.weierstrass_morphism.
WeierstrassIsomorphism.scaling_factor()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
scaling_factor()

• sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum.
scaling_factor()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
scaling_factor()

168 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 10.4.rc1

separable_degree()

Return the separable degree of this isogeny.

The separable degree is the result of dividing the degree() by the inseparable_degree().

EXAMPLES:

sage: E = EllipticCurve(GF(11), [5,5])
sage: E.is_supersingular()
False
sage: E.scalar_multiplication(-77).separable_degree()
539
sage: E = EllipticCurve(GF(11), [5,0])
sage: E.is_supersingular()
True
sage: E.scalar_multiplication(-77).separable_degree()
49

trace()

Return the trace of this elliptic-curve morphism, which must be an endomorphism.

ALGORITHM: compute_trace_generic()

EXAMPLES:

sage: E = EllipticCurve(QQ, [42, 42])
sage: m5 = E.scalar_multiplication(5)
sage: m5.trace()
10

sage: E = EllipticCurve(GF(71^2), [45, 45])
sage: P = E.lift_x(27)
sage: P.order()
71
sage: tau = E.isogeny(P, codomain=E)
sage: tau.trace()
-1

x_rational_map()

Return the 𝑥-coordinate rational map of this elliptic-curve morphism as a univariate rational expression in 𝑥.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.x_rational_map()

• sage.schemes.elliptic_curves.weierstrass_morphism.
WeierstrassIsomorphism.x_rational_map()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
x_rational_map()

• sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum.
x_rational_map()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
x_rational_map()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
x_rational_map()

169

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.hom.compare_via_evaluation(left, right)
Test if two elliptic-curve morphisms are equal by evaluating them at enough points.

INPUT:

• left, right – EllipticCurveHom objects

ALGORITHM:

We use the fact that two isogenies of equal degree 𝑑 must be the same if and only if they behave identically on
more than 4𝑑 points. (It suffices to check this on a few points that generate a large enough subgroup.)

If the domain curve does not have sufficiently many rational points, the base field is extended first: Taking an
extension of degree 𝑂(log(𝑑)) suffices.

EXAMPLES:

sage: E = EllipticCurve(GF(83), [1,0])
sage: phi = E.isogeny(12*E.0, model= montgomery); phi
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite␣
→˓Field of size 83 to Elliptic Curve defined by y^2 = x^3 + 70*x^2 + x over␣
→˓Finite Field of size 83
sage: psi = phi.dual(); psi
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 70*x^2 + x over␣
→˓Finite Field of size 83 to Elliptic Curve defined by y^2 = x^3 + x over Finite␣
→˓Field of size 83
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: mu = EllipticCurveHom_composite.from_factors([phi, psi])
sage: from sage.schemes.elliptic_curves.hom import compare_via_evaluation
sage: compare_via_evaluation(mu, E.scalar_multiplication(7))
True

See also:

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
richcmp()

sage.schemes.elliptic_curves.hom.compute_trace_generic(phi)
Compute the trace of the given elliptic-curve endomorphism.

ALGORITHM: Simple variant of Schoof’s algorithm. For enough small primes ℓ, we find an order-ℓ point 𝑃 on𝐸
and use a discrete-logarithm calculation to find the unique scalar 𝑡ℓ ∈ {0, ..., ℓ−1} such that𝜙2(𝑃)+[deg(𝜙)]𝑃 =
[𝑡ℓ]𝜙(𝑃). Then 𝑡ℓ equals the trace of 𝜙 modulo ℓ, which can therefore be recovered using the Chinese remainder
theorem.

EXAMPLES:

It works over finite fields:

sage: from sage.schemes.elliptic_curves.hom import compute_trace_generic
sage: E = EllipticCurve(GF(31337), [1,1])
sage: compute_trace_generic(E.frobenius_endomorphism())
314

It works over Q:

sage: from sage.schemes.elliptic_curves.hom import compute_trace_generic
sage: E = EllipticCurve(QQ, [1,2,3,4,5])
sage: dbl = E.scalar_multiplication(2)

(continues on next page)

170 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: compute_trace_generic(dbl)
4

It works over number fields (for a CM curve):

sage: from sage.schemes.elliptic_curves.hom import compute_trace_generic
sage: x = polygen(QQ)
sage: K.<t> = NumberField(5*x^2 - 2*x + 1)
sage: E = EllipticCurve(K, [1,0])
sage: phi = E.isogeny([t,0,1], codomain=E) # phi = 2 + i
sage: compute_trace_generic(phi)
4

sage.schemes.elliptic_curves.hom.find_post_isomorphism(phi, psi)
Given two isogenies 𝜑 : 𝐸 → 𝐸′ and 𝜓 : 𝐸 → 𝐸′′ which are equal up to post-isomorphism defined over the same
field, find that isomorphism.

In other words, this function computes an isomorphism 𝛼 : 𝐸′ → 𝐸′′ such that 𝛼 ∘ 𝜑 = 𝜓.

ALGORITHM:

Start with a list of all isomorphisms 𝐸′ → 𝐸′′. Then repeatedly evaluate 𝜑 and 𝜓 at random points 𝑃 to filter the
list for isomorphisms 𝛼 with 𝛼(𝜑(𝑃)) = 𝜓(𝑃). Once only one candidate is left, return it. Periodically extend the
base field to avoid getting stuck (say, if all candidate isomorphisms act the same on all rational points).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom import find_post_isomorphism
sage: E = EllipticCurve(GF(7^2), [1,0])
sage: f = E.scalar_multiplication(1)
sage: g = choice(E.automorphisms())
sage: find_post_isomorphism(f, g) == g
True

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: x = polygen(ZZ, x)
sage: F.<i> = GF(883^2, modulus=x^2+1)
sage: E = EllipticCurve(F, [1,0])
sage: P = E.lift_x(117)
sage: Q = E.lift_x(774)
sage: w = WeierstrassIsomorphism(E, [i,0,0,0])
sage: phi = EllipticCurveHom_composite(E, [P,w(Q)]) * w
sage: psi = EllipticCurveHom_composite(E, [Q,w(P)])
sage: phi.kernel_polynomial() == psi.kernel_polynomial()
True
sage: find_post_isomorphism(phi, psi)
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + 320*x + 482 over Finite Field in i␣

→˓of size 883^2
To: Elliptic Curve defined by y^2 = x^3 + 320*x + 401 over Finite Field in i␣

→˓of size 883^2
Via: (u,r,s,t) = (882*i, 0, 0, 0)

171

Elliptic curves, Release 10.4.rc1

172 Chapter 8. Elliptic-curve morphisms

CHAPTER

NINE

COMPOSITE MORPHISMS OF ELLIPTIC CURVES

It is often computationally convenient (for example, in cryptography) to factor an isogeny of large degree into a compo-
sition of isogenies of smaller (prime) degree. This class implements such a decomposition while exposing (close to) the
same interface as “normal”, unfactored elliptic-curve isogenies.

EXAMPLES:

The following example would take quite literally forever with the straightforward EllipticCurveIsogeny imple-
mentation, but decomposing into prime steps is exponentially faster:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: p = 3 * 2^143 - 1
sage: GF(p^2).inject_variables()
Defining z2
sage: E = EllipticCurve(GF(p^2), [1,0])
sage: P = E.lift_x(31415926535897932384626433832795028841971 - z2)
sage: P.order().factor()
2^143
sage: EllipticCurveHom_composite(E, P)
Composite morphism of degree 11150372599265311570767859136324180752990208 = 2^143:

From: Elliptic Curve defined by y^2 = x^3 + x
over Finite Field in z2 of size 33451117797795934712303577408972542258970623^2

To: Elliptic Curve defined by y^2 = x^3 +␣
→˓(18676616716352953484576727486205473216172067*z2+32690199585974925193292786311814241821808308)*x

+␣
→˓(3369702436351367403910078877591946300201903*z2+15227558615699041241851978605002704626689722)

over Finite Field in z2 of size 33451117797795934712303577408972542258970623^2

Yet, the interface provided by EllipticCurveHom_composite is identical to EllipticCurveIsogeny and
other instantiations of EllipticCurveHom:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(419), [0,1])
sage: P = E.lift_x(33); P.order()
35
sage: psi = EllipticCurveHom_composite(E, P); psi
Composite morphism of degree 35 = 5*7:

From: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 419
To: Elliptic Curve defined by y^2 = x^3 + 101*x + 285 over Finite Field of size␣

→˓419
sage: psi(E.lift_x(11))
(352 : 346 : 1)
sage: psi.rational_maps()

(continues on next page)

173

Elliptic curves, Release 10.4.rc1

(continued from previous page)

((x^35 + 162*x^34 + 186*x^33 + 92*x^32 - ... + 44*x^3 + 190*x^2 + 80*x
- 72)/(x^34 + 162*x^33 - 129*x^32 + 41*x^31 + ... + 66*x^3 - 191*x^2 + 119*x + 21),

(x^51*y - 176*x^50*y + 115*x^49*y - 120*x^48*y + ... + 72*x^3*y + 129*x^2*y + 163*x*y
+ 178*y)/(x^51 - 176*x^50 + 11*x^49 + 26*x^48 - ... - 77*x^3 + 185*x^2 + 169*x -␣

→˓128))
sage: psi.kernel_polynomial()
x^17 + 81*x^16 + 7*x^15 + 82*x^14 + 49*x^13 + 68*x^12 + 109*x^11 + 326*x^10
+ 117*x^9 + 136*x^8 + 111*x^7 + 292*x^6 + 55*x^5 + 389*x^4 + 175*x^3 + 43*x^2 +␣
→˓149*x + 373
sage: psi.dual()
Composite morphism of degree 35 = 7*5:

From: Elliptic Curve defined by y^2 = x^3 + 101*x + 285 over Finite Field of size␣
→˓419
To: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 419

sage: psi.formal()
t + 211*t^5 + 417*t^7 + 159*t^9 + 360*t^11 + 259*t^13 + 224*t^15 + 296*t^17 + 139*t^
→˓19 + 222*t^21 + O(t^23)

Equality is decided correctly (and, in some cases, much faster than comparing EllipticCurveHom.
rational_maps()) even when distinct factorizations of the same isogeny are compared:

sage: psi == EllipticCurveIsogeny(E, P) #␣
→˓needs sage.rings.finite_rings
True

We can easily obtain the individual factors of the composite map:

sage: psi.factors() #␣
→˓needs sage.rings.finite_rings
(Isogeny of degree 5

from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 419
to Elliptic Curve defined by y^2 = x^3 + 140*x + 214 over Finite Field of size␣

→˓419,
Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 140*x + 214 over Finite Field of size 419
to Elliptic Curve defined by y^2 = x^3 + 101*x + 285 over Finite Field of size␣

→˓419)

AUTHORS:

• Lukas Zobernig (2020): initial proof-of-concept version

• Lorenz Panny (2021): EllipticCurveHom interface, documentation and tests, equality testing

class sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite(E ,
ker-
nel,
codomain=None,
model=None,
velu_sqrt_bound=None)

Bases: EllipticCurveHom

Construct a composite isogeny with given kernel (and optionally, prescribed codomain curve). The isogeny is
decomposed into steps of prime degree.

The codomain and model parameters have the same meaning as for EllipticCurveIsogeny.

The optional parameter velu_sqrt_bound prescribes the point in which the computation of a single isogeny

174 Chapter 9. Composite morphisms of elliptic curves

Elliptic curves, Release 10.4.rc1

should be performed using square root Velu instead of simple Velu. If not provided, the system default is used (see
EllipticCurve_field.isogeny for a more detailed discussion.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(419), [1,0]) #␣
→˓needs sage.rings.finite_rings
sage: EllipticCurveHom_composite(E, E.lift_x(23)) #␣
→˓needs sage.rings.finite_rings
Composite morphism of degree 105 = 3*5*7:
From: Elliptic Curve defined by y^2 = x^3 + x

over Finite Field of size 419
To: Elliptic Curve defined by y^2 = x^3 + 373*x + 126

over Finite Field of size 419

The given kernel generators need not be independent:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 - x - 5)
sage: E = EllipticCurve(210.b6).change_ring(K)
sage: E.torsion_subgroup()
Torsion Subgroup isomorphic to Z/12 + Z/2 associated to the Elliptic Curve
defined by y^2 + x*y + y = x^3 + (-578)*x + 2756
over Number Field in a with defining polynomial x^2 - x - 5

sage: EllipticCurveHom_composite(E, E.torsion_points())
Composite morphism of degree 24 = 2^3*3:
From: Elliptic Curve defined by y^2 + x*y + y = x^3 + (-578)*x + 2756

over Number Field in a with defining polynomial x^2 - x - 5
To: Elliptic Curve defined by

y^2 + x*y + y = x^3 + (-89915533/16)*x + (-328200928141/64)
over Number Field in a with defining polynomial x^2 - x - 5

dual()

Return the dual of this composite isogeny.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P); phi
Composite morphism of degree 9 = 3^2:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5
over Finite Field of size 65537

To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 28339*x +␣
→˓59518

over Finite Field of size 65537
sage: psi = phi.dual(); psi
Composite morphism of degree 9 = 3^2:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 28339*x +␣
→˓59518

over Finite Field of size 65537
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5

(continues on next page)

175

Elliptic curves, Release 10.4.rc1

(continued from previous page)

over Finite Field of size 65537
sage: psi * phi == phi.domain().scalar_multiplication(phi.degree())
True
sage: phi * psi == psi.domain().scalar_multiplication(psi.degree())
True

factors()

Return the factors of this composite isogeny as a tuple.

The isogenies are returned in left-to-right order, i.e., the returned tuple (𝑓1, ..., 𝑓𝑛) corresponds to the map
𝑓𝑛 ∘ · · · ∘ 𝑓1.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(43), [1,0])
sage: P, = E.gens()
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.factors()
(Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 43
to Elliptic Curve defined by y^2 = x^3 + 39*x over Finite Field of size␣

→˓43,
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 39*x over Finite Field of size 43
to Elliptic Curve defined by y^2 = x^3 + 42*x + 26 over Finite Field of␣

→˓size 43,
Isogeny of degree 11
from Elliptic Curve defined by y^2 = x^3 + 42*x + 26 over Finite Field of␣

→˓size 43
to Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 43)

formal(prec=20)
Return the formal isogeny corresponding to this composite isogeny as a power series in the variable 𝑡 = −𝑥/𝑦
on the domain curve.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.formal()
t + 54203*t^5 + 48536*t^6 + 40698*t^7 + 37808*t^8 + 21111*t^9 + 42381*t^10
+ 46688*t^11 + 657*t^12 + 38916*t^13 + 62261*t^14 + 59707*t^15
+ 30767*t^16 + 7248*t^17 + 60287*t^18 + 50451*t^19 + 38305*t^20
+ 12312*t^21 + 31329*t^22 + O(t^23)

sage: (phi.dual() * phi).formal(prec=5)
9*t + 65501*t^2 + 65141*t^3 + 59183*t^4 + 21491*t^5 + 8957*t^6
+ 999*t^7 + O(t^8)

classmethod from_factors(maps, E=None, strict=True)
This method constructs a EllipticCurveHom_composite object encapsulating a given sequence of
compatible isogenies.

176 Chapter 9. Composite morphisms of elliptic curves

Elliptic curves, Release 10.4.rc1

The isogenies are composed in left-to-right order, i.e., the resulting composite map equals 𝑓𝑛−1 ∘ · · · ∘ 𝑓0
where 𝑓𝑖 denotes maps[i].

INPUT:

• maps – sequence of EllipticCurveHom objects

• E (optional) – the domain elliptic curve

• strict (default: True) – if True, always return an EllipticCurveHom_composite object;
else may return another EllipticCurveHom type

OUTPUT: the composite of maps

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(43), [1,0])
sage: P, = E.gens()
sage: phi = EllipticCurveHom_composite(E, P)
sage: psi = EllipticCurveHom_composite.from_factors(phi.factors())
sage: psi == phi
True

inseparable_degree()

Return the inseparable degree of this morphism.

Like the degree, the inseparable degree is multiplicative under composition, so this method returns the product
of the inseparable degrees of the factors.

EXAMPLES:

sage: E = EllipticCurve(j=GF(11^5).random_element())
sage: phi = E.frobenius_isogeny(2) * E.scalar_multiplication(77)
sage: type(phi)
<class sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
→˓ >
sage: phi.inseparable_degree()
1331

kernel_polynomial()

Return the kernel polynomial of this composite isogeny.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P); phi
Composite morphism of degree 9 = 3^2:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5
over Finite Field of size 65537

To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 28339*x +␣
→˓59518

over Finite Field of size 65537
sage: phi.kernel_polynomial()
x^4 + 46500*x^3 + 19556*x^2 + 7643*x + 15952

177

Elliptic curves, Release 10.4.rc1

rational_maps()

Return the pair of explicit rational maps defining this composite isogeny.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.rational_maps()
((x^9 + 27463*x^8 + 21204*x^7 - 5750*x^6 + 1610*x^5 + 14440*x^4

+ 26605*x^3 - 15569*x^2 - 3341*x + 1267)/(x^8 + 27463*x^7 + 26871*x^6
+ 5999*x^5 - 20194*x^4 - 6310*x^3 + 24366*x^2 - 20905*x - 13867),

(x^12*y + 8426*x^11*y + 5667*x^11 + 27612*x^10*y + 26124*x^10 + 9688*x^9*y
- 22715*x^9 + 19864*x^8*y + 498*x^8 + 22466*x^7*y - 14036*x^7 + 8070*x^6*y
+ 19955*x^6 - 20765*x^5*y - 12481*x^5 + 12672*x^4*y + 24142*x^4 - 23695*x^

→˓3*y
+ 26667*x^3 + 23780*x^2*y + 17864*x^2 + 15053*x*y - 30118*x + 17539*y
- 23609)/(x^12 + 8426*x^11 + 21945*x^10 - 22587*x^9 + 22094*x^8 + 14603*x^7
- 26255*x^6 + 11171*x^5 - 16508*x^4 - 14435*x^3 - 2170*x^2 + 29081*x -␣

→˓19009))

scaling_factor()

Return the Weierstrass scaling factor associated to this composite morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi = WeierstrassIsomorphism(phi.codomain(), [7,8,9,10]) * phi
sage: phi.formal()
7*t + 65474*t^2 + 511*t^3 + 61316*t^4 + 20548*t^5 + 45511*t^6 + 37285*t^7
+ 48414*t^8 + 9022*t^9 + 24025*t^10 + 35986*t^11 + 55397*t^12 + 25199*t^13
+ 18744*t^14 + 46142*t^15 + 9078*t^16 + 18030*t^17 + 47599*t^18
+ 12158*t^19 + 50630*t^20 + 56449*t^21 + 43320*t^22 + O(t^23)

sage: phi.scaling_factor()
7

ALGORITHM: The scaling factor is multiplicative under composition, so we return the product of the indi-
vidual scaling factors associated to each factor.

x_rational_map()

Return the 𝑥-coordinate rational map of this composite isogeny.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_

(continues on next page)

178 Chapter 9. Composite morphisms of elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.x_rational_map() == phi.rational_maps()[0]
True

179

Elliptic curves, Release 10.4.rc1

180 Chapter 9. Composite morphisms of elliptic curves

CHAPTER

TEN

SUMS OF MORPHISMS OF ELLIPTIC CURVES

The set Hom(𝐸,𝐸′) of morphisms between two elliptic curves forms an abelian group under pointwise addition. An
important special case is the endomorphism ring End(𝐸) = Hom(𝐸,𝐸). However, it is not immediately obvious how to
compute some properties of the sum𝜙+𝜓 of two isogenies, even when both are given explicitly. This class provides func-
tionality for representing sums of elliptic-curve morphisms (in particular, isogenies and endomorphisms) formally, and
explicitly computing important properties (such as the degree or the kernel polynomial) from the formal representation.

EXAMPLES:

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: phi + phi
Sum morphism:

From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 101
To: Elliptic Curve defined by y^2 = x^3 + 12*x + 98 over Finite Field of size 101
Via: (Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over␣

→˓Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3 + 12*x + 98 over␣
→˓Finite Field of size 101, Isogeny of degree 7 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 5*x + 5 over Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3␣
→˓+ 12*x + 98 over Finite Field of size 101)
sage: phi + phi == phi * E.scalar_multiplication(2)
True
sage: phi + phi + phi == phi * E.scalar_multiplication(3)
True

An example of computing with a supersingular endomorphism ring:

sage: E = EllipticCurve(GF(419^2), [1,0])
sage: i = E.automorphisms()[-1]
sage: j = E.frobenius_isogeny()
sage: i * j == - j * i # i,j anticommute
True
sage: (i + j) * i == i^2 - i*j # distributive law
True
sage: (j - E.scalar_multiplication(1)).degree() # point counting!
420

AUTHORS:

• Lorenz Panny (2023)

class sage.schemes.elliptic_curves.hom_sum.EllipticCurveHom_sum(phis, domain=None,
codomain=None)

Bases: EllipticCurveHom

181

Elliptic curves, Release 10.4.rc1

Construct a sum morphism of elliptic curves from its summands. (For empty sums, the domain and codomain
curves must be given.)

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_sum import EllipticCurveHom_sum
sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: EllipticCurveHom_sum([phi, phi])
Sum morphism:
From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size␣

→˓101
To: Elliptic Curve defined by y^2 = x^3 + 12*x + 98 over Finite Field of size␣

→˓101
Via: (Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 5*x + 5␣

→˓over Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3 + 12*x +␣
→˓98 over Finite Field of size 101, Isogeny of degree 7 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 101 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 12*x + 98 over Finite Field of size 101)

The zero morphism can be constructed even between non-isogenous curves:

sage: E1 = EllipticCurve(GF(101), [5,5])
sage: E2 = EllipticCurve(GF(101), [7,7])
sage: E1.is_isogenous(E2)
False
sage: EllipticCurveHom_sum([], E1, E2)
Sum morphism:
From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size␣

→˓101
To: Elliptic Curve defined by y^2 = x^3 + 7*x + 7 over Finite Field of size␣

→˓101
Via: ()

degree()

Return the degree of this sum morphism.

EXAMPLES:

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: (phi + phi).degree()
28

This method yields a simple toy point-counting algorithm:

sage: E = EllipticCurve(GF(101), [5,5])
sage: m1 = E.scalar_multiplication(1)
sage: pi = E.frobenius_endomorphism()
sage: (pi - m1).degree()
119
sage: E.count_points()
119

ALGORITHM: Essentially Schoof’s algorithm; see _compute_degree().

dual()

Return the dual of this sum morphism.

EXAMPLES:

182 Chapter 10. Sums of morphisms of elliptic curves

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: (phi + phi).dual()
Sum morphism:

From: Elliptic Curve defined by y^2 = x^3 + 12*x + 98 over Finite Field of␣
→˓size 101
To: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of␣

→˓size 101
Via: (Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 12*x␣

→˓+ 98 over Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3 +␣
→˓5*x + 5 over Finite Field of size 101, Isogeny of degree 7 from Elliptic␣
→˓Curve defined by y^2 = x^3 + 12*x + 98 over Finite Field of size 101 to␣
→˓Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 101)
sage: (phi + phi).dual() == phi.dual() + phi.dual()
True

sage: E = EllipticCurve(GF(431^2), [1,0])
sage: iota = E.automorphisms()[2]
sage: m2 = E.scalar_multiplication(2)
sage: endo = m2 + iota
sage: endo.dual()
Sum morphism:

From: Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of␣
→˓size 431^2
To: Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of␣

→˓size 431^2
Via: (Scalar-multiplication endomorphism [2] of Elliptic Curve defined by␣

→˓y^2 = x^3 + x over Finite Field in z2 of size 431^2, Elliptic-curve␣
→˓endomorphism of Elliptic Curve defined by y^2 = x^3 + x over Finite Field␣
→˓in z2 of size 431^2
Via: (u,r,s,t) = (8*z2 + 427, 0, 0, 0))

sage: endo.dual() == (m2 - iota)
True

ALGORITHM: Taking the dual distributes over addition.

inseparable_degree()

Compute the inseparable degree of this sum morphism.

EXAMPLES:

sage: E = EllipticCurve(GF(7), [0,1])
sage: m3 = E.scalar_multiplication(3)
sage: m3.inseparable_degree()
1
sage: m4 = E.scalar_multiplication(4)
sage: m7 = m3 + m4; m7
Sum morphism:

From: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
To: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
Via: (Scalar-multiplication endomorphism [3] of Elliptic Curve defined by␣

→˓y^2 = x^3 + 1 over Finite Field of size 7, Scalar-multiplication␣
→˓endomorphism [4] of Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field of size 7)
sage: m7.degree()
49
sage: m7.inseparable_degree()
7

183

Elliptic curves, Release 10.4.rc1

A supersingular example:

sage: E = EllipticCurve(GF(7), [1,0])
sage: m3 = E.scalar_multiplication(3)
sage: m3.inseparable_degree()
1
sage: m4 = E.scalar_multiplication(4)
sage: m7 = m3 + m4; m7
Sum morphism:

From: Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 7
To: Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 7
Via: (Scalar-multiplication endomorphism [3] of Elliptic Curve defined by␣

→˓y^2 = x^3 + x over Finite Field of size 7, Scalar-multiplication␣
→˓endomorphism [4] of Elliptic Curve defined by y^2 = x^3 + x over Finite␣
→˓Field of size 7)
sage: m7.inseparable_degree()
49

kernel_polynomial()

Return the kernel polynomial of this sum morphism.

EXAMPLES:

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: (phi + phi).kernel_polynomial()
x^15 + 75*x^14 + 16*x^13 + 59*x^12 + 28*x^11 + 60*x^10 + 69*x^9 + 79*x^8 +␣
→˓79*x^7 + 52*x^6 + 35*x^5 + 11*x^4 + 37*x^3 + 69*x^2 + 66*x + 63

sage: E = EllipticCurve(GF(11), [5,5])
sage: pi = E.frobenius_endomorphism()
sage: m1 = E.scalar_multiplication(1)
sage: (pi - m1).kernel_polynomial()
x^9 + 7*x^8 + 2*x^7 + 4*x^6 + 10*x^4 + 4*x^3 + 9*x^2 + 7*x

ALGORITHM: to_isogeny_chain().

rational_maps()

Return the rational maps of this sum morphism.

EXAMPLES:

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: (phi + phi).rational_maps()
((5*x^28 + 43*x^27 + 26*x^26 - ... + 7*x^2 - 23*x + 38)/(23*x^27 + 16*x^26 +␣
→˓9*x^25 + ... - 43*x^2 - 22*x + 37),
(42*x^42*y - 44*x^41*y - 22*x^40*y + ... - 26*x^2*y - 50*x*y - 18*y)/(-24*x^
→˓42 - 47*x^41 - 12*x^40 + ... + 18*x^2 - 48*x + 18))

ALGORITHM: to_isogeny_chain().

scaling_factor()

Return the Weierstrass scaling factor associated to this sum morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

184 Chapter 10. Sums of morphisms of elliptic curves

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: phi.scaling_factor()
84
sage: (phi + phi).scaling_factor()
67

ALGORITHM: The scaling factor is additive under addition of elliptic-curve morphisms, so we simply add
together the scaling factors of the summands().

summands()

Return the individual summands making up this sum morphism.

EXAMPLES:

sage: E = EllipticCurve(j=5)
sage: m2 = E.scalar_multiplication(2)
sage: m3 = E.scalar_multiplication(3)
sage: m2 + m3
Sum morphism:

From: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 180*x + 17255 over␣
→˓Rational Field
To: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 180*x + 17255 over␣

→˓Rational Field
Via: (Scalar-multiplication endomorphism [2] of Elliptic Curve defined by␣

→˓y^2 + x*y = x^3 + x^2 + 180*x + 17255 over Rational Field, Scalar-
→˓multiplication endomorphism [3] of Elliptic Curve defined by y^2 + x*y = x^
→˓3 + x^2 + 180*x + 17255 over Rational Field)

to_isogeny_chain()

Convert this formal sum of elliptic-curve morphisms into a EllipticCurveHom_composite object
representing the same morphism.

EXAMPLES:

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: (phi + phi).to_isogeny_chain()
Composite morphism of degree 28 = 4*1*7:

From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of␣
→˓size 101
To: Elliptic Curve defined by y^2 = x^3 + 12*x + 98 over Finite Field of␣

→˓size 101

sage: p = 419
sage: E = EllipticCurve(GF(p^2), [1,0])
sage: iota = E.automorphisms()[2] # sqrt(-1)
sage: pi = E.frobenius_isogeny() # sqrt(-p)
sage: endo = iota + pi
sage: endo.degree()
420
sage: endo.to_isogeny_chain()
Composite morphism of degree 420 = 4*1*3*5*7:

From: Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of␣
→˓size 419^2
To: Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of␣

→˓size 419^2

185

Elliptic curves, Release 10.4.rc1

The decomposition is impossible for the constant zero map:

sage: endo = iota*pi + pi*iota
sage: endo.degree()
0
sage: endo.to_isogeny_chain()
Traceback (most recent call last):
...
ValueError: zero morphism cannot be written as a composition of isogenies

Isomorphisms are supported as well:

sage: E = EllipticCurve(j=5); E
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 180*x + 17255 over Rational␣
→˓Field
sage: m2 = E.scalar_multiplication(2)
sage: m3 = E.scalar_multiplication(3)
sage: (m2 - m3).to_isogeny_chain()
Composite morphism of degree 1 = 1^2:

From: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 180*x + 17255 over␣
→˓Rational Field
To: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 180*x + 17255 over␣

→˓Rational Field
sage: (m2 - m3).rational_maps()
(x, -x - y)

x_rational_map()

Return the 𝑥-coordinate rational map of this sum morphism.

EXAMPLES:

sage: E = EllipticCurve(GF(101), [5,5])
sage: phi = E.isogenies_prime_degree(7)[0]
sage: (phi + phi).x_rational_map()
(9*x^28 + 37*x^27 + 67*x^26 + ... + 53*x^2 + 100*x + 28)/(x^27 + 49*x^26 +␣
→˓97*x^25 + ... + 64*x^2 + 21*x + 6)

ALGORITHM: to_isogeny_chain().

186 Chapter 10. Sums of morphisms of elliptic curves

CHAPTER

ELEVEN

ISOMORPHISMS BETWEEN WEIERSTRASS MODELS OF ELLIPTIC
CURVES

AUTHORS:

• Robert Bradshaw (2007): initial version

• John Cremona (Jan 2008): isomorphisms, automorphisms and twists in all characteristics

• Lorenz Panny (2021): EllipticCurveHom interface

class sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism(E=None,
urst=None,
F=None)

Bases: EllipticCurveHom, baseWI

Class representing a Weierstrass isomorphism between two elliptic curves.

INPUT:

• E – an EllipticCurve, or None (see below).

• urst – a 4-tuple (𝑢, 𝑟, 𝑠, 𝑡), a baseWI object, or None (see below).

• F – an EllipticCurve, or None (see below).

Given two Elliptic Curves E and F (represented by Weierstrass models as usual), and a transformation urst from
E to F, construct an isomorphism from E to F. An exception is raised if urst(E) != F. At most one of E, F,
urst can be None. In this case, the missing input is constructed from the others in such a way that urst(E)
== F holds, and an exception is raised if this is impossible (typically because E and F are not isomorphic).

Users will not usually need to use this class directly, but instead use methods such as isomorphism_to() or
isomorphisms().

Explicitly, the isomorphism defined by (𝑢, 𝑟, 𝑠, 𝑡) maps a point (𝑥, 𝑦) to the point

((𝑥− 𝑟)/𝑢2, (𝑦 − 𝑠(𝑥− 𝑟)− 𝑡)/𝑢3).

If the domain 𝐸 has Weierstrass coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6], the codomain 𝐹 is given by

𝑎′1 = (𝑎1 + 2𝑠)/𝑢

𝑎′2 = (𝑎2 − 𝑎1𝑠+ 3𝑟 − 𝑠2)/𝑢2

𝑎′3 = (𝑎3 + 𝑎1𝑟 + 2𝑡)/𝑢3

𝑎′4 = (𝑎4 + 2𝑎2𝑟 − 𝑎1(𝑟𝑠+ 𝑡)− 𝑎3𝑠+ 3𝑟2 − 2𝑠𝑡)/𝑢4

𝑎′6 = (𝑎6 − 𝑎1𝑟𝑡+ 𝑎2𝑟
2 − 𝑎3𝑡+ 𝑎4𝑟 + 𝑟3 − 𝑡2)/𝑢6.

EXAMPLES:

187

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: WeierstrassIsomorphism(EllipticCurve([0,1,2,3,4]), (-1,2,3,4))
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + 2*y = x^3 + x^2 + 3*x + 4 over Rational␣

→˓Field
To: Elliptic Curve defined by y^2 - 6*x*y - 10*y = x^3 - 2*x^2 - 11*x - 2␣

→˓over Rational Field
Via: (u,r,s,t) = (-1, 2, 3, 4)

sage: E = EllipticCurve([0,1,2,3,4])
sage: F = EllipticCurve(E.cremona_label())
sage: WeierstrassIsomorphism(E, None, F)
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + 2*y = x^3 + x^2 + 3*x + 4 over Rational␣

→˓Field
To: Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 5 over Rational Field
Via: (u,r,s,t) = (1, 0, 0, -1)

sage: w = WeierstrassIsomorphism(None, (1,0,0,-1), F)
sage: w._domain == E
True

dual()

Return the dual isogeny of this isomorphism.

For isomorphisms, the dual is just the inverse.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: E = EllipticCurve(QuadraticField(-3), [0,1]) #␣
→˓needs sage.rings.number_field
sage: w = WeierstrassIsomorphism(E, (CyclotomicField(3).gen(),0,0,0)) #␣
→˓needs sage.rings.number_field
sage: (w.dual() * w).rational_maps() #␣
→˓needs sage.rings.number_field
(x, y)

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = E1.short_weierstrass_model()
sage: iso = E1.isomorphism_to(E2)
sage: iso.dual() == ~iso
True

inseparable_degree()

Return the inseparable degree of this Weierstrass isomorphism.

For isomorphisms, this method always returns one.

is_identity()

Check if this Weierstrass isomorphism is the identity.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: p = 97
sage: Fp = GF(p)
sage: E = EllipticCurve(Fp, [1, 28])

(continues on next page)

188 Chapter 11. Isomorphisms between Weierstrass models of elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: ws = WeierstrassIsomorphism(E, None, E)
sage: ws.is_identity()
False

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: p = 97
sage: Fp = GF(p)
sage: E = EllipticCurve(Fp, [1, 28])
sage: ws = WeierstrassIsomorphism(E, (1, 0, 0, 0), None)
sage: ws.is_identity()
True

kernel_polynomial()

Return the kernel polynomial of this isomorphism.

Isomorphisms have trivial kernel by definition, hence this method always returns 1.

EXAMPLES:

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: iso = E1.isomorphism_to(E2)
sage: iso.kernel_polynomial()
1
sage: psi = E1.isogeny(iso.kernel_polynomial(), codomain=E2); psi
Isogeny of degree 1
from Elliptic Curve defined by y^2 + 11*x*y + 33*y = x^3 + 22*x^2 + 44*x + 55

over Rational Field
to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 684*x + 6681

over Rational Field
sage: psi in {iso, -iso}
True

order()

Compute the order of this Weierstrass isomorphism if it is an automorphism.

A ValueError is raised if the domain is not equal to the codomain.

A NotImplementedError is raised if the order of the automorphism is not 1, 2, 3, 4 or 6.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: p = 97
sage: Fp = GF(p)
sage: E = EllipticCurve(Fp, [1, 28])
sage: ws = WeierstrassIsomorphism(E, None, E)
sage: ws.order()
2

rational_maps()

Return the pair of rational maps defining this isomorphism.

EXAMPLES:

189

https://docs.python.org/library/exceptions.html#ValueError
https://docs.python.org/library/exceptions.html#NotImplementedError

Elliptic curves, Release 10.4.rc1

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: iso = E1.isomorphism_to(E2); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + 11*x*y + 33*y = x^3 + 22*x^2 + 44*x +␣
→˓55

over Rational Field
To: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 684*x + 6681

over Rational Field
Via: (u,r,s,t) = (1, -17, -5, 77)

sage: iso.rational_maps()
(x + 17, 5*x + y + 8)
sage: f = E2.defining_polynomial()(*iso.rational_maps(), 1)
sage: I = E1.defining_ideal()
sage: x,y,z = I.ring().gens()
sage: f in I + Ideal(z-1)
True

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(65537), [1,1,1,1,1])
sage: w = E.isomorphism_to(E.short_weierstrass_model())
sage: f,g = w.rational_maps()
sage: P = E.random_point()
sage: w(P).xy() == (f(P.xy()), g(P.xy()))
True

scaling_factor()

Return the Weierstrass scaling factor associated to this Weierstrass isomorphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
isomorphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve(QQbar, [0,1]) #␣
→˓needs sage.rings.number_field
sage: all(f.scaling_factor() == f.formal()[1] for f in E.automorphisms()) #␣
→˓needs sage.rings.number_field
True

ALGORITHM: The scaling factor equals the 𝑢 component of the tuple (𝑢, 𝑟, 𝑠, 𝑡) defining the isomorphism.

x_rational_map()

Return the 𝑥-coordinate rational map of this isomorphism.

EXAMPLES:

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: iso = E1.isomorphism_to(E2); iso
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 + 11*x*y + 33*y = x^3 + 22*x^2 + 44*x +␣
→˓55

over Rational Field
To: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 684*x + 6681

over Rational Field
Via: (u,r,s,t) = (1, -17, -5, 77)

sage: iso.x_rational_map()
(continues on next page)

190 Chapter 11. Isomorphisms between Weierstrass models of elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

x + 17
sage: iso.x_rational_map() == iso.rational_maps()[0]
True

class sage.schemes.elliptic_curves.weierstrass_morphism.baseWI(u=1, r=0, s=0, t=0)
Bases: object

This class implements the basic arithmetic of isomorphisms between Weierstrass models of elliptic curves.

These are specified by lists of the form [𝑢, 𝑟, 𝑠, 𝑡] (with 𝑢 ̸= 0) which specifies a transformation (𝑥, 𝑦) ↦→ (𝑥′, 𝑦′)
where

(𝑥, 𝑦) = (𝑢2𝑥′ + 𝑟, 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡).

INPUT:

• u, r, s, t – (default: 1, 0, 0, 0); standard parameters of an isomorphism between Weierstrass models

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: baseWI()
(1, 0, 0, 0)
sage: baseWI(2,3,4,5)
(2, 3, 4, 5)
sage: R.<u,r,s,t> = QQ[]
sage: baseWI(u,r,s,t)
(u, r, s, t)

is_identity()

Return True if this is the identity isomorphism.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: w = baseWI(); w.is_identity()
True
sage: w = baseWI(2,3,4,5); w.is_identity()
False

tuple()

Return the parameters 𝑢, 𝑟, 𝑠, 𝑡 as a tuple.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: w = baseWI(2,3,4,5)
sage: w.tuple()
(2, 3, 4, 5)

sage.schemes.elliptic_curves.weierstrass_morphism.identity_morphism(E)
Given an elliptic curve 𝐸, return the identity morphism on 𝐸 as a WeierstrassIsomorphism.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import identity_
→˓morphism
sage: E = EllipticCurve([5,6,7,8,9])

(continues on next page)

191

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: id_ = identity_morphism(E)
sage: id_.rational_maps()
(x, y)

sage.schemes.elliptic_curves.weierstrass_morphism.negation_morphism(E)
Given an elliptic curve 𝐸, return the negation endomorphism [−1] of 𝐸 as a WeierstrassIsomorphism.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import negation_
→˓morphism
sage: E = EllipticCurve([5,6,7,8,9])
sage: neg = negation_morphism(E)
sage: neg.rational_maps()
(x, -5*x - y - 7)

192 Chapter 11. Isomorphisms between Weierstrass models of elliptic curves

CHAPTER

TWELVE

ISOGENIES

An isogeny 𝜙 : 𝐸1 → 𝐸2 between two elliptic curves 𝐸1 and 𝐸2 is a morphism of curves that sends the origin of 𝐸1

to the origin of 𝐸2. Such a morphism is automatically a morphism of group schemes and the kernel is a finite subgroup
scheme of 𝐸1. Such a subscheme can either be given by a list of generators, which have to be torsion points, or by a
polynomial in the coordinate 𝑥 of the Weierstrass equation of 𝐸1.

The usual way to create and work with isogenies is illustrated with the following example:

sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: Q = E(6,5)
sage: phi = E.isogeny(Q)
sage: phi
Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 11
to Elliptic Curve defined by y^2 = x^3 + 7*x + 8

over Finite Field of size 11
sage: P = E(4,5)
sage: phi(P)
(10 : 0 : 1)
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 11
sage: phi.rational_maps()
((x^7 + 4*x^6 - 3*x^5 - 2*x^4

- 3*x^3 + 3*x^2 + x - 2)/(x^6 + 4*x^5 - 4*x^4 - 5*x^3 + 5*x^2),
(x^9*y - 5*x^8*y - x^7*y + x^5*y - x^4*y
- 5*x^3*y - 5*x^2*y - 2*x*y - 5*y)/(x^9 - 5*x^8 + 4*x^6 - 3*x^4 + 2*x^3))

The methods directly accessible from an elliptic curve E over a field are isogeny() and isogeny_codomain().

The most useful methods that apply to isogenies are:

• .domain()

• .codomain()

• degree()

• dual()

• rational_maps()

• kernel_polynomial()

Warning: This class only implements separable isogenies. When using Kohel’s algorithm, only cyclic isogenies can
be computed (except for [2]).

193

Elliptic curves, Release 10.4.rc1

Working with other kinds of isogenies may be possible using other child classes of EllipticCurveHom.

Some algorithms may need the isogeny to be normalized.

AUTHORS:

• Daniel Shumow <shumow@gmail.com>: 2009-04-19: initial version

• Chris Wuthrich: 7/09: add check of input, not the full list is needed. 10/09: eliminating some bugs.

• John Cremona 2014-08-08: tidying of code and docstrings, systematic use of univariate vs. bivariate polynomials
and rational functions.

• Lorenz Panny (2022-04): major cleanup of code and documentation

• Lorenz Panny (2022): inseparable duals

• Rémy Oudompheng (2023): implementation of the BMSS algorithm

class sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny(E ,
ker-
nel,
codomain=None,
de-
gree=None,
model=None,
check=True)

Bases: EllipticCurveHom

This class implements separable isogenies of elliptic curves.

Several different algorithms for computing isogenies are available. These include:

• Vélu’s Formulas: Vélu’s original formulas for computing isogenies. This algorithm is selected by giving as
the kernel parameter a single point, or a list of points, generating a finite subgroup.

• Kohel’s Formulas: Kohel’s original formulas for computing isogenies. This algorithm is selected by giving as
the kernel parameter a monic polynomial (or a coefficient list) which will define the kernel of the isogeny.
Kohel’s algorithm is currently only implemented for cyclic isogenies, with the exception of [2].

INPUT:

• E – an elliptic curve, the domain of the isogeny to initialize.

• kernel – a kernel: either a point on E, a list of points on E, a monic kernel polynomial, or None. If
initializing from a domain/codomain, this must be None.

• codomain – an elliptic curve (default: None).

– If kernel is None, then degree must be given as well and the given codomain must be the
codomain of a cyclic, separable, normalized isogeny of the given degree.

– If kernel is not None, then this must be isomorphic to the codomain of the separable isogeny defined
by kernel; in this case, the isogeny is post-composed with an isomorphism so that the codomain equals
the given curve.

• degree – an integer (default: None).

– If kernel is None, then this is the degree of the isogeny from E to codomain.

– If kernel is not None, then this is used to determine whether or not to skip a gcd of the given kernel
polynomial with the two-torsion polynomial of E.

194 Chapter 12. Isogenies

mailto:shumow@gmail.com

Elliptic curves, Release 10.4.rc1

• model – a string (default: None). Supported values (cf. compute_model()):

– "minimal": If E is a curve over the rationals or over a number field, then the codomain is a global
minimal model where this exists.

– "short_weierstrass": The codomain is a short Weierstrass curve, assuming one exists.

– "montgomery": The codomain is an (untwisted) Montgomery curve, assuming one exists over this
field.

• check (default: True) – check whether the input is valid. Setting this to False can lead to significant
speedups.

EXAMPLES:

A simple example of creating an isogeny of a field of small characteristic:

sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0))); phi
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 7
to Elliptic Curve defined by y^2 = x^3 + 3*x over Finite Field of size 7

sage: phi.degree() == 2
True
sage: phi.kernel_polynomial()
x
sage: phi.rational_maps()
((x^2 + 1)/x, (x^2*y - y)/x^2)
sage: phi == loads(dumps(phi)) # known bug
True

A more complicated example of a characteristic-2 field:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(2^4, alpha), [0,0,1,0,1])
sage: P = E((1,1))
sage: phi_v = EllipticCurveIsogeny(E, P); phi_v
Isogeny of degree 3
from Elliptic Curve defined by y^2 + y = x^3 + 1

over Finite Field in alpha of size 2^4
to Elliptic Curve defined by y^2 + y = x^3

over Finite Field in alpha of size 2^4
sage: phi_ker_poly = phi_v.kernel_polynomial()
sage: phi_ker_poly
x + 1
sage: phi_k = EllipticCurveIsogeny(E, phi_ker_poly)
sage: phi_k == phi_v
True
sage: phi_k.rational_maps()
((x^3 + x + 1)/(x^2 + 1), (x^3*y + x^2*y + x*y + x + y)/(x^3 + x^2 + x + 1))
sage: phi_v.rational_maps()
((x^3 + x + 1)/(x^2 + 1), (x^3*y + x^2*y + x*y + x + y)/(x^3 + x^2 + x + 1))
sage: phi_k.degree() == phi_v.degree() == 3
True
sage: phi_k.is_separable()
True
sage: phi_v(E(0))
(0 : 1 : 0)
sage: alpha = E.base_field().gen()
sage: Q = E((0, alpha*(alpha + 1)))

(continues on next page)

195

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: phi_v(Q)
(1 : alpha^2 + alpha : 1)
sage: phi_v(P) == phi_k(P)
True
sage: phi_k(P) == phi_v.codomain()(0)
True

We can create an isogeny whose kernel equals the full 2-torsion:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF((3,2)), [0,0,0,1,1])
sage: ker_poly = E.division_polynomial(2)
sage: phi = EllipticCurveIsogeny(E, ker_poly); phi
Isogeny of degree 4
from Elliptic Curve defined by y^2 = x^3 + x + 1

over Finite Field in z2 of size 3^2
to Elliptic Curve defined by y^2 = x^3 + x + 1

over Finite Field in z2 of size 3^2
sage: P1,P2,P3 = filter(bool, E(0).division_points(2))
sage: phi(P1)
(0 : 1 : 0)
sage: phi(P2)
(0 : 1 : 0)
sage: phi(P3)
(0 : 1 : 0)
sage: phi.degree()
4

We can also create trivial isogenies with the trivial kernel:

sage: E = EllipticCurve(GF(17), [11, 11, 4, 12, 10])
sage: phi_v = EllipticCurveIsogeny(E, E(0))
sage: phi_v.degree()
1
sage: phi_v.rational_maps()
(x, y)
sage: E == phi_v.codomain()
True
sage: P = E.random_point()
sage: phi_v(P) == P
True

sage: E = EllipticCurve(GF(31), [23, 1, 22, 7, 18])
sage: phi_k = EllipticCurveIsogeny(E, [1]); phi_k
Isogeny of degree 1
from Elliptic Curve defined by y^2 + 23*x*y + 22*y = x^3 + x^2 + 7*x + 18

over Finite Field of size 31
to Elliptic Curve defined by y^2 + 23*x*y + 22*y = x^3 + x^2 + 7*x + 18

over Finite Field of size 31
sage: phi_k.degree()
1
sage: phi_k.rational_maps()
(x, y)
sage: phi_k.codomain() == E
True
sage: phi_k.kernel_polynomial()
1

(continues on next page)

196 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P = E.random_point(); P == phi_k(P)
True

Vélu and Kohel also work in characteristic 0:

sage: E = EllipticCurve(QQ, [0,0,0,3,4])
sage: P_list = E.torsion_points()
sage: phi = EllipticCurveIsogeny(E, P_list); phi
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 3*x + 4 over Rational Field
to Elliptic Curve defined by y^2 = x^3 - 27*x + 46 over Rational Field

sage: P = E((0,2))
sage: phi(P)
(6 : -10 : 1)
sage: phi_ker_poly = phi.kernel_polynomial()
sage: phi_ker_poly
x + 1
sage: phi_k = EllipticCurveIsogeny(E, phi_ker_poly); phi_k
Isogeny of degree 2
from Elliptic Curve defined by y^2 = x^3 + 3*x + 4 over Rational Field
to Elliptic Curve defined by y^2 = x^3 - 27*x + 46 over Rational Field

sage: phi_k(P) == phi(P)
True
sage: phi_k == phi
True
sage: phi_k.degree()
2
sage: phi_k.is_separable()
True

A more complicated example over the rationals (of odd degree):

sage: E = EllipticCurve(11a1)
sage: P_list = E.torsion_points()
sage: phi_v = EllipticCurveIsogeny(E, P_list); phi_v
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational␣
→˓Field

to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over␣
→˓Rational Field
sage: P = E((16,-61))
sage: phi_v(P)
(0 : 1 : 0)
sage: ker_poly = phi_v.kernel_polynomial(); ker_poly
x^2 - 21*x + 80
sage: phi_k = EllipticCurveIsogeny(E, ker_poly); phi_k
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational␣
→˓Field

to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over␣
→˓Rational Field
sage: phi_k == phi_v
True
sage: phi_v(P) == phi_k(P)
True
sage: phi_k.is_separable()
True

197

Elliptic curves, Release 10.4.rc1

We can also do this same example over the number field defined by the irreducible two-torsion polynomial of 𝐸:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(11a1)
sage: P_list = E.torsion_points()
sage: x = polygen(ZZ, x)
sage: K.<alpha> = NumberField(x^3 - 2* x^2 - 40*x - 158)
sage: EK = E.change_ring(K)
sage: P_list = [EK(P) for P in P_list]
sage: phi_v = EllipticCurveIsogeny(EK, P_list); phi_v
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)

over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158
to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-7820)*x + (-263580)

over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158
sage: P = EK((alpha/2,-1/2))
sage: phi_v(P)
(122/121*alpha^2 + 1633/242*alpha - 3920/121 : -1/2 : 1)
sage: ker_poly = phi_v.kernel_polynomial()
sage: ker_poly
x^2 - 21*x + 80
sage: phi_k = EllipticCurveIsogeny(EK, ker_poly); phi_k
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)

over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158
to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-7820)*x + (-263580)

over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158
sage: phi_v == phi_k
True
sage: phi_k(P) == phi_v(P)
True
sage: phi_k == phi_v
True
sage: phi_k.degree()
5
sage: phi_v.is_separable()
True

The following example shows how to specify an isogeny from domain and codomain:

sage: E = EllipticCurve(11a1)
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = E.isogeny(f)
sage: E2 = phi.codomain()
sage: phi_s = EllipticCurveIsogeny(E, None, E2, 5); phi_s
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational␣
→˓Field

to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over␣
→˓Rational Field
sage: phi_s == phi
True
sage: phi_s.rational_maps() == phi.rational_maps()
True

However, only cyclic normalized isogenies can be constructed this way. The non-cyclic multiplication-by-3 isogeny
won’t be found:

198 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

sage: E.isogeny(None, codomain=E, degree=9)
Traceback (most recent call last):
...
ValueError: the two curves are not linked by a cyclic normalized isogeny of␣
→˓degree 9

Non-normalized isogeny also won’t be found:

sage: E2.isogeny(None, codomain=E, degree=5)
Traceback (most recent call last):
...
ValueError: the two curves are not linked by a cyclic normalized isogeny of␣
→˓degree 5
sage: phihat = phi.dual(); phihat
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational␣

→˓Field
sage: phihat.is_normalized()
False

Here an example of a construction of a endomorphisms with cyclic kernel on a CM-curve:

sage: # needs sage.rings.number_field
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [1,0])
sage: RK.<X> = K[]
sage: f = X^2 - 2/5*i + 1/5
sage: phi= E.isogeny(f)
sage: isom = phi.codomain().isomorphism_to(E)
sage: phi = isom * phi
sage: phi.codomain() == phi.domain()
True
sage: phi.rational_maps()
(((4/25*i + 3/25)*x^5 + (4/5*i - 2/5)*x^3 - x)/(x^4 + (-4/5*i + 2/5)*x^2 + (-4/
→˓25*i - 3/25)),
((11/125*i + 2/125)*x^6*y + (-23/125*i + 64/125)*x^4*y + (141/125*i + 162/125)*x^
→˓2*y + (3/25*i - 4/25)*y)/(x^6 + (-6/5*i + 3/5)*x^4 + (-12/25*i - 9/25)*x^2 + (2/
→˓125*i - 11/125)))

dual()

Return the isogeny dual to this isogeny.

Note: If 𝜙 : 𝐸 → 𝐸′ is the given isogeny and 𝑛 is its degree, then the dual is by definition the unique
isogeny 𝜙 : 𝐸′ → 𝐸 such that the compositions 𝜙 ∘ 𝜙 and 𝜙 ∘ 𝜙 are the multiplication-by-𝑛 maps on 𝐸 and
𝐸′, respectively.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()

(continues on next page)

199

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: phi_hat.domain() == phi.codomain()
True
sage: phi_hat.codomain() == phi.domain()
True
sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)
sage: (Xm, Ym) == E.multiplication_by_m(5)
True

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = x^3 + x^2 + 28*x + 33
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()
sage: phi_hat.codomain() == phi.domain()
True
sage: phi_hat.domain() == phi.codomain()
True
sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)
sage: (Xm, Ym) == E.multiplication_by_m(7)
True

sage: E = EllipticCurve(GF(31), [0,0,0,1,8])
sage: R.<x> = GF(31)[]
sage: f = x^2 + 17*x + 29
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()
sage: phi_hat.codomain() == phi.domain()
True
sage: phi_hat.domain() == phi.codomain()
True
sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)
sage: (Xm, Ym) == E.multiplication_by_m(5)
True

Inseparable duals should be computed correctly:

sage: # needs sage.rings.finite_rings
sage: z2 = GF(71^2).gen()
sage: E = EllipticCurve(j=57*z2+51)
sage: E.isogeny(3*E.lift_x(0)).dual()
Composite morphism of degree 71 = 71*1^2:

From: Elliptic Curve defined by y^2 = x^3 + (32*z2+67)*x + (24*z2+37)
over Finite Field in z2 of size 71^2

To: Elliptic Curve defined by y^2 = x^3 + (41*z2+56)*x + (18*z2+42)
over Finite Field in z2 of size 71^2

sage: E.isogeny(E.lift_x(0)).dual()
Composite morphism of degree 213 = 71*3:

From: Elliptic Curve defined by y^2 = x^3 + (58*z2+31)*x + (34*z2+58)
(continues on next page)

200 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

(continued from previous page)

over Finite Field in z2 of size 71^2
To: Elliptic Curve defined by y^2 = x^3 + (41*z2+56)*x + (18*z2+42)

over Finite Field in z2 of size 71^2

…even if pre- or post-isomorphisms are present:

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: phi = E.isogeny(E.lift_x(0))
sage: pre = ~WeierstrassIsomorphism(phi.domain(), (z2,2,3,4))
sage: post = WeierstrassIsomorphism(phi.codomain(), (5,6,7,8))
sage: phi = post * phi * pre
sage: phi.dual()
Composite morphism of degree 213 = 71*3:

From: Elliptic Curve defined
by y^2 + 17*x*y + 45*y = x^3 + 30*x^2 + (6*z2+64)*x + (48*z2+65)
over Finite Field in z2 of size 71^2

To: Elliptic Curve defined
by y^2 + (60*z2+22)*x*y + (69*z2+37)*y = x^3 + (32*z2+48)*x^2

+ (19*z2+58)*x + (56*z2+22)
over Finite Field in z2 of size 71^2

inseparable_degree()

Return the inseparable degree of this isogeny.

Since this class only implements separable isogenies, this method always returns one.

kernel_polynomial()

Return the kernel polynomial of this isogeny.

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,0,0,2,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.kernel_polynomial()
x

sage: E = EllipticCurve(11a1)
sage: phi = EllipticCurveIsogeny(E, E.torsion_points())
sage: phi.kernel_polynomial()
x^2 - 21*x + 80

sage: E = EllipticCurve(GF(17), [1,-1,1,-1,1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.kernel_polynomial()
1

sage: E = EllipticCurve(GF(31), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, [0,3,0,1])
sage: phi.kernel_polynomial()
x^3 + 3*x

rational_maps()

Return the pair of rational maps defining this isogeny.

Note: Both components are returned as elements of the function field 𝐹 (𝑥, 𝑦) in two variables over the base

201

Elliptic curves, Release 10.4.rc1

field 𝐹 , though the first only involves 𝑥. To obtain the 𝑥-coordinate function as a rational function in 𝐹 (𝑥),
use x_rational_map().

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,2,0,1,-1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.rational_maps()
(x, y)

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.rational_maps()
((x^2 + 3)/x, (x^2*y - 3*y)/x^2)

scaling_factor()

Return the Weierstrass scaling factor associated to this elliptic-curve isogeny.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
isogeny and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(257^2), [0,1])
sage: phi = E.isogeny(E.lift_x(240))
sage: phi.degree()
43
sage: phi.scaling_factor()
1
sage: phi.dual().scaling_factor()
43

ALGORITHM: The “inner” isogeny is normalized by construction, so we only need to account for the scaling
factors of a pre- and post-isomorphism.

x_rational_map()

Return the rational map giving the 𝑥-coordinate of this isogeny.

Note: This function returns the 𝑥-coordinate component of the isogeny as a rational function in 𝐹 (𝑥),
where 𝐹 is the base field. To obtain both coordinate functions as elements of the function field 𝐹 (𝑥, 𝑦) in
two variables, use rational_maps().

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,2,0,1,-1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.x_rational_map()
x

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.x_rational_map()
(x^2 + 3)/x

202 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_codomain_formula(E , v, w)
Compute the codomain curve given parameters 𝑣 and 𝑤 (as in Vélu/Kohel/etc. formulas).

INPUT:

• E – an elliptic curve

• v, w – elements of the base field of E

OUTPUT:

The elliptic curve with invariants [𝑎1, 𝑎2, 𝑎3, 𝑎4 − 5𝑣, 𝑎6 − (𝑎21 + 4𝑎2)𝑣 − 7𝑤] where 𝐸 = [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].

EXAMPLES:

This formula is used by every invocation of the EllipticCurveIsogeny constructor:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, E((1,2)))
sage: phi.codomain()
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 13
over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_
→˓formula
sage: v = phi._EllipticCurveIsogeny__v
sage: w = phi._EllipticCurveIsogeny__w
sage: compute_codomain_formula(E, v, w) == phi.codomain()
True

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_codomain_kohel(E , kernel)
Compute the codomain from the kernel polynomial using Kohel’s formulas.

INPUT:

• E – domain elliptic curve

• kernel (polynomial or list) – the kernel polynomial, or a list of its coefficients

OUTPUT:

(elliptic curve) The codomain elliptic curve of the isogeny defined by kernel.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_
→˓kohel
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, [9,1])
sage: phi.codomain() == isogeny_codomain_from_kernel(E, [9,1])
True
sage: compute_codomain_kohel(E, [9,1])
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 8
over Finite Field of size 19
sage: R.<x> = GF(19)[]
sage: E = EllipticCurve(GF(19), [18,17,16,15,14])
sage: phi = EllipticCurveIsogeny(E, x^3 + 14*x^2 + 3*x + 11)
sage: phi.codomain() == isogeny_codomain_from_kernel(E, x^3 + 14*x^2 + 3*x + 11)
True
sage: compute_codomain_kohel(E, x^3 + 14*x^2 + 3*x + 11)
Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 18
over Finite Field of size 19
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])

(continues on next page)

203

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: phi = EllipticCurveIsogeny(E, x^3 + 7*x^2 + 15*x + 12)
sage: isogeny_codomain_from_kernel(E, x^3 + 7*x^2 + 15*x + 12) == phi.codomain()
True
sage: compute_codomain_kohel(E, x^3 + 7*x^2 + 15*x + 12)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15
over Finite Field of size 19

ALGORITHM:

This function uses the formulas of Section 2.4 of [Koh1996].

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_intermediate_curves(E1,
E2)

Return intermediate curves and isomorphisms.

Note: This is used to compute ℘ functions from the short Weierstrass model more easily.

Warning: The base field must be of characteristic not equal to 2 or 3.

INPUT:

• E1, E2 – elliptic curves

OUTPUT:

A tuple (pre_isomorphism, post_isomorphism, intermediate_domain, intermedi-
ate_codomain) where:

• intermediate_domain is a short Weierstrass curve isomorphic to E1;

• intermediate_codomain is a short Weierstrass curve isomorphic to E2;

• pre_isomorphism is a normalized isomorphism from E1 to intermediate_domain;

• post_isomorphism is a normalized isomorphism from intermediate_codomain to E2.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_
→˓intermediate_curves
sage: E = EllipticCurve(GF(83), [1,0,1,1,0])
sage: R.<x> = GF(83)[]; f = x + 24
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_intermediate_curves(E, E2)
(Elliptic Curve defined by y^2 = x^3 + 62*x + 74 over Finite Field of size 83,
Elliptic Curve defined by y^2 = x^3 + 65*x + 69 over Finite Field of size 83,
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x

over Finite Field of size 83
To: Elliptic Curve defined by y^2 = x^3 + 62*x + 74

over Finite Field of size 83
Via: (u,r,s,t) = (1, 76, 41, 3),

Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + 65*x + 69

over Finite Field of size 83

(continues on next page)

204 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

(continued from previous page)

To: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 16
over Finite Field of size 83

Via: (u,r,s,t) = (1, 7, 42, 42))

sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_intermediate_curves(E, E2)
(Elliptic Curve defined by y^2 = x^3 + x
over Number Field in i with defining polynomial x^2 + 1,

Elliptic Curve defined by y^2 = x^3 + 16*x
over Number Field in i with defining polynomial x^2 + 1,

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x
over Number Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + 16*x
over Number Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0))

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_bmss(E1, E2, l)
Compute the kernel polynomial of the unique normalized isogeny of degree l between E1 and E2.

Both curves must be given in short Weierstrass form, and the characteristic must be either 0 or no smaller than
4𝑙 + 4.

ALGORITHM: [BMSS2006], algorithm fastElkies’.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_
→˓bmss
sage: E1 = EllipticCurve(GF(167), [153, 112])
sage: E2 = EllipticCurve(GF(167), [56, 40])
sage: compute_isogeny_bmss(E1, E2, 13)
x^6 + 139*x^5 + 73*x^4 + 139*x^3 + 120*x^2 + 88*x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_kernel_polynomial(E1,
E2,
ell,
al-
go-
rithm=None)

Return the kernel polynomial of a cyclic, separable, normalized isogeny of degree ell from E1 to E2.

INPUT:

• E1 – domain elliptic curve in short Weierstrass form

• E2 – codomain elliptic curve in short Weierstrass form

• ell – the degree of an isogeny from E1 to E2

• algorithm – None (default, choose automatically) or
"bmss" (compute_isogeny_bmss()) or "stark" (compute_isogeny_stark())

OUTPUT:

The kernel polynomial of an isogeny from E1 to E2.

205

Elliptic curves, Release 10.4.rc1

Note: If there is no degree-ell, cyclic, separable, normalized isogeny from E1 to E2, a ValueError will be
raised.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_
→˓kernel_polynomial

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = (x + 14) * (x + 30)
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_kernel_polynomial(E, E2, 5)
x^2 + 7*x + 13
sage: f
x^2 + 7*x + 13

sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_isogeny_kernel_polynomial(E, E2, 4)
x^3 + x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_stark(E1, E2, ell)
Return the kernel polynomial of an isogeny of degree ell from E1 to E2.

INPUT:

• E1 – domain elliptic curve in short Weierstrass form

• E2 – codomain elliptic curve in short Weierstrass form

• ell – the degree of an isogeny from E1 to E2

OUTPUT:

The kernel polynomial of an isogeny from E1 to E2.

Note: If there is no degree-ell, cyclic, separable, normalized isogeny from E1 to E2, a ValueError will be
raised.

ALGORITHM:

This function uses Stark’s algorithm as presented in Section 6.2 of [BMSS2006].

Note: As published in [BMSS2006], the algorithm is incorrect, and a correct version (with slightly different
notation) can be found in [Mo2009]. The algorithm originates in [Sta1973].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_
→˓stark, compute_sequence_of_maps

(continues on next page)

206 Chapter 12. Isogenies

https://docs.python.org/library/exceptions.html#ValueError
https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(GF(97), [1,0,1,1,0])
sage: R.<x> = GF(97)[]; f = x^5 + 27*x^4 + 61*x^3 + 58*x^2 + 28*x + 21
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: isom1, isom2, E1pr, E2pr, ker_poly = compute_sequence_of_maps(E, E2, 11)
sage: compute_isogeny_stark(E1pr, E2pr, 11)
x^10 + 37*x^9 + 53*x^8 + 66*x^7 + 66*x^6 + 17*x^5 + 57*x^4 + 6*x^3 + 89*x^2 +␣
→˓53*x + 8

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = (x + 14) * (x + 30)
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_stark(E, E2, 5)
x^4 + 14*x^3 + x^2 + 34*x + 21
sage: f**2
x^4 + 14*x^3 + x^2 + 34*x + 21

sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: R.<x> = QQ[]
sage: f = x
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_stark(E, E2, 2)
x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_sequence_of_maps(E1, E2,
ell)

Return intermediate curves, isomorphisms and kernel polynomial.

INPUT:

• E1, E2 – elliptic curves

• ell – a prime such that there is a degree-ell separable normalized isogeny from E1 to E2

OUTPUT:

A tuple (pre_isom, post_isom, E1pr, E2pr, ker_poly) where:

• E1pr is an elliptic curve in short Weierstrass form isomorphic to E1;

• E2pr is an elliptic curve in short Weierstrass form isomorphic to E2;

• pre_isom is a normalized isomorphism from E1 to E1pr;

• post_isom is a normalized isomorphism from E2pr to E2;

• ker_poly is the kernel polynomial of an ell-isogeny from E1pr to E2pr.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_sequence_
→˓of_maps
sage: E = EllipticCurve(11a1)
sage: R.<x> = QQ[]; f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()

(continues on next page)

207

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: compute_sequence_of_maps(E, E2, 5)
(Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20

over Rational Field
To: Elliptic Curve defined by y^2 = x^3 - 31/3*x - 2501/108

over Rational Field
Via: (u,r,s,t) = (1, 1/3, 0, -1/2),

Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 - 23461/3*x - 28748141/108

over Rational Field
To: Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580

over Rational Field
Via: (u,r,s,t) = (1, -1/3, 0, 1/2),

Elliptic Curve defined by y^2 = x^3 - 31/3*x - 2501/108 over Rational Field,
Elliptic Curve defined by y^2 = x^3 - 23461/3*x - 28748141/108 over Rational␣
→˓Field,
x^2 - 61/3*x + 658/9)

sage: # needs sage.rings.number_field
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_sequence_of_maps(E, E2, 4)
(Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x
over Number Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0),

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + 16*x
over Number Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0),

Elliptic Curve defined by y^2 = x^3 + x
over Number Field in i with defining polynomial x^2 + 1,

Elliptic Curve defined by y^2 = x^3 + 16*x
over Number Field in i with defining polynomial x^2 + 1,

x^3 + x)

sage: E = EllipticCurve(GF(97), [1,0,1,1,0])
sage: R.<x> = GF(97)[]; f = x^5 + 27*x^4 + 61*x^3 + 58*x^2 + 28*x + 21
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_sequence_of_maps(E, E2, 11)
(Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x

over Finite Field of size 97
To: Elliptic Curve defined by y^2 = x^3 + 52*x + 31

over Finite Field of size 97
Via: (u,r,s,t) = (1, 8, 48, 44),

Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + 41*x + 66

over Finite Field of size 97
To: Elliptic Curve defined by y^2 + x*y + y = x^3 + 87*x + 26

over Finite Field of size 97
Via: (u,r,s,t) = (1, 89, 49, 49),

Elliptic Curve defined by y^2 = x^3 + 52*x + 31 over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + 41*x + 66 over Finite Field of size 97,
x^5 + 67*x^4 + 13*x^3 + 35*x^2 + 77*x + 69)

208 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_even_deg1(x0,
y0,
a1,
a2,
a4)

Compute Vélu’s (𝑣, 𝑤) using Kohel’s formulas for isogenies of degree exactly divisible by 2.

INPUT:

• x0, y0 – coordinates of a 2-torsion point on an elliptic curve 𝐸

• a1, a2, a4 – invariants of 𝐸

OUTPUT:

(tuple) Vélu’s isogeny parameters (𝑣, 𝑤).

EXAMPLES:

This function will be implicitly called by the following example:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, [9,1]); phi
Isogeny of degree 2
from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5

over Finite Field of size 19
to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 8

over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_
→˓even_deg1
sage: a1,a2,a3,a4,a6 = E.a_invariants()
sage: x0 = -9
sage: y0 = -(a1*x0 + a3)/2
sage: compute_vw_kohel_even_deg1(x0, y0, a1, a2, a4)
(18, 9)

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_even_deg3(b2,
b4, s1,
s2,
s3)

Compute Vélu’s (𝑣, 𝑤) using Kohel’s formulas for isogenies of degree divisible by 4.

INPUT:

• b2, b4 – invariants of an elliptic curve 𝐸

• s1, s2, s3 – signed coefficients of the 2-division polynomial of 𝐸

OUTPUT:

(tuple) Vélu’s isogeny parameters (𝑣, 𝑤).

EXAMPLES:

This function will be implicitly called by the following example:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x^3 + 7*x^2 + 15*x + 12); phi
Isogeny of degree 4
from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5

over Finite Field of size 19
(continues on next page)

209

Elliptic curves, Release 10.4.rc1

(continued from previous page)

to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15
over Finite Field of size 19

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_
→˓even_deg3
sage: b2,b4 = E.b2(), E.b4()
sage: s1, s2, s3 = -7, 15, -12
sage: compute_vw_kohel_even_deg3(b2, b4, s1, s2, s3)
(4, 7)

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_odd(b2, b4, b6, s1,
s2, s3, n)

Compute Vélu’s (𝑣, 𝑤) using Kohel’s formulas for isogenies of odd degree.

INPUT:

• b2, b4, b6 – invariants of an elliptic curve 𝐸

• s1, s2, s3 – signed coefficients of lowest powers of 𝑥 in the kernel polynomial

• n (integer) – the degree

OUTPUT:

(tuple) Vélu’s isogeny parameters (𝑣, 𝑤).

EXAMPLES:

This function will be implicitly called by the following example:

sage: E = EllipticCurve(GF(19), [18,17,16,15,14])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x^3 + 14*x^2 + 3*x + 11); phi
Isogeny of degree 7
from Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 15*x + 14

over Finite Field of size 19
to Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 18

over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_
→˓odd
sage: b2,b4,b6 = E.b2(), E.b4(), E.b6()
sage: s1,s2,s3 = -14,3,-11
sage: compute_vw_kohel_odd(b2,b4,b6,s1,s2,s3,3)
(7, 1)

sage.schemes.elliptic_curves.ell_curve_isogeny.fill_isogeny_matrix(M)

Return a filled isogeny matrix giving all degrees from one giving only prime degrees.

INPUT:

• M – a square symmetric matrix whose off-diagonal 𝑖, 𝑗 entry is either a prime 𝑙 if the 𝑖’th and 𝑗’th curves have
an 𝑙-isogeny between them, otherwise 0

OUTPUT:

(matrix) A square matrix with entries 1 on the diagonal, and in general the 𝑖, 𝑗 entry is 𝑑 > 0 if 𝑑 is the minimal
degree of an isogeny from the 𝑖’th to the 𝑗’th curve.

EXAMPLES:

210 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

sage: M = Matrix([[0, 2, 3, 3, 0, 0], [2, 0, 0, 0, 3, 3], [3, 0, 0, 0, 2, 0],
....: [3, 0, 0, 0, 0, 2], [0, 3, 2, 0, 0, 0], [0, 3, 0, 2, 0, 0]]); M
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import fill_isogeny_
→˓matrix
sage: fill_isogeny_matrix(M)
[1 2 3 3 6 6]
[2 1 6 6 3 3]
[3 6 1 9 2 18]
[3 6 9 1 18 2]
[6 3 2 18 1 9]
[6 3 18 2 9 1]

sage.schemes.elliptic_curves.ell_curve_isogeny.isogeny_codomain_from_kernel(E ,
ker-
nel)

Compute the isogeny codomain given a kernel.

INPUT:

• E – domain elliptic curve

• kernel – either a list of points in the kernel of the isogeny,
or a kernel polynomial (specified as either a univariate polynomial or a coefficient list)

OUTPUT:

(elliptic curve) The codomain of the separable normalized isogeny defined by this kernel.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import isogeny_codomain_
→˓from_kernel
sage: E = EllipticCurve(GF(7), [1,0,1,0,1])
sage: R.<x> = GF(7)[]
sage: isogeny_codomain_from_kernel(E, [4,1])
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6
over Finite Field of size 7
sage: (EllipticCurveIsogeny(E, [4,1]).codomain()
....: == isogeny_codomain_from_kernel(E, [4,1]))
True
sage: isogeny_codomain_from_kernel(E, x^3 + x^2 + 4*x + 3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6
over Finite Field of size 7
sage: isogeny_codomain_from_kernel(E, x^3 + 2*x^2 + 4*x + 3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 5*x + 2
over Finite Field of size 7

sage: # needs sage.rings.finite_rings
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: kernel_list = [E((15,10)), E((10,3)), E((6,5))]
sage: isogeny_codomain_from_kernel(E, kernel_list)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15
over Finite Field of size 19

211

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.ell_curve_isogeny.two_torsion_part(E , psi)
Return the greatest common divisor of psi and the 2-torsion polynomial of 𝐸.

INPUT:

• E – an elliptic curve

• psi – a univariate polynomial over the base field of E

OUTPUT:

(polynomial) The gcd of psi and the 2-torsion polynomial of E.

EXAMPLES:

Every function that computes the kernel polynomial via Kohel’s formulas will call this function:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x + 13)
sage: isogeny_codomain_from_kernel(E, x + 13) == phi.codomain()
True
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import two_torsion_part
sage: two_torsion_part(E, x + 13)
x + 13

sage.schemes.elliptic_curves.ell_curve_isogeny.unfill_isogeny_matrix(M)

Reverses the action of fill_isogeny_matrix.

INPUT:

• M – a square symmetric matrix of integers

OUTPUT:

(matrix) A square symmetric matrix obtained from M by replacing non-prime entries with 0.

EXAMPLES:

sage: M = Matrix([[0, 2, 3, 3, 0, 0], [2, 0, 0, 0, 3, 3], [3, 0, 0, 0, 2, 0],
....: [3, 0, 0, 0, 0, 2], [0, 3, 2, 0, 0, 0], [0, 3, 0, 2, 0, 0]]); M
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import fill_isogeny_
→˓matrix, unfill_isogeny_matrix
sage: M1 = fill_isogeny_matrix(M); M1
[1 2 3 3 6 6]
[2 1 6 6 3 3]
[3 6 1 9 2 18]
[3 6 9 1 18 2]
[6 3 2 18 1 9]
[6 3 18 2 9 1]
sage: unfill_isogeny_matrix(M1)
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]

(continues on next page)

212 Chapter 12. Isogenies

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[0 3 0 2 0 0]
sage: unfill_isogeny_matrix(M1) == M
True

213

Elliptic curves, Release 10.4.rc1

214 Chapter 12. Isogenies

CHAPTER

THIRTEEN

SQUARE‑ROOT VÉLU ALGORITHM FOR ELLIPTIC-CURVE
ISOGENIES

The square-root Vélu algorithm, also called the √élu algorithm, computes isogenies of elliptic curves in time �̃�(
√
ℓ) rather

than naïvely 𝑂(ℓ), where ℓ is the degree.

The core idea is to reindex the points in the kernel subgroup in a baby-step-giant-step manner, then use fast resultant
computations to evaluate “elliptic polynomials” (see FastEllipticPolynomial) in essentially square-root time.

Based on experiments with Sage version 9.7, the isogeny degree where EllipticCurveHom_velusqrt begins to
outperform EllipticCurveIsogeny can be as low as ≈ 100, but is typically closer to ≈ 1000, depending on the
exact situation.

REFERENCES: [BDLS2020]

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
sage: E = EllipticCurve(GF(6666679), [5,5])
sage: K = E(9970, 1003793, 1)
sage: K.order()
10009
sage: phi = EllipticCurveHom_velusqrt(E, K)
sage: phi
Elliptic-curve isogeny (using square-root Vélu) of degree 10009:

From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size␣
→˓6666679
To: Elliptic Curve defined by y^2 = x^3 + 227975*x + 3596133 over Finite Field of␣

→˓size 6666679
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 + 227975*x + 3596133 over Finite Field of size␣
→˓6666679

Note that the isogeny is usually not identical to the one computed by EllipticCurveIsogeny:

sage: psi = EllipticCurveIsogeny(E, K)
sage: psi
Isogeny of degree 10009

from Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size␣
→˓6666679

to Elliptic Curve defined by y^2 = x^3 + 5344836*x + 3950273 over Finite Field of␣
→˓size 6666679

However, they are certainly separable isogenies with the same kernel and must therefore be equal up to post-isomorphism:

215

Elliptic curves, Release 10.4.rc1

sage: isos = psi.codomain().isomorphisms(phi.codomain())
sage: sum(iso * psi == phi for iso in isos)
1

Just like EllipticCurveIsogeny, the constructor supports a model keyword argument:

sage: E = EllipticCurve(GF(6666679), [1,1])
sage: K = E(9091, 517864)
sage: phi = EllipticCurveHom_velusqrt(E, K, model= montgomery)
sage: phi
Elliptic-curve isogeny (using square-root Vélu) of degree 2999:

From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 6666679
To: Elliptic Curve defined by y^2 = x^3 + 1559358*x^2 + x over Finite Field of␣

→˓size 6666679

Internally, EllipticCurveHom_velusqrt works on short Weierstraß curves, but it performs the conversion auto-
matically:

sage: E = EllipticCurve(GF(101), [1,2,3,4,5])
sage: K = E(1, 2)
sage: K.order()
37
sage: EllipticCurveHom_velusqrt(E, K)
Elliptic-curve isogeny (using square-root Vélu) of degree 37:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite␣
→˓Field of size 101
To: Elliptic Curve defined by y^2 = x^3 + 66*x + 86 over Finite Field of size 101

However, this does imply not all elliptic curves are supported. Curves without a short Weierstraß model exist in charac-
teristics 2 and 3:

sage: F.<t> = GF(3^3)
sage: E = EllipticCurve(F, [1,1,1,1,1])
sage: P = E(t^2+2, 1)
sage: P.order()
19
sage: EllipticCurveHom_velusqrt(E, P)
Traceback (most recent call last):
...
NotImplementedError: only implemented for curves having a short Weierstrass model

Furthermore, the implementation is restricted to finite fields, since this appears to be the most relevant application for the
square-root Vélu algorithm:

sage: E = EllipticCurve(26b1)
sage: P = E(1,0)
sage: P.order()
7
sage: EllipticCurveHom_velusqrt(E, P)
Traceback (most recent call last):
...
NotImplementedError: only implemented for elliptic curves over finite fields

Note: Some of the methods inherited from EllipticCurveHom compute data whose size is linear in the degree;
this includes kernel polynomial and rational maps. In consequence, those methods cannot possibly run in the otherwise

216 Chapter 13. Square‑root Vélu algorithm for elliptic-curve isogenies

Elliptic curves, Release 10.4.rc1

advertised square-root complexity, as merely storing the result already takes linear time.

AUTHORS:

• Lorenz Panny (2022)

class sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt(E , P,
*,
codomain=None,
model=None,
Q=None)

Bases: EllipticCurveHom

This class implements separable odd-degree isogenies of elliptic curves over finite fields using the square-root Vélu
algorithm.

The complexity is �̃�(
√
ℓ) base-field operations, where ℓ is the degree.

REFERENCES: [BDLS2020]

INPUT:

• E – an elliptic curve over a finite field

• P – a point on 𝐸 of odd order ≥ 9

• codomain – codomain elliptic curve (optional)

• model – string (optional); input to compute_model()

• Q – a point on 𝐸 outside ⟨𝑃 ⟩, or None

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_
→˓velusqrt
sage: F.<t> = GF(10009^3)
sage: E = EllipticCurve(F, [t,t])
sage: K = E(2154*t^2 + 5711*t + 2899, 7340*t^2 + 4653*t + 6935)
sage: phi = EllipticCurveHom_velusqrt(E, K); phi
Elliptic-curve isogeny (using square-root Vélu) of degree 601:
From: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t of␣

→˓size 10009^3
To: Elliptic Curve defined by y^2 = x^3 + (263*t^2+3173*t+4759)*x + (3898*t^

→˓2+6111*t+9443) over Finite Field in t of size 10009^3
sage: phi(K)
(0 : 1 : 0)
sage: P = E(2, 3163*t^2 + 7293*t + 5999)
sage: phi(P)
(6085*t^2 + 855*t + 8720 : 8078*t^2 + 9889*t + 6030 : 1)
sage: Q = E(6, 5575*t^2 + 6607*t + 9991)
sage: phi(Q)
(626*t^2 + 9749*t + 1291 : 5931*t^2 + 8549*t + 3111 : 1)
sage: phi(P + Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)
sage: phi(P) + phi(Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)

See also:

EllipticCurveIsogeny

217

Elliptic curves, Release 10.4.rc1

dual()

Return the dual of this square-root Vélu isogeny as an EllipticCurveHom.

Note: The dual is computed byEllipticCurveIsogeny, hence it does not benefit from the square-root
Vélu speedup.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = E.cardinality() // 11 * E.gens()[0]
sage: phi = E.isogeny(K, algorithm= velusqrt); phi
Elliptic-curve isogeny (using square-root Vélu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over␣
→˓Finite Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over Finite Field in␣

→˓z2 of size 101^2
sage: phi.dual()
Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + 39*x + 40␣
→˓over Finite Field in z2 of size 101^2 to Elliptic Curve defined by y^2 +␣
→˓x*y + y = x^3 + x^2 + x + 1 over Finite Field in z2 of size 101^2
sage: phi.dual() * phi == phi.domain().scalar_multiplication(11)
True
sage: phi * phi.dual() == phi.codomain().scalar_multiplication(11)
True

inseparable_degree()

Return the inseparable degree of this square-root Vélu isogeny.

Since EllipticCurveHom_velusqrt only implements separable isogenies, this method always returns
one.

kernel_polynomial()

Return the kernel polynomial of this square-root Vélu isogeny.

Note: The data returned by this method has size linear in the degree.

EXAMPLES:

sage: E = EllipticCurve(GF(65537^2, a), [5,5])
sage: K = E.cardinality()//31 * E.gens()[0]
sage: phi = E.isogeny(K, algorithm= velusqrt)
sage: h = phi.kernel_polynomial(); h
x^15 + 21562*x^14 + 8571*x^13 + 20029*x^12 + 1775*x^11 + 60402*x^10 + 17481*x^
→˓9 + 46543*x^8 + 46519*x^7 + 18590*x^6 + 36554*x^5 + 36499*x^4 + 48857*x^3 +␣
→˓3066*x^2 + 23264*x + 53937
sage: h == E.isogeny(K).kernel_polynomial()
True
sage: h(K.x())
0

rational_maps()

Return the pair of explicit rational maps of this square-root Vélu isogeny as fractions of bivariate polynomials
in 𝑥 and 𝑦.

218 Chapter 13. Square‑root Vélu algorithm for elliptic-curve isogenies

Elliptic curves, Release 10.4.rc1

Note: The data returned by this method has size linear in the degree.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = (E.cardinality() // 11) * E.gens()[0]
sage: phi = E.isogeny(K, algorithm= velusqrt); phi
Elliptic-curve isogeny (using square-root Vélu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over␣
→˓Finite Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over Finite Field in␣

→˓z2 of size 101^2
sage: phi.rational_maps()
((-17*x^11 - 34*x^10 - 36*x^9 + ... - 29*x^2 - 25*x - 25)/(x^10 + 10*x^9 +␣
→˓19*x^8 - ... + x^2 + 47*x + 24),
(-3*x^16 - 6*x^15*y - 48*x^15 + ... - 49*x - 9*y + 46)/(x^15 + 15*x^14 -␣
→˓35*x^13 - ... + 3*x^2 - 45*x + 47))

scaling_factor()

Return the Weierstrass scaling factor associated to this square-root Vélu isogeny.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
isogeny and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = (E.cardinality() // 11) * E.gens()[0]
sage: phi = E.isogeny(K, algorithm= velusqrt , model= montgomery); phi
Elliptic-curve isogeny (using square-root Vélu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over␣
→˓Finite Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 61*x^2 + x over Finite Field in␣

→˓z2 of size 101^2
sage: phi.scaling_factor()
55
sage: phi.scaling_factor() == phi.formal()[1]
True

x_rational_map()

Return the 𝑥-coordinate rational map of this square-root Vélu isogeny as a univariate rational function in 𝑥.

Note: The data returned by this method has size linear in the degree.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = (E.cardinality() // 11) * E.gens()[0]
sage: phi = E.isogeny(K, algorithm= velusqrt); phi
Elliptic-curve isogeny (using square-root Vélu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over␣
→˓Finite Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over Finite Field in␣

→˓z2 of size 101^2
sage: phi.x_rational_map()

(continues on next page)

219

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(84*x^11 + 67*x^10 + 65*x^9 + ... + 72*x^2 + 76*x + 76)/(x^10 + 10*x^9 + 19*x^
→˓8 + ... + x^2 + 47*x + 24)
sage: phi.x_rational_map() == phi.rational_maps()[0]
True

class sage.schemes.elliptic_curves.hom_velusqrt.FastEllipticPolynomial(E , n, P,
Q=None)

Bases: object

A class to represent and evaluate an elliptic polynomial, and optionally its derivative, in essentially square-root time.

The elliptic polynomials computed by this class are of the form

ℎ𝑆(𝑍) =
∏︁
𝑖∈𝑆

(𝑍 − 𝑥(𝑄+ [𝑖]𝑃))

where 𝑃 is a point of odd order 𝑛 ≥ 5 and 𝑄 is either None, in which case it is assumed to be∞, or an arbitrary
point which is not a multiple of 𝑃 .

The index set 𝑆 is chosen as follows:

• If 𝑄 is given, then 𝑆 = {0, 1, 2, 3, ..., 𝑛− 1}.

• If 𝑄 is omitted, then 𝑆 = {1, 3, 5, ..., 𝑛− 2}. Note that in this case, ℎ{1,2,3,...,𝑛−1} can be computed as ℎ2𝑆
since 𝑛 is odd.

INPUT:

• E – an elliptic curve in short Weierstraß form

• n – an odd integer ≥ 5

• P – a point on 𝐸

• Q – a point on 𝐸, or None

ALGORITHM: [BDLS2020], Algorithm 2

Note: Currently only implemented for short Weierstraß curves.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import FastEllipticPolynomial
sage: E = EllipticCurve(GF(71), [5,5])
sage: P = E(4, 35)
sage: hP = FastEllipticPolynomial(E, P.order(), P); hP
Fast elliptic polynomial prod(Z - x(i*P) for i in range(1,n,2)) with n = 19, P =␣
→˓(4 : 35 : 1)
sage: hP(7)
19
sage: prod(7 - (i*P).x() for i in range(1,P.order(),2))
19

Passing 𝑄 changes the index set:

sage: Q = E(0, 17)
sage: hPQ = FastEllipticPolynomial(E, P.order(), P, Q)
sage: hPQ(7)
58

(continues on next page)

220 Chapter 13. Square‑root Vélu algorithm for elliptic-curve isogenies

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: prod(7 - (Q+i*P).x() for i in range(P.order()))
58

The call syntax has an optional keyword argument derivative, which will make the function return the pair
(ℎ𝑆(𝛼), ℎ

′
𝑆(𝛼)) instead of just ℎ𝑆(𝛼):

sage: hP(7, derivative=True)
(19, 15)
sage: R.<Z> = E.base_field()[]
sage: HP = prod(Z - (i*P).x() for i in range(1,P.order(),2))
sage: HP
Z^9 + 16*Z^8 + 57*Z^7 + 6*Z^6 + 45*Z^5 + 31*Z^4 + 46*Z^3 + 10*Z^2 + 28*Z + 41
sage: HP(7)
19
sage: HP.derivative()(7)
15

sage: hPQ(7, derivative=True)
(58, 62)
sage: R.<Z> = E.base_field()[]
sage: HPQ = prod(Z - (Q+i*P).x() for i in range(P.order()))
sage: HPQ
Z^19 + 53*Z^18 + 67*Z^17 + 39*Z^16 + 56*Z^15 + 32*Z^14 + 44*Z^13 + 6*Z^12 + 27*Z^
→˓11 + 29*Z^10 + 38*Z^9 + 48*Z^8 + 38*Z^7 + 43*Z^6 + 21*Z^5 + 25*Z^4 + 33*Z^3 +␣
→˓49*Z^2 + 60*Z
sage: HPQ(7)
58
sage: HPQ.derivative()(7)
62

The input can be an element of any algebra over the base ring:

sage: R.<T> = GF(71)[]
sage: S.<t> = R.quotient(T^2)
sage: hP(7 + t)
15*t + 19

221

Elliptic curves, Release 10.4.rc1

222 Chapter 13. Square‑root Vélu algorithm for elliptic-curve isogenies

CHAPTER

FOURTEEN

SCALAR-MULTIPLICATION MORPHISMS OF ELLIPTIC CURVES

This class provides an EllipticCurveHom instantiation for multiplication-by-𝑚 maps on elliptic curves.

EXAMPLES:

We can construct and evaluate scalar multiplications:

sage: from sage.schemes.elliptic_curves.hom_scalar import EllipticCurveHom_scalar
sage: E = EllipticCurve(77a1)
sage: phi = E.scalar_multiplication(5); phi
Scalar-multiplication endomorphism [5] of Elliptic Curve defined by y^2 + y = x^3 +␣
→˓2*x over Rational Field
sage: P = E(2,3)
sage: phi(P)
(30 : 164 : 1)

The usual EllipticCurveHom methods are supported:

sage: phi.degree()
25
sage: phi.kernel_polynomial()
x^12 + 124/5*x^10 + 19*x^9 - 84*x^8 + 24*x^7 - 483*x^6 - 696/5*x^5 - 448*x^4 - 37*x^3␣
→˓- 332*x^2 - 84*x + 47/5
sage: phi.rational_maps()
((x^25 - 200*x^23 - 520*x^22 + 9000*x^21 + ... + 1377010*x^3 + 20360*x^2 - 39480*x +␣
→˓2209),
(10*x^36*y - 620*x^36 + 3240*x^34*y - 44880*x^34 + ... + 424927560*x*y + 226380480*x␣
→˓+ 42986410*y + 20974090)/(1250*x^36 + 93000*x^34 + 71250*x^33 + 1991400*x^32 + ...␣
→˓+ 1212964050*x^3 + 138715800*x^2 - 27833400*x + 1038230))
sage: phi.dual()
Scalar-multiplication endomorphism [5] of Elliptic Curve defined by y^2 + y = x^3 +␣
→˓2*x over Rational Field
sage: phi.dual() is phi
True
sage: phi.formal()
5*t - 310*t^4 - 2496*t^5 + 10540*t^7 + ... - 38140146674516*t^20 - 46800256902400*t^
→˓21 + 522178541079910*t^22 + O(t^23)
sage: phi.is_normalized()
False
sage: phi.is_separable()
True
sage: phi.is_injective()
False
sage: phi.is_surjective()
True

223

Elliptic curves, Release 10.4.rc1

Contrary to constructing an EllipticCurveIsogeny from the division polynomial, EllipticCurve-
Hom_scalar can deal with huge scalars very quickly:

sage: E = EllipticCurve(GF(2^127-1), [1,2,3,4,5])
sage: phi = E.scalar_multiplication(9^99); phi
Scalar-multiplication endomorphism␣
→˓[29512665430652752148753480226197736314359272517043832886063884637676943433478020332709411004889]␣
→˓of Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite␣
→˓Field of size 170141183460469231731687303715884105727
sage: phi(E(1,2))
(82124533143060719620799539030695848450 : 17016022038624814655722682134021402379 : 1)

Composition of scalar multiplications results in another scalar multiplication:

sage: E = EllipticCurve(GF(19), [4,4])
sage: phi = E.scalar_multiplication(-3); phi
Scalar-multiplication endomorphism [-3] of Elliptic Curve defined by y^2 = x^3 + 4*x␣
→˓+ 4 over Finite Field of size 19
sage: psi = E.scalar_multiplication(7); psi
Scalar-multiplication endomorphism [7] of Elliptic Curve defined by y^2 = x^3 + 4*x +␣
→˓4 over Finite Field of size 19
sage: phi * psi
Scalar-multiplication endomorphism [-21] of Elliptic Curve defined by y^2 = x^3 + 4*x␣
→˓+ 4 over Finite Field of size 19
sage: psi * phi
Scalar-multiplication endomorphism [-21] of Elliptic Curve defined by y^2 = x^3 + 4*x␣
→˓+ 4 over Finite Field of size 19
sage: phi * psi == psi * phi
True
sage: -phi == E.scalar_multiplication(-1) * phi
True

The zero endomorphism [0] is supported:

sage: E = EllipticCurve(GF(71), [1,1])
sage: zero = E.scalar_multiplication(0); zero
Scalar-multiplication endomorphism [0] of Elliptic Curve defined by y^2 = x^3 + x + 1␣
→˓over Finite Field of size 71
sage: zero.is_zero()
True
sage: zero.is_injective()
False
sage: zero.is_surjective()
False
sage: zero(E.random_point())
(0 : 1 : 0)

Retrieving multiplication-by-𝑚 maps when𝑚 is divisible by the characteristic also works (since Issue #37096):

sage: E = EllipticCurve(GF(7), [1,0])
sage: phi = E.scalar_multiplication(7); phi
Scalar-multiplication endomorphism [7] of Elliptic Curve defined by y^2 = x^3 + x␣
→˓over Finite Field of size 7
sage: phi.rational_maps()
(x^49, -y^49)
sage: phi.x_rational_map()
x^49
sage: psi = E.scalar_multiplication(-2); psi

(continues on next page)

224 Chapter 14. Scalar-multiplication morphisms of elliptic curves

https://github.com/sagemath/sage/issues/37096

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Scalar-multiplication endomorphism [-2] of Elliptic Curve defined by y^2 = x^3 + x␣
→˓over Finite Field of size 7
sage: chi = E.scalar_multiplication(-14); chi
Scalar-multiplication endomorphism [-14] of Elliptic Curve defined by y^2 = x^3 + x␣
→˓over Finite Field of size 7
sage: chi == psi * phi
True
sage: chi.rational_maps()
((x^196 - 2*x^98 + 1)/(-3*x^147 - 3*x^49),
(-x^294*y^49 + 2*x^196*y^49 - 2*x^98*y^49 + y^49)/(-x^294 - 2*x^196 - x^98))

sage: chi.x_rational_map()
(2*x^196 + 3*x^98 + 2)/(x^147 + x^49)
sage: chi.rational_maps() == tuple(f(*phi.rational_maps()) for f in psi.rational_
→˓maps())
True
sage: chi.x_rational_map() == psi.x_rational_map()(phi.x_rational_map())
True

sage: E = EllipticCurve(GF(7), [0,1])
sage: phi = E.scalar_multiplication(7); phi
Scalar-multiplication endomorphism [7] of Elliptic Curve defined by y^2 = x^3 + 1␣
→˓over Finite Field of size 7
sage: phi.rational_maps() # known bug -- #6413
((-3*x^49 - x^28 - x^7)/(x^42 - x^21 + 2),
(-x^72*y - 3*x^69*y - 3*x^66*y - x^63*y + 3*x^51*y + 2*x^48*y + 2*x^45*y + 3*x^42*y -
→˓ x^9*y - 3*x^6*y - 3*x^3*y - y)/(x^63 + 2*x^42 - x^21 - 1))
sage: phi.x_rational_map()
(4*x^49 + 6*x^28 + 6*x^7)/(x^42 + 6*x^21 + 2)

AUTHORS:

• Lorenz Panny (2021): implement EllipticCurveHom_scalar

class sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar(E , m)
Bases: EllipticCurveHom

Construct a scalar-multiplication map on an elliptic curve.

degree()

Return the degree of this scalar-multiplication morphism.

The map [𝑚] has degree𝑚2.

EXAMPLES:

sage: E = EllipticCurve(GF(23), [0,1])
sage: phi = E.scalar_multiplication(1111111)
sage: phi.degree()
1234567654321

dual()

Return the dual isogeny of this scalar-multiplication map.

This method simply returns self as scalars are self-dual.

EXAMPLES:

225

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([5,5])
sage: phi = E.scalar_multiplication(5)
sage: phi.dual() is phi
True

inseparable_degree()

Return the inseparable degree of this scalar-multiplication map.

EXAMPLES:

sage: E = EllipticCurve(GF(7), [0,1])
sage: E.is_supersingular()
False
sage: E.scalar_multiplication(4).inseparable_degree()
1
sage: E.scalar_multiplication(-7).inseparable_degree()
7

sage: E = EllipticCurve(GF(7), [1,0])
sage: E.is_supersingular()
True
sage: E.scalar_multiplication(4).inseparable_degree()
1
sage: E.scalar_multiplication(-7).inseparable_degree()
49

kernel_polynomial()

Return the kernel polynomial of this scalar-multiplication map. (When𝑚 = 0, return 0.)

EXAMPLES:

sage: E = EllipticCurve(GF(997), [7,7,7,7,7])
sage: phi = E.scalar_multiplication(5)
sage: phi.kernel_polynomial()
x^12 + 77*x^11 + 380*x^10 + 198*x^9 + 840*x^8 + 376*x^7 + 946*x^6 + 848*x^5 +␣
→˓246*x^4 + 778*x^3 + 77*x^2 + 518*x + 28

sage: E = EllipticCurve(GF(997), [5,6,7,8,9])
sage: phi = E.scalar_multiplication(11)
sage: phi.kernel_polynomial()
x^60 + 245*x^59 + 353*x^58 + 693*x^57 + 499*x^56 + 462*x^55 + 820*x^54 +␣
→˓962*x^53 + ... + 736*x^7 + 939*x^6 + 429*x^5 + 267*x^4 + 116*x^3 + 770*x^2␣
→˓+ 491*x + 519

rational_maps()

Return the pair of explicit rational maps defining this scalar multiplication.

ALGORITHM: EllipticCurve_generic.multiplication_by_m()

EXAMPLES:

sage: E = EllipticCurve(77a1)
sage: phi = E.scalar_multiplication(5)
sage: phi.rational_maps()
((x^25 - 200*x^23 - 520*x^22 + ... + 368660*x^2 + 163195*x + 16456)/(25*x^24␣
→˓+ 1240*x^22 + 950*x^21 + ... + 20360*x^2 - 39480*x + 2209),
(10*x^36*y - 620*x^36 + 3240*x^34*y - ... + 226380480*x + 42986410*y +␣

(continues on next page)

226 Chapter 14. Scalar-multiplication morphisms of elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓20974090)/(1250*x^36 + 93000*x^34 + 71250*x^33 + ... + 138715800*x^2 -␣
→˓27833400*x + 1038230))
sage: P = (2,3)
sage: Q = tuple(r(P) for r in phi.rational_maps()); Q
(30, 164)
sage: E(Q) == 5*E(P)
True

scaling_factor()

Return the Weierstrass scaling factor associated to this scalar multiplication.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: phi = E.scalar_multiplication(5)
sage: u = phi.scaling_factor()
sage: u == phi.formal()[1]
True
sage: u == E.multiplication_by_m_isogeny(5).scaling_factor()
doctest:warning ... DeprecationWarning: ...
True

The scaling factor lives in the base ring:

sage: E = EllipticCurve(GF(101^2), [5,5])
sage: phi = E.scalar_multiplication(123)
sage: phi.scaling_factor()
22
sage: phi.scaling_factor().parent()
Finite Field in z2 of size 101^2

ALGORITHM: The scaling factor equals the scalar that is being multiplied by.

x_rational_map()

Return the 𝑥-coordinate rational map of this scalar multiplication.

ALGORITHM: EllipticCurve_generic.multiplication_by_m()

EXAMPLES:

sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: phi = E.scalar_multiplication(7)
sage: phi.x_rational_map() == phi.rational_maps()[0]
True

227

Elliptic curves, Release 10.4.rc1

228 Chapter 14. Scalar-multiplication morphisms of elliptic curves

CHAPTER

FIFTEEN

FROBENIUS ISOGENIES OF ELLIPTIC CURVES

Frobenius isogenies only exist in positive characteristic 𝑝. They are given by 𝜋𝑛 : (𝑥, 𝑦) ↦→ (𝑥𝑝
𝑛

, 𝑦𝑝
𝑛

).

This class implements 𝜋𝑛 for 𝑛 ≥ 0. Together with existing tools for composing isogenies (see EllipticCurve-
Hom_composite), we can therefore represent arbitrary inseparable isogenies in Sage.

EXAMPLES:

Constructing a Frobenius isogeny is straightforward:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: z5, = GF(17^5).gens()
sage: E = EllipticCurve([z5,1])
sage: pi = EllipticCurveHom_frobenius(E); pi
Frobenius isogeny of degree 17:

From: Elliptic Curve defined by y^2 = x^3 + z5*x + 1
over Finite Field in z5 of size 17^5

To: Elliptic Curve defined by y^2 = x^3 + (9*z5^4+7*z5^3+10*z5^2+z5+14)*x + 1
over Finite Field in z5 of size 17^5

By passing 𝑛, we can also construct higher-power Frobenius maps, such as the Frobenius endomorphism:

sage: z5, = GF(7^5).gens()
sage: E = EllipticCurve([z5,1])
sage: pi = EllipticCurveHom_frobenius(E, 5); pi
Frobenius endomorphism of degree 16807 = 7^5:

From: Elliptic Curve defined by y^2 = x^3 + z5*x + 1
over Finite Field in z5 of size 7^5

To: Elliptic Curve defined by y^2 = x^3 + z5*x + 1
over Finite Field in z5 of size 7^5

The usual EllipticCurveHom methods are supported:

sage: z5, = GF(7^5).gens()
sage: E = EllipticCurve([z5,1])
sage: pi = EllipticCurveHom_frobenius(E,5)
sage: pi.degree()
16807
sage: pi.rational_maps()
(x^16807, y^16807)
sage: pi.formal() # known bug
...
sage: pi.is_normalized() # known bug
...
sage: pi.is_separable()

(continues on next page)

229

Elliptic curves, Release 10.4.rc1

(continued from previous page)

False
sage: pi.is_injective()
True
sage: pi.is_surjective()
True

Computing the dual of Frobenius is supported as well:

sage: E = EllipticCurve([GF(17^6).gen(), 0])
sage: pi = EllipticCurveHom_frobenius(E)
sage: pihat = pi.dual(); pihat
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + (15*z6^5+5*z6^4+8*z6^3+12*z6^2+11*z6+7)*x

over Finite Field in z6 of size 17^6
to Elliptic Curve defined by y^2 = x^3 + z6*x

over Finite Field in z6 of size 17^6
sage: pihat.is_separable()
True
sage: pihat * pi == EllipticCurveHom_scalar(E,17) # known bug -- #6413
True

A supersingular example (with purely inseparable dual):

sage: E = EllipticCurve([0, GF(17^6).gen()])
sage: E.is_supersingular()
True
sage: pi1 = EllipticCurveHom_frobenius(E)
sage: pi1hat = pi1.dual(); pi1hat
Composite morphism of degree 17 = 17*1:

From: Elliptic Curve defined by y^2 = x^3 + (15*z6^5+5*z6^4+8*z6^3+12*z6^2+11*z6+7)
over Finite Field in z6 of size 17^6

To: Elliptic Curve defined by y^2 = x^3 + z6
over Finite Field in z6 of size 17^6

sage: pi6 = EllipticCurveHom_frobenius(E,6)
sage: pi6hat = pi6.dual(); pi6hat
Composite morphism of degree 24137569 = 24137569*1:

From: Elliptic Curve defined by y^2 = x^3 + z6
over Finite Field in z6 of size 17^6

To: Elliptic Curve defined by y^2 = x^3 + z6
over Finite Field in z6 of size 17^6

sage: pi6hat.factors()
(Frobenius endomorphism of degree 24137569 = 17^6:

From: Elliptic Curve defined by y^2 = x^3 + z6
over Finite Field in z6 of size 17^6

To: Elliptic Curve defined by y^2 = x^3 + z6
over Finite Field in z6 of size 17^6,

Elliptic-curve endomorphism of
Elliptic Curve defined by y^2 = x^3 + z6 over Finite Field in z6 of size 17^6
Via: (u,r,s,t) = (2*z6^5 + 10*z6^3 + z6^2 + 8, 0, 0, 0))

AUTHORS:

• Lorenz Panny (2021): implement EllipticCurveHom_frobenius

• Mickaël Montessinos (2021): computing the dual of a Frobenius isogeny

class sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius(E ,
power=1)

230 Chapter 15. Frobenius isogenies of elliptic curves

Elliptic curves, Release 10.4.rc1

Bases: EllipticCurveHom

Construct a Frobenius isogeny on a given curve with a given power of the base-ring characteristic.

Writing 𝑛 for the parameter power (default: 1), the isogeny is defined by (𝑥, 𝑦) → (𝑥𝑝
𝑛

, 𝑦𝑝
𝑛

) where 𝑝 is the
characteristic of the base ring.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(j=GF(11^2).gen())
sage: EllipticCurveHom_frobenius(E)
Frobenius isogeny of degree 11:
From: Elliptic Curve defined by y^2 = x^3 + (2*z2+6)*x + (8*z2+8) over Finite␣

→˓Field in z2 of size 11^2
To: Elliptic Curve defined by y^2 = x^3 + (9*z2+3)*x + (3*z2+7) over Finite␣

→˓Field in z2 of size 11^2
sage: EllipticCurveHom_frobenius(E, 2)
Frobenius endomorphism of degree 121 = 11^2:
From: Elliptic Curve defined by y^2 = x^3 + (2*z2+6)*x + (8*z2+8) over Finite␣

→˓Field in z2 of size 11^2
To: Elliptic Curve defined by y^2 = x^3 + (2*z2+6)*x + (8*z2+8) over Finite␣

→˓Field in z2 of size 11^2

dual()

Compute the dual of this Frobenius isogeny.

This method returns an EllipticCurveHom object.

EXAMPLES:

An ordinary example:

sage: from sage.schemes.elliptic_curves.hom_scalar import EllipticCurveHom_
→˓scalar
sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(31), [0,1])
sage: f = EllipticCurveHom_frobenius(E)
sage: f.dual() * f == EllipticCurveHom_scalar(f.domain(), 31)
True
sage: f * f.dual() == EllipticCurveHom_scalar(f.codomain(), 31)
True

A supersingular example:

sage: E = EllipticCurve(GF(31), [1,0])
sage: f = EllipticCurveHom_frobenius(E)
sage: f.dual() * f == EllipticCurveHom_scalar(f.domain(), 31)
True
sage: f * f.dual() == EllipticCurveHom_scalar(f.codomain(), 31)
True

ALGORITHM:

• For supersingular curves, the dual of Frobenius is again purely inseparable, so we start out with a Frobe-
nius isogeny of equal degree in the opposite direction.

231

Elliptic curves, Release 10.4.rc1

• For ordinary curves, we immediately reduce to the case of prime degree. The kernel of the dual is the
unique subgroup of size 𝑝, which we compute from the 𝑝-division polynomial.

In both cases, we then search for the correct post-isomorphism using find_post_isomorphism().

inseparable_degree()

Return the inseparable degree of this Frobenius isogeny.

Since this class implements only purely inseparable isogenies, the inseparable degree equals the degree.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 4)
sage: pi.inseparable_degree()
14641
sage: pi.inseparable_degree() == pi.degree()
True

kernel_polynomial()

Return the kernel polynomial of this Frobenius isogeny as a polynomial in 𝑥. This method always returns 1.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 5)
sage: pi.kernel_polynomial()
1

rational_maps()

Return the explicit rational maps defining this Frobenius isogeny as (sparse) bivariate rational maps in 𝑥 and
𝑦.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 4)
sage: pi.rational_maps()
(x^14641, y^14641)

scaling_factor()

Return the Weierstrass scaling factor associated to this Frobenius morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E)
sage: pi.formal()

(continues on next page)

232 Chapter 15. Frobenius isogenies of elliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

t^11 + O(t^33)
sage: pi.scaling_factor()
0
sage: pi = EllipticCurveHom_frobenius(E, 3)
sage: pi.formal()
t^1331 + O(t^1353)
sage: pi.scaling_factor()
0
sage: pi = EllipticCurveHom_frobenius(E, 0)
sage: pi == E.scalar_multiplication(1)
True
sage: pi.scaling_factor()
1

The scaling factor lives in the base ring:

sage: pi.scaling_factor().parent()
Finite Field of size 11

ALGORITHM: Inseparable isogenies of degree > 1 have scaling factor 0.

x_rational_map()

Return the 𝑥-coordinate rational map of this Frobenius isogeny as a (sparse) univariate rational map in 𝑥.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 4)
sage: pi.x_rational_map()
x^14641

233

Elliptic curves, Release 10.4.rc1

234 Chapter 15. Frobenius isogenies of elliptic curves

CHAPTER

SIXTEEN

ISOGENIES OF SMALL PRIME DEGREE

Functions for the computation of isogenies of small primes degree. First: 𝑙 = 2, 3, 5, 7, or 13, where the modular curve
𝑋0(𝑙) has genus 0. Second: 𝑙 = 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71, where 𝑋+

0 (𝑙) has genus 0 and 𝑋0(𝑙) is elliptic
or hyperelliptic. Also: 𝑙 = 11, 17, 19, 37, 43, 67 or 163 over Q (the sporadic cases with only finitely many 𝑗-invariants
each). All the above only require factorization of a polynomial of degree 𝑙 + 1. Finally, a generic function which works
for arbitrary odd primes 𝑙 (including the characteristic), but requires factorization of the 𝑙-division polynomial, of degree
(𝑙2 − 1)/2.

AUTHORS:

• John Cremona and Jenny Cooley: 2009-07..11: the genus 0 cases the sporadic cases over Q.

• Kimi Tsukazaki and John Cremona: 2013-07: The 10 (hyper)-elliptic cases and the generic algorithm. See
[KT2013].

sage.schemes.elliptic_curves.isogeny_small_degree.Fricke_module()

Fricke module for l =2,3,5,7,13.

For these primes (and these only) the modular curve 𝑋0(𝑙) has genus zero, and its field is generated by a single
modular function called the Fricke module (or Hauptmodul), 𝑡. There is a classical choice of such a generator 𝑡 in
each case, and the 𝑗-function is a rational function of 𝑡 of degree 𝑙+1 of the form 𝑃 (𝑡)/𝑡 where 𝑃 is a polynomial
of degree 𝑙+1. Up to scaling, 𝑡 is determined by the condition that the ramification points above 𝑗 = ∞ are 𝑡 = 0
(with ramification degree 1) and 𝑡 = ∞ (with degree 𝑙). The ramification above 𝑗 = 0 and 𝑗 = 1728 may be seen
in the factorizations of 𝑗(𝑡) and 𝑘(𝑡) where 𝑘 = 𝑗 − 1728.

OUTPUT:

The rational function 𝑃 (𝑡)/𝑡.

sage.schemes.elliptic_curves.isogeny_small_degree.Fricke_polynomial()

Fricke polynomial for l =2,3,5,7,13.

For these primes (and these only) the modular curve 𝑋0(𝑙) has genus zero, and its field is generated by a single
modular function called the Fricke module (or Hauptmodul), 𝑡. There is a classical choice of such a generator 𝑡 in
each case, and the 𝑗-function is a rational function of 𝑡 of degree 𝑙+1 of the form 𝑃 (𝑡)/𝑡 where 𝑃 is a polynomial
of degree 𝑙+1. Up to scaling, 𝑡 is determined by the condition that the ramification points above 𝑗 = ∞ are 𝑡 = 0
(with ramification degree 1) and 𝑡 = ∞ (with degree 𝑙). The ramification above 𝑗 = 0 and 𝑗 = 1728 may be seen
in the factorizations of 𝑗(𝑡) and 𝑘(𝑡) where 𝑘 = 𝑗 − 1728.

OUTPUT:

The polynomial 𝑃 (𝑡) as an element of [𝑡].

sage.schemes.elliptic_curves.isogeny_small_degree.Psi(use_stored=True)
Generic kernel polynomial for genus zero primes.

For each of the primes 𝑙 for which𝑋0(𝑙) has genus zero (namely 𝑙 = 2, 3, 5, 7, 13), we may define an elliptic curve
𝐸𝑡 over Q(𝑡), with coefficients in [𝑡], which has good reduction except at 𝑡 = 0 and 𝑡 = ∞ (which lie above

235

Elliptic curves, Release 10.4.rc1

𝑗 = ∞) and at certain other values of 𝑡 above 𝑗 = 0 when 𝑙 = 3 (one value) or 𝑙 ≡ 1 (mod 3) (two values) and
above 𝑗 = 1728 when 𝑙 = 2 (one value) or 𝑙 ≡ 1 (mod 4) (two values). (These exceptional values correspond to
endomorphisms of 𝐸𝑡 of degree 𝑙.) The 𝑙-division polynomial of 𝐸𝑡 has a unique factor of degree (𝑙 − 1)/2 (or
1 when 𝑙 = 2), with coefficients in [𝑡], which we call the Generic Kernel Polynomial for 𝑙. These are used, by
specialising 𝑡, in the function isogenies_prime_degree_genus_0(), which also has to take into account
the twisting factor between 𝐸𝑡 for a specific value of 𝑡 and the short Weierstrass form of an elliptic curve with
𝑗-invariant 𝑗(𝑡). This enables the computation of the kernel polynomials of isogenies without having to compute
and factor division polynomials.

All of this data is quickly computed from the Fricke modules, except that for 𝑙 = 13 the factorization of the
Generic Division Polynomial takes a long time, so the value have been precomputed and cached; by default the
cached values are used, but the code here will recompute them when use_stored is False, as in the doctests.

INPUT:

• l – either 2, 3, 5, 7, or 13.

• use_stored (boolean, default: True) – If True, use precomputed values, otherwise compute them on the
fly.

Note: This computation takes a negligible time for 𝑙 = 2, 3, 5, 7 but more than 100s for 𝑙 = 13. The reason for
allowing dynamic computation here instead of just using precomputed values is for testing.

sage.schemes.elliptic_curves.isogeny_small_degree.Psi2()

Return the generic kernel polynomial for hyperelliptic 𝑙-isogenies.

INPUT:

• l – either 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

OUTPUT:

The generic 𝑙-kernel polynomial.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import Psi2
sage: Psi2(11)
x^5 - 55*x^4*u + 994*x^3*u^2 - 8774*x^2*u^3 + 41453*x*u^4 - 928945/11*u^5
+ 33*x^4 + 276*x^3*u - 7794*x^2*u^2 + 4452*x*u^3 + 1319331/11*u^4 + 216*x^3*v
- 4536*x^2*u*v + 31752*x*u^2*v - 842616/11*u^3*v + 162*x^3 + 38718*x^2*u
- 610578*x*u^2 + 33434694/11*u^3 - 4536*x^2*v + 73872*x*u*v - 2745576/11*u^2*v
- 16470*x^2 + 580068*x*u - 67821354/11*u^2 - 185976*x*v + 14143896/11*u*v
+ 7533*x - 20437029/11*u - 12389112/11*v + 19964151/11
sage: p = Psi2(71) # long time
sage: (x,u,v) = p.variables() # long time
sage: p.coefficient({x: 0, u: 210, v: 0}) # long time
-2209380711722505179506258739515288584116147237393815266468076436521/71
sage: p.coefficient({x: 0, u: 0, v: 0}) # long time
-14790739586438315394567393301990769678157425619440464678252277649/71

sage.schemes.elliptic_curves.isogeny_small_degree.is_kernel_polynomial(E , m, f)
Test whether E has a cyclic isogeny of degree m with kernel polynomial f.

INPUT:

• E – an elliptic curve.

• m – a positive integer.

236 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

• f – a polynomial over the base field of E.

OUTPUT:

(bool) True if E has a cyclic isogeny of degree m with kernel polynomial f, else False.

ALGORITHM:

𝑓 must have degree (𝑚 − 1)/2 (if 𝑚 is odd) or degree 𝑚/2 (if 𝑚 is even), and have the property that for each
root 𝑥 of 𝑓 , 𝜇(𝑥) is also a root where 𝜇 is the multiplication-by-𝑚 map on 𝐸 and𝑚 runs over a set of generators
of (/𝑚)*/{1,−1}.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_
→˓polynomial
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: x = polygen(QQ)
sage: is_kernel_polynomial(E, 5, x^2 + x - 29/5)
True
sage: is_kernel_polynomial(E, 5, (x - 16) * (x - 5))
True

An example from [KT2013], where the 13-division polynomial splits into 14 factors each of degree 6, but only two
of these is a kernel polynomial for a 13-isogeny:

sage: F = GF(3)
sage: E = EllipticCurve(F, [0,0,0,-1,0])
sage: f13 = E.division_polynomial(13)
sage: factors = [f for f, e in f13.factor()]
sage: all(f.degree() == 6 for f in factors)
True
sage: [is_kernel_polynomial(E, 13, f) for f in factors]
[True,
True,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False]

See Issue #22232:

sage: # needs sage.rings.finite_rings
sage: K = GF(47^2)
sage: E = EllipticCurve([0, K.gen()])
sage: psi7 = E.division_polynomial(7)
sage: f = psi7.factor()[4][0]
sage: f
x^3 + (7*z2 + 11)*x^2 + (25*z2 + 33)*x + 25*z2
sage: f.divides(psi7)
True

(continues on next page)

237

https://github.com/sagemath/sage/issues/22232

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: is_kernel_polynomial(E, 7, f)
False

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_13_0(E , minimal_mod-
els=True)

Return list of all 13-isogenies from E when the j-invariant is 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 13-isogenies with codomain E. In general these are normalised; but if −3 is a square then there are two
endomorphisms of degree 13, for which the codomain is the same as the domain.

Note: This implementation requires that the characteristic is not 2, 3 or 13.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(13).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_13_0

Endomorphisms of degree 13 will exist when -3 is a square:

sage: # needs sage.rings.number_field
sage: K.<r> = QuadraticField(-3)
sage: E = EllipticCurve(K, [0, r]); E
Elliptic Curve defined by y^2 = x^3 + r over Number Field in r
with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
sage: isogenies_13_0(E)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + r over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
to Elliptic Curve defined by y^2 = x^3 + r over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + r over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
to Elliptic Curve defined by y^2 = x^3 + r over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I]
sage: isogenies_13_0(E)[0].rational_maps()
(((7/338*r + 23/338)*x^13 + (-164/13*r - 420/13)*x^10
+ (720/13*r + 3168/13)*x^7 + (3840/13*r - 576/13)*x^4
+ (4608/13*r + 2304/13)*x)/(x^12 + (4*r + 36)*x^9 + (1080/13*r + 3816/13)*x^6

+ (2112/13*r - 5184/13)*x^3 + (-17280/169*r - 1152/
→˓169)),
((18/2197*r + 35/2197)*x^18*y + (23142/2197*r + 35478/2197)*x^15*y
+ (-1127520/2197*r - 1559664/2197)*x^12*y + (-87744/2197*r + 5992704/2197)*x^9*y
+ (-6625152/2197*r - 9085824/2197)*x^6*y + (-28919808/2197*r - 2239488/2197)*x^

(continues on next page)

238 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓3*y
+ (-1990656/2197*r - 3870720/2197)*y)/(x^18 + (6*r + 54)*x^15

+ (3024/13*r + 11808/13)*x^12 + (31296/13*r + 51840/13)*x^9
+ (487296/169*r - 2070144/169)*x^6 + (-940032/169*r + 248832/169)*x^3
+ (1990656/2197*r + 3870720/2197)))

An example of endomorphisms over a finite field:

sage: # needs sage.rings.finite_rings
sage: K = GF(19^2, a)
sage: E = EllipticCurve(j=K(0)); E
Elliptic Curve defined by y^2 = x^3 + 1
over Finite Field in a of size 19^2
sage: isogenies_13_0(E)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 19^2

to Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 19^
→˓2,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 19^2

to Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 19^
→˓2]
sage: isogenies_13_0(E)[0].rational_maps()
((6*x^13 - 6*x^10 - 3*x^7 + 6*x^4 + x)/(x^12 - 5*x^9 - 9*x^6 - 7*x^3 + 5),
(-8*x^18*y - 9*x^15*y + 9*x^12*y - 5*x^9*y
+ 5*x^6*y - 7*x^3*y + 7*y)/(x^18 + 2*x^15 + 3*x^12 - x^9 + 8*x^6 - 9*x^3 + 7))

A previous implementation did not work in some characteristics:

sage: K = GF(29)
sage: E = EllipticCurve(j=K(0))
sage: isogenies_13_0(E)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 29

to Elliptic Curve defined by y^2 = x^3 + 26*x + 12 over Finite Field of size␣
→˓29,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 29

to Elliptic Curve defined by y^2 = x^3 + 16*x + 28 over Finite Field of size␣
→˓29]

sage: K = GF(101)
sage: E = EllipticCurve(j=K(0)); E.ainvs()
(0, 0, 0, 0, 1)
sage: [phi.codomain().ainvs() for phi in isogenies_13_0(E)]
[(0, 0, 0, 64, 36), (0, 0, 0, 42, 66)]

sage: x = polygen(QQ)
sage: f = x^12 + 78624*x^9 - 130308048*x^6 + 2270840832*x^3 - 54500179968
sage: K.<a> = NumberField(f) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(j=K(0)); E.ainvs() #␣
→˓needs sage.rings.number_field
(0, 0, 0, 0, 1)
sage: len([phi.codomain().ainvs() # long time #␣
→˓needs sage.rings.number_field

(continues on next page)

239

Elliptic curves, Release 10.4.rc1

(continued from previous page)

....: for phi in isogenies_13_0(E)])
2

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_13_1728(E ,
minimal_mod-
els=True)

Return list of all 13-isogenies from E when the j-invariant is 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 13-isogenies with codomain E. In general these are normalised; but if −1 is a square then there are two
endomorphisms of degree 13, for which the codomain is the same as the domain; and over Q or a number field,
the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 13.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(13).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_13_
→˓1728

sage: K.<i> = QuadraticField(-1) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([0,0,0,i,0]); E.ainvs() #␣
→˓needs sage.rings.number_field
(0, 0, 0, i, 0)
sage: isogenies_13_1728(E) #␣
→˓needs sage.rings.number_field
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I
to Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I
to Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I]

sage: K = GF(83)
sage: E = EllipticCurve(K, [0,0,0,5,0]); E.ainvs()
(0, 0, 0, 5, 0)
sage: isogenies_13_1728(E)
[]
sage: K = GF(89)

(continues on next page)

240 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(K, [0,0,0,5,0]); E.ainvs()
(0, 0, 0, 5, 0)
sage: isogenies_13_1728(E)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89

to Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89

to Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89]

sage: K = GF(23)
sage: E = EllipticCurve(K, [1,0])
sage: isogenies_13_1728(E)
[Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 23

to Elliptic Curve defined by y^2 = x^3 + 16 over Finite Field of size 23,
Isogeny of degree 13
from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 23

to Elliptic Curve defined by y^2 = x^3 + 7 over Finite Field of size 23]

sage: x = polygen(QQ)
sage: f = (x^12 + 1092*x^10 - 432432*x^8 + 6641024*x^6
....: - 282896640*x^4 - 149879808*x^2 - 349360128)
sage: K.<a> = NumberField(f) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(K, [1,0]) #␣
→˓needs sage.rings.number_field
sage: [phi.codomain().ainvs() # long time #␣
→˓needs sage.rings.number_field
....: for phi in isogenies_13_1728(E)]
[(0,
0,
0,
-4225010072113/3063768069807341568*a^10 - 24841071989413/15957125363579904*a^8

+ 11179537789374271/21276167151439872*a^6 - 407474562289492049/
→˓47871376090739712*a^4

+ 1608052769560747/4522994717568*a^2 + 7786720245212809/36937790193472,
-363594277511/574456513088876544*a^11 - 7213386922793/2991961005671232*a^9

- 2810970361185589/1329760446964992*a^7 + 281503836888046601/
→˓8975883017013696*a^5

- 1287313166530075/848061509544*a^3 + 9768837984886039/6925835661276*a),
(0,
0,
0,
-4225010072113/3063768069807341568*a^10 - 24841071989413/15957125363579904*a^8

+ 11179537789374271/21276167151439872*a^6 - 407474562289492049/
→˓47871376090739712*a^4

+ 1608052769560747/4522994717568*a^2 + 7786720245212809/36937790193472,
363594277511/574456513088876544*a^11 + 7213386922793/2991961005671232*a^9

+ 2810970361185589/1329760446964992*a^7 - 281503836888046601/
→˓8975883017013696*a^5

+ 1287313166530075/848061509544*a^3 - 9768837984886039/6925835661276*a)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_2(E ,
minimal_models=True)

Return a list of all 2-isogenies with domain E.

241

Elliptic curves, Release 10.4.rc1

INPUT:

• E – an elliptic curve.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 2-isogenies with domain E. In general these are normalised, but overQ and other number fields, the codomain
is a minimal model where possible.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_2
sage: E = EllipticCurve(14a1); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field
sage: [phi.codomain().ainvs() for phi in isogenies_2(E)]
[(1, 0, 1, -36, -70)]

sage: E = EllipticCurve([1,2,3,4,5]); E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational␣
→˓Field
sage: [phi.codomain().ainvs() for phi in isogenies_2(E)]
[]
sage: E = EllipticCurve(QQbar, [9,8]); E #␣
→˓needs sage.rings.number_field
Elliptic Curve defined by y^2 = x^3 + 9*x + 8 over Algebraic Field
sage: isogenies_2(E) # not implemented #␣
→˓needs sage.rings.number_field

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_3(E ,
minimal_models=True)

Return a list of all 3-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 3-isogenies with domain E. In general these are normalised, but over Q or a number field, the codomain is a
global minimal model where possible.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_3
sage: E = EllipticCurve(GF(17), [1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 0, 0, 9, 7), (0, 0, 0, 0, 1)]

sage: E = EllipticCurve(GF(17^2, a), [1,1]) #␣
→˓needs sage.rings.finite_rings
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)] #␣
→˓needs sage.rings.finite_rings
[(0, 0, 0, 9, 7), (0, 0, 0, 0, 1), (0, 0, 0, 5*a + 1, a + 13), (0, 0, 0, 12*a + 6,
→˓ 16*a + 14)]

(continues on next page)

242 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(19a1)
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 1, 1, 1, 0), (0, 1, 1, -769, -8470)]

sage: E = EllipticCurve([1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_5_0(E , minimal_mod-
els=True)

Return a list of all the 5-isogenies with domain E when the j-invariant is 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 5-isogenies with codomain E. In general these are normalised, but over Q or a number field, the codomain is
a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 5.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(5).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_0
sage: E = EllipticCurve([0,12])
sage: isogenies_5_0(E)
[]

sage: E = EllipticCurve(GF(13^2, a), [0,-3]) #␣
→˓needs sage.rings.finite_rings
sage: isogenies_5_0(E) #␣
→˓needs sage.rings.finite_rings
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + (4*a+6)*x + (2*a+10)

over Finite Field in a of size 13^2,
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + (12*a+5)*x + (2*a+10)

over Finite Field in a of size 13^2,
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + (10*a+2)*x + (2*a+10)

over Finite Field in a of size 13^2,

(continues on next page)

243

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + (3*a+12)*x + (11*a+12)

over Finite Field in a of size 13^2,
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + (a+4)*x + (11*a+12)

over Finite Field in a of size 13^2,
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + (9*a+10)*x + (11*a+12)

over Finite Field in a of size 13^2]

sage: x = polygen(QQ, x)
sage: K.<a> = NumberField(x**6 - 320*x**3 - 320) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(K, [0,0,1,0,0]) #␣
→˓needs sage.rings.number_field
sage: isogenies_5_0(E) #␣
→˓needs sage.rings.number_field
[Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3

over Number Field in a with defining polynomial x^6 - 320*x^3 - 320
to Elliptic Curve defined by

y^2 + y = x^3 + (241565/32*a^5-362149/48*a^4+180281/24*a^3-9693307/4*a^
→˓2+14524871/6*a-7254985/3)*x

+ (1660391123/192*a^5-829315373/96*a^4+77680504/9*a^3-
→˓66622345345/24*a^2+33276655441/12*a-24931615912/9)

over Number Field in a with defining polynomial x^6 - 320*x^3 - 320,
Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3

over Number Field in a with defining polynomial x^6 - 320*x^3 - 320
to Elliptic Curve defined by

y^2 + y = x^3 + (47519/32*a^5-72103/48*a^4+32939/24*a^3-1909753/4*a^
→˓2+2861549/6*a-1429675/3)*x

+ (-131678717/192*a^5+65520419/96*a^4-12594215/18*a^
→˓3+5280985135/24*a^2-2637787519/12*a+1976130088/9)

over Number Field in a with defining polynomial x^6 - 320*x^3 - 320]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_5_1728(E ,
minimal_mod-
els=True)

Return a list of 5-isogenies with domain E when the j-invariant is 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 5-isogenies with codomain E. In general these are normalised; but if −1 is a square then there are two en-
domorphisms of degree 5, for which the codomain is the same as the domain curve; and over Q or a number field,

244 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 5.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(5).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_
→˓1728
sage: E = EllipticCurve([7,0])
sage: isogenies_5_1728(E)
[]

sage: E = EllipticCurve(GF(13), [11,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13

to Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13,
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13

to Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13]

An example of endomorphisms of degree 5:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I
to Elliptic Curve defined by y^2 = x^3 + x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I,
Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I
to Elliptic Curve defined by y^2 = x^3 + x over Number Field in i

with defining polynomial x^2 + 1 with i = 1*I]
sage: _[0].rational_maps()
(((4/25*i + 3/25)*x^5
+ (4/5*i - 2/5)*x^3 - x)/(x^4 + (-4/5*i + 2/5)*x^2 + (-4/25*i - 3/25)),

((11/125*i + 2/125)*x^6*y + (-23/125*i + 64/125)*x^4*y
+ (141/125*i + 162/125)*x^2*y
+ (3/25*i - 4/25)*y)/(x^6 + (-6/5*i + 3/5)*x^4

+ (-12/25*i - 9/25)*x^2 + (2/125*i - 11/125)))

An example of 5-isogenies over a number field:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ, x)
sage: K.<a> = NumberField(x**4 + 20*x**2 - 80)
sage: K(5).is_square() # necessary but not sufficient!
True
sage: E = EllipticCurve(K, [0,0,0,1,0])

(continues on next page)

245

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: isogenies_5_1728(E)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x

over Number Field in a with defining polynomial x^4 + 20*x^2 - 80
to Elliptic Curve defined by y^2 = x^3 + (-753/4*a^2-4399)*x + (2779*a^

→˓3+65072*a)
over Number Field in a with defining polynomial x^4 + 20*x^2 - 80,

Isogeny of degree 5
from Elliptic Curve defined by y^2 = x^3 + x

over Number Field in a with defining polynomial x^4 + 20*x^2 - 80
to Elliptic Curve defined by y^2 = x^3 + (-753/4*a^2-4399)*x + (-2779*a^3-

→˓65072*a)
over Number Field in a with defining polynomial x^4 + 20*x^2 - 80]

See Issue #19840:

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^4 - 5*x^2 + 5)
sage: E = EllipticCurve([a^2 + a + 1, a^3 + a^2 + a + 1, a^2 + a,
....: 17*a^3 + 34*a^2 - 16*a - 37,
....: 54*a^3 + 105*a^2 - 66*a - 135])
sage: len(E.isogenies_prime_degree(5))
2
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_
→˓1728
sage: [phi.codomain().j_invariant() for phi in isogenies_5_1728(E)]
[19691491018752*a^2 - 27212977933632, 19691491018752*a^2 - 27212977933632]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_7_0(E , minimal_mod-
els=True)

Return list of all 7-isogenies from E when the j-invariant is 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 7-isogenies with codomain E. In general these are normalised; but if −3 is a square then there are two en-
domorphisms of degree 7, for which the codomain is the same as the domain; and over Q or a number field, the
codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 7.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(7).

EXAMPLES:

First some examples of endomorphisms:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_0
sage: K.<r> = QuadraticField(-3) #␣

(continues on next page)

246 Chapter 16. Isogenies of small prime degree

https://github.com/sagemath/sage/issues/19840

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.rings.number_field
sage: E = EllipticCurve(K, [0,1]) #␣
→˓needs sage.rings.number_field
sage: isogenies_7_0(E) #␣
→˓needs sage.rings.number_field
[Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
to Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I,
Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
to Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I]

sage: E = EllipticCurve(GF(13^2, a), [0,-3]) #␣
→˓needs sage.rings.finite_rings
sage: isogenies_7_0(E) #␣
→˓needs sage.rings.finite_rings
[Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2,
Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2
to Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^

→˓2]

Now some examples of 7-isogenies which are not endomorphisms:

sage: K = GF(101)
sage: E = EllipticCurve(K, [0,1])
sage: isogenies_7_0(E)
[Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 101

to Elliptic Curve defined by y^2 = x^3 + 55*x + 100 over Finite Field of size␣
→˓101,
Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 101
to Elliptic Curve defined by y^2 = x^3 + 83*x + 26 over Finite Field of size␣

→˓101]

Examples over a number field:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_0
sage: E = EllipticCurve(27a1).change_ring(QuadraticField(-3, r)) #␣
→˓needs sage.rings.number_field
sage: isogenies_7_0(E) #␣
→˓needs sage.rings.number_field
[Isogeny of degree 7
from Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
to Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I,
(continues on next page)

247

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Isogeny of degree 7
from Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I
to Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r

with defining polynomial x^2 + 3 with r = 1.732050807568878?*I]

sage: # needs sage.rings.number_field
sage: x = polygen(QQ, x)
sage: K.<a> = NumberField(x^6 + 1512*x^3 - 21168)
sage: E = EllipticCurve(K, [0,1])
sage: isogs = isogenies_7_0(E)
sage: [phi.codomain().a_invariants() for phi in isogs]
[(0,
0,
0,
-415/98*a^5 - 675/14*a^4 + 2255/7*a^3 - 74700/7*a^2 - 25110*a - 66420,
-141163/56*a^5 + 1443453/112*a^4 - 374275/2*a^3

- 3500211/2*a^2 - 17871975/4*a - 7710065),
(0,
0,
0,
-24485/392*a^5 - 1080/7*a^4 - 2255/7*a^3 - 1340865/14*a^2 - 230040*a - 553500,
1753037/56*a^5 + 8345733/112*a^4 + 374275/2*a^3

+ 95377029/2*a^2 + 458385345/4*a + 275241835)]
sage: [phi.codomain().j_invariant() for phi in isogs]
[158428486656000/7*a^3 - 313976217600000,
-158428486656000/7*a^3 - 34534529335296000]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_7_1728(E ,
minimal_mod-
els=True)

Return list of all 7-isogenies from E when the j-invariant is 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 7-isogenies with codomain E. In general these are normalised; but over Q or a number field, the codomain is
a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3, or 7.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(7).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_
→˓1728
sage: E = EllipticCurve(GF(47), [1, 0])

(continues on next page)

248 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: isogenies_7_1728(E)
[Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 47

to Elliptic Curve defined by y^2 = x^3 + 26 over Finite Field of size 47,
Isogeny of degree 7
from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 47

to Elliptic Curve defined by y^2 = x^3 + 21 over Finite Field of size 47]

An example in characteristic 53 (for which an earlier implementation did not work):

sage: # needs sage.rings.finite_rings
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_
→˓1728
sage: E = EllipticCurve(GF(53), [1, 0])
sage: isogenies_7_1728(E)
[]
sage: E = EllipticCurve(GF(53^2, a), [1, 0])
sage: [iso.codomain().ainvs() for iso in isogenies_7_1728(E)]
[(0, 0, 0, 36, 19*a + 15), (0, 0, 0, 36, 34*a + 38), (0, 0, 0, 33, 39*a + 28),
(0, 0, 0, 33, 14*a + 25), (0, 0, 0, 19, 45*a + 16), (0, 0, 0, 19, 8*a + 37),
(0, 0, 0, 3, 45*a + 16), (0, 0, 0, 3, 8*a + 37)]

sage: # needs sage.rings.number_field
sage: x = polygen(QQ, x)
sage: K.<a> = NumberField(x^8 + 84*x^6 - 1890*x^4 + 644*x^2 - 567)
sage: E = EllipticCurve(K, [1, 0])
sage: isogs = isogenies_7_1728(E)
sage: [phi.codomain().j_invariant() for phi in isogs]
[-526110256146528/53*a^6 + 183649373229024*a^4

- 3333881559996576/53*a^2 + 2910267397643616/53,
-526110256146528/53*a^6 + 183649373229024*a^4

- 3333881559996576/53*a^2 + 2910267397643616/53]
sage: E1 = isogs[0].codomain()
sage: E2 = isogs[1].codomain()
sage: E1.is_isomorphic(E2)
False
sage: E1.is_quadratic_twist(E2)
-1

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree(E , l,
mini-
mal_mod-
els=True)

Return all separable l-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – a prime.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False. Ignored except
over number fields other than 𝑄𝑄.

OUTPUT:

A list of all separable isogenies of degree 𝑙 with domain E.

249

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree
sage: E = EllipticCurve_from_j(GF(2^6, a)(1)) #␣
→˓needs sage.rings.finite_rings
sage: isogenies_prime_degree(E, 7) #␣
→˓needs sage.rings.finite_rings
[Isogeny of degree 7
from Elliptic Curve defined by y^2 + x*y = x^3 + 1

over Finite Field in a of size 2^6
to Elliptic Curve defined by y^2 + x*y = x^3 + x

over Finite Field in a of size 2^6]
sage: E = EllipticCurve_from_j(GF(3^12, a)(2)) #␣
→˓needs sage.rings.finite_rings
sage: isogenies_prime_degree(E, 17) #␣
→˓needs sage.rings.finite_rings
[Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2

over Finite Field in a of size 3^12
to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + x + 2

over Finite Field in a of size 3^12,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2

over Finite Field in a of size 3^12
to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2*x

over Finite Field in a of size 3^12]
sage: E = EllipticCurve(50a1)
sage: isogenies_prime_degree(E, 3)
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x - 552 over Rational␣
→˓Field]
sage: isogenies_prime_degree(E, 5)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298 over Rational␣
→˓Field]
sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree(E, 19)
[Isogeny of degree 19
from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489

over Rational Field]
sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: isogenies_prime_degree(E, 37)
[Isogeny of degree 37
from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x + 211072

over Rational Field
to Elliptic Curve defined by y^2 = x^3 - x^2 - 163137088*x - 801950801728

over Rational Field]

Isogenies of degree equal to the characteristic are computed (but only the separable isogeny). In the following
example we consider an elliptic curve which is supersingular in characteristic 2 only:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree

(continues on next page)

250 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: ainvs = (0,1,1,-1,-1)
sage: for l in prime_range(50):
....: E = EllipticCurve(GF(l), ainvs)
....: isogenies_prime_degree(E, l)
[]
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2 over Finite Field␣

→˓of size 3
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 3]
[Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4 over Finite Field␣

→˓of size 5
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4 over Finite Field␣

→˓of size 5]
[Isogeny of degree 7
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 6*x + 6 over Finite Field␣

→˓of size 7
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4 over Finite Field of␣

→˓size 7]
[Isogeny of degree 11
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x + 10 over Finite␣

→˓Field of size 11
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x + 1 over Finite Field of␣

→˓size 11]
[Isogeny of degree 13
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 12 over Finite␣

→˓Field of size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 12 over Finite␣

→˓Field of size 13]
[Isogeny of degree 17
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x + 16 over Finite␣

→˓Field of size 17
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 15 over Finite Field of␣

→˓size 17]
[Isogeny of degree 19
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 18*x + 18 over Finite␣

→˓Field of size 19
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 3*x + 12 over Finite Field␣

→˓of size 19]
[Isogeny of degree 23
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x + 22 over Finite␣

→˓Field of size 23
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x + 22 over Finite␣

→˓Field of size 23]
[Isogeny of degree 29
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 28*x + 28 over Finite␣

→˓Field of size 29
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 7*x + 27 over Finite Field␣

→˓of size 29]
[Isogeny of degree 31
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 30*x + 30 over Finite␣

→˓Field of size 31
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 15*x + 16 over Finite␣

→˓Field of size 31]
[Isogeny of degree 37
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 36*x + 36 over Finite␣

(continues on next page)

251

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓Field of size 37
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x + 17 over Finite␣

→˓Field of size 37]
[Isogeny of degree 41
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 40*x + 40 over Finite␣

→˓Field of size 41
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 33*x + 16 over Finite␣

→˓Field of size 41]
[Isogeny of degree 43
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 42*x + 42 over Finite␣

→˓Field of size 43
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 36 over Finite Field of␣

→˓size 43]
[Isogeny of degree 47
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 46*x + 46 over Finite␣

→˓Field of size 47
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 42*x + 34 over Finite␣

→˓Field of size 47]

Note that the computation is faster for degrees equal to one of the genus 0 primes (2, 3, 5, 7, 13) or one of the
hyperelliptic primes (11, 17, 19, 23, 29, 31, 41, 47, 59, 71) than when the generic code must be used:

sage: E = EllipticCurve(GF(101), [-3440, 77658])
sage: E.isogenies_prime_degree(71) # fast
[]
sage: E.isogenies_prime_degree(73) # long time
[]

Test that Issue #32269 is fixed:

sage: K = QuadraticField(-11) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(K, [0,1,0,-117,-541]) #␣
→˓needs sage.rings.number_field
sage: E.isogenies_prime_degree(37) # long time #␣
→˓needs sage.rings.number_field
[Isogeny of degree 37
from Elliptic Curve defined by y^2 = x^3 + x^2 + (-117)*x + (-541)

over Number Field in a with defining polynomial x^2 + 11
with a = 3.316624790355400?*I

to Elliptic Curve defined by
y^2 = x^3 + x^2 + (-30800*a+123963)*x + (-3931312*a-21805005)
over Number Field in a with defining polynomial x^2 + 11
with a = 3.316624790355400?*I,

Isogeny of degree 37
from Elliptic Curve defined by y^2 = x^3 + x^2 + (-117)*x + (-541)

over Number Field in a with defining polynomial x^2 + 11
with a = 3.316624790355400?*I

to Elliptic Curve defined by
y^2 = x^3 + x^2 + (30800*a+123963)*x + (3931312*a-21805005)
over Number Field in a with defining polynomial x^2 + 11
with a = 3.316624790355400?*I]

252 Chapter 16. Isogenies of small prime degree

https://github.com/sagemath/sage/issues/32269

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_general(E ,
l,
min-
i-
mal_mod-
els=True)

Return all separable l-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – a prime.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

A list of all separable isogenies of degree 𝑙 with domain E (up to post-isomorphism).

ALGORITHM:

This algorithm factors the l-division polynomial, then combines its factors to obtain kernels. Originally this was
done using [KT2013], Chapter 3, but nowadays the recombination step is instead delegated to kernel_poly-
nomial_from_divisor().

Note: This function works for any prime 𝑙. Normally one should use the function isogenies_prime_de-
gree() which uses special functions for certain small primes.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree_general
sage: E = EllipticCurve_from_j(GF(2^6, a)(1)) #␣
→˓needs sage.rings.finite_rings
sage: isogenies_prime_degree_general(E, 7) #␣
→˓needs sage.rings.finite_rings
[Isogeny of degree 7
from Elliptic Curve defined by y^2 + x*y = x^3 + 1

over Finite Field in a of size 2^6
to Elliptic Curve defined by y^2 + x*y = x^3 + x

over Finite Field in a of size 2^6]
sage: E = EllipticCurve_from_j(GF(3^12, a)(2)) #␣
→˓needs sage.rings.finite_rings
sage: isogenies_prime_degree_general(E, 17) #␣
→˓needs sage.rings.finite_rings
[Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2

over Finite Field in a of size 3^12
to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + x + 2

over Finite Field in a of size 3^12,
Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2

over Finite Field in a of size 3^12
to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2*x

over Finite Field in a of size 3^12]
sage: E = EllipticCurve(50a1)

(continues on next page)

253

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: isogenies_prime_degree_general(E, 3)
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x - 552
over Rational Field]

sage: isogenies_prime_degree_general(E, 5)
[Isogeny of degree 5
from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298
over Rational Field]

sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree_general(E, 19)
[Isogeny of degree 19
from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489

over Rational Field]
sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: isogenies_prime_degree_general(E, 37) # long time (2s)
[Isogeny of degree 37
from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x + 211072

over Rational Field
to Elliptic Curve defined by y^2 = x^3 - x^2 - 163137088*x - 801950801728

over Rational Field]

sage: E = EllipticCurve([-3440, 77658])
sage: isogenies_prime_degree_general(E, 43) # long time (2s)
[Isogeny of degree 43
from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658 over Rational Field

to Elliptic Curve defined by y^2 = x^3 - 6360560*x - 6174354606
over Rational Field]

Isogenies of degree equal to the characteristic are computed (but only the separable isogeny). In the following
example we consider an elliptic curve which is supersingular in characteristic 2 only:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree_general
sage: ainvs = (0,1,1,-1,-1)
sage: for l in prime_range(50):
....: E = EllipticCurve(GF(l),ainvs)
....: isogenies_prime_degree_general(E,l)
[]
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2

over Finite Field of size 3
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 3]
[Isogeny of degree 5
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4

over Finite Field of size 5
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4

over Finite Field of size 5]
[Isogeny of degree 7
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 6*x + 6

over Finite Field of size 7
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4 over Finite Field of␣

→˓size 7]
(continues on next page)

254 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[Isogeny of degree 11
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x + 10

over Finite Field of size 11
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x + 1

over Finite Field of size 11]
[Isogeny of degree 13
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 12

over Finite Field of size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 12

over Finite Field of size 13]
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x +␣
→˓16 over Finite Field of size 17 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 15 over Finite Field of size 17]
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 18*x +␣
→˓18 over Finite Field of size 19 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 3*x + 12 over Finite Field of size 19]
[Isogeny of degree 23 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x +␣
→˓22 over Finite Field of size 23 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 22*x + 22 over Finite Field of size 23]
[Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 28*x +␣
→˓28 over Finite Field of size 29 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 7*x + 27 over Finite Field of size 29]
[Isogeny of degree 31 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 30*x +␣
→˓30 over Finite Field of size 31 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 15*x + 16 over Finite Field of size 31]
[Isogeny of degree 37 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 36*x +␣
→˓36 over Finite Field of size 37 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 16*x + 17 over Finite Field of size 37]
[Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 40*x +␣
→˓40 over Finite Field of size 41 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 33*x + 16 over Finite Field of size 41]
[Isogeny of degree 43 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 42*x +␣
→˓42 over Finite Field of size 43 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 36 over Finite Field of size 43]
[Isogeny of degree 47 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 46*x +␣
→˓46 over Finite Field of size 47 to Elliptic Curve defined by y^2 + y = x^3 + x^
→˓2 + 42*x + 34 over Finite Field of size 47]

Note that not all factors of degree (𝑙 − 1)/2 of the 𝑙-division polynomial are kernel polynomials. In this example,
the 13-division polynomial factors as a product of 14 irreducible factors of degree 6 each, but only two those are
kernel polynomials:

sage: F3 = GF(3)
sage: E = EllipticCurve(F3, [0,0,0,-1,0])
sage: Psi13 = E.division_polynomial(13)
sage: len([f for f, e in Psi13.factor() if f.degree() == 6])
14
sage: len(E.isogenies_prime_degree(13))
2

Over GF(9) the other factors of degree 6 split into pairs of cubics which can be rearranged to give the remaining
12 kernel polynomials:

sage: len(E.change_ring(GF(3^2, a)).isogenies_prime_degree(13)) #␣
→˓needs sage.rings.finite_rings
14

255

Elliptic curves, Release 10.4.rc1

See Issue #18589: the following example took 20s before, now only 4s:

sage: K.<i> = QuadraticField(-1) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(K,[0,0,0,1,0]) #␣
→˓needs sage.rings.number_field
sage: [phi.codomain().ainvs() # long time #␣
→˓needs sage.rings.number_field
....: for phi in E.isogenies_prime_degree(37)]
[(0, 0, 0, 840*i + 1081, 0),
(0, 0, 0, -840*i + 1081, 0)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_0(E ,
l=None,
min-
i-
mal_mod-
els=True)

Return list of l -isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – either None or 2, 3, 5, 7, or 13.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) When l is None a list of all isogenies of degree 2, 3, 5, 7 and 13, otherwise a list of isogenies of the given
degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which
automatically calls the appropriate function.

ALGORITHM:

Cremona and Watkins [CW2005]. See also [KT2013], Chapter 4.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree_genus_0
sage: E = EllipticCurve([0,12])
sage: isogenies_prime_degree_genus_0(E, 5)
[]

sage: E = EllipticCurve(1450c1)
sage: isogenies_prime_degree_genus_0(E)
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 300*x - 1000

over Rational Field
to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 5950*x - 182250

over Rational Field]

sage: E = EllipticCurve(50a1)

(continues on next page)

256 Chapter 16. Isogenies of small prime degree

https://github.com/sagemath/sage/issues/18589

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: isogenies_prime_degree_genus_0(E)
[Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x - 552 over Rational␣
→˓Field,
Isogeny of degree 5
from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298 over Rational␣
→˓Field]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0(E ,
l=None,
min-
i-
mal_mod-
els=True)

Return list of l -isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – either None or 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) When l is None a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71, otherwise a list of
isogenies of the given degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which
automatically calls the appropriate function.

ALGORITHM:

See [KT2013], Chapter 5.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree_genus_plus_0

sage: E = EllipticCurve(121a1)
sage: isogenies_prime_degree_genus_plus_0(E, 11)
[Isogeny of degree 11
from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 30*x - 76

over Rational Field
to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 305*x + 7888

over Rational Field]

sage: E = EllipticCurve([1, 1, 0, -660, -7600])
sage: isogenies_prime_degree_genus_plus_0(E, 17)
[Isogeny of degree 17
from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x - 7600

over Rational Field

(continues on next page)

257

Elliptic curves, Release 10.4.rc1

(continued from previous page)

to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 878710*x + 316677750
over Rational Field]

sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree_genus_plus_0(E, 19)
[Isogeny of degree 19
from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489

over Rational Field]

sage: # needs sage.rings.number_field
sage: K = QuadraticField(-295, a)
sage: a = K.gen()
sage: E = EllipticCurve_from_j(-484650135/16777216*a + 4549855725/16777216)
sage: isogenies_prime_degree_genus_plus_0(E, 23)
[Isogeny of degree 23
from Elliptic Curve defined by

y^2 = x^3 + (-14460494784192904095/140737488355328*a+270742665778826768325/
→˓140737488355328)*x

+ (37035998788154488846811217135/590295810358705651712*a-
→˓1447451882571839266752561148725/590295810358705651712)

over Number Field in a with defining polynomial x^2 + 295
with a = 17.17556403731767?*I

to Elliptic Curve defined by
y^2 = x^3 + (-5130542435555445498495/

→˓140737488355328*a+173233955029127361005925/140737488355328)*x
+ (-1104699335561165691575396879260545/

→˓590295810358705651712*a+3169785826904210171629535101419675/
→˓590295810358705651712)

over Number Field in a with defining polynomial x^2 + 295
with a = 17.17556403731767?*I]

sage: # needs sage.rings.number_field
sage: K = QuadraticField(-199, a)
sage: a = K.gen()
sage: E = EllipticCurve_from_j(94743000*a + 269989875)
sage: isogenies_prime_degree_genus_plus_0(E, 29)
[Isogeny of degree 29
from Elliptic Curve defined by

y^2 = x^3 + (-153477413215038000*a+5140130723072965125)*x
+ (297036215130547008455526000*a+2854277047164317800973582250)

over Number Field in a with defining polynomial x^2 + 199
with a = 14.106735979665884?*I

to Elliptic Curve defined by
y^2 = x^3 + (251336161378040805000*a-3071093219933084341875)*x

+ (-
→˓8411064283162168580187643221000*a+34804337770798389546017184785250)

over Number Field in a with defining polynomial x^2 + 199
with a = 14.106735979665884?*I]

sage: # needs sage.rings.number_field
sage: K = QuadraticField(253, a)
sage: a = K.gen()
sage: E = EllipticCurve_from_j(208438034112000*a - 3315409892960000)
sage: isogenies_prime_degree_genus_plus_0(E, 31)
[Isogeny of degree 31

(continues on next page)

258 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

from Elliptic Curve defined by
y^2 = x^3 + (4146345122185433034677956608000*a-

→˓65951656549965037259634800640000)*x
+ (-

→˓18329111516954473474583425393698245080252416000*a+291542366110383928366510368064204147260129280000)
over Number Field in a with defining polynomial x^2 - 253
with a = 15.905973720586867?

to Elliptic Curve defined by
y^2 = x^3 + (200339763852548615776123686912000*a-

→˓3186599019027216904280948275200000)*x
+ (7443671791411479629112717260182286294850207744000*a-

→˓118398847898864757209685951728838895495168655360000)
over Number Field in a with defining polynomial x^2 - 253
with a = 15.905973720586867?]

sage: E = EllipticCurve_from_j(GF(5)(1))
sage: isogenies_prime_degree_genus_plus_0(E, 41)
[Isogeny of degree 41
from Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 5

to Elliptic Curve defined by y^2 = x^3 + x + 3 over Finite Field of size 5,
Isogeny of degree 41
from Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 5

to Elliptic Curve defined by y^2 = x^3 + x + 3 over Finite Field of size 5]

sage: # needs sage.rings.number_field
sage: K = QuadraticField(5, a)
sage: a = K.gen()
sage: E = EllipticCurve_from_j(184068066743177379840*a
....: - 411588709724712960000)
sage: isogenies_prime_degree_genus_plus_0(E, 47) # long time
[Isogeny of degree 47
from Elliptic Curve defined by

y^2 = x^3 + (454562028554080355857852049849975895490560*a-
→˓1016431595837124114668689286176511361024000)*x

+ (-
→˓249456798429896080881440540950393713303830363999480904280965120*a+557802358738710443451273320227578156598454035482869042774016000)

over Number Field in a with defining polynomial x^2 - 5
with a = 2.236067977499790?

to Elliptic Curve defined by
y^2 = x^3 + (39533118442361013730577638493616965245992960*a-

→˓88398740199669828340617478832005245173760000)*x
+␣

→˓(214030321479466610282320528611562368963830105830555363061803253760*a-
→˓478586348074220699687616322532666163722004497458452316582576128000)

over Number Field in a with defining polynomial x^2 - 5
with a = 2.236067977499790?]

sage: K = QuadraticField(-66827, a) #␣
→˓needs sage.rings.number_field
sage: a = K.gen() #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve_from_j(-98669236224000*a + 4401720074240000) #␣
→˓needs sage.rings.number_field
sage: isogenies_prime_degree_genus_plus_0(E, 59) # long time (5s)
[Isogeny of degree 59
from Elliptic Curve defined by

y^2 = x^3 +␣
(continues on next page)

259

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓(2605886146782144762297974784000*a+1893681048912773634944634716160000)*x
+ (-

→˓116918454256410782232296183198067568744071168000*a+17012043538294664027185882358514011304812871680000)
over Number Field in a with defining polynomial x^2 + 66827
with a = 258.5091874576221?*I

to Elliptic Curve defined by
y^2 = x^3 + (-19387084027159786821400775098368000*a-

→˓4882059104868154225052787156713472000)*x
+ (-25659862010101415428713331477227179429538847260672000*a-

→˓2596038148441293485938798119003462972840818381946880000)
over Number Field in a with defining polynomial x^2 + 66827
with a = 258.5091874576221?*I]

sage: E = EllipticCurve_from_j(GF(13)(5))
sage: isogenies_prime_degree_genus_plus_0(E, 71)
[Isogeny of degree 71
from Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size 13

to Elliptic Curve defined by y^2 = x^3 + 10*x + 7 over Finite Field of size␣
→˓13,
Isogeny of degree 71
from Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite Field of size 13

to Elliptic Curve defined by y^2 = x^3 + 10*x + 7 over Finite Field of size␣
→˓13]

sage: E = EllipticCurve(GF(13), [0,1,1,1,0])
sage: isogenies_prime_degree_genus_plus_0(E)
[Isogeny of degree 17
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x + 1 over Finite Field␣

→˓of size 13,
Isogeny of degree 17
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 4 over Finite Field␣

→˓of size 13,
Isogeny of degree 29
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 6 over Finite Field␣

→˓of size 13,
Isogeny of degree 29
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x + 6 over Finite Field␣

→˓of size 13,
Isogeny of degree 41
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 4 over Finite Field␣

→˓of size 13,
Isogeny of degree 41
from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of␣

→˓size 13
to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x + 6 over Finite Field␣

→˓of size 13]

260 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0_j0(E ,
l,
min-
i-
mal_mod-
els=True)

Return a list of hyperelliptic l -isogenies with domain E when 𝑗(𝐸) = 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• l – 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

Note: This implementation requires that the characteristic is not 2, 3 or l.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree_genus_plus_0_j0

sage: u = polygen(QQ)
sage: K.<a> = NumberField(u^4 + 228*u^3 + 486*u^2 - 540*u + 225) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve(K, [0, -121/5*a^3 - 20691/5*a^2 - 29403/5*a + 3267]) #␣
→˓needs sage.rings.number_field
sage: isogenies_prime_degree_genus_plus_0_j0(E, 11) #␣
→˓needs sage.rings.number_field
[Isogeny of degree 11
from Elliptic Curve defined by

y^2 = x^3 + (-121/5*a^3-20691/5*a^2-29403/5*a+3267) over
Number Field in a with defining polynomial x^4 + 228*x^3 + 486*x^2 - 540*x␣

→˓+ 225
to Elliptic Curve defined by

y^2 = x^3 + (-44286*a^2+178596*a-32670)*x
+ (-17863351/5*a^3+125072739/5*a^2-74353653/5*a-682803) over

Number Field in a with defining polynomial x^4 + 228*x^3 + 486*x^2 - 540*x␣
→˓+ 225,
Isogeny of degree 11
from Elliptic Curve defined by

y^2 = x^3 + (-121/5*a^3-20691/5*a^2-29403/5*a+3267) over
Number Field in a with defining polynomial x^4 + 228*x^3 + 486*x^2 - 540*x␣

→˓+ 225
to Elliptic Curve defined by

y^2 = x^3 + (-3267*a^3-740157*a^2+600039*a-277695)*x
+ (-17863351/5*a^3-4171554981/5*a^2+3769467867/5*a-272366523) over

Number Field in a with defining polynomial x^4 + 228*x^3 + 486*x^2 - 540*x␣

(continues on next page)

261

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓+ 225]

sage: E = EllipticCurve(GF(5^6, a),[0,1])
sage: isogenies_prime_degree_genus_plus_0_j0(E,17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2␣
→˓= x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 =␣
→˓x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic␣
→˓Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic␣
→˓Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of␣
→˓degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a␣
→˓of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a␣
→˓of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1␣
→˓over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2␣
→˓over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree␣
→˓17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size␣
→˓5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^
→˓6, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over␣
→˓Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over␣
→˓Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined␣
→˓by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined␣
→˓by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from␣
→˓Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to␣
→˓Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6,␣
→˓Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2␣
→˓= x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 =␣
→˓x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic␣
→˓Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic␣
→˓Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of␣
→˓degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a␣
→˓of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a␣
→˓of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1␣
→˓over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2␣
→˓over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree␣
→˓17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size␣
→˓5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^
→˓6, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over␣
→˓Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over␣
→˓Finite Field in a of size 5^6]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0_j1728(E ,
l,
min-
i-
mal_mod-
els=True)

Return a list of l -isogenies with domain E when 𝑗(𝐸) = 1728.

INPUT:

262 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

• E – an elliptic curve with j-invariant 1728.

• l – 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

Note: This implementation requires that the characteristic is not 2, 3 or l.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓prime_degree_genus_plus_0_j1728

sage: # needs sage.rings.number_field
sage: u = polygen(QQ)
sage: K.<a> = NumberField(u^6 - 522*u^5 - 10017*u^4
....: + 2484*u^3 - 5265*u^2 + 12150*u - 5103)
sage: E = EllipticCurve(K, [-75295/1335852*a^5 + 13066735/445284*a^4
....: + 44903485/74214*a^3 + 17086861/24738*a^2
....: + 11373021/16492*a - 1246245/2356, 0])
sage: isogenies_prime_degree_genus_plus_0_j1728(E, 11)
[Isogeny of degree 11
from Elliptic Curve defined by

y^2 = x^3 + (-75295/1335852*a^5+13066735/445284*a^4+44903485/74214*a^
→˓3+17086861/24738*a^2+11373021/16492*a-1246245/2356)*x

over Number Field in a with defining polynomial
x^6 - 522*x^5 - 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103

to Elliptic Curve defined by
y^2 = x^3 + (9110695/1335852*a^5-1581074935/445284*a^4-5433321685/74214*a^

→˓3-3163057249/24738*a^2+1569269691/16492*a+73825125/2356)*x
+ (-3540460*a^3+30522492*a^2-7043652*a-5031180)

over Number Field in a with defining polynomial
x^6 - 522*x^5 - 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103,

Isogeny of degree 11
from Elliptic Curve defined by

y^2 = x^3 + (-75295/1335852*a^5+13066735/445284*a^4+44903485/74214*a^
→˓3+17086861/24738*a^2+11373021/16492*a-1246245/2356)*x

over Number Field in a with defining polynomial
x^6 - 522*x^5 - 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103

to Elliptic Curve defined by
y^2 = x^3 + (9110695/1335852*a^5-1581074935/445284*a^4-5433321685/74214*a^

→˓3-3163057249/24738*a^2+1569269691/16492*a+73825125/2356)*x
+ (3540460*a^3-30522492*a^2+7043652*a+5031180)

over Number Field in a with defining polynomial
x^6 - 522*x^5 - 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103]

sage: i = QuadraticField(-1, i).gen()
sage: E = EllipticCurve([-1 - 2*i, 0])
sage: isogenies_prime_degree_genus_plus_0_j1728(E, 17)
[Isogeny of degree 17

(continues on next page)

263

Elliptic curves, Release 10.4.rc1

(continued from previous page)

from Elliptic Curve defined by y^2 = x^3 + (-2*i-1)*x
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I

to Elliptic Curve defined by y^2 = x^3 + (-82*i-641)*x
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I,

Isogeny of degree 17
from Elliptic Curve defined by y^2 = x^3 + (-2*i-1)*x

over Number Field in i with defining polynomial x^2 + 1 with i = 1*I
to Elliptic Curve defined by y^2 = x^3 + (-562*i+319)*x

over Number Field in i with defining polynomial x^2 + 1 with i = 1*I]
sage: Emin = E.global_minimal_model()
sage: [(p, len(isogenies_prime_degree_genus_plus_0_j1728(Emin, p)))
....: for p in [17, 29, 41]]
[(17, 2), (29, 2), (41, 2)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_sporadic_Q(E , l=None,
mini-
mal_mod-
els=True)

Return a list of sporadic l-isogenies from E (l = 11, 17, 19, 37, 43, 67 or 163). Only for elliptic curves over Q.

INPUT:

• E – an elliptic curve defined over Q.

• l – either None or a prime number.

OUTPUT:

(list) If l is None, a list of all isogenies with domain E and of degree 11, 17, 19, 37, 43, 67 or 163; otherwise a list
of isogenies of the given degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which
automatically calls the appropriate function.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓sporadic_Q
sage: E = EllipticCurve(121a1)
sage: isogenies_sporadic_Q(E, 11)
[Isogeny of degree 11
from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 30*x - 76

over Rational Field
to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 305*x + 7888

over Rational Field]
sage: isogenies_sporadic_Q(E, 13)
[]
sage: isogenies_sporadic_Q(E, 17)
[]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 11
from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 30*x - 76

over Rational Field
to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 305*x + 7888

over Rational Field]

(continues on next page)

264 Chapter 16. Isogenies of small prime degree

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve([1, 1, 0, -660, -7600])
sage: isogenies_sporadic_Q(E, 17)
[Isogeny of degree 17
from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x - 7600

over Rational Field
to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 878710*x + 316677750

over Rational Field]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 17
from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x - 7600

over Rational Field
to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 878710*x + 316677750

over Rational Field]
sage: isogenies_sporadic_Q(E, 11)
[]

sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_sporadic_Q(E, 11)
[]
sage: isogenies_sporadic_Q(E, 19)
[Isogeny of degree 19
from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489

over Rational Field]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 19
from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956

over Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489

over Rational Field]

sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: E.conductor()
19600
sage: isogenies_sporadic_Q(E,37)
[Isogeny of degree 37
from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x + 211072

over Rational Field
to Elliptic Curve defined by y^2 = x^3 - x^2 - 163137088*x - 801950801728

over Rational Field]

sage: E = EllipticCurve([1, 1, 0, -25178045, 48616918750])
sage: E.conductor()
148225
sage: isogenies_sporadic_Q(E,37)
[Isogeny of degree 37
from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 25178045*x + 48616918750

over Rational Field
to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 970*x - 13075

over Rational Field]

sage: E = EllipticCurve([-3440, 77658])
sage: E.conductor()
118336
sage: isogenies_sporadic_Q(E,43)
[Isogeny of degree 43

(continues on next page)

265

Elliptic curves, Release 10.4.rc1

(continued from previous page)

from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658
over Rational Field

to Elliptic Curve defined by y^2 = x^3 - 6360560*x - 6174354606
over Rational Field]

sage: E = EllipticCurve([-29480, -1948226])
sage: E.conductor()
287296
sage: isogenies_sporadic_Q(E,67)
[Isogeny of degree 67
from Elliptic Curve defined by y^2 = x^3 - 29480*x - 1948226

over Rational Field
to Elliptic Curve defined by y^2 = x^3 - 132335720*x + 585954296438

over Rational Field]

sage: E = EllipticCurve([-34790720, -78984748304])
sage: E.conductor()
425104
sage: isogenies_sporadic_Q(E,163)
[Isogeny of degree 163
from Elliptic Curve defined by y^2 = x^3 - 34790720*x - 78984748304

over Rational Field
to Elliptic Curve defined by y^2 = x^3 - 924354639680*x + 342062961763303088

over Rational Field]

266 Chapter 16. Isogenies of small prime degree

CHAPTER

SEVENTEEN

MODULAR POLYNOMIALS FOR ELLIPTIC CURVES

For a positive integer ℓ, the classical modular polynomial Φℓ ∈ [𝑋,𝑌] is characterized by the property that its zero set
is exactly the set of pairs of 𝑗-invariants connected by a cyclic ℓ-isogeny.

AUTHORS:

• Lorenz Panny (2023)

sage.schemes.elliptic_curves.mod_poly.classical_modular_polynomial(l, j=None)
Return the classical modular polynomialΦℓ, either as a “generic” bivariate polynomial over , or as an “instantiated”
modular polynomial where one variable has been replaced by the given 𝑗-invariant.

Generic polynomials are cached up to a certain size of ℓ, which significantly accelerates subsequent invocations with
the same ℓ. The default bound is ℓ ≤ 100, which can be adjusted usingclassical_modular_polynomial.
set_cache_bound() with a different value. Beware that modular polynomials are very big objects and the
amount of memory consumed by the cache will grow rapidly when the bound is set to a large value.

INPUT:

• l – positive integer.

• j – either None or a ring element:

– if None is given, the original modular polynomial is returned as an element of [𝑋,𝑌]

– if a ring element 𝑗 ∈ 𝑅 is given, the evaluation Φℓ(𝑗, 𝑌) is returned as an element of the univariate
polynomial ring 𝑅[𝑌]

ALGORITHMS:

• The Kohel database ClassicalModularPolynomialDatabase

• pari:polmodular

EXAMPLES:

sage: classical_modular_polynomial(2)
-X^2*Y^2 + X^3 + 1488*X^2*Y + 1488*X*Y^2 + Y^3 - 162000*X^2 + 40773375*X*Y -␣
→˓162000*Y^2 + 8748000000*X + 8748000000*Y - 157464000000000
sage: j = Mod(1728, 419)
sage: classical_modular_polynomial(3, j)
Y^4 + 230*Y^3 + 84*Y^2 + 118*Y + 329

Increasing the cache size can be useful for repeated invocations:

sage: %timeit classical_modular_polynomial(101) #␣
→˓not tested
6.11 s ± 1.21 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
sage: %timeit classical_modular_polynomial(101, GF(65537).random_element()) #␣

(continues on next page)

267

../../../../../../../html/en/reference/databases/sage/databases/db_modular_polynomials.html#sage.databases.db_modular_polynomials.ClassicalModularPolynomialDatabase
https://pari.math.u-bordeaux.fr/dochtml/help/polmodular

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓not tested
5.43 s ± 2.71 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

sage: classical_modular_polynomial.set_cache_bound(150) #␣
→˓not tested
sage: %timeit classical_modular_polynomial(101) #␣
→˓not tested
The slowest run took 10.35 times longer than the fastest. This could mean that an␣
→˓intermediate result is being cached.
1.84 µs ± 1.84 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
sage: %timeit classical_modular_polynomial(101, GF(65537).random_element()) #␣
→˓not tested
59.8 ms ± 29.4 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

268 Chapter 17. Modular polynomials for elliptic curves

CHAPTER

EIGHTEEN

ELLIPTIC CURVES OVER NUMBER FIELDS

18.1 Elliptic curves over the rational numbers

AUTHORS:

• William Stein (2005): first version

• William Stein (2006-02-26): fixed Lseries_extended which didn’t work because of changes elsewhere in Sage.

• David Harvey (2006-09): Added padic_E2, padic_sigma, padic_height, padic_regulator methods.

• David Harvey (2007-02): reworked padic-height related code

• Christian Wuthrich (2007): added padic sha computation

• David Roe (2007-09): moved sha, l-series and p-adic functionality to separate files.

• John Cremona (2008-01)

• Tobias Nagel and Michael Mardaus (2008-07): added integral_points

• John Cremona (2008-07): further work on integral_points

• Christian Wuthrich (2010-01): moved Galois reps and modular parametrization in a separate file

• Simon Spicer (2013-03): Added code for modular degrees and congruence numbers of higher level

• Simon Spicer (2014-08): Added new analytic rank computation functionality

class sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field(ainvs,
**kwds)

Bases: EllipticCurve_number_field

Elliptic curve over the Rational Field.

INPUT:

• ainvs – a list or tuple [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of Weierstrass coefficients

Note: This class should not be called directly; use sage.constructor.EllipticCurve to construct
elliptic curves.

EXAMPLES:

Construction from Weierstrass coefficients (𝑎-invariants), long form:

269

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1,2,3,4,5]); E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational␣
→˓Field

Construction from Weierstrass coefficients (𝑎-invariants), short form (sets 𝑎1 = 𝑎2 = 𝑎3 = 0):

sage: EllipticCurve([4,5]).ainvs()
(0, 0, 0, 4, 5)

Constructor from a Cremona label:

sage: EllipticCurve(389a1)
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

Constructor from an LMFDB label:

sage: EllipticCurve(462.f3)
Elliptic Curve defined by y^2 + x*y = x^3 - 363*x + 1305 over Rational Field

CPS_height_bound()

Return the Cremona-Prickett-Siksek height bound. This is a floating point number B such that if P is a rational
point on the curve, then ℎ(𝑃) ≤ ℎ̂(𝑃) + 𝐵, where ℎ(𝑃) is the naive logarithmic height of 𝑃 and ℎ̂(𝑃) is
the canonical height.

See also:

silverman_height_bound() for a bound that also works for points over number fields.

EXAMPLES:

sage: E = EllipticCurve("11a")
sage: E.CPS_height_bound()
2.8774743273580445
sage: E = EllipticCurve("5077a")
sage: E.CPS_height_bound()
0.0
sage: E = EllipticCurve([1,2,3,4,1])
sage: E.CPS_height_bound()
Traceback (most recent call last):
...
RuntimeError: curve must be minimal.
sage: F = E.quadratic_twist(-19)
sage: F
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 1376*x - 130 over␣
→˓Rational Field
sage: F.CPS_height_bound()
0.6555158376972852

IMPLEMENTATION:

Call the corresponding mwrank C++ library function. Note that the formula in the [CPS2006] paper is given
for number fields. It is only the implementation in Sage that restricts to the rational field.

Lambda(s, prec)
Return the value of the Lambda-series of the elliptic curve 𝐸 at s, where s can be any complex number.

IMPLEMENTATION:

Fairly slow computation using the definitions implemented in Python.

270 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Uses prec terms of the power series.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: E.Lambda(1.4 + 0.5*I, 50)
-0.354172680517... + 0.874518681720...*I

Np(p)

The number of points on 𝐸 modulo 𝑝.

INPUT:

• p (int) – a prime, not necessarily of good reduction

OUTPUT:

(int) The number ofpoints on the reduction of 𝐸 modulo 𝑝 (including the singular point when 𝑝 is a prime of
bad reduction).

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.Np(2)
5
sage: E.Np(3)
5
sage: E.conductor()
11
sage: E.Np(11)
11

This even works when the prime is large:

sage: E = EllipticCurve(37a)
sage: E.Np(next_prime(10^30))
1000000000000001426441464441649

S_integral_points(S, mw_base='auto', both_signs=False, verbose=False, proof=None)
Compute all S-integral points (up to sign) on this elliptic curve.

INPUT:

• S – list of primes

• mw_base – (default: auto - calls gens()) list of EllipticCurvePoint generating the Mordell-Weil
group of 𝐸

• both_signs – boolean (default: False); if True the output contains both 𝑃 and −𝑃 , otherwise
only one of each pair

• verbose – boolean (default: False); if True, some details of the computation are output

• proof – boolean (default: True); if True ALL S-integral points will be returned. If False, the
MW basis will be computed with the proof=False flag, and also the time-consuming final call to S_in-
tegral_x_coords_with_abs_bounded_by(abs_bound) is omitted. Use this only if the computation takes
too long, but be warned that then it cannot be guaranteed that all S-integral points will be found.

OUTPUT:

A sorted list of all the S-integral points on E (up to sign unless both_signs is True)

18.1. Elliptic curves over the rational numbers 271

Elliptic curves, Release 10.4.rc1

Note: The complexity increases exponentially in the rank of curve E and in the length of S. The computation
time (but not the output!) depends on the Mordell-Weil basis. If mw_base is given but is not a basis for the
Mordell-Weil group (modulo torsion), S-integral points which are not in the subgroup generated by the given
points will almost certainly not be listed.

EXAMPLES:

A curve of rank 3 with no torsion points:

sage: E = EllipticCurve([0,0,1,-7,6])
sage: P1 = E.point((2,0))
sage: P2 = E.point((-1,3))
sage: P3 = E.point((4,6))
sage: a = E.S_integral_points(S=[2,3], mw_base=[P1,P2,P3], verbose=True); a
max_S: 3 len_S: 3 len_tors: 1
lambda 0.485997517468...
k1,k2,k3,k4 7.65200453902598e234 1.31952866480763 3.54035317966420e9 2.
→˓42767548272846e17
p= 2 : trying with p_prec = 30
mw_base_p_log_val = [2, 2, 1]
min_psi = 2 + 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^16 + 2^17␣
→˓+ 2^19 + 2^20 + 2^21 + 2^23 + 2^24 + 2^28 + O(2^30)
p= 3 : trying with p_prec = 30
mw_base_p_log_val = [1, 2, 1]
min_psi = 3 + 3^2 + 2*3^3 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + 2*3^11 + 2*3^12 +␣
→˓2*3^13 + 3^15 + 2*3^16 + 3^18 + 2*3^19 + 2*3^22 + 2*3^23 + 2*3^24 + 2*3^27␣
→˓+ 3^28 + 3^29 + O(3^30)
mw_base [(1 : -1 : 1), (2 : 0 : 1), (0 : -3 : 1)]
mw_base_log [0.667789378224099, 0.552642660712417, 0.818477222895703]
mp [5, 7]
mw_base_p_log [[2^2 + 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^14 + 2^15 + 2^18 + 2^19␣
→˓+ 2^24 + 2^29 + O(2^30), 2^2 + 2^3 + 2^5 + 2^6 + 2^9 + 2^11 + 2^12 + 2^14 +␣
→˓2^15 + 2^16 + 2^18 + 2^20 + 2^22 + 2^23 + 2^26 + 2^27 + 2^29 + O(2^30), 2 +␣
→˓2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^16 + 2^17 + 2^19 + 2^
→˓20 + 2^21 + 2^23 + 2^24 + 2^28 + O(2^30)], [2*3^2 + 2*3^5 + 2*3^6 + 2*3^7 +␣
→˓3^8 + 3^9 + 2*3^10 + 3^12 + 2*3^14 + 3^15 + 3^17 + 2*3^19 + 2*3^23 + 3^25 +␣
→˓3^28 + O(3^30), 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 2*3^7 + 2*3^8 + 3^10␣
→˓+ 2*3^12 + 3^13 + 2*3^14 + 3^15 + 3^18 + 3^22 + 3^25 + 2*3^26 + 3^27 + 3^28␣
→˓+ O(3^30), 3 + 3^2 + 2*3^3 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + 2*3^11 + 2*3^12 +␣
→˓2*3^13 + 3^15 + 2*3^16 + 3^18 + 2*3^19 + 2*3^22 + 2*3^23 + 2*3^24 + 2*3^27␣
→˓+ 3^28 + 3^29 + O(3^30)]]
k5,k6,k7 0.321154513240... 1.55246328915... 0.161999172489...
initial bound 2.8057927340...e117
bound_list [58, 58, 58]
bound_list [8, 9, 9]
bound_list [9, 7, 7]
starting search of points using coefficient bound 9
x-coords of S-integral points via linear combination of mw_base and torsion:
[-3, -26/9, -8159/2916, -2759/1024, -151/64, -1343/576, -2, -7/4, -1, -47/256,
→˓ 0, 1/4, 4/9, 9/16, 58/81, 7/9, 6169/6561, 1, 17/16, 2, 33/16, 172/81, 9/4,␣
→˓25/9, 3, 31/9, 4, 25/4, 1793/256, 8, 625/64, 11, 14, 21, 37, 52, 6142/81,␣
→˓93, 4537/36, 342, 406, 816, 207331217/4096]
starting search of extra S-integer points with absolute value bounded by 3.
→˓89321964979420
x-coords of points with bounded absolute value
[-3, -2, -1, 0, 1, 2]

(continues on next page)

272 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Total number of S-integral points: 43
[(-3 : -1 : 1),
(-26/9 : -55/27 : 1),
(-8159/2916 : -390925/157464 : 1),
(-2759/1024 : -93587/32768 : 1),
(-151/64 : -1845/512 : 1),
(-1343/576 : -50399/13824 : 1),
(-2 : -4 : 1),
(-7/4 : -33/8 : 1),
(-1 : -4 : 1),
(-47/256 : -13287/4096 : 1),
(0 : -3 : 1),
(1/4 : -21/8 : 1),
(4/9 : -62/27 : 1),
(9/16 : -133/64 : 1),
(58/81 : -1288/729 : 1),
(7/9 : -44/27 : 1),
(6169/6561 : -641312/531441 : 1),
(1 : -1 : 1),
(17/16 : -39/64 : 1),
(2 : -1 : 1),
(33/16 : -81/64 : 1),
(172/81 : -1079/729 : 1),
(9/4 : -15/8 : 1),
(25/9 : -91/27 : 1),
(3 : -4 : 1),
(31/9 : -143/27 : 1),
(4 : -7 : 1),
(25/4 : -119/8 : 1),
(1793/256 : -73087/4096 : 1),
(8 : -22 : 1),
(625/64 : -15351/512 : 1),
(11 : -36 : 1),
(14 : -52 : 1),
(21 : -96 : 1),
(37 : -225 : 1),
(52 : -375 : 1),
(6142/81 : -481429/729 : 1),
(93 : -897 : 1),
(4537/36 : -305641/216 : 1),
(342 : -6325 : 1),
(406 : -8181 : 1),
(816 : -23310 : 1),
(207331217/4096 : -2985362435769/262144 : 1)]

It is not necessary to specify mw_base; if it is not provided, then the Mordell-Weil basis must be computed,
which may take much longer.

sage: a = E.S_integral_points([2,3])
sage: len(a)
43

An example with negative discriminant:

sage: EllipticCurve(900d1).S_integral_points([17], both_signs=True)
[(-11 : -27 : 1), (-11 : 27 : 1), (-4 : -34 : 1), (-4 : 34 : 1), (4 : -18 :␣
→˓1),

(continues on next page)

18.1. Elliptic curves over the rational numbers 273

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(4 : 18 : 1), (2636/289 : -98786/4913 : 1), (2636/289 : 98786/4913 : 1),
(16 : -54 : 1), (16 : 54 : 1)]

Output checked with Magma (corrected in 3 cases):

sage: [len(e.S_integral_points([2], both_signs=False)) for e in cremona_
→˓curves([11..100])] # long time (17s on sage.math, 2011)
[2, 0, 2, 3, 3, 1, 3, 1, 3, 5, 3, 5, 4, 1, 1, 2, 2, 2, 3, 1, 2, 1, 0, 1, 3, 3,
→˓ 1, 1, 5, 3, 4, 2, 1, 1, 5, 3, 2, 2, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 1, 3, 7,␣
→˓1, 3, 3, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 3, 1, 1, 1, 0, 1, 3, 3, 1, 1,␣
→˓7, 1, 0, 1, 1, 0, 1, 2, 0, 3, 1, 2, 1, 3, 1, 2, 2, 4, 5, 3, 2, 1, 1, 6, 1,␣
→˓0, 1, 3, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 2, 4, 1, 1, 1, 1, 1, 0, 1, 0,␣
→˓2, 2, 0, 0, 1, 0, 1, 1, 6, 1, 0, 1, 1, 0, 4, 3, 1, 2, 1, 2, 3, 1, 1, 1, 1,␣
→˓8, 3, 1, 2, 1, 2, 0, 8, 2, 0, 6, 2, 3, 1, 1, 1, 3, 1, 3, 2, 1, 3, 1, 2, 1,␣
→˓6, 9, 3, 3, 1, 1, 2, 3, 1, 1, 5, 5, 1, 1, 0, 1, 1, 2, 3, 1, 1, 2, 3, 1, 3,␣
→˓1, 1, 1, 1, 0, 0, 1, 3, 3, 1, 3, 1, 1, 2, 2, 0, 0, 6, 1, 0, 1, 1, 1, 1, 3,␣
→˓1, 2, 6, 3, 1, 2, 2, 1, 1, 1, 1, 7, 5, 4, 3, 3, 1, 1, 1, 1, 1, 1, 8, 5, 1,␣
→˓1, 3, 3, 1, 1, 3, 3, 1, 1, 2, 3, 6, 1, 1, 7, 3, 3, 4, 5, 9, 6, 1, 0, 7, 1,␣
→˓1, 3, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 7, 8, 2, 3, 1, 1, 1, 1, 0, 0,␣
→˓0, 1, 1, 1, 1]

An example from [PZGH1999]:

sage: E = EllipticCurve([0,0,0,-172,505])
sage: E.rank(), len(E.S_integral_points([3,5,7])) # long time (5s on sage.
→˓math, 2011)
(4, 72)

This is curve “7690e1” which failed until Issue #4805 was fixed:

sage: EllipticCurve([1,1,1,-301,-1821]).S_integral_points([13,2])
[(-13 : -4 : 1), (-9 : -12 : 1), (-7 : 2 : 1), (21 : -52 : 1),
(23 : -76 : 1), (63 : -516 : 1), (71 : -620 : 1), (87 : -844 : 1),
(2711 : -142540 : 1), (7323 : -630376 : 1), (17687 : -2361164 : 1)]

• Some parts of this implementation are partially based on the function integral_points()

AUTHORS:

• Tobias Nagel (2008-12)

• Michael Mardaus (2008-12)

• John Cremona (2008-12)

abelian_variety()

Return self as a modular abelian variety.

OUTPUT:

• a modular abelian variety

EXAMPLES:

sage: E = EllipticCurve(11a)
sage: E.abelian_variety()
Abelian variety J0(11) of dimension 1

(continues on next page)

274 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/4805

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(33a)
sage: E.abelian_variety()
Abelian subvariety of dimension 1 of J0(33)

an(n)
The n-th Fourier coefficient of the modular form corresponding to this elliptic curve, where n is a positive
integer.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: [E.an(n) for n in range(20) if n>0]
[1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0]

analytic_rank(algorithm='pari', leading_coefficient=False)
Return an integer that is probably the analytic rank of this elliptic curve.

INPUT:

• algorithm – (default: ‘pari’), String

– pari – use the PARI library function.

– sympow – use Watkins’s program sympow

– rubinstein – use Rubinstein’s L-function C++ program lcalc.

– magma – use MAGMA

– zero_sum – Use the rank bounding zero sum method implemented in ana-
lytic_rank_upper_bound()

– all – compute with PARI, sympow and lcalc, check that the answers agree, and return the
common answer.

• leading_coefficient – (default: False) Boolean; if set to True, return a tuple (𝑟𝑎𝑛𝑘, 𝑙𝑒𝑎𝑑)
where 𝑙𝑒𝑎𝑑 is the value of the first non-zero derivative of the L-function of the elliptic curve. Only
implemented for algorithm= pari .

Note: If the curve is loaded from the large Cremona database, then the modular degree is taken from the
database.

Of the first three algorithms above, probably Rubinstein’s is the most efficient (in some limited testing done).
The zero summethod is oftenmuch faster, but can return a value which is strictly larger than the analytic rank.
For curves with conductor <=10^9 using default parameters, testing indicates that for 99.75% of curves the
returned rank bound is the true rank.

Note: If you use set_verbose(1), extra information about the computation will be printed when
algorithm= zero_sum .

Note: It is an open problem to prove that any particular elliptic curve has analytic rank ≥ 4.

EXAMPLES:

18.1. Elliptic curves over the rational numbers 275

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a)
sage: E.analytic_rank(algorithm= pari)
2
sage: E.analytic_rank(algorithm= rubinstein)
2
sage: E.analytic_rank(algorithm= sympow)
2
sage: E.analytic_rank(algorithm= magma) # optional - magma
2
sage: E.analytic_rank(algorithm= zero_sum)
2
sage: E.analytic_rank(algorithm= all)
2

With the optional parameter leading_coefficient set to True, a tuple of both the analytic rank and the leading
term of the L-series at 𝑠 = 1 is returned. This only works for algorithm== pari :

sage: EllipticCurve([0,-1,1,-10,-20]).analytic_rank(leading_coefficient=True)
(0, 0.25384186085591068...)
sage: EllipticCurve([0,0,1,-1,0]).analytic_rank(leading_coefficient=True)
(1, 0.30599977383405230...)
sage: EllipticCurve([0,1,1,-2,0]).analytic_rank(leading_coefficient=True)
(2, 1.518633000576853...)
sage: EllipticCurve([0,0,1,-7,6]).analytic_rank(leading_coefficient=True)
(3, 10.39109940071580...)
sage: EllipticCurve([0,0,1,-7,36]).analytic_rank(leading_coefficient=True)
(4, 196.170903794579...)

analytic_rank_upper_bound(max_Delta=None, adaptive=True, N=None, root_number='compute',
bad_primes=None, ncpus=None)

Return an upper bound for the analytic rank of self, conditional on the Generalized Riemann Hypothesis,
via computing the zero sum

∑︀
𝛾 𝑓(Δ𝛾), where 𝛾 ranges over the imaginary parts of the zeros of 𝐿(𝐸, 𝑠)

along the critical strip, 𝑓(𝑥) = (sin(𝜋𝑥)/(𝜋𝑥))2, andΔ is the tightness parameter whose maximum value is
specified by max_Delta. This computation can be run on curves with very large conductor (so long as the
conductor is known or quickly computable) whenΔ is not too large (see below). Uses Bober’s rank bounding
method as described in [Bob2013].

INPUT:

• max_Delta – (default: None) If not None, a positive real value specifying the maximum Delta value
used in the zero sum; larger values of Delta yield better bounds - but runtime is exponential in Delta. If
left as None, Delta is set to min{ 1

𝜋 (log(𝑁 + 1000)/2− log(2𝜋)− 𝜂), 2.5}, where 𝑁 is the conductor
of the curve attached to self, and 𝜂 is the Euler-Mascheroni constant = 0.5772...; the crossover point is
at conductor around 8.3 · 108. For the former value, empirical results show that for about 99.7% of all
curves the returned value is the actual analytic rank.

• adaptive – (default: True) boolean

– True – the computation is first runwith small and then successively largerΔ values up tomax_Delta.
If at any point the computed bound is 0 (or 1 when root_number is -1 or True), the computation
halts and that value is returned; otherwise the minimum of the computed bounds is returned.

– False – the computation is run a single time withΔ equal to max_Delta, and the resulting bound
returned.

• N – (default: None) If not None, a positive integer equal to the conductor of self. This is passable so
that rank estimation can be done for curves whose (large) conductor has been precomputed.

• root_number – (default: “compute”) string or integer

276 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

– "compute" – the root number of self is computed and used to (possibly) lower the analytic rank
estimate by 1.

– "ignore" – the above step is omitted

– 1 – this value is assumed to be the root number of self. This is passable so that rank estimation can
be done for curves whose root number has been precomputed.

– -1 – this value is assumed to be the root number of self. This is passable so that rank estimation
can be done for curves whose root number has been precomputed.

• bad_primes – (default: None) If notNone, a list of the primes of bad reduction for the curve attached
to self. This is passable so that rank estimation can be done for curves of large conductor whose bad
primes have been precomputed.

• ncpus – (default: None) If not None, a positive integer defining the maximum number of CPUs to be
used for the computation. If left as None, the maximum available number of CPUs will be used. Note:
Due to parallelization overhead, multiple processors will only be used for Delta values ≥ 1.75.

Note: Output will be incorrect if the incorrect conductor or root number is specified.

Warning: Zero sum computation time is exponential in the tightness parameter Δ, roughly doubling
for every increase of 0.1 thereof. Using Δ = 1 (and adaptive=False) will yield a runtime of a few
milliseconds;Δ = 2 takes a few seconds, andΔ = 3 may take upwards of an hour. Increase beyond this
at your own risk!

OUTPUT:

A non-negative integer greater than or equal to the analytic rank of self.

Note: If you use set_verbose(1), extra information about the computation will be printed.

See also:

LFunctionZeroSum() root_number() set_verbose()

EXAMPLES:

For most elliptic curves with small conductor the central zero(s) of 𝐿𝐸(𝑠) are fairly isolated, so small values
of Δ will yield tight rank estimates.

sage: E = EllipticCurve("11a")
sage: E.rank()
0
sage: E.analytic_rank_upper_bound(max_Delta=1, adaptive=False)
0
sage: E = EllipticCurve([-39,123])
sage: E.rank()
1
sage: E.analytic_rank_upper_bound(max_Delta=1, adaptive=True)
1

This is especially true for elliptic curves with large rank.

18.1. Elliptic curves over the rational numbers 277

../../../../../../../html/en/reference/lfunctions/sage/lfunctions/zero_sums.html#sage.lfunctions.zero_sums.LFunctionZeroSum
../../../../../../../html/en/reference/misc/sage/misc/verbose.html#sage.misc.verbose.set_verbose

Elliptic curves, Release 10.4.rc1

sage: for r in range(9):
....: E = elliptic_curves.rank(r)[0]
....: print((r, E.analytic_rank_upper_bound(max_Delta=1,
....: adaptive=False,
....: root_number="ignore")))
(0, 0)
(1, 1)
(2, 2)
(3, 3)
(4, 4)
(5, 5)
(6, 6)
(7, 7)
(8, 8)

However, some curves have 𝐿-functions with low-lying zeroes, and for these larger values ofΔmust be used
to get tight estimates.

sage: E = EllipticCurve("974b1")
sage: r = E.rank(); r
0
sage: E.analytic_rank_upper_bound(max_Delta=1, root_number="ignore")
1
sage: E.analytic_rank_upper_bound(max_Delta=1.3, root_number="ignore")
0

Knowing the root number of 𝐸 allows us to use smaller Delta values to get tight bounds, thus speeding up
runtime considerably.

sage: E.analytic_rank_upper_bound(max_Delta=0.6, root_number="compute")
0

There are a small number of curves which have pathologically low-lying zeroes. For these curves, this method
will produce a bound that is strictly larger than the analytic rank, unless very large values of Delta are used.
The following curve (“256944c1” in the Cremona tables) is a rank 0 curve with a zero at 0.0256…; the
smallest Delta value for which the zero sum is strictly less than 2 is ~2.815.

sage: E = EllipticCurve([0, -1, 0, -7460362000712, -7842981500851012704])
sage: N, r = E.conductor(), E.analytic_rank(); N, r
(256944, 0)
sage: E.analytic_rank_upper_bound(max_Delta=1, adaptive=False)
2
sage: E.analytic_rank_upper_bound(max_Delta=2, adaptive=False)
2

This method is can be called on curves with large conductor.

sage: E = EllipticCurve([-2934,19238])
sage: E.analytic_rank_upper_bound()
1

And it can bound rank on curves with very large conductor, so long as you know beforehand/can easily
compute the conductor and primes of bad reduction less than 𝑒2𝜋Δ. The example below is of the rank 28
curve discovered by Elkies that is the elliptic curve of (currently) largest known rank.

sage: a4 = -20067762415575526585033208209338542750930230312178956502
sage: a6 =␣

(continues on next page)

278 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓34481611795030556467032985690390720374855944359319180361266008296291939448732243429
sage: E = EllipticCurve([1, -1, 1, a4, a6])
sage: bad_primes = [2, 3, 5, 7, 11, 13, 17, 19, 48463]
sage: N =␣
→˓3455601108357547341532253864901605231198511505793733138900595189472144724781456635380154149870961231592352897621963802238155192936274322687070
sage: E.analytic_rank_upper_bound(max_Delta=2.37, adaptive=False, # long time
....: N=N, root_number=1,
....: bad_primes=bad_primes, ncpus=2)
32

anlist(n, python_ints=False)
The Fourier coefficients up to and including 𝑎𝑛 of the modular form attached to this elliptic curve. The 𝑖-th
element of the return list is a[i].

INPUT:

• n – integer

• python_ints – bool (default: False); if True return a list of Python ints instead of Sage integers

OUTPUT: list of integers

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.anlist(3)
[0, 1, -2, -1]

sage: E = EllipticCurve([0,1])
sage: E.anlist(20)
[0, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 8, 0]

antilogarithm(z, max_denominator=None)
Return the rational point (if any) associated to this complex number; the inverse of the elliptic logarithm
function.

INPUT:

• z – a complex number representing an element of C/𝐿 where 𝐿 is the period lattice of the elliptic curve

• max_denominator – integer (optional); parameter controlling the attempted conversion of real num-
bers to rationals. If not given, simplest_rational() will be used; otherwise, nearby_ratio-
nal() will be used with this value of max_denominator.

OUTPUT:

• point on the curve: the rational point which is the image of 𝑧 under the Weierstrass parametrization, if
it exists and can be determined from 𝑧 and the given value of max_denominator (if any); otherwise a
ValueError exception is raised.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: P = E(-1,1)
sage: z = P.elliptic_logarithm()
sage: E.antilogarithm(z)
(-1 : 1 : 1)
sage: Q = E(0,-1)
sage: z = Q.elliptic_logarithm()

(continues on next page)

18.1. Elliptic curves over the rational numbers 279

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.antilogarithm(z)
Traceback (most recent call last):
...
ValueError: approximated point not on the curve
sage: E.antilogarithm(z, max_denominator=10)
(0 : -1 : 1)

sage: E = EllipticCurve(11a1)
sage: w1,w2 = E.period_lattice().basis()
sage: [E.antilogarithm(a*w1/5,1) for a in range(5)]
[(0 : 1 : 0), (16 : -61 : 1), (5 : -6 : 1), (5 : 5 : 1), (16 : 60 : 1)]

ap(p)

The p-th Fourier coefficient of the modular form corresponding to this elliptic curve, where p is prime.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: [E.ap(p) for p in prime_range(50)]
[-2, -3, -2, -1, -5, -2, 0, 0, 2, 6, -4, -1, -9, 2, -9]

aplist(n, python_ints=False)
The Fourier coefficients 𝑎𝑝 of the modular form attached to this elliptic curve, for all primes 𝑝 ≤ 𝑛.

INPUT:

• n – integer

• python_ints – bool (default: False); if True return a list of Python ints instead of Sage integers

OUTPUT: list of integers

EXAMPLES:

sage: e = EllipticCurve(37a)
sage: e.aplist(1)
[]
sage: e.aplist(2)
[-2]
sage: e.aplist(10)
[-2, -3, -2, -1]
sage: v = e.aplist(13); v
[-2, -3, -2, -1, -5, -2]
sage: type(v[0])
<... sage.rings.integer.Integer >
sage: type(e.aplist(13, python_ints=True)[0])
<... int >

cm_discriminant()

Return the associated quadratic discriminant if this elliptic curve has Complex Multiplication over the al-
gebraic closure.

A ValueError is raised if the curve does not have CM (see the function has_cm()).

EXAMPLES:

sage: E = EllipticCurve(32a1)
sage: E.cm_discriminant()

(continues on next page)

280 Chapter 18. Elliptic curves over number fields

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

(continued from previous page)

-4
sage: E = EllipticCurve(121b1)
sage: E.cm_discriminant()
-11
sage: E = EllipticCurve(37a1)
sage: E.cm_discriminant()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + y = x^3 - x
over Rational Field does not have CM

conductor(algorithm='pari')

Return the conductor of the elliptic curve.

INPUT:

• algorithm – str, (default: “pari”)

– "pari" – use the PARI C-library pari:ellglobalred implementation of Tate’s algorithm

– "mwrank" – use Cremona’s mwrank implementation of Tate’s algorithm; can be faster if the curve
has integer coefficients (TODO: limited to small conductor until mwrank gets integer factorization)

– "gp" – use the GP interpreter

– "generic" – use the general number field implementation

– "all" – use all four implementations, verify that the results are the same (or raise an error), and
output the common value

EXAMPLES:

sage: E = EllipticCurve([1, -1, 1, -29372, -1932937])
sage: E.conductor(algorithm="pari")
3006
sage: E.conductor(algorithm="mwrank")
3006
sage: E.conductor(algorithm="gp")
3006
sage: E.conductor(algorithm="generic")
3006
sage: E.conductor(algorithm="all")
3006

Note: The conductor computed using each algorithm is cached separately. Thus calling E.
conductor(pari), then E.conductor(mwrank) and getting the same result checks that both
systems compute the same answer.

congruence_number(M=1)

The case𝑀 == 1 corresponds to the classical definition of congruence number: Let 𝑋 be the subspace of
𝑆2(Γ0(𝑁)) spanned by the newform associated with this elliptic curve, and 𝑌 be orthogonal complement of
𝑋 under the Petersson inner product. Let 𝑆𝑋 and 𝑆𝑌 be the intersections of 𝑋 and 𝑌 with 𝑆2(Γ0(𝑁),).
The congruence number is defined to be [𝑆𝑋 ⊕ 𝑆𝑌 : 𝑆2(Γ0(𝑁),)]. It measures congruences between 𝑓
and elements of 𝑆2(Γ0(𝑁),) orthogonal to 𝑓 .

The congruence number for higher levels, when M>1, is defined as above, but instead considers 𝑋 to be the
subspace of 𝑆2(Γ0(𝑀𝑁)) spanned by embeddings into 𝑆2(Γ0(𝑀𝑁)) of the newform associated with this

18.1. Elliptic curves over the rational numbers 281

https://pari.math.u-bordeaux.fr/dochtml/help/ellglobalred

Elliptic curves, Release 10.4.rc1

elliptic curve; this subspace has dimension 𝜎0(𝑀), i.e. the number of divisors of𝑀 . Let 𝑌 be the orthogonal
complement in 𝑆2(Γ0(𝑀𝑁)) of 𝑋 under the Petersson inner product, and 𝑆𝑋 and 𝑆𝑌 the intersections of
𝑋 and 𝑌 with 𝑆2(Γ0(𝑀𝑁),) respectively. Then the congruence number at level 𝑀𝑁 is [𝑆𝑋 ⊕ 𝑆𝑌 :
𝑆2(Γ0(𝑀𝑁),)].

INPUT:

• M – non-negative integer; congruence number is computed at level𝑀𝑁 , where 𝑁 is the conductor of
self

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.congruence_number()
2
sage: E.congruence_number()
2
sage: E = EllipticCurve(54b)
sage: E.congruence_number()
6
sage: E.modular_degree()
2
sage: E = EllipticCurve(242a1)
sage: E.modular_degree()
16
sage: E.congruence_number() # long time (4s on sage.math, 2011)
176

Higher level cases:

sage: E = EllipticCurve(11a)
sage: for M in range(1,11): print(E.congruence_number(M)) # long time (20s on␣
→˓2009 MBP)
1
1
3
2
7
45
12
4
18
245

It is a theorem of Ribet that the congruence number (at level 𝑁) is equal to the modular degree in the case
of square free conductor. It is a conjecture of Agashe, Ribet, and Stein that 𝑜𝑟𝑑𝑝(𝑐𝑓/𝑚𝑓) ≤ 𝑜𝑟𝑑𝑝(𝑁)/2.

cremona_label(space=False)
Return the Cremona label associated to (the minimal model) of this curve, if it is known. If not, raise a
LookupError exception.

EXAMPLES:

sage: E = EllipticCurve(389a1)
sage: E.cremona_label()
389a1

The default database only contains conductors up to 10000, so any curve with conductor greater than that will
cause an error to be raised. The optional package database_cremona_ellcurve contains many more
curves.

282 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.conductor()
234446
sage: E.cremona_label() # optional - database_cremona_ellcurve
234446a1

sage: E = EllipticCurve((0, 0, 1, -79, 342))
sage: E.conductor()
19047851
sage: E.cremona_label()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for
Elliptic Curve defined by y^2 + y = x^3 - 79*x + 342 over Rational Field

database_attributes()

Return a dictionary containing information about self in the elliptic curve database.

If there is no elliptic curve isomorphic to self in the database, a LookupError is raised.

EXAMPLES:

sage: E = EllipticCurve((0, 0, 1, -1, 0))
sage: data = E.database_attributes()
sage: data[conductor]
37
sage: data[cremona_label]
37a1

sage: data[rank]
1
sage: data[torsion_order]
1

sage: E = EllipticCurve((8, 13, 21, 34, 55))
sage: E.database_attributes()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve
defined by y^2 + 8*x*y + 21*y = x^3 + 13*x^2 + 34*x + 55 over Rational Field

database_curve()

Return the curve in the elliptic curve database isomorphic to this curve, if possible. Otherwise raise aLooku-
pError exception.

Since Issue #11474, this returns exactly the same curve as minimal_model(); the only difference is the
additional work of checking whether the curve is in the database.

EXAMPLES:

sage: E = EllipticCurve([0,1,2,3,4])
sage: E.database_curve()
Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 5 over Rational Field

Note: The model of the curve in the database can be different from the Weierstrass model for this curve,
e.g., database models are always minimal.

elliptic_exponential(z, embedding=None)

18.1. Elliptic curves over the rational numbers 283

https://docs.python.org/library/exceptions.html#LookupError
https://github.com/sagemath/sage/issues/11474

Elliptic curves, Release 10.4.rc1

Compute the elliptic exponential of a complex number with respect to the elliptic curve.

INPUT:

• z – a complex number

• embedding – ignored (for compatibility with the period_lattice function for elliptic_curve_num-
ber_field)

OUTPUT:

The image of 𝑧 modulo 𝐿 under the Weierstrass parametrization C/𝐿→ 𝐸(C).

Note: The precision is that of the input z, or the default precision of 53 bits if z is exact.

EXAMPLES:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E([1,-2])
sage: z = P.elliptic_logarithm() # default precision is 100 here
sage: E.elliptic_exponential(z)
(1.0000000000000000000000000000 : -2.0000000000000000000000000000 : 1.
→˓0000000000000000000000000000)
sage: z = E([1,-2]).elliptic_logarithm(precision=201)
sage: E.elliptic_exponential(z)
(1.000 : -2.
→˓000 : 1.
→˓000)

sage: E = EllipticCurve(389a)
sage: Q = E([3,5])
sage: E.elliptic_exponential(Q.elliptic_logarithm())
(3.0000000000000000000000000000 : 5.0000000000000000000000000000 : 1.
→˓0000000000000000000000000000)
sage: P = E([-1,1])
sage: P.elliptic_logarithm()
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: E.elliptic_exponential(P.elliptic_logarithm())
(-1.0000000000000000000000000000 : 1.0000000000000000000000000000 : 1.
→˓0000000000000000000000000000)

Some torsion examples:

sage: w1,w2 = E.period_lattice().basis()
sage: E.two_division_polynomial().roots(CC,multiplicities=False)
[-2.0403022002854..., 0.13540924022175..., 0.90489296006371...]
sage: [E.elliptic_exponential((a*w1+b*w2)/2)[0] for a,b in [(0,1),(1,1),(1,
→˓0)]]
[-2.0403022002854..., 0.13540924022175..., 0.90489296006371...]

sage: E.division_polynomial(3).roots(CC,multiplicities=False)
[-2.88288879135...,
1.39292799513...,
0.078313731444316... - 0.492840991709...*I,
0.078313731444316... + 0.492840991709...*I]

sage: [E.elliptic_exponential((a*w1+b*w2)/3)[0] for a,b in [(0,1),(1,0),(1,1),
→˓(2,1)]]

(continues on next page)

284 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[-2.8828887913533..., 1.39292799513138,
0.0783137314443... - 0.492840991709...*I,
0.0783137314443... + 0.492840991709...*I]

Observe that this is a group homomorphism (modulo rounding error):

sage: z = CC.random_element()
sage: v = 2 * E.elliptic_exponential(z)
sage: w = E.elliptic_exponential(2 * z)
sage: def err(a, b):
....: err = abs(a - b)
....: if a + b:
....: err = min(err, err / abs(a + b))
....: return err
sage: err(v[0], w[0]) + err(v[1], w[1]) # abs tol 1e-13
0.0

eval_modular_form(points, order)
Evaluate the modular form of this elliptic curve at points in C.

INPUT:

• points – a list of points in the upper half-plane

• order – a nonnegative integer

The order parameter is the number of terms used in the summation.

OUTPUT: A list of values for 𝑠 in points

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.eval_modular_form([1.5+I,2.0+I,2.5+I],100)
[-0.0018743978548152085...,
0.0018604485340371083...,

-0.0018743978548152085...]

sage: E.eval_modular_form(2.1+I, 100) # abs tol 1e-16
[0.00150864362757267079 + 0.00109100341113449845*I]

faltings_height(stable=False, prec=None)
Return the Faltings height (stable or unstable) of this elliptic curve.

INPUT:

• stable – boolean (default: False); if True, return the stable Faltings height, otherwise the unstable
height

• prec – integer (default: None); bit precision of output; if None, use standard precision (53 bits)

OUTPUT:

(real) the Faltings height of this elliptic curve.

Note: Different authors normalise the Faltings height differently. We use the formula − 1
2 log(𝐴), where 𝐴

is the area of the fundamental period parallelogram; some authors use − 1
2𝜋 log(𝐴) instead.

18.1. Elliptic curves over the rational numbers 285

Elliptic curves, Release 10.4.rc1

The unstable Faltings height does depend on the model. The stable Faltings height is defined to be

1

12
log denom(𝑗)− 1

12
log |Δ| − 1

2
log𝐴,

This is independent of the model. For the minimal model of a semistable elliptic curve, we have denom(𝑗) =
|Δ|, and the stable and unstable heights agree.

EXAMPLES:

sage: E = EllipticCurve(32a1)
sage: E.faltings_height()
-0.617385745351564
sage: E.faltings_height(stable=True)
-1.31053292591151

These differ since the curve is not semistable:

sage: E.is_semistable()
False

If the model is changed, the Faltings height changes but the stable height does not. It is reduced by log(𝑢)
where 𝑢 is the scale factor:

sage: E1 = E.change_weierstrass_model([10,0,0,0])
sage: E1.faltings_height()
-2.91997083834561
sage: E1.faltings_height(stable=True)
-1.31053292591151
sage: E.faltings_height() - log(10.0)
-2.91997083834561

For a semistable curve (that is, one with squarefree conductor), the stable and unstable heights are equal. Here
we also show that one can specify the (bit) precision of the result:

sage: E = EllipticCurve(210a1)
sage: E.is_semistable()
True
sage: E.faltings_height(prec=100)
-0.043427311858075396288912139225
sage: E.faltings_height(stable=True, prec=100)
-0.043427311858075396288912139225

galois_representation()

The compatible family of the Galois representation attached to this elliptic curve.

Given an elliptic curve 𝐸 over Q and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of 𝐸 is a
representation of the absolute Galois group of Q. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a a
representation of 𝐺𝐾 on a free 𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

EXAMPLES:

sage: rho = EllipticCurve(11a1).galois_representation()
sage: rho
Compatible family of Galois representations associated to the
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sage: rho.is_irreducible(7)
True

(continues on next page)

286 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: rho.is_irreducible(5)
False
sage: rho.is_surjective(11)
True
sage: rho.non_surjective()
[5]
sage: rho = EllipticCurve(37a1).galois_representation()
sage: rho.non_surjective()
[]
sage: rho = EllipticCurve(27a1).galois_representation()
sage: rho.is_irreducible(7)
True
sage: rho.non_surjective() # cm-curve
[0]

gens(proof=None, **kwds)
Return generators for the Mordell-Weil group 𝐸(𝑄) modulo torsion.

INPUT:

• proof – bool or None (default None), see proof.elliptic_curve or sage.structure.
proof

• verbose – (default: None), if specified changes the verbosity of mwrank computations

• rank1_search – (default: 10), if the curve has analytic rank 1, try to find a generator by a direct
search up to this logarithmic height. If this fails, the usual mwrank procedure is called.

• algorithm – one of the following:

– mwrank_shell (default) – call mwrank shell command

– mwrank_lib – call mwrank C library

– pari – use ellrank in pari

• only_use_mwrank – bool (default: True) if False, first attempts to use more naive, natively imple-
mented methods

• use_database – bool (default: True) if True, attempts to find curve and gens in the (optional)
database

• descent_second_limit – (default: 12) used in 2-descent

• sat_bound – (default: 1000) bound on primes used in saturation. If the computed bound on the index
of the points found by two-descent in the Mordell-Weil group is greater than this, a warning message
will be displayed.

• pari_effort – (default: 0) parameter used in when the algorithm pari is chosen. It measure of
the effort done to find rational points. Values up to 10 can be chosen, the running times increase roughly
like the cube of the effort value.

OUTPUT:

• generators – list of generators for the Mordell-Weil group modulo torsion

Note: If you call this with proof=False, then you can use the gens_certain() method to find out
afterwards whether the generators were proved.

IMPLEMENTATION: Uses Cremona’s mwrank C++ library or ellrank in pari.

18.1. Elliptic curves over the rational numbers 287

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: E.gens() # random output
[(-1 : 1 : 1), (0 : 0 : 1)]
sage: E.gens(algorithm="pari") # random output
[(5/4 : 5/8 : 1), (0 : 0 : 1)]
sage: E = EllipticCurve([0,2429469980725060,0,275130703388172136833647756388,
→˓0])
sage: len(E.gens(algorithm="pari")) # not tested (takes too long)
14

A non-integral example:

sage: E = EllipticCurve([-3/8,-2/3])
sage: E.gens() # random (up to sign)
[(10/9 : 29/54 : 1)]

A non-minimal example:

sage: E = EllipticCurve(389a1)
sage: E1 = E.change_weierstrass_model([1/20,0,0,0]); E1
Elliptic Curve defined by y^2 + 8000*y = x^3 + 400*x^2 - 320000*x
over Rational Field

sage: E1.gens() # random (if database not used)
[(-400 : 8000 : 1), (0 : -8000 : 1)]
sage: E1.gens(algorithm="pari") #random
[(-400 : 8000 : 1), (0 : -8000 : 1)]

gens_certain()

Return True if the generators have been proven correct.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.gens() # random (up to sign)
[(0 : -1 : 1)]
sage: E.gens_certain()
True

global_integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: F = E.global_integral_model(); F
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: F == EllipticCurve(5077a1)
True

has_cm()

Return whether or not this curve has a CM 𝑗-invariant.

OUTPUT:

True if the 𝑗-invariant of this curve is the 𝑗-invariant of an imaginary quadratic order, otherwise False.

288 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

See also:

cm_discriminant() and has_rational_cm()

Note: Even if𝐸 has CM in this sense (that its 𝑗-invariant is a CM 𝑗-invariant), since the associated negative
discriminant 𝐷 is not a square in Q, the extra endomorphisms will not be defined over Q. See also the
method has_rational_cm() which tests whether𝐸 has extra endomorphisms defined overQ or a given
extension of Q.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.has_cm()
False
sage: E = EllipticCurve(32a1)
sage: E.has_cm()
True
sage: E.j_invariant()
1728

has_good_reduction_outside_S(S=None)
Test if this elliptic curve has good reduction outside S.

INPUT:

• S – list of primes (default: []).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains
non-primes.

This only tests the given model, so should only be applied to minimal models.

EXAMPLES:

sage: EllipticCurve(11a1).has_good_reduction_outside_S([11])
True
sage: EllipticCurve(11a1).has_good_reduction_outside_S([2])
False
sage: EllipticCurve(2310a1).has_good_reduction_outside_S([2,3,5,7])
False
sage: EllipticCurve(2310a1).has_good_reduction_outside_S([2,3,5,7,11])
True

has_rational_cm(field=None)

Return whether or not this curve has CM defined over Q or the given field.

INPUT:

• field – (default: Q) a field, which should be an extension of Q;

OUTPUT:

True if the ring of endomorphisms of this curve over the given field is larger than ; otherwise False. If
field is None the output will always be False. See also cm_discriminant() and has_cm().

Note: If 𝐸 has CM but the discriminant 𝐷 is not a square in the given field 𝐾, which will certainly be the
case for 𝐾 = Q since 𝐷 < 0, then the extra endomorphisms will not be defined over 𝐾, and this function

18.1. Elliptic curves over the rational numbers 289

Elliptic curves, Release 10.4.rc1

will return False. See also has_cm(). To obtain the CM discriminant, use cm_discriminant().

EXAMPLES:

sage: E = EllipticCurve(j=0)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-3

If we extend scalars to a field in which the discriminant is a square, the CM becomes rational:

sage: E.has_rational_cm(QuadraticField(-3)) #␣
→˓needs sage.rings.number_field
True

sage: E = EllipticCurve(j=8000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-8

Again, we may extend scalars to a field in which the discriminant is a square, where the CM becomes rational:

sage: E.has_rational_cm(QuadraticField(-2)) #␣
→˓needs sage.rings.number_field
True

The field need not be a number field provided that it is an extension of Q:

sage: E.has_rational_cm(RR)
False
sage: E.has_rational_cm(CC)
True

An error is raised if a field is given which is not an extension of Q, i.e., not of characteristic 0:

sage: E.has_rational_cm(GF(2))
Traceback (most recent call last):
...
ValueError: Error in has_rational_cm: Finite Field of size 2
is not an extension field of QQ

heegner_discriminants(bound)
Return the list of self’s Heegner discriminants between -1 and -bound.

INPUT:

• bound (int) – upper bound for -discriminant

OUTPUT: The list of Heegner discriminants between -1 and -bound for the given elliptic curve.

EXAMPLES:

290 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E=EllipticCurve(11a)
sage: E.heegner_discriminants(30) # indirect doctest
[-7, -8, -19, -24]

heegner_discriminants_list(n)

Return the list of self’s first 𝑛 Heegner discriminants smaller than -5.

INPUT:

• n (int) – the number of discriminants to compute

OUTPUT: The list of the first n Heegner discriminants smaller than -5 for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve(11a)
sage: E.heegner_discriminants_list(4) # indirect doctest
[-7, -8, -19, -24]

heegner_index(D, min_p=2, prec=5, descent_second_limit=12, verbose_mwrank=False,
check_rank=True)

Return an interval that contains the index of the Heegner point 𝑦𝐾 in the group of𝐾-rational points modulo
torsion on this elliptic curve, computed using the Gross-Zagier formula and/or a point search, or possibly half
the index if the rank is greater than one.

If the curve has rank > 1, then the returned index is infinity.

Note: If min_p is bigger than 2 then the index can be off by any prime less than min_p. This function
returns the index divided by 2 exactly when the rank of 𝐸(𝐾) is greater than 1 and 𝐸(Q)/𝑡𝑜𝑟 ⊕𝐸𝐷(Q)/𝑡𝑜𝑟
has index 2 in 𝐸(𝐾)/𝑡𝑜𝑟, where the second factor undergoes a twist.

INPUT:

• D (int) – Heegner discriminant

• min_p (int) – (default: 2) only rule out primes = min_p dividing the index.

• verbose_mwrank (bool) – (default: False); print lots of mwrank search status information
when computing regulator

• prec (int) – (default: 5), use prec*sqrt(N) + 20 terms of L-series in computations, where N is the
conductor.

• descent_second_limit – (default: 12)- used in 2-descent when computing regulator of the twist

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: an interval that contains the index, or half the index

EXAMPLES:

sage: E = EllipticCurve(11a)
sage: E.heegner_discriminants(50)
[-7, -8, -19, -24, -35, -39, -40, -43]
sage: E.heegner_index(-7)
1.00000?

18.1. Elliptic curves over the rational numbers 291

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37b)
sage: E.heegner_discriminants(100)
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: E.heegner_index(-95) # long time (1 second)
2.00000?

This tests doing direct computation of the Mordell-Weil group.

sage: EllipticCurve(675b).heegner_index(-11)
3.0000?

Currently discriminants -3 and -4 are not supported:

sage: E.heegner_index(-3)
Traceback (most recent call last):
...
ArithmeticError: Discriminant (=-3) must not be -3 or -4.

The curve 681b returns the true index, which is 3:

sage: E = EllipticCurve(681b)
sage: I = E.heegner_index(-8); I
3.0000?

In fact, whenever the returned index has a denominator of 2, the true index is got by multiplying the returned
index by 2. Unfortunately, this is not an if and only if condition, i.e., sometimes the index must be multiplied
by 2 even though the denominator is not 2.

This example demonstrates the descent_second_limit option, which can be used to fine tune the
2-descent used to compute the regulator of the twist:

sage: E = EllipticCurve([1,-1,0,-1228,-16267])
sage: E.heegner_index(-8)
Traceback (most recent call last):
...
RuntimeError: ...

However when we search higher, we find the points we need:

sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False) # long␣
→˓time
2.00000?

Two higher rank examples (of ranks 2 and 3):

sage: E = EllipticCurve(389a)
sage: E.heegner_index(-7)
+Infinity
sage: E = EllipticCurve(5077a)
sage: E.heegner_index(-7)
+Infinity
sage: E.heegner_index(-7, check_rank=False)
0.001?
sage: E.heegner_index(-7, check_rank=False).lower() == 0
True

heegner_index_bound(D=0, prec=5, max_height=None)
Assume self has rank 0.

292 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Return a list 𝑣 of primes such that if an odd prime 𝑝 divides the index of the Heegner point in the group of
rational points modulo torsion, then 𝑝 is in 𝑣.

If 0 is in the interval of the height of the Heegner point computed to the given prec, then this function returns
𝑣 = 0. This does not mean that the Heegner point is torsion, just that it is very likely torsion.

If we obtain no information from a search up to max_height, e.g., if the Siksek et al. bound is bigger than
max_height, then we return 𝑣 = −1.

INPUT:

• D (int) – (default: 0) Heegner discriminant; if 0, use the first discriminant -4 that satisfies the Heegner
hypothesis

• verbose (bool) – (default: True)

• prec (int) – (default: 5), use 𝑝𝑟𝑒𝑐 ·
√︀
(𝑁)+ 20 terms of 𝐿-series in computations, where𝑁 is the

conductor.

• max_height (float) – should be = 21; bound on logarithmic naive height used in point searches.
Make smaller to make this function faster, at the expense of possibly obtaining a worse answer. A good
range is between 13 and 21.

OUTPUT:

• v – list or int (bad primes or 0 or -1)

• D – the discriminant that was used (this is useful if 𝐷 was automatically selected).

• exact – either False, or the exact Heegner index (up to factors of 2)

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.heegner_index_bound()
([2], -7, 2)

heegner_point(D, c=1, f=None, check=True)

Returns the Heegner point on this curve associated to the quadratic imaginary field𝐾 = Q(
√
𝐷).

If the optional parameter 𝑐 is given, returns the higher Heegner point associated to the order of conductor 𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• 𝑓 – binary quadratic form or 3-tuple (𝐴,𝐵,𝐶) of coefficients of 𝐴𝑋2 +𝐵𝑋𝑌 + 𝐶𝑌 2

• check – bool (default: True)

OUTPUT: The Heegner point 𝑦𝑐.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: P = E.heegner_point(-7); P # indirect doctest
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: z = P.point_exact(); z == E(0, 0, 1) or -z == E(0, 0, 1)
True
sage: P.curve()

(continues on next page)

18.1. Elliptic curves over the rational numbers 293

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E.heegner_point(-40).point_exact(); P
(a : -a + 1 : 1)
sage: P = E.heegner_point(-47).point_exact(); P
(a : a^4 + a - 1 : 1)
sage: P[0].parent()
Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1

Working out the details manually:

sage: P = E.heegner_point(-47).numerical_approx(prec=200)
sage: f = algdep(P[0], 5); f
x^5 - x^4 + x^3 + x^2 - 2*x + 1
sage: f.discriminant().factor()
47^2

The Heegner hypothesis is checked:

sage: E = EllipticCurve(389a); P = E.heegner_point(-5,7);
Traceback (most recent call last):
...
ValueError: N (=389) and D (=-5) must satisfy the Heegner hypothesis

We can specify the quadratic form:

sage: P = EllipticCurve(389a).heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 389

sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2

heegner_point_height(D, prec=2, check_rank=True)
Use the Gross-Zagier formula to compute the Neron-Tate canonical height over 𝐾 of the Heegner point
corresponding to 𝐷, as an interval (it is computed to some precision using 𝐿-functions).

If the curve has rank at least 2, then the returned height is the exact Sage integer 0.

INPUT:

• D (int) – fundamental discriminant (=/= -3, -4)

• prec (int) – (default: 2), use 𝑝𝑟𝑒𝑐 ·
√︀
(𝑁)+ 20 terms of 𝐿-series in computations, where𝑁 is the

conductor.

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: Interval that contains the height of the Heegner point.

EXAMPLES:

sage: E = EllipticCurve(11a)
sage: E.heegner_point_height(-7)
0.22227?

Some higher rank examples:

sage: E = EllipticCurve(389a)
sage: E.heegner_point_height(-7)

(continues on next page)

294 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

0
sage: E = EllipticCurve(5077a)
sage: E.heegner_point_height(-7)
0
sage: E.heegner_point_height(-7, check_rank=False)
0.0000?

heegner_sha_an(D, prec=53)

Return the conjectural (analytic) order of Sha for E over the field𝐾 = Q(
√
𝐷).

INPUT:

• 𝐷 – negative integer; the Heegner discriminant

• prec – integer (default: 53); bits of precision to compute analytic order of Sha

OUTPUT:

(floating point number) an approximation to the conjectural order of Sha.

Note: Often you’ll want to do proof.elliptic_curve(False) when using this function, since
often the twisted elliptic curves that come up have enormous conductor, and Sha is nontrivial, which makes
provably finding the Mordell-Weil group using 2-descent difficult.

EXAMPLES:

An example where E has conductor 11:

sage: E = EllipticCurve(11a)
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

The cache works:

sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7) # long time
True

Lower precision:

sage: E.heegner_sha_an(-7,10) # long time
1.0

Checking that the cache works for any precision:

sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10) # long time
True

Next we consider a rank 1 curve with nontrivial Sha over the quadratic imaginary field 𝐾; however, there is
no Sha for 𝐸 over Q or for the quadratic twist of 𝐸:

sage: E = EllipticCurve(37a)
sage: E.heegner_sha_an(-40) # long time
4.00000000000000
sage: E.quadratic_twist(-40).sha().an() # long time
1
sage: E.sha().an() # long time
1

18.1. Elliptic curves over the rational numbers 295

Elliptic curves, Release 10.4.rc1

A rank 2 curve:

sage: E = EllipticCurve(389a) # long time
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

If we remove the hypothesis that 𝐸(𝐾) has rank 1 in Conjecture 2.3 in [GZ1986] page 311, then that con-
jecture is false, as the following example shows:

sage: # long time
sage: E = EllipticCurve(65a)
sage: E.heegner_sha_an(-56)
1.00000000000000
sage: E.torsion_order()
2
sage: E.tamagawa_product()
1
sage: E.quadratic_twist(-56).rank()
2

height(precision=None)
Return the real height of this elliptic curve.

This is used in integral_points().

INPUT:

• precision – desired real precision of the result (default real precision if None)

EXAMPLES:

sage: E = EllipticCurve(5077a1)
sage: E.height()
17.4513334798896
sage: E.height(100)
17.451333479889612702508579399
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.height()
1.38629436111989
sage: E = EllipticCurve([0,0,0,1,0])
sage: E.height()
7.45471994936400

integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: F = E.global_integral_model(); F
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: F == EllipticCurve(5077a1)
True

integral_points(mw_base='auto', both_signs=False, verbose=False)
Compute all integral points (up to sign) on this elliptic curve.

INPUT:

296 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• mw_base – (default: auto - calls gens()) list of EllipticCurvePoint generating the Mordell-Weil
group of 𝐸

• both_signs – boolean (default: False); if True the output contains both 𝑃 and −𝑃 , otherwise
only one of each pair

• verbose – boolean (default: False); if True, some details of the computation are output

OUTPUT: A sorted list of all the integral points on 𝐸 (up to sign unless both_signs is True)

Note: The complexity increases exponentially in the rank of curve 𝐸. The computation time (but not the
output!) depends on the Mordell-Weil basis. If mw_base is given but is not a basis for the Mordell-Weil
group (modulo torsion), integral points which are not in the subgroup generated by the given points will almost
certainly not be listed.

EXAMPLES: A curve of rank 3 with no torsion points:

sage: E = EllipticCurve([0,0,1,-7,6])
sage: P1 = E.point((2,0)); P2 = E.point((-1,3)); P3 = E.point((4,6))
sage: a = E.integral_points([P1,P2,P3]); a
[(-3 : -1 : 1), (-2 : -4 : 1), (-1 : -4 : 1), (0 : -3 : 1),
(1 : -1 : 1), (2 : -1 : 1), (3 : -4 : 1), (4 : -7 : 1),
(8 : -22 : 1), (11 : -36 : 1), (14 : -52 : 1), (21 : -96 : 1),
(37 : -225 : 1), (52 : -375 : 1), (93 : -897 : 1),
(342 : -6325 : 1), (406 : -8181 : 1), (816 : -23310 : 1)]

sage: a = E.integral_points([P1,P2,P3], verbose=True)
Using mw_basis [(2 : 0 : 1), (3 : -4 : 1), (8 : -22 : 1)]
e1,e2,e3: -3.0124303725933... 1.0658205476962... 1.94660982489710
Minimal and maximal eigenvalues of height pairing matrix: 0.637920814585005,2.
→˓31982967525725
x-coords of points on compact component with -3 <=x<= 1
[-3, -2, -1, 0, 1]
x-coords of points on non-compact component with 2 <=x<= 6
[2, 3, 4]
starting search of remaining points using coefficient bound 5 and |x| bound 1.
→˓53897183921009e25
x-coords of extra integral points:
[2, 3, 4, 8, 11, 14, 21, 37, 52, 93, 342, 406, 816]
Total number of integral points: 18

It is not necessary to specify mw_base; if it is not provided, then the Mordell-Weil basis must be computed,
which may take much longer.

sage: E = EllipticCurve([0,0,1,-7,6])
sage: a = E.integral_points(both_signs=True); a
[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1), (-1 : -4 : 1),
(-1 : 3 : 1), (0 : -3 : 1), (0 : 2 : 1), (1 : -1 : 1), (1 : 0 : 1),
(2 : -1 : 1), (2 : 0 : 1), (3 : -4 : 1), (3 : 3 : 1), (4 : -7 : 1),
(4 : 6 : 1), (8 : -22 : 1), (8 : 21 : 1), (11 : -36 : 1), (11 : 35 : 1),
(14 : -52 : 1), (14 : 51 : 1), (21 : -96 : 1), (21 : 95 : 1),
(37 : -225 : 1), (37 : 224 : 1), (52 : -375 : 1), (52 : 374 : 1),
(93 : -897 : 1), (93 : 896 : 1), (342 : -6325 : 1), (342 : 6324 : 1),
(406 : -8181 : 1), (406 : 8180 : 1), (816 : -23310 : 1), (816 : 23309 : 1)]

An example with negative discriminant:

18.1. Elliptic curves over the rational numbers 297

Elliptic curves, Release 10.4.rc1

sage: EllipticCurve(900d1).integral_points()
[(-11 : -27 : 1), (-4 : -34 : 1), (4 : -18 : 1), (16 : -54 : 1)]

Another example with rank 5 and no torsion points:

sage: E = EllipticCurve([-879984,319138704])
sage: P1 = E.point((540,1188)); P2 = E.point((576,1836))
sage: P3 = E.point((468,3132)); P4 = E.point((612,3132))
sage: P5 = E.point((432,4428))
sage: a = E.integral_points([P1,P2,P3,P4,P5]); len(a) # long time (18s on␣
→˓sage.math, 2011)
54

ALGORITHM:

This function uses the algorithm given in [Coh2007I].

AUTHORS:

• Michael Mardaus (2008-07)

• Tobias Nagel (2008-07)

• John Cremona (2008-07)

integral_short_weierstrass_model()

Return a model of the form 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 for this curve with 𝑎, 𝑏 ∈ .

EXAMPLES:

sage: E = EllipticCurve(17a1)
sage: E.integral_short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 - 11*x - 890 over Rational Field

integral_x_coords_in_interval(xmin, xmax)
Return the set of integers 𝑥 with 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 which are 𝑥-coordinates of rational points on this
curve.

INPUT:

• xmin, xmax (integers) – two integers

OUTPUT:

(set) The set of integers 𝑥 with 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 which are 𝑥-coordinates of rational points on the elliptic
curve.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -7, 6])
sage: xset = E.integral_x_coords_in_interval(-100,100)
sage: sorted(xset)
[-3, -2, -1, 0, 1, 2, 3, 4, 8, 11, 14, 21, 37, 52, 93]
sage: xset = E.integral_x_coords_in_interval(-100, 0)
sage: sorted(xset)
[-3, -2, -1, 0]

is_global_integral_model()

Return True iff self is integral at all primes.

EXAMPLES:

298 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1/2, 1/5, 1/5, 1/5, 1/5])
sage: E.is_global_integral_model()
False
sage: Emin=E.global_integral_model()
sage: Emin.is_global_integral_model()
True

is_good(p, check=True)
Return True if p is a prime of good reduction for 𝐸.

INPUT:

• p – a prime

OUTPUT: bool

EXAMPLES:

sage: e = EllipticCurve(11a)
sage: e.is_good(-8)
Traceback (most recent call last):
...
ValueError: p must be prime
sage: e.is_good(-8, check=False)
True

is_integral()

Return True if this elliptic curve has integral coefficients (in Z).

EXAMPLES:

sage: E = EllipticCurve(QQ,[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: E.is_integral()
True
sage: E2=E.change_weierstrass_model(2,0,0,0); E2
Elliptic Curve defined by y^2 = x^3 + 1/16*x + 1/64 over Rational Field
sage: E2.is_integral()
False

is_isogenous(other, proof=True, maxp=200)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve

• proof – (default: True) if False, the function will return True whenever the two curves have the
same conductor and are isogenous modulo 𝑝 for 𝑝 up to maxp; otherwise this test is followed by a
rigorous test (which may be more time-consuming)

• maxp – (default: 200) the maximum prime 𝑝 for which isogeny modulo 𝑝 will be checked

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other.

ALGORITHM:

First the conductors are compared as well as the Traces of Frobenius for good primes up to maxp. If any of
these tests fail, False is returned. If they all pass and proof is False then True is returned, otherwise

18.1. Elliptic curves over the rational numbers 299

Elliptic curves, Release 10.4.rc1

a complete set of curves isogenous to self is computed and other is checked for isomorphism with any
of these,

EXAMPLES:

sage: E1 = EllipticCurve(14a1)
sage: E6 = EllipticCurve(14a6)
sage: E1.is_isogenous(E6)
True
sage: E1.is_isogenous(EllipticCurve(11a1))
False

sage: EllipticCurve(37a1).is_isogenous(EllipticCurve(37b1))
False

sage: E = EllipticCurve([2, 16])
sage: EE = EllipticCurve([87, 45])
sage: E.is_isogenous(EE)
False

is_local_integral_model(*p)
Tests if self is integral at the prime p, or at all the primes if p is a list or tuple of primes.

EXAMPLES:

sage: E = EllipticCurve([1/2, 1/5, 1/5, 1/5, 1/5])
sage: [E.is_local_integral_model(p) for p in (2,3,5)]
[False, True, False]
sage: E.is_local_integral_model(2,3,5)
False
sage: Eint2=E.local_integral_model(2)
sage: Eint2.is_local_integral_model(2)
True

is_minimal()

Return True iff this elliptic curve is a reduced minimal model.

The unique minimal Weierstrass equation for this elliptic curve. This is the model with minimal discriminant
and 𝑎1, 𝑎2, 𝑎3 ∈ {0,±1}.

Todo: This is not very efficient since it just computes the minimal model and compares. A better imple-
mentation using the Kraus conditions would be preferable.

EXAMPLES:

sage: E = EllipticCurve([10,100,1000,10000,1000000])
sage: E.is_minimal()
False
sage: E = E.minimal_model()
sage: E.is_minimal()
True

is_ordinary(p, ell=None)
Return True precisely when the mod-p representation attached to this elliptic curve is ordinary at ell.

INPUT:

300 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• p – a prime

• ell – a prime (default: p)

OUTPUT: bool

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.is_ordinary(37)
True
sage: E = EllipticCurve(32a1)
sage: E.is_ordinary(2)
False
sage: [p for p in prime_range(50) if E.is_ordinary(p)]
[5, 13, 17, 29, 37, 41]

is_p_integral(p)
Return True if this elliptic curve has 𝑝-integral coefficients.

INPUT:

• p – a prime integer

EXAMPLES:

sage: E = EllipticCurve(QQ,[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: E.is_p_integral(2)
True
sage: E2=E.change_weierstrass_model(2,0,0,0); E2
Elliptic Curve defined by y^2 = x^3 + 1/16*x + 1/64 over Rational Field
sage: E2.is_p_integral(2)
False
sage: E2.is_p_integral(3)
True

is_p_minimal(p)
Tests if curve is p-minimal at a given prime p.

INPUT:

• p – a prime

OUTPUT:

• True – if curve is p-minimal

• False – if curve is not p-minimal

EXAMPLES:

sage: E = EllipticCurve(441a2)
sage: E.is_p_minimal(7)
True

sage: E = EllipticCurve([0,0,0,0,(2*5*11)**10])
sage: [E.is_p_minimal(p) for p in prime_range(2,24)]
[False, True, False, True, False, True, True, True, True]

18.1. Elliptic curves over the rational numbers 301

Elliptic curves, Release 10.4.rc1

is_semistable()

Return True iff this elliptic curve is semi-stable at all primes.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.is_semistable()
True
sage: E = EllipticCurve(90a1)
sage: E.is_semistable()
False

is_supersingular(p, ell=None)
Return True precisely when p is a prime of good reduction and the mod-p representation attached to this
elliptic curve is supersingular at ell.

INPUT:

• p – a prime

• ell – a prime (default: p)

OUTPUT: bool

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.is_supersingular(37)
False
sage: E = EllipticCurve(32a1)
sage: E.is_supersingular(2)
False
sage: E.is_supersingular(7)
True
sage: [p for p in prime_range(50) if E.is_supersingular(p)]
[3, 7, 11, 19, 23, 31, 43, 47]

isogenies_prime_degree(l=None)
Return a list of ℓ-isogenies from self, where ℓ is a prime.

INPUT:

• l – either None or a prime or a list of primes

OUTPUT:

(list) ℓ-isogenies for the given ℓ or if ℓ is None, all ℓ-isogenies.

Note: The codomains of the isogenies returned are standard minimal models. This is because the
functions isogenies_prime_degree_genus_0() and isogenies_sporadic_Q() are imple-
mented that way for curves defined over Q.

EXAMPLES:

sage: E = EllipticCurve([45,32])
sage: E.isogenies_prime_degree()
[]
sage: E = EllipticCurve(j = -262537412640768000)
sage: E.isogenies_prime_degree()

(continues on next page)

302 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[Isogeny of degree 163
from Elliptic Curve defined by y^2 + y = x^3 - 2174420*x + 1234136692 over␣

→˓Rational Field
to Elliptic Curve defined by y^2 + y = x^3 - 57772164980*x -␣

→˓5344733777551611 over Rational Field]
sage: E1 = E.quadratic_twist(6584935282)
sage: E1.isogenies_prime_degree()
[Isogeny of degree 163

from Elliptic Curve defined by y^2 = x^3 - 94285835957031797981376080*x +␣
→˓352385311612420041387338054224547830898 over Rational Field

to Elliptic Curve defined by y^2 = x^3 -␣
→˓2505080375542377840567181069520*x -␣
→˓1526091631109553256978090116318797845018020806 over Rational Field]

sage: E = EllipticCurve(14a1)
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational␣
→˓Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over␣
→˓Rational Field]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3

from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational␣
→˓Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field,
Isogeny of degree 3
from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational␣

→˓Field
to Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over␣

→˓Rational Field]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(29)
[]
sage: E.isogenies_prime_degree(4)
Traceback (most recent call last):
...
ValueError: 4 is not prime.

isogeny_class(algorithm='sage', order=None)
Return the Q-isogeny class of this elliptic curve.

INPUT:

• algorithm – string: one of the following:

– “database” – use the Cremona database (only works if curve is isomorphic to a curve in the database)

– “sage” (default) – use the native Sage implementation.

• order – None, string, or list of curves (default: None); If not None then the curves in the class are
reordered after being computed. Note that if the order is None then the resulting order will depend on
the algorithm.

– If order is “database” or “sage”, then the reordering is so that the order of curves matches the
order produced by that algorithm.

18.1. Elliptic curves over the rational numbers 303

Elliptic curves, Release 10.4.rc1

– If order is “lmfdb” then the curves are sorted lexicographically by a-invariants, in the LMFDB
database.

– If order is a list of curves, then the curves in the class are reordered to be isomorphic with the
specified list of curves.

OUTPUT:

An instance of the class sage.schemes.elliptic_curves.isogeny_class.
IsogenyClass_EC_Rational. This object models a list of minimal models (with containment,
index, etc based on isomorphism classes). It also has methods for computing the isogeny matrix and the list
of isogenies between curves in this class.

Note: The curves in the isogeny class will all be standard minimal models.

EXAMPLES:

sage: isocls = EllipticCurve(37b).isogeny_class(order="lmfdb")
sage: isocls
Elliptic curve isogeny class 37b
sage: isocls.curves
(Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field)

sage: isocls.matrix()
[1 3 9]
[3 1 3]
[9 3 1]

sage: isocls = EllipticCurve(37b).isogeny_class(database , order="lmfdb");␣
→˓isocls.curves
(Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field)

This is an example of a curve with a 37-isogeny:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: isocls = E.isogeny_class(); isocls
Isogeny class of Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 8*x +␣
→˓6 over Rational Field
sage: isocls.matrix()
[1 37]
[37 1]
sage: print("\n".join(repr(E) for E in isocls.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 8*x + 6 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 208083*x - 36621194␣
→˓over Rational Field

This curve had numerous 2-isogenies:

304 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: e = EllipticCurve([1,0,0,-39,90])
sage: isocls = e.isogeny_class(); isocls.matrix()
[1 2 4 4 8 8]
[2 1 2 2 4 4]
[4 2 1 4 8 8]
[4 2 4 1 2 2]
[8 4 8 2 1 4]
[8 4 8 2 4 1]

See http://math.harvard.edu/~elkies/nature.html for more interesting examples of isogeny structures.

sage: E = EllipticCurve(j = -262537412640768000)
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 163]
[163 1]
sage: print("\n".join(repr(C) for C in isocls.curves))
Elliptic Curve defined by y^2 + y = x^3 - 2174420*x + 1234136692 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + y = x^3 - 57772164980*x - 5344733777551611␣
→˓over Rational Field

The degrees of isogenies are invariant under twists:

sage: E = EllipticCurve(j = -262537412640768000)
sage: E1 = E.quadratic_twist(6584935282)
sage: isocls = E1.isogeny_class(); isocls.matrix()
[1 163]
[163 1]
sage: E1.conductor()
18433092966712063653330496

sage: E = EllipticCurve(14a1)
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 2 3 3 6 6]
[2 1 6 6 3 3]
[3 6 1 9 2 18]
[3 6 9 1 18 2]
[6 3 2 18 1 9]
[6 3 18 2 9 1]
sage: print("\n".join(repr(C) for C in isocls.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 11*x + 12 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 2731*x - 55146 over Rational␣
→˓Field
sage: isocls2 = isocls.reorder(lmfdb); isocls2.matrix()
[1 2 3 9 18 6]
[2 1 6 18 9 3]
[3 6 1 3 6 2]
[9 18 3 1 2 6]
[18 9 6 2 1 3]
[6 3 2 6 3 1]
sage: print("\n".join(repr(C) for C in isocls2.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 - 2731*x - 55146 over Rational␣

(continues on next page)

18.1. Elliptic curves over the rational numbers 305

http://math.harvard.edu/~elkies/nature.html

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 11*x + 12 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field

sage: E = EllipticCurve(11a1)
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 5 5]
[5 1 25]
[5 25 1]
sage: f = isocls.isogenies()[0][1]; f.kernel_polynomial()
x^2 + x - 29/5

isogeny_degree(other)
Return the minimal degree of an isogeny between self and other.

INPUT:

• other – another elliptic curve

OUTPUT:

The minimal degree of an isogeny from self to other, or 0 if the curves are not isogenous.

EXAMPLES:

sage: E = EllipticCurve([-1056, 13552])
sage: E2 = EllipticCurve([-127776, -18037712])
sage: E.isogeny_degree(E2)
11

sage: E1 = EllipticCurve(14a1)
sage: E2 = EllipticCurve(14a2)
sage: E3 = EllipticCurve(14a3)
sage: E4 = EllipticCurve(14a4)
sage: E5 = EllipticCurve(14a5)
sage: E6 = EllipticCurve(14a6)
sage: E3.isogeny_degree(E1)
3
sage: E3.isogeny_degree(E2)
6
sage: E3.isogeny_degree(E3)
1
sage: E3.isogeny_degree(E4)
9
sage: E3.isogeny_degree(E5)
2
sage: E3.isogeny_degree(E6)
18

sage: E1 = EllipticCurve(30a1)
sage: E2 = EllipticCurve(30a2)
sage: E3 = EllipticCurve(30a3)
sage: E4 = EllipticCurve(30a4)

(continues on next page)

306 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E5 = EllipticCurve(30a5)
sage: E6 = EllipticCurve(30a6)
sage: E7 = EllipticCurve(30a7)
sage: E8 = EllipticCurve(30a8)
sage: E1.isogeny_degree(E1)
1
sage: E1.isogeny_degree(E2)
2
sage: E1.isogeny_degree(E3)
3
sage: E1.isogeny_degree(E4)
4
sage: E1.isogeny_degree(E5)
4
sage: E1.isogeny_degree(E6)
6
sage: E1.isogeny_degree(E7)
12
sage: E1.isogeny_degree(E8)
12

sage: E1 = EllipticCurve(15a1)
sage: E2 = EllipticCurve(15a2)
sage: E3 = EllipticCurve(15a3)
sage: E4 = EllipticCurve(15a4)
sage: E5 = EllipticCurve(15a5)
sage: E6 = EllipticCurve(15a6)
sage: E7 = EllipticCurve(15a7)
sage: E8 = EllipticCurve(15a8)
sage: E1.isogeny_degree(E1)
1
sage: E7.isogeny_degree(E2)
8
sage: E7.isogeny_degree(E3)
2
sage: E7.isogeny_degree(E4)
8
sage: E7.isogeny_degree(E5)
16
sage: E7.isogeny_degree(E6)
16
sage: E7.isogeny_degree(E8)
4

0 is returned when the curves are not isogenous:

sage: A = EllipticCurve(37a1)
sage: B = EllipticCurve(37b1)
sage: A.isogeny_degree(B)
0
sage: A.is_isogenous(B)
False

isogeny_graph(order=None)

Return a graph representing the isogeny class of this elliptic curve, where the vertices are isogenous curves
over Q and the edges are prime degree isogenies.

18.1. Elliptic curves over the rational numbers 307

Elliptic curves, Release 10.4.rc1

Note: The vertices are labeled 1 to 𝑛 rather than 0 to 𝑛− 1 to correspond to LMFDB and Cremona labels.

EXAMPLES:

sage: LL = []
sage: for e in cremona_optimal_curves(range(1, 38)): # long time
....: G = e.isogeny_graph()
....: already = False
....: for H in LL:
....: if G.is_isomorphic(H):
....: already = True
....: break
....: if not already:
....: LL.append(G)
sage: graphs_list.show_graphs(LL) # long time

sage: E = EllipticCurve(195a)
sage: G = E.isogeny_graph()
sage: for v in G: print("{} {}".format(v, G.get_vertex(v)))
1 Elliptic Curve defined by y^2 + x*y = x^3 - 110*x + 435 over Rational Field
2 Elliptic Curve defined by y^2 + x*y = x^3 - 115*x + 392 over Rational Field
3 Elliptic Curve defined by y^2 + x*y = x^3 + 210*x + 2277 over Rational␣
→˓Field
4 Elliptic Curve defined by y^2 + x*y = x^3 - 520*x - 4225 over Rational␣
→˓Field
5 Elliptic Curve defined by y^2 + x*y = x^3 + 605*x - 19750 over Rational␣
→˓Field
6 Elliptic Curve defined by y^2 + x*y = x^3 - 8125*x - 282568 over Rational␣
→˓Field
7 Elliptic Curve defined by y^2 + x*y = x^3 - 7930*x - 296725 over Rational␣
→˓Field
8 Elliptic Curve defined by y^2 + x*y = x^3 - 130000*x - 18051943 over␣
→˓Rational Field
sage: G.plot(edge_labels=True) #␣
→˓needs sage.plot
Graphics object consisting of 23 graphics primitives

kodaira_symbol(p)
Local Kodaira type of the elliptic curve at p.

INPUT:

• p – an integral prime

OUTPUT:

• the Kodaira type of this elliptic curve at p, as a KodairaSymbol

EXAMPLES:

sage: E = EllipticCurve(124a)
sage: E.kodaira_type(2)
IV

kodaira_type(p)
Local Kodaira type of the elliptic curve at p.

INPUT:

308 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• p – an integral prime

OUTPUT:

• the Kodaira type of this elliptic curve at p, as a KodairaSymbol

EXAMPLES:

sage: E = EllipticCurve(124a)
sage: E.kodaira_type(2)
IV

kodaira_type_old(p)

Local Kodaira type of the elliptic curve at p.

INPUT:

• p – an integral prime

OUTPUT:

• the Kodaira type of this elliptic curve at p, as a KodairaSymbol

EXAMPLES:

sage: E = EllipticCurve(124a)
sage: E.kodaira_type_old(2)
IV

kolyvagin_point(D, c=1, check=True)

Return the Kolyvagin point on this curve associated to the quadratic imaginary field 𝐾 = Q(
√
𝐷) and

conductor 𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• check – bool (default: True)

OUTPUT: The Kolyvagin point 𝑃 of conductor 𝑐.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(6.00000000000000 : -15.0000000000000 : 1.00000000000000)
sage: P.index()
6
sage: g = E((0,-1,1)) # a generator
sage: E.regulator() == E.regulator_of_points([g])
True
sage: 6*g
(6 : -15 : 1)

label(space=False)
Return the Cremona label associated to (the minimal model) of this curve, if it is known. If not, raise a
LookupError exception.

EXAMPLES:

18.1. Elliptic curves over the rational numbers 309

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a1)
sage: E.cremona_label()
389a1

The default database only contains conductors up to 10000, so any curve with conductor greater than that will
cause an error to be raised. The optional package database_cremona_ellcurve contains many more
curves.

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.conductor()
234446
sage: E.cremona_label() # optional - database_cremona_ellcurve
234446a1

sage: E = EllipticCurve((0, 0, 1, -79, 342))
sage: E.conductor()
19047851
sage: E.cremona_label()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for
Elliptic Curve defined by y^2 + y = x^3 - 79*x + 342 over Rational Field

lmfdb_page()

Open the LMFDB web page of the elliptic curve in a browser.

See http://www.lmfdb.org

EXAMPLES:

sage: E = EllipticCurve(5077a1)
sage: E.lmfdb_page() # optional -- webbrowser

local_integral_model(p)
Return a model of self which is integral at the prime p.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: E.local_integral_model(2)
Elliptic Curve defined by y^2 + 1/27*y = x^3 - 7/81*x + 2/243 over Rational␣
→˓Field
sage: E.local_integral_model(3)
Elliptic Curve defined by y^2 + 1/8*y = x^3 - 7/16*x + 3/32 over Rational␣
→˓Field
sage: E.local_integral_model(2).local_integral_model(3) == EllipticCurve(
→˓ 5077a1)
True

lseries()

Return the L-series of this elliptic curve.

Further documentation is available for the functions which apply to the L-series.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.lseries()

(continues on next page)

310 Chapter 18. Elliptic curves over number fields

http://www.lmfdb.org

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Complex L-series of the Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

lseries_gross_zagier(A)

Return the Gross-Zagier L-series attached to self and an ideal class 𝐴.

INPUT:

• A – an ideal class in an imaginary quadratic number field𝐾

This L-series𝐿(𝐸,𝐴, 𝑠) is defined as the product of a shifted L-function of the quadratic character associated
to 𝐾 and the Dirichlet series whose 𝑛-th coefficient is the product of the 𝑛-th factor of the L-series of 𝐸
and the number of integral ideal in 𝐴 of norm 𝑛. For any character 𝜒 on the class group of 𝐾, one gets
𝐿𝐾(𝐸,𝜒, 𝑠) =

∑︀
𝐴 𝜒(𝐴)𝐿(𝐸,𝐴, 𝑠) where 𝐴 runs through the class group of𝐾.

For the exact definition see section IV of [GZ1986].

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: K.<a> = QuadraticField(-40)
sage: A = K.class_group().gen(0); A
Fractional ideal class (2, 1/2*a)
sage: L = E.lseries_gross_zagier(A) ; L
Gross Zagier L-series attached to
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
with ideal class Fractional ideal class (2, 1/2*a)

sage: L(1)
0.000000000000000
sage: L.taylor_series(1, 5)
0.000000000000000 - 5.51899839494458*z + 13.6297841350649*z^2 - 16.
→˓2292417817675*z^3 + 7.94788823722712*z^4 + O(z^5)

These should be equal:

sage: L(2) + E.lseries_gross_zagier(A^2)(2)
0.502803417587467
sage: E.lseries()(2) * E.quadratic_twist(-40).lseries()(2)
0.502803417587467

manin_constant()

Return the Manin constant of this elliptic curve.

If 𝜑 : 𝑋0(𝑁) → 𝐸 is the modular parametrization of minimal degree, then the Manin constant 𝑐 is defined
to be the rational number 𝑐 such that 𝜑*(𝜔𝐸) = 𝑐 · 𝜔𝑓 where 𝜔𝐸 is a Néron differential and 𝜔𝑓 = 𝑓(𝑞)𝑑𝑞/𝑞
is the differential on 𝑋0(𝑁) corresponding to the newform 𝑓 attached to the isogeny class of 𝐸.

It is known that the Manin constant is an integer. It is conjectured that in each class there is at least one, more
precisely the so-called strong Weil curve or 𝑋0(𝑁)-optimal curve, that has Manin constant 1.

OUTPUT: An integer.

This function only works if the curve is in the installed Cremona database. Sage includes by default a small
database; for the full database you have to install an optional package.

EXAMPLES:

18.1. Elliptic curves over the rational numbers 311

Elliptic curves, Release 10.4.rc1

sage: EllipticCurve(11a1).manin_constant()
1
sage: EllipticCurve(11a2).manin_constant()
1
sage: EllipticCurve(11a3).manin_constant()
5

Check that it works even if the curve is non-minimal:

sage: EllipticCurve(11a3).change_weierstrass_model([1/35,0,0,0]).manin_
→˓constant()
5

Rather complicated examples (see Issue #12080)

sage: [EllipticCurve(27a%s %i).manin_constant() for i in [1,2,3,4]]
[1, 1, 3, 3]
sage: [EllipticCurve(80b%s %i).manin_constant() for i in [1,2,3,4]]
[1, 2, 1, 2]

matrix_of_frobenius(p, prec=20, check=False, check_hypotheses=True, algorithm='auto')
Returns the matrix of Frobenius on the Monsky Washnitzer cohomology of the short Weierstrass model of
the minimal model of the elliptic curve.

INPUT:

• p – prime (>= 3) for which 𝐸 is good and ordinary

• prec – (relative) 𝑝-adic precision for result (default 20)

• check – boolean (default: False), whether to perform a consistency check. This will slow down the
computation by a constant factor 2. (The consistency check is to verify that its trace is correct to the
specified precision. Otherwise, the trace is used to compute one column from the other one (possibly
after a change of basis).)

• check_hypotheses – boolean, whether to check that this is a curve for which the 𝑝-adic sigma
function makes sense

• algorithm – one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm is
used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better performance
for large 𝑝, but only works when 𝑝 > 6𝑁 (𝑁 = prec). The “auto” option selects “sqrtp” whenever
possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless
of the setting of the “check” flag.

OUTPUT: a matrix of 𝑝-adic number to precision prec

See also the documentation of padic_E2.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.matrix_of_frobenius(7)
[2*7 + 4*7^2 + 5*7^4 + 6*7^5 + 6*7^6 + 7^8 + 4*7^9 + 3*7^10 +␣
→˓2*7^11 + 5*7^12 + 4*7^14 + 7^16 + 2*7^17 + 3*7^18 + 4*7^19 + 3*7^20 + O(7^
→˓21) 2 + 3*7 + 6*7^2 + 7^3 + 3*7^4 + 5*7^5␣
→˓+ 3*7^7 + 7^8 + 3*7^9 + 6*7^13 + 7^14 + 7^16 + 5*7^17 + 4*7^18 + 7^19 + O(7^
→˓20)]
[2*7 + 3*7^2 + 7^3 + 3*7^4 + 6*7^5 + 2*7^6 + 3*7^7 + 5*7^8 + 3*7^9 + 2*7^

(continues on next page)

312 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/12080

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓11 + 6*7^12 + 5*7^13 + 4*7^16 + 4*7^17 + 6*7^18 + 6*7^19 + 4*7^20 + O(7^21)␣
→˓6 + 4*7 + 2*7^2 + 6*7^3 + 7^4 + 6*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 4*7^11 + 7^
→˓12 + 6*7^13 + 2*7^14 + 6*7^15 + 5*7^16 + 4*7^17 + 3*7^18 + 2*7^19 + O(7^20)]
sage: M = E.matrix_of_frobenius(11,prec=3); M
[9*11 + 9*11^3 + O(11^4) 10 + 11 + O(11^3)]
[2*11 + 11^2 + O(11^4) 6 + 11 + 10*11^2 + O(11^3)]
sage: M.det()
11 + O(11^4)
sage: M.trace()
6 + 10*11 + 10*11^2 + O(11^3)
sage: E.ap(11)
-5
sage: E = EllipticCurve(83a1)
sage: E.matrix_of_frobenius(3,6)
[2*3 + 3^5 + O(3^6) 2*3 + 2*3^2 + 2*3^3 +␣
→˓O(3^6)]
[2*3 + 3^2 + 2*3^5 + O(3^6) 2 + 2*3^2 + 2*3^3 + 2*3^4 + 3^5 +␣
→˓O(3^6)]

minimal_model()

Return the unique minimal Weierstrass equation for this elliptic curve.

This is the model with minimal discriminant and 𝑎1, 𝑎2, 𝑎3 ∈ {0,±1}.

EXAMPLES:

sage: E = EllipticCurve([10,100,1000,10000,1000000])
sage: E.minimal_model()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Rational␣
→˓Field

minimal_quadratic_twist()

Determine a quadratic twist with minimal conductor. Return a global minimal model of the twist and the
fundamental discriminant of the quadratic field over which they are isomorphic.

Note: If there is more than one curve with minimal conductor, the one returned is the one with smallest
label (if in the database), or the one with minimal 𝑎-invariant list (otherwise).

Note: For curves with 𝑗-invariant 0 or 1728 the curve returned is the minimal quadratic twist, not necessarily
the minimal twist (which would have conductor 27 or 32 respectively).

EXAMPLES:

sage: E = EllipticCurve(121d1)
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 + y = x^3 - x^2 over Rational Field, -11)
sage: Et, D = EllipticCurve(32a1).minimal_quadratic_twist()
sage: D
1

sage: E = EllipticCurve(11a1)
sage: Et, D = E.quadratic_twist(-24).minimal_quadratic_twist()
sage: E == Et

(continues on next page)

18.1. Elliptic curves over the rational numbers 313

Elliptic curves, Release 10.4.rc1

(continued from previous page)

True
sage: D
-24

sage: E = EllipticCurve([0,0,0,0,1000])
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field, 40)
sage: E = EllipticCurve([0,0,0,1600,0])
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 = x^3 + 4*x over Rational Field, 5)

If the curve has square-free conductor then it is already minimal (see Issue #14060):

sage: E = next(cremona_optimal_curves([2*3*5*7*11]))
sage: (E, 1) == E.minimal_quadratic_twist()
True

An example where the minimal quadratic twist is not the minimal twist (which has conductor 27):

sage: E = EllipticCurve([0,0,0,0,7])
sage: E.j_invariant()
0
sage: E.minimal_quadratic_twist()[0].conductor()
5292

mod5family()

Return the family of all elliptic curves with the same mod-5 representation as self.

EXAMPLES:

sage: E = EllipticCurve(32a1)
sage: E.mod5family()
Elliptic Curve defined by y^2 = x^3 + 4*x
over Fraction Field of Univariate Polynomial Ring in t over Rational Field

modular_degree(algorithm='sympow', M=1)
Return the modular degree at level𝑀𝑁 of this elliptic curve. The case𝑀 == 1 corresponds to the classical
definition of modular degree.

When 𝑀 > 1, the function returns the degree of the map from 𝑋0(𝑀𝑁) → 𝐴, where A is the abelian
variety generated by embeddings of 𝐸 into 𝐽0(𝑀𝑁).

The result is cached. Subsequent calls, even with a different algorithm, just returned the cached result. The
algorithm argument is ignored when𝑀 > 1.

INPUT:

• algorithm – string:

– sympow – (default) use Mark Watkin’s (newer) C program sympow

– magma – requires that MAGMA be installed (also implemented by Mark Watkins)

• M – non-negative integer; the modular degree at level𝑀𝑁 is returned (see above)

Note: On 64-bit computers ec does not work, so Sage uses sympow even if ec is selected on a 64-bit
computer.

314 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/14060

Elliptic curves, Release 10.4.rc1

The correctness of this function when called with algorithm “sympow” is subject to the following three hy-
pothesis:

• Manin’s conjecture: the Manin constant is 1

• Steven’s conjecture: the 𝑋1(𝑁)-optimal quotient is the curve with minimal Faltings height. (This is
proved in most cases.)

• The modular degree fits in a machine double, so it better be less than about 50-some bits. (If you use
sympow this constraint does not apply.)

Moreover for all algorithms, computing a certain value of an 𝐿-function ‘uses a heuristic method that discerns
when the real-number approximation to the modular degree is within epsilon [=0.01 for algorithm=’sympow’]
of the same integer for 3 consecutive trials (which occur maybe every 25000 coefficients or so). Probably it
could just round at some point. For rigour, you would need to bound the tail by assuming (essentially) that all
the 𝑎𝑛 are as large as possible, but in practice they exhibit significant (square root) cancellation. One difficulty
is that it doesn’t do the sum in 1-2-3-4 order; it uses 1-2-4-8–3-6-12-24-9-18- (Euler product style) instead,
and so you have to guess ahead of time at what point to curtail this expansion.’ (Quote from an email of Mark
Watkins.)

Note: If the curve is loaded from the large Cremona database, then the modular degree is taken from the
database.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.modular_degree()
1
sage: E = EllipticCurve(5077a)
sage: E.modular_degree()
1984
sage: factor(1984)
2^6 * 31

sage: EllipticCurve([0, 0, 1, -7, 6]).modular_degree()
1984
sage: EllipticCurve([0, 0, 1, -7, 6]).modular_degree(algorithm= sympow)
1984
sage: EllipticCurve([0, 0, 1, -7, 6]).modular_degree(algorithm= magma) #␣
→˓optional - magma
1984

We compute the modular degree of the curve with rank 4 having smallest (known) conductor:

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: factor(E.conductor()) # conductor is 234446
2 * 117223
sage: factor(E.modular_degree())
2^7 * 2617

Higher level cases:

sage: E = EllipticCurve(11a)
sage: for M in range(1,11): print(E.modular_degree(M=M)) # long time (20s on␣
→˓2009 MBP)

(continues on next page)

18.1. Elliptic curves over the rational numbers 315

Elliptic curves, Release 10.4.rc1

(continued from previous page)

1
1
3
2
7
45
12
16
54
245

modular_form()

Return the cuspidal modular form associated to this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: f = E.modular_form()
sage: f
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + O(q^6)

If you need to see more terms in the 𝑞-expansion:

sage: f.q_expansion(20)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + 4*q^10
- 5*q^11 - 6*q^12 - 2*q^13 + 2*q^14 + 6*q^15 - 4*q^16 - 12*q^18 + O(q^20)

Note: If you just want the 𝑞-expansion, use q_expansion().

modular_parametrization()

Return the modular parametrization of this elliptic curve, which is a map from 𝑋0(𝑁) to self, where 𝑁 is
the conductor of self.

EXAMPLES:

sage: E = EllipticCurve(15a)
sage: phi = E.modular_parametrization(); phi
Modular parameterization
from the upper half plane

to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10
over Rational Field

sage: z = 0.1 + 0.2j
sage: phi(z)
(8.20822465478531 - 13.1562816054682*I : -8.79855099049364 + 69.
→˓4006129342200*I : 1.00000000000000)

This map is actually a map on𝑋0(𝑁), so equivalent representatives in the upper half plane map to the same
point:

sage: phi((-7*z-1)/(15*z+2))
(8.20822465478524 - 13.1562816054681*I : -8.79855099049... + 69.4006129342...
→˓*I : 1.00000000000000)

We can also get a series expansion of this modular parameterization:

316 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a1)
sage: X, Y = E.modular_parametrization().power_series()
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^
→˓7 + 173*q^8 + 251*q^9 + 379*q^10 + 560*q^11 + 824*q^12 + 1199*q^13 + 1773*q^
→˓14 + 2548*q^15 + 3722*q^16 + 5374*q^17 + O(q^18)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 -␣
→˓528*q^6 - 861*q^7 - 1383*q^8 - 2218*q^9 - 3472*q^10 - 5451*q^11 - 8447*q^12␣
→˓- 13020*q^13 - 19923*q^14 - 30403*q^15 - 46003*q^16 + O(q^17)

The following should give 0, but only approximately:

sage: q = X.parent().gen()
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True

modular_symbol(sign=1, normalize=None, implementation='eclib', nap=0)
Return the modular symbol map associated to this elliptic curve with given sign.

INPUT:

• sign – +1 (default) or -1.

• normalize – (default: None); either ‘L_ratio’, ‘period’, or ‘none’; ignored unless implementa-
tion is ‘sage’. For ‘L_ratio’, the modular symbol tries to normalize correctly as explained below by
comparing it to L_ratio for the curve and some small twists. The normalization ‘period’ uses the
integral_period_map for modular symbols which is known to be equal to the desired normaliza-
tion, up to the sign and a possible power of 2. With normalization ‘none’, the modular symbol is almost
certainly not correctly normalized, i.e. all values will be a fixed scalar multiple of what they should be.

• implementation – either ‘eclib’ (default), ‘sage’ or ‘num’. Here, ‘eclib’ uses Cremona’s C++ imple-
mentation in the eclib library, ‘sage’ uses an implementation within Sage which is often quite a bit
slower, and ‘num’ uses Wuthrich’s implementation of numerical modular symbols.

• nap – (int, default 0); ignored unless implementation is ‘eclib’. The number of ap of E to use in deter-
mining the normalisation of the modular symbols. If 0 (the default), then the value of 100*E.conduc-
tor().isqrt() is used. Using too small a value can lead to incorrect normalisation.

DEFINITION:

The modular symbol map sends any rational number 𝑟 to the rational number whichis the ratio of the real or
imaginary part (depending on the sign) of the integral of 2𝜋𝑖𝑓(𝑧)𝑑𝑧 from ∞ to 𝑟, where 𝑓 is the newform
attached to 𝐸, to the real or imaginary period of 𝐸.

More precisely: If the sign is +1, then the value returned is the quotient of the real part of this integral
by the least positive period Ω+

𝐸 of 𝐸. In particular for 𝑟 = 0, the value is equal to 𝐿(𝐸, 1)/Ω+
𝐸 (unlike

in L_ratio of lseries(), where the value is also divided by the number of connected components
of 𝐸(R)). In particular the modular symbol depends on 𝐸 and not only the isogeny class of 𝐸. For sign
−1, it is the quotient of the imaginary part of the integral divided by the purely imaginary period of 𝐸 with
smallest positive imaginary part. Note however there is an issue about these normalizations, hence the optional
argument normalize explained below

ALGORITHM:

For the implementations ‘sage’ and ‘eclib’, the used algorithm starts by finding the space of modular symbols
within the full space of all modular symbols of that level. This initial step will take a very long time if the
conductor is large (e.g. minutes for five digit conductors). Once the space is determined, each evaluation is
very fast (logarithmic in the denominator of 𝑟).

18.1. Elliptic curves over the rational numbers 317

Elliptic curves, Release 10.4.rc1

The implementation ‘num’ uses a different algorithm. It uses numerical integration along paths in the upper
half plane. The bounds are rigorously proved so that the outcome is known to be correct. The initial step costs
no time, instead each evaluation will takemore time than in the above. More information in the documentation
of the class ModularSymbolNumerical.

See also:

modular_symbol_numerical()

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: M = E.modular_symbol(); M
Modular symbol with sign 1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: M(1/2)
0
sage: M(1/5)
1

sage: E = EllipticCurve(121b1)
sage: M = E.modular_symbol(implementation="sage")
Warning : Could not normalize the modular symbols, maybe all further results
will be multiplied by -1 and a power of 2
sage: M(1/7)
-1/2

With the numerical version, rather high conductors can be computed:

sage: E = EllipticCurve([999,997])
sage: E.conductor()
16059400956
sage: m = E.modular_symbol(implementation="num")
sage: m(0) # long time
16

Different curves in an isogeny class have modular symbols which differ by a nonzero rational factor:

sage: E1 = EllipticCurve(11a1)
sage: M1 = E1.modular_symbol()
sage: M1(0)
1/5
sage: E2 = EllipticCurve(11a2)
sage: M2 = E2.modular_symbol()
sage: M2(0)
1
sage: E3 = EllipticCurve(11a3)
sage: M3 = E3.modular_symbol()
sage: M3(0)
1/25
sage: all(5*M1(r)==M2(r)==25*M3(r) for r in QQ.range_by_height(10))
True

With the default implementation using eclib, the symbols are correctly normalized automatically. With the
Sage implementation we can choose to normalize using the L-ratio, unless that is 0 (for curves of positive
rank) or using periods. Here is an example where the symbol is already normalized:

318 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a2)
sage: E.modular_symbol(implementation = eclib)(0)
1
sage: E.modular_symbol(implementation = sage , normalize= L_ratio)(0)
1
sage: E.modular_symbol(implementation = sage , normalize= none)(0)
1
sage: E.modular_symbol(implementation = sage , normalize= period)(0)
1

Here is an example where both normalization methods work, while the non-normalized symbol is incorrect:

sage: E = EllipticCurve(11a3)
sage: E.modular_symbol(implementation = eclib)(0)
1/25
sage: E.modular_symbol(implementation = sage , normalize= none)(0)
1
sage: E.modular_symbol(implementation = sage , normalize= L_ratio)(0)
1/25
sage: E.modular_symbol(implementation = sage , normalize= period)(0)
1/25

Since Issue #10256, the interface for negative modular symbols in eclib is available:

sage: E = EllipticCurve(11a1)
sage: Mplus = E.modular_symbol(+1); Mplus
Modular symbol with sign 1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sage: [Mplus(1/i) for i in [1..11]]
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
sage: Mminus = E.modular_symbol(-1); Mminus
Modular symbol with sign -1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sage: [Mminus(1/i) for i in [1..11]]
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]

With older version of eclib, in the default ‘eclib’ implementation, if nap is too small, the normalization may
be computed incorrectly (see Issue #31317). This was fixed in eclib version v20210310, since now eclib
increase nap automatically. The following used to give incorrect results. See Issue #31443:

sage: E = EllipticCurve(1590g1)
sage: m = E.modular_symbol(nap=300) # long time
sage: [m(a/5) for a in [1..4]] # long time
[13/2, -13/2, -13/2, 13/2]

These values are correct, as verified by the numerical implementation:

sage: m = E.modular_symbol(implementation= num)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

modular_symbol_numerical(sign=1, prec=20)
Return the modular symbol as a numerical function.

Just as in modular_symbol() this returns a function that maps any rational 𝑟 to a real number that should
be equal to the rational number with an error smaller than the given binary precision. In practice the precision
is often much higher. See the examples below. The normalisation is the same.

18.1. Elliptic curves over the rational numbers 319

https://github.com/sagemath/sage/issues/10256
https://github.com/sagemath/sage/issues/31317
https://github.com/sagemath/sage/issues/31443

Elliptic curves, Release 10.4.rc1

INPUT:

• sign – either +1 (default) or -1

• prec – an integer (default 20)

OUTPUT:

• a real number

ALGORITHM:

This method does not compute spaces of modular symbols, so it is suitable for curves of larger conductor than
can be handled bymodular_symbol(). It is essentially the same implementation asmodular_symbol
with implementation set to ‘num’. However the precision is not automatically chosen to be certain that the
output is equal to the rational number it approximates.

For large conductors one should set the prec very small.

EXAMPLES:

sage: E = EllipticCurve(19a1)
sage: f = E.modular_symbol_numerical(1)
sage: g = E.modular_symbol(1)
sage: f(0), g(0) # abs tol 1e-11
(0.333333333333333, 1/3)

sage: E = EllipticCurve(5077a1)
sage: f = E.modular_symbol_numerical(-1, prec=2)
sage: f(0) # abs tol 1e-11
0.000000000000000
sage: f(1/7) # abs tol 1e-11
0.999844176260303

sage: E = EllipticCurve([123,456])
sage: E.conductor()
104461920
sage: f = E.modular_symbol_numerical(prec=2)
sage: f(0) # abs tol 1e-11
2.00001004772210

modular_symbol_space(sign=1, base_ring=Rational Field, bound=None)
Return the space of cuspidal modular symbols associated to this elliptic curve, with given sign and base ring.

INPUT:

• sign – 0, -1, or 1

• base_ring – a ring

EXAMPLES:

sage: f = EllipticCurve(37b)
sage: f.modular_symbol_space()
Modular Symbols subspace of dimension 1 of Modular Symbols space
of dimension 3 for Gamma_0(37) of weight 2 with sign 1 over Rational Field

sage: f.modular_symbol_space(-1)
Modular Symbols subspace of dimension 1 of Modular Symbols space
of dimension 2 for Gamma_0(37) of weight 2 with sign -1 over Rational Field

sage: f.modular_symbol_space(0, bound=3)
Modular Symbols subspace of dimension 2 of Modular Symbols space
of dimension 5 for Gamma_0(37) of weight 2 with sign 0 over Rational Field

320 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Note: If you just want the 𝑞-expansion, use q_expansion().

mwrank(options='')
Run Cremona’s mwrank program on this elliptic curve and return the result as a string.

INPUT:

• options (string) – run-time options passed when starting mwrank. The format is as follows (see below
for examples of usage):

– -v n (verbosity level) sets verbosity to n (default=1)

– -o (PARI/GP style output flag) turns ON extra PARI/GP short output (default is OFF)

– -p n (precision) sets precision to 𝑛 decimals (default=15)

– -b n (quartic bound) bound on quartic point search (default=10)

– -x n (n_aux) number of aux primes used for sieving (default=6)

– -l (generator list flag) turns ON listing of points (default ON unless v=0)

– -s (selmer_only flag) if set, computes Selmer rank only (default: not set)

– -d (skip_2nd_descent flag) if set, skips the second descent for curves with 2-torsion (default: not
set)

– -S n (sat_bd) upper bound on saturation primes (default=100, -1 for automatic)

OUTPUT:

• (string) – output of mwrank on this curve

Note: The output is a raw string and completely illegible using automatic display, so it is recommended to
use print for legible output.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.mwrank() #random
...
sage: print(E.mwrank())
Curve [0,0,1,-1,0] : Basic pair: I=48, J=-432
disc=255744
...
Generator 1 is [0:-1:1]; height 0.05111...

Regulator = 0.05111...

The rank and full Mordell-Weil basis have been determined unconditionally.
...

Options to mwrank can be passed:

sage: E = EllipticCurve([0,0,0,877,0])

Run mwrank with verbose flag set to 0 but list generators if found:

18.1. Elliptic curves over the rational numbers 321

Elliptic curves, Release 10.4.rc1

sage: print(E.mwrank(-v0 -l))
Curve [0,0,0,877,0] : 0 <= rank <= 1
Regulator = 1

Run mwrank again, this time with a higher bound for point searching on homogeneous spaces:

sage: print(E.mwrank(-v0 -l -b11))
Curve [0,0,0,877,0] : Rank = 1
Generator 1 is␣
→˓[29604565304828237474403861024284371796799791624792913256602210:-
→˓256256267988926809388776834045513089648669153204356603464786949:490078023219787588959802933995928925096061616470779979261000];
→˓ height 95.98037...
Regulator = 95.98037...

mwrank_curve(verbose=False)
Construct an mwrank_EllipticCurve from this elliptic curve

The resulting mwrank_EllipticCurve has available methods from John Cremona’s eclib library.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: EE = E.mwrank_curve()
sage: EE
y^2 + y = x^3 - x^2 - 10 x - 20
sage: type(EE)
<class sage.libs.eclib.interface.mwrank_EllipticCurve >
sage: EE.isogeny_class()
([[0, -1, 1, -10, -20], [0, -1, 1, -7820, -263580], [0, -1, 1, 0, 0]],
[[0, 5, 5], [5, 0, 0], [5, 0, 0]])

newform()

Same as self.modular_form().

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.newform()
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + O(q^6)
sage: E.newform() == E.modular_form()
True

ngens(proof=None)
Return the number of generators of this elliptic curve.

Note: See gens() for further documentation. The function ngens() calls gens() if not already done,
but only with default parameters. Better results may be obtained by calling mwrank() with carefully chosen
parameters.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.ngens()
1

sage: E = EllipticCurve([0,0,0,877,0])

(continues on next page)

322 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.ngens()
1

sage: print(E.mwrank(-v0 -b12 -l))
Curve [0,0,0,877,0] : Rank = 1
Generator 1 is␣
→˓[29604565304828237474403861024284371796799791624792913256602210:-
→˓256256267988926809388776834045513089648669153204356603464786949:490078023219787588959802933995928925096061616470779979261000];
→˓ height 95.98037...
Regulator = 95.980...

optimal_curve()

Given an elliptic curve that is in the installed Cremona database, return the optimal curve isogenous to it.

EXAMPLES:

The following curve is not optimal:

sage: E = EllipticCurve(11a2); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational␣
→˓Field
sage: E.optimal_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.optimal_curve().cremona_label()
11a1

Note that 990h is the special case where the optimal curve isn’t the first in the Cremona labeling:

sage: E = EllipticCurve(990h4); E
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 6112*x - 41533 over␣
→˓Rational Field
sage: F = E.optimal_curve(); F
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1568*x - 4669 over␣
→˓Rational Field
sage: F.cremona_label()
990h3

sage: EllipticCurve(990a1).optimal_curve().cremona_label() # a isn t h.
990a1

If the input curve is optimal, this function returns that curve (not just a copy of it or a curve isomorphic to
it!):

sage: E = EllipticCurve(37a1)
sage: E.optimal_curve() is E
True

Also, if this curve is optimal but not given by a minimal model, this curve will still be returned, so this function
need not return a minimal model in general.

sage: F = E.short_weierstrass_model(); F
Elliptic Curve defined by y^2 = x^3 - 16*x + 16 over Rational Field
sage: F.optimal_curve()
Elliptic Curve defined by y^2 = x^3 - 16*x + 16 over Rational Field

ordinary_primes(B)
Return a list of all ordinary primes for this elliptic curve up to and possibly including B.

EXAMPLES:

18.1. Elliptic curves over the rational numbers 323

Elliptic curves, Release 10.4.rc1

sage: e = EllipticCurve(11a)
sage: e.aplist(20)
[-2, -1, 1, -2, 1, 4, -2, 0]
sage: e.ordinary_primes(97)
[3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,␣
→˓89, 97]
sage: e = EllipticCurve(49a)
sage: e.aplist(20)
[1, 0, 0, 0, 4, 0, 0, 0]
sage: e.supersingular_primes(97)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97]
sage: e.ordinary_primes(97)
[2, 11, 23, 29, 37, 43, 53, 67, 71, 79]
sage: e.ordinary_primes(3)
[2]
sage: e.ordinary_primes(2)
[2]
sage: e.ordinary_primes(1)
[]

padic_E2(p, prec=20, check=False, check_hypotheses=True, algorithm='auto')
Returns the value of the 𝑝-adic modular form 𝐸2 for (𝐸,𝜔) where 𝜔 is the usual invariant differential
𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

INPUT:

• p – prime (= 5) for which 𝐸 is good and ordinary

• prec – (relative) p-adic precision (= 1) for result

• check – boolean, whether to perform a consistency check. This will slow down the computation
by a constant factor 2. (The consistency check is to compute the whole matrix of frobenius on
Monsky-Washnitzer cohomology, and verify that its trace is correct to the specified precision. Oth-
erwise, the trace is used to compute one column from the other one (possibly after a change of basis).)

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic sigma
function makes sense

• algorithm – one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm is
used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better performance
for large 𝑝, but only works when 𝑝 > 6𝑁 (𝑁 = prec). The “auto” option selects “sqrtp” whenever
possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless
of the setting of the “check” flag.

OUTPUT: p-adic number to precision prec

Note: If the discriminant of the curve has nonzero valuation at p, then the result will not be returned mod
𝑝prec, but it still will have prec digits of precision.

Todo: Once we have a better implementation of the “standard” algorithm, the algorithm selection strategy
for “auto” needs to be revisited.

AUTHORS:

324 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• David Harvey (2006-09-01): partly based on code written by Robert Bradshaw at the MSRI 2006 mod-
ular forms workshop

ACKNOWLEDGMENT: - discussion with Eyal Goren that led to the trace trick.

EXAMPLES: Here is the example discussed in the paper “Computation of p-adic Heights and Log Con-
vergence” (Mazur, Stein, Tate) [MST2006]:

sage: EllipticCurve([-1, 1/4]).padic_E2(5)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^
→˓12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + O(5^20)

Let’s try to higher precision (this is the same answer the MAGMA implementation gives):

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 100)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^
→˓12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 +␣
→˓4*5^22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + 2*5^30 + 5^31 + 4*5^
→˓33 + 3*5^34 + 4*5^35 + 5^36 + 4*5^37 + 4*5^38 + 3*5^39 + 4*5^41 + 2*5^42 +␣
→˓3*5^43 + 2*5^44 + 2*5^48 + 3*5^49 + 4*5^50 + 2*5^51 + 5^52 + 4*5^53 + 4*5^
→˓54 + 3*5^55 + 2*5^56 + 3*5^57 + 4*5^58 + 4*5^59 + 5^60 + 3*5^61 + 5^62 +␣
→˓4*5^63 + 5^65 + 3*5^66 + 2*5^67 + 5^69 + 2*5^70 + 3*5^71 + 3*5^72 + 5^74 +␣
→˓5^75 + 5^76 + 3*5^77 + 4*5^78 + 4*5^79 + 2*5^80 + 3*5^81 + 5^82 + 5^83 +␣
→˓4*5^84 + 3*5^85 + 2*5^86 + 3*5^87 + 5^88 + 2*5^89 + 4*5^90 + 4*5^92 + 3*5^
→˓93 + 4*5^94 + 3*5^95 + 2*5^96 + 4*5^97 + 4*5^98 + 2*5^99 + O(5^100)

Check it works at low precision too:

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 2)
2 + 4*5 + O(5^2)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 3)
2 + 4*5 + O(5^3)

TODO: With the old(-er), i.e., = sage-2.4 p-adics we got 5 + 𝑂(52) as output, i.e., relative precision 1, but
with the newer p-adics we get relative precision 0 and absolute precision 1.

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_E2(5, 1)
O(5)

Check it works for different models of the same curve (37a), even when the discriminant changes by a power
of p (note that E2 depends on the differential too, which is why it gets scaled in some of the examples below):

sage: X1 = EllipticCurve([-1, 1/4])
sage: X1.j_invariant(), X1.discriminant()
(110592/37, 37)

sage: X1.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X2 = EllipticCurve([0, 0, 1, -1, 0])
sage: X2.j_invariant(), X2.discriminant()
(110592/37, 37)

sage: X2.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

18.1. Elliptic curves over the rational numbers 325

Elliptic curves, Release 10.4.rc1

sage: X3 = EllipticCurve([-1*(2**4), 1/4*(2**6)])
sage: X3.j_invariant(), X3.discriminant() / 2**12
(110592/37, 37)

sage: 2**(-2) * X3.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X4 = EllipticCurve([-1*(7**4), 1/4*(7**6)])
sage: X4.j_invariant(), X4.discriminant() / 7**12
(110592/37, 37)

sage: 7**(-2) * X4.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X5 = EllipticCurve([-1*(5**4), 1/4*(5**6)])
sage: X5.j_invariant(), X5.discriminant() / 5**12
(110592/37, 37)

sage: 5**(-2) * X5.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X6 = EllipticCurve([-1/(5**4), 1/4/(5**6)])
sage: X6.j_invariant(), X6.discriminant() * 5**12
(110592/37, 37)

sage: 5**2 * X6.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

Test check=True vs check=False:

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1, check=False)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1, check=True)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 30, check=False)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^
→˓12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 +␣
→˓4*5^22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + O(5^30)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 30, check=True)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^
→˓12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 +␣
→˓4*5^22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + O(5^30)

Here’s one using the 𝑝1/2 algorithm:

sage: EllipticCurve([-1, 1/4]).padic_E2(3001, 3, algorithm="sqrtp")
1907 + 2819*3001 + 1124*3001^2 + O(3001^3)

padic_height(p, prec=20, sigma=None, check_hypotheses=True)
Compute the cyclotomic 𝑝-adic height.

The equation of the curve must be integral and minimal at 𝑝.

INPUT:

• p – prime >= 5 for which the curve has semi-stable reduction

• prec – integer >= 1 (default 20), desired precision of result

• sigma – precomputed value of sigma. If not supplied, this function will call padic_sigma to compute
it.

326 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height
makes sense

OUTPUT: A function that accepts two parameters:

• a Q-rational point on the curve whose height should be computed

• optional boolean flag ‘check’: if False, it skips some input checking, and returns the p-adic height of that
point to the desired precision.

• The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the
literature) is chosen in such a way as to make the 𝑝-adic Birch Swinnerton-Dyer conjecture hold as stated
in [MTT1986].

AUTHORS:

• Jennifer Balakrishnan: original code developed at the 2006 MSRI graduate workshop on modular forms

• David Harvey (2006-09-13): integrated into Sage, optimised to speed up repeated evaluations of the
returned height function, addressed some thorny precision questions

• David Harvey (2006-09-30): rewrote to use division polynomials for computing denominator of 𝑛𝑃 .

• David Harvey (2007-02): cleaned up according to algorithms in “Efficient Computation of p-adic
Heights”

• Chris Wuthrich (2007-05): added supersingular and multiplicative heights

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h = E.padic_height(5, 10)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

sage: h = E.padic_height(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 +␣
→˓35*53^7 + 30*53^8 + 17*53^9 + O(53^10)

Boundary case:

sage: E.padic_height(5, 3)(P)
5 + 5^2 + O(5^3)

A case that works the division polynomial code a little harder:

sage: E.padic_height(5, 10)(5*P)
5^3 + 5^4 + 5^5 + 3*5^8 + 4*5^9 + O(5^10)

Check that answers agree over a range of precisions:

sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_height(5, max_prec)(P) # long time
sage: for prec in range(1, max_prec): # long time
....: assert E.padic_height(5, prec)(P) == full

A supersingular prime for a curve:

18.1. Elliptic curves over the rational numbers 327

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37a)
sage: E.is_supersingular(3)
True
sage: h = E.padic_height(3, 5)
sage: h(E.gens()[0])
(3 + 3^3 + O(3^6), 2*3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + O(3^7))
sage: E.padic_regulator(5)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14␣
→˓+ 5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)
sage: E.padic_regulator(3, 5)
(3 + 2*3^2 + 3^3 + O(3^4), 3^2 + 2*3^3 + 3^4 + O(3^5))

A torsion point in both the good and supersingular cases:

sage: E = EllipticCurve(11a)
sage: P = E.torsion_subgroup().gen(0).element(); P
(5 : 5 : 1)
sage: h = E.padic_height(19, 5)
sage: h(P)
0
sage: h = E.padic_height(5, 5)
sage: h(P)
0

The result is not dependent on the model for the curve:

sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: P = E.gens()[0]
sage: Pm = Em.gens()[0]
sage: h = E.padic_height(7)
sage: hm = Em.padic_height(7)
sage: h(P) == hm(Pm)
True

padic_height_pairing_matrix(p, prec=20, height=None, check_hypotheses=True)
Computes the cyclotomic 𝑝-adic height pairing matrix of this curve with respect to the basis self.gens()
for the Mordell-Weil group for a given odd prime 𝑝 of good ordinary reduction. The model needs to be
integral and minimal at 𝑝.

INPUT:

• p – prime >= 5

• prec – answer will be returned modulo 𝑝prec

• height – precomputed height function. If not supplied, this function will call padic_height to compute
it.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height
makes sense

OUTPUT: The 𝑝-adic cyclotomic height pairing matrix of this curve to the given precision.

AUTHORS:

• David Harvey, Liang Xiao, Robert Bradshaw, Jennifer Balakrishnan: original implementation at the
2006 MSRI graduate workshop on modular forms

• David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height com-
putations

328 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.padic_height_pairing_matrix(5, 10)
[5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)]

A rank two example:

sage: e =EllipticCurve(389a)
sage: e._set_gens([e(-1, 1), e(1,0)]) # avoid platform dependent gens
sage: e.padic_height_pairing_matrix(5,10)
[3*5 + 2*5^2 + 5^4 + 5^5 + 5^7 + 4*5^9 + O(5^10) 5 +␣
→˓4*5^2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5^7 + 5^8 + 2*5^9 + O(5^10)]
[5 + 4*5^2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5^7 + 5^8 + 2*5^9 + O(5^10) ␣
→˓ 4*5 + 2*5^4 + 3*5^6 + 4*5^7 + 4*5^8 + O(5^10)]

An anomalous rank 3 example:

sage: e = EllipticCurve("5077a")
sage: e._set_gens([e(-1,3), e(2,0), e(4,6)])
sage: e.padic_height_pairing_matrix(5,4)
[4 + 3*5 + 4*5^2 + 4*5^3 + O(5^4) 4 + 4*5^2 + 2*5^3 + O(5^4) 3*5␣
→˓+ 4*5^2 + 5^3 + O(5^4)]
[4 + 4*5^2 + 2*5^3 + O(5^4) 3 + 4*5 + 3*5^2 + 5^3 + O(5^4) ␣
→˓ 2 + 4*5 + O(5^4)]
[3*5 + 4*5^2 + 5^3 + O(5^4) 2 + 4*5 + O(5^4) 1 +␣
→˓3*5 + 5^2 + 5^3 + O(5^4)]

padic_height_via_multiply(p, prec=20, E2=None, check_hypotheses=True)
Computes the cyclotomic 𝑝-adic height.

The equation of the curve must be minimal at 𝑝.

INPUT:

• p – prime >= 5 for which the curve has good ordinary reduction

• prec – integer >= 2 (default 20), desired precision of result

• E2 – precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The value
supplied must be correct mod 𝑝𝑝𝑟𝑒𝑐−2 (or slightly higher in the anomalous case; see the code for details).

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height
makes sense

OUTPUT: A function that accepts two parameters:

• a Q-rational point on the curve whose height should be computed

• optional boolean flag ‘check’: if False, it skips some input checking, and returns the 𝑝-adic height of that
point to the desired precision.

• The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the
literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as stated
in [MTT1986].

AUTHORS:

• David Harvey (2008-01): based on the padic_height() function, using the algorithm of [Har2009].

EXAMPLES:

18.1. Elliptic curves over the rational numbers 329

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h = E.padic_height_via_multiply(5, 10)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

sage: h = E.padic_height_via_multiply(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 +␣
→˓35*53^7 + 30*53^8 + 17*53^9 + O(53^10)

Supply the value of E2 manually:

sage: E2 = E.padic_E2(5, 8)
sage: E2
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + O(5^8)
sage: h = E.padic_height_via_multiply(5, 10, E2=E2)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

Boundary case:

sage: E.padic_height_via_multiply(5, 3)(P)
5 + 5^2 + O(5^3)

Check that answers agree over a range of precisions:

sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_height(5, max_prec)(P) # long time
sage: for prec in range(2, max_prec): # long time
....: assert E.padic_height_via_multiply(5, prec)(P) == full

padic_lseries(p, normalize=None, implementation='eclib', precision=None)
Return the 𝑝-adic 𝐿-series of self at 𝑝, which is an object whose approx method computes approximation to
the true 𝑝-adic 𝐿-series to any desired precision.

INPUT:

• p – prime

• normalize – ‘L_ratio’ (default), ‘period’ or ‘none’; this is describes the way the modular symbols are
normalized. See modular_symbol for more details.

• implementation – ‘eclib’ (default), ‘sage’, ‘num’ or ‘pollackstevens’; Whether to use John Cremona’s
eclib, the Sage implementation, numerical modular symbols or Pollack-Stevens’ implementation of over-
convergent modular symbols.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: L = E.padic_lseries(5); L
5-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational␣
→˓Field
sage: type(L)
<class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary >

330 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

We compute the 3-adic 𝐿-series of two curves of rank 0 and in each case verify the interpolation property
for their leading coefficient (i.e., value at 0):

sage: e = EllipticCurve(11a)
sage: ms = e.modular_symbol()
sage: [ms(1/11), ms(1/3), ms(0), ms(oo)]
[0, -3/10, 1/5, 0]
sage: ms(0)
1/5
sage: L = e.padic_lseries(3)
sage: P = L.series(5)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)
sage: alpha = L.alpha(9); alpha
2 + 3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 3^8 + O(3^9)
sage: R.<x> = QQ[]
sage: f = x^2 - e.ap(3)*x + 3
sage: f(alpha)
O(3^9)
sage: r = e.lseries().L_ratio(); r
1/5
sage: (1 - alpha^(-1))^2 * r
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + O(3^9)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)

Next consider the curve 37b:

sage: e = EllipticCurve(37b)
sage: L = e.padic_lseries(3)
sage: P = L.series(5)
sage: alpha = L.alpha(9); alpha
1 + 2*3 + 3^2 + 2*3^5 + 2*3^7 + 3^8 + O(3^9)
sage: r = e.lseries().L_ratio(); r
1/3
sage: (1 - alpha^(-1))^2 * r
3 + 3^2 + 2*3^4 + 2*3^5 + 2*3^6 + 3^7 + O(3^9)
sage: P(0)
3 + 3^2 + 2*3^4 + 2*3^5 + O(3^6)

We can use Sage modular symbols instead to compute the 𝐿-series:

sage: e = EllipticCurve(11a)
sage: L = e.padic_lseries(3, implementation = sage)
sage: L.series(5,prec=10)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7) + (1 + 3 + 2*3^2 + 3^3 + O(3^4))*T␣
→˓+ (1 + 2*3 + O(3^4))*T^2 + (3 + 2*3^2 + O(3^3))*T^3 + (2*3 + 3^2 + O(3^
→˓3))*T^4 + (2 + 2*3 + 2*3^2 + O(3^3))*T^5 + (1 + 3^2 + O(3^3))*T^6 + (2 + 3^
→˓2 + O(3^3))*T^7 + (2 + 2*3 + 2*3^2 + O(3^3))*T^8 + (2 + O(3^2))*T^9 + O(T^
→˓10)

Also the numericalmodular symbols can be used. Thismay allow formuch larger conductor in some instances:

sage: E = EllipticCurve([101,103])
sage: L = E.padic_lseries(5, implementation="num")
sage: L.series(2)
O(5^4) + (3 + O(5))*T + (1 + O(5))*T^2 + (3 + O(5))*T^3 + O(5)*T^4 + O(T^5)

Finally, we can use the overconvergent method of Pollack-Stevens.:

18.1. Elliptic curves over the rational numbers 331

Elliptic curves, Release 10.4.rc1

sage: e = EllipticCurve(11a)
sage: L = e.padic_lseries(3, implementation = pollackstevens , precision = 6)
sage: L.series(5)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + O(3^6) + (1 + 3 + 2*3^2 + 3^3 + O(3^4))*T + (1␣
→˓+ 2*3 + O(3^2))*T^2 + (3 + O(3^2))*T^3 + O(3^0)*T^4 + O(T^5)
sage: L[3]
3 + O(3^2)

Another example with a semistable prime.:

sage: E = EllipticCurve("11a1")
sage: L = E.padic_lseries(11, implementation = pollackstevens , precision=3)
sage: L[1]
10 + 3*11 + O(11^2)
sage: L[3]
O(11^0)

padic_regulator(p, prec=20, height=None, check_hypotheses=True)
Compute the cyclotomic 𝑝-adic regulator of this curve. The model of the curve needs to be integral and
minimal at 𝑝. Moreover the reduction at 𝑝 should not be additive.

INPUT:

• p – prime >= 5

• prec – answer will be returned modulo 𝑝prec

• height – precomputed height function. If not supplied, this function will call padic_height to compute
it.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height
makes sense

OUTPUT: The 𝑝-adic cyclotomic regulator of this curve, to the requested precision.

If the rank is 0, we output 1.

AUTHORS:

• Liang Xiao: original implementation at the 2006 MSRI graduate workshop on modular forms

• David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height com-
putations

• Chris Wuthrich (2007-05-22): added multiplicative and supersingular cases

• David Harvey (2007-09-20): fixed some precision loss that was occurring

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.padic_regulator(5, 10)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

sage: E.padic_regulator(53, 10)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 +␣
→˓35*53^7 + 30*53^8 + O(53^9)

An anomalous case where the precision drops some:

332 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve("5077a")
sage: E.padic_regulator(5, 10)
5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 4*5^7 + 2*5^8 + 5^9 + O(5^10)

Check that answers agree over a range of precisions:

sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_regulator(5, max_prec) # long time
sage: for prec in range(1, max_prec): # long time
....: assert E.padic_regulator(5, prec) == full

A case where the generator belongs to the formal group already (Issue #3632):

sage: E = EllipticCurve([37,0])
sage: E.padic_regulator(5,10)
2*5^2 + 2*5^3 + 5^4 + 5^5 + 4*5^6 + 3*5^8 + 4*5^9 + O(5^10)

The result is not dependent on the model for the curve:

sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: E.padic_regulator(7) == Em.padic_regulator(7)
True

Allow a python int as input:

sage: E = EllipticCurve(37a)
sage: E.padic_regulator(int(5))
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14␣
→˓+ 5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)

padic_sigma(p, N=20, E2=None, check=False, check_hypotheses=True)
Computes the 𝑝-adic sigma function with respect to the standard invariant differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3),
as defined by Mazur and Tate in [MT1991], as a power series in the usual uniformiser 𝑡 at the origin.

The equation of the curve must be minimal at 𝑝.

INPUT:

• p – prime >= 5 for which the curve has good ordinary reduction

• N – integer >= 1 (default 20), indicates precision of result; see OUTPUT section for description

• E2 – precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The value
supplied must be correct mod 𝑝𝑁−2.

• check – boolean, whether to perform a consistency check (i.e. verify that the computed sigma satisfies
the defining

• differential equation – note that this does NOT guarantee correctness of all the returned
digits, but it comes pretty close.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic sigma
function makes sense

OUTPUT: A power series 𝑡+ · · · with coefficients in 𝑝.

The output series will be truncated at𝑂(𝑡𝑁+1), and the coefficient of 𝑡𝑛 for 𝑛 ≥ 1will be correct to precision
𝑂(𝑝𝑁−𝑛+1).

18.1. Elliptic curves over the rational numbers 333

https://github.com/sagemath/sage/issues/3632

Elliptic curves, Release 10.4.rc1

In practice this means the following. If 𝑡0 = 𝑝𝑘𝑢, where 𝑢 is a 𝑝-adic unit with at least𝑁 digits of precision,
and 𝑘 ≥ 1, then the returned series may be used to compute 𝜎(𝑡0) correctly modulo 𝑝𝑁+𝑘 (i.e. with 𝑁
correct 𝑝-adic digits).

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey) [Har2009] which is
basically an optimised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein,
Tate) [MST2006].

Running time is soft-𝑂(𝑁2 log 𝑝), plus whatever time is necessary to compute 𝐸2.

AUTHORS:

• David Harvey (2006-09-12)

• David Harvey (2007-02): rewrote

EXAMPLES:

sage: EllipticCurve([-1, 1/4]).padic_sigma(5, 10)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣
→˓O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 +␣
→˓O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 +␣
→˓O(5^2))*t^9 + O(5)*t^10 + O(t^11)

Run it with a consistency check:

sage: EllipticCurve("37a").padic_sigma(5, 10, check=True)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣
→˓O(5^8))*t^3 + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7))*t^
→˓4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 + O(5^
→˓5))*t^6 + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 +␣
→˓(4*5 + O(5^2))*t^9 + (1 + O(5))*t^10 + O(t^11)

Boundary cases:

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_sigma(5, 1)
(1 + O(5))*t + O(t^2)

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_sigma(5, 2)
(1 + O(5^2))*t + (3 + O(5))*t^2 + O(t^3)

Supply your very own value of E2:

sage: X = EllipticCurve("37a")
sage: my_E2 = X.padic_E2(5, 8)
sage: my_E2 = my_E2 + 5**5 # oops!!!
sage: X.padic_sigma(5, 10, E2=my_E2)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 4*5^5 + 2*5^6 +␣
→˓3*5^7 + O(5^8))*t^3 + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 +␣
→˓O(5^7))*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 3*5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^
→˓4 + O(5^5))*t^6 + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^
→˓3))*t^8 + (4*5 + O(5^2))*t^9 + (1 + O(5))*t^10 + O(t^11)

Check that sigma is “weight 1”.

sage: f = EllipticCurve([-1, 3]).padic_sigma(5, 10)
sage: g = EllipticCurve([-1*(2**4), 3*(2**6)]).padic_sigma(5, 10)
sage: t = f.parent().gen()
sage: f(2*t)/2
(1 + O(5^10))*t + (4 + 3*5 + 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 3*5^6 + 5^7 +␣
→˓O(5^8))*t^3 + (3 + 3*5^2 + 5^4 + 2*5^5 + O(5^6))*t^5 + (4 + 5 + 3*5^3 + O(5^

(continues on next page)

334 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓4))*t^7 + (4 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)
sage: g
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (4 + 3*5 + 3*5^2 + 3*5^3 + 4*5^4 +␣
→˓4*5^5 + 3*5^6 + 5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (3 + 3*5^2 + 5^4 + 2*5^5 +␣
→˓O(5^6))*t^5 + O(5^5)*t^6 + (4 + 5 + 3*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (4 +␣
→˓2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)
sage: f(2*t)/2 -g
O(t^11)

Test that it returns consistent results over a range of precision:

sage: # long time
sage: max_N = 30 # get up to at least p^2
sage: E = EllipticCurve([1, 1, 1, 1, 1])
sage: p = 5
sage: E2 = E.padic_E2(5, max_N)
sage: max_sigma = E.padic_sigma(p, max_N, E2=E2)
sage: for N in range(3, max_N):
....: sigma = E.padic_sigma(p, N, E2=E2)
....: assert sigma == max_sigma

padic_sigma_truncated(p, N=20, lamb=0, E2=None, check_hypotheses=True)
Compute the p-adic sigma function with respect to the standard invariant differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥 + 𝑎3),
as defined by Mazur and Tate in [MT1991], as a power series in the usual uniformiser 𝑡 at the origin.

The equation of the curve must be minimal at 𝑝.

This function differs from padic_sigma() in the precision profile of the returned power series; see OUT-
PUT below.

INPUT:

• p – prime >= 5 for which the curve has good ordinary reduction

• N – integer >= 2 (default 20), indicates precision of result; see OUTPUT section for description

• lamb – integer >= 0, see OUTPUT section for description

• E2 – precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The value
supplied must be correct mod 𝑝𝑁−2.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic sigma
function makes sense

OUTPUT: A power series 𝑡+ · · · with coefficients in 𝑝.

The coefficient of 𝑡𝑗 for 𝑗 ≥ 1 will be correct to precision 𝑂(𝑝𝑁−2+(3−𝑗)(𝑙𝑎𝑚𝑏+1)).

ALGORITHM:Described in “Efficient Computation of p-adic Heights” [Har2009], which is basically an opti-
mised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein, Tate) [MST2006].

Running time is soft-𝑂(𝑁2𝜆−1 log 𝑝), plus whatever time is necessary to compute 𝐸2.

AUTHORS:

• David Harvey (2008-01): wrote based on previous padic_sigma() function

EXAMPLES:

sage: E = EllipticCurve([-1, 1/4])
sage: E.padic_sigma_truncated(5, 10)

(continues on next page)

18.1. Elliptic curves over the rational numbers 335

Elliptic curves, Release 10.4.rc1

(continued from previous page)

O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣
→˓O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 +␣
→˓O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 +␣
→˓O(5^2))*t^9 + O(5)*t^10 + O(t^11)

Note the precision of the 𝑡3 coefficient depends only on 𝑁 , not on lamb:

sage: E.padic_sigma_truncated(5, 10, lamb=2)
O(5^17) + (1 + O(5^14))*t + O(5^11)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7␣
→˓+ O(5^8))*t^3 + O(5^5)*t^4 + (2 + O(5^2))*t^5 + O(t^6)

Compare against plain padic_sigma() function over a dense range of N and lamb

sage: E = EllipticCurve([1, 2, 3, 4, 7]) # long␣
→˓time
sage: E2 = E.padic_E2(5, 50) # long␣
→˓time
sage: for N in range(2, 10): # long␣
→˓time
....: for lamb in range(10):
....: correct = E.padic_sigma(5, N + 3*lamb, E2=E2)
....: compare = E.padic_sigma_truncated(5, N=N, lamb=lamb, E2=E2)
....: assert compare == correct

pari_curve()

Return the PARI curve corresponding to this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: e = E.pari_curve()
sage: type(e)
<... cypari2.gen.Gen >
sage: e.type()
t_VEC

sage: e.ellan(10)
[1, -2, -3, 2, -2, 6, -1, 0, 6, 4]

sage: E = EllipticCurve(RationalField(), [1/3 , 2/3])
sage: e = E.pari_curve()
sage: e[:5]
[0, 0, 0, 1/3, 2/3]

When doing certain computations, PARI caches the results:

sage: E = EllipticCurve(37a1)
sage: _ = E.__dict__.pop(_pari_curve , None) # clear cached data
sage: Epari = E.pari_curve()
sage: Epari
[0, 0, 1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, Vecsmall([1]),␣
→˓[Vecsmall([64, 1])], [0, 0, 0, 0, 0, 0, 0, 0]]
sage: Epari.omega()
[2.99345864623196, -2.45138938198679*I]
sage: Epari
[0, 0, 1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, Vecsmall([1]),␣
→˓[Vecsmall([64, 1])], [[2.99345864623196, -2.45138938198679*I], 0, [0.

(continues on next page)

336 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓837565435283323, 0.269594436405445, -1.10715987168877, 1.37675430809421, 1.
→˓94472530697209, 0.567970998877878]~, 0, 0, 0, 0, 0]]

This shows that the bug uncovered by Issue #4715 is fixed:

sage: Ep = EllipticCurve(903b3).pari_curve()

This still works, even when the curve coefficients are large (see Issue #13163):

sage: E = EllipticCurve([4382696457564794691603442338788106497, 28, 3992,␣
→˓16777216, 298])
sage: E.pari_curve()
[4382696457564794691603442338788106497, 28, 3992, 16777216, 298, ...]
sage: E.minimal_model()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 -␣
→˓7686423934083797390675981169229171907674183588326184511391146727143672423167091484392497987721106542488224058921302964259990799229848935835464702*x␣
→˓+␣
→˓8202280443553761483773108648734271851215988504820214784899752662100459663011709992446860978259617135893103951840830254045837355547141096270521198994389833928471736723050112419004202643591202131091441454709193394358885␣
→˓over Rational Field

pari_mincurve()

Return the PARI curve corresponding to a minimal model for this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(RationalField(), [1/3 , 2/3])
sage: e = E.pari_mincurve()
sage: e[:5]
[0, 0, 0, 27, 486]
sage: E.conductor()
47232
sage: e.ellglobalred()
[47232, [1, 0, 0, 0], 2, [2, 7; 3, 2; 41, 1], [[7, 2, 0, 1], [2, -3, 0, 2],␣
→˓[1, 5, 0, 1]]]

period_lattice(embedding=None)
Return the period lattice of the elliptic curve with respect to the differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

INPUT:

• embedding – ignored (for compatibility with the period_lattice function for elliptic_curve_num-
ber_field)

OUTPUT:

(period lattice) The PeriodLattice_ell object associated to this elliptic curve (with respect to the
natural embedding of Q into R).

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.period_lattice()
Period lattice associated to
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

point_search(height_limit, verbose=False, rank_bound=None)
Search for points on a curve up to an input bound on the naive logarithmic height.

INPUT:

18.1. Elliptic curves over the rational numbers 337

https://github.com/sagemath/sage/issues/4715
https://github.com/sagemath/sage/issues/13163

Elliptic curves, Release 10.4.rc1

• height_limit – float; bound on naive height

• verbose – boolean (default: False); if True, report on the saturation process otherwise just return
the result

• rank_bound – boolean (optional); if provided, stop saturating once we find this many independent
nontorsion points

OUTPUT: points (list) - list of independent points which generate the subgroup of the Mordell-Weil group
generated by the points found and then saturated.

Warning: height_limit is logarithmic, so increasing by 1 will cause the running time to increase by a
factor of approximately 4.5 (=exp(1.5)).

IMPLEMENTATION: Uses Michael Stoll’s ratpoints module in PARI/GP.

EXAMPLES:

sage: E = EllipticCurve(389a1)
sage: E.point_search(1, verbose=False)
[(-1 : 1 : 1), (0 : 0 : 1)]

Increasing the height_limit takes longer, but finds no more points:

sage: E.point_search(10, verbose=False) # long time
[(-1 : 1 : 1), (0 : 0 : 1)]

In fact this curve has rank 2 so no more than 2 points will ever be output, but we are not using this fact.

sage: E.saturation(_)
([(-1 : 1 : 1), (0 : 0 : 1)], 1, 0.152460177943144)

What this shows is that if the rank is 2 then the points listed do generate theMordell-Weil group (mod torsion).
Finally,

sage: E.rank()
2

If we only need one independent generator:

sage: E.point_search(5, verbose=False, rank_bound=1)
[(-2 : 0 : 1)]

pollack_stevens_modular_symbol(sign=0, implementation='eclib')
Create the modular symbol attached to the elliptic curve, suitable for overconvergent calculations.

INPUT:

• sign – +1 or -1 or 0 (default), in which case this it is the sum of the two

• implementation – either ‘eclib’ (default) or ‘sage’. This determines classical modular symbols which
implementation of the underlying classical modular symbols is used

EXAMPLES:

sage: E = EllipticCurve(113a1)
sage: symb = E.pollack_stevens_modular_symbol()
sage: symb

(continues on next page)

338 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Modular symbol of level 113 with values in Sym^0 Q^2
sage: symb.values()
[-1/2, 1, -1, 0, 0, 1, 1, -1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0]

sage: E = EllipticCurve([0,1])
sage: symb = E.pollack_stevens_modular_symbol(+1)
sage: symb.values()
[-1/6, 1/12, 0, 1/6, 1/12, 1/3, -1/12, 0, -1/6, -1/12, -1/4, -1/6, 1/12]

prove_BSD(E , verbosity=0, two_desc='mwrank', proof=None, secs_hi=5, return_BSD=False)
Attempt to prove the Birch and Swinnerton-Dyer conjectural formula for 𝐸, returning a list of primes 𝑝 for
which this function fails to prove BSD(E,p).

Here, BSD(E,p) is the statement: “the Birch and Swinnerton-Dyer formula holds up to a rational number
coprime to 𝑝.”

INPUT:

• E – an elliptic curve

• verbosity – int, how much information about the proof to print.

– 0: print nothing

– 1: print sketch of proof

– 2: print information about remaining primes

• two_desc – string (default mwrank), what to use for the two-descent. Options are mwrank ,
pari , sage

• proof – bool or None (default: None, see proof.elliptic_curve or sage.structure.proof). If False, this
function just immediately returns the empty list.

• secs_hi – maximum number of seconds to try to compute the Heegner index before switching over
to trying to compute the Heegner index bound. (Rank 0 only!)

• return_BSD – bool (default: False) whether to return an object which contains information to
reconstruct a proof

Note: When printing verbose output, phrases such as “byMazur” are referring to the following list of papers:

REFERENCES:

• [Cha2005]

• [Jet2008]

• [Kat2004]

• [Kol1991]

• [LW2015]

• [LS]

• [Maz1978]

• [Rub1991]

• [SW2013]

• [GJPST2009]

18.1. Elliptic curves over the rational numbers 339

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: EllipticCurve(11a).prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 5} by Kolyvagin.
Kolyvagin s bound for p = 5 applies by Lawson-Wuthrich
True for p = 5 by Kolyvagin bound
[]

sage: EllipticCurve(14a).prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kolyvagin s bound for p = 3 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
[]

sage: E = EllipticCurve("20a1")
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kato further implies that #Sha[3] is trivial.
[]

sage: E = EllipticCurve("50b1")
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3, 5} by Kolyvagin.
Kolyvagin s bound for p = 3 applies by Lawson-Wuthrich
Kolyvagin s bound for p = 5 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
True for p = 5 by Kolyvagin bound
[]
sage: E.prove_BSD(two_desc= pari)
[]

A rank two curve:

sage: E = EllipticCurve(389a)

We know nothing with proof=True:

sage: E.prove_BSD()
Set of all prime numbers: 2, 3, 5, 7, ...

We (think we) know everything with proof=False:

sage: E.prove_BSD(proof=False)
[]

A curve of rank 0 and prime conductor:

sage: E = EllipticCurve(19a)
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kolyvagin s bound for p = 3 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
[]

(continues on next page)

340 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(37a)
sage: E.rank()
1
sage: E._EllipticCurve_rational_field__rank
(1, True)
sage: E.analytic_rank = lambda : 0
sage: E.prove_BSD()
Traceback (most recent call last):
...
RuntimeError: It seems that the rank conjecture does not hold for this curve
(Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field)!
This may be a counterexample to BSD, but is more likely a bug.

We test the consistency check for the 2-part of Sha:

sage: E = EllipticCurve(37a)
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x
over Rational Field

sage: def foo(use_database):
....: return 4
sage: S.an = foo
sage: E.prove_BSD()
Traceback (most recent call last):
...
RuntimeError: Apparent contradiction: 0 <= rank(sha[2]) <= 0, but ord_2(sha_
→˓an) = 2

An example with a Tamagawa number at 5:

sage: E = EllipticCurve(123a1)
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 5} by Kolyvagin.
Kolyvagin s bound for p = 5 applies by Lawson-Wuthrich
True for p = 5 by Kolyvagin bound
[]

A curve for which 3 divides the order of the Tate-Shafarevich group:

sage: E = EllipticCurve(681b)
sage: E.prove_BSD(verbosity=2) # long time
p = 2: True by 2-descent...
True for p not in {2, 3} by Kolyvagin....
Remaining primes:
p = 3: irreducible, surjective, non-split multiplicative

(0 <= ord_p <= 2)
ord_p(#Sha_an) = 2

[3]

A curve for which we need to use heegner_index_bound:

sage: E = EllipticCurve(198b)
sage: E.prove_BSD(verbosity=1, secs_hi=1)
p = 2: True by 2-descent

(continues on next page)

18.1. Elliptic curves over the rational numbers 341

Elliptic curves, Release 10.4.rc1

(continued from previous page)

True for p not in {2, 3} by Kolyvagin.
[3]

The return_BSD option gives an object with detailed information about the proof:

sage: E = EllipticCurve(26b)
sage: B = E.prove_BSD(return_BSD=True)
sage: B.two_tor_rk
0
sage: B.N
26
sage: B.gens
[]
sage: B.primes
[]
sage: B.heegner_indexes
{-23: 2}

q_eigenform(prec)
Synonym for self.q_expansion(prec).

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.q_eigenform(10)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + O(q^10)
sage: E.q_eigenform(10) == E.q_expansion(10)
True

q_expansion(prec)
Return the 𝑞-expansion to precision prec of the newform attached to this elliptic curve.

INPUT:

• prec – an integer

OUTPUT:

a power series (in the variable ‘q’)

Note: If you want the output to be a modular form and not just a 𝑞-expansion, use modular_form().

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.q_expansion(20)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + 4*q^10
- 5*q^11 - 6*q^12 - 2*q^13 + 2*q^14 + 6*q^15 - 4*q^16 - 12*q^18 + O(q^20)

quadratic_twist(D)

Return the global minimal model of the quadratic twist of this curve by D.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E7 = E.quadratic_twist(7); E7

(continues on next page)

342 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic Curve defined by y^2 = x^3 - 784*x + 5488 over Rational Field
sage: E7.conductor()
29008
sage: E7.quadratic_twist(7) == E
True

rank(use_database=True, verbose=False, only_use_mwrank=True, algorithm='mwrank_lib', proof=None,
pari_effort=0)

Return the rank of this elliptic curve, assuming no conjectures.

If we fail to provably compute the rank, raises a RuntimeError exception.

INPUT:

• use_database – boolean (default: True); if True, try to look up the rank in the Cremona database

• verbose – (default: False) if specified changes the verbosity of mwrank computations

• algorithm – (default: mwrank_lib) one of:

– mwrank_shell – call mwrank shell command

– mwrank_lib – call mwrank c library

– pari – call ellrank in pari

• only_use_mwrank – (default: True) if False try using analytic rank methods first

• proof – bool (default: None, see proof.elliptic_curve or sage.structure.proof);
note that results obtained from databases are considered proof=True

• pari_effort – (default: 0) parameter used in when the algorithm pari is chosen. It measure of
the effort done to find rational points. Values up to 10 can be chosen; the running times increase roughly
like the cube of the effort value.

OUTPUT: the rank of the elliptic curve as Integer

IMPLEMENTATION: Uses L-functions, mwrank, pari, and databases.

EXAMPLES:

sage: EllipticCurve(11a).rank()
0
sage: EllipticCurve(37a).rank()
1
sage: EllipticCurve(389a).rank()
2
sage: EllipticCurve(5077a).rank()
3
sage: EllipticCurve([1, -1, 0, -79, 289]).rank() # This will use the␣
→˓default proof behavior of True
4
sage: EllipticCurve([0, 0, 1, -79, 342]).rank(proof=False)
5
sage: EllipticCurve([0, 0, 1, -79, 342]).rank(algorithm="pari")
5

Examples with denominators in defining equations:

18.1. Elliptic curves over the rational numbers 343

../../../../../../../html/en/reference/rings_standard/sage/rings/integer.html#sage.rings.integer.Integer

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0, 0, 0, 0, -675/4])
sage: E.rank()
0
sage: E = EllipticCurve([0, 0, 1/2, 0, -1/5])
sage: E.rank()
1
sage: E.minimal_model().rank()
1

A large example where mwrank doesn’t determine the result with certainty, but pari does:

sage: EllipticCurve([1,0,0,0,37455]).rank(proof=False)
0
sage: EllipticCurve([1,0,0,0,37455]).rank(proof=True)
Traceback (most recent call last):
...
RuntimeError: rank not provably correct (lower bound: 0)
sage: EllipticCurve([1,0,0,0,37455]).rank(algorithm="pari")
0

rank_bound(algorithm='pari')
Return the upper bound on the rank of the curve, computed using a 2-descent.

INPUT:

• algorithm – (default: pari) either pari or mwrank

In many cases, this is the actual rank of the curve.

EXAMPLES:

sage: E = EllipticCurve("389a1")
sage: E.rank_bound()
2

The following is the curve 571a1, which has rank 0, but Sha of order 4, yet pari, using the Cassels pairing is
able to show that the rank is 0. The 2-descent in mwrank only determines a weaker upper bound:

sage: E = EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank_bound()
0
sage: E.rank_bound(algorithm="mwrank")
2

In the following last example, both algorithm only determine a rank bound larger than the actual rank:

sage: E = EllipticCurve([1, 1, 1, -896670, -327184905])
sage: E.rank_bound()
2
sage: E.rank_bound(algorithm="mwrank")
2
sage: E.rank(only_use_mwrank=False) # uses L-function
0

real_components()

Return the number of real components.

EXAMPLES:

344 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37a)
sage: E.real_components ()
2
sage: E = EllipticCurve(37b)
sage: E.real_components ()
2
sage: E = EllipticCurve(11a)
sage: E.real_components ()
1

reduction(p)
Return the reduction of the elliptic curve at a prime of good reduction.

Note: The actual reduction is done in self.change_ring(GF(p)); the reduction is performed after
changing to a model which is minimal at p.

INPUT:

• p – a (positive) prime number

OUTPUT: an elliptic curve over the finite field F𝑝
EXAMPLES:

sage: E = EllipticCurve(389a1)
sage: E.reduction(2)
Elliptic Curve defined by y^2 + y = x^3 + x^2 over Finite Field of size 2
sage: E.reduction(3)
Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of size 3
sage: E.reduction(5)
Elliptic Curve defined by y^2 + y = x^3 + x^2 + 3*x over Finite Field of size␣
→˓5
sage: E.reduction(38)
Traceback (most recent call last):
...
AttributeError: p must be prime.
sage: E.reduction(389)
Traceback (most recent call last):
...
AttributeError: The curve must have good reduction at p.
sage: E = EllipticCurve([5^4, 5^6])
sage: E.reduction(5)
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5

regulator(proof=None, precision=53, **kwds)
Return the regulator of this curve, which must be defined over Q.

INPUT:

• proof – bool or None (default: None, see proof.[tab] or sage.structure.proof). Note that results from
databases are considered proof = True

• precision – (int, default 53): the precision in bits of the result

• **kwds – passed to gens() method

EXAMPLES:

18.1. Elliptic curves over the rational numbers 345

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: E.regulator()
0.0511114082399688
sage: EllipticCurve(11a).regulator()
1.00000000000000
sage: EllipticCurve(37a).regulator()
0.0511114082399688
sage: EllipticCurve(389a).regulator()
0.152460177943144
sage: EllipticCurve(5077a).regulator()
0.41714355875838...
sage: EllipticCurve([1, -1, 0, -79, 289]).regulator()
1.50434488827528
sage: EllipticCurve([0, 0, 1, -79, 342]).regulator(proof=False) # long time␣
→˓(6s on sage.math, 2011)
14.790527570131...

root_number(p=None)

Return the root number of this elliptic curve.

This is 1 if the order of vanishing of the L-function 𝐿(𝐸, 𝑠) at 1 is even, and -1 if it is odd.

INPUT:

• 𝑝 – (optional) if given, return the local root number at p

EXAMPLES:

sage: EllipticCurve(11a1).root_number()
1
sage: EllipticCurve(37a1).root_number()
-1
sage: EllipticCurve(389a1).root_number()
1
sage: type(EllipticCurve(389a1).root_number())
<... sage.rings.integer.Integer >

sage: E = EllipticCurve(100a1)
sage: E.root_number(2)
-1
sage: E.root_number(5)
1
sage: E.root_number(7)
1

The root number is cached:

sage: E.root_number(2) is E.root_number(2)
True
sage: E.root_number()
1

satisfies_heegner_hypothesis(D)
Returns True precisely when 𝐷 is a fundamental discriminant that satisfies the Heegner hypothesis for this
elliptic curve.

EXAMPLES:

346 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a1)
sage: E.satisfies_heegner_hypothesis(-7)
True
sage: E.satisfies_heegner_hypothesis(-11)
False

saturation(points, verbose=False, max_prime=-1, min_prime=2)
Given a list of rational points on 𝐸, compute the saturation in 𝐸(𝑄) of the subgroup they generate.

INPUT:

• points (list) – list of points on 𝐸

• verbose (bool) – (default: False) if True, give verbose output

• max_prime – int (default: −1); if −1 (the default), an upper bound is computed for the primes at
which the subgroup may not be saturated, and saturation is performed for all primes up to this bound;
otherwise, the bound used is the minimum of max_prime and the computed bound

• min_prime (int) – (default: 2) only do 𝑝-saturation
at primes 𝑝 greater than or equal to this

Note: To saturate at a single prime 𝑝, set max_prime and min_prime both to 𝑝. One situation where
this is useful is after mapping saturated points from another elliptic curve by a 𝑝-isogeny, since the images
may not be 𝑝-saturated but will be saturated at all other primes.

OUTPUT:

• saturation (list) – points that form a basis for the saturation

• index (int) – the index of the group generated by points in their saturation

• regulator (real with default precision) – regulator of saturated points.

ALGORITHM:

Uses Cremona’s eclib package, which computes a bound on the saturation index. To 𝑝-saturate, or prove
𝑝-saturation, we consider the reductions of the points modulo primes 𝑞 of good reduction such that 𝐸(F𝑞)
has order divisible by 𝑝.

Note: In versons of eclib up to v20190909, division of points in eclib was done using float-
ing point methods, without automatic handling of precision, so that 𝑝-saturation sometimes failed unless
mwrank_set_precision() was called in advance with a suitably high bit precision. Since version
v20210310 ofeclib, division is done using exactmethods based on division polynomials, and 𝑝-saturation
cannot fail in this way.

Note: The computed index of saturation may be large, in which case saturation may take a long time. For
example, the rank 4 curve EllipticCurve([0,1,1,-9872,374262]) has a saturation index bound
of 11816 and takes around 40 seconds to prove saturation.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: P=E(0,0)
sage: Q=5*P; Q

(continues on next page)

18.1. Elliptic curves over the rational numbers 347

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(1/4 : -5/8 : 1)
sage: E.saturation([Q])
([(0 : 0 : 1)], 5, 0.0511114082399688)

selmer_rank(algorithm='pari')
Return the rank of the 2-Selmer group of the curve.

INPUT:

• algorithm – (default: pari) either pari or mwrank

EXAMPLES: This example has rank 1, Sha[2] of order 4 and a single rational 2-torsion point:

sage: E = EllipticCurve([1, 1, 1, 508, -2551])
sage: E.selmer_rank()
4
sage: E.selmer_rank(algorithm="mwrank")
4

The following is the curve 960d1, which has rank 0, but Sha of order 4:

sage: E = EllipticCurve([0, -1, 0, -900, -10098])
sage: E.selmer_rank()
3
sage: E.selmer_rank(algorithm="mwrank")
3

This curve has rank 1, and 4 elements in Sha[2]. Yet the order of Sha is 16, so that group is the product of
two cyclic groups of order 4:

sage: E = EllipticCurve([1, 0, 0, -150752, -22541610])
sage: E.selmer_rank()
4

Instead in this last example of rank 0, Sha is a product of four cyclic groups of order 2:

sage: E = EllipticCurve([1, 0, 0, -49280, -4214808])
sage: E.selmer_rank()
5
sage: E.rank()
0

sha()

Return an object of class ‘sage.schemes.elliptic_curves.sha_tate.Sha’ attached to this elliptic curve.

This can be used in functions related to bounding the order of Sha (The Tate-Shafarevich group of the curve).

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: S = E.sha()
sage: S
Tate-Shafarevich group for the Elliptic Curve
defined by y^2 + y = x^3 - x over Rational Field

sage: S.bound_kolyvagin()
([2], 1)

348 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

silverman_height_bound(algorithm='default')
Return the Silverman height bound.

This is a positive real (floating point) number B such that for all points 𝑃 on the curve over any number field,
|ℎ(𝑃)− ℎ̂(𝑃)| ≤ 𝐵, where ℎ(𝑃) is the naive logarithmic height of 𝑃 and ℎ̂(𝑃) is the canonical height.

INPUT:

• algorithm – one of the following:

– default (default) - compute using a Python implementation in Sage

– mwrank – use a C++ implementation in the mwrank library

Note:

• The CPS_height_bound is often better (i.e. smaller) than the Silverman bound, but it only applies for
points over the base field, whereas the Silverman bound works over all number fields.

• The Silverman bound is also fairly straightforward to compute over number fields, but isn’t implemented
here.

• Silverman’s paper is ‘The Difference Between the Weil Height and the Canonical Height on Elliptic
Curves’, Math. Comp., Volume 55, Number 192, pages 723-743. We use a correction by Bremner with
0.973 replaced by 0.961, as explained in the source code to mwrank (htconst.cc).

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.silverman_height_bound()
4.825400758180918
sage: E.silverman_height_bound(algorithm= mwrank)
4.825400758180918
sage: E.CPS_height_bound()
0.16397076103046915

simon_two_descent(verbose=0, lim1=5, lim3=50, limtriv=3, maxprob=20, limbigprime=30,
known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group 𝐸(Q) and a list of points of infinite
order.

Warning: This function is deprecated as the functionality of Simon’s script for elliptic curves over the
rationals has been ported over to pari. Use rank() with the keyword algorithm= pari instead.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 5) limit on trivial points on quartics

• lim3 – (default: 50) limit on points on ELS quartics

• limtriv – (default: 3) limit on trivial points on 𝐸

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, don’t any probabilistic tests.

18.1. Elliptic curves over the rational numbers 349

Elliptic curves, Release 10.4.rc1

• known_points – (default: None) list of known points on the curve

OUTPUT: a triple (lower, upper, list) consisting of

• lower (integer) – lower bound on the rank

• upper (integer) – upper bound on the rank

• list – list of points of infinite order in 𝐸(Q)

The integer upper is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimension
of𝐸(Q)/2𝐸(Q). It is equal to the dimension of the 2-Selmer group except possibly if𝐸(Q)[2] has dimension
1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number, due to the fact
that the algorithm does not perform a second descent.

To obtain a list of generators, use E.gens().

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/

EXAMPLES:

We compute the ranks of the curves of lowest known conductor up to rank 8. Amazingly, each of these
computations finishes almost instantly!

sage: E = EllipticCurve(11a1)
sage: E.simon_two_descent()
doctest:warning
...
DeprecationWarning: Use E.rank(algorithm="pari") instead, as this script has␣
→˓been ported over to pari.
See https://github.com/sagemath/sage/issues/35621 for details.
(0, 0, [])
sage: E = EllipticCurve(37a1)
sage: E.simon_two_descent()
(1, 1, [(0 : 0 : 1)])
sage: E = EllipticCurve(389a1)
sage: E._known_points = [] # clear cached points
sage: E.simon_two_descent()
(2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
sage: E = EllipticCurve(5077a1)
sage: E.simon_two_descent()
(3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])

In this example Simon’s program does not find any points, though it does correctly compute the rank of the
2-Selmer group.

sage: E = EllipticCurve([1, -1, 0, -751055859, -7922219731979])
sage: E.simon_two_descent()
(1, 1, [])

The rest of these entries were taken from TomWomack’s page http://tom.womack.net/maths/conductors.htm

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.simon_two_descent()
(4, 4, [(6 : -1 : 1), (4 : 3 : 1), (5 : -2 : 1), (8 : 7 : 1)])
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.simon_two_descent() # long time (9s on sage.math, 2011)
(5, 5, [(5 : 8 : 1), (10 : 23 : 1), (3 : 11 : 1), (-3 : 23 : 1), (0 : 18 :␣
→˓1)])

(continues on next page)

350 Chapter 18. Elliptic curves over number fields

http://www.math.unicaen.fr/~simon/
http://tom.womack.net/maths/conductors.htm

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve([1, 1, 0, -2582, 48720])
sage: r, s, G = E.simon_two_descent(); r,s
(6, 6)
sage: E = EllipticCurve([0, 0, 0, -10012, 346900])
sage: r, s, G = E.simon_two_descent(); r,s # long time
(7, 7)
sage: E = EllipticCurve([0, 0, 1, -23737, 960366])
sage: r, s, G = E.simon_two_descent(); r,s # long time
(8, 8)

Example from Issue #10832:

sage: E = EllipticCurve([1,0,0,-6664,86543])
sage: E.simon_two_descent()
(2, 3, [(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)])
sage: E.rank()
2
sage: E.gens()
[(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)]

Example where the lower bound is known to be 1 despite that the algorithm has not found any points of
infinite order

sage: E = EllipticCurve([1, 1, 0, -23611790086, 1396491910863060])
sage: E.simon_two_descent()
(1, 2, [])
sage: E.rank()
1
sage: E.gens() # uses mwrank
[(4311692542083/48594841 : -13035144436525227/338754636611 : 1)]

Example for Issue #5153:

sage: E = EllipticCurve([3,0])
sage: E.simon_two_descent()
(1, 2, [(1 : 2 : 1)])

The upper bound on the 2-Selmer rank returned by this method need not be sharp. In following example, the
upper bound equals the actual 2-Selmer rank plus 2 (see Issue #10735):

sage: E = EllipticCurve(438e1)
sage: E.simon_two_descent()
(0, 3, [])
sage: E.selmer_rank() # uses mwrank
1

supersingular_primes(B)
Return a list of all supersingular primes for this elliptic curve up to and possibly including B.

EXAMPLES:

sage: e = EllipticCurve(11a)
sage: e.aplist(20)
[-2, -1, 1, -2, 1, 4, -2, 0]
sage: e.supersingular_primes(1000)
[2, 19, 29, 199, 569, 809]

18.1. Elliptic curves over the rational numbers 351

https://github.com/sagemath/sage/issues/10832
https://github.com/sagemath/sage/issues/5153
https://github.com/sagemath/sage/issues/10735

Elliptic curves, Release 10.4.rc1

sage: e = EllipticCurve(27a)
sage: e.aplist(20)
[0, 0, 0, -1, 0, 5, 0, -7]
sage: e.supersingular_primes(97)
[2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89]
sage: e.ordinary_primes(97)
[7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97]
sage: e.supersingular_primes(3)
[2]
sage: e.supersingular_primes(2)
[2]
sage: e.supersingular_primes(1)
[]

tamagawa_exponent(p)
The Tamagawa index of the elliptic curve at p.

This is the index of the component group𝐸(Q𝑝)/𝐸0(Q𝑝). It equals the Tamagawa number (as the component
group is cyclic) except for types 𝐼*𝑚 (𝑚 even) when the group can be 𝐶2 × 𝐶2.

EXAMPLES:

sage: E = EllipticCurve(816a1)
sage: E.tamagawa_number(2)
4
sage: E.tamagawa_exponent(2)
2
sage: E.kodaira_symbol(2)
I2*

sage: E = EllipticCurve(200c4)
sage: E.kodaira_symbol(5)
I4*
sage: E.tamagawa_number(5)
4
sage: E.tamagawa_exponent(5)
2

See Issue #4715:

sage: E = EllipticCurve(117a3)
sage: E.tamagawa_exponent(13)
4

tamagawa_number(p)
The Tamagawa number of the elliptic curve at p.

This is the order of the component group 𝐸(Q𝑝)/𝐸0(Q𝑝).

EXAMPLES:

sage: E = EllipticCurve(11a)
sage: E.tamagawa_number(11)
5
sage: E = EllipticCurve(37b)
sage: E.tamagawa_number(37)
3

352 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/4715

Elliptic curves, Release 10.4.rc1

tamagawa_number_old(p)
The Tamagawa number of the elliptic curve at p.

This is the order of the component group 𝐸(Q𝑝)/𝐸0(Q𝑝).

EXAMPLES:

sage: E = EllipticCurve(11a)
sage: E.tamagawa_number_old(11)
5
sage: E = EllipticCurve(37b)
sage: E.tamagawa_number_old(37)
3

tamagawa_product()

Return the product of the Tamagawa numbers.

EXAMPLES:

sage: E = EllipticCurve(54a)
sage: E.tamagawa_product ()
3

tate_curve(p)
Create the Tate curve over the 𝑝-adics associated to this elliptic curve.

This Tate curve is a 𝑝-adic curve with split multiplicative reduction of the form 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑠4𝑥 + 𝑠6
which is isomorphic to the given curve over the algebraic closure ofQ𝑝. Its points overQ𝑝 are isomorphic to
Q×
𝑝 /𝑞 for a certain parameter 𝑞 ∈ 𝑝.

INPUT:

• 𝑝 – a prime where the curve has split multiplicative reduction

EXAMPLES:

sage: e = EllipticCurve(130a1)
sage: e.tate_curve(2)
2-adic Tate curve associated to the Elliptic Curve
defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field

The input curve must have multiplicative reduction at the prime.

sage: e.tate_curve(3)
Traceback (most recent call last):
...
ValueError: the elliptic curve must have multiplicative reduction at 3

We compute with 𝑝 = 5:

sage: T = e.tate_curve(5); T
5-adic Tate curve associated to the Elliptic Curve
defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field

We find the Tate parameter 𝑞:

sage: T.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8)

We compute the ℒ-invariant of the curve:

18.1. Elliptic curves over the rational numbers 353

Elliptic curves, Release 10.4.rc1

sage: T.L_invariant(prec=10)
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)

three_selmer_rank(algorithm='UseSUnits')

Return the 3-selmer rank of this elliptic curve, computed using Magma.

INPUT:

• algorithm – ‘Heuristic’ (which is usually much faster in large examples), ‘FindCubeRoots’, or ‘Us-
eSUnits’ (default)

OUTPUT: nonnegative integer

EXAMPLES: A rank 0 curve:

sage: EllipticCurve(11a).three_selmer_rank() # optional - magma
0

A rank 0 curve with rational 3-isogeny but no 3-torsion

sage: EllipticCurve(14a3).three_selmer_rank() # optional - magma
0

A rank 0 curve with rational 3-torsion:

sage: EllipticCurve(14a1).three_selmer_rank() # optional - magma
1

A rank 1 curve with rational 3-isogeny:

sage: EllipticCurve(91b).three_selmer_rank() # optional - magma
2

A rank 0 curve with nontrivial 3-Sha. The Heuristic option makes this about twice as fast as without it.

sage: EllipticCurve(681b).three_selmer_rank(algorithm= Heuristic) # long␣
→˓time (10 seconds); optional - magma
2

torsion_order()

Return the order of the torsion subgroup.

EXAMPLES:

sage: e = EllipticCurve(11a)
sage: e.torsion_order()
5
sage: type(e.torsion_order())
<... sage.rings.integer.Integer >
sage: e = EllipticCurve([1,2,3,4,5])
sage: e.torsion_order()
1
sage: type(e.torsion_order())
<... sage.rings.integer.Integer >

torsion_points()

Return the torsion points of this elliptic curve as a sorted list.

OUTPUT: A list of all the torsion points on this elliptic curve.

354 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: EllipticCurve(11a).torsion_points()
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
sage: EllipticCurve(37b).torsion_points()
[(0 : 1 : 0), (8 : -19 : 1), (8 : 18 : 1)]

Some curves with large torsion groups:

sage: E = EllipticCurve([-1386747, 368636886])
sage: T = E.torsion_subgroup(); T
Torsion Subgroup isomorphic to Z/8 + Z/2 associated to the
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over
Rational Field

sage: E.torsion_points()
[(0 : 1 : 0),
(-1293 : 0 : 1),
(-933 : -29160 : 1),
(-933 : 29160 : 1),
(-285 : -27216 : 1),
(-285 : 27216 : 1),
(147 : -12960 : 1),
(147 : 12960 : 1),
(282 : 0 : 1),
(1011 : 0 : 1),
(1227 : -22680 : 1),
(1227 : 22680 : 1),
(2307 : -97200 : 1),
(2307 : 97200 : 1),
(8787 : -816480 : 1),
(8787 : 816480 : 1)]

sage: EllipticCurve(210b5).torsion_points()
[(0 : 1 : 0),
(-41/4 : 37/8 : 1),
(-5 : -103 : 1),
(-5 : 107 : 1),
(10 : -208 : 1),
(10 : 197 : 1),
(37 : -397 : 1),
(37 : 359 : 1),
(100 : -1153 : 1),
(100 : 1052 : 1),
(415 : -8713 : 1),
(415 : 8297 : 1)]

sage: EllipticCurve(210e2).torsion_points()
[(0 : 1 : 0),
(-36 : 18 : 1),
(-26 : -122 : 1),
(-26 : 148 : 1),
(-8 : -122 : 1),
(-8 : 130 : 1),
(4 : -62 : 1),
(4 : 58 : 1),
(31/4 : -31/8 : 1),
(28 : -14 : 1),
(34 : -122 : 1),
(34 : 88 : 1),
(64 : -482 : 1),

(continues on next page)

18.1. Elliptic curves over the rational numbers 355

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(64 : 418 : 1),
(244 : -3902 : 1),
(244 : 3658 : 1)]

torsion_subgroup()

Return the torsion subgroup of this elliptic curve.

OUTPUT: The EllipticCurveTorsionSubgroup instance associated to this elliptic curve.

Note: To see the torsion points as a list, use torsion_points().

EXAMPLES:

sage: EllipticCurve(11a).torsion_subgroup()
Torsion Subgroup isomorphic to Z/5 associated to the
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sage: EllipticCurve(37b).torsion_subgroup()
Torsion Subgroup isomorphic to Z/3 associated to the
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field

sage: e = EllipticCurve([-1386747,368636886]); e
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over Rational␣
→˓Field
sage: G = e.torsion_subgroup(); G
Torsion Subgroup isomorphic to Z/8 + Z/2 associated to the
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over
Rational Field

sage: G.0*3 + G.1
(1227 : 22680 : 1)
sage: G.1
(282 : 0 : 1)
sage: list(G)
[(0 : 1 : 0), (147 : -12960 : 1), (2307 : -97200 : 1), (-933 : -29160 : 1),
(1011 : 0 : 1), (-933 : 29160 : 1), (2307 : 97200 : 1), (147 : 12960 : 1),
(-1293 : 0 : 1), (1227 : 22680 : 1), (-285 : 27216 : 1), (8787 : 816480 : 1),
(282 : 0 : 1), (8787 : -816480 : 1), (-285 : -27216 : 1), (1227 : -22680 :␣
→˓1)]

two_descent(verbose=True, selmer_only=False, first_limit=20, second_limit=8, n_aux=-1,
second_descent=1)

Compute 2-descent data for this curve.

INPUT:

• verbose – (default: True) print what mwrank is doing; if False, no output is printed

• selmer_only – (default: False) selmer_only switch

• first_limit – (default: 20) firstlim is bound on x+z second_limit- (default: 8) secondlim is bound
on log max x,z , i.e. logarithmic

• n_aux – (default: -1) n_aux only relevant for general 2-descent when 2-torsion trivial; n_aux=-1 causes
default to be used (depends on method)

• second_descent – (default: True) second_descent only relevant for descent via 2-isogeny

OUTPUT:

356 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Return True if the descent succeeded, i.e. if the lower bound and the upper bound for the rank are the same.
In this case, generators and the rank are cached. A return value of False indicates that either rational points
were not found, or that Sha[2] is nontrivial and mwrank was unable to determine this for sure.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: E.two_descent(verbose=False)
True

two_descent_simon(verbose=0, lim1=5, lim3=50, limtriv=3, maxprob=20, limbigprime=30,
known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group 𝐸(Q) and a list of points of infinite
order.

Warning: This function is deprecated as the functionality of Simon’s script for elliptic curves over the
rationals has been ported over to pari. Use rank() with the keyword algorithm= pari instead.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 5) limit on trivial points on quartics

• lim3 – (default: 50) limit on points on ELS quartics

• limtriv – (default: 3) limit on trivial points on 𝐸

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, don’t any probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT: a triple (lower, upper, list) consisting of

• lower (integer) – lower bound on the rank

• upper (integer) – upper bound on the rank

• list – list of points of infinite order in 𝐸(Q)

The integer upper is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimension
of𝐸(Q)/2𝐸(Q). It is equal to the dimension of the 2-Selmer group except possibly if𝐸(Q)[2] has dimension
1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number, due to the fact
that the algorithm does not perform a second descent.

To obtain a list of generators, use E.gens().

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/

EXAMPLES:

We compute the ranks of the curves of lowest known conductor up to rank 8. Amazingly, each of these
computations finishes almost instantly!

18.1. Elliptic curves over the rational numbers 357

http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a1)
sage: E.simon_two_descent()
doctest:warning
...
DeprecationWarning: Use E.rank(algorithm="pari") instead, as this script has␣
→˓been ported over to pari.
See https://github.com/sagemath/sage/issues/35621 for details.
(0, 0, [])
sage: E = EllipticCurve(37a1)
sage: E.simon_two_descent()
(1, 1, [(0 : 0 : 1)])
sage: E = EllipticCurve(389a1)
sage: E._known_points = [] # clear cached points
sage: E.simon_two_descent()
(2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
sage: E = EllipticCurve(5077a1)
sage: E.simon_two_descent()
(3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])

In this example Simon’s program does not find any points, though it does correctly compute the rank of the
2-Selmer group.

sage: E = EllipticCurve([1, -1, 0, -751055859, -7922219731979])
sage: E.simon_two_descent()
(1, 1, [])

The rest of these entries were taken from TomWomack’s page http://tom.womack.net/maths/conductors.htm

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.simon_two_descent()
(4, 4, [(6 : -1 : 1), (4 : 3 : 1), (5 : -2 : 1), (8 : 7 : 1)])
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.simon_two_descent() # long time (9s on sage.math, 2011)
(5, 5, [(5 : 8 : 1), (10 : 23 : 1), (3 : 11 : 1), (-3 : 23 : 1), (0 : 18 :␣
→˓1)])
sage: E = EllipticCurve([1, 1, 0, -2582, 48720])
sage: r, s, G = E.simon_two_descent(); r,s
(6, 6)
sage: E = EllipticCurve([0, 0, 0, -10012, 346900])
sage: r, s, G = E.simon_two_descent(); r,s # long time
(7, 7)
sage: E = EllipticCurve([0, 0, 1, -23737, 960366])
sage: r, s, G = E.simon_two_descent(); r,s # long time
(8, 8)

Example from Issue #10832:

sage: E = EllipticCurve([1,0,0,-6664,86543])
sage: E.simon_two_descent()
(2, 3, [(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)])
sage: E.rank()
2
sage: E.gens()
[(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)]

Example where the lower bound is known to be 1 despite that the algorithm has not found any points of
infinite order

358 Chapter 18. Elliptic curves over number fields

http://tom.womack.net/maths/conductors.htm
https://github.com/sagemath/sage/issues/10832

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1, 1, 0, -23611790086, 1396491910863060])
sage: E.simon_two_descent()
(1, 2, [])
sage: E.rank()
1
sage: E.gens() # uses mwrank
[(4311692542083/48594841 : -13035144436525227/338754636611 : 1)]

Example for Issue #5153:

sage: E = EllipticCurve([3,0])
sage: E.simon_two_descent()
(1, 2, [(1 : 2 : 1)])

The upper bound on the 2-Selmer rank returned by this method need not be sharp. In following example, the
upper bound equals the actual 2-Selmer rank plus 2 (see Issue #10735):

sage: E = EllipticCurve(438e1)
sage: E.simon_two_descent()
(0, 3, [])
sage: E.selmer_rank() # uses mwrank
1

sage.schemes.elliptic_curves.ell_rational_field.cremona_curves(conductors)
Return iterator over all known curves (in database) with conductor in the list of conductors.

EXAMPLES:

sage: [(E.label(), E.rank()) for E in cremona_curves(srange(35,40))]
[(35a1 , 0),
(35a2 , 0),
(35a3 , 0),
(36a1 , 0),
(36a2 , 0),
(36a3 , 0),
(36a4 , 0),
(37a1 , 1),
(37b1 , 0),
(37b2 , 0),
(37b3 , 0),
(38a1 , 0),
(38a2 , 0),
(38a3 , 0),
(38b1 , 0),
(38b2 , 0),
(39a1 , 0),
(39a2 , 0),
(39a3 , 0),
(39a4 , 0)]

sage.schemes.elliptic_curves.ell_rational_field.cremona_optimal_curves(conduc-
tors)

Return iterator over all known optimal curves (in database) with conductor in the list of conductors.

EXAMPLES:

18.1. Elliptic curves over the rational numbers 359

https://github.com/sagemath/sage/issues/5153
https://github.com/sagemath/sage/issues/10735

Elliptic curves, Release 10.4.rc1

sage: [(E.label(), E.rank()) for E in cremona_optimal_curves(srange(35,40))]
[(35a1 , 0),
(36a1 , 0),
(37a1 , 1),
(37b1 , 0),
(38a1 , 0),
(38b1 , 0),
(39a1 , 0)]

There is one case – 990h3 – when the optimal curve isn’t labeled with a 1:

sage: [e.cremona_label() for e in cremona_optimal_curves([990])]
[990a1 , 990b1 , 990c1 , 990d1 , 990e1 , 990f1 , 990g1 ,
990h3 , 990i1 , 990j1 , 990k1 , 990l1]

sage.schemes.elliptic_curves.ell_rational_field.elliptic_curve_congruence_graph(curves)
Return the congruence graph for this set of elliptic curves.

INPUT:

• curves – a list of elliptic curves

OUTPUT:

The graph with each curve as a vertex (labelled by its Cremona label) and an edge from 𝐸 to 𝐹 labelled 𝑝 if and
only if 𝐸 is congruent to 𝐹 mod 𝑝

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_rational_field import elliptic_curve_
→˓congruence_graph
sage: curves = list(cremona_optimal_curves([11..30]))
sage: G = elliptic_curve_congruence_graph(curves)
sage: G
Graph on 12 vertices

sage.schemes.elliptic_curves.ell_rational_field.integral_points_with_bounded_mw_coeffs(E ,
mw_base,
N ,
x_bound)

Return the set of integers 𝑥 which are 𝑥-coordinates of points on the curve 𝐸 which are linear combinations of the
generators (basis and torsion points) with coefficients bounded by 𝑁 .

INPUT:

• E – an elliptic curve

• mw_base – a list of points on 𝐸 (generators)

• N – a positive integer (bound on coefficients)

• x_bound – a positive real number (upper bound on size of x-coordinates)

OUTPUT:

(list) list of integral points on 𝐸 which are linear combinations of the given points with coefficients bounded by 𝑁
in absolute value.

360 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

18.2 Tables of elliptic curves of given rank

The default database of curves contains the following data:

Rank Number of curves Maximal conductor
0 30427 9999
1 31871 9999
2 2388 9999
3 836 119888
4 10 1175648
5 5 37396136
6 5 6663562874
7 5 896913586322
8 6 457532830151317
9 7 ~9.612839e+21
10 6 ~1.971057e+21
11 6 ~1.803406e+24
12 1 ~2.696017e+29
14 1 ~3.627533e+37
15 1 ~1.640078e+56
17 1 ~2.750021e+56
19 1 ~1.373776e+65
20 1 ~7.381324e+73
21 1 ~2.611208e+85
22 1 ~2.272064e+79
23 1 ~1.139647e+89
24 1 ~3.257638e+95
28 1 ~3.455601e+141

Note that lists for r>=4 are not exhaustive; there may well be curves of the given rank with conductor less than the listed
maximal conductor, which are not included in the tables.

AUTHORS:

• William Stein (2007-10-07): initial version

• Simon Spicer (2014-10-24): Added examples of more high-rank curves

See also the functions cremona_curves() and cremona_optimal_curves() which enable easy looping
through the Cremona elliptic curve database.

class sage.schemes.elliptic_curves.ec_database.EllipticCurves

Bases: object

rank(rank, tors=0, n=10, labels=False)
Return a list of at most 𝑛 curves with given rank and torsion order.

INPUT:

• rank (int) – the desired rank

• tors (int, default 0) – the desired torsion order (ignored if 0)

• n (int, default 10) – the maximum number of curves returned.

• labels (bool, default: False) – if True, return Cremona labels instead of curves.

18.2. Tables of elliptic curves of given rank 361

Elliptic curves, Release 10.4.rc1

OUTPUT:

(list) A list at most 𝑛 of elliptic curves of required rank.

EXAMPLES:

sage: elliptic_curves.rank(n=5, rank=3, tors=2, labels=True)
[59450i1 , 59450i2 , 61376c1 , 61376c2 , 65481c1]

sage: elliptic_curves.rank(n=5, rank=0, tors=5, labels=True)
[11a1 , 11a3 , 38b1 , 50b1 , 50b2]

sage: elliptic_curves.rank(n=5, rank=1, tors=7, labels=True)
[574i1 , 4730k1 , 6378c1]

sage: e = elliptic_curves.rank(6)[0]; e.ainvs(), e.conductor()
((1, 1, 0, -2582, 48720), 5187563742)
sage: e = elliptic_curves.rank(7)[0]; e.ainvs(), e.conductor()
((0, 0, 0, -10012, 346900), 382623908456)
sage: e = elliptic_curves.rank(8)[0]; e.ainvs(), e.conductor()
((1, -1, 0, -106384, 13075804), 249649566346838)

For large conductors, the labels are not known:

sage: L = elliptic_curves.rank(6, n=3); L
[Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 2582*x + 48720 over␣
→˓Rational Field,
Elliptic Curve defined by y^2 + y = x^3 - 7077*x + 235516 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 2326*x + 43456 over␣
→˓Rational Field]
sage: L[0].cremona_label()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve
defined by y^2 + x*y = x^3 + x^2 - 2582*x + 48720 over Rational Field
sage: elliptic_curves.rank(6, n=3, labels=True)
[]

18.3 Elliptic curves over number fields

An elliptic curve 𝐸 over a number field𝐾 can be given by a Weierstrass equation whose coefficients lie in𝐾 or by using
base_extend on an elliptic curve defined over a subfield.

One major difference to elliptic curves over Q is that there might not exist a global minimal equation over 𝐾, when 𝐾
does not have class number one. Another difference is the lack of understanding of modularity for general elliptic curves
over general number fields.

Currently Sage can obtain local information about𝐸/𝐾𝑣 for finite places 𝑣, it has an interface to Denis Simon’s script for
2-descent, it can compute the torsion subgroup of the Mordell-Weil group 𝐸(𝐾), and it can work with isogenies defined
over𝐾.

EXAMPLES:

362 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0, 4+i])
sage: E.discriminant()
-3456*i - 6480
sage: P= E([i,2])
sage: P+P
(-2*i + 9/16 : -9/4*i - 101/64 : 1)

sage: E.has_good_reduction(2 + i)
True
sage: E.local_data(4+i)
Local data at Fractional ideal (i + 4):

Reduction type: bad additive
Local minimal model: Elliptic Curve defined by y^2 = x^3 + (i+4)

over Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 2
Conductor exponent: 2
Kodaira Symbol: II
Tamagawa Number: 1

sage: E.tamagawa_product_bsd()
1

sage: E.simon_two_descent()
(1, 1, [(i : 2 : 1)])

sage: E.torsion_order()
1

sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3

from Elliptic Curve defined by y^2 = x^3 + (i+4)
over Number Field in i with defining polynomial x^2 + 1

to Elliptic Curve defined by y^2 = x^3 + (-27*i-108)
over Number Field in i with defining polynomial x^2 + 1]

AUTHORS:

• Robert Bradshaw 2007

• John Cremona

• Chris Wuthrich

REFERENCE:

• [Sil] Silverman, Joseph H. The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106.
Springer, 2009.

• [Sil2] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics,
151. Springer, 1994.

class sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field(K ,
ainvs)

Bases: EllipticCurve_field

Elliptic curve over a number field.

EXAMPLES:

18.3. Elliptic curves over number fields 363

Elliptic curves, Release 10.4.rc1

sage: K.<i> = NumberField(x^2 + 1)
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35])
Elliptic Curve defined by
y^2 + i*x*y + (i+1)*y = x^3 + (i-1)*x^2 + (24*i+15)*x + (14*i+35)
over Number Field in i with defining polynomial x^2 + 1

base_extend(R)

Return the base extension of self to 𝑅.

EXAMPLES:

sage: E = EllipticCurve(11a3)
sage: K = QuadraticField(-5, a)
sage: E.base_extend(K)
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a
with defining polynomial x^2 + 5 with a = 2.236067977499790?*I

Check that non-torsion points are remembered when extending the base field (see Issue #16034):

sage: E = EllipticCurve([1, 0, 1, -1751, -31352])
sage: K.<d> = QuadraticField(5)
sage: E.gens()
[(52 : 111 : 1)]
sage: EK = E.base_extend(K)
sage: EK.gens()
[(52 : 111 : 1)]

cm_discriminant()

Return the CM discriminant of the 𝑗-invariant of this curve, or 0.

OUTPUT:

An integer𝐷 which is either 0 if this curve 𝐸 does not have Complex Multiplication) (CM), or an imaginary
quadratic discriminant if 𝑗(𝐸) is the 𝑗-invariant of the order with discriminant 𝐷.

Note: If 𝐸 has CM but the discriminant𝐷 is not a square in the base field𝐾 then the extra endomorphisms
will not be defined over𝐾. See also has_rational_cm().

EXAMPLES:

sage: EllipticCurve(j=0).cm_discriminant()
-3
sage: EllipticCurve(j=1).cm_discriminant()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455
over Rational Field does not have CM
sage: EllipticCurve(j=1728).cm_discriminant()
-4
sage: EllipticCurve(j=8000).cm_discriminant()
-8
sage: K.<a> = QuadraticField(5)
sage: EllipticCurve(j=282880*a + 632000).cm_discriminant()
-20
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)

(continues on next page)

364 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/16034

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).
→˓cm_discriminant()
-108

conductor()

Return the conductor of this elliptic curve as a fractional ideal of the base field.

OUTPUT:

(fractional ideal) The conductor of the curve.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35]).conductor()
Fractional ideal (21*i - 3)
sage: K.<a> = NumberField(x^2 - x + 3)
sage: EllipticCurve([1 + a, -1 + a, 1 + a, -11 + a, 5 - 9*a]).conductor()
Fractional ideal (-6*a)

A not so well known curve with everywhere good reduction:

sage: K.<a> = NumberField(x^2 - 38)
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a -␣
→˓134364590724198567128296995, 121774567239345229314269094644186997594*a -␣
→˓750668847495706904791115375024037711300])
sage: E.conductor()
Fractional ideal (1)

An example which used to fail (see Issue #5307):

sage: K.<w> = NumberField(x^2 + x + 6)
sage: E = EllipticCurve([w, -1, 0, -w-6, 0])
sage: E.conductor()
Fractional ideal (86304, w + 5898)

An example raised in Issue #11346:

sage: K.<g> = NumberField(x^2 - x - 1)
sage: E1 = EllipticCurve(K, [0, 0, 0, -1/48, -161/864])
sage: [(p.smallest_integer(), e) for p,e in E1.conductor().factor()]
[(2, 4), (3, 1), (5, 1)]

galois_representation()

The compatible family of the Galois representation attached to this elliptic curve.

Given an elliptic curve 𝐸 over a number field𝐾 and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points
of𝐸 is a representation of the absolute Galois group of𝐾. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which
is a a representation of 𝐺𝐾 on a free 𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 + 1, a)
sage: E = EllipticCurve(11a1).change_ring(K)
sage: rho = E.galois_representation()
sage: rho

(continues on next page)

18.3. Elliptic curves over number fields 365

https://github.com/sagemath/sage/issues/5307
https://github.com/sagemath/sage/issues/11346

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Compatible family of Galois representations associated to the
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in a with defining polynomial x^2 + 1

sage: rho.is_surjective(3)
True
sage: rho.is_surjective(5) # long time (4s on sage.math, 2014)
False
sage: rho.non_surjective()
[5]

gens(**kwds)
Return some points of infinite order on this elliptic curve.

Contrary to what the name of this method suggests, the points it returns do not always generate a subgroup
of full rank in the Mordell-Weil group, nor are they necessarily linearly independent. Moreover, the number
of points can be smaller or larger than what one could expect after calling rank() or rank_bounds().

Note: The optional parameters control the Simon two descent algorithm; see the documentation of si-
mon_two_descent() for more details.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on elliptic curve

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT:

A set of points of infinite order given by the Simon two-descent.

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 + 23, a)
sage: E = EllipticCurve(K,[0,0,0,101,0])
sage: E.gens()
[(23831509/8669448*a - 2867471/8669448 : 76507317707/18049790736*a -␣
→˓424166479633/18049790736 : 1),
(-2031032029/969232392*a + 58813561/969232392 : -15575984630401/
→˓21336681877488*a + 451041199309/21336681877488 : 1),
(-186948623/4656964 : 549438861195/10049728312*a : 1)]

It can happen that no points are found if the height bounds used in the search are too small (see Issue #10745):

366 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/10745

Elliptic curves, Release 10.4.rc1

sage: K.<t> = NumberField(x^4 + x^2 - 7)
sage: E = EllipticCurve(K, [1, 0, 5*t^2 + 16, 0, 0])
sage: E.gens(lim1=1, lim3=1)
[]
sage: E.rank()
1
sage: gg=E.gens(lim3=13); gg # long time (about 4s)
[(... : 1)]

Check that the the point found has infinite order, and that it is on the curve:

sage: P=gg[0]; P.order() # long time
+Infinity
sage: E.defining_polynomial()(*P) # long time
0

Here is a curve of rank 2:

sage: K.<t> = NumberField(x^2 - 17)
sage: E = EllipticCurve(K, [-4, 0])
sage: E.gens()
[(-1/2*t + 1/2 : -1/2*t + 1/2 : 1), (-t + 3 : -2*t + 10 : 1)]
sage: E.rank()
2

Test that points of finite order are not included (see Issue #13593):

sage: E = EllipticCurve("17a3")
sage: K.<t> = NumberField(x^2 + 3)
sage: EK = E.base_extend(K)
sage: EK.rank()
0
sage: EK.gens()
[]

IMPLEMENTATION:

For curves over quadratic fields which are base-changes from Q, we delegate the work to
gens_quadratic() where methods over Q suffice. Otherwise, we use Denis Simon’s PARI/GP scripts
from http://www.math.unicaen.fr/~simon/.

gens_quadratic(**kwds)
Return generators for the Mordell-Weil group modulo torsion, for a curve which is a base change from Q to
a quadratic field.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,40,50])
sage: E.conductor()
2123582
sage: E.gens()
[(5 : 17 : 1)]
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: EK.gens_quadratic()
[(5 : 17 : 1), (-13 : 48*i + 5 : 1)]

sage: E.change_ring(QuadraticField(3, a)).gens_quadratic()

(continues on next page)

18.3. Elliptic curves over number fields 367

https://github.com/sagemath/sage/issues/13593
http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[(5 : 17 : 1), (-1 : 2*a - 1 : 1), (11/4 : 33/4*a - 23/8 : 1)]

sage: K.<a> = QuadraticField(-7)
sage: E = EllipticCurve([0,0,0,197,0])
sage: E.conductor()
2483776
sage: E.gens()
[(47995604297578081/7389879786648100 : -25038161802544048018837479/
→˓635266655830129794121000 : 1)]
sage: K.<a> = QuadraticField(7)
sage: E.change_ring(K).gens_quadratic()
[(-1209642055/59583566*a + 1639995844/29791783 : -377240626321899/
→˓1720892553212*a + 138577803462855/245841793316 : 1),
(1/28 : 393/392*a : 1),
(-61*a + 162 : 1098*a - 2916 : 1)]

sage: E = EllipticCurve([1, a])
sage: E.gens_quadratic()
Traceback (most recent call last):
...
ValueError: gens_quadratic() requires the elliptic curve to be a base change␣
→˓from Q

global_integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1, P2 = K.primes_above(5)
sage: E.global_integral_model()
Elliptic Curve defined by
y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i
over Number Field in i with defining polynomial x^2 + 1

Issue #7935:

sage: K.<a> = NumberField(x^2 - 38)
sage: E = EllipticCurve([a,1/2])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436
over Number Field in a with defining polynomial x^2 - 38

Issue #9266:

sage: K.<s> = NumberField(x^2 - 5)
sage: w = (1+s)/2
sage: E = EllipticCurve(K, [2,w])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2)
over Number Field in s with defining polynomial x^2 - 5

Issue #12151:

sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/

(continues on next page)

368 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/7935
https://github.com/sagemath/sage/issues/9266
https://github.com/sagemath/sage/issues/12151

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓1296, 634768555/7776*v - 98002625/1296, 0, 0])
sage: M = E.global_integral_model(); M # choice varies, not tested
Elliptic Curve defined by
y^2 + (2094779518028859*v-1940492905300351)*x*y +␣
→˓(477997268472544193101178234454165304071127500*v-
→˓442791377441346852919930773849502871958097500)*y = x^3 +␣
→˓(26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2
over Number Field in v with defining polynomial x^2 + 161*x - 150

Issue #14476:

sage: R.<t> = QQ[]
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
sage: E = EllipticCurve([-43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/
→˓78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 -␣
→˓4074/78125*g^2 - 711/78125*g + 10304/78125, 0,0])
sage: E.global_integral_model()
Elliptic Curve defined by
y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-44145*g+37638)*y = x^3␣
→˓+ (-954*g^3-1134*g^2+81*g+576)*x^2
over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

global_minimal_model(proof=None, semi_global=False)
Return a model of self that is integral, and minimal.

Note: Over fields of class number greater than 1, a global minimal model may not exist. If it does not, set
the parameter semi_global to True to obtain a model minimal at all but one prime.

INPUT:

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

• semi_global (boolean, default: False) – if there is no global minimal mode, return a semi-global
minimal model (minimal at all but one prime) instead, if True; raise an error if False. No effect if a
global minimal model exists.

OUTPUT:

A global integral and minimal model, or an integral model minimal at all but one prime of there is no global
minimal model and the flag semi_global is True.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 38)
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a -␣
→˓134364590724198567128296995, 121774567239345229314269094644186997594*a -␣
→˓750668847495706904791115375024037711300])
sage: E2 = E.global_minimal_model()
sage: E2
Elliptic Curve defined by
y^2 + a*x*y + (a+1)*y = x^3 + (a+1)*x^2 + (4*a+15)*x + (4*a+21)
over Number Field in a with defining polynomial x^2 - 38

sage: E2.local_data()
[]

18.3. Elliptic curves over number fields 369

https://github.com/sagemath/sage/issues/14476

Elliptic curves, Release 10.4.rc1

See Issue #11347:

sage: K.<g> = NumberField(x^2 - x - 1)
sage: E = EllipticCurve(K, [0, 0, 0, -1/48, 161/864])
sage: E2 = E.integral_model().global_minimal_model(); E2
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2
over Number Field in g with defining polynomial x^2 - x - 1

sage: [(p.norm(), e) for p, e in E2.conductor().factor()]
[(9, 1), (5, 1)]
sage: [(p.norm(), e) for p, e in E2.discriminant().factor()]
[(-5, 2), (9, 1)]

See Issue #14472, this used not to work over a relative extension:

sage: K1.<w> = NumberField(x^2 + x + 1)
sage: m = polygen(K1)
sage: K2.<v> = K1.extension(m^2 - w + 1)
sage: E = EllipticCurve([0*v, -432])
sage: E.global_minimal_model()
Elliptic Curve defined by y^2 + y = x^3
over Number Field in v with defining polynomial x^2 - w + 1 over its base␣
→˓field

See Issue #18662: for fields of class number greater than 1, even when global minimal models did exist, their
computation was not implemented. Now it is:

sage: K.<a> = NumberField(x^2 - 10)
sage: K.class_number()
2
sage: E = EllipticCurve([0, 0, 0, -186408*a - 589491, 78055704*a + 246833838])
sage: E.discriminant().norm()
16375845905239507992576
sage: E.discriminant().norm().factor()
2^31 * 3^27
sage: E.has_global_minimal_model()
True
sage: Emin = E.global_minimal_model(); Emin
Elliptic Curve defined by
y^2 + (a+1)*x*y + (a+1)*y = x^3 + (-a)*x^2 + (a-12)*x + (-2*a+2)
over Number Field in a with defining polynomial x^2 - 10

sage: Emin.discriminant().norm()
3456
sage: Emin.discriminant().norm().factor()
2^7 * 3^3

If there is no global minimal model, this method will raise an error unless you set the parameter
semi_global to True:

sage: K.<a> = NumberField(x^2 - 10)
sage: K.class_number()
2
sage: E = EllipticCurve([a, a, 0, 3*a+8, 4*a+3])
sage: E.has_global_minimal_model()
False
sage: E.global_minimal_model()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by

(continues on next page)

370 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/11347
https://github.com/sagemath/sage/issues/14472
https://github.com/sagemath/sage/issues/18662

Elliptic curves, Release 10.4.rc1

(continued from previous page)

y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over Number Field
in a with defining polynomial x^2 - 10 has no global minimal model!
For a semi-global minimal model use semi_global=True
sage: E.global_minimal_model(semi_global=True)
Elliptic Curve defined by
y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over Number Field in a
with defining polynomial x^2 - 10

An example of a curve with everywhere good reduction but which has no model with unit discriminant:

sage: K.<a> = NumberField(x^2 - x - 16)
sage: K.class_number()
2
sage: E = EllipticCurve([0,0,0,-15221331*a - 53748576, -79617688290*a -␣
→˓281140318368])
sage: Emin = E.global_minimal_model(semi_global=True)
sage: Emin.ainvs()
(a, a - 1, a, 605*a - 2728, 15887*a - 71972)
sage: Emin.discriminant()
-17*a - 16
sage: Emin.discriminant().norm()
-4096
sage: Emin.minimal_discriminant_ideal()
Fractional ideal (1)
sage: E.conductor()
Fractional ideal (1)

global_minimality_class()

Return the obstruction to this curve having a global minimal model.

OUTPUT:

An ideal class of the base number field, which is trivial if and only if the elliptic curve has a global minimal
model, and which can be used to find global and semi-global minimal models.

EXAMPLES:

A curve defined over a field of class number 2 with no global minimal model was a nontrivial minimality class:

sage: K.<a> = NumberField(x^2 - 10)
sage: K.class_number()
2
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.global_minimality_class()
Fractional ideal class (10, 5*a)
sage: E.global_minimality_class().order()
2

Over the same field, a curve defined by a non-minimal model has trivial class, showing that a global minimal
model does exist:

sage: K.<a> = NumberField(x^2 - 10)
sage: E = EllipticCurve([0, 0, 0, 4536*a+14148, -163728*a-474336])
sage: E.is_global_minimal_model()
False
sage: E.global_minimality_class()
Trivial principal fractional ideal class

18.3. Elliptic curves over number fields 371

Elliptic curves, Release 10.4.rc1

Over a field of class number 1 the result is always the trivial class:

sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve([0, 0, 0, K(16), K(64)])
sage: E.global_minimality_class()
Trivial principal fractional ideal class

sage: E = EllipticCurve([0, 0, 0, 16, 64])
sage: E.base_field()
Rational Field
sage: E.global_minimality_class()
1

has_additive_reduction(P)

Return True if this elliptic curve has (bad) additive reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has additive reduction at 𝑃 , else False.

EXAMPLES:

sage: E = EllipticCurve(27a1)
sage: [(p, E.has_additive_reduction(p)) for p in prime_range(15)]
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p, E.has_additive_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_bad_reduction(P)
Return True if this elliptic curve has bad reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has bad reduction at 𝑃 , else False.

Note: This requires determining a local integral minimal model; we do not just check that the discriminant
of the current model has valuation zero.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.has_bad_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]

(continues on next page)

372 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p, E.has_bad_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_cm()

Return whether or not this curve has a CM 𝑗-invariant.

OUTPUT:

True if this curve has CM over the algebraic closure of the base field, otherwise False. See also cm_dis-
criminant() and has_rational_cm().

Note: Even if 𝐸 has CM in this sense (that its 𝑗-invariant is a CM 𝑗-invariant), if the associated negative
discriminant𝐷 is not a square in the base field𝐾, the extra endomorphisms will not be defined over𝐾. See
also the method has_rational_cm() which tests whether 𝐸 has extra endomorphisms defined over 𝐾
or a given extension of𝐾.

EXAMPLES:

sage: EllipticCurve(j=0).has_cm()
True
sage: EllipticCurve(j=1).has_cm()
False
sage: EllipticCurve(j=1728).has_cm()
True
sage: EllipticCurve(j=8000).has_cm()
True
sage: K.<a> = QuadraticField(5)
sage: EllipticCurve(j=282880*a + 632000).has_cm()
True
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).
→˓has_cm()
True

has_global_minimal_model()

Return whether this elliptic curve has a global minimal model.

OUTPUT:

Boolean, True iff a global minimal model exists, i.e. an integral model which is minimal at every prime.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 10)
sage: E = EllipticCurve([0, 0, 0, 4536*a+14148, -163728*a-474336])
sage: E.is_global_minimal_model()
False
sage: E.has_global_minimal_model()
True

has_good_reduction(P)
Return True if this elliptic curve has good reduction at the prime 𝑃 .

INPUT:

18.3. Elliptic curves over number fields 373

Elliptic curves, Release 10.4.rc1

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) – True if the curve has good reduction at 𝑃 , else False.

Note: This requires determining a local integral minimal model; we do not just check that the discriminant
of the current model has valuation zero.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.has_good_reduction(p)) for p in prime_range(15)]
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p, E.has_good_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), True),
(Fractional ideal (2*a + 1), False)]

has_multiplicative_reduction(P)
Return True if this elliptic curve has (bad) multiplicative reduction at the prime 𝑃 .

Note: See also has_split_multiplicative_reduction() and has_nonsplit_multi-
plicative_reduction().

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has multiplicative reduction at 𝑃 , else False.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.has_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p, E.has_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), False)]

has_nonsplit_multiplicative_reduction(P)
Return True if this elliptic curve has (bad) non-split multiplicative reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has non-split multiplicative reduction at 𝑃 , else False.

374 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.has_nonsplit_multiplicative_reduction(p)) for p in prime_
→˓range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p, E.has_nonsplit_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), False)]

has_rational_cm(field=None)
Return whether or not this curve has CM defined over its base field or a given extension.

INPUT:

• field – a field, which should be an extension of the base field of the curve. If field is None (the
default), it is taken to be the base field of the curve.

OUTPUT:

True if the ring of endomorphisms of this curve over the given field is larger than ; otherwise False. See
also cm_discriminant() and has_cm().

Note: If𝐸 has CM but the discriminant𝐷 is not a square in the given field𝐾 then the extra endomorphisms
will not be defined over 𝐾, and this function will return False. See also has_cm(). To obtain the CM
discriminant, use cm_discriminant().

EXAMPLES:

sage: E = EllipticCurve(j=0)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-3
sage: E.has_rational_cm(QuadraticField(D))
True

sage: E = EllipticCurve(j=1728)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-4
sage: E.has_rational_cm(QuadraticField(D))
True

Higher degree examples:

sage: K.<a> = QuadraticField(5)
sage: E = EllipticCurve(j=282880*a + 632000)

(continues on next page)

18.3. Elliptic curves over number fields 375

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: E.cm_discriminant()
-20
sage: E.has_rational_cm(K.extension(x^2 + 5, b))
True

An error is raised if a field is given which is not an extension of the base field:

sage: E.has_rational_cm(QuadraticField(-20))
Traceback (most recent call last):
...
ValueError: Error in has_rational_cm: Number Field in a
with defining polynomial x^2 + 20 with a = 4.472135954999579?*I
is not an extension field of Number Field in a
with defining polynomial x^2 - 5 with a = 2.236067977499790?

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve(j=31710790944000*a^2 + 39953093016000*a +␣
→˓50337742902000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-108
sage: E.has_rational_cm(K.extension(x^2 + 108, b))
True

has_split_multiplicative_reduction(P)
Return True if this elliptic curve has (bad) split multiplicative reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has split multiplicative reduction at 𝑃 , else False.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.has_split_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p, E.has_split_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), False)]

height_function()

Return the canonical height function attached to self.

376 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve(K, 11a3)
sage: E.height_function()
EllipticCurveCanonicalHeight object associated to
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2
over Number Field in a with defining polynomial x^2 - 5

height_pairing_matrix(points=None, precision=None, normalised=True)
Return the height pairing matrix of the given points.

INPUT:

• points (list or None (default)) – a list of points on this curve, or None, in which case self.gens() will
be used.

• precision (int or None (default)) – number of bits of precision of result, or None, for default Real-
Field precision.

• normalised (bool, default True) – if True, use normalised heights which are independent of base
change. Otherwise use the non-normalised Néron-Tate height, as required for the regulator in the BSD
conjecture.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: E.height_pairing_matrix()
[0.0511114082399688]

For rank 0 curves, the result is a valid 0x0 matrix:

sage: EllipticCurve(11a).height_pairing_matrix()
[]
sage: E = EllipticCurve(5077a1)
sage: E.height_pairing_matrix([E.lift_x(x) for x in [-2,-7/4,1]],␣
→˓precision=100)
[1.3685725053539301120518194471 -1.3095767070865761992624519454 -0.
→˓63486715783715592064475542573]
[-1.3095767070865761992624519454 2.7173593928122930896610589220 1.
→˓0998184305667292139777571432]
[-0.63486715783715592064475542573 1.0998184305667292139777571432 0.
→˓66820516565192793503314205089]

sage: E = EllipticCurve(389a1)
sage: E = EllipticCurve(389a1)
sage: P, Q = E.point([-1,1,1]), E.point([0,-1,1])
sage: E.height_pairing_matrix([P,Q])
[0.686667083305587 0.268478098806726]
[0.268478098806726 0.327000773651605]

Over a number field:

sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^2 + 47)
sage: EK = E.base_extend(K)
sage: EK.height_pairing_matrix([EK(P),EK(Q)])
[0.686667083305587 0.268478098806726]
[0.268478098806726 0.327000773651605]

18.3. Elliptic curves over number fields 377

Elliptic curves, Release 10.4.rc1

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,i])
sage: P = E(-9+4*i, -18-25*i)
sage: Q = E(i,-i)
sage: E.height_pairing_matrix([P,Q])
[2.16941934493768 -0.870059380421505]
[-0.870059380421505 0.424585837470709]
sage: E.regulator_of_points([P,Q])
0.164101403936070

When the parameter normalised is set to False, each height is multiplied by the degree 𝑑 of the base
field, and the regulator of 𝑟 points is multiplied by 𝑑𝑟:

sage: E.height_pairing_matrix([P,Q], normalised=False)
[4.33883868987537 -1.74011876084301]
[-1.74011876084301 0.849171674941418]
sage: E.regulator_of_points([P,Q], normalised=False)
0.656405615744281

integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1, P2 = K.primes_above(5)
sage: E.global_integral_model()
Elliptic Curve defined by
y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i
over Number Field in i with defining polynomial x^2 + 1

Issue #7935:

sage: K.<a> = NumberField(x^2 - 38)
sage: E = EllipticCurve([a,1/2])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436
over Number Field in a with defining polynomial x^2 - 38

Issue #9266:

sage: K.<s> = NumberField(x^2 - 5)
sage: w = (1+s)/2
sage: E = EllipticCurve(K, [2,w])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2)
over Number Field in s with defining polynomial x^2 - 5

Issue #12151:

sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/
→˓1296, 634768555/7776*v - 98002625/1296, 0, 0])
sage: M = E.global_integral_model(); M # choice varies, not tested
Elliptic Curve defined by
y^2 + (2094779518028859*v-1940492905300351)*x*y +␣

(continues on next page)

378 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/7935
https://github.com/sagemath/sage/issues/9266
https://github.com/sagemath/sage/issues/12151

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓(477997268472544193101178234454165304071127500*v-
→˓442791377441346852919930773849502871958097500)*y = x^3 +␣
→˓(26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2
over Number Field in v with defining polynomial x^2 + 161*x - 150

Issue #14476:

sage: R.<t> = QQ[]
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
sage: E = EllipticCurve([-43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/
→˓78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 -␣
→˓4074/78125*g^2 - 711/78125*g + 10304/78125, 0,0])
sage: E.global_integral_model()
Elliptic Curve defined by
y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-44145*g+37638)*y = x^3␣
→˓+ (-954*g^3-1134*g^2+81*g+576)*x^2
over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

is_Q_curve(maxp=100, certificate=False, verbose=False)
Return True if this is a Q-curve, with optional certificate.

INPUT:

• maxp (int, default 100): bound on primes used for checking necessary local conditions. The result will
not depend on this, but using a larger value may return False faster.

• certificate (bool, default False): if True then a second value is returned giving a certificate for
the Q-curve property.

OUTPUT:

If certificate is False: either True (if 𝐸 is a Q-curve), or False.

If certificate is True: a tuple consisting of a boolean flag as before and a certificate, defined as follows:

• when the flag is True, so 𝐸 is a Q-curve:

– either {‘CM’:𝐷} where 𝐷 is a negative discriminant, when 𝐸 has potential CM with discriminant
𝐷;

– otherwise {‘CM’: 0, ‘core_poly’: 𝑓 , ‘rho’: 𝜌, ‘r’: 𝑟, ‘N’:𝑁}, when𝐸 is a non-CMQ-curve, where the
core polynomial 𝑓 is an irreducible monic polynomial over𝑄𝑄 of degree 2𝜌, all of whose roots are
𝑗-invariants of curves isogenous to 𝐸, the core level 𝑁 is a square-free integer with 𝑟 prime factors
which is the LCM of the degrees of the isogenies between these conjugates. For example, if there
exists a curve 𝐸′ isogenous to 𝐸 with 𝑗(𝐸′) = 𝑗 ∈ Q, then the certificate is {‘CM’:0, ‘r’:0, ‘rho’:0,
‘core_poly’: x-j, ‘N’:1}.

• when the flag is False, so 𝐸 is not a Q-curve, the certificate is a prime 𝑝 such that the reductions of 𝐸
at the primes dividing 𝑝 are inconsistent with the property of being a Q-curve. See the documentation
for sage.src.schemes.elliptic_curves.Qcurves.is_Q_curve() for details.

ALGORITHM:

See the documentation for sage.src.schemes.elliptic_curves.Qcurves.
is_Q_curve(), and [CrNa2020] for details.

EXAMPLES:

A non-CM curve over Q and a CM curve over Q are both trivially Q-curves:

18.3. Elliptic curves over number fields 379

https://github.com/sagemath/sage/issues/14476

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1,2,3,4,5])
sage: flag, cert = E.is_Q_curve(certificate=True)
sage: flag
True
sage: cert
{ CM : 0, N : 1, core_poly : x, r : 0, rho : 0}

sage: E = EllipticCurve(j=8000)
sage: flag, cert = E.is_Q_curve(certificate=True)
sage: flag
True
sage: cert
{ CM : -8}

A non-Q-curve over a quartic field. The local data at bad primes above 3 is inconsistent:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1]))
sage: E = EllipticCurve([K([-3,-4,1,1]), K([4,-1,-1,0]), K([-2,0,1,0]), K([-
→˓621,778,138,-178]), K([9509,2046,-24728,10380])])
sage: E.is_Q_curve(certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + (a^3+a^2-4*a-3)*x*y + (a^2-
→˓2)*y = x^3 + (-a^2-a+4)*x^2 + (-178*a^3+138*a^2+778*a-621)*x + (10380*a^3-
→˓24728*a^2+2046*a+9509) over Number Field in a with defining polynomial x^4 -
→˓ 5*x^2 + 3 is a Q-curve
No: inconsistency at the 2 primes dividing 3
- potentially multiplicative: [True, False]
(False, 3)

A non-Q-curve over a quadratic field. The local data at bad primes is consistent, but the local test at good
primes above 13 is not:

sage: K.<a> = NumberField(R([-10, 0, 1]))
sage: E = EllipticCurve([K([0,1]), K([-1,-1]), K([0,0]), K([-236,40]), K([-
→˓1840,464])])
sage: E.is_Q_curve(certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + a*x*y = x^3 + (-a-1)*x^2 +␣
→˓(40*a-236)*x + (464*a-1840) over Number Field in a with defining polynomial␣
→˓x^2 - 10 is a Q-curve
Applying local tests at good primes above p<=100
No: inconsistency at the 2 ordinary primes dividing 13
- Frobenius discriminants mod squares: [-1, -3]
No: local test at p=13 failed
(False, 13)

A quadratic Q-curve with CM discriminant −15 (so the 𝑗-invariant is not in Q):

sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([-1, -1, 1]))
sage: E = EllipticCurve([K([1,0]), K([-1,0]), K([0,1]), K([0,-2]), K([0,1])])
sage: E.is_Q_curve(certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + x*y + a*y = x^3 + (-1)*x^2 +␣
→˓(-2*a)*x + a over Number Field in a with defining polynomial x^2 - x - 1 is␣
→˓a Q-curve
Yes: E is CM (discriminant -15)
(True, { CM : -15})

An example overQ(
√
2,
√
3). The 𝑗-invariant is inQ(

√
6), so computations will be done over that field, and

380 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

in fact there is an isogenous curve with rational 𝑗, so we have a so-called rational Q-curve:

sage: K.<a> = NumberField(R([1, 0, -4, 0, 1]))
sage: E = EllipticCurve([K([-2,-4,1,1]), K([0,1,0,0]), K([0,1,0,0]), K([-4780,
→˓9170,1265,-2463]), K([163923,-316598,-43876,84852])])
sage: flag, cert = E.is_Q_curve(certificate=True) # long time
sage: flag # long time
True
sage: cert # long time
{ CM : 0, N : 1, core_degs : [1], core_poly : x - 85184/3, r : 0, rho :␣
→˓0}

Over the same field, a so-called strict Q-curve which is not isogenous to one with rational 𝑗, but whose core
field is quadratic. In fact the isogeny class over𝐾 consists of 6 curves, four with conjugate quartic 𝑗-invariants
and 2 with quadratic conjugate 𝑗-invariants in Q(

√
3) (but which are not base-changes from the quadratic

subfield):

sage: E = EllipticCurve([K([0,-3,0,1]), K([1,4,0,-1]), K([0,0,0,0]), K([-2,-
→˓16,0,4]), K([-19,-32,4,8])])
sage: flag, cert = E.is_Q_curve(certificate=True) # long time
sage: flag # long time
True
sage: cert # long time
{ CM : 0,
N : 2,
core_degs : [1, 2],
core_poly : x^2 - 840064*x + 1593413632,
r : 1,
rho : 1}

is_global_integral_model()

Return whether self is integral at all primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1, P2 = K.primes_above(5)
sage: Emin = E.global_integral_model()
sage: Emin.is_global_integral_model()
True

is_global_minimal_model()

Return whether this elliptic curve is a global minimal model.

OUTPUT:

Boolean, False if E is not integral, or if E is non-minimal at some prime, else True.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 10)
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.is_global_minimal_model()
False
sage: E.non_minimal_primes()
[Fractional ideal (2, a), Fractional ideal (5, a)]

(continues on next page)

18.3. Elliptic curves over number fields 381

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve([0, 0, 0, -3024, 46224])
sage: E.is_global_minimal_model()
False
sage: E.non_minimal_primes()
[2, 3]
sage: Emin = E.global_minimal_model()
sage: Emin.is_global_minimal_model()
True

A necessary condition to be a global minimal model is that the model must be globally integral:

sage: E = EllipticCurve([0,0,0,1/2,1/3])
sage: E.is_global_minimal_model()
False
sage: Emin.is_global_minimal_model()
True
sage: Emin.ainvs()
(0, 1, 1, -2, 0)

is_isogenous(other, proof=True, maxnorm=100)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• proof (default: True) – If False, the function will return True whenever the two curves have the
same conductor and are isogenous modulo 𝑝 for all primes 𝑝 of norm up to maxnorm. If True, the
function returns False when the previous condition does not hold, and if it does hold we compute the
complete isogeny class to see if the curves are indeed isogenous.

• maxnorm (integer, default 100) – The maximum norm of primes 𝑝 for which isogeny modulo 𝑝 will be
checked.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other.

EXAMPLES:

sage: x = polygen(QQ, x)
sage: F = NumberField(x^2 - 2, s); F
Number Field in s with defining polynomial x^2 - 2
sage: E1 = EllipticCurve(F, [7,8])
sage: E2 = EllipticCurve(F, [0,5,0,1,0])
sage: E3 = EllipticCurve(F, [0,-10,0,21,0])
sage: E1.is_isogenous(E2)
False
sage: E1.is_isogenous(E1)
True
sage: E2.is_isogenous(E2)
True
sage: E2.is_isogenous(E1)
False
sage: E2.is_isogenous(E3)
True

382 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: x = polygen(QQ, x)
sage: F = NumberField(x^2 - 2, s); F
Number Field in s with defining polynomial x^2 - 2
sage: E = EllipticCurve(14a1)
sage: EE = EllipticCurve(14a2)
sage: E1 = E.change_ring(F)
sage: E2 = EE.change_ring(F)
sage: E1.is_isogenous(E2)
True

sage: x = polygen(QQ, x)
sage: F = NumberField(x^2 - 2, s); F
Number Field in s with defining polynomial x^2 - 2
sage: k.<a> = NumberField(x^3 + 7)
sage: E = EllipticCurve(F, [7,8])
sage: EE = EllipticCurve(k, [2, 2])
sage: E.is_isogenous(EE)
Traceback (most recent call last):
...
ValueError: Second argument must be defined over the same number field.

Some examples from Cremona’s 1981 tables:

sage: K.<i> = QuadraticField(-1)
sage: E1 = EllipticCurve([i + 1, 0, 1, -240*i - 400, -2869*i - 2627])
sage: E1.conductor()
Fractional ideal (-4*i - 7)
sage: E2 = EllipticCurve([1+i,0,1,0,0])
sage: E2.conductor()
Fractional ideal (-4*i - 7)
sage: E1.is_isogenous(E2) # long time
True
sage: E1.is_isogenous(E2, proof=False) # faster (~170ms)
True

In this case E1 and E2 are in fact 9-isogenous, as may be deduced from the following:

sage: E3 = EllipticCurve([i + 1, 0, 1, -5*i - 5, -2*i - 5])
sage: E3.is_isogenous(E1)
True
sage: E3.is_isogenous(E2)
True
sage: E1.isogeny_degree(E2) # long time
9

is_local_integral_model(*P)
Tests if self is integral at the prime ideal 𝑃 , or at all the primes if 𝑃 is a list or tuple.

INPUT:

• *P – a prime ideal, or a list or tuple of primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: P1, P2 = K.primes_above(5)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: E.is_local_integral_model(P1, P2)

(continues on next page)

18.3. Elliptic curves over number fields 383

Elliptic curves, Release 10.4.rc1

(continued from previous page)

False
sage: Emin = E.local_integral_model(P1, P2)
sage: Emin.is_local_integral_model(P1, P2)
True

isogenies_prime_degree(l=None, algorithm='Billerey', minimal_models=True)
Return a list of ℓ-isogenies from self, where ℓ is a prime.

INPUT:

• l – either None or a prime or a list of primes.

• algorithm (string, default ‘Billerey’) – the algorithm to use to compute the reducible primes when l is
None. Ignored for CM curves or if l is provided. Values are ‘Billerey’ (default), ‘Larson’, and ‘heuristic’.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or
semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) ℓ-isogenies for the given ℓ or if ℓ is None, all isogenies of prime degree (see below for the CM case).

Note: Over Q, the codomains of the isogenies returned are standard minimal models. Over other number
fields they are global minimal models if these exist, otherwise models which are minimal at all but one prime.

Note: For curves with rational CM, isogenies of primes degree exist for infinitely many primes ℓ, though
there are only finitely many isogenous curves up to isomorphism. The list returned only includes one isogeny
of prime degree for each codomain.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: isogs = E.isogenies_prime_degree()
sage: [phi.degree() for phi in isogs]
[2, 3]

sage: pol = PolynomialRing(QQ, x)([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: js = hilbert_class_polynomial(-23).roots(L, multiplicities=False);␣
→˓len(js)
3
sage: E = EllipticCurve(j=js[0])
sage: len(E.isogenies_prime_degree()) # long time
3

Set minimal_models to False to avoid computing minimal models of the isogenous curves, since that can
be time-consuming since it requires computation of the class group:

sage: proof.number_field(False)
sage: K.<z> = CyclotomicField(53)
sage: E = EllipticCurve(K, [0,6,0,2,0])
sage: E.isogenies_prime_degree(2, minimal_models=False)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
(continues on next page)

384 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

over Cyclotomic Field of order 53 and degree 52
to Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48)

over Cyclotomic Field of order 53 and degree 52]
sage: E.isogenies_prime_degree(2, minimal_models=True) # not tested (10s)
[Isogeny of degree 2

from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
over Cyclotomic Field of order 53 and degree 52

to Elliptic Curve defined by y^2 = x^3 + (-20)*x + (-16)
over Cyclotomic Field of order 53 and degree 52]

isogeny_class(reducible_primes=None, algorithm='Billerey', minimal_models=True)
Return the isogeny class of this elliptic curve.

INPUT:

• reducible_primes (list of ints, or None (default)) – if not None then this should be a list of primes;
in computing the isogeny class, only composites isogenies of these degrees will be used.

• algorithm (string, default Billerey) – the algorithm to use to compute the reducible primes.
Ignored for CM curves or if reducible_primes is provided. Values are Billerey (default),
Larson , and heuristic .

• minimal_models (bool, default True) – if True, all curves in the class will be minimal or
semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

An instance of the class sage.schemes.elliptic_curves.isogeny_class.
IsogenyClass_EC_NumberField. From this object may be obtained a list of curves in the
class, a matrix of the degrees of the isogenies between them, and the isogenies themselves.

Note: If using the algorithm heuristic for non-CM curves, the result is not guaranteed
to be the complete isogeny class, since only reducible primes up to the default bound in re-
ducible_primes_naive() (currently 1000) are tested. However, no examples of non-CM elliptic
curves with reducible primes greater than 100 have yet been computed so the output is likely to be correct.

Note: By default, the curves in the isogeny class will all be minimal models if these exist (for example, when
the class number is 1); otherwise they will be minimal at all but one prime. This behaviour can be switched
off if desired, for example over fields where the computation of the class group would be too expensive.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: C = E.isogeny_class(); C
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 1
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I

The curves in the class (sorted):

sage: [E1.ainvs() for E1 in C]
[(0, 0, 0, 0, -27),
(0, 0, 0, 0, 1),
(i + 1, i, i + 1, -i + 3, 4*i),
(i + 1, i, i + 1, -i + 33, -58*i)]

18.3. Elliptic curves over number fields 385

Elliptic curves, Release 10.4.rc1

The matrix of degrees of cyclic isogenies between curves:

sage: C.matrix()
[1 3 6 2]
[3 1 2 6]
[6 2 1 3]
[2 6 3 1]

The array of isogenies themselves is not filled out but only contains those used to construct the class, the other
entries containing the integer 0. This will be changed when the class EllipticCurveIsogeny allowed
composition. In this case we used 2-isogenies to go from 0 to 2 and from 1 to 3, and 3-isogenies to go from
0 to 1 and from 2 to 3:

sage: isogs = C.isogenies()
sage: [((i,j), isogs[i][j].degree())
....: for i in range(4) for j in range(4) if isogs[i][j] != 0]
[((0, 1), 3),
((0, 3), 2),
((1, 0), 3),
((1, 2), 2),
((2, 1), 2),
((2, 3), 3),
((3, 0), 2),
((3, 2), 3)]

sage: [((i,j), isogs[i][j].x_rational_map())
....: for i in range(4) for j in range(4) if isogs[i][j] != 0]
[((0, 1), (1/9*x^3 - 12)/x^2),
((0, 3), (-1/2*i*x^2 + i*x - 12*i)/(x - 3)),
((1, 0), (x^3 + 4)/x^2),
((1, 2), (-1/2*i*x^2 - i*x - 2*i)/(x + 1)),
((2, 1), (1/2*i*x^2 - x)/(x + 3/2*i)),
((2, 3), (x^3 + 4*i*x^2 - 10*x - 10*i)/(x^2 + 4*i*x - 4)),
((3, 0), (1/2*i*x^2 + x + 4*i)/(x - 5/2*i)),
((3, 2), (1/9*x^3 - 4/3*i*x^2 - 34/3*x + 226/9*i)/(x^2 - 8*i*x - 16))]

The isogeny class may be visualized by obtaining its graph and plotting it:

sage: G = C.graph()
sage: G.show(edge_labels=True) # long time

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, 1, 0])
sage: C = E.isogeny_class(); C # long time
Isogeny class of
Elliptic Curve defined by y^2 + (i+1)*x*y + i*y = x^3 + (-i)*x^2 + x
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I

sage: len(C) # long time
6
sage: C.matrix() # long time
[1 3 9 18 6 2]
[3 1 3 6 2 6]
[9 3 1 2 6 18]
[18 6 2 1 3 9]
[6 2 6 3 1 3]
[2 6 18 9 3 1]
sage: [E1.ainvs() for E1 in C] # long time
[(i + 1, i - 1, i, -i - 1, -i + 1),
(i + 1, i - 1, i, 14*i + 4, 7*i + 14),

(continues on next page)

386 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(i + 1, i - 1, i, 59*i + 99, 372*i - 410),
(i + 1, -i, i, -240*i - 399, 2869*i + 2627),
(i + 1, -i, i, -5*i - 4, 2*i + 5),
(i + 1, -i, i, 1, 0)]

An example with CM by
√
−5:

sage: pol = PolynomialRing(QQ, x)([1,0,3,0,1])
sage: K.<c> = NumberField(pol)
sage: j = 1480640 + 565760*c^2
sage: E = EllipticCurve(j=j)
sage: E.has_cm()
True
sage: E.has_rational_cm()
True
sage: E.cm_discriminant()
-20
sage: C = E.isogeny_class()
sage: len(C)
2
sage: C.matrix()
[1 2]
[2 1]
sage: [E.ainvs() for E in C]
[(0, 0, 0, 83490*c^2 - 147015, -64739840*c^2 - 84465260),
(0, 0, 0, -161535*c^2 + 70785, -62264180*c^3 + 6229080*c)]
sage: C.isogenies()[0][1]
Isogeny of degree 2
from Elliptic Curve defined by

y^2 = x^3 + (83490*c^2-147015)*x + (-64739840*c^2-84465260)
over Number Field in c with defining polynomial x^4 + 3*x^2 + 1

to Elliptic Curve defined by
y^2 = x^3 + (-161535*c^2+70785)*x + (-62264180*c^3+6229080*c)
over Number Field in c with defining polynomial x^4 + 3*x^2 + 1

An example with CM by
√
−23 (class number 3):

sage: pol = PolynomialRing(QQ, x)([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: js = hilbert_class_polynomial(-23).roots(L,multiplicities=False);␣
→˓len(js)
3
sage: E = EllipticCurve(j=js[0])
sage: E.has_rational_cm()
True
sage: len(E.isogenies_prime_degree()) # long time
3
sage: C = E.isogeny_class(); len(C) # long time
6

The reason for the isogeny class having size six while the class number is only 3 is that the class also contains
three curves with CM by the order of discriminant −92 = 4 · (−23), which also has class number 3. The
curves in the class are sorted first by CM discriminant (then lexicographically using a-invariants):

sage: [F.cm_discriminant() for F in C] # long time
[-23, -23, -23, -92, -92, -92]

18.3. Elliptic curves over number fields 387

Elliptic curves, Release 10.4.rc1

2 splits in the order with discriminant −23, into two primes of order 3 in the class group, each of which
induces a 2-isogeny to a curve with the same endomorphism ring; the third 2-isogeny is to a curve with the
smaller endomorphism ring:

sage: [phi.codomain().cm_discriminant() for phi in E.isogenies_prime_
→˓degree()] # long time
[-92, -23, -23]

sage: C.matrix() # long time # random
[1 2 2 4 4 2]
[2 1 2 4 2 4]
[2 2 1 2 4 4]
[4 4 2 1 3 3]
[4 2 4 3 1 3]
[2 4 4 3 3 1]

The graph of this isogeny class has a shape which does not occur over Q: a triangular prism. Note that for
curves without CM, the graph has an edge between two curves if and only if they are connected by an isogeny
of prime degree, and this degree is uniquely determined by the two curves, but in the CM case this property
does not hold, since for pairs of curves in the class with the same endomorphism ring 𝑂, the set of degrees
of isogenies between them is the set of integers represented by a primitive integral binary quadratic form of
discriminant disc(𝑂), and this form represents infinitely many primes. In the matrix we give a small prime
represented by the appropriate form. In this example, the matrix is formed by four 3×3 blocks. The isogenies
of degree 2 indicated by the upper left 3×3 block of the matrix could be replaced by isogenies of any degree
represented by the quadratic form 2𝑥2 + 𝑥𝑦 + 3𝑦2 of discriminant −23. Similarly in the lower right block,
the entries of 3 could be represented by any integers represented by the quadratic form 3𝑥2 + 2𝑥𝑦 + 8𝑦2 of
discriminant −92. In the top right block and lower left blocks, by contrast, the prime entries 2 are unique
determined:

sage: G = C.graph() # long time
sage: G.adjacency_matrix() # long time # random
[0 1 1 0 0 1]
[1 0 1 0 1 0]
[1 1 0 1 0 0]
[0 0 1 0 1 1]
[0 1 0 1 0 1]
[1 0 0 1 1 0]
sage: Graph(polytopes.simplex(2).prism().adjacency_matrix()).is_isomorphic(G)
→˓# long time
True

To display the graph without any edge labels:

sage: G.show() # not tested

To display the graph with edge labels: by default, for curves with rational CM, the labels are the coefficients
of the associated quadratic forms:

sage: G.show(edge_labels=True) # not tested

For an alternative view, first relabel the edges using only 2 labels to distinguish between isogenies between
curves with the same endomorphism ring and isogenies between curves with different endomorphism rings,
then use a 3-dimensional plot which can be rotated:

sage: for i, j, l in G.edge_iterator(): # long time
....: G.set_edge_label(i, j, l.count(,))
sage: G.show3d(color_by_label=True) # long time

388 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

A class number 6 example. First we set up the fields: pol defines the same field as pol26 but is simpler:

sage: pol26 = hilbert_class_polynomial(-4*26)
sage: pol = x^6 - x^5 + 2*x^4 + x^3 - 2*x^2 - x - 1
sage: K.<a> = NumberField(pol)
sage: L. = K.extension(x^2 + 26)

Only 2 of the 𝑗-invariants with discriminant -104 are in𝐾, though all are in 𝐿:

sage: len(pol26.roots(K))
2
sage: len(pol26.roots(L))
6

We create an elliptic curve defined over𝐾 with one of the 𝑗-invariants in𝐾:

sage: j1 = pol26.roots(K)[0][0]
sage: E = EllipticCurve(j=j1)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: E.has_rational_cm(L)
True

Over𝐾 the isogeny class has size 4, with 2 curves for each of the 2𝐾-rational 𝑗-invariants:

sage: C = E.isogeny_class(); len(C) # long time (~11s)
4
sage: C.matrix() # long time
[1 13 2 26]
[13 1 26 2]
[2 26 1 13]
[26 2 13 1]
sage: len(Set([EE.j_invariant() for EE in C.curves])) # long time
2

Over 𝐿, the isogeny class grows to size 6 (the class number):

sage: EL = E.change_ring(L)
sage: CL = EL.isogeny_class(minimal_models=False) # long time
sage: len(CL) # long time
6
sage: s1 = Set([EE.j_invariant() for EE in CL.curves]) # long time
sage: s2 = Set(pol26.roots(L, multiplicities=False)) # long time
sage: s1 == s2 # long time
True

In each position in the matrix of degrees, we see primes (or 1). In fact the set of degrees of cyclic isogenies
from curve 𝑖 to curve 𝑗 is infinite, and is the set of all integers represented by one of the primitive binary
quadratic forms of discriminant −104, from which we have selected a small prime:

sage: CL.matrix() # long time # random (see :issue: 19229)
[1 2 3 3 5 5]
[2 1 5 5 3 3]
[3 5 1 3 2 5]
[3 5 3 1 5 2]

(continues on next page)

18.3. Elliptic curves over number fields 389

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[5 3 2 5 1 3]
[5 3 5 2 3 1]

To see the array of binary quadratic forms:

sage: CL.qf_matrix() # long time # random (see :issue: 19229)
[[[1], [2, 0, 13], [3, -2, 9], [3, -2, 9], [5, -4, 6], [5, -4, 6]],
[[2, 0, 13], [1], [5, -4, 6], [5, -4, 6], [3, -2, 9], [3, -2, 9]],
[[3, -2, 9], [5, -4, 6], [1], [3, -2, 9], [2, 0, 13], [5, -4, 6]],
[[3, -2, 9], [5, -4, 6], [3, -2, 9], [1], [5, -4, 6], [2, 0, 13]],
[[5, -4, 6], [3, -2, 9], [2, 0, 13], [5, -4, 6], [1], [3, -2, 9]],
[[5, -4, 6], [3, -2, 9], [5, -4, 6], [2, 0, 13], [3, -2, 9], [1]]]

As in the non-CM case, the isogeny class may be visualized by obtaining its graph and plotting it. Since there
are more edges than in the non-CM case, it may be preferable to omit the edge_labels:

sage: G = C.graph()
sage: G.show(edge_labels=False) # long time

It is possible to display a 3-dimensional plot, with colours to represent the different edge labels, in a form
which can be rotated!:

sage: G.show3d(color_by_label=True) # long time

Over larger number fields several options make computations tractable. Here we use algorithm ‘heuristic’
which avoids a rigorous computation of the reducible primes, only testing those less than 1000, and setting
minimal_models to False avoid having to compute the class group of 𝐾. To obtain minimal models
set proof.number_field(False); the class group computation takes an additional 10s:

sage: K.<z> = CyclotomicField(53)
sage: E = EllipticCurve(K,[0,6,0,2,0])
sage: C = E.isogeny_class(algorithm= heuristic , minimal_models=False); C #␣
→˓long time (10s)
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
over Cyclotomic Field of order 53 and degree 52

sage: C.curves # long time
[Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48)

over Cyclotomic Field of order 53 and degree 52,
Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
over Cyclotomic Field of order 53 and degree 52]

isogeny_degree(other)
Return the minimal degree of an isogeny between self and other, or 0 if no isogeny exists.

INPUT:

• other – another elliptic curve.

OUTPUT:

(int) The degree of an isogeny from self to other, or 0.

EXAMPLES:

sage: x = QQ[x].0
sage: F = NumberField(x^2 - 2, s); F
Number Field in s with defining polynomial x^2 - 2

(continues on next page)

390 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(14a1)
sage: EE = EllipticCurve(14a2)
sage: E1 = E.change_ring(F)
sage: E2 = EE.change_ring(F)
sage: E1.isogeny_degree(E2) # long time
2
sage: E2.isogeny_degree(E2)
1
sage: E5 = EllipticCurve(14a5).change_ring(F)
sage: E1.isogeny_degree(E5) # long time
6

sage: E = EllipticCurve(11a1)
sage: [E2.label() for E2 in cremona_curves([11..20]) if E.isogeny_degree(E2)]
[11a1 , 11a2 , 11a3]

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, 1, 0])
sage: C = E.isogeny_class() # long time
sage: [E.isogeny_degree(F) for F in C] # long time
[2, 6, 18, 9, 3, 1]

kodaira_symbol(P, proof=None)
Return the Kodaira Symbol of this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

OUTPUT:

The Kodaira Symbol of the curve at P, represented as a string.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: bad_primes = E.discriminant().support(); bad_primes
[Fractional ideal (-a), Fractional ideal (7/2*a - 81/2),
Fractional ideal (-a - 52), Fractional ideal (2)]

sage: [E.kodaira_symbol(P) for P in bad_primes]
[I0, I1, I1, II]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve(11a1).change_ring(K)
sage: [E.kodaira_symbol(P) for P in K(11).support()]
[I10]

lll_reduce(points, height_matrix=None, precision=None)
Return an LLL-reduced basis from a given basis, with transform matrix.

INPUT:

• points – a list of points on this elliptic curve, which should be independent.

• height_matrix – the height-pairing matrix of the points, or None. If None, it will be computed.

18.3. Elliptic curves over number fields 391

Elliptic curves, Release 10.4.rc1

• precision – number of bits of precision of intermediate computations (default: None, for default
RealField precision; ignored if height_matrix is supplied)

OUTPUT: A tuple (newpoints, U) where U is a unimodular integer matrix, new_points is the transform of
points by U, such that new_points has LLL-reduced height pairing matrix

Note: If the input points are not independent, the output depends on the undocumented behaviour of PARI’s
pari:qflllgram function when applied to a Gram matrix which is not positive definite.

EXAMPLES:

Some examples over Q:

sage: E = EllipticCurve([0, 1, 1, -2, 42])
sage: Pi = E.gens(); Pi
[(-4 : 1 : 1), (-3 : 5 : 1), (-11/4 : 43/8 : 1), (-2 : 6 : 1)]
sage: Qi, U = E.lll_reduce(Pi)
sage: all(sum(U[i,j]*Pi[i] for i in range(4)) == Qi[j] for j in range(4))
True
sage: sorted(Qi)
[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (0 : 6 : 1)]
sage: U.det()
1
sage: E.regulator_of_points(Pi)
4.59088036960573
sage: E.regulator_of_points(Qi)
4.59088036960574

sage: E = EllipticCurve([1,0,1,-120039822036992245303534619191166796374,
→˓504224992484910670010801799168082726759443756222911415116])
sage: xi = [2005024558054813068,
....: -4690836759490453344,
....: 4700156326649806635,
....: 6785546256295273860,
....: 6823803569166584943,
....: 7788809602110240789,
....: 27385442304350994620556,
....: 54284682060285253719/4,
....: -94200235260395075139/25,
....: -3463661055331841724647/576,
....: -6684065934033506970637/676,
....: -956077386192640344198/2209,
....: -27067471797013364392578/2809,
....: -25538866857137199063309/3721,
....: -1026325011760259051894331/108241,
....: 9351361230729481250627334/1366561,
....: 10100878635879432897339615/1423249,
....: 11499655868211022625340735/17522596,
....: 110352253665081002517811734/21353641,
....: 414280096426033094143668538257/285204544,
....: 36101712290699828042930087436/4098432361,
....: 45442463408503524215460183165/5424617104,
....: 983886013344700707678587482584/141566320009,
....: 1124614335716851053281176544216033/152487126016]
sage: points = [E.lift_x(x) for x in xi]
sage: newpoints, U = E.lll_reduce(points) # long time (35s on sage.math,␣
→˓2011)

(continues on next page)

392 Chapter 18. Elliptic curves over number fields

https://pari.math.u-bordeaux.fr/dochtml/help/qflllgram

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: [P[0] for P in newpoints] # long time
[6823803569166584943, 5949539878899294213, 2005024558054813068,␣
→˓5864879778877955778, 23955263915878682727/4, 5922188321411938518,␣
→˓5286988283823825378, 11465667352242779838, -11451575907286171572,␣
→˓3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, -
→˓5811874164190604461581/625, 26807786527159569093, 7041412654828066743,␣
→˓475656155255883588, 265757454726766017891/49, 7272142121019825303,␣
→˓50628679173833693415/4, 6951643522366348968, 6842515151518070703,␣
→˓111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]

An example to show the explicit use of the height pairing matrix:

sage: E = EllipticCurve([0, 1, 1, -2, 42])
sage: Pi = E.gens()
sage: H = E.height_pairing_matrix(Pi,3)
sage: E.lll_reduce(Pi,height_matrix=H)
(

[1 0 0 1]
[0 1 0 1]
[0 0 0 1]

[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (1 : -7 : 1)], [0 0 1 1]
)

Some examples over number fields (see Issue #9411):

sage: K.<a> = QuadraticField(-23, a)
sage: E = EllipticCurve(K, [0,0,1,-1,0])
sage: P = E(-2, -(a+1)/2)
sage: Q = E(0,-1)
sage: E.lll_reduce([P,Q])
(

[0 1]
[(0 : -1 : 1), (-2 : -1/2*a - 1/2 : 1)], [1 0]
)

sage: K.<a> = QuadraticField(-5)
sage: E = EllipticCurve(K, [0,a])
sage: points = [E.point([-211/841*a - 6044/841,-209584/24389*a + 53634/
→˓24389]),
....: E.point([-17/18*a - 1/9, -109/108*a - 277/108])]
sage: E.lll_reduce(points)
(
[(-a + 4 : -3*a + 7 : 1), (-17/18*a - 1/9 : 109/108*a + 277/108 : 1)],
[1 0]
[1 -1]
)

local_data(P=None, proof=None, algorithm='pari', globally=False)
Local data for this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None, a prime ideal of the base field of self, or an element of the base field that generates a
prime ideal.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

18.3. Elliptic curves over number fields 393

https://github.com/sagemath/sage/issues/9411

Elliptic curves, Release 10.4.rc1

• algorithm (string, default: “pari”) – Ignored unless the base field is Q. If “pari”, use the PARI
C-library pari:ellglobalred implementation of Tate’s algorithm over Q. If “generic”, use the general
number field implementation.

• globally – whether the local algorithm uses global generators for the prime ideals. Default is False,
which will not require any information about the class group. If True, a generator for 𝑃 will be used if 𝑃
is principal. Otherwise, or if globally is False, the minimal model returned will preserve integrality
at other primes, but not minimality.

OUTPUT:

If𝑃 is specified, returns the EllipticCurveLocalData object associated to the prime𝑃 for this curve.
Otherwise, returns a list of such objects, one for each prime𝑃 in the support of the discriminant of this model.

Note: The model is not required to be integral on input.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([1 + i, 0, 1, 0, 0])
sage: E.local_data()
[Local data at Fractional ideal (2*i + 1):

Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3

over Number Field in i with defining polynomial x^2 +␣
→˓1

Minimal discriminant valuation: 1
Conductor exponent: 1
Kodaira Symbol: I1
Tamagawa Number: 1,

Local data at Fractional ideal (-2*i + 3):
Reduction type: bad split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3

over Number Field in i with defining polynomial x^2 +␣
→˓1

Minimal discriminant valuation: 2
Conductor exponent: 1
Kodaira Symbol: I2
Tamagawa Number: 2]

sage: E.local_data(K.ideal(3))
Local data at Fractional ideal (3):

Reduction type: good
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3

over Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 0
Conductor exponent: 0
Kodaira Symbol: I0
Tamagawa Number: 1

sage: E.local_data(2*i + 1)
Local data at Fractional ideal (2*i + 1):

Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3

over Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 1
Conductor exponent: 1
Kodaira Symbol: I1
Tamagawa Number: 1

394 Chapter 18. Elliptic curves over number fields

https://pari.math.u-bordeaux.fr/dochtml/help/ellglobalred

Elliptic curves, Release 10.4.rc1

An example raised in Issue #3897:

sage: E = EllipticCurve([1,1])
sage: E.local_data(3)
Local data at Principal ideal (3) of Integer Ring:

Reduction type: good
Local minimal model: Elliptic Curve defined by y^2 = x^3 + x + 1

over Rational Field
Minimal discriminant valuation: 0
Conductor exponent: 0
Kodaira Symbol: I0
Tamagawa Number: 1

local_integral_model(*P)

Return a model of self which is integral at the prime ideal 𝑃 .

Note: The integrality at other primes is not affected, even if 𝑃 is non-principal.

INPUT:

• *P – a prime ideal, or a list or tuple of primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: P1, P2 = K.primes_above(5)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: E.local_integral_model((P1,P2))
Elliptic Curve defined by
y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i
over Number Field in i with defining polynomial x^2 + 1

local_minimal_model(P, proof=None, algorithm='pari')
Return a model which is integral at all primes and minimal at 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

• algorithm (string, default: “pari”) – Ignored unless the base field is Q. If “pari”, use the PARI
C-library pari:ellglobalred implementation of Tate’s algorithm over Q. If “generic”, use the general
number field implementation.

OUTPUT:

A model of the curve which is minimal (and integral) at 𝑃 .

Note: The model is not required to be integral on input.

For principal 𝑃 , a generator is used as a uniformizer, and integrality or minimality at other primes is not
affected. For non-principal 𝑃 , the minimal model returned will preserve integrality at other primes, but not
minimality.

EXAMPLES:

18.3. Elliptic curves over number fields 395

https://github.com/sagemath/sage/issues/3897
https://pari.math.u-bordeaux.fr/dochtml/help/ellglobalred

Elliptic curves, Release 10.4.rc1

sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve([20, 225, 750, 1250*a + 6250, 62500*a + 15625])
sage: P = K.ideal(a)
sage: E.local_minimal_model(P).ainvs()
(0, 1, 0, 2*a - 34, -4*a + 66)

minimal_discriminant_ideal()

Return the minimal discriminant ideal of this elliptic curve.

OUTPUT:

The integral ideal 𝐷 whose valuation at every prime 𝑃 is that of the local minimal model for 𝐸 at 𝑃 . If 𝐸
has a global minimal model, this will be the principal ideal generated by the discriminant of any such model,
but otherwise it can be a proper divisor of the discriminant of any model.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - x - 57)
sage: K.class_number()
3
sage: E = EllipticCurve([a, -a, a, -5692-820*a, -259213-36720*a])
sage: K.ideal(E.discriminant())
Fractional ideal (90118662980*a + 636812084644)
sage: K.ideal(E.discriminant()).factor()
(Fractional ideal (2))^2 * (Fractional ideal (3, a + 2))^12

Here the minimal discriminant ideal is principal but there is no global minimal model since the quotient is
the 12th power of a non-principal ideal:

sage: E.minimal_discriminant_ideal()
Fractional ideal (4)
sage: E.minimal_discriminant_ideal().factor()
(Fractional ideal (2))^2

If (and only if) the curve has everywhere good reduction the result is the unit ideal:

sage: K.<a> = NumberField(x^2 - 26)
sage: E = EllipticCurve([a, a-1, a+1, 4*a+10, 2*a+6])
sage: E.conductor()
Fractional ideal (1)
sage: E.discriminant()
-104030*a - 530451
sage: E.minimal_discriminant_ideal()
Fractional ideal (1)

Over Q, the result returned is an ideal of rather than a fractional ideal of Q:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.minimal_discriminant_ideal()
Principal ideal (10351) of Integer Ring

non_minimal_primes()

Return a list of primes at which this elliptic curve is not minimal.

OUTPUT:

A list of prime ideals (or prime numbers when the base field is Q, empty if this is a global minimal model.

EXAMPLES:

396 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: K.<a> = NumberField(x^2 - 10)
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.non_minimal_primes()
[Fractional ideal (2, a), Fractional ideal (5, a)]
sage: K.ideal(E.discriminant()).factor()
(Fractional ideal (2, a))^24 * (Fractional ideal (3, a + 1))^5 * (Fractional␣
→˓ideal (3, a + 2))^5 * (Fractional ideal (5, a))^24 * (Fractional ideal (7))
sage: E.minimal_discriminant_ideal().factor()
(Fractional ideal (2, a))^12 * (Fractional ideal (3, a + 1))^5 * (Fractional␣
→˓ideal (3, a + 2))^5 * (Fractional ideal (7))

Over Q, the primes returned are integers, not ideals:

sage: E = EllipticCurve([0, 0, 0, -3024, 46224])
sage: E.non_minimal_primes()
[2, 3]
sage: Emin = E.global_minimal_model()
sage: Emin.non_minimal_primes()
[]

If the model is not globally integral, a ValueError is raised:

sage: E = EllipticCurve([0, 0, 0, 1/2, 1/3])
sage: E.non_minimal_primes()
Traceback (most recent call last):
...
ValueError: non_minimal_primes only defined for integral models

period_lattice(embedding)
Return the period lattice of the elliptic curve for the given embedding of its base field with respect to the
differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

INPUT:

• embedding – an embedding of the base number field into R or C.

Note: The precision of the embedding is ignored: we only use the given embedding to determine which
embedding into QQbar to use. Once the lattice has been initialized, periods can be computed to arbitrary
precision.

EXAMPLES:

First define a field with two real embeddings:

sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,a,2])
sage: embs = K.embeddings(CC); len(embs)
3

For each embedding we have a different period lattice:

sage: E.period_lattice(embs[0])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
over Number Field in a with defining polynomial x^3 - 2
with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2

(continues on next page)

18.3. Elliptic curves over number fields 397

Elliptic curves, Release 10.4.rc1

(continued from previous page)

To: Algebraic Field
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I

sage: E.period_lattice(embs[1])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
over Number Field in a with defining polynomial x^3 - 2
with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> -0.6299605249474365? + 1.091123635971722?*I

sage: E.period_lattice(embs[2])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
over Number Field in a with defining polynomial x^3 - 2
with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> 1.259921049894873?

Although the original embeddings have only the default precision, we can obtain the basis with higher precision
later:

sage: L = E.period_lattice(embs[0])
sage: L.basis()
(1.86405007647981 - 0.903761485143226*I, -0.149344633143919 - 2.
→˓06619546272945*I)

sage: L.basis(prec=100)
(1.8640500764798108425920506200 - 0.90376148514322594749786960975*I,
-0.14934463314391922099120107422 - 2.0661954627294548995621225062*I)

rank(**kwds)
Return the rank of this elliptic curve, if it can be determined.

Note: The optional parameters control the Simon two descent algorithm; see the documentation of si-
mon_two_descent() for more details.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on elliptic curve

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT:

If the upper and lower bounds given by Simon two-descent are the same, then the rank has been uniquely
identified and we return this. Otherwise, we raise a ValueError with an error message specifying the

398 Chapter 18. Elliptic curves over number fields

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

upper and lower bounds.

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 + 23, a)
sage: E = EllipticCurve(K, 37)
sage: E == loads(dumps(E))
True
sage: E.rank()
2

Here is a curve with two-torsion in the Tate-Shafarevich group, so here the bounds given by the algorithm do
not uniquely determine the rank:

sage: E = EllipticCurve("15a5")
sage: K.<t> = NumberField(x^2 - 6)
sage: EK = E.base_extend(K)
sage: EK.rank(lim1=1, lim3=1, limtriv=1)
Traceback (most recent call last):
...
ValueError: There is insufficient data to determine the rank -
2-descent gave lower bound 0 and upper bound 2

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/.

rank_bounds(**kwds)
Return the lower and upper bounds using simon_two_descent(). The results of simon_two_de-
scent() are cached.

Note: The optional parameters control the Simon two descent algorithm; see the documentation of si-
mon_two_descent() for more details.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on elliptic curve

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT:

lower and upper bounds for the rank of the Mordell-Weil group

18.3. Elliptic curves over number fields 399

http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 10.4.rc1

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 + 23, a)
sage: E = EllipticCurve(K, 37)
sage: E == loads(dumps(E))
True
sage: E.rank_bounds()
(2, 2)

Here is a curve with two-torsion, again the bounds coincide:

sage: Qrt5.<rt5> = NumberField(x^2 - 5)
sage: E = EllipticCurve([0, 5-rt5, 0, rt5, 0])
sage: E.rank_bounds()
(1, 1)

Finally an example with non-trivial 2-torsion in Sha. So the 2-descent will not be able to determine the rank,
but can only give bounds:

sage: E = EllipticCurve("15a5")
sage: K.<t> = NumberField(x^2 - 6)
sage: EK = E.base_extend(K)
sage: EK.rank_bounds(lim1=1, lim3=1, limtriv=1)
(0, 2)

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/.

rational_points(**kwds)
Find rational points on the elliptic curve, all arguments are passed on to sage.schemes.generic.
algebraic_scheme.rational_points().

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.rational_points(bound=8) # long time
[(-1 : -1 : 1),
(-1 : 0 : 1),
(0 : -1 : 1),
(0 : 0 : 1),
(0 : 1 : 0),
(1/4 : -5/8 : 1),
(1/4 : -3/8 : 1),
(1 : -1 : 1),
(1 : 0 : 1),
(2 : -3 : 1),
(2 : 2 : 1)]

Check that Issue #26677 is fixed:

sage: E = EllipticCurve("11a1")
sage: E.rational_points(bound=5)
[(0 : 1 : 0), (5 : 5 : 1)]

(continues on next page)

400 Chapter 18. Elliptic curves over number fields

http://www.math.unicaen.fr/~simon/
https://github.com/sagemath/sage/issues/26677

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.rational_points(bound=6) # long time
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1)]

An example over a number field:

sage: E = EllipticCurve([1,0])
sage: pts = E.rational_points(bound=2, F=QuadraticField(-1))
sage: pts
[(-a : 0 : 1), (0 : 0 : 1), (0 : 1 : 0), (a : 0 : 1)]
sage: pts[0] + pts[1]
(a : 0 : 1)

real_components(embedding)
Return the number of real components with respect to a real embedding of the base field.

EXAMPLES:

sage: K.<a> = QuadraticField(5)
sage: embs = K.real_embeddings()
sage: E = EllipticCurve([0,1,1,a,a])
sage: [e(E.discriminant()) > 0 for e in embs]
[True, False]
sage: [E.real_components(e) for e in embs]
[2, 1]

reducible_primes(algorithm='Billerey', max_l=None, num_l=None, verbose=False)
Return a finite set of primes ℓ for which 𝐸 has a K-rational ℓ-isogeny.

For curves without CM the list returned is exactly the finite set of primes ℓ for which the mod-ℓ Galois
representation is reducible. For curves with CM this set is infinite; we return a (not necessarily minimal)
finite list of primes ℓ such that every curve isogenous to this curve can be obtained by a finite sequence of
isogenies of degree one of the primes in the list.

INPUT:

• algorithm (string) – only relevant for non-CM curves. Either ‘Billerey”, to use the methods of
[Bil2011], ‘Larson’ to use Larson’s implementation using Galois representations, or ‘heuristic’ (see be-
low).

• max_l (int orNone) – only relevant for non-CMcurves and algorithms ‘Billerey’ and ‘heuristic. Controls
the maximum prime used in either algorithm. If None, use the default for that algorithm.

• num_l (int orNone) – only relevant for non-CM curves and algorithm ‘Billerey’. Controls themaximum
number of primes used in the algorithm. If None, use the default for that algorithm.

Note: The ‘heuristic’ algorithm only checks primes up to the bound max_l. This is faster but not guaranteed
to be complete. Both the Billerey and Larson algorithms are rigorous.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # long time
[3, 5]

(continues on next page)

18.3. Elliptic curves over number fields 401

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.reducible_primes() # long time
[3, 5]
sage: K = NumberField(x**2 + 1, a)
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # CM curves always return [0]
[0]
sage: E.reducible_primes()
[2, 5]
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # long time
[2, 3]
sage: E.reducible_primes()
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f.␣
→˓[Sut2012]
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # ..but there is no 7-isogeny, long time
[7]
sage: rho.reducible_primes() # long time
[]
sage: E.reducible_primes() # long time
[]

reduction(place)
Return the reduction of the elliptic curve at a place of good reduction.

INPUT:

• place – a prime ideal in the base field of the curve

OUTPUT:

An elliptic curve over a finite field, the residue field of the place.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0, 0, 0, i, i+3])
sage: v = K.fractional_ideal(2*i+3)
sage: EK.reduction(v)
Elliptic Curve defined by y^2 = x^3 + 5*x + 8
over Residue field of Fractional ideal (2*i + 3)

sage: EK.reduction(K.ideal(1+i))
Traceback (most recent call last):
...
ValueError: The curve must have good reduction at the place.
sage: EK.reduction(K.ideal(2))
Traceback (most recent call last):
...
ValueError: The ideal must be prime.
sage: K = QQ.extension(x^2 + x + 1, "a")
sage: E = EllipticCurve([1024*K.0, 1024*K.0])
sage: E.reduction(2*K)
Elliptic Curve defined by y^2 + (abar+1)*y = x^3
over Residue field in abar of Fractional ideal (2)

402 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

regulator_of_points(points=[], precision=None, normalised=True)
Return the regulator of the given points on this curve.

INPUT:

• points – (default: empty list) a list of points on this curve

• precision – int or None (default: None): the precision in bits of the result (default real precision if
None)

• normalised (bool, default True) – if True, use normalised heights which are independent of base
change. Otherwise use the non-normalised Néron-Tate height, as required for the regulator in the BSD
conjecture

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: P = E(0,0)
sage: Q = E(1,0)
sage: E.regulator_of_points([P,Q])
0.000000000000000
sage: 2*P == Q
True

sage: E = EllipticCurve(5077a1)
sage: points = [E.lift_x(x) for x in [-2,-7/4,1]]
sage: E.regulator_of_points(points)
0.417143558758384
sage: E.regulator_of_points(points, precision=100)
0.41714355875838396981711954462

sage: E = EllipticCurve(389a)
sage: E.regulator_of_points()
1.00000000000000
sage: points = [P,Q] = [E(-1,1), E(0,-1)]
sage: E.regulator_of_points(points)
0.152460177943144
sage: E.regulator_of_points(points, precision=100)
0.15246017794314375162432475705
sage: E.regulator_of_points(points, precision=200)
0.15246017794314375162432475704945582324372707748663081784028
sage: E.regulator_of_points(points, precision=300)
0.
→˓152460177943143751624324757049455823243727077486630817840280980046053225683562463604114816

Examples over number fields:

sage: K.<a> = QuadraticField(97)
sage: E = EllipticCurve(K, [1,1])
sage: P = E(0,1)
sage: P.height()
0.476223106404866
sage: E.regulator_of_points([P])
0.476223106404866

When the parameter normalised is set to False, each height is multiplied by the degree 𝑑 of the base
field, and the regulator of 𝑟 points is multiplied by 𝑑𝑟:

18.3. Elliptic curves over number fields 403

Elliptic curves, Release 10.4.rc1

sage: P.height(normalised=False)
0.952446212809731
sage: E.regulator_of_points([P], normalised=False)
0.952446212809731

sage: E = EllipticCurve(11a1)
sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^2 + 47)
sage: EK = E.base_extend(K)
sage: T = EK(5, 5)
sage: T.order()
5
sage: P = EK(-2, -1/2*t - 1/2)
sage: P.order()
+Infinity
sage: EK.regulator_of_points([P,T]) # random very small output
-1.23259516440783e-32
sage: EK.regulator_of_points([P,T]).abs() < 1e-30
True

sage: E = EllipticCurve(389a1)
sage: P,Q = E.gens()
sage: E.regulator_of_points([P,Q])
0.152460177943144
sage: K.<t> = NumberField(x^2 + 47)
sage: EK = E.base_extend(K)
sage: EK.regulator_of_points([EK(P),EK(Q)])
0.152460177943144

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,i])
sage: P = E(-9+4*i, -18-25*i)
sage: Q = E(i, -i)
sage: E.height_pairing_matrix([P,Q])
[2.16941934493768 -0.870059380421505]
[-0.870059380421505 0.424585837470709]
sage: E.regulator_of_points([P,Q])
0.164101403936070

saturation(points, verbose=False, max_prime=0, one_prime=0, odd_primes_only=False,
lower_ht_bound=None, reg=None, debug=False)

Given a list of rational points on 𝐸 over𝐾, compute the saturation in 𝐸(𝐾) of the subgroup they generate.

INPUT:

• points (list) – list of points on E. Points of finite order are ignored; the remaining points should
be independent, or an error is raised.

• verbose (bool) – (default: False), if True, give verbose output.

• max_prime (int, default 0) – saturation is performed for all primes up to max_prime. If
max_prime is 0, perform saturation at all primes, i.e., compute the true saturation.

• odd_primes_only (bool, default False) – only do saturation at odd primes.

• one_prime (int, default 0) – if nonzero, only do saturation at this prime.

The following two inputs are optional, and may be provided to speed up the computation.

404 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• lower_ht_bound (real, default None) – lower bound of the regulator 𝐸(𝐾), if known.

• reg (real, default None) – regulator of the span of points, if known.

• debug (int, default 0) – used for debugging and testing.

OUTPUT:

• saturation (list) – points that form a basis for the saturation.

• index (int) – the index of the group generated by the input points in their saturation.

• regulator (real with default precision, or None) – regulator of saturated points.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(389a1)
sage: EK = E.change_ring(K)
sage: P = EK(-1,1); Q = EK(0,-1)

sage: EK.saturation([2*P], max_prime=2)
([(-1 : 1 : 1)], 2, 0.686667083305587)
sage: EK.saturation([12*P], max_prime=2)
([(26/361 : -5720/6859 : 1)], 4, 6.18000374975028)
sage: EK.saturation([12*P], lower_ht_bound=0.1)
([(-1 : 1 : 1)], 12, 0.686667083305587)
sage: EK.saturation([2*P, Q], max_prime=2)
([(-1 : 1 : 1), (0 : -1 : 1)], 2, 0.152460177943144)
sage: EK.saturation([P + Q, P - Q], lower_ht_bound=.1, debug=2)
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
sage: EK.saturation([P + Q, 17*Q], lower_ht_bound=0.1) # long time
([(4 : 8 : 1), (0 : -1 : 1)], 17, 0.152460177943143)

sage: R = EK(i-2,-i-3)
sage: EK.saturation([P + R, P + Q, Q + R], lower_ht_bound=0.1)
([(841/1369*i - 171/1369 : 41334/50653*i - 74525/50653 : 1),

(4 : 8 : 1),
(-1/25*i + 18/25 : -69/125*i - 58/125 : 1)],

2,
0.103174443217351)

sage: EK.saturation([26*Q], lower_ht_bound=0.1)
([(0 : -1 : 1)], 26, 0.327000773651605)

Another number field:

sage: E = EllipticCurve(389a1)
sage: K.<a> = NumberField(x^3 - x + 1)
sage: EK = E.change_ring(K)
sage: P = EK(-1,1); Q = EK(0,-1)
sage: EK.saturation([P + Q, P - Q], lower_ht_bound=0.1)
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
sage: EK.saturation([3*P, P + 5*Q], lower_ht_bound=0.1)
([(-185/2209 : -119510/103823 : 1), (80041/34225 : -26714961/6331625 : 1)],
15,
0.152460177943144)

A different curve:

sage: K.<a> = QuadraticField(3)
sage: E = EllipticCurve(37a1)

(continues on next page)

18.3. Elliptic curves over number fields 405

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: EK = E.change_ring(K)
sage: P = EK(0,0); Q = EK(2-a, 2*a-4)
sage: EK.saturation([3*P - Q, 3*P + Q], lower_ht_bound=.01)
([(0 : 0 : 1), (1/2*a : -1/4*a - 1/4 : 1)], 6, 0.0317814530725985)

The points must be linearly independent:

sage: EK.saturation([2*P, 3*Q, P-Q])
Traceback (most recent call last):
...
ValueError: points not linearly independent in saturation()

Degenerate case:

sage: EK.saturation([])
([], 1, 1.00000000000000)

ALGORITHM:

For rank 1 subgroups, simply do trial division up to the maximal prime divisor. For higher rank subgroups,
perform trial division on all linear combinations for small primes, and look for projections𝐸(𝐾) → ⊕𝐸(𝑘)⊗
F𝑝 which are either full rank or provide 𝑝-divisible linear combinations, where the 𝑘 here are residue fields
of𝐾.

simon_two_descent(verbose=0, lim1=2, lim3=4, limtriv=2, maxprob=20, limbigprime=30,
known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group 𝐸(𝐾) and a list of points.

This method is used internally by the rank(), rank_bounds() and gens() methods.

INPUT:

• self – an elliptic curve 𝐸 over a number field𝐾

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on 𝐸

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT: a triple (lower, upper, list) consisting of

• lower (integer) – lower bound on the rank

• upper (integer) – upper bound on the rank

• list – list of points in 𝐸(𝐾)

The integer upper is in fact an upper bound on the dimension of the 2-Selmer group, hence on the di-
mension of 𝐸(𝐾)/2𝐸(𝐾). It is equal to the dimension of the 2-Selmer group except possibly if 𝐸(𝐾)[2]
has dimension 1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number,
due to the fact that the algorithm does not perform a second descent.

406 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Note: For non-quadratic number fields, this code does return, but it takes a long time.

ALGORITHM:

Uses Denis Simon’s PARI/GP scripts from https://simond.users.lmno.cnrs.fr/.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 + 23, a)
sage: E = EllipticCurve(K, 37)
sage: E == loads(dumps(E))
True
sage: E.simon_two_descent()
(2, 2, [(0 : 0 : 1), (1/18*a + 7/18 : -5/54*a - 17/54 : 1)])
sage: E.simon_two_descent(lim1=5, lim3=5, limtriv=10, maxprob=7,␣
→˓limbigprime=10)
(2, 2, [(-1 : 0 : 1), (-2 : -1/2*a - 1/2 : 1)])

sage: K.<a> = NumberField(x^2 + 7, a)
sage: E = EllipticCurve(K, [0,0,0,1,a]); E
Elliptic Curve defined by y^2 = x^3 + x + a
over Number Field in a with defining polynomial x^2 + 7

sage: v = E.simon_two_descent(verbose=1); v
elliptic curve: Y^2 = x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)
Trivial points on the curve = [[1, 1, 0], [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y␣
→˓- 2, y^2 + 7), 1]]
#S(E/K)[2] = 2
#E(K)/2E(K) = 2
#III(E/K)[2] = 1
rank(E/K) = 1
listpoints = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]

(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])

sage: v = E.simon_two_descent(verbose=2)
K = bnfinit(y^2 + 7);
a = Mod(y,K.pol);
bnfellrank(K, [0, 0, 0, 1, a], [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 +␣
→˓7)]]);
...
v = [1, 1, [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]]]
sage: v
(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])

A curve with 2-torsion:

sage: K.<a> = NumberField(x^2 + 7)
sage: E = EllipticCurve(K, 15a)
sage: E.simon_two_descent() # long time (3s on sage.math, 2013), points can␣
→˓vary
(1, 3, [...])

Check that the bug reported in Issue #15483 is fixed:

sage: K.<s> = QuadraticField(229)
sage: c4 = 2173 - 235*(1 - s)/2

(continues on next page)

18.3. Elliptic curves over number fields 407

https://simond.users.lmno.cnrs.fr/
https://github.com/sagemath/sage/issues/15483

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: c6 = -124369 + 15988*(1 - s)/2
sage: E = EllipticCurve([-c4/48, -c6/864])
sage: E.simon_two_descent()
(0, 0, [])

sage: R.<t> = QQ[]
sage: L.<g> = NumberField(t^3 - 9*t^2 + 13*t - 4)
sage: E1 = EllipticCurve(L, [1-g*(g-1), -g^2*(g-1), -g^2*(g-1), 0, 0])
sage: E1.rank() # long time (about 5 s)
0

sage: K = CyclotomicField(43).subfields(3)[0][0]
sage: E = EllipticCurve(K, 37)
sage: E.simon_two_descent() # long time (4s on sage.math, 2013)
(3,
3,
[(1/8*zeta43_0^2 - 3/8*zeta43_0 - 1/4 : -5/16*zeta43_0^2 + 7/16*zeta43_0 + 1/
→˓8 : 1),
(0 : 0 : 1)])

tamagawa_exponent(P, proof=None)
Return the Tamagawa index of this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

OUTPUT:

(positive integer) The Tamagawa index of the curve at P.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: [E.tamagawa_exponent(P) for P in E.discriminant().support()]
[1, 1, 1, 1]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve(11a1).change_ring(K)
sage: [E.tamagawa_exponent(P) for P in K(11).support()]
[10]

tamagawa_number(P, proof=None)
Return the Tamagawa number of this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

OUTPUT:

(positive integer) The Tamagawa number of the curve at 𝑃 .

408 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: [E.tamagawa_number(P) for P in E.discriminant().support()]
[1, 1, 1, 1]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve(11a1).change_ring(K)
sage: [E.tamagawa_number(P) for P in K(11).support()]
[10]

tamagawa_numbers()

Return a list of all Tamagawa numbers for all prime divisors of the conductor (in order).

EXAMPLES:

sage: e = EllipticCurve(30a1)
sage: e.tamagawa_numbers()
[2, 3, 1]
sage: vector(e.tamagawa_numbers())
(2, 3, 1)
sage: K.<a> = NumberField(x^2 + 3)
sage: eK = e.base_extend(K)
sage: eK.tamagawa_numbers()
[4, 6, 1]

tamagawa_product()

Return the product of the Tamagawa numbers 𝑐𝑣 where 𝑣 runs over all prime ideals of𝐾.

Note: See also tamagawa_product_bsd(), which includes an additional factor when the model is not globally
minimal, as required by the BSD formula.

OUTPUT:

A positive integer.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0, 2+i])
sage: E.tamagawa_product()
1

sage: E = EllipticCurve([(2*i+1)^2, i*(2*i+1)^7])
sage: E.tamagawa_product()
4

An example over Q:

sage: E = EllipticCurve(30a)
sage: E.tamagawa_product()
6

An example with everywhere good reduction, where the product is empty:

18.3. Elliptic curves over number fields 409

Elliptic curves, Release 10.4.rc1

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 - 38)
sage: E = EllipticCurve([a, -a + 1, a + 1, -5*a + 15, -5*a + 21])
sage: E.tamagawa_numbers()
[]
sage: E.tamagawa_product()
1

tamagawa_product_bsd()

Given an elliptic curve 𝐸 over a number field 𝐾, this function returns the integer 𝐶(𝐸/𝐾) that appears in
the Birch and Swinnerton-Dyer conjecture accounting for the local information at finite places. If the model
is a global minimal model then 𝐶(𝐸/𝐾) is simply the product of the Tamagawa numbers 𝑐𝑣 where 𝑣 runs
over all prime ideals of𝐾. Otherwise, if the model has to be changed at a place 𝑣 a correction factor appears.
The definition is such that 𝐶(𝐸/𝐾) times the periods at the infinite places is invariant under change of the
Weierstrass model. See [Tate1966] and [DD2010] for details.

Note: This definition differs from the definition of tamagawa_product for curves defined overQ. Over
the rational number it is always defined to be the product of the Tamagawa numbers, so the two definitions
only agree when the model is global minimal.

OUTPUT:

A rational number

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0, 2+i])
sage: E.tamagawa_product_bsd()
1

sage: E = EllipticCurve([(2*i+1)^2, i*(2*i+1)^7])
sage: E.tamagawa_product_bsd()
4

An example where the Neron model changes over K:

sage: K.<t> = NumberField(x^5 - 10*x^3 + 5*x^2 + 10*x + 1)
sage: E = EllipticCurve(K, 75a1)
sage: E.tamagawa_product_bsd()
5
sage: da = E.local_data()
sage: [dav.tamagawa_number() for dav in da]
[1, 1]

An example over Q (Issue #9413):

sage: E = EllipticCurve(30a)
sage: E.tamagawa_product_bsd()
6

torsion_order()

Return the order of the torsion subgroup of this elliptic curve.

OUTPUT:

(integer) the order of the torsion subgroup of this elliptic curve.

410 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/9413

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: x = polygen(ZZ, x)
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: EK.torsion_order() # long time (2s on sage.math, 2014)
25

sage: E = EllipticCurve(15a1)
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_order()
16

sage: E = EllipticCurve(19a1)
sage: K.<t> = NumberField(x^9 - 3*x^8 - 4*x^7 + 16*x^6 - 3*x^5 - 21*x^4 + 5*x^
→˓3 + 7*x^2 - 7*x + 1)
sage: EK = E.base_extend(K)
sage: EK.torsion_order()
9

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0, 0, 0, i, i + 3])
sage: EK.torsion_order()
1

torsion_points()

Return a list of the torsion points of this elliptic curve.

OUTPUT:

(list) A sorted list of the torsion points.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.torsion_points()
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
sage: x = polygen(ZZ, x)
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: EK.torsion_points() # long time (1s on sage.math, 2014)
[(0 : 1 : 0),
(t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1),
(1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : -6/11*t^3 - 3/11*t^2 - 26/11*t -␣
→˓321/11 : 1),
(1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : 6/11*t^3 + 3/11*t^2 + 26/11*t + 310/
→˓11 : 1),
(t : -1/11*t^3 - 6/11*t^2 - 19/11*t - 59/11 : 1),
(16 : 60 : 1),
(-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : 6/55*t^3 + 3/55*t^2 + 25/11*t +␣
→˓156/55 : 1),
(14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : 16/121*t^3 - 69/121*t^2 +␣
→˓293/121*t - 46/121 : 1),
(-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : -15/121*t^3 - 156/121*t^2␣
→˓+ 232/121*t - 2887/121 : 1),
(10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : -32/121*t^3 - 60/121*t^2 +␣

(continues on next page)

18.3. Elliptic curves over number fields 411

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓261/121*t + 686/121 : 1),
(5 : 5 : 1),
(-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : -7/121*t^3 + 24/121*t^2 +␣
→˓197/121*t + 16/121 : 1),
(3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : 7/55*t^3 - 24/55*t^2 + 9/11*t + 17/
→˓55 : 1),
(-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : -34/121*t^3 + 27/121*t^2 -␣
→˓305/121*t - 829/121 : 1),
(5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : 49/121*t^3 + 129/121*t^2 +␣
→˓315/121*t + 86/121 : 1),
(5 : -6 : 1),
(5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : -49/121*t^3 - 129/121*t^2 -␣
→˓315/121*t - 207/121 : 1),
(-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : 34/121*t^3 - 27/121*t^2 + 305/
→˓121*t + 708/121 : 1),
(3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : -7/55*t^3 + 24/55*t^2 - 9/11*t - 72/
→˓55 : 1),
(-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : 7/121*t^3 - 24/121*t^2 -␣
→˓197/121*t - 137/121 : 1),
(16 : -61 : 1),
(10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : 32/121*t^3 + 60/121*t^2 -␣
→˓261/121*t - 807/121 : 1),
(-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : 15/121*t^3 + 156/121*t^2 -␣
→˓232/121*t + 2766/121 : 1),
(14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : -16/121*t^3 + 69/121*t^2 -␣
→˓293/121*t - 75/121 : 1),
(-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : -6/55*t^3 - 3/55*t^2 - 25/11*t -␣
→˓211/55 : 1)]

sage: E = EllipticCurve(15a1)
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_points()
[(0 : 1 : 0),
(-7 : -5*t - 2 : 1),
(-7 : 5*t + 8 : 1),
(-13/4 : 9/8 : 1),
(-2 : -2 : 1),
(-2 : 3 : 1),
(-t - 2 : -t - 7 : 1),
(-t - 2 : 2*t + 8 : 1),
(-1 : 0 : 1),
(t : t - 5 : 1),
(t : -2*t + 4 : 1),
(1/2 : -5/4*t - 2 : 1),
(1/2 : 5/4*t + 1/2 : 1),
(3 : -2 : 1),
(8 : -27 : 1),
(8 : 18 : 1)]

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve(K, [0,0,0,0,-1])
sage: EK.torsion_points()
[(0 : 1 : 0),
(-2 : -3*i : 1),
(-2 : 3*i : 1),

(continues on next page)

412 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(0 : -i : 1),
(0 : i : 1),
(1 : 0 : 1)]

torsion_subgroup()

Return the torsion subgroup of this elliptic curve.

OUTPUT: The EllipticCurveTorsionSubgroup associated to this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: x = polygen(ZZ, x)
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: tor = EK.torsion_subgroup() # long time (2s on sage.math, 2014)
sage: tor # long time
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field
in t with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101

sage: tor.gens() # long time
((16 : 60 : 1), (t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1))

sage: E = EllipticCurve(15a1)
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_subgroup()
Torsion Subgroup isomorphic to Z/4 + Z/4 associated to the
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + (-10)*x + (-10)
over Number Field in t with defining polynomial x^2 + 2*x + 10

sage: E = EllipticCurve(19a1)
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-
→˓7*x+1)
sage: EK = E.base_extend(K)
sage: EK.torsion_subgroup()
Torsion Subgroup isomorphic to Z/9 associated to the Elliptic Curve defined
by y^2 + y = x^3 + x^2 + (-9)*x + (-15) over Number Field in t with defining
polynomial x^9 - 3*x^8 - 4*x^7 + 16*x^6 - 3*x^5 - 21*x^4 + 5*x^3 + 7*x^2 -␣
→˓7*x + 1

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0, 0, 0, i, i+3])
sage: EK.torsion_subgroup ()
Torsion Subgroup isomorphic to Trivial group associated to the
Elliptic Curve defined by y^2 = x^3 + i*x + (i+3)
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I

See also:

Use division_field() to determine the field of definition of the ℓ-torsion subgroup.

18.3. Elliptic curves over number fields 413

Elliptic curves, Release 10.4.rc1

18.4 Canonical heights for elliptic curves over number fields

Also, rigorous lower bounds for the canonical height of non-torsion points, implementing the algorithms in [CS2006]
(over Q) and [Tho2010], which also refer to [CPS2006].

AUTHORS:

• Robert Bradshaw (2010): initial version

• John Cremona (2014): added many docstrings and doctests

class sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight(E)

Bases: object

Class for computing canonical heights of points on elliptic curves defined over number fields, including rigorous
lower bounds for the canonical height of non-torsion points.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import EllipticCurveCanonicalHeight
sage: E = EllipticCurve([0,0,0,0,1])
sage: EllipticCurveCanonicalHeight(E)
EllipticCurveCanonicalHeight object associated to
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field

Normally this object would be created like this:

sage: E.height_function()
EllipticCurveCanonicalHeight object associated to
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field

B(n, mu)
Return the value 𝐵𝑛(𝜇).

INPUT:

• n (int) – a positive integer

• mu (real) – a positive real number

OUTPUT:

The real value 𝐵𝑛(𝜇) as defined in [Tho2010], section 5.

EXAMPLES:

Example 10.2 from [Tho2010]:

sage: K.<i> = QuadraticField(-1) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([0, 1-i, i, -i, 0]) #␣
→˓needs sage.rings.number_field
sage: H = E.height_function() #␣
→˓needs sage.rings.number_field

In [Tho2010] the value is given as 0.772:

sage: RealField(12)(H.B(5, 0.01)) #␣
→˓needs sage.rings.number_field
0.777

414 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

DE(n)
Return the value 𝐷𝐸(𝑛).

INPUT:

• n (int) – a positive integer

OUTPUT:

The value 𝐷𝐸(𝑛) as defined in [Tho2010], section 4.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, 1+5*i, 3+i])
sage: H = E.height_function()
sage: [H.DE(n) for n in srange(1,6)]
[0, 2*log(5) + 2*log(2), 0, 2*log(13) + 2*log(5) + 4*log(2), 0]

ME()

Return the norm of the ideal𝑀𝐸 .

OUTPUT:

The norm of the ideal𝑀𝐸 as defined in [Tho2010], section 3.1. This is 1 if 𝐸 is a global minimal model,
and in general measures the non-minimality of 𝐸.

EXAMPLES:

sage: K.<i> = QuadraticField(-1) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([0, 0, 0, 1+5*i, 3+i]) #␣
→˓needs sage.rings.number_field
sage: H = E.height_function() #␣
→˓needs sage.rings.number_field
sage: H.ME() #␣
→˓needs sage.rings.number_field
1
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.height_function().ME()
1
sage: E = EllipticCurve([0,0,0,0,64])
sage: E.height_function().ME()
4096
sage: E.discriminant()/E.minimal_model().discriminant()
4096

S(xi1, xi2, v)
Return the union of intervals 𝑆(𝑣)(𝜉1, 𝜉2).

INPUT:

• xi1, xi2 (real) – real numbers with 𝜉1 ≤ 𝜉2.

• v (embedding) – a real embedding of the field.

OUTPUT:

The union of intervals 𝑆(𝑣)(𝜉1, 𝜉2) defined in [Tho2010] section 6.1.

EXAMPLES:

18.4. Canonical heights for elliptic curves over number fields 415

Elliptic curves, Release 10.4.rc1

An example over Q:

sage: E = EllipticCurve(389a)
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2, 3, v)
([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.
→˓775487322608105])

An example over a number field:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(9, 10, v)
([0.078119444725347..., 0.082342373201640...] U [0.91765762679836..., 0.
→˓92188055527465...])

Sn(xi1, xi2, n, v)

Return the union of intervals 𝑆(𝑣)
𝑛 (𝜉1, 𝜉2).

INPUT:

• xi1, xi2 (real) – real numbers with 𝜉1 ≤ 𝜉2.

• n (integer) – a positive integer.

• v (embedding) – a real embedding of the field.

OUTPUT:

The union of intervals 𝑆(𝑣)
𝑛 (𝜉1, 𝜉2) defined in [Tho2010] (Lemma 6.1).

EXAMPLES:

An example over Q:

sage: E = EllipticCurve(389a)
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2, 3, v), H.Sn(2, 3, 1, v)
(([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.
→˓775487322608105]),
([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.
→˓775487322608105]))
sage: H.Sn(2, 3, 6, v)
([0.0374187795653158, 0.0457574702661884] U [0.120909196400478, 0.
→˓129247887101351] U [0.204085446231982, 0.212424136932855] U [0.
→˓287575863067145, 0.295914553768017] U [0.370752112898649, 0.
→˓379090803599522] U [0.454242529733812, 0.462581220434684] U [0.
→˓537418779565316, 0.545757470266188] U [0.620909196400478, 0.
→˓629247887101351] U [0.704085446231982, 0.712424136932855] U [0.
→˓787575863067145, 0.795914553768017] U [0.870752112898649, 0.
→˓879090803599522] U [0.954242529733812, 0.962581220434684])

An example over a number field:

416 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(2, 3, v), H.Sn(2, 3, 1, v)
(([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.
→˓857827934139925]),
([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.
→˓857827934139925]))
sage: H.Sn(2, 3, 6, v)
([0.0236953443100124, 0.0288076194880974] U [0.137859047178569, 0.
→˓142971322356654] U [0.190362010976679, 0.195474286154764] U [0.
→˓304525713845236, 0.309637989023321] U [0.357028677643346, 0.
→˓362140952821431] U [0.471192380511903, 0.476304655689988] U [0.
→˓523695344310012, 0.528807619488097] U [0.637859047178569, 0.
→˓642971322356654] U [0.690362010976679, 0.695474286154764] U [0.
→˓804525713845236, 0.809637989023321] U [0.857028677643346, 0.
→˓862140952821431] U [0.971192380511903, 0.976304655689988])

alpha(v, tol=0.01)
Return the constant 𝛼𝑣 associated to the embedding v.

INPUT:

• v – an embedding of the base field into R or C

OUTPUT:

The constant 𝛼𝑣 . In the notation of [CPS2006] and [Tho2010] (section 3.2), 𝛼3
𝑣 = 𝜖𝑣 . The result is cached

since it only depends on the curve.

EXAMPLES:

Example 1 from [CPS2006]:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, 1 + 5*i, 3 + i])
sage: H = E.height_function()
sage: alpha = H.alpha(K.places()[0])
sage: alpha
1.12272013439355

Compare with log(𝜖𝑣) = 0.344562... in [CPS2006]:

sage: 3*alpha.log() #␣
→˓needs sage.rings.number_field
0.347263296676126

base_field()

Return the base field.

EXAMPLES:

sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.base_field()
Rational Field

18.4. Canonical heights for elliptic curves over number fields 417

Elliptic curves, Release 10.4.rc1

complex_intersection_is_empty(Bk, v, verbose=False, use_half=True)

Returns True iff an intersection of 𝑇 (𝑣)
𝑛 sets is empty.

INPUT:

• Bk (list) – a list of reals.

• v (embedding) – a complex embedding of the number field.

• verbose (boolean, default: False) – verbosity flag.

• use_half (boolean, default: False) – if True, use only half the fundamental region.

OUTPUT:

True or False, according as the intersection of the unions of intervals 𝑇 (𝑣)
𝑛 (−𝑏, 𝑏) for 𝑏 in the list Bk (see

[Tho2010], section 7) is empty or not. When Bk is the list of 𝑏 =
√︀
𝐵𝑛(𝜇) for 𝑛 = 1, 2, 3, . . . for some

𝜇 > 0 this means that all non-torsion points on 𝐸 with everywhere good reduction have canonical height
strictly greater than 𝜇, by [Tho2010], Proposition 7.8.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.complex_embeddings()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on 𝐸 with everywhere good reduction
have canonical height strictly greater than 0.02, but fail to prove the same for 0.03. For the first proof, using
only 𝑛 = 1, 2, 3 is not sufficient:

sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3]], v) #␣
→˓long time, needs sage.rings.number_field
False
sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3,4]], v) #␣
→˓needs sage.rings.number_field
True
sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1,2,3,4]], v) #␣
→˓long time, needs sage.rings.number_field
False

Using 𝑛 ≤ 6 enables us to prove the lower bound 0.03. Note that it takes longer when the result is False
than when it is True:

sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1..6]], v) #␣
→˓needs sage.rings.number_field
True

curve()

Return the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.curve()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field

418 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

e_p(p)
Return the exponent of the group over the residue field at p.

INPUT:

• p – a prime ideal of𝐾 (or a prime number if𝐾 = Q).

OUTPUT:

A positive integer 𝑒𝑝, the exponent of the group of nonsingular points on the reduction of the elliptic curve
modulo 𝑝. The result is cached.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, 1 + 5*i, 3 + i])
sage: H = E.height_function()
sage: H.e_p(K.prime_above(2))
2
sage: H.e_p(K.prime_above(3))
10
sage: H.e_p(K.prime_above(5))
9
sage: E.conductor().norm().factor()
2^10 * 20921
sage: p1, p2 = K.primes_above(20921)
sage: E.local_data(p1)
Local data at Fractional ideal (-40*i + 139):
Reduction type: bad split multiplicative
...
sage: H.e_p(p1)
20920
sage: E.local_data(p2)
Local data at Fractional ideal (40*i + 139):
Reduction type: good
...
sage: H.e_p(p2)
20815

fk_intervals(v=None, N=20, domain=Complex Interval Field with 53 bits of precision)
Return a function approximating the Weierstrass function, with error.

INPUT:

• v (embedding) – an embedding of the number field. If None (default) use the real embedding if the field
is Q and raise an error for other fields.

• N (int) – The number of terms to use in the 𝑞-expansion of ℘.

• domain (complex field) – the model of C to use, for example CDF of CIF (default).

OUTPUT:

A pair of functions fk, err which can be evaluated at complex numbers 𝑧 (in the correct domain) to give an
approximation to ℘(𝑧) and an upper bound on the error, respectively. The Weierstrass function returned is
with respect to the normalised lattice [1, 𝜏] associated to the given embedding.

EXAMPLES:

18.4. Canonical heights for elliptic curves over number fields 419

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37a)
sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: z = CDF(0.3, 0.4)

Compare the value give by the standard elliptic exponential (scaled since fk is with respect to the normalised
lattice):

sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2 ** 2
-1.82543539306049 - 2.49336319992847*I

to the value given by this function, and see the error:

sage: fk, err = E.height_function().fk_intervals(N=10)
sage: fk(CIF(z))
-1.82543539306049? - 2.49336319992847?*I
sage: err(CIF(z))
2.71750621458744e-31

The same, but in the domain CDF instead of CIF:

sage: fk, err = E.height_function().fk_intervals(N=10, domain=CDF)
sage: fk(z)
-1.8254353930604... - 2.493363199928...*I

min(tol, n_max, verbose=False)
Returns a lower bound for all points of infinite order.

INPUT:

• tol – tolerance in output (see below).

• n_max – how many multiples to use in iteration.

• verbose (boolean, default: False) – verbosity flag.

OUTPUT:

A positive real 𝜇 for which it has been established rigorously that every point of infinite order on the elliptic
curve (defined over its ground field) has canonical height greater than 𝜇, and such that it is not possible (at
least without increasing n_max) to prove the same for 𝜇 · tol.

EXAMPLES:

Example 1 from [CS2006] (where the same lower bound of 0.1126 was given):

sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min(.0001, 5)
0.0011263287309893311

Example 10.1 from [Tho2010] (where a lower bound of 0.18 was given):

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, 91 - 26*i, -144 - 323*i])
sage: H = E.height_function()
sage: H.min(0.1, 4) # long time
0.1621049443313762

Example 10.2 from [Tho2010]:

420 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 1 - i, i, -i, 0])
sage: H = E.height_function()
sage: H.min(0.01, 5) # long time
0.020153685521979152

In this example the point 𝑃 = (0, 0) has height 0.023 so our lower bound is quite good:

sage: P = E((0,0)) #␣
→˓needs sage.rings.number_field
sage: P.height() #␣
→˓needs sage.rings.number_field
0.0230242154471211

Example 10.3 from [Tho2010] (where the same bound of 0.0625 is given):

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0, 0, 0, -3*a - a^2, a^2])
sage: H = E.height_function()
sage: H.min(0.1, 5) # long time
0.0625

More examples over Q:

sage: E = EllipticCurve(37a)
sage: h = E.height_function()
sage: h.min(.01, 5)
0.03987318057488725
sage: E.gen(0).height()
0.0511114082399688

After base change the lower bound can decrease:

sage: K.<a> = QuadraticField(-5) #␣
→˓needs sage.rings.number_field
sage: E.change_ring(K).height_function().min(0.5, 10) # long time,␣
→˓needs sage.rings.number_field
0.04419417382415922

sage: E = EllipticCurve(389a)
sage: h = E.height_function()
sage: h.min(0.1, 5)
0.05731275270029196
sage: [P.height() for P in E.gens()]
[0.686667083305587, 0.327000773651605]

min_gr(tol, n_max, verbose=False)
Returns a lower bound for points of infinite order with good reduction.

INPUT:

• tol – tolerance in output (see below).

• n_max – how many multiples to use in iteration.

• verbose (boolean, default: False) – verbosity flag.

18.4. Canonical heights for elliptic curves over number fields 421

Elliptic curves, Release 10.4.rc1

OUTPUT:

A positive real 𝜇 for which it has been established rigorously that every point of infinite order on the elliptic
curve (defined over its ground field), which has good reduction at all primes, has canonical height greater than
𝜇, and such that it is not possible (at least without increasing n_max) to prove the same for 𝜇 · tol.

EXAMPLES:

Example 1 from [CS2006] (where a lower bound of 1.9865 was given):

sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min_gr(.0001, 5)
1.98684388146518

Example 10.1 from [Tho2010] (where a lower bound of 0.18 was given):

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, 91 - 26*i, -144 - 323*i])
sage: H = E.height_function()
sage: H.min_gr(0.1, 4) # long time
0.1621049443313762

Example 10.2 from [Tho2010]:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 1 - i, i, -i, 0])
sage: H = E.height_function()
sage: H.min_gr(0.01, 5) # long time
0.020153685521979152

In this example the point 𝑃 = (0, 0) has height 0.023 so our lower bound is quite good:

sage: P = E((0,0)) #␣
→˓needs sage.rings.number_field
sage: P.has_good_reduction() #␣
→˓needs sage.rings.number_field
True
sage: P.height() #␣
→˓needs sage.rings.number_field
0.0230242154471211

Example 10.3 from [Tho2010] (where the same bound of 0.25 is given):

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0, 0, 0, -3*a - a^2, a^2])
sage: H = E.height_function()
sage: H.min_gr(0.1, 5) # long time
0.25

psi(xi, v)
Return the normalised elliptic log of a point with this x-coordinate.

INPUT:

• xi (real) – the real x-coordinate of a point on the curve in the connected component with respect to a
real embedding.

422 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• v (embedding) – a real embedding of the number field.

OUTPUT:

A real number in the interval [0.5,1] giving the elliptic logarithm of a point on 𝐸 with 𝑥-coordinate xi, on
the connected component with respect to the embedding 𝑣, scaled by the real period.

EXAMPLES:

An example over Q:

sage: E = EllipticCurve(389a)
sage: v = QQ.places()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(10/9)
sage: L(P)
0.958696500380439
sage: L(P) / L.real_period()
0.384985810227885
sage: H = E.height_function()
sage: H.psi(10/9, v)
0.615014189772115

An example over a number field:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: v = K.real_places()[0]
sage: L = E.period_lattice(v)
sage: L(P)
3.51086196882538
sage: L(P) / L.real_period()
0.867385122699931
sage: xP = v(P.x())
sage: H = E.height_function()
sage: H.psi(xP, v)
0.867385122699931
sage: H.psi(1.23, v)
0.785854718241495

real_intersection_is_empty(Bk, v)

Returns True iff an intersection of 𝑆(𝑣)
𝑛 sets is empty.

INPUT:

• Bk (list) – a list of reals.

• v (embedding) – a real embedding of the number field.

OUTPUT:

True or False, according as the intersection of the unions of intervals 𝑆(𝑣)
𝑛 (−𝑏, 𝑏) for 𝑏 in the list Bk is empty

or not. When Bk is the list of 𝑏 = 𝐵𝑛(𝜇) for 𝑛 = 1, 2, 3, . . . for some 𝜇 > 0 this means that all non-torsion
points on 𝐸 with everywhere good reduction have canonical height strictly greater than 𝜇, by [Tho2010],
Proposition 6.2.

EXAMPLES:

An example over Q:

18.4. Canonical heights for elliptic curves over number fields 423

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a)
sage: v = QQ.places()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on 𝐸 with everywhere good reduction
have canonical height strictly greater than 0.2, but fail to prove the same for 0.3:

sage: H.real_intersection_is_empty([H.B(n,0.2) for n in srange(1,10)], v)
True
sage: H.real_intersection_is_empty([H.B(n,0.3) for n in srange(1,10)], v)
False

An example over a number field:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on 𝐸 with everywhere good reduction
have canonical height strictly greater than 0.07, but fail to prove the same for 0.08:

sage: H.real_intersection_is_empty([H.B(n,0.07) for n in srange(1,5)], v) #␣
→˓long time, needs sage.rings.number_field
True
sage: H.real_intersection_is_empty([H.B(n,0.08) for n in srange(1,5)], v) #␣
→˓needs sage.rings.number_field
False

tau(v)
Return the normalised upper half-plane parameter 𝜏 for the period lattice with respect to the embedding 𝑣.

INPUT:

• v (embedding) – a real or complex embedding of the number field.

OUTPUT:

(Complex) 𝜏 = 𝜔1/𝜔2 in the fundamental region of the upper half-plane.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: H = E.height_function()
sage: H.tau(QQ.places()[0])
1.22112736076463*I

test_mu(mu, N , verbose=True)
Return True if we can prove that 𝜇 is a lower bound.

INPUT:

• mu (real) – a positive real number

• N (integer) – upper bound on the multiples to be used.

• verbose (boolean, default: True) – verbosity flag.

424 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

OUTPUT:

True or False, according to whether we succeed in proving that 𝜇 is a lower bound for the canonical heights
of points of infinite order with everywhere good reduction.

Note: A True result is rigorous; False only means that the attempt failed: trying again with larger𝑁 may
yield True.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([0,0,0,0,a]) #␣
→˓needs sage.rings.number_field
sage: H = E.height_function() #␣
→˓needs sage.rings.number_field

This curve does have a point of good reduction whose canonical point is approximately 1.68:

sage: P = E.gens(lim3=5)[0]; P #␣
→˓needs sage.rings.number_field
(1/3*a^2 + a + 5/3 : -2*a^2 - 4/3*a - 5/3 : 1)
sage: P.height() #␣
→˓needs sage.rings.number_field
1.68038085233673
sage: P.has_good_reduction() #␣
→˓needs sage.rings.number_field
True

Using 𝑁 = 5 we can prove that 0.1 is a lower bound (in fact we only need 𝑁 = 2), but not that 0.2 is:

sage: H.test_mu(0.1, 5) #␣
→˓needs sage.rings.number_field
B_1(0.100000000000000) = 1.51580969677387
B_2(0.100000000000000) = 0.932072561526720
True
sage: H.test_mu(0.2, 5) #␣
→˓needs sage.rings.number_field
B_1(0.200000000000000) = 2.04612906979932
B_2(0.200000000000000) = 3.09458988474327
B_3(0.200000000000000) = 27.6251108409484
B_4(0.200000000000000) = 1036.24722370223
B_5(0.200000000000000) = 3.67090854562318e6
False

Since 0.1 is a lower bound we can deduce that the point 𝑃 is either primitive or divisible by either 2 or 3. In
fact it is primitive:

sage: (P.height()/0.1).sqrt() #␣
→˓needs sage.rings.number_field
4.09924487233530
sage: P.division_points(2) #␣
→˓needs sage.rings.number_field
[]
sage: P.division_points(3) #␣

(continues on next page)

18.4. Canonical heights for elliptic curves over number fields 425

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.rings.number_field
[]

wp_c(v)
Return a bound for the Weierstrass ℘-function.

INPUT:

• v (embedding) – a real or complex embedding of the number field.

OUTPUT:

(Real) 𝑐 > 0 such that

|℘(𝑧)− 𝑧−2| ≤ 𝑐2|𝑧|2

1− 𝑐|𝑧|2

whenever 𝑐|𝑧|2 < 1. Given the recurrence relations for the Laurent series expansion of ℘, it is easy to see
that there is such a constant 𝑐. [Reference?]

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: H = E.height_function()
sage: H.wp_c(QQ.places()[0])
2.68744508779950

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, 1 + 5*i, 3 + i])
sage: H = E.height_function()
sage: H.wp_c(K.places()[0])
2.66213425640096

wp_intervals(v=None, N=20, abs_only=False)
Return a function approximating the Weierstrass function.

INPUT:

• v (embedding) – an embedding of the number field. If None (default) use the real embedding if the field
is Q and raise an error for other fields.

• N (int, default 20) – The number of terms to use in the 𝑞-expansion of ℘.

• abs_only (boolean, default: False) – flag to determine whether (if True) the error adjustment should
use the absolute value or (if False) the real and imaginary parts.

OUTPUT:

A function wp which can be evaluated at complex numbers 𝑧 to give an approximation to ℘(𝑧). The Weier-
strass function returned is with respect to the normalised lattice [1, 𝜏] associated to the given embedding. For
𝑧 which are not near a lattice point the function fk is used, otherwise a better approximation is used.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: wp = E.height_function().wp_intervals()
sage: z = CDF(0.3, 0.4)
sage: wp(CIF(z))
-1.82543539306049? - 2.4933631999285?*I

(continues on next page)

426 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
-1.82543539306049 - 2.49336319992847*I

sage: z = CDF(0.3, 0.1)
sage: wp(CIF(z))
8.5918243572165? - 5.4751982004351?*I
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
8.59182435721650 - 5.47519820043503*I

wp_on_grid(v, N , half=False)
Return an array of the values of ℘ on an 𝑁 ×𝑁 grid.

INPUT:

• v (embedding) – an embedding of the number field.

• N (int) – The number of terms to use in the 𝑞-expansion of ℘.

• half (boolean, default: False) – if True, use an array of size 𝑁 ×𝑁/2 instead of 𝑁 ×𝑁 .

OUTPUT:

An array of size either 𝑁 ×𝑁/2 or 𝑁 ×𝑁 whose (𝑖, 𝑗) entry is the value of the Weierstrass ℘-function at
(𝑖+ .5)/𝑁 + (𝑗 + .5) * 𝜏/𝑁 , a grid of points in the fundamental region for the lattice [1, 𝜏].

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: H = E.height_function()
sage: v = QQ.places()[0]

The array of values on the grid shows symmetry, since ℘ is even:

sage: H.wp_on_grid(v,4)
array([[25.43920182, 5.28760943, 5.28760943, 25.43920182],

[6.05099485, 1.83757786, 1.83757786, 6.05099485],
[6.05099485, 1.83757786, 1.83757786, 6.05099485],
[25.43920182, 5.28760943, 5.28760943, 25.43920182]])

The array of values on the half-grid:

sage: H.wp_on_grid(v,4,True)
array([[25.43920182, 5.28760943],

[6.05099485, 1.83757786],
[6.05099485, 1.83757786],
[25.43920182, 5.28760943]])

class sage.schemes.elliptic_curves.height.UnionOfIntervals(endpoints)

Bases: object

A class representing a finite union of closed intervals in R which can be scaled, shifted, intersected, etc.

The intervals are represented as an ordered list of their endpoints, which may include −∞ and +∞.

EXAMPLES:

18.4. Canonical heights for elliptic curves over number fields 427

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: R = UnionOfIntervals([1, 2, 3, infinity]); R
([1, 2] U [3, +Infinity])
sage: R + 5
([6, 7] U [8, +Infinity])
sage: ~R
([-Infinity, 1] U [2, 3])
sage: ~R | (10*R + 100)
([-Infinity, 1] U [2, 3] U [110, 120] U [130, +Infinity])

Todo: Unify UnionOfIntervals with the class RealSet introduced by Issue #13125; see Issue #16063.

finite_endpoints()

Returns the finite endpoints of this union of intervals.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([0, 1]).finite_endpoints()
[0, 1]
sage: UnionOfIntervals([-infinity, 0, 1, infinity]).finite_endpoints()
[0, 1]

classmethod intersection(L)
Return the intersection of a list of UnionOfIntervals.

INPUT:

• L (list) – a list of UnionOfIntervals instances

OUTPUT:

A new UnionOfIntervals instance representing the intersection of the UnionOfIntervals in the list.

Note: This is a class method.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A + 1; B
([2, 4] U [6, 8])
sage: A.intersection([A,B])
([2, 3] U [6, 7])

intervals()

Returns the intervals in self, as a list of 2-tuples.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals(list(range(10))).intervals()
[(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)]
sage: UnionOfIntervals([-infinity, pi, 17, infinity]).intervals() #␣

(continues on next page)

428 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/13125
https://github.com/sagemath/sage/issues/16063

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.symbolic
[(-Infinity, pi), (17, +Infinity)]

is_empty()

Returns whether self is empty.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([3, 4]).is_empty()
False
sage: all = UnionOfIntervals([-infinity, infinity])
sage: all.is_empty()
False
sage: (~all).is_empty()
True
sage: A = UnionOfIntervals([0, 1]) & UnionOfIntervals([2, 3])
sage: A.is_empty()
True

static join(L, condition)
Utility function to form the union or intersection of a list of UnionOfIntervals.

INPUT:

• L (list) – a list of UnionOfIntervals instances

• condition (function) – either any or all, or some other boolean function of a list of boolean values.

OUTPUT:

A new UnionOfIntervals instance representing the subset of ‘RR’ equal to those reals in any/all/condition of
the UnionOfIntervals in the list.

Note: This is a static method for the class.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A + 1; B
([2, 4] U [6, 8])
sage: A.join([A,B], any) # union
([1, 4] U [5, 8])
sage: A.join([A,B], all) # intersection
([2, 3] U [6, 7])
sage: A.join([A,B], sum) # symmetric difference
([1, 2] U [3, 4] U [5, 6] U [7, 8])

classmethod union(L)
Return the union of a list of UnionOfIntervals.

INPUT:

• L (list) – a list of UnionOfIntervals instances

18.4. Canonical heights for elliptic curves over number fields 429

Elliptic curves, Release 10.4.rc1

OUTPUT:

A new UnionOfIntervals instance representing the union of the UnionOfIntervals in the list.

Note: This is a class method.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A + 1; B
([2, 4] U [6, 8])
sage: A.union([A,B])
([1, 4] U [5, 8])

sage.schemes.elliptic_curves.height.eps(err, is_real)
Return a Real or Complex interval centered on 0 with radius err.

INPUT:

• err (real) – a positive real number, the radius of the interval

• is_real (boolean) – if True, returns a real interval in RIF, else a complex interval in CIF

OUTPUT:

An element of RIF or CIF (as specified), centered on 0, with given radius.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import eps
sage: eps(0.01, True)
0.0?
sage: eps(0.01, False)
0.0? + 0.0?*I

sage.schemes.elliptic_curves.height.inf_max_abs(f , g, D)
Returns inf𝐷(max(|𝑓 |, |𝑔|)).

INPUT:

• f, g (polynomials) – real univariate polynomials

• D (UnionOfIntervals) – a subset of R

OUTPUT:

A real number approximating the value of inf𝐷(max(|𝑓 |, |𝑔|)).

ALGORITHM:

The extreme values must occur at an endpoint of a subinterval of 𝐷 or at a point where one of 𝑓 , 𝑓 ′, 𝑔, 𝑔′, 𝑓 ± 𝑔
is zero.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import inf_max_abs,␣
→˓UnionOfIntervals
sage: x = polygen(RR)
sage: f = (x-10)^4 + 1

(continues on next page)

430 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: g = 2*x^3 + 100
sage: inf_max_abs(f, g, UnionOfIntervals([1,2,3,4,5,6]))
425.638201706391
sage: r0 = (f - g).roots()[0][0]
sage: r0
5.46053402234697
sage: max(abs(f(r0)), abs(g(r0)))
425.638201706391

sage.schemes.elliptic_curves.height.min_on_disk(f , tol, max_iter=10000)
Returns the minimum of a real-valued complex function on a square.

INPUT:

• f – a function from CIF to RIF

• tol (real) – a positive real number

• max_iter (integer, default 10000) – a positive integer bounding the number of iterations to be used

OUTPUT:

A 2-tuple (𝑠, 𝑡), where 𝑡 = 𝑓(𝑠) and 𝑠 is a CIF element contained in the disk |𝑧| ≤ 1, at which 𝑓 takes its minimum
value.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import min_on_disk
sage: f = lambda x: (x^2 + 100).abs()
sage: s, t = min_on_disk(f, 0.0001)
sage: s, f(s), t
(0.01? + 1.00?*I, 99.01?, 99.0000000000000)

sage.schemes.elliptic_curves.height.nonneg_region(f)
Returns the UnionOfIntervals representing the region where f is non-negative.

INPUT:

• f (polynomial) – a univariate polynomial over R.

OUTPUT:

A UnionOfIntervals representing the set {𝑥 ∈ R𝑚𝑖𝑑𝑓(𝑥) ≥ 0}.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import nonneg_region
sage: x = polygen(RR)
sage: nonneg_region(x^2 - 1)
([-Infinity, -1.00000000000000] U [1.00000000000000, +Infinity])
sage: nonneg_region(1 - x^2)
([-1.00000000000000, 1.00000000000000])
sage: nonneg_region(1 - x^3)
([-Infinity, 1.00000000000000])
sage: nonneg_region(x^3 - 1)
([1.00000000000000, +Infinity])
sage: nonneg_region((x-1)*(x-2))
([-Infinity, 1.00000000000000] U [2.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2))
([1.00000000000000, 2.00000000000000])

(continues on next page)

18.4. Canonical heights for elliptic curves over number fields 431

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: nonneg_region((x-1)*(x-2)*(x-3))
([1.00000000000000, 2.00000000000000] U [3.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2)*(x-3))
([-Infinity, 1.00000000000000] U [2.00000000000000, 3.00000000000000])
sage: nonneg_region(x^4 + 1)
([-Infinity, +Infinity])
sage: nonneg_region(-x^4 - 1)
()

sage.schemes.elliptic_curves.height.rat_term_CIF(z, try_strict=True)
Compute the value of 𝑢/(1− 𝑢)2 in CIF, where 𝑢 = exp(2𝜋𝑖𝑧).

INPUT:

• z (complex) – a CIF element

• try_strict (bool) – flag

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import rat_term_CIF
sage: z = CIF(0.5,0.2)
sage: rat_term_CIF(z)
-0.172467461182437? + 0.?e-16*I
sage: rat_term_CIF(z, False)
-0.172467461182437? + 0.?e-16*I

18.5 Saturation ofMordell-Weil groups of elliptic curves over number
fields

Points 𝑃1, . . ., 𝑃𝑟 in 𝐸(𝐾), where 𝐸 is an elliptic curve over a number field 𝐾, are said to be 𝑝-saturated if no linear
combination

∑︀
𝑛𝑖𝑃𝑖 is divisible by 𝑝 in 𝐸(𝐾) except trivially when all 𝑛𝑖 are multiples of 𝑝. The points are said to

be saturated if they are 𝑝-saturated at all primes; this is always true for all but finitely many primes since 𝐸(𝐾) is a
finitely-generated Abelian group.

The process of 𝑝-saturating a given set of points is implemented here. The naive algorithm simply checks all (𝑝𝑟−1)/(𝑝−
1) projective combinations of the points, testing each to see if it can be divided by 𝑝. If this occurs then we replace one
of the points and continue. The function p_saturation() does one step of this, while full_p_saturation()
repeats until the points are 𝑝-saturated. A more sophisticated algorithm for 𝑝-saturation is implemented which is much
more efficient for large 𝑝 and 𝑟, and involves computing the reduction of the points modulo auxiliary primes to obtain
linear conditions modulo 𝑝 which must be satisfied by the coefficients 𝑎𝑖 of any nontrivial relation. When the points are
already 𝑝-saturated this sieving technique can prove their saturation quickly.

The method saturation() of the class EllipticCurve_number_field applies full 𝑝-saturation at any given
set of primes, or can compute a bound on the primes 𝑝 at which the given points may not be 𝑝-saturated. This involves
computing a lower bound for the canonical height of points of infinite order, together with estimates from the geometry
of numbers.

AUTHORS:

• Robert Bradshaw

• John Cremona

class sage.schemes.elliptic_curves.saturation.EllipticCurveSaturator(E , ver-
bose=False)

432 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Bases: SageObject

Class for saturating points on an elliptic curve over a number field.

INPUT:

• E – an elliptic curve defined over a number field, or Q.

• verbose (boolean, default False) – verbosity flag.

Note: This function is not normally called directly by users, who may access the data via methods of the Elliptic-
Curve classes.

add_reductions(q)
Add reduction data at primes above q if not already there.

INPUT:

• q – a prime number not dividing the defining polynomial of self.__field.

OUTPUT:

Returns nothing, but updates self._reductions dictionary for key q to a dict whose keys are the roots of the
defining polynomial mod q and values tuples (nq, Eq) where Eq is an elliptic curve over 𝐺𝐹 (𝑞) and nq its
cardinality. If q divides the conductor norm or order discriminant nothing is added.

EXAMPLES:

Over Q:

sage: from sage.schemes.elliptic_curves.saturation import␣
→˓EllipticCurveSaturator
sage: E = EllipticCurve(11a1)
sage: saturator = EllipticCurveSaturator(E)
sage: saturator._reductions
{}
sage: saturator.add_reductions(19)
sage: saturator._reductions
{19: {0: (20, Elliptic Curve defined by y^2 + y = x^3 + 18*x^2 + 9*x + 18

over Finite Field of size 19)}}

Over a number field:

sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 2)
sage: E = EllipticCurve(K, [0,1,0,a,a])
sage: from sage.schemes.elliptic_curves.saturation import␣
→˓EllipticCurveSaturator
sage: saturator = EllipticCurveSaturator(E)
sage: for q in primes(20):
....: saturator.add_reductions(q)
sage: saturator._reductions
{2: {},
3: {},
5: {},
7: {},
11: {3: (16, Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 3

over Finite Field of size 11),
8: (8, Elliptic Curve defined by y^2 = x^3 + x^2 + 8*x + 8

(continues on next page)

18.5. Saturation of Mordell-Weil groups of elliptic curves over number fields 433

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

over Finite Field of size 11)},
13: {},
17: {7: (20, Elliptic Curve defined by y^2 = x^3 + x^2 + 7*x + 7

over Finite Field of size 17),
10: (18, Elliptic Curve defined by y^2 = x^3 + x^2 + 10*x + 10

over Finite Field of size 17)},
19: {6: (16, Elliptic Curve defined by y^2 = x^3 + x^2 + 6*x + 6

over Finite Field of size 19),
13: (12, Elliptic Curve defined by y^2 = x^3 + x^2 + 13*x + 13

over Finite Field of size 19)}}

full_p_saturation(Plist, p)
Full 𝑝-saturation of Plist.

INPUT:

• Plist (list) – a list of independent points on one elliptic curve.

• p (integer) – a prime number.

OUTPUT:

(newPlist, exponent) where newPlist has the same length as Plist and spans the 𝑝-saturation of
the span of Plist, which contains that span with index p**exponent.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.saturation import␣
→˓EllipticCurveSaturator
sage: E = EllipticCurve(389a)
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: P = EK(1 + i, -1 - 2*i)
sage: saturator = EllipticCurveSaturator(EK, verbose=True)
sage: saturator.full_p_saturation([8*P], 2)
--starting full 2-saturation

Points were not 2-saturated, exponent was 3
([(i + 1 : -2*i - 1 : 1)], 3)

sage: Q = EK(0, 0)
sage: R = EK(-1, 1)
sage: saturator = EllipticCurveSaturator(EK, verbose=False)
sage: saturator.full_p_saturation([P, Q, R], 3)
([(i + 1 : -2*i - 1 : 1), (0 : 0 : 1), (-1 : 1 : 1)], 0)

An example where the points are not 7-saturated and we gain index exponent 1. Running this example with
verbose=True would show that it uses the code for when the reduction has 𝑝-rank 2 (which occurs for the
reduction modulo (16− 5𝑖)), which uses the Weil pairing:

sage: saturator.full_p_saturation([P, Q + 3*R, Q - 4*R], 7)
([(i + 1 : -2*i - 1 : 1),

(2869/676 : 154413/17576 : 1),
(-7095/502681 : -366258864/356400829 : 1)], 1)

p_saturation(Plist, p, sieve=True)
Checks whether the list of points is 𝑝-saturated.

INPUT:

434 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• Plist (list) – a list of independent points on one elliptic curve.

• p (integer) – a prime number.

• sieve (boolean) – if True, use a sieve (when there are at least 2 points); otherwise test all combinations.

Note: The sieve is much more efficient when the points are saturated and the number of points or the prime
are large.

OUTPUT:

Either False if the points are 𝑝-saturated, or (i, newP) if they are not 𝑝-saturated, in which case after
replacing the i’th point with newP, the subgroup generated contains that generated by Plist with index 𝑝.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.saturation import␣
→˓EllipticCurveSaturator
sage: E = EllipticCurve(389a)
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: P = EK(1 + i, -1 - 2*i)
sage: saturator = EllipticCurveSaturator(EK)
sage: saturator.p_saturation([P], 2)
False
sage: saturator.p_saturation([2*P], 2)
(0, (i + 1 : -2*i - 1 : 1))

sage: Q = EK(0, 0)
sage: R = EK(-1, 1)
sage: saturator.p_saturation([P, Q, R], 3)
False

Here we see an example where 19-saturation is proved, with the verbose flag set to True so that we can see
what is going on:

sage: saturator = EllipticCurveSaturator(EK, verbose=True)
sage: saturator.p_saturation([P, Q, R], 19)
Using sieve method to saturate...
E has 19-torsion over Finite Field of size 197, projecting points
--> [(15 : 168 : 1), (0 : 0 : 1), (196 : 1 : 1)]
--rank is now 1
E has 19-torsion over Finite Field of size 197, projecting points
--> [(184 : 27 : 1), (0 : 0 : 1), (196 : 1 : 1)]
--rank is now 2
E has 19-torsion over Finite Field of size 293, projecting points
--> [(139 : 16 : 1), (0 : 0 : 1), (292 : 1 : 1)]
--rank is now 3

Reached full rank: points were 19-saturated
False

An example where the points are not 11-saturated:

sage: saturator = EllipticCurveSaturator(EK, verbose=False)
sage: res = saturator.p_saturation([P + 5*Q, P - 6*Q, R], 11); res
(0, (-5783311/14600041*i + 1396143/14600041

: 37679338314/55786756661*i + 3813624227/55786756661 : 1))

18.5. Saturation of Mordell-Weil groups of elliptic curves over number fields 435

Elliptic curves, Release 10.4.rc1

That means that the 0’th point may be replaced by the displayed point to achieve an index gain of 11:

sage: saturator.p_saturation([res[1], P - 6*Q, R], 11)
False

sage.schemes.elliptic_curves.saturation.p_projections(Eq, Plist, p, debug=False)
INPUT:

• Eq – An elliptic curve over a finite field.

• Plist – a list of points on 𝐸𝑞.

• p – a prime number.

OUTPUT:

A list of 𝑟 ≤ 2 vectors in F𝑝𝑛 , the images of the points in 𝐺⊗ F𝑝, where 𝑟 is the number of vectors is the 𝑝-rank
of 𝐸𝑞.

ALGORITHM:

First project onto the 𝑝-primary part of 𝐸𝑞. If that has 𝑝-rank 1 (i.e. is cyclic), use discrete logs there to define a
map to F𝑝, otherwise use the Weil pairing to define two independent maps to F𝑝.

EXAMPLES:

This curve has three independent rational points:

sage: E = EllipticCurve([0,0,1,-7,6])

We reduce modulo 409 where its order is 32 ·72; the 3-primary part is non-cyclic while the 7-primary part is cyclic
of order 49:

sage: F = GF(409)
sage: EF = E.change_ring(F)
sage: G = EF.abelian_group()
sage: G
Additive abelian group isomorphic to Z/147 + Z/3
embedded in Abelian group of points on Elliptic Curve
defined by y^2 + y = x^3 + 402*x + 6 over Finite Field of size 409

sage: G.order().factor()
3^2 * 7^2

We construct three points and project them to the 𝑝-primary parts for 𝑝 = 2, 3, 5, 7, yielding 0,2,0,1 vectors of
length 3 modulo 𝑝 respectively. The exact vectors output depend on the computed generators of 𝐺:

sage: Plist = [EF([-2,3]), EF([0,2]), EF([1,0])]
sage: from sage.schemes.elliptic_curves.saturation import p_projections
sage: [(p, p_projections(EF, Plist, p)) for p in primes(11)] # random
[(2, []), (3, [(0, 2, 2), (2, 2, 1)]), (5, []), (7, [(5, 1, 1)])]
sage: [(p, len(p_projections(EF, Plist, p))) for p in primes(11)]
[(2, 0), (3, 2), (5, 0), (7, 1)]

sage.schemes.elliptic_curves.saturation.reduce_mod_q(x, amodq)
The reduction of x modulo the prime ideal defined by amodq.

INPUT:

• x – an element of a number field𝐾.

• amodq – an element of𝐺𝐹 (𝑞) which is a root mod 𝑞 of the defining polynomial of𝐾. This defines a degree
1 prime ideal 𝑄 = (𝑞, 𝛼− 𝑎) of𝐾 = Q(𝛼), where 𝑎 mod 𝑞 = amodq.

436 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

OUTPUT:

The image of x in the residue field of𝐾 at the prime 𝑄.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.saturation import reduce_mod_q
sage: x = polygen(QQ)
sage: pol = x^3 - x^2 - 3*x + 1
sage: K.<a> = NumberField(pol)
sage: [(q, [(amodq, reduce_mod_q(1 - a + a^4, amodq))
....: for amodq in sorted(pol.roots(GF(q), multiplicities=False))])
....: for q in primes(50, 70)]
[(53, []),
(59, [(36, 28)]),
(61, [(40, 35)]),
(67, [(10, 8), (62, 28), (63, 60)])]

18.6 Torsion subgroups of elliptic curves over number fields (includ-
ing Q)

AUTHORS:

• Nick Alexander: original implementation over Q

• Chris Wuthrich: original implementation over number fields

• John Cremona: rewrote p-primary part to use division polynomials, added some features, unified Number Field
and Q code.

class sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup(E)
Bases: AdditiveAbelianGroupWrapper

The torsion subgroup of an elliptic curve over a number field.

EXAMPLES:

Examples over Q:

sage: E = EllipticCurve([-4, 0]); E
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
sage: G = E.torsion_subgroup(); G
Torsion Subgroup isomorphic to Z/2 + Z/2 associated to the
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
sage: G.order()
4
sage: G.gen(0)
(-2 : 0 : 1)
sage: G.gen(1)
(0 : 0 : 1)
sage: G.ngens()
2

sage: E = EllipticCurve([17, -120, -60, 0, 0]); E
Elliptic Curve defined by y^2 + 17*x*y - 60*y = x^3 - 120*x^2 over Rational Field
sage: G = E.torsion_subgroup(); G
Torsion Subgroup isomorphic to Trivial group associated to the

(continues on next page)

18.6. Torsion subgroups of elliptic curves over number fields (including Q) 437

../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Elliptic Curve defined by y^2 + 17*x*y - 60*y = x^3 - 120*x^2 over Rational Field
sage: G.gens()
()
sage: e = EllipticCurve([0, 33076156654533652066609946884, 0,
....: 347897536144342179642120321790729023127716119338758604800,
....: ␣
→˓1141128154369274295519023032806804247788154621049857648870032370285851781352816640000])
sage: e.torsion_order()
16

Constructing points from the torsion subgroup:

sage: E = EllipticCurve(14a1)
sage: T = E.torsion_subgroup()
sage: [E(t) for t in T]
[(0 : 1 : 0),
(9 : 23 : 1),
(2 : 2 : 1),
(1 : -1 : 1),
(2 : -5 : 1),
(9 : -33 : 1)]

An example where the torsion subgroup is not cyclic:

sage: E = EllipticCurve([0,0,0,-49,0])
sage: T = E.torsion_subgroup()
sage: [E(t) for t in T]
[(0 : 1 : 0), (0 : 0 : 1), (-7 : 0 : 1), (7 : 0 : 1)]

An example where the torsion subgroup is trivial:

sage: E = EllipticCurve(37a1)
sage: T = E.torsion_subgroup()
sage: T
Torsion Subgroup isomorphic to Trivial group associated to the
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: [E(t) for t in T]
[(0 : 1 : 0)]

Examples over other Number Fields:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(11a1)
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: EK = E.change_ring(K)
sage: from sage.schemes.elliptic_curves.ell_torsion import␣
→˓EllipticCurveTorsionSubgroup
sage: EllipticCurveTorsionSubgroup(EK)
Torsion Subgroup isomorphic to Z/5 associated to the
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in i with defining polynomial x^2 + 1

sage: E = EllipticCurve(11a1)
sage: K.<i> = NumberField(x^2 + 1) #␣
→˓needs sage.rings.number_field
sage: EK = E.change_ring(K) #␣

(continues on next page)

438 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.rings.number_field
sage: T = EK.torsion_subgroup() #␣
→˓needs sage.rings.number_field
sage: T.ngens()
1
sage: T.gen(0)
(5 : -6 : 1)

Note: this class is normally constructed indirectly as follows:

sage: # needs sage.rings.number_field
sage: T = EK.torsion_subgroup(); T
Torsion Subgroup isomorphic to Z/5 associated to the
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in i with defining polynomial x^2 + 1

sage: type(T)
<class sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup_
→˓with_category >

AUTHORS:

• Nick Alexander: initial implementation over Q.

• Chris Wuthrich: initial implementation over number fields.

• John Cremona: additional features and unification.

curve()

Return the curve of this torsion subgroup.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(11a1)
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: EK = E.change_ring(K)
sage: T = EK.torsion_subgroup()
sage: T.curve() is EK
True

points()

Return a list of all the points in this torsion subgroup.

The list is cached.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: tor = E.torsion_subgroup()
sage: tor.points()
[(0 : 1 : 0), (0 : 0 : 1), (-i : 0 : 1), (i : 0 : 1)]

sage.schemes.elliptic_curves.ell_torsion.torsion_bound(E , number_of_places=20)
Return an upper bound on the order of the torsion subgroup.

18.6. Torsion subgroups of elliptic curves over number fields (including Q) 439

Elliptic curves, Release 10.4.rc1

INPUT:

• E – an elliptic curve over Q or a number field

• number_of_places (positive integer, default = 20) – the number of places that will be used to find the
bound

OUTPUT:

(integer) An upper bound on the torsion order.

ALGORITHM:

An upper bound on the order of the torsion group of the elliptic curve is obtained by counting points modulo several
primes of good reduction. Note that the upper bound returned by this function is a multiple of the order of the
torsion group, and in general will be greater than the order.

To avoid nontrivial arithmetic in the base field (in particular, to avoid having to compute the maximal order) we
only use prime 𝑃 above rational primes 𝑝 which do not divide the discriminant of the equation order.

EXAMPLES:

sage: CDB = CremonaDatabase()
sage: from sage.schemes.elliptic_curves.ell_torsion import torsion_bound
sage: [torsion_bound(E) for E in CDB.iter([14])]
[6, 6, 6, 6, 6, 6]
sage: [E.torsion_order() for E in CDB.iter([14])]
[6, 6, 2, 6, 2, 6]

An example over a relative number field (see Issue #16011):

sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: F.<a> = QuadraticField(5)
sage: K. = F.extension(x^2 - 3)
sage: E = EllipticCurve(K, [0,0,0,b,1])
sage: E.torsion_subgroup().order()
1

An example of a base-change curve from Q to a degree 16 field:

sage: # needs sage.rings.number_field
sage: from sage.schemes.elliptic_curves.ell_torsion import torsion_bound
sage: f = PolynomialRing(QQ, x)([5643417737593488384,0,
....: -11114515801179776,0,-455989850911004,0,379781901872,
....: 0,14339154953,0,-1564048,0,-194542,0,-32,0,1])
sage: K = NumberField(f, a)
sage: E = EllipticCurve(K, [1, -1, 1, 824579, 245512517])
sage: torsion_bound(E)
16
sage: E.torsion_subgroup().invariants()
(4, 4)

440 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/16011

Elliptic curves, Release 10.4.rc1

18.7 Galois representations attached to elliptic curves

Given an elliptic curve 𝐸 over Q and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of 𝐸 is a representation of
the absolute Galois group 𝐺Q of Q. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a a representation of 𝐺Q on a
free 𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

Currently sage can decide whether the Galois module 𝐸[𝑝] is reducible, i.e., if 𝐸 admits an isogeny of degree 𝑝, and
whether the image of the representation on 𝐸[𝑝] is surjective onto Aut(𝐸[𝑝]) = 𝐺𝐿2(F𝑝).

The following are the most useful functions for the class GaloisRepresentation.

For the reducibility:

• is_reducible(p)

• is_irreducible(p)

• reducible_primes()

For the image:

• is_surjective(p)

• non_surjective()

• image_type(p)

For the classification of the representation

• is_semistable(p)

• is_unramified(p, ell)

• is_crystalline(p)

EXAMPLES:

sage: E = EllipticCurve(196a1)
sage: rho = E.galois_representation()
sage: rho.is_irreducible(7)
True
sage: rho.is_reducible(3)
True
sage: rho.is_irreducible(2)
True
sage: rho.is_surjective(2)
False
sage: rho.is_surjective(3)
False
sage: rho.is_surjective(5)
True
sage: rho.reducible_primes()
[3]
sage: rho.non_surjective()
[2, 3]
sage: rho.image_type(2)
The image is cyclic of order 3.

sage: rho.image_type(3)
The image is contained in a Borel subgroup as there is a 3-isogeny.

sage: rho.image_type(5)
The image is all of GL_2(F_5).

For semi-stable curve it is known that the representation is surjective if and only if it is irreducible:

18.7. Galois representations attached to elliptic curves 441

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a1)
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[5]
sage: rho.reducible_primes()
[5]

For cm curves it is not true that there are only finitely many primes for which the Galois representation mod p is surjective
onto 𝐺𝐿2(F𝑝):

sage: E = EllipticCurve(27a1)
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[0]
sage: rho.reducible_primes()
[3]
sage: E.has_cm()
True
sage: rho.image_type(11)
The image is contained in the normalizer of a non-split Cartan group. (cm)

REFERENCES:

• [Ser1972]

• [Ser1987]

• [Coj2005]

AUTHORS:

• chris wuthrich (02/10): moved from ell_rational_field.py.

class sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation(E)
Bases: SageObject

The compatible family of Galois representation attached to an elliptic curve over the rational numbers.

Given an elliptic curve𝐸 overQ and a rational prime number 𝑝, the 𝑝𝑛-torsion𝐸[𝑝𝑛] points of𝐸 is a representation
of the absolute Galois group. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a representation of the absolute
Galois group on a free 𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

EXAMPLES:

sage: rho = EllipticCurve(11a1).galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

elliptic_curve()

The elliptic curve associated to this representation.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: rho = E.galois_representation()
sage: rho.elliptic_curve() == E
True

442 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

image_classes(p, bound=10000)
This function returns, given the representation 𝜌 a list of 𝑝 values that add up to 1, representing the frequency
of the conjugacy classes of the projective image of 𝜌 in 𝑃𝐺𝐿2(F𝑝).

Let𝑀 be a matrix in𝐺𝐿2(F𝑝), then define 𝑢(𝑀) = tr(𝑀)2/ det(𝑀), which only depends on the conjugacy
class of 𝑀 in 𝑃𝐺𝐿2(F𝑝). Hence this defines a map 𝑢 : 𝑃𝐺𝐿2(F𝑝) → F𝑝, which is almost a bijection
between conjugacy classes of the source and F𝑝 (the elements of order 𝑝 and the identity map to 4 and both
classes of elements of order 2 map to 0).

This function returns the frequency with which the values of 𝑢 appeared among the images of the Frobenius
elements 𝑎ℓ`𝑎𝑡`ℓ for good primes ℓ ̸= 𝑝 below a given bound.

INPUT:

• a prime p

• a natural number bound (default: 10000)

OUTPUT:

• a list of 𝑝 real numbers in the interval [0, 1] adding up to 1

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: rho = E.galois_representation()
sage: rho.image_classes(5)
[0.2095, 0.1516, 0.2445, 0.1728, 0.2217]

sage: E = EllipticCurve(11a1)
sage: rho = E.galois_representation()
sage: rho.image_classes(5)
[0.2467, 0.0000, 0.5049, 0.0000, 0.2484]

sage: EllipticCurve(27a1).galois_representation().image_classes(5)
[0.5839, 0.1645, 0.0000, 0.1702, 0.08143]
sage: EllipticCurve(30a1).galois_representation().image_classes(5)
[0.1956, 0.1801, 0.2543, 0.1728, 0.1972]
sage: EllipticCurve(32a1).galois_representation().image_classes(5)
[0.6319, 0.0000, 0.2492, 0.0000, 0.1189]
sage: EllipticCurve(900a1).galois_representation().image_classes(5)
[0.5852, 0.1679, 0.0000, 0.1687, 0.07824]
sage: EllipticCurve(441a1).galois_representation().image_classes(5)
[0.5860, 0.1646, 0.0000, 0.1679, 0.08150]
sage: EllipticCurve(648a1).galois_representation().image_classes(5)
[0.3945, 0.3293, 0.2388, 0.0000, 0.03749]

sage: EllipticCurve(784h1).galois_representation().image_classes(7)
[0.5049, 0.0000, 0.0000, 0.0000, 0.4951, 0.0000, 0.0000]
sage: EllipticCurve(49a1).galois_representation().image_classes(7)
[0.5045, 0.0000, 0.0000, 0.0000, 0.4955, 0.0000, 0.0000]

sage: EllipticCurve(121c1).galois_representation().image_classes(11)
[0.1001, 0.0000, 0.0000, 0.0000, 0.1017, 0.1953, 0.1993, 0.0000, 0.0000, 0.
→˓2010, 0.2026]
sage: EllipticCurve(121d1).galois_representation().image_classes(11)
[0.08869, 0.07974, 0.08706, 0.08137, 0.1001, 0.09439, 0.09764, 0.08218, 0.
→˓08625, 0.1017, 0.1009]

(continues on next page)

18.7. Galois representations attached to elliptic curves 443

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: EllipticCurve(441f1).galois_representation().image_classes(13)
[0.08232, 0.1663, 0.1663, 0.1663, 0.08232, 0.0000, 0.1549, 0.0000, 0.0000, 0.
→˓0000, 0.0000, 0.1817, 0.0000]

REMARKS:

Conjugacy classes of subgroups of 𝑃𝐺𝐿2(F5)

For the case 𝑝 = 5, the order of an element determines almost the value of 𝑢:

𝑢 0 1 2 3 4
orders 2 3 4 6 1 or 5

Here we give here the full table of all conjugacy classes of subgroups with the values that image_classes
should give (as bound tends to ∞). Comparing with the output of the above examples, it is now easy to
guess what the image is.

subgroup order frequencies of values of 𝑢
trivial 1 [0.0000, 0.0000, 0.0000, 0.0000, 1.000]
cyclic 2 [0.5000, 0.0000, 0.0000, 0.0000, 0.5000]
cyclic 2 [0.5000, 0.0000, 0.0000, 0.0000, 0.5000]
cyclic 3 [0.0000, 0.6667, 0.0000, 0.0000, 0.3333]
Klein 4 [0.7500, 0.0000, 0.0000, 0.0000, 0.2500]
cyclic 4 [0.2500, 0.0000, 0.5000, 0.0000, 0.2500]
Klein 4 [0.7500, 0.0000, 0.0000, 0.0000, 0.2500]
cyclic 5 [0.0000, 0.0000, 0.0000, 0.0000, 1.000]
cyclic 6 [0.1667, 0.3333, 0.0000, 0.3333, 0.1667]
𝑆3 6 [0.5000, 0.3333, 0.0000, 0.0000, 0.1667]
𝑆3 6 [0.5000, 0.3333, 0.0000, 0.0000, 0.1667]
𝐷4 8 [0.6250, 0.0000, 0.2500, 0.0000, 0.1250]
𝐷5 10 [0.5000, 0.0000, 0.0000, 0.0000, 0.5000]
𝐴4 12 [0.2500, 0.6667, 0.0000, 0.0000, 0.08333]
𝐷6 12 [0.5833, 0.1667, 0.0000, 0.1667, 0.08333]
Borel 20 [0.2500, 0.0000, 0.5000, 0.0000, 0.2500]
𝑆4 24 [0.3750, 0.3333, 0.2500, 0.0000, 0.04167]
𝑃𝑆𝐿2 60 [0.2500, 0.3333, 0.0000, 0.0000, 0.4167]
𝑃𝐺𝐿2 120 [0.2083, 0.1667, 0.2500, 0.1667, 0.2083]

image_type(p)
Return a string describing the image of the mod-p representation. The result is provably correct, but only
indicates what sort of an image we have. If one wishes to determine the exact group one needs to work a bit
harder. The probabilistic method of image_classes or Sutherland’s galrep package can give a very good guess
what the image should be.

INPUT:

• p a prime number

OUTPUT: A string.

EXAMPLES:

444 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(14a1)
sage: rho = E.galois_representation()
sage: rho.image_type(5)
The image is all of GL_2(F_5).

sage: E = EllipticCurve(11a1)
sage: rho = E.galois_representation()
sage: rho.image_type(5)
The image is meta-cyclic inside a Borel subgroup as there is a 5-torsion␣
→˓point on the curve.

sage: EllipticCurve(27a1).galois_representation().image_type(5)
The image is contained in the normalizer of a non-split Cartan group. (cm)

sage: EllipticCurve(30a1).galois_representation().image_type(5)
The image is all of GL_2(F_5).

sage: EllipticCurve("324b1").galois_representation().image_type(5)
The image in PGL_2(F_5) is the exceptional group S_4.

sage: E = EllipticCurve([0,0,0,-56,4848])
sage: rho = E.galois_representation()

sage: rho.image_type(5)
The image is contained in the normalizer of a split Cartan group.

sage: EllipticCurve(49a1).galois_representation().image_type(7)
The image is contained in a Borel subgroup as there is a 7-isogeny.

sage: EllipticCurve(121c1).galois_representation().image_type(11)
The image is contained in a Borel subgroup as there is a 11-isogeny.

sage: EllipticCurve(121d1).galois_representation().image_type(11)
The image is all of GL_2(F_11).

sage: EllipticCurve(441f1).galois_representation().image_type(13)
The image is contained in a Borel subgroup as there is a 13-isogeny.

sage: EllipticCurve([1,-1,1,-5,2]).galois_representation().image_type(5)
The image is contained in the normalizer of a non-split Cartan group.

sage: EllipticCurve([0,0,1,-25650,1570826]).galois_representation().image_
→˓type(5)
The image is contained in the normalizer of a split Cartan group.

sage: EllipticCurve([1,-1,1,-2680,-50053]).galois_representation().image_
→˓type(7) # the dots (...) in the output fix #11937 (installed Kash may␣
→˓give additional output); long time (2s on sage.math, 2014)
The image is a... group of order 18.

sage: EllipticCurve([1,-1,0,-107,-379]).galois_representation().image_type(7)␣
→˓ # the dots (...) in the output fix #11937 (installed Kash may give␣
→˓additional output); long time (1s on sage.math, 2014)
The image is a... group of order 36.

sage: EllipticCurve([0,0,1,2580,549326]).galois_representation().image_type(7)
The image is contained in the normalizer of a split Cartan group.

Test Issue #14577:

sage: EllipticCurve([0, 1, 0, -4788, 109188]).galois_representation().image_
→˓type(13)
The image in PGL_2(F_13) is the exceptional group S_4.

Test Issue #14752:

18.7. Galois representations attached to elliptic curves 445

https://github.com/sagemath/sage/issues/14577
https://github.com/sagemath/sage/issues/14752

Elliptic curves, Release 10.4.rc1

sage: EllipticCurve([0, 0, 0, -1129345880,-86028258620304]).galois_
→˓representation().image_type(11)
The image is contained in the normalizer of a non-split Cartan group.

For 𝑝 = 2:

sage: E = EllipticCurve(11a1)
sage: rho = E.galois_representation()
sage: rho.image_type(2)
The image is all of GL_2(F_2), i.e. a symmetric group of order 6.

sage: rho = EllipticCurve(14a1).galois_representation()
sage: rho.image_type(2)
The image is cyclic of order 2 as there is exactly one rational 2-torsion␣
→˓point.

sage: rho = EllipticCurve(15a1).galois_representation()
sage: rho.image_type(2)
The image is trivial as all 2-torsion points are rational.

sage: rho = EllipticCurve(196a1).galois_representation()
sage: rho.image_type(2)
The image is cyclic of order 3.

𝑝 = 3:

sage: rho = EllipticCurve(33a1).galois_representation()
sage: rho.image_type(3)
The image is all of GL_2(F_3).

sage: rho = EllipticCurve(30a1).galois_representation()
sage: rho.image_type(3)
The image is meta-cyclic inside a Borel subgroup as there is a 3-torsion␣
→˓point on the curve.

sage: rho = EllipticCurve(50b1).galois_representation()
sage: rho.image_type(3)
The image is contained in a Borel subgroup as there is a 3-isogeny.

sage: rho = EllipticCurve(3840h1).galois_representation()
sage: rho.image_type(3)
The image is contained in a dihedral group of order 8.

sage: rho = EllipticCurve(32a1).galois_representation()
sage: rho.image_type(3)
The image is a semi-dihedral group of order 16, gap.SmallGroup([16,8]).

ALGORITHM: Mainly based on Serre’s paper.

is_crystalline(p)
Return true is the 𝑝-adic Galois representation to 𝐺𝐿2(𝑝) is crystalline.

For an elliptic curve 𝐸, this is to ask whether 𝐸 has good reduction at 𝑝.

INPUT:

• p a prime

OUTPUT: A boolean.

446 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: rho = EllipticCurve(64a1).galois_representation()
sage: rho.is_crystalline(5)
True
sage: rho.is_crystalline(2)
False

is_irreducible(p)
Return True if the mod p representation is irreducible.

INPUT:

• p – a prime number

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(37b).galois_representation()
sage: rho.is_irreducible(2)
True
sage: rho.is_irreducible(3)
False
sage: rho.is_reducible(2)
False
sage: rho.is_reducible(3)
True

is_ordinary(p)
Return true if the 𝑝-adic Galois representation to𝐺𝐿2(𝑝) is ordinary, i.e. if the image of the decomposition
group in Gal(Q̄/Q) above he prime 𝑝 maps into a Borel subgroup.

For an elliptic curve 𝐸, this is to ask whether 𝐸 is ordinary at 𝑝, i.e. good ordinary or multiplicative.

INPUT:

• p a prime

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(11a3).galois_representation()
sage: rho.is_ordinary(11)
True
sage: rho.is_ordinary(5)
True
sage: rho.is_ordinary(19)
False

is_potentially_crystalline(p)
Return true is the 𝑝-adic Galois representation to 𝐺𝐿2(𝑝) is potentially crystalline, i.e. if there is a finite
extension𝐾/Q𝑝 such that the 𝑝-adic representation becomes crystalline.

For an elliptic curve 𝐸, this is to ask whether 𝐸 has potentially good reduction at 𝑝.

INPUT:

• p a prime

18.7. Galois representations attached to elliptic curves 447

Elliptic curves, Release 10.4.rc1

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(37b1).galois_representation()
sage: rho.is_potentially_crystalline(37)
False
sage: rho.is_potentially_crystalline(7)
True

is_potentially_semistable(p)
Return true if the 𝑝-adic Galois representation to 𝐺𝐿2(𝑝) is potentially semistable.

For an elliptic curve 𝐸, this returns True always

INPUT:

• p a prime

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(27a2).galois_representation()
sage: rho.is_potentially_semistable(3)
True

is_quasi_unipotent(p, ell)
Return true if the Galois representation to 𝐺𝐿2(𝑝) is quasi-unipotent at ℓ ̸= 𝑝, i.e. if there is a finite
extension𝐾/Q such that the inertia group at a place above ℓ in Gal(Q̄/𝐾) maps into a Borel subgroup.

For a Galois representation attached to an elliptic curve 𝐸, this returns always True.

INPUT:

• p a prime

• ell a different prime

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(11a3).galois_representation()
sage: rho.is_quasi_unipotent(11,13)
True

is_reducible(p)

Return True if the mod-p representation is reducible. This is equivalent to the existence of an isogeny defined
over Q of degree 𝑝 from the elliptic curve.

INPUT:

• p – a prime number

OUTPUT: A boolean.

The answer is cached.

EXAMPLES:

448 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: rho = EllipticCurve(121a).galois_representation()
sage: rho.is_reducible(7)
False
sage: rho.is_reducible(11)
True
sage: EllipticCurve(11a).galois_representation().is_reducible(5)
True
sage: rho = EllipticCurve(11a2).galois_representation()
sage: rho.is_reducible(5)
True
sage: EllipticCurve(11a2).torsion_order()
1

is_semistable(p)

Return true if the 𝑝-adic Galois representation to 𝐺𝐿2(𝑝) is semistable.

For an elliptic curve 𝐸, this is to ask whether 𝐸 has semistable reduction at 𝑝.

INPUT:

• p a prime

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(20a3).galois_representation()
sage: rho.is_semistable(2)
False
sage: rho.is_semistable(3)
True
sage: rho.is_semistable(5)
True

is_surjective(p, A=1000)
Return True if the mod-p representation is surjective onto 𝐴𝑢𝑡(𝐸[𝑝]) = 𝐺𝐿2(F𝑝).

False if it is not, or None if we were unable to determine whether it is or not.

INPUT:

• p (integer) – a prime number

• A (integer) – a bound on the number of 𝑎𝑝 to use

OUTPUT:

• (boolean) – True if the mod-p representation is surjective and False if not.

The answer is cached.

EXAMPLES:

sage: rho = EllipticCurve(37b).galois_representation()
sage: rho.is_surjective(2)
True
sage: rho.is_surjective(3)
False

18.7. Galois representations attached to elliptic curves 449

Elliptic curves, Release 10.4.rc1

sage: rho = EllipticCurve(121a1).galois_representation()
sage: rho.non_surjective()
[11]
sage: rho.is_surjective(5)
True
sage: rho.is_surjective(11)
False

sage: rho = EllipticCurve(121d1).galois_representation()
sage: rho.is_surjective(5)
False
sage: rho.is_surjective(11)
True

Here is a case, in which the algorithm does not return an answer:

sage: rho = EllipticCurve([0,0,1,2580,549326]).galois_representation()
sage: rho.is_surjective(7)

In these cases, one can use image_type to get more information about the image:

sage: rho.image_type(7)
The image is contained in the normalizer of a split Cartan group.

REMARKS:

1. If 𝑝 ≥ 5 then the mod-p representation is surjective if and only if the p-adic representation is surjective.
When 𝑝 = 2, 3 there are counterexamples. See papers of Dokchitsers and Elkies for more details.

2. For the primes 𝑝 = 2 and 3, this will always answer either True or False. For larger primes it might give
None.

is_unipotent(p, ell)
Return true if the Galois representation to 𝐺𝐿2(𝑝) is unipotent at ℓ ̸= 𝑝, i.e. if the inertia group at a place
above ℓ in Gal(Q̄/Q) maps into a Borel subgroup.

For a Galois representation attached to an elliptic curve 𝐸, this returns True if 𝐸 has semi-stable reduction
at ℓ.

INPUT:

• p a prime

• ell a different prime

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(120a1).galois_representation()
sage: rho.is_unipotent(2,5)
True
sage: rho.is_unipotent(5,2)
False
sage: rho.is_unipotent(5,7)
True
sage: rho.is_unipotent(5,3)
True
sage: rho.is_unipotent(5,5)
Traceback (most recent call last):

(continues on next page)

450 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

...
ValueError: unipotent is not defined for l = p, use semistable instead.

is_unramified(p, ell)
Return true if the Galois representation to 𝐺𝐿2(𝑝) is unramified at ℓ, i.e. if the inertia group at a place
above ℓ in Gal(Q̄/Q) has trivial image in 𝐺𝐿2(𝑝).

For a Galois representation attached to an elliptic curve𝐸, this returns True if ℓ ̸= 𝑝 and𝐸 has good reduction
at ℓ.

INPUT:

• p a prime

• ell another prime

OUTPUT: A boolean.

EXAMPLES:

sage: rho = EllipticCurve(20a3).galois_representation()
sage: rho.is_unramified(5,7)
True
sage: rho.is_unramified(5,5)
False
sage: rho.is_unramified(7,5)
False

This says that the 5-adic representation is unramified at 7, but the 7-adic representation is ramified at 5.

non_surjective(A=1000)
Return a list of primes p such that the mod-p representationmight not be surjective. If 𝑝 is not in the returned
list, then the mod-p representation is provably surjective.

By a theorem of Serre, there are only finitely many primes in this list, except when the curve has complex
multiplication.

If the curve has CM, we simply return the sequence [0] and do no further computation.

INPUT:

• A – an integer (default 1000). By increasing this parameter the resulting set might get smaller.

OUTPUT:

• list – if the curve has CM, returns [0]. Otherwise, returns a list of primes where mod-p representation
is very likely not surjective. At any prime not in this list, the representation is definitely surjective.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A
sage: E.galois_representation().non_surjective() # CM curve
[0]

sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.galois_representation().non_surjective()
[5]

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A
sage: E.galois_representation().non_surjective()

(continues on next page)

18.7. Galois representations attached to elliptic curves 451

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[]

sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C
sage: E.galois_representation().non_surjective()
[13]

sage: E = EllipticCurve([1,-1,1,-9965,385220]) # 9999a1
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[2]

sage: E = EllipticCurve(324b1)
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[3, 5]

ALGORITHM: We first find an upper bound 𝐵 on the possible primes. If 𝐸 is semi-stable, we can take
𝐵 = 11 by a result of Mazur. There is a bound by Serre in the case that the 𝑗-invariant is not integral in terms
of the smallest prime of good reduction. Finally there is an unconditional bound by Cojocaru, but which
depends on the conductor of 𝐸. For the prime below that bound we call is_surjective.

reducible_primes()

Return a list of the primes 𝑝 such that the mod-𝑝 representation is reducible. For all other primes the rep-
resentation is irreducible.

EXAMPLES:

sage: rho = EllipticCurve(225a).galois_representation()
sage: rho.reducible_primes()
[3]

18.8 Galois representations for elliptic curves over number fields

This file contains the code to compute for which primes the Galois representation attached to an elliptic curve (over an
arbitrary number field) is surjective. The functions in this file are called by the is_surjective and non_surjec-
tive methods of an elliptic curve over a number field.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
False
sage: rho.is_surjective(31) # See Section 5.10 of [Ser1972].
True
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
[3, 5, 29]

sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
sage: E.galois_representation().non_surjective() # long time (2s on sage.math, 2014)
[0]

AUTHORS:

452 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• Eric Larson (2012-05-28): initial version.

• Eric Larson (2014-08-13): added isogeny_bound function.

• John Cremona (2016, 2017): various efficiency improvements to _semistable_reducible_primes

• John Cremona (2017): implementation of Billerey’s algorithm to find all reducible primes

REFERENCES:

• [Ser1972]

• [Sut2012]

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_B_bound(E , max_l=200,
num_l=8,
small_prime_bound=0,
debug=False)

Compute Billerey’s bound 𝐵.

We compute 𝐵𝑙 for 𝑙 up to max_l (at most) until num_l nonzero values are found (at most). Return the
list of primes dividing all 𝐵𝑙 computed, excluding those dividing 6 or ramified or of bad reduction or less than
small_prime_bound. If no non-zero values are found return [0].

INPUT:

• E – an elliptic curve over a number field𝐾, given by a global integral model.

• max_l (int, default 200) – maximum size of primes l to check.

• num_l (int, default 8) – maximum number of primes l to check.

• small_prime_bound (int, default 0) – remove primes less than this from the output.

• debug (bool, default False) – if True prints details.

Note: The purpose of the small_prime_bound is that it is faster to deal with these using the local test; by ignoring
them here, we enable the algorithm to terminate sooner when there are no large reducible primes, which is always
the case in practice.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_
→˓bound
sage: Billerey_B_bound(E)
[5]

If we do not use enough primes 𝑙, extraneous primes will be included which are not reducible primes:

sage: Billerey_B_bound(E, num_l=6)
[5, 7]

Similarly if we do not use large enough primes 𝑙:

sage: Billerey_B_bound(E, max_l=50, num_l=8)
[5, 7]
sage: Billerey_B_bound(E, max_l=100, num_l=8)
[5]

18.8. Galois representations for elliptic curves over number fields 453

Elliptic curves, Release 10.4.rc1

This curve does have a rational 5-isogeny:

sage: len(E.isogenies_prime_degree(5))
1

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_B_l(E , l, B=0)
Return Billerey’s 𝐵𝑙, adapted from the definition in [Bil2011], after (9).

INPUT:

• E – an elliptic curve over a number field𝐾, given by a global integral model.

• l (int) – a rational prime

• B (int) – 0 or LCM of previous 𝐵𝑙: the prime-to-B part of this 𝐵𝑙 is ignored.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_l
sage: [Billerey_B_l(E,l) for l in primes(15)]
[1123077552537600,
227279663773903886745600,
0,
0,
269247154818492941287713746693964214802283882086400,
0]

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_P_l(E , l)
Return Billerey’s 𝑃 *

𝑙 as defined in [Bil2011], equation (9).

INPUT:

• E – an elliptic curve over a number field𝐾, given by a global integral model.

• l – a rational prime

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_P_l
sage: [Billerey_P_l(E,l) for l in primes(10)]
[x^2 + 8143*x + 16777216,
x^2 + 451358*x + 282429536481,
x^4 - 664299076*x^3 + 205155493652343750*x^2 - 39595310449600219726562500*x +␣
→˓3552713678800500929355621337890625,
x^4 - 207302404*x^3 - 377423798538689366394*x^2 -␣
→˓39715249826471656586987520004*x + 36703368217294125441230211032033660188801]

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_R_bound(E , max_l=200,
num_l=8,
small_prime_bound=None,
debug=False)

Compute Billerey’s bound 𝑅.

454 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

We compute 𝑅𝑞 for 𝑞 dividing primes ℓ up to max_l (at most) until num_l nonzero values are found (at most).
Return the list of primes dividing all R_q computed, excluding those dividing 6 or ramified or of bad reduction or
less than small_prime_bound. If no non-zero values are found return [0].

INPUT:

• E – an elliptic curve over a number field𝐾, given by a global integral model.

• max_l (int, default 200) – maximum size of rational primes l for which the primes q above l are checked.

• num_l (int, default 8) – maximum number of rational primes l for which the primes q above l are checked.

• small_prime_bound (int, default 0) – remove primes less than this from the output.

• debug (bool, default False) – if True prints details.

Note: The purpose of the small_prime_bound is that it is faster to deal with these using the local test; by
ignoring them here, we enable the algorithm to terminate sooner when there are no large reducible primes, which
is always the case in practice.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_
→˓bound
sage: Billerey_R_bound(E)
[5]

We may get no bound at all if we do not use enough primes:

sage: Billerey_R_bound(E, max_l=2, debug=False)
[0]

Or we may get a bound but not a good one if we do not use enough primes:

sage: Billerey_R_bound(E, num_l=1, debug=False)
[5, 17, 67, 157]

In this case two primes is enough to restrict the set of possible reducible primes to just {5}. This curve does have
a rational 5-isogeny:

sage: Billerey_R_bound(E, num_l=2, debug=False)
[5]
sage: len(E.isogenies_prime_degree(5))
1

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_R_q(E , q, B=0)
Return Billerey’s 𝑅𝑞 , adapted from the definition in [Bil2011], Theorem 2.8.

INPUT:

• E – an elliptic curve over a number field𝐾, given by a global integral model.

• q – a prime ideal of𝐾

• B (int) – 0 or LCM of previous 𝑅𝑞 : the prime-to-B part of this 𝑅𝑞 is ignored.

EXAMPLES:

18.8. Galois representations for elliptic curves over number fields 455

Elliptic curves, Release 10.4.rc1

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_q
sage: [Billerey_R_q(E,K.prime_above(l)) for l in primes(10)]
[1123077552537600,
227279663773903886745600,
51956919562116960000000000000000,
252485933820556361829926400000000]

sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E , L,
patience=100)

Determine which primes in L might have an image contained in a Borel subgroup, by checking of traces of Frobe-
nius.

Note: This function will sometimes return primes for which the image is not contained in a Borel subgroup. This
issue cannot always be fixed by increasing patience as it may be a result of a failure of a local-global principle for
isogenies.

INPUT:

• E – EllipticCurve over a number field.

• L – a list of prime numbers.

• patience (int), default 100 – a positive integer bounding the number of traces of Frobenius to use while
trying to prove irreducibility.

OUTPUT:

• list – The list of all primes ℓ in L for which the mod ℓ image might be contained in a Borel subgroup of
𝐺𝐿2(Fℓ).

EXAMPLES:

sage: E = EllipticCurve(11a1) # has a 5-isogeny
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E,
→˓primes(40)) # long time
[5]

Example to show that the output may contain primes where the representation is in fact reducible. Over Q the
following is essentially the unique such example by [Sut2012]:

sage: E = EllipticCurve_from_j(2268945/128)
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, [7,␣
→˓11]) # long time
[7]

This curve does possess a 7-isogeny modulo every prime of good reduction, but has no rational 7-isogeny:

sage: E.isogenies_prime_degree(7)
[]

A number field example:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, -399-240*i, 2627+2869*i])

(continues on next page)

456 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E,␣
→˓primes(20)) # long time
[2, 3]

Here the curve really does possess isogenies of degrees 2 and 3:

sage: [len(E.isogenies_prime_degree(l)) for l in [2,3]]
[1, 1]

class sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation(E)
Bases: SageObject

The compatible family of Galois representation attached to an elliptic curve over a number field.

Given an elliptic curve 𝐸 over a number field𝐾 and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of 𝐸
is a representation of the absolute Galois group 𝐺𝐾 of𝐾. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a
representation of 𝐺𝐾 on a free 𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 + 1, a)
sage: E = EllipticCurve(11a1).change_ring(K)
sage: rho = E.galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
over Number Field in a with defining polynomial x^2 + 1

elliptic_curve()

Return the elliptic curve associated to this representation.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 + 1, a); a = K.gen()
sage: E = EllipticCurve_from_j(a)
sage: rho = E.galois_representation()
sage: rho.elliptic_curve() == E
True

is_surjective(p, A=100)
Return True if the mod-p representation is (provably) surjective onto 𝐴𝑢𝑡(𝐸[𝑝]) = 𝐺𝐿2(F𝑝). Return
False if it is (probably) not.

INPUT:

• p – a prime number.

• A – (integer) a bound on the number of traces of Frobenius to use while trying to prove surjectivity.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.is_surjective(29) # Cyclotomic character not surjective.

(continues on next page)

18.8. Galois representations for elliptic curves over number fields 457

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

False
sage: rho.is_surjective(7) # See Section 5.10 of [Ser1972].
True

If 𝐸 is defined over Q, then the exceptional primes for 𝐸/𝐾 are the same as the exceptional primes for 𝐸,
except for those primes that are ramified in𝐾/Q or are less than [𝐾 : Q]:

sage: K = NumberField(x**2 + 11, a)
sage: E = EllipticCurve([2, 14])
sage: rhoQQ = E.galois_representation()
sage: rhoK = E.change_ring(K).galois_representation()
sage: rhoQQ.is_surjective(2) == rhoK.is_surjective(2)
False
sage: rhoQQ.is_surjective(3) == rhoK.is_surjective(3)
True
sage: rhoQQ.is_surjective(5) == rhoK.is_surjective(5)
True

For CM curves, the mod-p representation is never surjective:

sage: K.<a> = NumberField(x^2 - x + 1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_cm()
True
sage: rho = E.galois_representation()
sage: any(rho.is_surjective(p) for p in [2,3,5,7])
False

isogeny_bound(A=100)
Return a list of primes 𝑝 including all primes for which the image of the mod-𝑝 representation is contained
in a Borel.

Note: For the actual list of primes 𝑝 at which the representation is reducible see reducible_primes().

INPUT:

• A – int (a bound on the number of traces of Frobenius to use while trying to prove the mod-𝑝 represen-
tation is not contained in a Borel).

OUTPUT:

• list – A list of primes which contains (but may not be equal to) all 𝑝 for which the image of the mod-𝑝
representation is contained in a Borel subgroup. At any prime not in this list, the image is definitely not
contained in a Borel. If E has 𝐶𝑀 defined over𝐾, the list [0] is returned.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # See Section 5.10 of [Ser1972]. # long time
[3, 5]
sage: K = NumberField(x**2 + 1, a)
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: E.galois_representation().isogeny_bound()

(continues on next page)

458 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[0]
sage: E = EllipticCurve_from_j(K(0)) # CM NOT over K
sage: E.galois_representation().isogeny_bound() # long time
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sut2012]
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # No 7-isogeny, but... # long time
[7]

For curves with rational CM, there are infinitely many primes 𝑝 for which the mod-𝑝 representation is re-
ducible, and [0] is returned:

sage: K.<a> = NumberField(x^2 - x + 1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_rational_cm()
True
sage: rho = E.galois_representation()
sage: rho.isogeny_bound()
[0]

An example (an elliptic curve with everywhere good reduction over an imaginary quadratic field with quite
large discriminant), which failed until fixed at Issue #21776:

sage: K.<a> = NumberField(x^2 - x + 112941801)
sage: E = EllipticCurve([a+1,a-1,a,-23163076*a + 266044005933275,
→˓57560769602038*a - 836483958630700313803])
sage: E.conductor().norm()
1
sage: GR = E.galois_representation()
sage: GR.isogeny_bound()
[]

non_surjective(A=100)
Return a list of primes 𝑝 including all primes for which the mod-𝑝 representation might not be surjective.

INPUT:

• A – int (a bound on the number of traces of Frobenius to use while trying to prove surjectivity).

OUTPUT:

• list – A list of primes where mod-𝑝 representation is very likely not surjective. At any prime not in
this list, the representation is definitely surjective. If 𝐸 has CM, the list [0] is returned.

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.non_surjective() # See Section 5.10 of [Ser1972]. # long time
[3, 5, 29]
sage: K = NumberField(x**2 + 3, a); a = K.gen()
sage: E = EllipticCurve([0, -1, 1, -10, -20]).change_ring(K) # X_0(11)
sage: rho = E.galois_representation()
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
[3, 5]
sage: K = NumberField(x**2 + 1, a); a = K.gen()

(continues on next page)

18.8. Galois representations for elliptic curves over number fields 459

https://github.com/sagemath/sage/issues/21776

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[0]
sage: K = NumberField(x**2 - 5, a); a = K.gen()
sage: E = EllipticCurve_from_j(146329141248*a - 327201914880) # CM
sage: rho = E.galois_representation()
sage: rho.non_surjective() # long time (3s on sage.math, 2014)
[0]

reducible_primes()

Return a list of primes 𝑝 for which the mod-𝑝 representation is reducible, or [0] for CM curves.

OUTPUT:

• list – A list of those primes 𝑝 for which the mod-𝑝 representation is contained in a Borel subgroup,
i.e. is reducible. If E has CM defined over K, the list [0] is returned (in this case the representation is
reducible for infinitely many primes).

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # See Section 5.10 of [Ser1972]. # long time
[3, 5]

sage: K = NumberField(x**2 + 1, a)
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: E.galois_representation().reducible_primes()
[0]
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
sage: E.galois_representation().reducible_primes() # long time
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sut2012]
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # No 7-isogeny, but... # long time
[7]
sage: rho.reducible_primes() # long time
[]

For curves with rational CM, there are infinitely many primes 𝑝 for which the mod-𝑝 representation is re-
ducible, and [0] is returned:

sage: K.<a> = NumberField(x^2 - x + 1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_rational_cm()
True
sage: rho = E.galois_representation()
sage: rho.reducible_primes()
[0]

sage.schemes.elliptic_curves.gal_reps_number_field.deg_one_primes_iter(K , princi-
pal_only=False)

Return an iterator over degree 1 primes of K.

INPUT:

460 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• K – a number field

• principal_only – bool; if True, only yield principal primes

OUTPUT:

An iterator over degree 1 primes of𝐾 up to the given norm, optionally yielding only principal primes.

EXAMPLES:

sage: K.<a> = QuadraticField(-5)
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import deg_one_
→˓primes_iter
sage: it = deg_one_primes_iter(K)
sage: [next(it) for _ in range(6)]
[Fractional ideal (2, a + 1),
Fractional ideal (3, a + 1),
Fractional ideal (3, a + 2),
Fractional ideal (a),
Fractional ideal (7, a + 3),
Fractional ideal (7, a + 4)]
sage: it = deg_one_primes_iter(K, True)
sage: [next(it) for _ in range(6)]
[Fractional ideal (a),
Fractional ideal (-2*a + 3),
Fractional ideal (2*a + 3),
Fractional ideal (a + 6),
Fractional ideal (a - 6),
Fractional ideal (-3*a + 4)]

sage.schemes.elliptic_curves.gal_reps_number_field.reducible_primes_Billerey(E ,
num_l=None,
max_l=None,
ver-
bose=False)

Return a finite set of primes ℓ containing all those for which 𝐸 has a 𝐾-rational ell-isogeny, where 𝐾 is the base
field of 𝐸: i.e., the mod-ℓ representation is irreducible for all ℓ outside the set returned.

INPUT:

• E – an elliptic curve defined over a number field𝐾.

• max_l (int or None (default)) – the maximum prime ℓ to use for the B-bound and R-bound. If None, a
default value will be used.

• num_l (int or None (default)) – the number of primes ℓ to use for the B-bound and R-bound. If None, a
default value will be used.

Note: If E has CM then [0] is returned. In this case use the function sage.schemes.ellip-
tic_curves.isogeny_class.possible_isogeny_degrees

We first compute Billeray’s B_bound using at most num_l primes of size up to max_l. If that fails we compute
Billeray’s R_bound using at most num_q primes of size up to max_q.

Provided that one of these methods succeeds in producing a finite list of primes we check these using a local
condition, and finally test that the primes returned actually are reducible. Otherwise we return [0].

EXAMPLES:

18.8. Galois representations for elliptic curves over number fields 461

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_
→˓primes_Billerey
sage: x = polygen(ZZ, x)
sage: K = NumberField(x**2 - 29, a); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: reducible_primes_Billerey(E) # long time
[3, 5]
sage: K = NumberField(x**2 + 1, a)
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: reducible_primes_Billerey(E) # long time
[0]
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
sage: reducible_primes_Billerey(E) # long time
[2, 3]

An example where a prime is not reducible but passes the test:

sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f.␣
→˓[Sut2012]
sage: reducible_primes_Billerey(E) # long time
[7]

sage.schemes.elliptic_curves.gal_reps_number_field.reducible_primes_naive(E ,
max_l=None,
num_P=None,
ver-
bose=False)

Return locally reducible primes ℓ up to max_l.

The list of primes ℓ returned consists of all those up to max_l such that 𝐸 mod 𝑃 has an ℓ-isogeny, where 𝐾 is
the base field of𝐸, for num_P primes 𝑃 of𝐾. In most cases𝐸 then has a𝐾-rational ℓ-isogeny, but there are rare
exceptions.

INPUT:

• E – an elliptic curve defined over a number field𝐾

• max_l (int or None (default)) – the maximum prime ℓ to test.

• num_P (int or None (default)) – the number of primes 𝑃 of𝐾 to use in testing each ℓ.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_
→˓primes_naive
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, a^2 - 2, -50*a^2 + 35, 95*a^2 -␣
→˓67])
sage: reducible_primes_naive(E,num_P=10)
[2, 5, 53, 173, 197, 241, 293, 317, 409, 557, 601, 653, 677, 769, 773, 797]
sage: reducible_primes_naive(E,num_P=15)
[2, 5, 197, 557, 653, 769]
sage: reducible_primes_naive(E,num_P=20)
[2, 5]
sage: reducible_primes_naive(E) # long time
[2, 5]
sage: [phi.degree() for phi in E.isogenies_prime_degree()] # long time
[2, 2, 2, 5]

462 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

18.9 Isogeny class of elliptic curves over number fields

AUTHORS:

• David Roe (2012-03-29) – initial version.

• John Cremona (2014-08) – extend to number fields.

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC(E , label=None,
empty=False)

Bases: SageObject

Isogeny class of an elliptic curve.

Note: The current implementation chooses a curve from each isomorphism class in the isogeny class. OverQ this
is a unique reduced minimal model in each isomorphism class. Over number fields the model chosen may change
in future.

graph()

Return a graph whose vertices correspond to curves in this class, and whose edges correspond to prime degree
isogenies.

Note: There are only finitely many possible isogeny graphs for curves over Q [Maz1978b]. This function
tries to lay out the graph nicely by special casing each isogeny graph. This could also be done over other
number fields, such as quadratic fields.

Note: The vertices are labeled 1 to n rather than 0 to n-1 to match LMFDB and Cremona labels for curves
over Q.

EXAMPLES:

sage: isocls = EllipticCurve(15a3).isogeny_class()
sage: G = isocls.graph()
sage: sorted(G._pos.items())
[(1, [-0.8660254, 0.5]), (2, [-0.8660254, 1.5]), (3, [-1.7320508, 0]),
(4, [0, 0]), (5, [0, -1]), (6, [0.8660254, 0.5]),
(7, [0.8660254, 1.5]), (8, [1.7320508, 0])]

index(C)
Return the index of a curve in this class.

INPUT:

• C – an elliptic curve in this isogeny class.

OUTPUT:

• i – an integer so that the i th curve in the class is isomorphic to C

EXAMPLES:

sage: E = EllipticCurve(990j1)
sage: iso = E.isogeny_class(order="lmfdb") # orders lexicographically on a-
→˓invariants

(continues on next page)

18.9. Isogeny class of elliptic curves over number fields 463

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: iso.index(E.short_weierstrass_model())
2

isogenies(fill=False)

Return a list of lists of isogenies and 0s, corresponding to the entries of matrix()

INPUT:

• fill – boolean (default False). Whether to only return prime degree isogenies. Currently only
implemented for fill=False.

OUTPUT:

• a list of lists, where the j th entry of the i th list is either zero or a prime degree isogeny from the i th
curve in this class to the j th curve.

Warning: The domains and codomains of the isogenies will have the same Weierstrass equation as the
curves in this class, but they may not be identical python objects in the current implementation.

EXAMPLES:

sage: isocls = EllipticCurve(15a3).isogeny_class()
sage: f = isocls.isogenies()[0][1]; f
Isogeny of degree 2

from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over␣
→˓Rational Field

to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over␣
→˓Rational Field
sage: f.domain() == isocls.curves[0] and f.codomain() == isocls.curves[1]
True

matrix(fill=True)
Return the matrix whose entries give the minimal degrees of isogenies between curves in this class.

INPUT:

• fill – boolean (default True). If False then the matrix will contain only zeros and prime entries;
if True it will fill in the other degrees.

EXAMPLES:

sage: isocls = EllipticCurve(15a3).isogeny_class()
sage: isocls.matrix()
[1 2 2 2 4 4 8 8]
[2 1 4 4 8 8 16 16]
[2 4 1 4 8 8 16 16]
[2 4 4 1 2 2 4 4]
[4 8 8 2 1 4 8 8]
[4 8 8 2 4 1 2 2]
[8 16 16 4 8 2 1 4]
[8 16 16 4 8 2 4 1]
sage: isocls.matrix(fill=False)
[0 2 2 2 0 0 0 0]
[2 0 0 0 0 0 0 0]
[2 0 0 0 0 0 0 0]
[2 0 0 0 2 2 0 0]

(continues on next page)

464 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[0 0 0 2 0 0 0 0]
[0 0 0 2 0 0 2 2]
[0 0 0 0 0 2 0 0]
[0 0 0 0 0 2 0 0]

qf_matrix()

Return the array whose entries are quadratic forms representing the degrees of isogenies between curves in
this class (CM case only).

OUTPUT:

a 2𝑥2 array (list of lists) of list, each of the form [2] or [2,1,3] representing the coefficients of an integral
quadratic form in 1 or 2 variables whose values are the possible isogeny degrees between the i’th and j’th
curve in the class.

EXAMPLES:

sage: pol = PolynomialRing(QQ, x)([1,0,3,0,1])
sage: K.<c> = NumberField(pol)
sage: j = 1480640 + 565760*c^2
sage: E = EllipticCurve(j=j)
sage: C = E.isogeny_class()
sage: C.qf_matrix()
[[[1], [2, 2, 3]], [[2, 2, 3], [1]]]

reorder(order)
Return a new isogeny class with the curves reordered.

INPUT:

• order – None, a string or an iterable over all curves in this class. See sage.schemes.
elliptic_curves.ell_rational_field.EllipticCurve_rational_field.
isogeny_class() for more details.

OUTPUT:

• Another IsogenyClass_EC with the curves reordered (and matrices and maps changed as appropri-
ate)

EXAMPLES:

sage: isocls = EllipticCurve(15a1).isogeny_class()
sage: print("\n".join(repr(C) for C in isocls.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over␣
→˓Rational Field

(continues on next page)

18.9. Isogeny class of elliptic curves over number fields 465

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: isocls2 = isocls.reorder(lmfdb)
sage: print("\n".join(repr(C) for C in isocls2.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational␣
→˓Field

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField(E ,
re-
ducible_primes=None,
al-
go-
rithm='Billerey',
min-
i-
mal_mod-
els=True)

Bases: IsogenyClass_EC

Isogeny classes for elliptic curves over number fields.

copy()

Return a copy (mostly used in reordering).

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: C = E.isogeny_class()
sage: C2 = C.copy()
sage: C is C2
False
sage: C == C2
True

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_Rational(E ,
algo-
rithm='sage',
la-
bel=None,
empty=False)

Bases: IsogenyClass_EC_NumberField

Isogeny classes for elliptic curves over Q.

466 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

copy()

Return a copy (mostly used in reordering).

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: C = E.isogeny_class()
sage: C2 = C.copy()
sage: C is C2
False
sage: C == C2
True

sage.schemes.elliptic_curves.isogeny_class.isogeny_degrees_cm(E , verbose=False)
Return a list of primes ℓ sufficient to generate the isogeny class of 𝐸, where 𝐸 has CM.

INPUT:

• E – An elliptic curve defined over a number field.

OUTPUT:

A finite list of primes ℓ such that every curve isogenous to this curve can be obtained by a finite sequence of isogenies
of degree one of the primes in the list. This list is not necessarily minimal.

ALGORITHM:

For curves with CM by the order 𝑂 of discriminant 𝑑, the Galois representation is always non-surjective and the
curve will admit ℓ-isogenies for infinitely many primes ℓ, but there are only finitely many codomains 𝐸′. The
primes can be divided according to the discriminant 𝑑′ of the CM order𝑂′ associated to 𝐸: either𝑂 = 𝑂′, or one
contains the other with index ℓ, since ℓ𝑂 ⊂ 𝑂′ and vice versa.

Case (1): 𝑂 = 𝑂′. The degrees of all isogenies between 𝐸 and 𝐸′ are precisely the integers represented by one
of the classes of binary quadratic forms 𝑄 of discriminant 𝑑. Hence to obtain all possible isomorphism classes of
codomain𝐸′, we need only use one prime ℓ represented by each such class𝑄. It would in fact suffice to use primes
represented by forms which generate the class group. Here we simply omit the principal class and one from each
pair of inverse classes, and include a prime represented by each of the remaining forms.

Case (2): [𝑂′ : 𝑂] = ℓ: so 𝑑 = ℓ2𝑑;. We include all prime divisors of 𝑑.

Case (3): [𝑂 : 𝑂′] = ℓ: we may assume that ℓ does not divide 𝑑 as we have already included these, so ℓ either
splits or is inert in 𝑂; the class numbers satisfy ℎ(𝑂′) = (ℓ ± 1)ℎ(𝑂) accordingly. We include all primes ℓ such
that ℓ± 1 divides the degree [𝐾 : Q].

For curves with only potential CM we proceed as in the CM case, using 2[𝐾 : Q] instead of [𝐾 : Q].

EXAMPLES:

For curves with CM by a quadratic order of class number greater than 1, we use the structure of the class group to
only give one prime in each ideal class:

sage: pol = PolynomialRing(QQ, x)([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: j = hilbert_class_polynomial(-23).roots(L, multiplicities=False)[0]
sage: E = EllipticCurve(j=j)
sage: from sage.schemes.elliptic_curves.isogeny_class import isogeny_degrees_cm
sage: isogeny_degrees_cm(E, verbose=True)
CM case, discriminant = -23
initial primes: {2}
upward primes: {}
downward ramified primes: {}

(continues on next page)

18.9. Isogeny class of elliptic curves over number fields 467

Elliptic curves, Release 10.4.rc1

(continued from previous page)

downward split primes: {2, 3}
downward inert primes: {5}
primes generating the class group: [2]
Set of primes before filtering: {2, 3, 5}
List of primes after filtering: [2, 3]
[2, 3]

sage.schemes.elliptic_curves.isogeny_class.possible_isogeny_degrees(E , algo-
rithm='Billerey',
max_l=None,
num_l=None,
exact=True,
ver-
bose=False)

Return a list of primes ℓ sufficient to generate the isogeny class of 𝐸.

INPUT:

• E – An elliptic curve defined over a number field.

• algorithm (string, default Billerey) – Algorithm to be used for non-CM curves: either
Billerey , Larson , or heuristic . Only relevant for non-CM curves and base fields other

than Q.

• max_l (int or None) – only relevant for non-CM curves and algorithms Billerey and
heuristic . Controls the maximum prime used in either algorithm. If None, use the default for that

algorithm.

• num_l (int or None) – only relevant for non-CM curves and algorithm Billerey . Controls the maxi-
mum number of primes used in the algorithm. If None, use the default for that algorithm.

• exact (bool, default True) – if True, perform an additional check that the primes returned are all re-
ducible. If False, skip this step, in which case some of the primes returned may be irreducible.

OUTPUT:

A finite list of primes ℓ such that every curve isogenous to this curve can be obtained by a finite sequence of isogenies
of degree one of the primes in the list.

ALGORITHM:

For curves without CM, the set may be taken to be the finite set of primes at which the Galois representation is
not surjective, since the existence of an ℓ-isogeny is equivalent to the image of the mod-ℓ Galois representation
being contained in a Borel subgroup. Two rigorous algorithms have been implemented to determine this set, due
to Larson and Billeray respectively. We also provide a non-rigorous ‘heuristic’ algorithm which only tests reducible
primes up to a bound depending on the degree of the base field.

For curves with CM see the documentation for isogeny_degrees_cm().

EXAMPLES:

For curves without CM we determine the primes at which the mod 𝑝 Galois representation is reducible, i.e. con-
tained in a Borel subgroup:

sage: from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_
→˓degrees
sage: E = EllipticCurve(11a1)
sage: possible_isogeny_degrees(E)
[5]

(continues on next page)

468 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: possible_isogeny_degrees(E, algorithm= Larson)
[5]
sage: possible_isogeny_degrees(E, algorithm= Billerey)
[5]
sage: possible_isogeny_degrees(E, algorithm= heuristic)
[5]

We check that in this case 𝐸 really does have rational 5-isogenies:

sage: [phi.degree() for phi in E.isogenies_prime_degree()]
[5, 5]

Over an extension field:

sage: E3 = E.change_ring(CyclotomicField(3))
sage: possible_isogeny_degrees(E3)
[5]
sage: [phi.degree() for phi in E3.isogenies_prime_degree()]
[5, 5]

A higher degree example (LMFDB curve 5.5.170701.1-4.1-b1):

sage: K.<a> = NumberField(x^5 - x^4 - 6*x^3 + 4*x + 1)
sage: E = EllipticCurve(K, [a^3 - a^2 - 5*a + 1, a^4 - a^3 - 5*a^2 - a + 1,
....: -a^4 + 2*a^3 + 5*a^2 - 5*a - 3, a^4 - a^3 - 5*a^2 - a,
....: -3*a^4 + 4*a^3 + 17*a^2 - 6*a - 12])
sage: possible_isogeny_degrees(E, algorithm= heuristic)
[2]
sage: possible_isogeny_degrees(E, algorithm= Billerey)
[2]
sage: possible_isogeny_degrees(E, algorithm= Larson)
[2]

LMFDB curve 4.4.8112.1-108.1-a5:

sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, a^2 - 2, -50*a^2 + 35, 95*a^2 -␣
→˓67])
sage: possible_isogeny_degrees(E, exact=False, algorithm= Billerey)
[2, 5]
sage: possible_isogeny_degrees(E, exact=False, algorithm= Larson)
[2, 5]
sage: possible_isogeny_degrees(E, exact=False, algorithm= heuristic)
[2, 5]
sage: possible_isogeny_degrees(E)
[2, 5]

This function only returns the primes which are isogeny degrees:

sage: Set(E.isogeny_class().matrix().list())
{1, 2, 4, 5, 20, 10}

For curves with CM by a quadratic order of class number greater than 1, we use the structure of the class group to
only give one prime in each ideal class:

18.9. Isogeny class of elliptic curves over number fields 469

Elliptic curves, Release 10.4.rc1

sage: pol = PolynomialRing(QQ, x)([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: j = hilbert_class_polynomial(-23).roots(L, multiplicities=False)[0]
sage: E = EllipticCurve(j=j)
sage: from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_
→˓degrees
sage: possible_isogeny_degrees(E, verbose=True)
CM case, discriminant = -23
initial primes: {2}
upward primes: {}
downward ramified primes: {}
downward split primes: {2, 3}
downward inert primes: {5}
primes generating the class group: [2]
Set of primes before filtering: {2, 3, 5}
List of primes after filtering: [2, 3]
[2, 3]

18.10 Tate-Shafarevich group

If𝐸 is an elliptic curve over a global field𝐾, the Tate-Shafarevich group is the subgroup of elements in𝐻1(𝐾,𝐸) which
map to zero under every global-to-local restriction map 𝐻1(𝐾,𝐸) → 𝐻1(𝐾𝑣, 𝐸), one for each place 𝑣 of𝐾.

The group is usually denoted by the Russian letter Sha (Ш), in this document it will be denoted by 𝑆ℎ𝑎.

𝑆ℎ𝑎 is known to be an abelian torsion group. It is conjectured that the Tate-Shafarevich group is finite for any elliptic
curve over a global field. But it is not known in general.

A theorem of Kolyvagin and Gross-Zagier using Heegner points shows that if the L-series of an elliptic curve 𝐸/Q does
not vanish at 1 or has a simple zero there, then 𝑆ℎ𝑎 is finite.

A theorem of Kato, together with theorems from Iwasawa theory, allows for certain primes 𝑝 to show that the 𝑝-primary
part of 𝑆ℎ𝑎 is finite and gives an effective upper bound for it.

The (𝑝-adic) conjecture of Birch and Swinnerton-Dyer predicts the order of 𝑆ℎ𝑎 from the leading term of the (𝑝-adic)
L-series of the elliptic curve.

Sage can compute a few things about 𝑆ℎ𝑎. The commands an, an_numerical and an_padic compute the con-
jectural order of 𝑆ℎ𝑎 as a real or 𝑝-adic number. With p_primary_bound one can find an upper bound of the size
of the 𝑝-primary part of 𝑆ℎ𝑎. Finally, if the analytic rank is at most 1, then bound_kato and bound_kolyvagin
find all primes for which the theorems of Kato and Kolyvagin respectively do not prove the triviality the 𝑝-primary part
of 𝑆ℎ𝑎.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()
([2, 5], 1)
sage: S.an_padic(7,3)
1 + O(7^5)
sage: S.an()
1
sage: S.an_numerical()

(continues on next page)

470 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

1.00000000000000

sage: E = EllipticCurve(389a)
sage: S = E.sha(); S
Tate-Shafarevich group for the
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5)
0
sage: S.an_padic(5)
1 + O(5)
sage: S.an_padic(5,prec=4) # long time (2s on sage.math, 2011)
1 + O(5^3)

AUTHORS:

• William Stein (2007) – initial version

• Chris Wuthrich (April 2009) – reformat docstrings

• Aly Deines, Chris Wuthrich, Jeaninne Van Order (2016-03): Added functionality that tests the Skinner-Urban
condition.

class sage.schemes.elliptic_curves.sha_tate.Sha(E)
Bases: SageObject

The Tate-Shafarevich group associated to an elliptic curve.

If𝐸 is an elliptic curve over a global field𝐾, the Tate-Shafarevich group is the subgroup of elements in𝐻1(𝐾,𝐸)
which map to zero under every global-to-local restriction map 𝐻1(𝐾,𝐸) → 𝐻1(𝐾𝑣, 𝐸), one for each place 𝑣 of
𝐾.

EXAMPLES:

sage: E = EllipticCurve(571a1)
sage: E._set_gens([]) # curve has rank 0, but non-trivial Sha[2]
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()
([2], 1)
sage: S.an_padic(7,3)
4 + O(7^5)
sage: S.an()
4
sage: S.an_numerical()
4.00000000000000

sage: E = EllipticCurve(389a)
sage: S = E.sha(); S
Tate-Shafarevich group for the
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5) # long time
0
sage: S.an_padic(5) # long time
1 + O(5)

(continues on next page)

18.10. Tate-Shafarevich group 471

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: S.an_padic(5,prec=4) # very long time
1 + O(5^3)

an(use_database=False, descent_second_limit=12)
Return the Birch and Swinnerton-Dyer conjectural order of 𝑆ℎ𝑎 as a provably correct integer, unless the
analytic rank is > 1, in which case this function returns a numerical value.

INPUT:

• use_database – bool (default: False); if True, try to use any databases installed to lookup the
analytic order of 𝑆ℎ𝑎, if possible. The order of 𝑆ℎ𝑎 is computed if it cannot be looked up.

• descent_second_limit – int (default: 12); limit to use on point searching for the quartic twist in
the hard case

This result is proved correct if the order of vanishing is 0 and the Manin constant is <= 2.

If the optional parameter use_database is True (default: False), this function returns the analytic
order of 𝑆ℎ𝑎 as listed in Cremona’s tables, if this curve appears in Cremona’s tables.

NOTE:

If you come across the following error:

sage: E = EllipticCurve([0, 0, 1, -34874, -2506691])
sage: E.sha().an()
Traceback (most recent call last):
...
RuntimeError: Unable to compute the rank, hence generators, with certainty
(lower bound=0, generators found=[]). This could be because Sha(E/Q)[2] is
nontrivial. Try increasing descent_second_limit then trying this command␣
→˓again.

You can increase the descent_second_limit (in the above example, set to the default, 12) option to
try again:

sage: E.sha().an(descent_second_limit=16) # long time (2s on sage.math, 2011)
1

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.sha().an()
1
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.sha().an()
1

sage: EllipticCurve(14a4).sha().an()
1
sage: EllipticCurve(14a4).sha().an(use_database=True) # will be faster if␣
→˓you have large Cremona database installed
1

The smallest conductor curve with nontrivial 𝑆ℎ𝑎:

sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66b3
sage: E.sha().an()
4

472 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

The four optimal quotients with nontrivial 𝑆ℎ𝑎 and conductor <= 1000:

sage: E = EllipticCurve([0, -1, 1, -929, -10595]) # 571A
sage: E.sha().an()
4
sage: E = EllipticCurve([1, 1, 0, -1154, -15345]) # 681B
sage: E.sha().an()
9
sage: E = EllipticCurve([0, -1, 0, -900, -10098]) # 960D
sage: E.sha().an()
4
sage: E = EllipticCurve([0, 1, 0, -20, -42]) # 960N
sage: E.sha().an()
4

The smallest conductor curve of rank > 1:

sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.sha().an()
1.00000000000000

The following are examples that require computation of the Mordell- Weil group and regulator:

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.sha().an()
1

sage: E = EllipticCurve("1610f3")
sage: E.sha().an()
4

In this case the input curve is not minimal, and if this function did not transform it to be minimal, it would
give nonsense:

sage: E = EllipticCurve([0, -432*6^2])
sage: E.sha().an()
1

See Issue #10096: this used to give the wrong result 6.0000 before since the minimal model was not used:

sage: E = EllipticCurve([1215*1216, 0]) # non-minimal model
sage: E.sha().an() # long time (2s on sage.math, 2011)
1.00000000000000
sage: E.minimal_model().sha().an() # long time (1s on sage.math, 2011)
1.00000000000000

an_numerical(prec=None, use_database=True, proof=None)
Return the numerical analytic order of 𝑆ℎ𝑎, which is a floating point number in all cases.

INPUT:

• prec – integer (default: 53) bits precision – used for the L-series computation, period, regulator, etc.

• use_database – whether the rank and generators should be looked up in the database if possible.
Default is True

• proof – bool or None (default: None, see proof.[tab] or sage.structure.proof) proof option passed
onto regulator and rank computation.

18.10. Tate-Shafarevich group 473

https://github.com/sagemath/sage/issues/10096

Elliptic curves, Release 10.4.rc1

Note: See also the an() command, which will return a provably correct integer when the rank is 0 or 1.

Warning: If the curve’s generators are not known, computing them may be very time-consuming. Also,
computation of the L-series derivative will be time-consuming for large rank and large conductor, and
the computation time for this may increase substantially at greater precision. However, use of very low
precision less than about 10 can cause the underlying PARI library functions to fail.

EXAMPLES:

sage: EllipticCurve(11a).sha().an_numerical()
1.00000000000000
sage: EllipticCurve(37a).sha().an_numerical()
1.00000000000000
sage: EllipticCurve(389a).sha().an_numerical()
1.00000000000000
sage: EllipticCurve(66b3).sha().an_numerical()
4.00000000000000
sage: EllipticCurve(5077a).sha().an_numerical()
1.00000000000000

A rank 4 curve:

sage: EllipticCurve([1, -1, 0, -79, 289]).sha().an_numerical() # long time␣
→˓(3s on sage.math, 2011)
1.00000000000000

A rank 5 curve:

sage: EllipticCurve([0, 0, 1, -79, 342]).sha().an_numerical(prec=10,␣
→˓proof=False) # long time (22s on sage.math, 2011)
1.0

See Issue #1115:

sage: sha = EllipticCurve(37a1).sha()
sage: [sha.an_numerical(prec) for prec in range(40,100,10)] # long time (3s␣
→˓on sage.math, 2013)
[1.0000000000,
1.0000000000000,
1.0000000000000000,
1.0000000000000000000,
1.0000000000000000000000,
1.0000000000000000000000000]

an_padic(p, prec=0, use_twists=True)
Return the conjectural order of 𝑆ℎ𝑎(𝐸/Q), according to the 𝑝-adic analogue of the Birch and
Swinnerton-Dyer conjecture as formulated in [MTT1986] and [BP1993].

INPUT:

• p – a prime > 3

• prec (optional) – the precision used in the computation of the 𝑝-adic L-Series

474 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/1115

Elliptic curves, Release 10.4.rc1

• use_twists (default: True) – If True the algorithm may change to a quadratic twist with minimal
conductor to do the modular symbol computations rather than using the modular symbols of the curve
itself. If False it forces the computation using the modular symbols of the curve itself.

OUTPUT: 𝑝-adic number - that conjecturally equals #𝑆ℎ𝑎(𝐸/Q).

If prec is set to zero (default) then the precision is set so that at least the first 𝑝-adic digit of conjectural
#𝑆ℎ𝑎(𝐸/Q) is determined.

EXAMPLES:

Good ordinary examples:

sage: EllipticCurve(11a1).sha().an_padic(5) # rank 0
1 + O(5^22)
sage: EllipticCurve(43a1).sha().an_padic(5) # rank 1
1 + O(5)
sage: EllipticCurve(389a1).sha().an_padic(5,4) # rank 2, long time (2s on␣
→˓sage.math, 2011)
1 + O(5^3)
sage: EllipticCurve(858k2).sha().an_padic(7) # rank 0, non trivial sha,␣
→˓long time (10s on sage.math, 2011)
7^2 + O(7^24)
sage: EllipticCurve(300b2).sha().an_padic(3) # 9 elements in sha, long␣
→˓time (2s on sage.math, 2011)
3^2 + O(3^24)
sage: EllipticCurve(300b2).sha().an_padic(7, prec=6) # long time
2 + 7 + O(7^8)

Exceptional cases:

sage: EllipticCurve(11a1).sha().an_padic(11) # rank 0
1 + O(11^22)
sage: EllipticCurve(130a1).sha().an_padic(5) # rank 1
1 + O(5)

Non-split, but rank 0 case (Issue #7331):

sage: EllipticCurve(270b1).sha().an_padic(5) # rank 0, long time (2s on␣
→˓sage.math, 2011)
1 + O(5^22)

The output has the correct sign:

sage: EllipticCurve(123a1).sha().an_padic(41) # rank 1, long time (3s on␣
→˓sage.math, 2011)
1 + O(41)

Supersingular cases:

sage: EllipticCurve(34a1).sha().an_padic(5) # rank 0
1 + O(5^22)
sage: EllipticCurve(53a1).sha().an_padic(5) # rank 1, long time (11s on␣
→˓sage.math, 2011)
1 + O(5)

Cases that use a twist to a lower conductor:

18.10. Tate-Shafarevich group 475

https://github.com/sagemath/sage/issues/7331

Elliptic curves, Release 10.4.rc1

sage: EllipticCurve(99a1).sha().an_padic(5)
1 + O(5)
sage: EllipticCurve(240d3).sha().an_padic(5) # sha has 4 elements here
4 + O(5)
sage: EllipticCurve(448c5).sha().an_padic(7, prec=4, use_twists=False) #␣
→˓long time (2s on sage.math, 2011)
2 + 7 + O(7^6)
sage: EllipticCurve([-19,34]).sha().an_padic(5) # see trac #6455, long time␣
→˓(4s on sage.math, 2011)
1 + O(5)

Test for Issue #15737:

sage: E = EllipticCurve([-100,0])
sage: s = E.sha()
sage: s.an_padic(13)
1 + O(13^20)

bound()

Compute a provably correct bound on the order of the Tate-Shafarevich group of this curve.

The bound is either False (no bound) or a list B of primes such that any prime divisor of the order of 𝑆ℎ𝑎
is in this list.

EXAMPLES:

sage: EllipticCurve(37a).sha().bound()
([2], 1)

bound_kato()

Return a list of primes 𝑝 such that the theorems of Kato’s [Kat2004] and others (e.g., as explained in a thesis
of Grigor Grigorov [Gri2005]) imply that if 𝑝 divides the order of 𝑆ℎ𝑎(𝐸/Q) then 𝑝 is in the list.

If 𝐿(𝐸, 1) = 0, then this function gives no information, so it returns False.

THEOREM: Suppose 𝐿(𝐸, 1) ̸= 0 and 𝑝 ̸= 2 is a prime such that

• 𝐸 does not have additive reduction at 𝑝,

• either the 𝑝-adic representation is surjective or has its image contained in a Borel subgroup.

Then 𝑜𝑟𝑑𝑝(#𝑆ℎ𝑎(𝐸)) is bounded from above by the 𝑝-adic valuation of 𝐿(𝐸, 1) · #𝐸(Q)2𝑡𝑜𝑟/(Ω𝐸 ·
∏︀
𝑐𝑣).

If the L-series vanishes, the method p_primary_bound can be used instead.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.sha().bound_kato()
[2]
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.sha().bound_kato()
[2]
sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66B3
sage: E.sha().bound_kato()
[2]

For the following curve one really has that 25 divides the order of 𝑆ℎ𝑎 (by [GJPST2009]):

476 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/15737

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve([1, -1, 0, -332311, -73733731]) # 1058D1
sage: E.sha().bound_kato() # long time (about 1 second)
[2, 5, 23]
sage: E.galois_representation().non_surjective() # long time (about 1 second)
[]

For this one, 𝑆ℎ𝑎 is divisible by 7:

sage: E = EllipticCurve([0, 0, 0, -4062871, -3152083138]) # 3364C1
sage: E.sha().bound_kato() # long time (< 10 seconds)
[2, 7, 29]

No information about curves of rank > 0:

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.sha().bound_kato()
False

bound_kolyvagin(D=0, regulator=None, ignore_nonsurj_hypothesis=False)
Given a fundamental discriminant 𝐷 ̸= −3,−4 that satisfies the Heegner hypothesis for 𝐸, return a list of
primes so that Kolyvagin’s theorem (as in Gross’s paper) implies that any prime divisor of 𝑆ℎ𝑎 is in this list.

INPUT:

• D – (optional) a fundamental discriminant < -4 that satisfies the Heegner hypothesis for 𝐸; if not given,
use the first such 𝐷

• regulator – (optional) regulator of 𝐸(𝐾); if not given, will be computed (which could take a long
time)

• ignore_nonsurj_hypothesis (optional: default False) – If True, then gives the bound com-
ing from Heegner point index, but without any hypothesis on surjectivity of the mod-𝑝 representation.

OUTPUT:

• list – a list of primes such that if 𝑝 divides 𝑆ℎ𝑎(𝐸/𝐾), then 𝑝 is in this list, unless 𝐸/𝐾 has complex
multiplication or analytic rank greater than 2 (in which case we return 0).

• index – the odd part of the index of the Heegner point in the full group of𝐾-rational points on E. (If 𝐸
has CM, returns 0.)

REMARKS:

1) We do not have to assume that the Manin constant is 1 (or a power of 2). If the Manin constant were
divisible by a prime, that prime would get included in the list of bad primes.

2) We assume the Gross-Zagier theorem is true under the hypothesis that 𝑔𝑐𝑑(𝑁,𝐷) = 1, instead of the
stronger hypothesis 𝑔𝑐𝑑(2 ·𝑁,𝐷) = 1 that is in the original Gross-Zagier paper. That Gross-Zagier is
true when 𝑔𝑐𝑑(𝑁,𝐷) = 1 is “well-known” to the experts, but does not seem to written up well in the
literature.

3) Correctness of the computation is guaranteed using interval arithmetic, under the assumption that the
regulator, square root, and period lattice are computed to precision at least 10−10, i.e., they are correct
up to addition or a real number with absolute value less than 10−10.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.sha().bound_kolyvagin()
([2], 1)

(continues on next page)

18.10. Tate-Shafarevich group 477

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(141a)
sage: E.sha().an()
1
sage: E.sha().bound_kolyvagin()
([2, 7], 49)

We get no information when the curve has rank 2.:

sage: E = EllipticCurve(389a)
sage: E.sha().bound_kolyvagin()
(0, 0)
sage: E = EllipticCurve(681b)
sage: E.sha().an()
9
sage: E.sha().bound_kolyvagin()
([2, 3], 9)

p_primary_bound(p)
Return a provable upper bound for the order of the 𝑝-primary part 𝑆ℎ𝑎(𝐸)(𝑝) of the Tate-Shafarevich group.

INPUT:

• p – a prime > 2

OUTPUT:

• e – a non-negative integer such that 𝑝𝑒 is an upper bound for the order of 𝑆ℎ𝑎(𝐸)(𝑝)

In particular, if this algorithm does not fail, then it proves that the 𝑝-primary part of 𝑆ℎ𝑎 is finite. This works
also for curves of rank > 1.

Note also that this bound is sharp if one assumes the main conjecture of Iwasawa theory of elliptic curves.
One may use the method p_primary_order for checking if the extra conditions hold under which the
main conjecture is known by the work of Skinner and Urban. This then returns the provable 𝑝-primary part
of the Tate-Shafarevich group.

Currently the algorithm is only implemented when the following conditions are verified:

• The 𝑝-adic Galois representation must be surjective or must have its image contained in a Borel subgroup.

• The reduction at 𝑝 is not allowed to be additive.

• If the reduction at 𝑝 is non-split multiplicative, then the rank must be 0.

• If 𝑝 = 3, then the reduction at 3 must be good ordinary or split multiplicative, and the rank must be 0.

ALGORITHM:

The algorithm is described in [SW2013]. The results for the reducible case can be found in [Wu2004]. The
main ingredient is Kato’s result on the main conjecture in Iwasawa theory.

EXAMPLES:

sage: e = EllipticCurve(11a3)
sage: e.sha().p_primary_bound(3)
0
sage: e.sha().p_primary_bound(5)
0
sage: e.sha().p_primary_bound(7)
0
sage: e.sha().p_primary_bound(11)

(continues on next page)

478 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

0
sage: e.sha().p_primary_bound(13)
0

sage: e = EllipticCurve(389a1)
sage: e.sha().p_primary_bound(5)
0
sage: e.sha().p_primary_bound(7)
0
sage: e.sha().p_primary_bound(11)
0
sage: e.sha().p_primary_bound(13)
0

sage: e = EllipticCurve(858k2)
sage: e.sha().p_primary_bound(3) # long time (10s on sage.math, 2011)
0

Some checks for Issue #6406 and Issue #16959:

sage: e.sha().p_primary_bound(7) # long time
2

sage: E = EllipticCurve(608b1)
sage: E.sha().p_primary_bound(5)
Traceback (most recent call last):
...
ValueError: The p-adic Galois representation is not surjective or reducible.
Current knowledge about Euler systems does not provide an upper bound
in this case. Try an_padic for a conjectural bound.

sage: E.sha().an_padic(5) # long time
1 + O(5^22)

sage: E = EllipticCurve("5040bi1")
sage: E.sha().p_primary_bound(5) # long time
0

p_primary_order(p)

Return the order of the 𝑝-primary part of the Tate-Shafarevich group.

This uses the result of Skinner and Urban [SU2014] on the main conjecture in Iwasawa theory. In particular
the elliptic curve must have good ordinary reduction at 𝑝, the residual Galois representation must be surjective.
Furthermore there must be an auxiliary prime ℓ dividing the conductor of the curve exactly once such that
the residual representation is ramified at 𝑝.

INPUT:

• 𝑝 – an odd prime

OUTPUT:

• 𝑒 – a non-negative integer such that 𝑝𝑒 is the order of the 𝑝-primary order if the conditions are satisfied
and raises a ValueError otherwise.

EXAMPLES:

18.10. Tate-Shafarevich group 479

https://github.com/sagemath/sage/issues/6406
https://github.com/sagemath/sage/issues/16959
https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve("389a1") # rank 2
sage: E.sha().p_primary_order(5)
0
sage: E = EllipticCurve("11a1")
sage: E.sha().p_primary_order(7)
0
sage: E.sha().p_primary_order(5)
Traceback (most recent call last):
...
ValueError: The order is not provably known using Skinner-Urban.
Try running p_primary_bound to get a bound.

two_selmer_bound()

Return the 2-rank, i.e. the F2-dimension of the 2-torsion part of 𝑆ℎ𝑎, provided we can determine the rank
of 𝐸.

EXAMPLES:

sage: sh = EllipticCurve(571a1).sha()
sage: sh.two_selmer_bound()
2
sage: sh.an()
4

sage: sh = EllipticCurve(66a1).sha()
sage: sh.two_selmer_bound()
0
sage: sh.an()
1

sage: sh = EllipticCurve(960d1).sha()
sage: sh.two_selmer_bound()
2
sage: sh.an()
4

18.11 Complex multiplication for elliptic curves

This module implements the functions

• hilbert_class_polynomial

• is_HCP

• cm_j_invariants

• cm_orders

• discriminants_with_bounded_class_number

• cm_j_invariants_and_orders

• largest_fundamental_disc_with_class_number

• is_cm_j_invariant

AUTHORS:

• Robert Bradshaw

480 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• John Cremona

• William Stein

sage.schemes.elliptic_curves.cm.OrderClassNumber(D0, h0, f)
Return the class number h(f**2 * D0), given h(D0)=h0.

INPUT:

• D0 (integer) – a negative fundamental discriminant

• h0 (integer) – the class number of the (maximal) imaginary quadratic order of discriminant D0

• f (integer) – a positive integer

OUTPUT:

(integer) the class number of the imaginary quadratic order of discriminant D0*f**2

ALGORITHM:

We use the formula for the class number of the order 𝒪𝐷 in terms of the class number of the
maximal order 𝒪𝐷0

; see [Cox1989] Theorem 7.24:

ℎ(𝐷) =
ℎ(𝐷0)𝑓

[𝒪×
𝐷0

: 𝒪×
𝐷]

∏︁
𝑝 | 𝑓

(︂
1−

(︂
𝐷0

𝑝

)︂
1

𝑝

)︂
EXAMPLES:

sage: # needs sage.libs.pari
sage: from sage.schemes.elliptic_curves.cm import OrderClassNumber
sage: D0 = -4
sage: h = D0.class_number()
sage: [OrderClassNumber(D0,h,f) for f in srange(1,20)]
[1, 1, 2, 2, 2, 4, 4, 4, 6, 4, 6, 8, 6, 8, 8, 8, 8, 12, 10]
sage: all([OrderClassNumber(D0,h,f) == (D0*f**2).class_number() for f in srange(1,
→˓20)])
True

sage.schemes.elliptic_curves.cm.cm_j_invariants(proof=None)
Return a list of all CM 𝑗-invariants in the field𝐾.

INPUT:

• K – a number field

• proof – (default: proof.number_field())

OUTPUT:

(list) – A list of CM 𝑗-invariants in the field𝐾.

EXAMPLES:

sage: cm_j_invariants(QQ)
[-262537412640768000, -147197952000, -884736000, -12288000, -884736,
-32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]

Over imaginary quadratic fields there are no more than over 𝑄𝑄:

sage: cm_j_invariants(QuadraticField(-1, i)) #␣
→˓needs sage.rings.number_field
[-262537412640768000, -147197952000, -884736000, -12288000, -884736,
-32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]

18.11. Complex multiplication for elliptic curves 481

Elliptic curves, Release 10.4.rc1

Over real quadratic fields there may be more, for example:

sage: len(cm_j_invariants(QuadraticField(5, a))) #␣
→˓needs sage.rings.number_field
31

Over number fields K of many higher degrees this also works:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: cm_j_invariants(K)
[-262537412640768000, -147197952000, -884736000, -884736, -32768,
8000, -3375, 16581375, 1728, 287496, 0, 54000, -12288000,
31710790944000*a^2 + 39953093016000*a + 50337742902000]
sage: K.<a> = NumberField(x^4 - 2)
sage: len(cm_j_invariants(K))
23

sage.schemes.elliptic_curves.cm.cm_j_invariants_and_orders(proof=None)
Return a list of all CM 𝑗-invariants in the field𝐾, together with the associated orders.

INPUT:

• K – a number field

• proof – (default: proof.number_field())

OUTPUT:

(list) A list of 3-tuples (𝐷, 𝑓, 𝑗) where 𝑗 is a CM 𝑗-invariant in𝐾 with quadratic fundamental discriminant𝐷 and
conductor 𝑓 .

EXAMPLES:

sage: cm_j_invariants_and_orders(QQ)
[(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728),
(-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768),
(-19, 1, -884736), (-43, 1, -884736000), (-67, 1, -147197952000),
(-163, 1, -262537412640768000)]

Over an imaginary quadratic field there are no more than over 𝑄𝑄:

sage: cm_j_invariants_and_orders(QuadraticField(-1, i)) #␣
→˓needs sage.rings.number_field
[(-163, 1, -262537412640768000), (-67, 1, -147197952000),
(-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768),
(-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728),
(-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000)]

Over real quadratic fields there may be more:

sage: v = cm_j_invariants_and_orders(QuadraticField(5, a)); len(v) #␣
→˓needs sage.rings.number_field
31
sage: [(D, f) for D, f, j in v if j not in QQ] #␣
→˓needs sage.rings.number_field
[(-235, 1), (-235, 1), (-115, 1), (-115, 1), (-40, 1), (-40, 1),
(-35, 1), (-35, 1), (-20, 1), (-20, 1), (-15, 1), (-15, 1), (-15, 2),
(-15, 2), (-4, 5), (-4, 5), (-3, 5), (-3, 5)]

482 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

Over number fields K of many higher degrees this also works:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2) #␣
→˓needs sage.rings.number_field
sage: cm_j_invariants_and_orders(K) #␣
→˓needs sage.rings.number_field
[(-163, 1, -262537412640768000), (-67, 1, -147197952000),
(-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768),
(-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728),
(-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000),
(-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]

sage.schemes.elliptic_curves.cm.cm_orders(proof=None)

Return a list of all pairs (𝐷, 𝑓) where there is a CM order of discriminant 𝐷𝑓2 with class number h, with 𝐷 a
fundamental discriminant.

INPUT:

• ℎ – positive integer

• proof – (default: proof.number_field())

OUTPUT:

• list of 2-tuples (𝐷, 𝑓) sorted lexicographically by (|𝐷|, 𝑓)

EXAMPLES:

sage: cm_orders(0)
[]
sage: v = cm_orders(1); v
[(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1),
(-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: type(v[0][0]), type(v[0][1])
(<... sage.rings.integer.Integer >, <... sage.rings.integer.Integer >)
sage: # needs sage.libs.pari
sage: v = cm_orders(2); v
[(-3, 4), (-3, 5), (-3, 7), (-4, 3), (-4, 4), (-4, 5), (-7, 4), (-8, 2),
(-8, 3), (-11, 3), (-15, 1), (-15, 2), (-20, 1), (-24, 1), (-35, 1),
(-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1),
(-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)]

sage: len(v)
29
sage: set([hilbert_class_polynomial(D*f^2).degree() for D,f in v])
{2}

Any degree up to 100 is implemented, but may be slow:

sage: # needs sage.libs.pari
sage: cm_orders(3)
[(-3, 6), (-3, 9), (-11, 2), (-19, 2), (-23, 1), (-23, 2), (-31, 1), (-31, 2),
(-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2),
(-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1),
(-643, 1), (-883, 1), (-907, 1)]
sage: len(cm_orders(4))
84

sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax,
B=None,
proof=None)

18.11. Complex multiplication for elliptic curves 483

Elliptic curves, Release 10.4.rc1

Return a dictionary with keys class numbers ℎ ≤ ℎ𝑚𝑎𝑥 and values the list of all pairs (𝐷0, 𝑓), with 𝐷0 < 0 a
fundamental discriminant such that 𝐷 = 𝐷0𝑓

2 has class number ℎ. If the optional bound 𝐵 is given, return only
those pairs with |𝐷| ≤ 𝐵.

INPUT:

• hmax – integer

• 𝐵 – integer or None; if None returns all pairs

• proof – this code calls the PARI function pari:qfbclassno, so it could give wrong answers when
proof == False (though only for discriminants greater than 2 · 1010). The default is the current
value of proof.number_field().

OUTPUT:

• dictionary

Note: In case 𝐵 is not given, then hmax must be at most 100; we use the tables from [Watkins2004] and
[Klaise2012] to compute a 𝐵 that captures all ℎ up to ℎ𝑚𝑎𝑥.

EXAMPLES:

sage: # needs sage.libs.pari
sage: from sage.schemes.elliptic_curves.cm import discriminants_with_bounded_
→˓class_number
sage: v = discriminants_with_bounded_class_number(3)
sage: sorted(v)
[1, 2, 3]
sage: v[1]
[(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1),
(-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: v[2]
[(-3, 4), (-3, 5), (-3, 7), (-4, 3), (-4, 4), (-4, 5), (-7, 4), (-8, 2),
(-8, 3), (-11, 3), (-15, 1), (-15, 2), (-20, 1), (-24, 1), (-35, 1), (-40, 1),
(-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1),
(-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: v[3]
[(-3, 6), (-3, 9), (-11, 2), (-19, 2), (-23, 1), (-23, 2), (-31, 1), (-31, 2),
(-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2),
(-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1),
(-643, 1), (-883, 1), (-907, 1)]
sage: v = discriminants_with_bounded_class_number(8, proof=False)
sage: sorted(len(v[h]) for h in v)
[13, 25, 29, 29, 38, 84, 101, 208]

Find all class numbers for discriminant up to 50:

sage: sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_
→˓number(hmax=5, B=50)
{1: [(-3, 1), (-3, 2), (-3, 3), (-4, 1), (-4, 2), (-7, 1), (-7, 2), (-8, 1), (-11,
→˓ 1), (-19, 1), (-43, 1)], 2: [(-3, 4), (-4, 3), (-8, 2), (-15, 1), (-20, 1), (-
→˓24, 1), (-35, 1), (-40, 1)], 3: [(-11, 2), (-23, 1), (-31, 1)], 4: [(-39, 1)],␣
→˓5: [(-47, 1)]}

sage.schemes.elliptic_curves.cm.hilbert_class_polynomial(algorithm=None)

Return the Hilbert class polynomial for discriminant 𝐷.

484 Chapter 18. Elliptic curves over number fields

https://pari.math.u-bordeaux.fr/dochtml/help/qfbclassno

Elliptic curves, Release 10.4.rc1

INPUT:

• D (int) – a negative integer congruent to 0 or 1 modulo 4.

• algorithm (string, default None).

OUTPUT:

(integer polynomial) The Hilbert class polynomial for the discriminant 𝐷.

ALGORITHM:

• If algorithm = “arb” (default): Use FLINT’s implementation inherited from Arb which uses complex
interval arithmetic.

• If algorithm = “sage”: Use complex approximations to the roots.

• If algorithm = “magma”: Call the appropriate Magma function (if available).

AUTHORS:

• Sage implementation originally by Eduardo Ocampo Alvarez and AndreyTimofeev

• Sage implementation corrected by John Cremona (using corrected precision bounds from Andreas Enge)

• Magma implementation by David Kohel

EXAMPLES:

sage: # needs sage.libs.flint
sage: hilbert_class_polynomial(-4)
x - 1728
sage: hilbert_class_polynomial(-7)
x + 3375
sage: hilbert_class_polynomial(-23)
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
sage: hilbert_class_polynomial(-37*4)
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-37*4, algorithm="magma") # optional - magma
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-163)
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="sage")
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="magma") # optional - magma
x + 262537412640768000

sage.schemes.elliptic_curves.cm.is_HCP(f , check_monic_irreducible=True)
Determine whether a polynomial is a Hilbert Class Polynomial.

INPUT:

• f – a polynomial in [𝑋].

• check_monic_irreducible (boolean, default True) – if True, check that f is a monic, irreducible,
integer polynomial.

OUTPUT:

(integer) – either 𝐷 if f is the Hilbert Class Polynomial 𝐻𝐷 for discriminant 𝐷, or 0 if not an HCP.

ALGORITHM:

Cremona and Sutherland: Algorithm 2 of [CreSuth2023].

EXAMPLES:

18.11. Complex multiplication for elliptic curves 485

Elliptic curves, Release 10.4.rc1

Even for large degrees this is fast. We test the largest discriminant of class number 100, for which the HCP has
coefficients with thousands of digits:

sage: from sage.schemes.elliptic_curves.cm import is_HCP
sage: D = -1856563
sage: D.class_number() #␣
→˓needs sage.libs.pari
100

sage: # needs sage.libs.flint
sage: H = hilbert_class_polynomial(D)
sage: H.degree()
100
sage: max(H).ndigits()
2774
sage: is_HCP(H)
-1856563

Testing polynomials which are not HCPs is faster:

sage: is_HCP(H+1) #␣
→˓needs sage.libs.flint
0

sage.schemes.elliptic_curves.cm.is_cm_j_invariant(algorithm='CremonaSutherland',
method=None)

Return whether or not this is a CM 𝑗-invariant, and the CM discriminant if it is.

INPUT:

• j – an element of a number field𝐾

• algorithm (string, default ‘CremonaSutherland’) – the algorithm used, either ‘CremonaSutherland’ (the
default, very much faster for all but very small degrees), ‘exhaustive’ or ‘reduction’

• method (string) – deprecated name for algorithm

OUTPUT:

A pair (bool, (d,f)) which is either (False, None) if 𝑗 is not a CM j-invariant or (True, (d,f)) if 𝑗 is the 𝑗-invariant
of the imaginary quadratic order of discriminant𝐷 = 𝑑𝑓2 where 𝑑 is the associated fundamental discriminant and
𝑓 the index.

ALGORITHM:

The default algorithm used is to test whether the minimal polynomial of j is a Hilbert CLass Polynomail, using
is_HCP() which implements Algorithm 2 of [CreSuth2023] by Cremona and Sutherland.

Two older algorithms are available, both of which are much slower except for very small degrees.

Method ‘exhaustive’ makes use of the complete and unconditionsl classification of all orders of class number up to
100, and hence will raise an error if 𝑗 is an algebraic integer of degree greater than this.

Method ‘reduction’ constructs an elliptic curve over the number field Q(𝑗) and computes its traces of Frobenius at
several primes of degree 1.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
sage: is_cm_j_invariant(0)
(True, (-3, 1))

(continues on next page)

486 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: is_cm_j_invariant(8000)
(True, (-8, 1))

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(5)
sage: is_cm_j_invariant(282880*a + 632000)
(True, (-20, 1))
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
(True, (-3, 6))

An example of large degree. This is only possible using the default algorithm:

sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
sage: D = -1856563
sage: H = hilbert_class_polynomial(D) #␣
→˓needs sage.libs.flint
sage: H.degree() #␣
→˓needs sage.libs.flint
100
sage: K.<j> = NumberField(H) #␣
→˓needs sage.libs.flint sage.rings.number_field
sage: is_cm_j_invariant(j) #␣
→˓needs sage.libs.flint sage.rings.number_field
(True, (-1856563, 1))

sage.schemes.elliptic_curves.cm.largest_disc_with_class_number(h)
Return largest absolute value of any negative discriminant with class number ℎ, and the number of fundamental
negative discriminants with that class number. This is known (unconditionally) for ℎ up to 100, by work of Mark
Watkins [Watkins2004] for fundamental discriminants, extended to all discriminants of class number ℎ ≤ 100 by
Klaise [Klaise2012].

Note: The class number of a negative discriminant 𝐷 is the same as the class number of the unique imaginary
quadratic order of discriminant𝐷, so this function gives the number of such orders of each class number ℎ ≤ 100.
It is easy to extend this to larger class number conditional on the GRH, but much harder to obyain unconditional
results.

INPUT:

• ℎ – integer

EXAMPLES:

sage: from sage.schemes.elliptic_curves.cm import largest_disc_with_class_number
sage: largest_disc_with_class_number(0)
(0, 0)
sage: largest_disc_with_class_number(1)
(163, 13)
sage: largest_disc_with_class_number(2)
(427, 29)
sage: largest_disc_with_class_number(10)
(13843, 123)
sage: largest_disc_with_class_number(100)
(1856563, 2311)

(continues on next page)

18.11. Complex multiplication for elliptic curves 487

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: largest_disc_with_class_number(101)
Traceback (most recent call last):
...
NotImplementedError: largest discriminant not available for class number 101

For most ℎ ≤ 100, the largest fundamental discriminant with class number ℎ is also the largest discriminant, but
this is not the case for some ℎ:

sage: from sage.schemes.elliptic_curves.cm import largest_disc_with_class_number,␣
→˓largest_fundamental_disc_with_class_number
sage: [h for h in range(1,101) if largest_disc_with_class_number(h)[0] != largest_
→˓fundamental_disc_with_class_number(h)[0]]
[6, 8, 12, 16, 20, 30, 40, 42, 52, 70]
sage: largest_fundamental_disc_with_class_number(6)
(3763, 51)
sage: largest_disc_with_class_number(6)
(4075, 101)

sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(h)
Return largest absolute value of any fundamental negative discriminant with class number ℎ, and the number of
fundamental negative discriminants with that class number. This is known (unconditionally) for ℎ up to 100, by
work of Mark Watkins ([Watkins2004]).

Note: The class number of a fundamental negative discriminant𝐷 is the same as the class number of the imaginary
quadratic field Q(

√
𝐷), so this function gives the number of such fields of each class number ℎ ≤ 100. It is easy

to extend this to larger class number conditional on the GRH, but much harder to obtain unconditional results.

INPUT:

• ℎ – integer

EXAMPLES:

sage: from sage.schemes.elliptic_curves.cm import largest_fundamental_disc_with_
→˓class_number
sage: largest_fundamental_disc_with_class_number(0)
(0, 0)
sage: largest_fundamental_disc_with_class_number(1)
(163, 9)
sage: largest_fundamental_disc_with_class_number(2)
(427, 18)
sage: largest_fundamental_disc_with_class_number(10)
(13843, 87)
sage: largest_fundamental_disc_with_class_number(100)
(1856563, 1736)
sage: largest_fundamental_disc_with_class_number(101)
Traceback (most recent call last):
...
NotImplementedError: largest fundamental discriminant not available for class␣
→˓number 101

488 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

18.12 Testing whether elliptic curves over number fields are
Q-curves

AUTHORS:

• John Cremona (February 2021)

The code here implements the algorithm of Cremona and Najman presented in [CrNa2020].

sage.schemes.elliptic_curves.Qcurves.Step4Test(E , B, oldB=0, verbose=False)
Apply local Q-curve test to E at all primes up to B.

INPUT:

• 𝐸 (elliptic curve): an elliptic curve defined over a number field

• 𝐵 (integer): upper bound on primes to test

• oldB (integer, default 0): lower bound on primes to test

• verbose (boolean, default False): verbosity flag

OUTPUT:

Either (False, 𝑝), if the local test at 𝑝 proves that 𝐸 is not a Q-curve, or (True, 0) if all local tests at primes
between oldB and B fail to prove that 𝐸 is not a Q-curve.

ALGORITHM (see [CrNa2020] for details):

This local test at 𝑝 only applies if 𝐸 has good reduction at all of the primes lying above 𝑝 in the base field𝐾 of 𝐸.
It tests whether (1) 𝐸 is either ordinary at all 𝑃 | 𝑝, or supersingular at all; (2) if ordinary at all, it tests that the
squarefree part of 𝑎2𝑃 − 4𝑁(𝑃) is the same for all 𝑃 | 𝑝.

EXAMPLES:

A non-Q-curve over a quartic field (with LMFDB label ‘4.4.8112.1-12.1-a1’) fails this test at 𝑝 = 13:

sage: from sage.schemes.elliptic_curves.Qcurves import Step4Test
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1])) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([K([-3,-4,1,1]), K([4,-1,-1,0]), K([-2,0,1,0]), #␣
→˓needs sage.rings.number_field
....: K([-621,778,138,-178]), K([9509,2046,-24728,10380])])
sage: Step4Test(E, 100, verbose=True) #␣
→˓needs sage.rings.number_field
No: inconsistency at the 2 ordinary primes dividing 13
- Frobenius discriminants mod squares: [-3, -1]
(False, 13)

A Q-curve over a sextic field (with LMFDB label ‘6.6.1259712.1-64.1-a6’) passes this test for all 𝑝 < 100:

sage: from sage.schemes.elliptic_curves.Qcurves import Step4Test
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([-3, 0, 9, 0, -6, 0, 1])) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([K([1,-3,0,1,0,0]), K([5,-3,-6,1,1,0]), #␣
→˓needs sage.rings.number_field
....: K([1,-3,0,1,0,0]), K([-139,-129,331,277,-76,-63]),
....: K([2466,1898,-5916,-4582,1361,1055])])
sage: Step4Test(E, 100, verbose=True) #␣

(continues on next page)

18.12. Testing whether elliptic curves over number fields are Q-curves 489

Elliptic curves, Release 10.4.rc1

(continued from previous page)

→˓needs sage.rings.number_field
(True, 0)

sage.schemes.elliptic_curves.Qcurves.conjugacy_test(jlist, verbose=False)
Test whether a list of algebraic numbers contains a complete conjugacy class of 2-power degree.

INPUT:

• jlist (list): a list of algebraic numbers in the same field

• verbose (boolean, default False): verbosity flag

OUTPUT:

A possibly empty list of irreducible polynomials over Q of 2-power degree all of whose roots are in the list.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: from sage.schemes.elliptic_curves.Qcurves import conjugacy_test
sage: conjugacy_test([3])
[x - 3]
sage: K.<a> = QuadraticField(2)
sage: conjugacy_test([K(3), a])
[x - 3]
sage: conjugacy_test([K(3), 3 + a])
[x - 3]
sage: conjugacy_test([3 + a])
[]
sage: conjugacy_test([3 + a, 3 - a])
[x^2 - 6*x + 7]
sage: x = polygen(QQ)
sage: f = x^3 - 3
sage: K.<a> = f.splitting_field()
sage: js = f.roots(K, multiplicities=False)
sage: conjugacy_test(js)
[]
sage: f = x^4 - 3
sage: K.<a> = NumberField(f)
sage: js = f.roots(K, multiplicities=False)
sage: conjugacy_test(js)
[]
sage: K.<a> = f.splitting_field()
sage: js = f.roots(K, multiplicities=False)
sage: conjugacy_test(js)
[x^4 - 3]

sage.schemes.elliptic_curves.Qcurves.is_Q_curve(E , maxp=100, certificate=False,
verbose=False)

Return whether E is a Q-curve, with optional certificate.

INPUT:

• E (elliptic curve) – an elliptic curve over a number field.

• maxp (int, default 100): bound on primes used for checking necessary local conditions. The result will not
depend on this, but using a larger value may return False faster.

• certificate (bool, default False): if True then a second value is returned giving a certificate for the
Q-curve property.

490 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

OUTPUT:

If certificate is False: either True (if 𝐸 is a Q-curve), or False.

If certificate is True: a tuple consisting of a boolean flag as before and a certificate, defined as follows:

• when the flag is True, so 𝐸 is a Q-curve:

– either {‘CM’:𝐷} where 𝐷 is a negative discriminant, when 𝐸 has potential CM with discriminant 𝐷;

– otherwise {‘CM’: 0, ‘core_poly’: 𝑓 , ‘rho’: 𝜌, ‘r’: 𝑟, ‘N’: 𝑁}, when 𝐸 is a non-CM Q-curve, where the
core polynomial 𝑓 is an irreducible monic polynomial over 𝑄𝑄 of degree 2𝜌, all of whose roots are
𝑗-invariants of curves isogenous to 𝐸, the core level 𝑁 is a square-free integer with 𝑟 prime factors
which is the LCM of the degrees of the isogenies between these conjugates. For example, if there exists
a curve 𝐸′ isogenous to 𝐸 with 𝑗(𝐸′) = 𝑗 ∈ Q, then the certificate is {‘CM’:0, ‘r’:0, ‘rho’:0, ‘core_poly’:
x-j, ‘N’:1}.

• when the flag is False, so 𝐸 is not a Q-curve, the certificate is a prime 𝑝 such that the reductions of 𝐸 at
the primes dividing 𝑝 are inconsistent with the property of being a Q-curve. See the ALGORITHM section
for details.

ALGORITHM:

See [CrNa2020] for details.

1. If 𝐸 has rational 𝑗-invariant, or has CM, then return True.

2. Replace 𝐸 by a curve defined over𝐾 = Q(𝑗(𝐸)). Let 𝑁 be the conductor norm.

3. For all primes 𝑝 | 𝑁 check that the valuations of 𝑗 at all 𝑃 | 𝑝 are either all negative or all non-negative; if not,
return False.

4. For 𝑝 ≤ 𝑚𝑎𝑥𝑝, 𝑝 ̸| 𝑁 , check that either 𝐸 is ordinary mod 𝑃 for all 𝑃 | 𝑝, or 𝐸 is supersingular mod 𝑃 for
all 𝑃 | 𝑝; if neither, return False. If all are ordinary, check that the integers 𝑎𝑃 (𝐸)2 − 4𝑁(𝑃) have the same
square-free part; if not, return False.

5. Compute the 𝐾-isogeny class of 𝐸 using the “heuristic” option (which is faster, but not guaranteed to be
complete). Check whether the set of 𝑗-invariants of curves in the class of 2-power degree contains a complete
Galois orbit. If so, return True.

6. Otherwise repeat step 4 for more primes, and if still undecided, repeat Step 5 without the “heuristic” option, to
get the complete 𝐾-isogeny class (which will probably be no bigger than before). Now return True if the set of
𝑗-invariants of curves in the class contains a complete Galois orbit, otherwise return False.

EXAMPLES:

A non-CM curve over Q and a CM curve over Q are both trivially Q-curves:

sage: from sage.schemes.elliptic_curves.Qcurves import is_Q_curve
sage: E = EllipticCurve([1,2,3,4,5])
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{ CM : 0, N : 1, core_poly : x, r : 0, rho : 0}

sage: E = EllipticCurve(j=8000)
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{ CM : -8}

18.12. Testing whether elliptic curves over number fields are Q-curves 491

Elliptic curves, Release 10.4.rc1

A non-Q-curve over a quartic field. The local data at bad primes above 3 is inconsistent:

sage: from sage.schemes.elliptic_curves.Qcurves import is_Q_curve
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1])) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([K([-3,-4,1,1]), K([4,-1,-1,0]), K([-2,0,1,0]), #␣
→˓needs sage.rings.number_field
....: K([-621,778,138,-178]), K([9509,2046,-24728,10380])])
sage: is_Q_curve(E, certificate=True, verbose=True) #␣
→˓needs sage.rings.number_field
Checking whether Elliptic Curve defined by y^2 + (a^3+a^2-4*a-3)*x*y + (a^2-2)*y␣
→˓= x^3 + (-a^2-a+4)*x^2 + (-178*a^3+138*a^2+778*a-621)*x + (10380*a^3-24728*a^
→˓2+2046*a+9509) over Number Field in a with defining polynomial x^4 - 5*x^2 + 3␣
→˓is a Q-curve
No: inconsistency at the 2 primes dividing 3
- potentially multiplicative: [True, False]
(False, 3)

A non-Q-curve over a quadratic field. The local data at bad primes is consistent, but the local test at good primes
above 13 is not:

sage: K.<a> = NumberField(R([-10, 0, 1])) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([K([0,1]), K([-1,-1]), K([0,0]), #␣
→˓needs sage.rings.number_field
....: K([-236,40]), K([-1840,464])])
sage: is_Q_curve(E, certificate=True, verbose=True) #␣
→˓needs sage.rings.number_field
Checking whether Elliptic Curve defined by y^2 + a*x*y = x^3 + (-a-1)*x^2 + (40*a-
→˓236)*x + (464*a-1840) over Number Field in a with defining polynomial x^2 - 10␣
→˓is a Q-curve
Applying local tests at good primes above p<=100
No: inconsistency at the 2 ordinary primes dividing 13
- Frobenius discriminants mod squares: [-1, -3]
No: local test at p=13 failed
(False, 13)

A quadratic Q-curve with CM discriminant −15 (𝑗-invariant not in Q):

sage: from sage.schemes.elliptic_curves.Qcurves import is_Q_curve
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([-1, -1, 1])) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([K([1,0]), K([-1,0]), K([0,1]), K([0,-2]), K([0,1])]) #␣
→˓needs sage.rings.number_field
sage: is_Q_curve(E, certificate=True, verbose=True) #␣
→˓needs sage.rings.number_field
Checking whether Elliptic Curve defined by y^2 + x*y + a*y = x^3 + (-1)*x^2 + (-
→˓2*a)*x + a over Number Field in a with defining polynomial x^2 - x - 1 is a Q-
→˓curve
Yes: E is CM (discriminant -15)
(True, { CM : -15})

An example over Q(
√
2,
√
3). The 𝑗-invariant is in Q(

√
6), so computations will be done over that field, and in

fact there is an isogenous curve with rational 𝑗, so we have a so-called rational Q-curve:

492 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(R([1, 0, -4, 0, 1]))
sage: E = EllipticCurve([K([-2,-4,1,1]), K([0,1,0,0]), K([0,1,0,0]),
....: K([-4780,9170,1265,-2463]),
....: K([163923,-316598,-43876,84852])])
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{ CM : 0, N : 1, core_degs : [1], core_poly : x - 85184/3, r : 0, rho : 0}

Over the same field, a so-called strictQ-curve which is not isogenous to one with rational 𝑗, but whose core field is
quadratic. In fact the isogeny class over𝐾 consists of 6 curves, four with conjugate quartic 𝑗-invariants and 2 with
quadratic conjugate 𝑗-invariants in Q(

√
3) (but which are not base-changes from the quadratic subfield):

sage: # needs sage.rings.number_field
sage: E = EllipticCurve([K([0,-3,0,1]), K([1,4,0,-1]), K([0,0,0,0]),
....: K([-2,-16,0,4]), K([-19,-32,4,8])])
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{ CM : 0,
N : 2,
core_degs : [1, 2],
core_poly : x^2 - 840064*x + 1593413632,
r : 1,
rho : 1}

The following relate to elliptic curves over local nonarchimedean fields.

18.13 Local data for elliptic curves over number fields

Let 𝐸 be an elliptic curve over a number field 𝐾 (including Q). There are several local invariants at a finite place 𝑣 that
can be computed via Tate’s algorithm (see [Sil1994] IV.9.4 or [Tate1975]).

These include the type of reduction (good, additive, multiplicative), a minimal equation of 𝐸 over 𝐾𝑣 , the Tamagawa
number 𝑐𝑣 , defined to be the index [𝐸(𝐾𝑣) : 𝐸

0(𝐾𝑣)] of the points with good reduction among the local points, and the
exponent of the conductor 𝑓𝑣 .

The functions in this file will typically be called by using local_data.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([(2+i)^2, (2+i)^7])
sage: pp = K.fractional_ideal(2+i)
sage: da = E.local_data(pp)
sage: da.has_bad_reduction()
True
sage: da.has_multiplicative_reduction()
False
sage: da.kodaira_symbol()
I0*

(continues on next page)

18.13. Local data for elliptic curves over number fields 493

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: da.tamagawa_number()
4
sage: da.minimal_model()
Elliptic Curve defined by y^2 = x^3 + (4*i+3)*x + (-29*i-278)
over Number Field in i with defining polynomial x^2 + 1

An example to show how the Neron model can change as one extends the field:

sage: E = EllipticCurve([0,-1])
sage: E.local_data(2)
Local data at Principal ideal (2) of Integer Ring:

Reduction type: bad additive
Local minimal model: Elliptic Curve defined by y^2 = x^3 - 1 over Rational Field
Minimal discriminant valuation: 4
Conductor exponent: 4
Kodaira Symbol: II
Tamagawa Number: 1

sage: # needs sage.rings.number_field
sage: EK = E.base_extend(K)
sage: EK.local_data(1+i)
Local data at Fractional ideal (i + 1):

Reduction type: bad additive
Local minimal model: Elliptic Curve defined by y^2 = x^3 + (-1)

over Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 8
Conductor exponent: 2
Kodaira Symbol: IV*
Tamagawa Number: 3

Or how the minimal equation changes:

sage: E = EllipticCurve([0,8])
sage: E.is_minimal()
True

sage: # needs sage.rings.number_field
sage: EK = E.base_extend(K)
sage: da = EK.local_data(1+i)
sage: da.minimal_model()
Elliptic Curve defined by y^2 = x^3 + (-i)
over Number Field in i with defining polynomial x^2 + 1

AUTHORS:

• John Cremona: First version 2008-09-21 (refactoring code from ell_number_field.py and
ell_rational_field.py)

• Chris Wuthrich: more documentation 2010-01

class sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData(E , P,
proof=None,
algo-
rithm='pari',
glob-
ally=False)

Bases: SageObject

494 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

The class for the local reduction data of an elliptic curve.

Currently supported are elliptic curves defined overQ, and elliptic curves defined over a number field, at an arbitrary
prime or prime ideal.

INPUT:

• E – an elliptic curve defined over a number field, or Q.

• P – a prime ideal of the field, or a prime integer if the field is Q.

• proof (bool) – if True, only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag
are in number fields.

• algorithm (string, default: “pari”) – Ignored unless the base field is Q. If “pari”, use the PARI C-library
ellglobalred implementation of Tate’s algorithm over Q. If “generic”, use the general number field
implementation.

Note: This function is not normally called directly by users, who may access the data via methods of the Elliptic-
Curve classes.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve(14a1)
sage: EllipticCurveLocalData(E,2)
Local data at Principal ideal (2) of Integer Ring:
Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6

over Rational Field
Minimal discriminant valuation: 6
Conductor exponent: 1
Kodaira Symbol: I6
Tamagawa Number: 2

bad_reduction_type()

Return the type of bad reduction of this reduction data.

OUTPUT:

(int or None):

• +1 for split multiplicative reduction

• -1 for non-split multiplicative reduction

• 0 for additive reduction

• None for good reduction

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p,E.local_data(p).bad_reduction_type()) for p in prime_range(15)]
[(2, -1), (3, None), (5, None), (7, 1), (11, None), (13, None)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)

(continues on next page)

18.13. Local data for elliptic curves over number fields 495

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p,E.local_data(p).bad_reduction_type()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), None), (Fractional ideal (2*a + 1), 0)]

conductor_valuation()

Return the valuation of the conductor from this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.conductor_valuation()
2

discriminant_valuation()

Return the valuation of the minimal discriminant from this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.discriminant_valuation()
4

has_additive_reduction()

Return True if there is additive reduction.

EXAMPLES:

sage: E = EllipticCurve(27a1)
sage: [(p, E.local_data(p).has_additive_reduction()) for p in prime_range(15)]
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p, E.local_data(p).has_additive_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_bad_reduction()

Return True if there is bad reduction.

EXAMPLES:

496 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(14a1)
sage: [(p,E.local_data(p).has_bad_reduction()) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p,E.local_data(p).has_bad_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_good_reduction()

Return True if there is good reduction.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p,E.local_data(p).has_good_reduction()) for p in prime_range(15)]
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p,E.local_data(p).has_good_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), True),
(Fractional ideal (2*a + 1), False)]

has_multiplicative_reduction()

Return True if there is multiplicative reduction.

Note: See also has_split_multiplicative_reduction() and has_nonsplit_multi-
plicative_reduction().

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.local_data(p).has_multiplicative_reduction()) for p in prime_
→˓range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p,E.local_data(p).has_multiplicative_reduction()) for p in [P17a,
→˓P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

has_nonsplit_multiplicative_reduction()

18.13. Local data for elliptic curves over number fields 497

Elliptic curves, Release 10.4.rc1

Return True if there is non-split multiplicative reduction.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.local_data(p).has_nonsplit_multiplicative_reduction())
....: for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p, E.local_data(p).has_nonsplit_multiplicative_reduction())
....: for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

has_split_multiplicative_reduction()

Return True if there is split multiplicative reduction.

EXAMPLES:

sage: E = EllipticCurve(14a1)
sage: [(p, E.local_data(p).has_split_multiplicative_reduction())
....: for p in prime_range(15)]
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
sage: [(p,E .local_data(p).has_split_multiplicative_reduction())
....: for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), False)]

kodaira_symbol()

Return the Kodaira symbol from this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.kodaira_symbol()
IV

minimal_model(reduce=True)

Return the (local) minimal model from this local reduction data.

INPUT:

498 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• reduce – (default: True) if set toTrue and if the initial elliptic curve had globally integral coefficients,
then the elliptic curve returned by Tate’s algorithm will be “reduced” as specified in _reduce_model()
for curves over number fields.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E, 2)
sage: data.minimal_model()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: data.minimal_model() == E.local_minimal_model(2)
True

To demonstrate the behaviour of the parameter reduce:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 + x + 1)
sage: E = EllipticCurve(K, [0, 0, a, 0, 1])
sage: E.local_data(K.ideal(a-1)).minimal_model()
Elliptic Curve defined by y^2 + a*y = x^3 + 1
over Number Field in a with defining polynomial x^3 + x + 1

sage: E.local_data(K.ideal(a-1)).minimal_model(reduce=False)
Elliptic Curve defined by y^2 + (a+2)*y = x^3 + 3*x^2 + 3*x + (-a+1)
over Number Field in a with defining polynomial x^3 + x + 1

sage: E = EllipticCurve([2, 1, 0, -2, -1])
sage: E.local_data(ZZ.ideal(2), algorithm="generic").minimal_
→˓model(reduce=False)
Elliptic Curve defined by y^2 + 2*x*y + 2*y = x^3 + x^2 - 4*x - 2 over␣
→˓Rational Field
sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model(reduce=False)
Traceback (most recent call last):
...
ValueError: the argument reduce must not be False if algorithm=pari is used
sage: E.local_data(ZZ.ideal(2), algorithm="generic").minimal_model()
Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field
sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model()
Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field

Issue #14476:

sage: # needs sage.rings.number_field
sage: t = QQ[t].0
sage: K.<g> = NumberField(t^4 - t^3-3*t^2 - t +1)
sage: E = EllipticCurve([-2*g^3 + 10/3*g^2 + 3*g - 2/3,
....: -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9,
....: -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9, 0, 0])
sage: vv = K.fractional_ideal(g^2 - g - 2)
sage: E.local_data(vv).minimal_model()
Elliptic Curve defined by
y^2 + (-2*g^3+10/3*g^2+3*g-2/3)*x*y + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*y
= x^3 + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*x^2

over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

prime()

18.13. Local data for elliptic curves over number fields 499

https://github.com/sagemath/sage/issues/14476

Elliptic curves, Release 10.4.rc1

Return the prime ideal associated with this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.prime()
Principal ideal (2) of Integer Ring

tamagawa_exponent()

Return the Tamagawa index from this local reduction data.

This is the exponent of 𝐸(𝐾𝑣)/𝐸
0(𝐾𝑣); in most cases it is the same as the Tamagawa index.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve(816a1)
sage: data = EllipticCurveLocalData(E, 2)
sage: data.kodaira_symbol()
I2*
sage: data.tamagawa_number()
4
sage: data.tamagawa_exponent()
2

sage: E = EllipticCurve(200c4)
sage: data = EllipticCurveLocalData(E, 5)
sage: data.kodaira_symbol()
I4*
sage: data.tamagawa_number()
4
sage: data.tamagawa_exponent()
2

tamagawa_number()

Return the Tamagawa number from this local reduction data.

This is the index [𝐸(𝐾𝑣) : 𝐸
0(𝐾𝑣)].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.tamagawa_number()
3

sage.schemes.elliptic_curves.ell_local_data.check_prime(K , P)
Function to check that 𝑃 determines a prime of𝐾, and return that ideal.

INPUT:

500 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• K – a number field (including Q).

• P – an element of K or a (fractional) ideal of K.

OUTPUT:

• If K is Q: the prime integer equal to or which generates 𝑃 .

• If K is not Q: the prime ideal equal to or generated by 𝑃 .

Note: If 𝑃 is not a prime and does not generate a prime, a TypeError is raised.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
sage: check_prime(QQ, 3)
3
sage: check_prime(QQ, QQ(3))
3
sage: check_prime(QQ, ZZ.ideal(31))
31

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^2 - 5)
sage: check_prime(K, a)
Fractional ideal (a)
sage: check_prime(K, a + 1)
Fractional ideal (a + 1)
sage: [check_prime(K, P) for P in K.primes_above(31)]
[Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
sage: L. = NumberField(x^2 + 3)
sage: check_prime(K, L.ideal(5))
Traceback (most recent call last):
...
TypeError: The ideal Fractional ideal (5) is not a prime ideal of
Number Field in a with defining polynomial x^2 - 5
sage: check_prime(K, L.ideal(b))
Traceback (most recent call last):
...
TypeError: No compatible natural embeddings found for
Number Field in a with defining polynomial x^2 - 5 and
Number Field in b with defining polynomial x^2 + 3

18.14 Kodaira symbols

Kodaira symbols encode the type of reduction of an elliptic curve at a (finite) place.

The standard notation for Kodaira Symbols is as a string which is one of Im, II, III, IV, I*m, II*, III*, IV*, where𝑚 denotes
a non-negative integer. These have been encoded by single integers by different people. For convenience we give here
the conversion table between strings, the eclib coding and the PARI encoding.

18.14. Kodaira symbols 501

https://docs.python.org/library/exceptions.html#TypeError

Elliptic curves, Release 10.4.rc1

Kodaira Symbol Eclib coding PARI Coding
I0 0 1
I*0 1 −1
Im (𝑚 > 0) 10𝑚 𝑚+ 4
I*m (𝑚 > 0) 10𝑚+ 1 −(𝑚+ 4)
II 2 2
III 3 3
IV 4 4
II* 7 −2
III* 6 −3
IV* 5 −4

AUTHORS:

• David Roe <roed@math.harvard.edu>

• John Cremona

sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol(symbol)
Return the specified Kodaira symbol.

INPUT:

• symbol (string or integer) – Either a string of the form “I0”, “I1”, …, “In”, “II”, “III”, “IV”, “I0*”, “I1*”,
…, “In*”, “II*”, “III*”, or “IV*”, or an integer encoding a Kodaira symbol using PARI’s conventions.

OUTPUT:

(KodairaSymbol) The corresponding Kodaira symbol.

EXAMPLES:

sage: KS = KodairaSymbol
sage: [KS(n) for n in range(1,10)]
[I0, II, III, IV, I1, I2, I3, I4, I5]
sage: [KS(-n) for n in range(1,10)]
[I0*, II*, III*, IV*, I1*, I2*, I3*, I4*, I5*]
sage: all(KS(str(KS(n))) == KS(n) for n in range(-10,10) if n != 0)
True

class sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol_class(symbol)

Bases: SageObject

Class to hold a Kodaira symbol of an elliptic curve over a 𝑝-adic local field.

Users should use the KodairaSymbol() function to construct Kodaira Symbols rather than use the class con-
structor directly.

502 Chapter 18. Elliptic curves over number fields

mailto:roed@math.harvard.edu
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

18.15 Tate’s parametrisation of 𝑝-adic curves with multiplicative re-
duction

Let 𝐸 be an elliptic curve defined over the 𝑝-adic numbers Q𝑝. Suppose that 𝐸 has multiplicative reduction, i.e. that the
𝑗-invariant of 𝐸 has negative valuation, say 𝑛. Then there exists a parameter 𝑞 in 𝑝 of valuation 𝑛 such that the points
of 𝐸 defined over the algebraic closure Q̄𝑝 are in bijection with Q̄×

𝑝 / 𝑞 . More precisely there exists the series 𝑠4(𝑞)
and 𝑠6(𝑞) such that the 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑠4(𝑞)𝑥+ 𝑠6(𝑞) curve is isomorphic to 𝐸 over Q̄𝑝 (or over Q𝑝 if the reduction
is split multiplicative). There is a 𝑝-adic analytic map from Q̄×

𝑝 to this curve with kernel 𝑞 . Points of good reduction
correspond to points of valuation 0 in Q̄×

𝑝 .

See chapter V of [Sil1994] for more details.

AUTHORS:

• Chris Wuthrich (23/05/2007): first version

• William Stein (2007-05-29): added some examples; editing.

• Chris Wuthrich (04/09): reformatted docstrings.

class sage.schemes.elliptic_curves.ell_tate_curve.TateCurve(E , p)
Bases: SageObject

Tate’s 𝑝-adic uniformisation of an elliptic curve with multiplicative reduction.

Note: Some of the methods of this Tate curve only work when the reduction is split multiplicative over Q𝑝.

EXAMPLES:

sage: e = EllipticCurve(130a1)
sage: eq = e.tate_curve(5); eq
5-adic Tate curve associated to the Elliptic Curve
defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field
sage: eq == loads(dumps(eq))
True

REFERENCES: [Sil1994]

E2(prec=20)

Return the value of the 𝑝-adic Eisenstein series of weight 2 evaluated on the elliptic curve having split multi-
plicative reduction.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.E2(prec=10)
4 + 2*5^2 + 2*5^3 + 5^4 + 2*5^5 + 5^7 + 5^8 + 2*5^9 + O(5^10)

sage: T = EllipticCurve(14).tate_curve(7)
sage: T.E2(30)
2 + 4*7 + 7^2 + 3*7^3 + 6*7^4 + 5*7^5 + 2*7^6 + 7^7 + 5*7^8 + 6*7^9 + 5*7^10␣
→˓+ 2*7^11 + 6*7^12 + 4*7^13 + 3*7^15 + 5*7^16 + 4*7^17 + 4*7^18 + 2*7^20 + 7^
→˓21 + 5*7^22 + 4*7^23 + 4*7^24 + 3*7^25 + 6*7^26 + 3*7^27 + 6*7^28 + O(7^30)

18.15. Tate’s parametrisation of 𝑝-adic curves with multiplicative reduction 503

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

L_invariant(prec=20)
Return the mysterious ℒ-invariant associated to an elliptic curve with split multiplicative reduction.

One instance where this constant appears is in the exceptional case of the 𝑝-adic Birch and Swinnerton-Dyer
conjecture as formulated in [MTT1986]. See [Col2004] for a detailed discussion.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.L_invariant(prec=10)
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)

curve(prec=20)
Return the 𝑝-adic elliptic curve of the form 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑠4𝑥+ 𝑠6.

This curve with split multiplicative reduction is isomorphic to the given curve over the algebraic closure of
Q𝑝.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.curve(prec=5)
Elliptic Curve defined by y^2 + (1+O(5^5))*x*y =
x^3 + (2*5^4+5^5+2*5^6+5^7+3*5^8+O(5^9))*x + (2*5^3+5^4+2*5^5+5^7+O(5^8))
over 5-adic Field with capped relative precision 5

is_split()

Return True if the given elliptic curve has split multiplicative reduction.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.is_split()
True

sage: eq = EllipticCurve(37a1).tate_curve(37)
sage: eq.is_split()
False

lift(P, prec=20)
Given a point 𝑃 in the formal group of the elliptic curve 𝐸 with split multiplicative reduction, this produces
an element 𝑢 in Q×

𝑝 mapped to the point 𝑃 by the Tate parametrisation. The algorithm return the unique
such element in 1 + 𝑝 𝑝.

INPUT:

• P – a point on the elliptic curve.

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

504 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: e = EllipticCurve(130a1)
sage: eq = e.tate_curve(5)
sage: P = e([-6,10])
sage: l = eq.lift(12*P, prec=10); l
1 + 4*5 + 5^3 + 5^4 + 4*5^5 + 5^6 + 5^7 + 4*5^8 + 5^9 + O(5^10)

Now we map the lift l back and check that it is indeed right.:

sage: eq.parametrisation_onto_original_curve(l)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7)
: 2*5^-3 + 5^-1 + 4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^10))

sage: e5 = e.change_ring(Qp(5,9))
sage: e5(12*P)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7)
: 2*5^-3 + 5^-1 + 4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^9))

original_curve()

Return the elliptic curve the Tate curve was constructed from.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.original_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68
over Rational Field

padic_height(prec=20)
Return the canonical 𝑝-adic height function on the original curve.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

OUTPUT:

• A function that can be evaluated on rational points of 𝐸.

EXAMPLES:

sage: e = EllipticCurve(130a1)
sage: eq = e.tate_curve(5)
sage: h = eq.padic_height(prec=10)
sage: P = e.gens()[0]
sage: h(P)
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + O(5^9)

Check that it is a quadratic function:

sage: h(3*P)-3^2*h(P)
O(5^9)

padic_regulator(prec=20)

Compute the canonical 𝑝-adic regulator on the extended Mordell-Weil group as in [MTT1986] (with the
correction of [Wer1998] and sign convention in [SW2013].)

The 𝑝-adic Birch and Swinnerton-Dyer conjecture predicts that this value appears in the formula for the
leading term of the 𝑝-adic L-function.

INPUT:

18.15. Tate’s parametrisation of 𝑝-adic curves with multiplicative reduction 505

Elliptic curves, Release 10.4.rc1

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.padic_regulator()
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + 3*5^9 + 3*5^10 + 3*5^12 +␣
→˓4*5^13 + 3*5^15 + 2*5^16 + 3*5^18 + 4*5^19 + 4*5^20 + 3*5^21 + 4*5^22 +␣
→˓O(5^23)

parameter(prec=20)
Return the Tate parameter 𝑞 such that the curve is isomorphic over the algebraic closure of Q𝑝 to the curve
Q×
𝑝 /𝑞 .

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8)

parametrisation_onto_original_curve(u, prec=None)
Given an element 𝑢 in Q×

𝑝 , this computes its image on the original curve under the 𝑝-adic uniformisation of
𝐸.

INPUT:

• u – a non-zero 𝑝-adic number.

• prec – the 𝑝-adic precision, default is the relative precision of u otherwise 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.parametrisation_onto_original_curve(1+5+5^2+O(5^10))
(4*5^-2 + 4*5^-1 + 4 + 2*5^3 + 3*5^4 + 2*5^6 + O(5^7) :
3*5^-3 + 5^-2 + 4*5^-1 + 1 + 4*5 + 5^2 + 3*5^5 + O(5^6) :
1 + O(5^10))

sage: eq.parametrisation_onto_original_curve(1+5+5^2+O(5^10), prec=20)
Traceback (most recent call last):
...
ValueError: requested more precision than the precision of u

Here is how one gets a 4-torsion point on 𝐸 over Q5:

sage: R = Qp(5,30)
sage: i = R(-1).sqrt()
sage: T = eq.parametrisation_onto_original_curve(i, prec=30); T
(2 + 3*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + 5^12 + 3*5^13 +␣
→˓3*5^14 + 5^15 + 4*5^17 + 5^18 + 3*5^19 + 2*5^20 + 4*5^21 + 5^22 + 3*5^23 +␣
→˓3*5^24 + 4*5^25 + 3*5^26 + 3*5^27 + 3*5^28 + 3*5^29 + O(5^30) : 3*5 + 5^2 +␣
→˓5^4 + 3*5^5 + 3*5^7 + 2*5^8 + 4*5^9 + 5^10 + 2*5^11 + 4*5^13 + 2*5^14 + 4*5^
→˓15 + 4*5^16 + 3*5^17 + 2*5^18 + 4*5^20 + 2*5^21 + 2*5^22 + 4*5^23 + 4*5^24␣
→˓+ 4*5^25 + 5^26 + 3*5^27 + 2*5^28 + O(5^30) : 1 + O(5^30))
sage: 4*T
(0 : 1 + O(5^30) : 0)

506 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

parametrisation_onto_tate_curve(u, prec=None)
Given an element 𝑢 in Q×

𝑝 , this computes its image on the Tate curve under the 𝑝-adic uniformisation of 𝐸.

INPUT:

• u – a non-zero 𝑝-adic number.

• prec – the 𝑝-adic precision, default is the relative precision of u otherwise 20.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10), prec=10)
(5^-2 + 4*5^-1 + 1 + 2*5 + 3*5^2 + 2*5^5 + 3*5^6 + O(5^7)
: 4*5^-3 + 2*5^-1 + 4 + 2*5 + 3*5^4 + 2*5^5 + O(5^6) : 1 + O(5^10))

sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10))
(5^-2 + 4*5^-1 + 1 + 2*5 + 3*5^2 + 2*5^5 + 3*5^6 + O(5^7)
: 4*5^-3 + 2*5^-1 + 4 + 2*5 + 3*5^4 + 2*5^5 + O(5^6) : 1 + O(5^10))

sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10), prec=20)
Traceback (most recent call last):
...
ValueError: requested more precision than the precision of u

prime()

Return the residual characteristic 𝑝.

EXAMPLES:

sage: eq = EllipticCurve(130a1).tate_curve(5)
sage: eq.original_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68
over Rational Field

sage: eq.prime()
5

Analytic properties over C.

18.16 Weierstrass ℘-function for elliptic curves

The Weierstrass ℘ function associated to an elliptic curve over a field 𝑘 is a Laurent series of the form

℘(𝑧) =
1

𝑧2
+ 𝑐2 · 𝑧2 + 𝑐4 · 𝑧4 + · · · .

If the field is contained in C, then this is the series expansion of the map from C to 𝐸(C) whose kernel is the period
lattice of 𝐸.

Over other fields, like finite fields, this still makes sense as a formal power series with coefficients in 𝑘 - at least its first
𝑝 − 2 coefficients where 𝑝 is the characteristic of 𝑘. It can be defined via the formal group as 𝑥 + 𝑐 in the variable
𝑧 = log𝐸(𝑡) for a constant 𝑐 such that the constant term 𝑐0 in ℘(𝑧) is zero.

EXAMPLES:

sage: E = EllipticCurve([0,1])
sage: E.weierstrass_p()
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)

REFERENCES:

18.16. Weierstrass ℘-function for elliptic curves 507

Elliptic curves, Release 10.4.rc1

• [BMSS2006]

AUTHORS:

• Dan Shumov 04/09: original implementation

• Chris Wuthrich 11/09: major restructuring

• Jeroen Demeyer (2014-03-06): code clean up, fix characteristic bound for quadratic algorithm (see Issue #15855)

sage.schemes.elliptic_curves.ell_wp.compute_wp_fast(k, A, B, m)
Computes the Weierstrass function of an elliptic curve defined by short Weierstrass model: 𝑦2 = 𝑥3 +𝐴𝑥+𝐵. It
does this with as fast as polynomial of degree𝑚 can be multiplied together in the base ring, i.e. 𝑂(𝑀(𝑛)) in the
notation of [BMSS2006].

Let 𝑝 be the characteristic of the underlying field: Then we must have either 𝑝 = 0, or 𝑝 > 𝑚+ 3.

INPUT:

• k – the base field of the curve

• A – and

• B – as the coefficients of the short Weierstrass model 𝑦2 = 𝑥3 +𝐴𝑥+𝐵, and

• m – the precision to which the function is computed to.

OUTPUT:

the Weierstrass ℘ function as a Laurent series to precision𝑚.

ALGORITHM:

This function uses the algorithm described in section 3.3 of [BMSS2006].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast
sage: compute_wp_fast(QQ, 1, 8, 7)
z^-2 - 1/5*z^2 - 8/7*z^4 + 1/75*z^6 + O(z^7)

sage: k = GF(37)
sage: compute_wp_fast(k, k(1), k(8), 5)
z^-2 + 22*z^2 + 20*z^4 + O(z^5)

sage.schemes.elliptic_curves.ell_wp.compute_wp_pari(E , prec)
Computes the Weierstrass ℘-function with the ellwp function from PARI.

EXAMPLES:

sage: E = EllipticCurve([0,1])
sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari
sage: compute_wp_pari(E, prec=20)
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)
sage: compute_wp_pari(E, prec=30)
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16
+ 3/38548055*z^22 - 4/8364927935*z^28 + O(z^30)

sage.schemes.elliptic_curves.ell_wp.compute_wp_quadratic(k, A, B, prec)
Compute the truncated Weierstrass function of an elliptic curve defined by short Weierstrass model: 𝑦2 = 𝑥3 +
𝐴𝑥+𝐵. Uses an algorithm that is of complexity 𝑂(𝑝𝑟𝑒𝑐2).

Let p be the characteristic of the underlying field. Then we must have either p = 0, or p > prec + 2.

508 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/15855

Elliptic curves, Release 10.4.rc1

INPUT:

• k – the field of definition of the curve

• A – and

• B – the coefficients of the elliptic curve

• prec – the precision to which we compute the series.

OUTPUT:

A Laurent series approximating the Weierstrass ℘-function to precision prec.

ALGORITHM:

This function uses the algorithm described in section 3.2 of [BMSS2006].

EXAMPLES:

sage: E = EllipticCurve([7,0])
sage: E.weierstrass_p(prec=10, algorithm= quadratic)
z^-2 - 7/5*z^2 + 49/75*z^6 + O(z^10)

sage: E = EllipticCurve(GF(103), [1,2])
sage: E.weierstrass_p(algorithm= quadratic)
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + 55*z^10 + 73*z^12
+ 11*z^14 + 17*z^16 + 50*z^18 + O(z^20)

sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_quadratic
sage: compute_wp_quadratic(E.base_ring(), E.a4(), E.a6(), prec=10)
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + O(z^10)

sage.schemes.elliptic_curves.ell_wp.solve_linear_differential_system(a, b, c,
alpha)

Solves a system of linear differential equations: 𝑎𝑓 ′ + 𝑏𝑓 = 𝑐 and 𝑓 ′(0) = 𝛼 where 𝑎, 𝑏, and 𝑐 are power series in
one variable and 𝛼 is a constant in the coefficient ring.

ALGORITHM:

due to Brent and Kung ‘78.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_
→˓system
sage: k = GF(17)
sage: R.<x> = PowerSeriesRing(k)
sage: a = 1 + x + O(x^7); b = x + O(x^7); c = 1 + x^3 + O(x^7); alpha = k(3)
sage: f = solve_linear_differential_system(a, b, c, alpha)
sage: f
3 + x + 15*x^2 + x^3 + 10*x^5 + 3*x^6 + 13*x^7 + O(x^8)
sage: a*f.derivative() + b*f - c
O(x^7)
sage: f(0) == alpha
True

sage.schemes.elliptic_curves.ell_wp.weierstrass_p(E , prec=20, algorithm=None)
Compute the Weierstrass ℘-function on an elliptic curve.

INPUT:

• E – an elliptic curve

18.16. Weierstrass ℘-function for elliptic curves 509

Elliptic curves, Release 10.4.rc1

• prec – precision

• algorithm – string or None (default: None): a choice of algorithm among "pari", "fast",
"quadratic"; or None to let this function determine the best algorithm to use.

OUTPUT:

a Laurent series in one variable 𝑧 with coefficients in the base field 𝑘 of 𝐸.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)

sage: E.weierstrass_p(prec=8, algorithm= pari)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm= quadratic)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)

sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: E.weierstrass_p(prec=6, algorithm= fast)
z^-2 + 2*z^2 + 3*z^4 + O(z^6)
sage: E.weierstrass_p(prec=7, algorithm= fast)
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via the fast algorithm,
the characteristic (11) of the underlying field must be greater than prec + 4 = 11
sage: E.weierstrass_p(prec=8)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm= quadratic)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm= pari)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=9)
Traceback (most recent call last):
...
NotImplementedError: currently no algorithms for computing the Weierstrass
p-function for that characteristic / precision pair is implemented.
Lower the precision below char(k) - 2
sage: E.weierstrass_p(prec=9, algorithm="quadratic")
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via the quadratic
algorithm, the characteristic (11) of the underlying field must be greater
than prec + 2 = 11
sage: E.weierstrass_p(prec=9, algorithm= pari)
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via pari, the
characteristic (11) of the underlying field must be greater than prec + 2 = 11

510 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

18.17 Period lattices of elliptic curves and related functions

Let 𝐸 be an elliptic curve defined over a number field 𝐾 (including Q). We attach a period lattice (a discrete rank 2
subgroup of C) to each embedding of𝐾 into C.

In the case of real embeddings, the lattice is stable under complex conjugation and is called a real lattice. These have
two types: rectangular, (the real curve has two connected components and positive discriminant) or non-rectangular (one
connected component, negative discriminant).

The periods are computed to arbitrary precision using the AGM (Gauss’s Arithmetic-Geometric Mean).

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([0,1,0,a,a]) #␣
→˓needs sage.rings.number_field

First we try a real embedding:

sage: emb = K.embeddings(RealField())[0] #␣
→˓needs sage.rings.number_field
sage: L = E.period_lattice(emb); L #␣
→˓needs sage.rings.number_field
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a
over Number Field in a with defining polynomial x^3 - 2
with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Real Field
Defn: a |--> 1.259921049894873?

The first basis period is real:

sage: L.basis() #␣
→˓needs sage.rings.number_field
(3.81452977217855, 1.90726488608927 + 1.34047785962440*I)
sage: L.is_real() #␣
→˓needs sage.rings.number_field
True

For a basis 𝜔1, 𝜔2 normalised so that 𝜔1/𝜔2 is in the fundamental region of the upper half-plane, use the method nor-
malised_basis() instead:

sage: L.normalised_basis() #␣
→˓needs sage.rings.number_field
(1.90726488608927 - 1.34047785962440*I, -1.90726488608927 - 1.34047785962440*I)

Next a complex embedding:

sage: emb = K.embeddings(ComplexField())[0] #␣
→˓needs sage.rings.number_field
sage: L = E.period_lattice(emb); L #␣
→˓needs sage.rings.number_field
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a
over Number Field in a with defining polynomial x^3 - 2
with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2

(continues on next page)

18.17. Period lattices of elliptic curves and related functions 511

Elliptic curves, Release 10.4.rc1

(continued from previous page)

To: Algebraic Field
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I

In this case, the basis 𝜔1, 𝜔2 is always normalised so that 𝜏 = 𝜔1/𝜔2 is in the fundamental region in the upper half plane:

sage: # needs sage.rings.number_field
sage: w1, w2 = L.basis(); w1, w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I
sage: L.normalised_basis()
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)

We test that bug Issue #8415 (caused by a PARI bug fixed in v2.3.5) is OK:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(37a)
sage: K.<a> = QuadraticField(-7)
sage: EK = E.change_ring(K)
sage: EK.period_lattice(K.complex_embeddings()[0])
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x
over Number Field in a with defining polynomial x^2 + 7
with a = 2.645751311064591?*I

with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^2 + 7

with a = 2.645751311064591?*I
To: Algebraic Field
Defn: a |--> -2.645751311064591?*I

REFERENCES:

• [CT2013]

AUTHORS:

• ?: initial version.

• John Cremona:

– Adapted to handle real embeddings of number fields, September 2008.

– Added basis_matrix function, November 2008

– Added support for complex embeddings, May 2009.

– Added complex elliptic logs, March 2010; enhanced, October 2010.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice(base_ring, rank,
degree, sparse=False,
coordi-
nate_ring=None,
category=None)

Bases: FreeModule_generic_pid

The class for the period lattice of an algebraic variety.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell(E , embed-
ding=None)

512 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/8415
../../../../../../../html/en/reference/modules/sage/modules/free_module.html#sage.modules.free_module.FreeModule_generic_pid

Elliptic curves, Release 10.4.rc1

Bases: PeriodLattice

The class for the period lattice of an elliptic curve.

Currently supported are elliptic curves defined over Q, and elliptic curves defined over a number field with a real
or complex embedding, where the lattice constructed depends on that embedding.

basis(prec=None, algorithm='sage')
Return a basis for this period lattice as a 2-tuple.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default sage) – choice of implementation (for real embeddings only) between
sage (native Sage implementation) or pari (use the PARI library: only available for real em-

beddings).

OUTPUT:

(tuple of Complex) (𝜔1, 𝜔2) where the lattice is 𝜔1 + 𝜔2. If the lattice is real then 𝜔1 is real and positive,
ℑ(𝜔2) > 0 and ℜ(𝜔1/𝜔2) is either 0 (for rectangular lattices) or 1

2 (for non-rectangular lattices). Otherwise,
𝜔1/𝜔2 is in the fundamental region of the upper half-plane. If the latter normalisation is required for real
lattices, use the method normalised_basis() instead.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.period_lattice().basis()
(2.99345864623196, 2.45138938198679*I)

This shows that the issue reported at Issue #3954 is fixed:

sage: E = EllipticCurve(37a)
sage: b1 = E.period_lattice().basis(prec=30)
sage: b2 = E.period_lattice().basis(prec=30)
sage: b1 == b2
True

This shows that the issue reported at Issue #4064 is fixed:

sage: E = EllipticCurve(37a)
sage: E.period_lattice().basis(prec=30)[0].parent()
Real Field with 30 bits of precision
sage: E.period_lattice().basis(prec=100)[0].parent()
Real Field with 100 bits of precision

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis(64)
(3.81452977217854509, 1.90726488608927255 + 1.34047785962440202*I)

sage: # needs sage.rings.number_field
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)

(continues on next page)

18.17. Period lattices of elliptic curves and related functions 513

https://github.com/sagemath/sage/issues/3954
https://github.com/sagemath/sage/issues/4064

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: w1, w2 = L.basis(); w1, w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.
→˓428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I

basis_matrix(prec=None, normalised=False)
Return the basis matrix of this period lattice.

INPUT:

• prec (int or None (default)) – real precision in bits (default real precision if None).

• normalised (bool, default False) – if True and the embedding is real, use the normalised basis
(see normalised_basis()) instead of the default.

OUTPUT:

A 2× 2 real matrix whose rows are the lattice basis vectors, after identifying C with R2.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.period_lattice().basis_matrix()
[2.99345864623196 0.000000000000000]
[0.000000000000000 2.45138938198679]

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis_matrix(64)
[3.81452977217854509 0.000000000000000000]
[1.90726488608927255 1.34047785962440202]

See Issue #4388:

sage: L = EllipticCurve(11a1).period_lattice()
sage: L.basis_matrix()
[1.26920930427955 0.000000000000000]
[0.634604652139777 1.45881661693850]
sage: L.basis_matrix(normalised=True)
[0.634604652139777 -1.45881661693850]
[-1.26920930427955 0.000000000000000]

sage: L = EllipticCurve(389a1).period_lattice()
sage: L.basis_matrix()
[2.49021256085505 0.000000000000000]
[0.000000000000000 1.97173770155165]
sage: L.basis_matrix(normalised=True)
[2.49021256085505 0.000000000000000]
[0.000000000000000 -1.97173770155165]

514 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/4388

Elliptic curves, Release 10.4.rc1

complex_area(prec=None)
Return the area of a fundamental domain for the period lattice of the elliptic curve.

INPUT:

• prec (int or None (default)) – real precision in bits (default real precision if None).

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.period_lattice().complex_area()
7.33813274078958

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: embs = K.embeddings(ComplexField())
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]
sage: [E.period_lattice(emb).complex_area() for emb in embs]
[6.02796894766694, 6.02796894766694, 5.11329270448345]

coordinates(z, rounding=None)
Return the coordinates of a complex number w.r.t. the lattice basis

INPUT:

• z (complex) – A complex number.

• rounding (default None) – whether and how to round the
output (see below).

OUTPUT:

When rounding is None (the default), returns a tuple of reals 𝑥, 𝑦 such that 𝑧 = 𝑥𝑤1 + 𝑦𝑤2 where 𝑤1,
𝑤2 are a basis for the lattice (normalised in the case of complex embeddings).

When rounding is round , returns a tuple of integers 𝑛1, 𝑛2 which are the closest integers to the 𝑥, 𝑦
defined above. If 𝑧 is in the lattice these are the coordinates of 𝑧 with respect to the lattice basis.

When rounding is floor , returns a tuple of integers 𝑛1, 𝑛2 which are the integer parts to the 𝑥, 𝑦
defined above. These are used in reduce()

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: L.coordinates(zP)
(0.19249290511394227352563996419, 0.50000000000000000000000000000)
sage: sum([x*w for x, w in zip(L.coordinates(zP), L.basis(prec=100))])
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I

sage: L.coordinates(12*w1 + 23*w2)
(12.000000000000000000000000000, 23.000000000000000000000000000)
sage: L.coordinates(12*w1 + 23*w2, rounding= floor)

(continues on next page)

18.17. Period lattices of elliptic curves and related functions 515

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(11, 22)
sage: L.coordinates(12*w1 + 23*w2, rounding= round)
(12, 23)

curve()

Return the elliptic curve associated with this period lattice.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: L = E.period_lattice()
sage: L.curve() is E
True

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: L.curve() is E
True

sage: L = E.period_lattice(K.embeddings(ComplexField())[0]) #␣
→˓needs sage.rings.number_field
sage: L.curve() is E #␣
→˓needs sage.rings.number_field
True

e_log_RC(xP, yP, prec=None, reduce=True)
Return the elliptic logarithm of a real or complex point.

INPUT:

• xP, yP (real or complex) – Coordinates of a point on the embedded elliptic curve associated with this
period lattice.

• prec (default: None) – real precision in bits (default real precision if None).

• reduce (default: True) – if True, the result is reduced with respect to the period lattice basis.

OUTPUT:

(complex number) The elliptic logarithm of the point (𝑥𝑃, 𝑦𝑃) with respect to this period lattice. If 𝐸 is
the elliptic curve and 𝜎 : 𝐾 → C the embedding, the returned value 𝑧 is such that 𝑧 (mod 𝐿) maps to
(𝑥𝑃, 𝑦𝑃) = 𝜎(𝑃) under the standard Weierstrass isomorphism from C/𝐿 to 𝜎(𝐸). If reduce is True,
the output is reduced so that it is in the fundamental period parallelogram with respect to the normalised
lattice basis.

ALGORITHM:

Uses the complex AGM. See [CT2013] for details.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: L = E.period_lattice()
sage: P = E([-1,1])
sage: xP, yP = [RR(c) for c in P.xy()]

516 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

The elliptic log from the real coordinates:

sage: L.e_log_RC(xP, yP)
0.479348250190219 + 0.985868850775824*I

The same elliptic log from the algebraic point:

sage: L(P)
0.479348250190219 + 0.985868850775824*I

A number field example:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: L(P)
3.51086196882538
sage: xP, yP = [v(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
3.51086196882538

Elliptic logs of real points which do not come from algebraic points:

sage: # needs sage.rings.number_field
sage: ER = EllipticCurve([v(ai) for ai in E.a_invariants()])
sage: P = ER.lift_x(12.34)
sage: xP, yP = P.xy()
sage: xP, yP
(12.3400000000000, -43.3628968710567)
sage: L.e_log_RC(xP, yP)
0.284656841192041
sage: xP, yP = ER.lift_x(0).xy()
sage: L.e_log_RC(xP, yP)
1.34921304541057

Elliptic logs of complex points:

sage: # needs sage.rings.number_field
sage: v = K.complex_embeddings()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: L(P)
1.68207104397706 - 1.87873661686704*I
sage: xP, yP = [v(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
1.68207104397706 - 1.87873661686704*I
sage: EC = EllipticCurve([v(ai) for ai in E.a_invariants()])
sage: xP, yP = EC.lift_x(0).xy()
sage: L.e_log_RC(xP, yP)
2.06711431204080 - 1.73451485683471*I

ei()

Return the x-coordinates of the 2-division points of the elliptic curve associated with this period lattice, as
elements of QQbar.

18.17. Period lattices of elliptic curves and related functions 517

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: L = E.period_lattice()
sage: L.ei()
[-1.107159871688768?, 0.2695944364054446?, 0.8375654352833230?]

In the following example, we should have one purely real 2-division point coordinate, and two conjugate purely
imaginary coordinates.

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: x1,x2,x3 = L.ei()
sage: abs(x1.real()) + abs(x2.real()) < 1e-14
True
sage: x1.imag(), x2.imag(), x3
(-1.122462048309373?, 1.122462048309373?, -1.000000000000000?)

sage: L = E.period_lattice(K.embeddings(ComplexField())[0]) #␣
→˓needs sage.rings.number_field
sage: L.ei() #␣
→˓needs sage.rings.number_field
[-1.000000000000000? + 0.?e-1...*I,
-0.9720806486198328? - 0.561231024154687?*I,
0.9720806486198328? + 0.561231024154687?*I]

elliptic_exponential(z, to_curve=True)
Return the elliptic exponential of a complex number.

INPUT:

• z (complex) – A complex number (viewed modulo this period lattice).

• to_curve (bool, default True): see below.

OUTPUT:

• If to_curve is False, a 2-tuple of real or complex numbers representing the point (𝑥, 𝑦) =
(℘(𝑧), ℘′(𝑧)) where ℘ denotes the Weierstrass ℘-function with respect to this lattice.

• If to_curve is True, the point (𝑋,𝑌) = (𝑥 − 𝑏2/12, 𝑦 − (𝑎1(𝑥 − 𝑏2/12) − 𝑎3)/2) as a point in
𝐸(R) or 𝐸(C), with (𝑥, 𝑦) = (℘(𝑧), ℘′(𝑧)) as above, where 𝐸 is the elliptic curve over R or C whose
period lattice this is.

• If the lattice is real and 𝑧 is also real then the output is a pair of real numbers if to_curve is True,
or a point in 𝐸(R) if to_curve is False.

Note: The precision is taken from that of the input z.

EXAMPLES:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E(1, -2)
sage: L = E.period_lattice()
sage: z = L(P); z

(continues on next page)

518 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

1.17044757240090
sage: L.elliptic_exponential(z)
(0.999999999999999 : -2.00000000000000 : 1.00000000000000)
sage: _.curve()
Elliptic Curve defined by y^2 + 1.00000000000000*x*y + 1.00000000000000*y
= x^3 + 1.00000000000000*x^2 - 8.00000000000000*x + 6.00000000000000
over Real Field with 53 bits of precision

sage: L.elliptic_exponential(z,to_curve=False)
(1.41666666666667, -2.00000000000000)
sage: z = L(P, prec=201); z
1.17044757240089592298992188482371493504472561677451007994189
sage: L.elliptic_exponential(z)
(1.000
: -2.000
: 1.000)

Examples over number fields:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3 - 2)
sage: embs = K.embeddings(CC)
sage: E = EllipticCurve(37a)
sage: EK = E.change_ring(K)
sage: Li = [EK.period_lattice(e) for e in embs]
sage: P = EK(-1, -1)
sage: Q = EK(a - 1, 1 - a^2)
sage: zi = [L.elliptic_logarithm(P) for L in Li]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[0])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[1])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[2])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]

sage: # needs sage.rings.number_field
sage: zi = [L.elliptic_logarithm(Q) for L in Li]
sage: Li[0].elliptic_exponential(zi[0])
(-1.62996052494744 - 1.09112363597172*I
: 1.79370052598410 - 1.37472963699860*I
: 1.00000000000000)

sage: [embs[0](c) for c in Q]
[-1.62996052494744 - 1.09112363597172*I,
1.79370052598410 - 1.37472963699860*I,
1.00000000000000]

sage: Li[1].elliptic_exponential(zi[1])
(-1.62996052494744 + 1.09112363597172*I
: 1.79370052598410 + 1.37472963699860*I
: 1.00000000000000)

sage: [embs[1](c) for c in Q]
[-1.62996052494744 + 1.09112363597172*I,
1.79370052598410 + 1.37472963699860*I,
1.00000000000000]

sage: [c.real() for c in Li[2].elliptic_exponential(zi[2])]
[0.259921049894873, -0.587401051968199, 1.00000000000000]
sage: [embs[2](c) for c in Q]
[0.259921049894873, -0.587401051968200, 1.00000000000000]

18.17. Period lattices of elliptic curves and related functions 519

Elliptic curves, Release 10.4.rc1

Test to show that Issue #8820 is fixed:

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(37a)
sage: K.<a> = QuadraticField(-5)
sage: L = E.change_ring(K).period_lattice(K.places()[0])
sage: L.elliptic_exponential(CDF(.1,.1))
(0.0000142854026029... - 49.9960001066650*I
: 249.520141250950 + 250.019855549131*I : 1.00000000000000)

sage: L.elliptic_exponential(CDF(.1,.1), to_curve=False)
(0.0000142854026029447 - 49.9960001066650*I,
500.040282501900 + 500.039711098263*I)

𝑧 = 0 is treated as a special case:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: L = E.period_lattice()
sage: L.elliptic_exponential(0)
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
sage: L.elliptic_exponential(0, to_curve=False)
(+infinity, +infinity)

sage: # needs sage.rings.number_field
sage: E = EllipticCurve(37a)
sage: K.<a> = QuadraticField(-5)
sage: L = E.change_ring(K).period_lattice(K.places()[0])
sage: P = L.elliptic_exponential(0); P
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
sage: P.parent()
Abelian group of points on Elliptic Curve defined by
y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x
over Complex Field with 53 bits of precision

Very small 𝑧 are handled properly (see Issue #8820):

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,a,0])
sage: L = E.period_lattice(K.complex_embeddings()[0])
sage: L.elliptic_exponential(1e-100)
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)

The elliptic exponential of 𝑧 is returned as (0 : 1 : 0) if the coordinates of 𝑧 with respect to the period lattice
are approximately integral:

sage: (100/log(2.0,10))/0.8
415.241011860920
sage: L.elliptic_exponential((RealField(415)(1e-100))).is_zero() #␣
→˓needs sage.rings.number_field
True
sage: L.elliptic_exponential((RealField(420)(1e-100))).is_zero() #␣
→˓needs sage.rings.number_field
False

elliptic_logarithm(P, prec=None, reduce=True)
Return the elliptic logarithm of a point.

INPUT:

520 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/8820
https://github.com/sagemath/sage/issues/8820

Elliptic curves, Release 10.4.rc1

• P (point) – A point on the elliptic curve associated with this period lattice.

• prec (default: None) – real precision in bits (default real precision if None).

• reduce (default: True) – if True, the result is reduced with respect to the period lattice basis.

OUTPUT:

(complex number) The elliptic logarithm of the point 𝑃 with respect to this period lattice. If 𝐸 is the elliptic
curve and 𝜎 : 𝐾 → C the embedding, the returned value 𝑧 is such that 𝑧 (mod 𝐿) maps to 𝜎(𝑃) under the
standard Weierstrass isomorphism from C/𝐿 to 𝜎(𝐸). If reduce is True, the output is reduced so that it
is in the fundamental period parallelogram with respect to the normalised lattice basis.

ALGORITHM:

Uses the complex AGM. See [CT2013] for details.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: L = E.period_lattice()
sage: E.discriminant() > 0
True
sage: L.real_flag
1
sage: P = E([-1,1])
sage: P.is_on_identity_component ()
False
sage: L.elliptic_logarithm(P, prec=96)
0.4793482501902193161295330101 + 0.9858688507758241022112038491*I
sage: Q=E([3,5])
sage: Q.is_on_identity_component()
True
sage: L.elliptic_logarithm(Q, prec=96)
1.931128271542559442488585220

Note that this is actually the inverse of the Weierstrass isomorphism:

sage: L.elliptic_exponential(_) # abs tol 1e-26
(3.000000000000000000000000000 : 5.000000000000000000000000000 : 1.
→˓000000000000000000000000000)

An example with negative discriminant, and a torsion point:

sage: E = EllipticCurve(11a1)
sage: L = E.period_lattice()
sage: E.discriminant() < 0
True
sage: L.real_flag
-1
sage: P = E([16,-61])
sage: L.elliptic_logarithm(P)
0.253841860855911
sage: L.real_period() / L.elliptic_logarithm(P)
5.00000000000000

An example where precision is problematic:

sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) #18074g1
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])

(continues on next page)

18.17. Period lattices of elliptic curves and related functions 521

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: L = E.period_lattice()
sage: L.ei()
[5334.003952567705? - 1.964393150436?e-6*I,
5334.003952567705? + 1.964393150436?e-6*I,
-10668.25790513541?]

sage: L.elliptic_logarithm(P,prec=100)
0.27656204014107061464076203097

Some complex examples, taken from the paper by Cremona and Thongjunthug:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: a4 = 9*i - 10
sage: a6 = 21 - i
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: e1 = 3 - 2*i; e2 = 1 + i; e3 = -4 + i
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2 - i, 4 + 2*i)

By default, the output is reduced with respect to the normalised lattice basis, so that its coordinates with
respect to that basis lie in the interval [0,1):

sage: z = L.elliptic_logarithm(P, prec=100); z #␣
→˓needs sage.rings.number_field
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I
sage: L.coordinates(z) #␣
→˓needs sage.rings.number_field
(0.46247636364807931766105406092, 0.79497588726808704200760395829)

Using reduce=False this step can be omitted. In this case the coordinates are usually in the interval
[-0.5,0.5), but this is not guaranteed. This option is mainly for testing purposes:

sage: z = L.elliptic_logarithm(P, prec=100, reduce=False); z #␣
→˓needs sage.rings.number_field
0.57002153834710752778063503023 + 0.46476340520469798857457031393*I
sage: L.coordinates(z) #␣
→˓needs sage.rings.number_field
(0.46247636364807931766105406092, -0.20502411273191295799239604171)

The elliptic logs of the 2-torsion points are half-periods:

sage: L.elliptic_logarithm(E(e1, 0), prec=100) #␣
→˓needs sage.rings.number_field
0.64607575874356525952487867052 + 0.22379609053909448304176885364*I
sage: L.elliptic_logarithm(E(e2, 0), prec=100) #␣
→˓needs sage.rings.number_field
0.71330686725892253793705940192 - 0.40481924028150941053684639367*I
sage: L.elliptic_logarithm(E(e3, 0), prec=100) #␣
→˓needs sage.rings.number_field
0.067231108515357278412180731396 - 0.62861533082060389357861524731*I

We check this by doubling and seeing that the resulting coordinates are integers:

sage: L.coordinates(2*L.elliptic_logarithm(E(e1, 0), prec=100)) #␣
→˓needs sage.rings.number_field

(continues on next page)

522 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(1.0000000000000000000000000000, 0.00000000000000000000000000000)
sage: L.coordinates(2*L.elliptic_logarithm(E(e2, 0), prec=100)) #␣
→˓needs sage.rings.number_field
(1.0000000000000000000000000000, 1.0000000000000000000000000000)
sage: L.coordinates(2*L.elliptic_logarithm(E(e3, 0), prec=100)) #␣
→˓needs sage.rings.number_field
(0.00000000000000000000000000000, 1.0000000000000000000000000000)

sage: # needs sage.rings.number_field
sage: a4 = -78*i + 104
sage: a6 = -216*i - 312
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(3 + 2*i, 14 - 7*i)
sage: L.elliptic_logarithm(P)
0.297147783912228 - 0.546125549639461*I
sage: L.coordinates(L.elliptic_logarithm(P))
(0.628653378040238, 0.371417754610223)
sage: e1 = 1 + 3*i; e2 = -4 - 12*i; e3 = -e1 - e2
sage: L.coordinates(L.elliptic_logarithm(E(e1, 0)))
(0.500000000000000, 0.500000000000000)
sage: L.coordinates(L.elliptic_logarithm(E(e2, 0)))
(1.00000000000000, 0.500000000000000)
sage: L.coordinates(L.elliptic_logarithm(E(e3, 0)))
(0.500000000000000, 0.000000000000000)

gens(prec=None, algorithm='sage')
Return a basis for this period lattice as a 2-tuple.

This is an alias for basis(). See the docstring there for a more in-depth explanation and further examples.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default sage) – choice of implementation (for real embeddings only) between
sage (native Sage implementation) or pari (use the PARI library: only available for real em-

beddings).

OUTPUT:

(tuple of Complex) (𝜔1, 𝜔2) where the lattice is 𝜔1 + 𝜔2. If the lattice is real then 𝜔1 is real and positive,
ℑ(𝜔2) > 0 and ℜ(𝜔1/𝜔2) is either 0 (for rectangular lattices) or 1

2 (for non-rectangular lattices). Otherwise,
𝜔1/𝜔2 is in the fundamental region of the upper half-plane. If the latter normalisation is required for real
lattices, use the method normalised_basis() instead.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.period_lattice().gens()
(2.99345864623196, 2.45138938198679*I)

sage: E.period_lattice().gens(prec=100)
(2.9934586462319596298320099794, 2.4513893819867900608542248319*I)

is_real()

Return True if this period lattice is real.

18.17. Period lattices of elliptic curves and related functions 523

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: f = EllipticCurve(11a)
sage: f.period_lattice().is_real()
True

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,i,2*i])
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: L.is_real()
False

sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2) #␣
→˓needs sage.rings.number_field
sage: E = EllipticCurve([0,1,0,a,a]) #␣
→˓needs sage.rings.number_field
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)] #␣
→˓needs sage.rings.number_field
[False, False, True]

ALGORITHM:

The lattice is real if it is associated to a real embedding; such lattices are stable under conjugation.

is_rectangular()

Return True if this period lattice is rectangular.

Note: Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

sage: f = EllipticCurve(11a)
sage: f.period_lattice().basis()
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)
sage: f.period_lattice().is_rectangular()
False

sage: f = EllipticCurve(37b)
sage: f.period_lattice().basis()
(1.08852159290423, 1.76761067023379*I)
sage: f.period_lattice().is_rectangular()
True

ALGORITHM:

The period lattice is rectangular precisely if the discriminant of the Weierstrass equation is positive, or equiv-
alently if the number of real components is 2.

normalised_basis(prec=None, algorithm='sage')
Return a normalised basis for this period lattice as a 2-tuple.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

524 Chapter 18. Elliptic curves over number fields

https://docs.python.org/library/exceptions.html#RuntimeError

Elliptic curves, Release 10.4.rc1

• algorithm (string, default sage) – choice of implementation (for real embeddings only) between
sage (native Sage implementation) or pari (use the PARI library: only available for real em-

beddings).

OUTPUT:

(tuple of Complex) (𝜔1, 𝜔2)where the lattice has the form 𝜔1+ 𝜔2. The basis is normalised so that 𝜔1/𝜔2

is in the fundamental region of the upper half-plane. For an alternative normalisation for real lattices (with
the first period real), use the method basis() instead.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.period_lattice().normalised_basis()
(2.99345864623196, -2.45138938198679*I)

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.normalised_basis(64)
(1.90726488608927255 - 1.34047785962440202*I,
-1.90726488608927255 - 1.34047785962440202*I)

sage: # needs sage.rings.number_field
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: w1, w2 = L.normalised_basis(); w1, w2
(-1.37588604166076 - 2.58560946624443*I,
-2.10339907847356 + 0.428378776460622*I)

sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I

omega(prec=None, bsd_normalise=False)
Return the real or complex volume of this period lattice.

INPUT:

• prec (int or None (default)) – real precision in bits (default real precision if None)

• bsd_normalise (bool, default False) – flag to use BSD normalisation in the complex case.

OUTPUT:

(real) For real lattices, this is the real period times the number of connected components. For non-real lattices
it is the complex area, or double the area if bsd_normalise is True.

Note: If the curve is given by a global minimalWeierstrass equation, then with bsd_normalise = True,
this gives the correct period in the BSD conjecture: the product of this quantity over all embeddings appears
in the BSD formula. In general a correction factor is required to make allowance for the model.

EXAMPLES:

18.17. Period lattices of elliptic curves and related functions 525

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37a)
sage: E.period_lattice().omega()
5.98691729246392

This is not a minimal model:

sage: E = EllipticCurve([0, -432*6^2])
sage: E.period_lattice().omega()
0.486109385710056

If you were to plug the above omega into the BSD conjecture, you would get an incorrect value, out by a
factor of 2. The following works though:

sage: F = E.minimal_model()
sage: F.period_lattice().omega()
0.972218771420113

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.omega(64)
3.81452977217854509

A complex example (taken from J.E.Cremona and E.Whitley, Periods of cusp forms and elliptic curves over
imaginary quadratic fields, Mathematics of Computation 62 No. 205 (1994), 407-429). See Issue #29645
and Issue #29782:

sage: # needs sage.rings.number_field
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: L = E.period_lattice(K.embeddings(CC)[0])
sage: L.omega()
8.80694160502647
sage: L.omega(prec=200)
8.8069416050264741493250743632295462227858630765392114070032
sage: L.omega(bsd_normalise=True)
17.6138832100529

real_period(prec=None, algorithm='sage')
Return the real period of this period lattice.

INPUT:

• prec (integer or None (default)) – real precision in bits (default real precision if None)

• algorithm (string, default sage) – choice of implementation (for real embeddings only) between
sage (native Sage implementation) or pari (use the PARI library: only available for real em-

beddings).

Note: Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

526 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/29645
https://github.com/sagemath/sage/issues/29782
https://docs.python.org/library/exceptions.html#RuntimeError

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37a)
sage: E.period_lattice().real_period()
2.99345864623196

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.real_period(64)
3.81452977217854509

reduce(z)
Reduce a complex number modulo the lattice

INPUT:

• z (complex) – A complex number.

OUTPUT:

(complex) the reduction of 𝑧 modulo the lattice, lying in the fundamental period parallelogram with respect to
the lattice basis. For curves defined over the reals (i.e. real embeddings) the output will be real when possible.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: z = zP + 10*w1 - 20*w2; z
25.381473858740770069343110929 - 38.448885180257139986236950114*I
sage: L.reduce(z)
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: L.elliptic_logarithm(2*P)
0.958696500380439
sage: L.reduce(L.elliptic_logarithm(2*P))
0.958696500380439
sage: L.reduce(L.elliptic_logarithm(2*P) + 10*w1 - 20*w2)
0.958696500380444

sigma(z, prec=None, flag=0)
Return the value of the Weierstrass sigma function for this elliptic curve period lattice.

INPUT:

• z – a complex number

• prec (default: None) – real precision in bits
(default real precision if None).

• flag –

0: (default) ???;

1: computes an arbitrary determination of log(sigma(z))

2, 3: same using the product expansion instead of theta series. ???

18.17. Period lattices of elliptic curves and related functions 527

Elliptic curves, Release 10.4.rc1

Note: The reason for the ???’s above, is that the PARI documentation for ellsigma is very vague. Also this
is only implemented for curves defined over Q.

Todo: This function does not use any of the PeriodLattice functions and so should be moved to ell_ratio-
nal_field.

EXAMPLES:

sage: EllipticCurve(389a1).period_lattice().sigma(CC(2,1))
2.60912163570108 - 0.200865080824587*I

tau(prec=None, algorithm='sage')
Return the upper half-plane parameter in the fundamental region.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embeddings).

OUTPUT:

(Complex) 𝜏 = 𝜔1/𝜔2 where the lattice has the form 𝜔1 + 𝜔2, normalised so that 𝜏 = 𝜔1/𝜔2 is in the
fundamental region of the upper half-plane.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: L = E.period_lattice()
sage: L.tau()
1.22112736076463*I

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
sage: K.<a> = NumberField(x^3 - 2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: tau = L.tau(); tau
-0.338718341018919 + 0.940887817679340*I
sage: tau.abs()
1.00000000000000
sage: -0.5 <= tau.real() <= 0.5
True

sage: # needs sage.rings.number_field
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: tau = L.tau(); tau
0.387694505032876 + 1.30821088214407*I
sage: tau.abs()
1.36444961115933
sage: -0.5 <= tau.real() <= 0.5
True

528 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.period_lattice.extended_agm_iteration(a, b, c)
Internal function for the extended AGM used in elliptic logarithm computation.

INPUT:

• a, b, c (real or complex) – three real or complex numbers.

OUTPUT:

(3-tuple) (𝑎0, 𝑏0, 𝑐0), the limit of the iteration (𝑎, 𝑏, 𝑐) ↦→ ((𝑎+ 𝑏)/2,
√
𝑎𝑏, (𝑐+

√︀
(𝑐2 + 𝑏2 − 𝑎2))/2).

EXAMPLES:

sage: # needs sage.rings.real_mpfr
sage: from sage.schemes.elliptic_curves.period_lattice import extended_agm_
→˓iteration
sage: extended_agm_iteration(RR(1), RR(2), RR(3))
(1.45679103104691, 1.45679103104691, 3.21245294970054)
sage: extended_agm_iteration(CC(1,2), CC(2,3), CC(3,4))
(1.46242448156430 + 2.47791311676267*I,
1.46242448156430 + 2.47791311676267*I,
3.22202144343535 + 4.28383734262540*I)

sage.schemes.elliptic_curves.period_lattice.normalise_periods(w1, w2)
Normalise the period basis (𝑤1, 𝑤2) so that 𝑤1/𝑤2 is in the fundamental region.

INPUT:

• w1, w2 – two complex numbers with non-real ratio

OUTPUT:

(tuple) ((𝜔′
1, 𝜔

′
2), [𝑎, 𝑏, 𝑐, 𝑑]) where 𝑎, 𝑏, 𝑐, 𝑑 are integers such that

• 𝑎𝑑− 𝑏𝑐 = ±1;

• (𝜔′
1, 𝜔

′
2) = (𝑎𝜔1 + 𝑏𝜔2, 𝑐𝜔1 + 𝑑𝜔2);

• 𝜏 = 𝜔′
1/𝜔

′
2 is in the upper half plane;

• |𝜏 | ≥ 1 and |ℜ(𝜏)| ≤ 1
2 .

EXAMPLES:

sage: # needs sage.rings.real_mpfr sage.symbolic
sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau,␣
→˓normalise_periods
sage: w1 = CC(1.234, 3.456)
sage: w2 = CC(1.234, 3.456000001)
sage: w1/w2 # in lower half plane!
0.999999999743367 - 9.16334785827644e-11*I
sage: w1w2, abcd = normalise_periods(w1, w2)
sage: a,b,c,d = abcd
sage: w1w2 == (a*w1+b*w2, c*w1+d*w2)
True
sage: w1w2[0]/w1w2[1]
1.23400010389203e9*I
sage: a*d-b*c # note change of orientation
-1

sage.schemes.elliptic_curves.period_lattice.reduce_tau(tau)
Transform a point in the upper half plane to the fundamental region.

18.17. Period lattices of elliptic curves and related functions 529

Elliptic curves, Release 10.4.rc1

INPUT:

• tau (complex) – a complex number with positive imaginary part

OUTPUT:

(tuple) (𝜏 ′, [𝑎, 𝑏, 𝑐, 𝑑]) where 𝑎, 𝑏, 𝑐, 𝑑 are integers such that

• 𝑎𝑑− 𝑏𝑐 = 1;

• 𝜏 ′ = (𝑎𝜏 + 𝑏)/(𝑐𝜏 + 𝑑);

• |𝜏 ′| ≥ 1;

• |ℜ(𝜏 ′)| ≤ 1
2 .

EXAMPLES:

sage: # needs sage.rings.real_mpfr sage.symbolic
sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau
sage: reduce_tau(CC(1.23,3.45))
(0.230000000000000 + 3.45000000000000*I, [1, -1, 0, 1])
sage: reduce_tau(CC(1.23,0.0345))
(-0.463960069171512 + 1.35591888067914*I, [-5, 6, 4, -5])
sage: reduce_tau(CC(1.23,0.0000345))
(0.130000000001761 + 2.89855072463768*I, [13, -16, 100, -123])

18.18 Regions in fundamental domains of period lattices

This module is used to represent sub-regions of a fundamental parallelogram of the period lattice of an elliptic curve,
used in computing minimum height bounds.

In particular, these are the approximating sets S^{(v)} in section 3.2 of Thotsaphon Thongjunthug’s Ph.D. Thesis and
paper [Tho2010].

AUTHORS:

• Robert Bradshaw (2010): initial version

• John Cremona (2014): added some docstrings and doctests

class sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion

Bases: object

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: S = PeriodicRegion(CDF(2), CDF(2*I), np.zeros((4, 4)))
sage: S.plot() #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: data = np.zeros((4, 4))
sage: data[1,1] = True
sage: S = PeriodicRegion(CDF(2), CDF(2*I+1), data)
sage: S.plot() #␣
→˓needs sage.plot
Graphics object consisting of 5 graphics primitives

530 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

border(raw=True)
Returns the boundary of this region as set of tile boundaries.

If raw is true, returns a list with respect to the internal bitmap, otherwise returns complex intervals covering
the border.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1, 1] = True
sage: PeriodicRegion(CDF(1), CDF(I), data).border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]

sage: PeriodicRegion(CDF(1), CDF(I), data).border(raw=False)
[0.25000000000000000? + 1.?*I,
0.50000000000000000? + 1.?*I,
1.? + 0.25000000000000000?*I,
1.? + 0.50000000000000000?*I]

sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border(raw=False)
[0.3? + 1.?*I,
0.8? + 1.?*I,
1.? + 0.25000000000000000?*I,
1.? + 0.50000000000000000?*I]

sage: data[1:3, 2] = True
sage: PeriodicRegion(CDF(1), CDF(I), data).border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 0), (1, 3, 1), (3, 2, 0), (2, 2, 1),␣
→˓(2, 3, 1)]

contract(corners=True)
Opposite (but not inverse) of expand; removes neighbors of complement.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((10, 10))
sage: data[1:4,1:4] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.plot() #␣
→˓needs sage.plot
Graphics object consisting of 13 graphics primitives
sage: S.contract().plot() #␣
→˓needs sage.plot
Graphics object consisting of 5 graphics primitives
sage: S.contract().data.sum()
1
sage: S.contract().contract().is_empty()
True

data

18.18. Regions in fundamental domains of period lattices 531

Elliptic curves, Release 10.4.rc1

ds()

Returns the sides of each parallelogram tile.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False)
sage: S.ds()
(0.5, 0.25*I)
sage: _ = S._ensure_full()
sage: S.ds()
(0.5, 0.25*I)

sage: data = np.zeros((8, 8))
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.ds()
(0.125, 0.0625 + 0.125*I)

expand(corners=True)
Returns a region containing this region by adding all neighbors of internal tiles.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1,1] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.plot() #␣
→˓needs sage.plot
Graphics object consisting of 5 graphics primitives
sage: S.expand().plot() #␣
→˓needs sage.plot
Graphics object consisting of 13 graphics primitives
sage: S.expand().data
array([[1, 1, 1, 0],

[1, 1, 1, 0],
[1, 1, 1, 0],
[0, 0, 0, 0]], dtype=int8)

sage: S.expand(corners=False).plot() #␣
→˓needs sage.plot
Graphics object consisting of 13 graphics primitives
sage: S.expand(corners=False).data
array([[0, 1, 0, 0],

[1, 1, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 0]], dtype=int8)

full

innermost_point()

Return a point well inside the region, specifically the center of (one of) the last tile(s) to be removed on
contraction.

EXAMPLES:

532 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((10, 10))
sage: data[1:4, 1:4] = True
sage: data[1, 0:8] = True
sage: S = PeriodicRegion(CDF(1), CDF(I+1/2), data)
sage: S.innermost_point()
0.375 + 0.25*I
sage: S.plot() + point(S.innermost_point()) #␣
→˓needs sage.plot
Graphics object consisting of 24 graphics primitives

is_empty()

Returns whether this region is empty.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty()
True
sage: data[1,1] = True
sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty()
False

plot(**kwds)
Plot this region in the fundamental lattice. If full is False, plots only the lower half. Note that the true
nature of this region is periodic.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((10, 10))
sage: data[2, 2:8] = True
sage: data[2:5, 2] = True
sage: data[3, 3] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: plot(S) + plot(S.expand(), rgbcolor=(1, 0, 1), thickness=2) #␣
→˓needs sage.plot
Graphics object consisting of 46 graphics primitives

refine(condition=None, times=1)
Recursive function to refine the current tiling.

INPUT:

• condition (function, default None) – if not None, only keep tiles in the refinement which satisfy the
condition.

• times (int, default 1) – the number of times to refine; each refinement step halves the mesh size.

OUTPUT:

The refined PeriodicRegion.

18.18. Regions in fundamental domains of period lattices 533

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False)
sage: S.ds()
(0.5, 0.25*I)
sage: S = S.refine()
sage: S.ds()
(0.25, 0.125*I)
sage: S = S.refine(2)
sage: S.ds()
(0.125, 0.0625*I)

verify(condition)

Given a condition that should hold for every line segment on the boundary, verify that it actually does so.

INPUT:

• condition (function) – a boolean-valued function on C.

OUTPUT:

True or False according to whether the condition holds for all lines on the boundary.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1, 1] = True
sage: S = PeriodicRegion(CDF(1), CDF(I), data)
sage: S.border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: condition = lambda z: z.real().abs()<1/2
sage: S.verify(condition)
False
sage: condition = lambda z: z.real().abs()<1
sage: S.verify(condition)
True

w1

w2

Modularity and 𝐿-series over Q.

534 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

18.19 Modular parametrization of elliptic curves over Q

By the work of Taylor–Wiles et al. it is known that there is a surjective morphism

𝜑𝐸 : 𝑋0(𝑁) → 𝐸.

from the modular curve 𝑋0(𝑁), where 𝑁 is the conductor of 𝐸. The map sends the cusp∞ to the origin of 𝐸.

EXAMPLES:

sage: phi = EllipticCurve(11a1).modular_parametrization()
sage: phi
Modular parameterization
from the upper half plane
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sage: phi(0.5+CDF(I))
(285684.320516... + 7.0...e-11*I : 1.526964169...e8 + 5.6...e-8*I : 1.00000000000000)
sage: phi.power_series(prec = 7)
(q^-2 + 2*q^-1 + 4 + 5*q + 8*q^2 + q^3 + 7*q^4 + O(q^5),
-q^-3 - 3*q^-2 - 7*q^-1 - 13 - 17*q - 26*q^2 - 19*q^3 + O(q^4))

AUTHORS:

• Chris Wuthrich (02/10): moved from ell_rational_field.py.

class sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization(E)
Bases: object

This class represents the modular parametrization of an elliptic curve

𝜑𝐸 : 𝑋0(𝑁) → 𝐸.

Evaluation is done by passing through the lattice representation of 𝐸.

EXAMPLES:

sage: phi = EllipticCurve(11a1).modular_parametrization()
sage: phi
Modular parameterization
from the upper half plane
to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20

over Rational Field

curve()

Return the curve associated to this modular parametrization.

EXAMPLES:

sage: E = EllipticCurve(15a)
sage: phi = E.modular_parametrization()
sage: phi.curve() is E
True

map_to_complex_numbers(z, prec=None)
Evaluate self at a point 𝑧 ∈ 𝑋0(𝑁) where 𝑧 is given by a representative in the upper half plane, returning
a point in the complex numbers.

All computations are done with prec bits of precision. If prec is not given, use the precision of 𝑧. Use
self(z) to compute the image of z on the Weierstrass equation of the curve.

EXAMPLES:

18.19. Modular parametrization of elliptic curves over Q 535

Elliptic curves, Release 10.4.rc1

sage: # needs sage.symbolic
sage: E = EllipticCurve(37a); phi = E.modular_parametrization()
sage: x = polygen(ZZ, x)
sage: tau = (sqrt(7)*I - 17)/74
sage: z = phi.map_to_complex_numbers(tau); z
0.929592715285395 - 1.22569469099340*I
sage: E.elliptic_exponential(z)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
sage: phi(tau)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)

power_series(prec=20)
Return the power series of this modular parametrization.

The curve must be a minimal model. The prec parameter determines the number of significant terms. This
means that X will be given up to O(q^(prec-2)) and Y will be given up to O(q^(prec-3)).

OUTPUT: A list of two Laurent series [X(x),Y(x)] of degrees -2, -3 respectively, which satisfy the
equation of the elliptic curve. There are modular functions on Γ0(𝑁) where 𝑁 is the conductor.

The series should satisfy the differential equation

d𝑋
2𝑌 + 𝑎1𝑋 + 𝑎3

=
𝑓(𝑞) d𝑞
𝑞

where 𝑓 is self.curve().q_expansion().

EXAMPLES:

sage: E = EllipticCurve(389a1)
sage: phi = E.modular_parametrization()
sage: X, Y = phi.power_series(prec=10)
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^
→˓7 + O(q^8)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 -␣
→˓528*q^6 + O(q^7)
sage: X,Y = phi.power_series()
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^
→˓7 + 173*q^8 + 251*q^9 + 379*q^10 + 560*q^11 + 824*q^12 + 1199*q^13 + 1773*q^
→˓14 + 2548*q^15 + 3722*q^16 + 5374*q^17 + O(q^18)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 -␣
→˓528*q^6 - 861*q^7 - 1383*q^8 - 2218*q^9 - 3472*q^10 - 5451*q^11 - 8447*q^12␣
→˓- 13020*q^13 - 19923*q^14 - 30403*q^15 - 46003*q^16 + O(q^17)

The following should give 0, but only approximately:

sage: q = X.parent().gen()
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True

Note that below we have to change variable from 𝑥 to 𝑞:

sage: a1,_,a3,_,_ = E.a_invariants()
sage: f = E.q_expansion(17)

(continues on next page)

536 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: q = f.parent().gen()
sage: f/q == (X.derivative()/(2*Y+a1*X+a3))
True

18.20 Modular symbols attached to elliptic curves over Q

To an elliptic curve 𝐸 over the rational numbers with conductor 𝑁 , one can associate a space of modular symbols of
level 𝑁 , because 𝐸 is known to be modular. The space is two-dimensional and contains a subspace on which complex
conjugation acts as multiplication by +1 and one on which it acts by −1.

There are three implementations of modular symbols, two within Sage and one in Cremona’s eclib library. One can
choose here which one is used.

Associated to 𝐸 there is a canonical generator in each space. They are maps [.]+ and [.]−, both Q → Q. They are
normalized such that

[𝑟]+Ω+ + [𝑟]−Ω− =

∫︁ 𝑟

∞
2𝜋𝑖𝑓(𝑧)𝑑𝑧

where 𝑓 is the newform associated to the isogeny class of𝐸 andΩ+ is the smallest positive period of the Néron differential
of 𝐸 and Ω− is the smallest positive purely imaginary period. Note that it depends on 𝐸 rather than on its isogeny class.

From eclib version v20161230, both plus and minus symbols are available and are correctly normalized. In the Sage
implementation, the computation of the space provides initial generators which are not necessarily correctly normalized;
here we implement two methods that try to find the correct scaling factor.

Modular symbols are used to compute 𝑝-adic 𝐿-functions.

EXAMPLES:

sage: E = EllipticCurve("19a1")
sage: m = E.modular_symbol()
sage: m(0)
1/3
sage: m(1/17)
-2/3
sage: m2 = E.modular_symbol(-1, implementation="sage")
sage: m2(0)
0
sage: m2(1/5)
1/2

sage: V = E.modular_symbol_space()
sage: V
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2
for Gamma_0(19) of weight 2 with sign 1 over Rational Field

sage: V.q_eigenform(30)
q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + 3*q^11 + 4*q^12 - 4*q^13 - 6*q^15 + 4*q^16
- 3*q^17 + q^19 - 6*q^20 + 2*q^21 + 4*q^25 + 4*q^27 + 2*q^28 + 6*q^29 + O(q^30)

For more details on modular symbols consult the following

REFERENCES:

• [MTT1986]

• [Cre1997]

18.20. Modular symbols attached to elliptic curves over Q 537

Elliptic curves, Release 10.4.rc1

• [SW2013]

AUTHORS:

• William Stein (2007): first version

• Chris Wuthrich (2008): add scaling and reference to eclib

• John Cremona (2016): reworked eclib interface

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol

Bases: SageObject

A modular symbol attached to an elliptic curve, which is the mapQ → Q obtained by sending 𝑟 to the normalized
symmetrized (or anti-symmetrized) integral∞ to 𝑟.

This is as defined in [MTT1986], but normalized to depend on the curve and not only its isogeny class as in
[SW2013].

See the documentation of E.modular_symbol() in elliptic curves over the rational numbers for help.

base_ring()

Return the base ring for this modular symbol.

EXAMPLES:

sage: m = EllipticCurve(11a1).modular_symbol()
sage: m.base_ring()
Rational Field

elliptic_curve()

Return the elliptic curve of this modular symbol.

EXAMPLES:

sage: m = EllipticCurve(11a1).modular_symbol()
sage: m.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sign()

Return the sign of this elliptic curve modular symbol.

EXAMPLES:

sage: m = EllipticCurve(11a1).modular_symbol()
sage: m.sign()
1
sage: m = EllipticCurve(11a1).modular_symbol(sign=-1, implementation="sage")
sage: m.sign()
-1

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E ,
sign,
nap=1000)

Bases: ModularSymbol

Modular symbols attached to 𝐸 using eclib.

Note that the normalization used within eclib differs from the normalization chosen here by a factor of 2 in the
case of elliptic curves with negative discriminant (with one real component) since the convention there is to write

538 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

the above integral as [𝑟]+𝑥+ [𝑟]−𝑦𝑖, where the lattice is ⟨2𝑥, 𝑥+ 𝑦𝑖⟩, so that Ω+ = 2𝑥 and Ω− = 2𝑦𝑖. We allow
for this below.

INPUT:

• E – an elliptic curve

• sign – an integer, -1 or 1

• nap – (int, default 1000): the number of ap of E to use in determining the normalisation of the modular
symbols.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_modular_symbols import␣
→˓ModularSymbolECLIB
sage: E = EllipticCurve(11a1)
sage: M = ModularSymbolECLIB(E,+1)
sage: M
Modular symbol with sign 1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: M(0)
1/5
sage: E = EllipticCurve(11a2)
sage: M = ModularSymbolECLIB(E,+1)
sage: M(0)
1

This is a rank 1 case with vanishing positive twists:

sage: E = EllipticCurve(121b1)
sage: M = ModularSymbolECLIB(E,+1)
sage: M(0)
0
sage: M(1/7)
1/2

sage: M = EllipticCurve(121d1).modular_symbol(implementation="eclib")
sage: M(0)
2

sage: E = EllipticCurve(15a1)
sage: [C.modular_symbol(implementation="eclib")(0) for C in E.isogeny_class()]
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]

Since Issue #10256, the interface for negative modular symbols in eclib is available:

sage: E = EllipticCurve(11a1)
sage: Mplus = E.modular_symbol(+1); Mplus
Modular symbol with sign 1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mplus(1/i) for i in [1..11]]
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
sage: Mminus = E.modular_symbol(-1); Mminus
Modular symbol with sign -1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mminus(1/i) for i in [1..11]]
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]

The scaling factor relative to eclib’s normalization is 1/2 for curves of negative discriminant:

18.20. Modular symbols attached to elliptic curves over Q 539

https://github.com/sagemath/sage/issues/10256

Elliptic curves, Release 10.4.rc1

sage: [E.discriminant() for E in cremona_curves([14])]
[-21952, 941192, -1835008, -28, 25088, 98]
sage: [E.modular_symbol()._scaling for E in cremona_curves([14])]
[1/2, 1, 1/2, 1/2, 1, 1]

TESTS (for Issue #10236):

sage: E = EllipticCurve(11a1)
sage: m = E.modular_symbol(implementation="eclib")
sage: m(1/7)
7/10
sage: m(0)
1/5

If nap is too small, the normalization in eclib used to be incorrect (see Issue #31317), but since eclib version
v20210310 the value of nap is increased automatically by eclib:

sage: from sage.schemes.elliptic_curves.ell_modular_symbols import␣
→˓ModularSymbolECLIB
sage: E = EllipticCurve(1590g1)
sage: m = ModularSymbolECLIB(E, sign=+1, nap=300)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

These values are correct, and increasing nap has no effect. The correct values may verified by the numerical
implementation:

sage: m = ModularSymbolECLIB(E, sign=+1, nap=400)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]
sage: m = E.modular_symbol(implementation= num)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E , sign,
normal-
ize='L_ra-
tio')

Bases: ModularSymbol

Modular symbols attached to 𝐸 using sage.

INPUT:

• E – an elliptic curve

• sign – an integer, -1 or 1

• normalize – either ‘L_ratio’ (default), ‘period’, or ‘none’; For ‘L_ratio’, the modular symbol is correctly
normalized by comparing it to the quotient of 𝐿(𝐸, 1) by the least positive period for the curve and some
small twists. The normalization ‘period’ uses the integral_period_map for modular symbols and is known to
be equal to the above normalization up to the sign and a possible power of 2. For ‘none’, the modular symbol
is almost certainly not correctly normalized, i.e. all values will be a fixed scalar multiple of what they should
be. But the initial computation of the modular symbol is much faster, though evaluation of it after computing
it won’t be any faster.

EXAMPLES:

540 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/10236
https://github.com/sagemath/sage/issues/31317

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a1)
sage: from sage.schemes.elliptic_curves.ell_modular_symbols import␣
→˓ModularSymbolSage
sage: M = ModularSymbolSage(E, +1)
sage: M
Modular symbol with sign 1 over Rational Field attached to
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: M(0)
1/5
sage: E = EllipticCurve(11a2)
sage: M = ModularSymbolSage(E, +1)
sage: M(0)
1
sage: M = ModularSymbolSage(E, -1)
sage: M(1/3)
1/2

This is a rank 1 case with vanishing positive twists. The modular symbol is adjusted by -2:

sage: E = EllipticCurve(121b1)
sage: M = ModularSymbolSage(E, -1, normalize= L_ratio)
sage: M(1/3)
1
sage: M._scaling
1

sage: M = EllipticCurve(121d1).modular_symbol(implementation="sage")
sage: M(0)
2
sage: M = EllipticCurve(121d1).modular_symbol(implementation="sage",
....: normalize= none)
sage: M(0)
1

sage: E = EllipticCurve(15a1)
sage: [C.modular_symbol(implementation="sage", normalize= L_ratio)(0)
....: for C in E.isogeny_class()]
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]
sage: [C.modular_symbol(implementation="sage", normalize= period)(0)
....: for C in E.isogeny_class()]
[1/8, 1/16, 1/8, 1/4, 1/16, 1/32, 1/4, 1/2]
sage: [C.modular_symbol(implementation="sage", normalize= none)(0)
....: for C in E.isogeny_class()]
[1, 1, 1, 1, 1, 1, 1, 1]

sage.schemes.elliptic_curves.ell_modular_symbols.modular_symbol_space(E , sign,
base_ring,
bound=None)

Creates the space of modular symbols of a given sign over a give base_ring, attached to the isogeny class of the
elliptic curve E.

INPUT:

• E – an elliptic curve over Q

• sign – integer, -1, 0, or 1

• base_ring – ring

18.20. Modular symbols attached to elliptic curves over Q 541

Elliptic curves, Release 10.4.rc1

• bound – (default: None) maximum number of Hecke operators to use to cut out modular symbols factor. If
None, use enough to provably get the correct answer.

OUTPUT: a space of modular symbols

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_modular_symbols import modular_symbol_
→˓space
sage: E = EllipticCurve(11a1)
sage: M = modular_symbol_space(E, -1, GF(37))
sage: M
Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1
over Finite Field of size 37

18.21 Modular symbols by numerical integration

We describe here the method for computing modular symbols by numerical approximations of the integral of the modular
form on a path between cusps.

More precisely, let 𝐸 be an elliptic curve and 𝑓 the newform associated to the isogeny class of 𝐸. If

𝜆(𝑟 → 𝑟′) = 2𝜋𝑖

∫︁ 𝑟′

𝑟

𝑓(𝜏)𝑑𝜏

then the modular symbol [𝑟]+ is defined as the quotient of the real part of 𝜆(∞ → 𝑟) by the least positive real period of
𝐸. Similarly for the negative modular symbol, it is the quotient of the imaginary part of the above by the smallest positive
imaginary part of a period on the imaginary axis.

The theorem of Manin-Drinfeld shows that the modular symbols are rational numbers with small denominator. They are
used for the computation of special values of the L-function of 𝐸 twisted by Dirichlet characters and for the computation
of 𝑝-adic L-functions.

ALGORITHM:

The implementation of modular symbols in eclib and directly in sage uses the algorithm described in Cremona’s book
[Cre1997] and Stein’s book [St2007]. First the space of all modular symbols of the given level is computed, then the space
corresponding to the given newform is determined. Even if these initial steps may take a while, the evaluation afterwards
is instantaneous. All computations are done with rational numbers and hence are exact.

Instead the method used here (see [Wu2018] for details) is by evaluating the above integrals 𝜆(𝑟 → 𝑟′) by numerical
approximation. Since we know precise bounds on the denominator, we can make rigorous estimates on the error to
guarantee that the result is proven to be the correct rational number.

The paths over which we integrate are split up and Atkin-Lehner operators are used to compute the badly converging part
of the integrals by using the Fourier expansion at other cusps than∞.

Note: There is one assumption for the correctness of these computations: The Manin constant for the𝑋0-optimal curve
should be 1 if the curve lies outside the Cremona tables. This is known for all curves in the Cremona table, but only
conjectured for general curves.

EXAMPLES:

The most likely usage for the code is through the functions modular_symbol with implementation set to “num” and
through modular_symbol_numerical:

542 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(0)
0
sage: M(1/123)
4
sage: Mn = E.modular_symbol_numerical(sign=-1, prec=30)
sage: Mn(3/123) # abs tol 1e-11
3.00000000000018

In more details. A numerical modular symbols M is created from an elliptic curve with a chosen sign (though the other
sign will also be accessible, too):

sage: E = EllipticCurve([101,103])
sage: E.conductor()
35261176
sage: M = E.modular_symbol(implementation="num", sign=-1)
sage: M
Numerical modular symbol attached to
Elliptic Curve defined by y^2 = x^3 + 101*x + 103 over Rational Field

We can then compute the value [13/17]− and [1/17]+ by calling the function M. The value of [0]+ = 0 tells us that the
rank of this curve is positive:

sage: M(13/17)
-1/2
sage: M(1/17,sign=+1)
-3
sage: M(0, sign=+1)
0

One can compute the numerical approximation to these rational numbers to any proven binary precision:

sage: M.approximative_value(13/17, prec=2) # abs tol 1e-4
-0.500003172770455
sage: M.approximative_value(13/17, prec=4) # abs tol 1e-6
-0.500000296037388
sage: M.approximative_value(0, sign=+1, prec=6) # abs tol 1e-8
0.000000000000000

There are a few other things that one can do with M. The Manin symbol𝑀(𝑐 : 𝑑) for a point (𝑐 : 𝑑) in the projective line
can be computed.:

sage: M.manin_symbol(1,5)
-1

In some cases useful, there is a function that returns all [𝑎/𝑚]+ for a fixed denominator 𝑚. This is rather quicker for
small𝑚 than computing them individually:

sage: M.all_values_for_one_denominator(7)
{1/7: 0, 2/7: 3/2, 3/7: 3/2, 4/7: -3/2, 5/7: -3/2, 6/7: 0}

Finally a word of warning. The algorithm is fast when the cusps involved are unitary. If the curve is semistable, all cusps
are unitary. But rational numbers with a prime 𝑝 dividing the denominator once, but the conductor more than once, are
very difficult. For instance for the above example, a seemingly harmless command like M(1/2) would take a very very
long time to return a value. However it is possible to compute them for smaller conductors:

18.21. Modular symbols by numerical integration 543

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve("664a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(1/2)
0

The problem with non-unitary cusps is dealt with rather easily when one can twist to a semistable curve, like in this
example:

sage: C = EllipticCurve("11a1")
sage: E = C.quadratic_twist(101)
sage: M = E.modular_symbol(implementation="num")
sage: M(1/101)
41

AUTHORS:

• Chris Wuthrich (2013-16)

class sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical

Bases: object

This class assigning to an elliptic curve overQ a modular symbol. Unlike the other implementations this class does
not precompute a basis for this space. Instead at each call, it evaluates the integral using numerical approximation.
All bounds are very strictly implemented and the output is a correct proven rational number.

INPUT:

• E – an elliptic curve over the rational numbers.

• sign – either -1 or +1 (default). This sets the default value of sign throughout the class. Both are still
accessible.

OUTPUT: a modular symbol

EXAMPLES:

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(0)
0
sage: M(77/57)
-1
sage: M(33/37, -1)
2
sage: M = E.modular_symbol(sign=-1, implementation="num")
sage: M(2/7)
2

sage: from sage.schemes.elliptic_curves.mod_sym_num \
....: import ModularSymbolNumerical
sage: M = ModularSymbolNumerical(EllipticCurve("11a1"))
sage: M(1/3, -1)
1/2
sage: M(1/2)
-4/5

all_values_for_one_denominator(m, sign=0)
Given an integer m and a sign, this returns the modular symbols [𝑎/𝑚] for all 𝑎 coprime to𝑚 using partial
sums. This is much quicker than computing them one by one.

544 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

This will only work if𝑚 is relatively small and if the cusps 𝑎/𝑚 are unitary.

INPUT:

• m – a natural number

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

OUTPUT: a dictionary of fractions with denominator𝑚 giving rational numbers.

EXAMPLES:

sage: E = EllipticCurve(5077a1)
sage: M = E.modular_symbol(implementation="num")
sage: M.all_values_for_one_denominator(7)
{1/7: 3, 2/7: 0, 3/7: -3, 4/7: -3, 5/7: 0, 6/7: 3}
sage: [M(a/7) for a in [1..6]]
[3, 0, -3, -3, 0, 3]
sage: M.all_values_for_one_denominator(3,-1)
{1/3: 4, 2/3: -4}

sage: E = EllipticCurve(11a1)
sage: M = E.modular_symbol(implementation="num")
sage: M.all_values_for_one_denominator(12)
{1/12: 1/5, 5/12: -23/10, 7/12: -23/10, 11/12: 1/5}
sage: M.all_values_for_one_denominator(12, -1)
{1/12: 0, 5/12: 1/2, 7/12: -1/2, 11/12: 0}

sage: E = EllipticCurve(20a1)
sage: M = E.modular_symbol(implementation="num")
sage: M.all_values_for_one_denominator(4)
{1/4: 0, 3/4: 0}
sage: M.all_values_for_one_denominator(8)
{1/8: 1/2, 3/8: -1/2, 5/8: -1/2, 7/8: 1/2}

approximative_value(r, sign=0, prec=20, use_twist=True)
The numerical modular symbol evaluated at rational.

It returns a real number, which should be equal to a rational number to the given binary precision prec. In
practice the precision is often much higher. See the examples below.

INPUT:

• r – a rational (or integer)

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

• prec – an integer (default 20)

• use_twist – True (default) allows to use a quadratic twist of the curve to lower the conductor.

OUTPUT: a real number

EXAMPLES:

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.approximative_value(123/567) # abs tol 1e-11
-4.00000000000845
sage: M.approximative_value(123/567,prec=2) # abs tol 1e-9
-4.00002815242902

(continues on next page)

18.21. Modular symbols by numerical integration 545

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve([11,88])
sage: E.conductor()
1715296
sage: M = E.modular_symbol(implementation="num")
sage: M.approximative_value(0,prec=2) # abs tol 1e-11
-0.0000176374317982166
sage: M.approximative_value(1/7,prec=2) # abs tol 1e-11
0.999981178147778
sage: M.approximative_value(1/7,prec=10) # abs tol 1e-11
0.999999972802649

clear_cache()

Clear the cached values in all methods of this class

EXAMPLES:

sage: E = EllipticCurve("11a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(0)
1/5
sage: M.clear_cache()
sage: M(0)
1/5

elliptic_curve()

Return the elliptic curve of this modular symbol.

EXAMPLES:

sage: E = EllipticCurve("15a4")
sage: M = E.modular_symbol(implementation="num")
sage: M.elliptic_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational␣
→˓Field

manin_symbol(u, v, sign=0)
Given a pair (𝑢, 𝑣) presenting a point in P1(Z/𝑁Z) and hence a coset of Γ0(𝑁), this computes the value of
the Manin symbol𝑀(𝑢 : 𝑣).

INPUT:

• u – an integer

• v – an integer such that (𝑢 : 𝑣) is a projective point modulo 𝑁

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: M = E.modular_symbol(implementation="num")
sage: M.manin_symbol(1,3)
-1/2
sage: M.manin_symbol(1,3, sign=-1)
-1/2
sage: M.manin_symbol(1,5)
1
sage: M.manin_symbol(1,5)

(continues on next page)

546 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

1

sage: E = EllipticCurve(14a1)
sage: M = E.modular_symbol(implementation="num")
sage: M.manin_symbol(1,2)
-1/2
sage: M.manin_symbol(17,6)
-1/2
sage: M.manin_symbol(-1,12)
-1/2

transportable_symbol(r, rr, sign=0)
Return the symbol [𝑟′]+ − [𝑟]+ where 𝑟′ = 𝛾(𝑟) for some 𝛾 ∈ Γ0(𝑁). These symbols can be computed by
transporting the path into the upper half plane close to one of the unitary cusps. Here we have implemented
it only to move close to 𝑖∞ and 0.

INPUT:

• r and rr – two rational numbers

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

OUTPUT: a rational number

EXAMPLES:

sage: E = EllipticCurve("11a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.transportable_symbol(0/1,-2/7)
-1/2

sage: E = EllipticCurve("37a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.transportable_symbol(0/1,-1/19)
0
sage: M.transportable_symbol(0/1,-1/19,-1)
0

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.transportable_symbol(0/1,-35/144)
-3
sage: M.transportable_symbol(0/1,-35/144,-1)
0
sage: M.transportable_symbol(0/1, -7/31798)
0
sage: M.transportable_symbol(0/1, -7/31798, -1)
-5

18.21. Modular symbols by numerical integration 547

Elliptic curves, Release 10.4.rc1

18.22 𝐿-series for elliptic curves

AUTHORS:

• Simon Spicer (2014-08-15): Added LFunctionZeroSum class interface method

• Jeroen Demeyer (2013-10-17): Compute L series with arbitrary precision instead of floats.

• William Stein et al. (2005 and later)

class sage.schemes.elliptic_curves.lseries_ell.Lseries_ell(E)
Bases: SageObject

An elliptic curve 𝐿-series.

L1_vanishes()

Returns whether or not 𝐿(𝐸, 1) = 0. The result is provably correct if the Manin constant of the associated
optimal quotient is <= 2. This hypothesis on the Manin constant is true for all curves of conductor <= 40000
(by Cremona) and all semistable curves (i.e., squarefree conductor).

ALGORITHM: see L_ratio().

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.lseries().L1_vanishes()
False
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.lseries().L1_vanishes()
False
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve))
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny)
sage: E.lseries().L1_vanishes()
False

AUTHORS: William Stein, 2005-04-20.

L_ratio()

Return the ratio 𝐿(𝐸, 1)/Ω as an exact rational number.

The result is provably correct if the Manin constant of the associated optimal quotient is≤ 2. This hypothesis
on the Manin constant is true for all semistable curves (i.e., squarefree conductor), by a theorem of Mazur
from his Rational Isogenies of Prime Degree paper.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.lseries().L_ratio()
1/5
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.lseries().L_ratio()
1/25

(continues on next page)

548 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.lseries().L_ratio()
0
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.lseries().L_ratio()
0
sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve))
sage: E.lseries().L_ratio()
0
sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny)
sage: E.lseries().L_ratio()
1
sage: E = EllipticCurve(RationalField(), [1, 0, 0, 1/24624, 1/886464])
sage: E.lseries().L_ratio()
2

See Issue #3651 and Issue #15299:

sage: EllipticCurve([0,0,0,-193^2,0]).sha().an()
4
sage: EllipticCurve([1, 0, 1, -131, 558]).sha().an() # long time
1.00000000000000

ALGORITHM: Compute the root number. If it is -1 then 𝐿(𝐸, 𝑠) vanishes to odd order at 1, hence vanishes.
If it is +1, use a result about modular symbols and Mazur’s Rational Isogenies paper to determine a provably
correct bound (assuming Manin constant is <= 2) so that we can determine whether 𝐿(𝐸, 1) = 0.

AUTHORS: William Stein, 2005-04-20.

at1(k=None, prec=None)
Compute 𝐿(𝐸, 1) using 𝑘 terms of the series for 𝐿(𝐸, 1) as explained in Section 7.5.3 of Henri Cohen’s
book A Course in Computational Algebraic Number Theory. If the argument 𝑘 is not specified, then it defaults
to

√
𝑁 , where 𝑁 is the conductor.

INPUT:

• k – number of terms of the series. If zero or None, use 𝑘 =
√
𝑁 , where 𝑁 is the conductor.

• prec – numerical precision in bits. If zero or None, use a reasonable automatic default.

OUTPUT:

A tuple of real numbers (L, err) where L is an approximation for 𝐿(𝐸, 1) and err is a bound on the
error in the approximation.

This function is disjoint from the PARI pari:elllseries command, which is for a similar purpose. To use that
command (via the PARI C library), simply type E.pari_mincurve().elllseries(1).

ALGORITHM:

• Compute the root number eps. If it is -1, return 0.

• Compute the Fourier coefficients 𝑎𝑛, for 𝑛 up to and including 𝑘.

• Compute the sum

2 ·
𝑘∑︁

𝑛=1

𝑎𝑛
𝑛

· exp(−2 * 𝑝𝑖 * 𝑛/
√
𝑁),

where 𝑁 is the conductor of 𝐸.

18.22. 𝐿-series for elliptic curves 549

https://github.com/sagemath/sage/issues/3651
https://github.com/sagemath/sage/issues/15299
https://pari.math.u-bordeaux.fr/dochtml/help/elllseries

Elliptic curves, Release 10.4.rc1

• Compute a bound on the tail end of the series, which is

2𝑒−2𝜋(𝑘+1)/
√
𝑁/(1− 𝑒−2𝜋/

√
𝑁).

For a proof see [Grigov-Jorza-Patrascu-Patrikis-Stein].

EXAMPLES:

sage: L, err = EllipticCurve(11a1).lseries().at1()
sage: L, err
(0.253804, 0.000181444)
sage: parent(L)
Real Field with 24 bits of precision
sage: E = EllipticCurve(37b)
sage: E.lseries().at1()
(0.7257177, 0.000800697)
sage: E.lseries().at1(100)
(0.7256810619361527823362055410263965487367603361763, 1.52469e-45)
sage: L,err = E.lseries().at1(100, prec=128)
sage: L
0.72568106193615278233620554102639654873
sage: parent(L)
Real Field with 128 bits of precision
sage: err
1.70693e-37
sage: parent(err)
Real Field with 24 bits of precision and rounding RNDU

Rank 1 through 3 elliptic curves:

sage: E = EllipticCurve(37a1)
sage: E.lseries().at1()
(0.0000000, 0.000000)
sage: E = EllipticCurve(389a1)
sage: E.lseries().at1()
(-0.001769566, 0.00911776)
sage: E = EllipticCurve(5077a1)
sage: E.lseries().at1()
(0.0000000, 0.000000)

deriv_at1(k=None, prec=None)
Compute 𝐿′(𝐸, 1) using 𝑘 terms of the series for 𝐿′(𝐸, 1), under the assumption that 𝐿(𝐸, 1) = 0.

The algorithm used is from Section 7.5.3 of Henri Cohen’s bookACourse in Computational Algebraic Number
Theory.

INPUT:

• k – number of terms of the series. If zero or None, use 𝑘 =
√
𝑁 , where 𝑁 is the conductor.

• prec – numerical precision in bits. If zero or None, use a reasonable automatic default.

OUTPUT:

A tuple of real numbers (L1, err) where L1 is an approximation for 𝐿′(𝐸, 1) and err is a bound on the
error in the approximation.

Warning: This function only makes sense if 𝐿(𝐸) has positive order of vanishing at 1, or equivalently
if 𝐿(𝐸, 1) = 0.

550 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

ALGORITHM:

• Compute the root number eps. If it is 1, return 0.

• Compute the Fourier coefficients 𝑎𝑛, for 𝑛 up to and including 𝑘.

• Compute the sum

2 ·
𝑘∑︁

𝑛=1

(𝑎𝑛/𝑛) · 𝐸1(2𝜋𝑛/
√
𝑁),

where 𝑁 is the conductor of 𝐸, and 𝐸1 is the exponential integral function.

• Compute a bound on the tail end of the series, which is

2𝑒−2𝜋(𝑘+1)/
√
𝑁/(1− 𝑒−2𝜋/

√
𝑁).

For a proof see [Grigorov-Jorza-Patrascu-Patrikis-Stein]. This is exactly the same as the bound for the
approximation to 𝐿(𝐸, 1) produced by at1().

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.lseries().deriv_at1() #␣
→˓needs sage.symbolic
(0.3059866, 0.000801045)
sage: E.lseries().deriv_at1(100) #␣
→˓needs sage.symbolic
(0.3059997738340523018204836833216764744526377745903, 1.52493e-45)
sage: E.lseries().deriv_at1(1000) #␣
→˓needs sage.symbolic
(0.305999773834052301820483683321676474452637774590771998..., 2.75031e-449)

With less numerical precision, the error is bounded by numerical accuracy:

sage: # needs sage.symbolic
sage: L, err = E.lseries().deriv_at1(100, prec=64)
sage: L, err
(0.305999773834052302, 5.55318e-18)
sage: parent(L)
Real Field with 64 bits of precision
sage: parent(err)
Real Field with 24 bits of precision and rounding RNDU

Rank 2 and rank 3 elliptic curves:

sage: E = EllipticCurve(389a1)
sage: E.lseries().deriv_at1() #␣
→˓needs sage.symbolic
(0.0000000, 0.000000)
sage: E = EllipticCurve((1, 0, 1, -131, 558)) # curve 59450i1
sage: E.lseries().deriv_at1() #␣
→˓needs sage.symbolic
(-0.00010911444, 0.142428)
sage: E.lseries().deriv_at1(4000) #␣
→˓needs sage.symbolic
(6.990...e-50, 1.31318e-43)

18.22. 𝐿-series for elliptic curves 551

Elliptic curves, Release 10.4.rc1

dokchitser(prec=53, max_imaginary_part=0, max_asymp_coeffs=40, algorithm=None)
Return an interface for computing with the 𝐿-series of this elliptic curve.

This provides a way to compute Taylor expansions and higher derivatives of 𝐿-series.

INPUT:

• prec – optional integer (default 53) bits precision

• max_imaginary_part – optional real number (default 0)

• max_asymp_coeffs – optional integer (default 40)

• algorithm – optional string: ‘gp’ (default), ‘pari’ or ‘magma’

If algorithm is “gp”, this returns an interface to TimDokchitser’s program for computing with the L-functions.

If algorithm is “pari”, this returns instead an interface to Pari’s own general implementation of L-functions.

Note: If algorithm=’magma’, then the precision is in digits rather than bits and the object returned is a
Magma L-series, which has different functionality from the Sage L-series.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: L = E.lseries().dokchitser()
sage: L(2)
0.381575408260711
sage: L = E.lseries().dokchitser(algorithm= magma) # optional - magma
sage: L.Evaluate(2) # optional - magma
0.38157540826071121129371040958008663667709753398892116

If the curve has too large a conductor, it is not possible to compute with the 𝐿-series using this command.
Instead a RuntimeError is raised:

sage: e = EllipticCurve([1,1,0,-63900,-1964465932632])
sage: L = e.lseries().dokchitser(15, algorithm= gp)
Traceback (most recent call last):
...
RuntimeError: unable to create L-series, due to precision or other limits in␣
→˓PARI

Using the “pari” algorithm:

sage: E = EllipticCurve(37a)
sage: L = E.lseries().dokchitser(algorithm="pari")
sage: L(2)
0.381575408260711

elliptic_curve()

Return the elliptic curve that this 𝐿-series is attached to.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: L = E.lseries()
sage: L.elliptic_curve ()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

552 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sympow(n, prec)
Return 𝐿(𝑆𝑦𝑚(𝑛)(𝐸, edge)) to prec digits of precision.

INPUT:

• n – integer

• prec – integer

OUTPUT:

• (string) – real number to prec digits of precision as a string.

Note: Before using this function for the first time for a given n, you may have to type
sympow(-new_data <n>), where <n> is replaced by your value of n. This command takes a long
time to run.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: a = E.lseries().sympow(2,16) # not tested - requires precomputing
→˓"sympow(-new_data 2)"
sage: a # not tested
2.492262044273650E+00

sage: RR(a) # not tested
2.49226204427365

sympow_derivs(n, prec, d)
Return 0-th to 𝑑-th derivatives of 𝐿(𝑆𝑦𝑚(𝑛)(𝐸, edge)) to prec digits of precision.

INPUT:

• n – integer

• prec – integer

• d – integer

OUTPUT:

• a string, exactly as output by sympow

Note: To use this function you may have to run a few commands like sympow(-new_data 1d2),
each which takes a few minutes. If this function fails it will indicate what commands have to be run.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: print(E.lseries().sympow_derivs(1,16,2)) # not tested -- requires␣
→˓precomputing "sympow(-new_data 2)"
sympow 1.018 RELEASE (c) Mark Watkins --- see README and COPYING for details
Minimal model of curve is [0,0,1,-1,0]
At 37: Inertia Group is C1 MULTIPLICATIVE REDUCTION
Conductor is 37
sp 1: Conductor at 37 is 1+0, root number is 1
sp 1: Euler factor at 37 is 1+1*x
1st sym power conductor is 37, global root number is -1
NT 1d0: 35

(continues on next page)

18.22. 𝐿-series for elliptic curves 553

Elliptic curves, Release 10.4.rc1

(continued from previous page)

NT 1d1: 32
NT 1d2: 28
Maximal number of terms is 35
Done with small primes 1049
Computed: 1d0 1d1 1d2
Checked out: 1d1
1n0: 3.837774351482055E-01
1w0: 3.777214305638848E-01
1n1: 3.059997738340522E-01
1w1: 3.059997738340524E-01
1n2: 1.519054910249753E-01
1w2: 1.545605024269432E-01

taylor_series(a=1, prec=53, series_prec=6, var='z')
Return the Taylor series of this 𝐿-series about 𝑎 to the given precision (in bits) and the number of terms.

The output is a series in var, where you should view var as equal to 𝑠 − 𝑎. Thus this function returns the
formal power series whose coefficients are 𝐿(𝑛)(𝑎)/𝑛!.

INPUT:

• a – complex number

• prec – integer, precision in bits (default 53)

• series_prec – integer (default 6)

• var – variable (default ‘z’)

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: L = E.lseries()
sage: L.taylor_series(series_prec=3) # abs tol 1e-14
-1.27685190980159e-23 + (7.23588070754027e-24)*z + 0.759316500288427*z^2 +␣
→˓O(z^3) # 32-bit
1.34667664606157e-19 + (-7.63157535163667e-20)*z + 0.759316500288427*z^2 +␣
→˓O(z^3) # 64-bit

twist_values(s, dmin, dmax)
Return values of 𝐿(𝐸, 𝑠, 𝜒𝑑) for each quadratic character 𝜒𝑑 for 𝑑min ≤ 𝑑 ≤ 𝑑max.

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:

• s – complex numbers

• dmin – integer

• dmax – integer

OUTPUT:

• list of pairs (𝑑, 𝐿(𝐸, 𝑠, 𝜒𝑑))

EXAMPLES:

554 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(37a)
sage: vals = E.lseries().twist_values(1, -12, -4)
sage: vals[0][0]
-11
sage: vals[0][1] # abs tol 1e-8
1.47824342 + 0.0*I
sage: vals[1][0]
-8
sage: vals[1][1] # abs tol 1e-8
0.0 + 0.0*I
sage: vals[2][0]
-7
sage: vals[2][1] # abs tol 1e-8
1.85307619 + 0.0*I
sage: vals[3][0]
-4
sage: vals[3][1] # abs tol 1e-8
2.45138938 + 0.0*I
sage: F = E.quadratic_twist(-8)
sage: F.rank()
1
sage: F = E.quadratic_twist(-7)
sage: F.rank()
0

twist_zeros(n, dmin, dmax)
Return first 𝑛 real parts of nontrivial zeros of 𝐿(𝐸, 𝑠, 𝜒𝑑) for each quadratic character 𝜒𝑑 with 𝑑min ≤ 𝑑 ≤
𝑑max.

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:

• n – integer

• dmin – integer

• dmax – integer

OUTPUT:

• dict – keys are the discriminants 𝑑, and
values are list of corresponding zeros.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.lseries().twist_zeros(3, -4, -3) # long time
{-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.
→˓45853219]}

values_along_line(s0, s1, number_samples)
Return values of 𝐿(𝐸, 𝑠) at number_samples equally-spaced sample points along the line from 𝑠0 to 𝑠1
in the complex plane.

Note: The 𝐿-series is normalized so that the center of the critical strip is 1.

18.22. 𝐿-series for elliptic curves 555

Elliptic curves, Release 10.4.rc1

INPUT:

• s0, s1 – complex numbers

• number_samples – integer

OUTPUT:

list – list of pairs (𝑠, 𝐿(𝐸, 𝑠)), where the 𝑠 are
equally spaced sampled points on the line from s0 to s1.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.lseries().values_along_line(1, 0.5 + 20*I, 5)
[(0.500000000, ...),
(0.400000000 + 4.00000000*I, 3.31920245 - 2.60028054*I),
(0.300000000 + 8.00000000*I, -0.886341185 - 0.422640337*I),
(0.200000000 + 12.0000000*I, -3.50558936 - 0.108531690*I),
(0.100000000 + 16.0000000*I, -3.87043288 - 1.88049411*I)]

zero_sums(N=None)
Return an LFunctionZeroSum class object for efficient computation of sums over the zeros of self.

This can be used to bound analytic rank from above without having to compute with the 𝐿-series directly.

INPUT:

• N – (default: None) If not None, the conductor of the elliptic curve attached to self. This is passable
so that zero sum computations can be done on curves for which the conductor has been precomputed.

OUTPUT:

A LFunctionZeroSum_EllipticCurve instance.

EXAMPLES:

sage: E = EllipticCurve("5077a")
sage: E.lseries().zero_sums()
Zero sum estimator for L-function attached to
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field

zeros(n)
Return the imaginary parts of the first 𝑛 nontrivial zeros on the critical line of the 𝐿-function in the upper
half plane, as 32-bit reals.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.lseries().zeros(2)
[0.000000000, 5.00317001]

sage: a = E.lseries().zeros(20) # long time
sage: point([(1,x) for x in a]) # graph (long time)
Graphics object consisting of 1 graphics primitive

AUTHORS: Uses Rubinstein’s L-functions calculator.

zeros_in_interval(x, y, stepsize)
Return the imaginary parts of (most of) the nontrivial zeros on the critical line ℜ(𝑠) = 1 with positive
imaginary part between x and y, along with a technical quantity for each.

INPUT:

556 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• x – positive floating point number

• y – positive floating point number

• stepsize – positive floating point number

OUTPUT:

• list of pairs (zero, S(T)).

Rubinstein writes: The first column outputs the imaginary part of the zero, the second column a quantity
related to S(T) (it increases roughly by 2 whenever a sign change, i.e. pair of zeros, is missed). Higher up
the critical strip you should use a smaller stepsize so as not to miss zeros.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.lseries().zeros_in_interval(6, 10, 0.1) # long time
[(6.87039122, 0.248922780), (8.01433081, -0.140168533), (9.93309835, -0.
→˓129943029)]

18.23 Heegner points on elliptic curves over the rational numbers

AUTHORS:

• William Stein (August 2009)– most of the initial version

• Robert Bradshaw (July 2009) – an early version of some specific code

EXAMPLES:

sage: E = EllipticCurve(433a)
sage: P = E.heegner_point(-8,3)
sage: z = P.point_exact(201); z
(-4/3 : 1/9*a : 1)
sage: parent(z)
Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 + 1
over Number Field in a with defining polynomial x^2 - 12*x + 111

sage: parent(z[0]).discriminant()
-3
sage: E.quadratic_twist(-3).rank()
1
sage: K.<a> = QuadraticField(-8)
sage: K.factor(3)
(Fractional ideal (1/2*a + 1)) * (Fractional ideal (-1/2*a + 1))

Next try an inert prime:

sage: K.factor(5)
Fractional ideal (5)
sage: P = E.heegner_point(-8,5)
sage: z = P.point_exact(300)
sage: z[0].charpoly().factor()
(x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100)^2
sage: z[1].charpoly().factor()
x^12 - x^11 + 6/5*x^10 - 33/40*x^9 - 89/320*x^8 + 3287/800*x^7
- 5273/1600*x^6 + 993/4000*x^5 + 823/320*x^4 - 2424/625*x^3
+ 12059/12500*x^2 + 3329/25000*x + 123251/250000

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 557

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: f = P.x_poly_exact(300); f
x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100
sage: f.discriminant().factor()
-1 * 2^-9 * 5^-9 * 7^2 * 281^2 * 1021^2

We find some Mordell-Weil generators in the rank 1 case using Heegner points:

sage: E = EllipticCurve(43a); P = E.heegner_point(-7)
sage: P.x_poly_exact()
x
sage: z = P.point_exact(); z == E(0,0,1) or -z == E(0,0,1)
True

sage: E = EllipticCurve(997a)
sage: E.rank()
1
sage: E.heegner_discriminants_list(10)
[-19, -23, -31, -35, -39, -40, -52, -55, -56, -59]
sage: P = E.heegner_point(-19)
sage: P.x_poly_exact()
x - 141/49
sage: z = P.point_exact(); z == E(141/49, -162/343, 1) or -z == E(141/49, -162/343,␣
→˓1)
True

Here we find that the Heegner point generates a subgroup of index 3:

sage: E = EllipticCurve(92b1)
sage: E.heegner_discriminants_list(1)
[-7]
sage: P = E.heegner_point(-7)
sage: z = P.point_exact(); z == E(0, 1, 1) or -z == E(0, 1, 1)
True
sage: E.regulator()
0.0498083972980648
sage: z.height()
0.448275575682583
sage: P = E(1,1); P # a generator
(1 : 1 : 1)
sage: -3*P
(0 : 1 : 1)
sage: E.tamagawa_product()
3

The above is consistent with the following analytic computation:

sage: E.heegner_index(-7)
3.0000?

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphism(parent)
Bases: SageObject

An abstract automorphism of a ring class field.

Todo: make GaloisAutomorphism derive from GroupElement, so that one gets powers for free, etc.

558 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

domain()

Return the domain of this automorphism.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
sage: s = G.complex_conjugation()
sage: s.domain()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

parent()

Return the parent of this automorphism, which is a Galois group of a ring class field.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
sage: s = G.complex_conjugation()
sage: s.parent()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(par-
ent)

Bases: GaloisAutomorphism

The complex conjugation automorphism of a ring class field.

EXAMPLES:

sage: G = heegner_point(37,-7,5).ring_class_field().galois_group()
sage: conj = G.complex_conjugation()
sage: conj
Complex conjugation automorphism of Ring class field extension
of QQ[sqrt(-7)] of conductor 5
sage: conj.domain()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

order()

EXAMPLES:

sage: G = heegner_point(37,-7,5).ring_class_field().galois_group()
sage: conj = G.complex_conjugation()
sage: conj.order()
2

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm(par-
ent,
quadratic_form,
al-
pha=None)

Bases: GaloisAutomorphism

An automorphism of a ring class field defined by a quadratic form.

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 559

Elliptic curves, Release 10.4.rc1

sage: H = heegner_points(389,-20,3)
sage: sigma = H.ring_class_field().galois_group(H.quadratic_field())[0]; sigma
Class field automorphism defined by x^2 + 45*y^2
sage: type(sigma)
<class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm >
sage: loads(dumps(sigma)) == sigma
True

alpha()

Optional data that specified element corresponding element of (𝒪𝐾/𝑐𝒪𝐾)*/(/𝑐)*, via class field theory.

This is a generator of the ideal corresponding to this automorphism.

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on␣
→˓the database being installed or not)
[1, 1/2*sqrt_minus_52 + 1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 - 1]
sage: sorted([x^2 for x in orb]) # this is just for testing
[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, 1]

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on␣
→˓the database being installed or not)
[1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 1/2*sqrt_minus_52 - 1,
1/2*sqrt_minus_52 - 2, -1/2*sqrt_minus_52 - 2]

sage: sorted([x^2 for x in orb]) # just for testing
[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12,
-2*sqrt_minus_52 - 9, 2*sqrt_minus_52 - 9, 1]

ideal()

Return ideal of ring of integers of quadratic imaginary field corresponding to this quadratic form. This is the
ideal

𝐼 =
(︁
𝐴, −𝐵+𝑐

√
𝐷

2

)︁
𝒪𝐾 .

EXAMPLES:

sage: E = EllipticCurve(389a); F= E.heegner_point(-20,3).ring_class_field()
sage: G = F.galois_group(F.quadratic_field())
sage: G[1].ideal()
Fractional ideal (2, 1/2*sqrt_minus_20 + 1)
sage: [s.ideal().gens() for s in G]
[(1, 3/2*sqrt_minus_20), (2, 3/2*sqrt_minus_20 - 1),
(5, 3/2*sqrt_minus_20), (7, 3/2*sqrt_minus_20 - 2)]

order()

Return the multiplicative order of this Galois group automorphism.

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()

(continues on next page)

560 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: G = K3.galois_group(K1)
sage: sorted([g.order() for g in G])
[1, 2, 4, 4]
sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: sorted([g.order() for g in G])
[1, 2, 3, 3, 6, 6]

p1_element()

Return element of the projective line corresponding to this automorphism.

This only makes sense if this automorphism is in the Galois group Gal(𝐾𝑐/𝐾1).

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: sorted([g.p1_element() for g in G])
[(0, 1), (1, 0), (1, 1), (1, 2)]

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: sorted([g.p1_element() for g in G])
[(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)]

quadratic_form()

Return reduced quadratic form corresponding to this Galois automorphism.

EXAMPLES:

sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.
→˓quadratic_field())[0]
sage: s.quadratic_form()
x^2 + 45*y^2

class sage.schemes.elliptic_curves.heegner.GaloisGroup(field, base=Rational Field)
Bases: SageObject

A Galois group of a ring class field.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
12
sage: G.complex_conjugation()
Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)]
of conductor 5

base_field()

Return the base field, which the field fixed by all the automorphisms in this Galois group.

18.23. Heegner points on elliptic curves over the rational numbers 561

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: x = heegner_point(37,-7,5)
sage: Kc = x.ring_class_field(); Kc
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: K = x.quadratic_field()
sage: G = Kc.galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.base_field()
Rational Field
sage: G.cardinality()
12
sage: Kc.absolute_degree()
12
sage: G = Kc.galois_group(K); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

sage: G.cardinality()
6
sage: G.base_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

sage: G = Kc.galois_group(Kc); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
over Ring class field extension of QQ[sqrt(-7)] of conductor 5

sage: G.cardinality()
1
sage: G.base_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

cardinality()

Return the cardinality of this Galois group.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
12
sage: G = E.heegner_point(-7).ring_class_field().galois_group()
sage: G.cardinality()
2
sage: G = E.heegner_point(-7,55).ring_class_field().galois_group()
sage: G.cardinality()
120

complex_conjugation()

Return the automorphism of self determined by complex conjugation. The base field must be the rational
numbers.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
sage: G.complex_conjugation()

(continues on next page)

562 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Complex conjugation automorphism of Ring class field extension
of QQ[sqrt(-7)] of conductor 5

field()

Return the ring class field that this Galois group acts on.

EXAMPLES:

sage: G = heegner_point(389,-7,5).ring_class_field().galois_group()
sage: G.field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

is_kolyvagin()

Return True if conductor 𝑐 is prime to the discriminant of the quadratic field, 𝑐 is squarefree and each prime
dividing 𝑐 is inert.

EXAMPLES:

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: K5.galois_group(K1).is_kolyvagin()
True
sage: K7 = heegner_points(389,-52,7).ring_class_field()
sage: K7.galois_group(K1).is_kolyvagin()
False
sage: K25 = heegner_points(389,-52,25).ring_class_field()
sage: K25.galois_group(K1).is_kolyvagin()
False

kolyvagin_generators()

Assuming this Galois group𝐺 is of the form𝐺 = Gal(𝐾𝑐/𝐾1), with 𝑐 = 𝑝1 . . . 𝑝𝑛 satisfying the Kolyvagin
hypothesis, this function returns noncanonical choices of lifts of generators for each of the cyclic factors of
𝐺 corresponding to the primes dividing 𝑐. Thus the 𝑖-th returned valued is an element of 𝐺 that maps to the
identity element of Gal(𝐾𝑝/𝐾1) for all 𝑝 ̸= 𝑝𝑖 and to a choice of generator of Gal(𝐾𝑝𝑖/𝐾1).

OUTPUT:

• list of elements of self

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: G.kolyvagin_generators()
(Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2,)

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: G.kolyvagin_generators()
(Class field automorphism defined by 17*x^2 - 14*x*y + 22*y^2,)

lift_of_hilbert_class_field_galois_group()

Assuming this Galois group 𝐺 is of the form 𝐺 = Gal(𝐾𝑐/𝐾), this function returns noncanonical choices
of lifts of the elements of the quotient group Gal(𝐾1/𝐾).

OUTPUT:

18.23. Heegner points on elliptic curves over the rational numbers 563

Elliptic curves, Release 10.4.rc1

• tuple of elements of self

EXAMPLES:

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: G = K5.galois_group(K5.quadratic_field())
sage: G.lift_of_hilbert_class_field_galois_group()
(Class field automorphism defined by x^2 + 325*y^2,
Class field automorphism defined by 2*x^2 + 2*x*y + 163*y^2)

sage: G.cardinality()
12
sage: K5.quadratic_field().class_number()
2

class sage.schemes.elliptic_curves.heegner.HeegnerPoint(N , D, c)
Bases: SageObject

A Heegner point of level 𝑁 , discriminant𝐷 and conductor 𝑐 is any point on a modular curve or elliptic curve that
is concocted in some way from a quadratic imaginary 𝜏 in the upper half plane withΔ(𝜏) = 𝐷𝑐 = Δ(𝑁𝜏).

EXAMPLES:

sage: x = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,13); x
Heegner point of level 389, discriminant -7, and conductor 13
sage: type(x)
<class sage.schemes.elliptic_curves.heegner.HeegnerPoint >
sage: loads(dumps(x)) == x
True

conductor()

Return the conductor of this Heegner point.

EXAMPLES:

sage: heegner_point(389,-7,5).conductor()
5
sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67,7); P
Kolyvagin point of discriminant -67 and conductor 7
on elliptic curve of conductor 37

sage: P.conductor()
7
sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5); P.conductor()
5

discriminant()

Return the discriminant of the quadratic imaginary field associated to this Heegner point.

EXAMPLES:

sage: heegner_point(389,-7,5).discriminant()
-7
sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67,7); P
Kolyvagin point of discriminant -67 and conductor 7
on elliptic curve of conductor 37

sage: P.discriminant()
-67
sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5); P.discriminant()
-7

564 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

level()

Return the level of this Heegner point, which is the level of the modular curve 𝑋0(𝑁) on which this is a
Heegner point.

EXAMPLES:

sage: heegner_point(389,-7,5).level()
389

quadratic_field()

Return the quadratic number field of discriminant 𝐷.

EXAMPLES:

sage: x = heegner_point(37,-7,5)
sage: x.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

sage: E = EllipticCurve(37a); P = E.heegner_point(-40)
sage: P.quadratic_field()
Number Field in sqrt_minus_40 with defining polynomial x^2 + 40
with sqrt_minus_40 = 6.324555320336759?*I

sage: P.quadratic_field() is P.quadratic_field()
True
sage: type(P.quadratic_field())
<class sage.rings.number_field.number_field.NumberField_quadratic_with_
→˓category >

quadratic_order()

Return the order in the quadratic imaginary field of conductor 𝑐, where 𝑐 is the conductor of this Heegner
point.

EXAMPLES:

sage: heegner_point(389,-7,5).quadratic_order()
Order of conductor 10 generated by 5*sqrt_minus_7
in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

sage: heegner_point(389,-7,5).quadratic_order().basis()
[1, 5*sqrt_minus_7]

sage: E = EllipticCurve(37a); P = E.heegner_point(-40,11)
sage: P.quadratic_order()
Order of conductor 22 generated by 11*sqrt_minus_40
in Number Field in sqrt_minus_40 with defining polynomial x^2 + 40
with sqrt_minus_40 = 6.324555320336759?*I

sage: P.quadratic_order().basis()
[1, 11*sqrt_minus_40]

ring_class_field()

Return the ring class field associated to this Heegner point. This is an extension 𝐾𝑐 over 𝐾, where 𝐾 is
the quadratic imaginary field and 𝑐 is the conductor associated to this Heegner point. This Heegner point is
defined over𝐾𝑐 and the Galois group 𝐺𝑎𝑙(𝐾𝑐/𝐾) acts transitively on the Galois conjugates of this Heegner
point.

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 565

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a); K.<a> = QuadraticField(-5)
sage: len(K.factor(5))
1
sage: len(K.factor(23))
2
sage: E.heegner_point(-7, 5).ring_class_field().degree_over_K()
6
sage: E.heegner_point(-7, 23).ring_class_field().degree_over_K()
22
sage: E.heegner_point(-7, 5*23).ring_class_field().degree_over_K()
132
sage: E.heegner_point(-7, 5^2).ring_class_field().degree_over_K()
30
sage: E.heegner_point(-7, 7).ring_class_field().degree_over_K()
7

class sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve(E , x,
check=True)

Bases: HeegnerPoint

A Heegner point on a curve associated to an order in a quadratic imaginary field.

EXAMPLES:

sage: E = EllipticCurve(37a); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
sage: type(P)
<class sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve >

conjugates_over_K()

Return the 𝐺𝑎𝑙(𝐾𝑐/𝐾) conjugates of this Heegner point.

EXAMPLES:

sage: E = EllipticCurve(77a)
sage: y = E.heegner_point(-52,5); y
Heegner point of discriminant -52 and conductor 5
on elliptic curve of conductor 77

sage: print([z.quadratic_form() for z in y.conjugates_over_K()])
[77*x^2 + 52*x*y + 13*y^2, 154*x^2 + 206*x*y + 71*y^2, 539*x^2 + 822*x*y +␣
→˓314*y^2,
847*x^2 + 1284*x*y + 487*y^2, 1001*x^2 + 52*x*y + y^2, 1078*x^2 + 822*x*y +␣
→˓157*y^2,
1309*x^2 + 360*x*y + 25*y^2, 1309*x^2 + 2054*x*y + 806*y^2,
1463*x^2 + 976*x*y + 163*y^2, 2233*x^2 + 2824*x*y + 893*y^2,
2387*x^2 + 2054*x*y + 442*y^2, 3619*x^2 + 3286*x*y + 746*y^2]

sage: y.quadratic_form()
77*x^2 + 52*x*y + 13*y^2

curve()

Return the elliptic curve on which this is a Heegner point.

EXAMPLES:

sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

(continues on next page)

566 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P.curve() is E
True

heegner_point_on_X0N()

Return Heegner point on 𝑋0(𝑁) that maps to this Heegner point on 𝐸.

EXAMPLES:

sage: E = EllipticCurve(37a); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve
of conductor 37

sage: P.heegner_point_on_X0N()
Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5
on X_0(37)

kolyvagin_cohomology_class(n=None)
Return the Kolyvagin class associated to this Heegner point.

INPUT:

• 𝑛 – positive integer that divides the gcd of 𝑎𝑝 and 𝑝+ 1 for all 𝑝 dividing the conductor. If 𝑛 is None,
choose the largest valid 𝑛.

EXAMPLES:

sage: y = EllipticCurve(389a).heegner_point(-7,5)
sage: y.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])

kolyvagin_point()

Return the Kolyvagin point corresponding to this Heegner point.

This is the point obtained by applying the Kolyvagin operator 𝐽𝑐𝐼𝑐 in the group ring of the Galois group to
this Heegner point. It is a point that defines an element of𝐻1(𝐾,𝐸[𝑛]), under certain hypotheses on 𝑛.

EXAMPLES:

sage: E = EllipticCurve(37a1); y = E.heegner_point(-7); y
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P = y.kolyvagin_point(); P
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-15
(-3.36910401903861e-16 - 2.22076195576076e-16*I
: 3.33066907387547e-16 + 2.22076195576075e-16*I : 1.00000000000000)

map_to_complex_numbers(prec=53)
Return the point in the subfield 𝑀 of the complex numbers (well defined only modulo the period lattice)
corresponding to this Heegner point.

EXAMPLES:

We compute a nonzero Heegner point over a ring class field on a curve of rank 2:

sage: E = EllipticCurve(389a); y = E.heegner_point(-7,5)
sage: y.map_to_complex_numbers()
1.49979679635196 + 0.369156204821526*I
sage: y.map_to_complex_numbers(100)
1.4997967963519640592142411892 + 0.36915620482152626830089145962*I

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 567

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: y.map_to_complex_numbers(10)
1.5 + 0.37*I

Here we see that the Heegner point is 0 since it lies in the lattice:

sage: E = EllipticCurve(389a); y = E.heegner_point(-7)
sage: y.map_to_complex_numbers(10)
0.0034 - 3.9*I
sage: y.map_to_complex_numbers()
4.71844785465692e-15 - 3.94347540310330*I
sage: E.period_lattice().basis()
(2.49021256085505, 1.97173770155165*I)
sage: 2*E.period_lattice().basis()[1]
3.94347540310330*I

You can also directly coerce to the complex field:

sage: E = EllipticCurve(389a); y = E.heegner_point(-7)
sage: z = ComplexField(100)(y); z # real part approx. 0
-... - 3.9434754031032964088448153963*I
sage: E.period_lattice().elliptic_exponential(z)
(0.00000000000000000000000000000 : 1.0000000000000000000000000000 : 0.
→˓00000000000000000000000000000)

numerical_approx(prec=53, algorithm=None)
Return a numerical approximation to this Heegner point computed using a working precision of prec bits.

Warning: The answer is not provably correct to prec bits! A priori, due to rounding and other errors, it
is possible that not a single digit is correct.

INPUT:

• prec – (default: None) the working precision

EXAMPLES:

sage: E = EllipticCurve(37a); P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-15
(-3.36910401903861e-16 - 2.22076195576076e-16*I
: 3.33066907387547e-16 + 2.22076195576075e-16*I : 1.00000000000000)

sage: P.numerical_approx(10) # expect random digits
(0.0030 - 0.0028*I : -0.0030 + 0.0028*I : 1.0)
sage: P.numerical_approx(100)[0] # expect random digits
8.4...e-31 + 6.0...e-31*I
sage: E = EllipticCurve(37a); P = E.heegner_point(-40); P
Heegner point of discriminant -40 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(-3.15940603400359e-16 + 1.41421356237309*I
: 1.00000000000000 - 1.41421356237309*I : 1.00000000000000)

A rank 2 curve, where all Heegner points of conductor 1 are 0:

sage: E = EllipticCurve(389a); E.rank()
2

(continues on next page)

568 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 389
sage: P.numerical_approx()
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)

However, Heegner points of bigger conductor are often nonzero:

sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve
of conductor 389

sage: numerical_approx(P)
(0.675507556926807 + 0.344749649302635*I
: -0.377142931401887 + 0.843366227137146*I : 1.00000000000000)

sage: P.numerical_approx()
(0.6755075569268... + 0.3447496493026...*I
: -0.3771429314018... + 0.8433662271371...*I : 1.00000000000000)

sage: E.heegner_point(-7, 11).numerical_approx()
(0.1795583794118... + 0.02035501750912...*I
: -0.5573941377055... + 0.2738940831635...*I : 1.00000000000000)

sage: E.heegner_point(-7, 13).numerical_approx()
(1.034302915374... - 3.302744319777...*I
: 1.323937875767... + 6.908264226850...*I : 1.00000000000000)

We find (probably) the defining polynomial of the 𝑥-coordinate of 𝑃 , which defines a class field. The shape
of the discriminant below is strong confirmation – but not proof – that this polynomial is correct:

sage: f = P.numerical_approx(70)[0].algdep(6); f
1225*x^6 + 1750*x^5 - 21675*x^4 - 380*x^3 + 110180*x^2 - 129720*x + 48771
sage: f.discriminant().factor()
2^6 * 3^2 * 5^11 * 7^4 * 13^2 * 19^6 * 199^2 * 719^2 * 26161^2

point_exact(prec=53, algorithm='lll', var='a', optimize=False)
Return exact point on the elliptic curve over a number field defined by computing this Heegner point to the
given number of bits of precision. A ValueError is raised if the precision is clearly insignificant to define a
point on the curve.

Warning: It is in theory possible for this function to not raise a ValueError, find a point on the curve,
but via some very unlikely coincidence that point is not actually this Heegner point.

Warning: Currently we make an arbitrary choice of 𝑦-coordinate for the lift of the 𝑥-coordinate.

INPUT:

• prec – integer (default: 53)

• algorithm – see the description of the algorithm parameter for the x_poly_exact method.

• var – string (default: ‘a’)

• optimize – bool (default; False) if True, try to optimize defining polynomial for the number field
that the point is defined over. Off by default, since this can be very expensive.

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 569

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 389

sage: z = P.point_exact(200, optimize=True)
sage: z[1].charpoly()
x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 -␣
→˓483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 +␣
→˓1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/
→˓367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625
sage: f = P.numerical_approx(500)[1].algdep(12); f / f.leading_coefficient()
x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 -␣
→˓483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 +␣
→˓1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/
→˓367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625

sage: E = EllipticCurve(5077a)
sage: P = E.heegner_point(-7)
sage: P.point_exact(prec=100)
(0 : 1 : 0)

quadratic_form()

Return the integral primitive positive definite binary quadratic form associated to this Heegner point.

EXAMPLES:

sage: EllipticCurve(389a).heegner_point(-7, 5).quadratic_form()
389*x^2 + 147*x*y + 14*y^2

sage: P = EllipticCurve(389a).heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve
of conductor 389

sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2

satisfies_kolyvagin_hypothesis(n=None)
Return True if this Heegner point and 𝑛 satisfy the Kolyvagin hypothesis, i.e., that each prime dividing the
conductor 𝑐 of self is inert in K and coprime to𝑁𝐷. Moreover, if 𝑛 is not None, also check that for each
prime 𝑝 dividing 𝑐 we have that 𝑛| gcd(𝑎𝑝(𝐸), 𝑝+ 1).

INPUT:

• 𝑛 – positive integer

EXAMPLES:

sage: EllipticCurve(389a).heegner_point(-7).satisfies_kolyvagin_hypothesis()
True
sage: EllipticCurve(389a).heegner_point(-7, 5).satisfies_kolyvagin_
→˓hypothesis()
True
sage: EllipticCurve(389a).heegner_point(-7, 11).satisfies_kolyvagin_
→˓hypothesis()
False

tau()

Return 𝜏 in the upper half plane that maps via the modular parametrization to this Heegner point.

EXAMPLES:

570 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5)
sage: P.tau()
5/778*sqrt_minus_7 - 147/778

x_poly_exact(prec=53, algorithm='lll')
Return irreducible polynomial over the rational numbers satisfied by the 𝑥 coordinate of this Heegner point.
A ValueError is raised if the precision is clearly insignificant to define a point on the curve.

Warning: It is in theory possible for this function to not raise a ValueError, find a polynomial, but via
some very unlikely coincidence that point is not actually this Heegner point.

INPUT:

• prec – integer (default: 53)

• algorithm – ‘conjugates’ or ‘lll’ (default); if ‘conjugates’, compute numerically all the conjugates y[i]
of the Heegner point and construct the characteristic polynomial as the product 𝑓(𝑋) = (𝑋 − 𝑦[𝑖]). If
‘lll’, compute only one of the conjugates y[0], then uses the LLL algorithm to guess 𝑓(𝑋).

EXAMPLES:

We compute some 𝑥-coordinate polynomials of some conductor 1 Heegner points:

sage: E = EllipticCurve(37a)
sage: v = E.heegner_discriminants_list(10)
sage: [E.heegner_point(D).x_poly_exact() for D in v]
[x, x, x^2 + 2, x^5 - x^4 + x^3 + x^2 - 2*x + 1, x - 6,
x^7 - 2*x^6 + 9*x^5 - 10*x^4 - x^3 + 8*x^2 - 5*x + 1,
x^3 + 5*x^2 + 10*x + 4, x^4 - 10*x^3 + 10*x^2 + 12*x - 12,
x^8 - 5*x^7 + 7*x^6 + 13*x^5 - 10*x^4 - 4*x^3 + x^2 - 5*x + 7,
x^6 - 2*x^5 + 11*x^4 - 24*x^3 + 30*x^2 - 16*x + 4]

We compute 𝑥-coordinate polynomials for some Heegner points of conductor bigger than 1 on a rank 2 curve:

sage: E = EllipticCurve(389a); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 389

sage: P.x_poly_exact()
Traceback (most recent call last):
...
ValueError: insufficient precision to determine Heegner point
(fails discriminant test)
sage: P.x_poly_exact(120)
x^6 + 10/7*x^5 - 867/49*x^4 - 76/245*x^3 + 3148/35*x^2 - 25944/245*x + 48771/
→˓1225
sage: E.heegner_point(-7, 11).x_poly_exact(500)
x^10 + 282527/52441*x^9 + 27049007420/2750058481*x^8 - 22058564794/
→˓2750058481*x^7
- 140054237301/2750058481*x^6 + 696429998952/30250643291*x^5
+ 2791387923058/30250643291*x^4 - 3148473886134/30250643291*x^3
+ 1359454055022/30250643291*x^2 - 250620385365/30250643291*x
+ 181599685425/332757076201

Here we compute a Heegner point of conductor 5 on a rank 3 curve:

18.23. Heegner points on elliptic curves over the rational numbers 571

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(5077a); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 5077

sage: P.x_poly_exact(500)
x^6 + 1108754853727159228/72351048803252547*x^5 + 88875505551184048168/
→˓1953478317687818769*x^4 - 2216200271166098662132/3255797196146364615*x^3 +␣
→˓14941627504168839449851/9767391588439093845*x^2 - 3456417460183342963918/
→˓3255797196146364615*x + 1306572835857500500459/5426328660243941025

See Issue #34121:

sage: E = EllipticCurve(11a1)
sage: P = E.heegner_point(-7)
sage: PE = P.point_exact()
sage: PE
(a : -4*a + 3 : 1)
sage: all(c.parent().disc() == -7 for c in PE)
True

class sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N(N , D, c=1, f=None,
check=True)

Bases: HeegnerPoint

A Heegner point as a point on the modular curve𝑋0(𝑁), which we view as the upper half plane modulo the action
of Γ0(𝑁).

EXAMPLES:

sage: x = heegner_point(37, -7, 5); x
Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)
sage: type(x)
<class sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N >
sage: x.level()
37
sage: x.conductor()
5
sage: x.discriminant()
-7
sage: x.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I
sage: x.quadratic_form()
37*x^2 + 11*x*y + 2*y^2
sage: x.quadratic_order()
Order of conductor 10 generated by 5*sqrt_minus_7
in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I
sage: x.tau()
5/74*sqrt_minus_7 - 11/74
sage: loads(dumps(x)) == x
True

atkin_lehner_act(Q=None)
Given an integer Q dividing the level N such that gcd(𝑄,𝑁/𝑄) = 1, return the image of this Heegner point
under the Atkin-Lehner operator𝑊𝑄.

INPUT:

• 𝑄 – positive divisor of 𝑁 ; if not given, default to 𝑁

572 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/34121

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: x = heegner_point(389, -7, 5)
sage: x.atkin_lehner_act()
Heegner point 5/199168*sqrt(-7) - 631/199168 of discriminant -7
and conductor 5 on X_0(389)

sage: x = heegner_point(45, D=-11, c=1); x
Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
sage: x.atkin_lehner_act(5)
Heegner point 1/90*sqrt(-11) + 23/90 of discriminant -11 on X_0(45)
sage: y = x.atkin_lehner_act(9); y
Heegner point 1/90*sqrt(-11) - 23/90 of discriminant -11 on X_0(45)
sage: z = y.atkin_lehner_act(9); z
Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
sage: z == x
True

galois_orbit_over_K()

Return the 𝐺𝑎𝑙(𝐾𝑐/𝐾)-orbit of this Heegner point.

EXAMPLES:

sage: x = heegner_point(389, -7, 3); x
Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7
and conductor 3 on X_0(389)

sage: x.galois_orbit_over_K()
[Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on␣
→˓X_0(389),
Heegner point 3/1556*sqrt(-7) - 223/1556 of discriminant -7 and conductor 3␣
→˓on X_0(389),
Heegner point 3/1556*sqrt(-7) - 1001/1556 of discriminant -7 and conductor 3␣
→˓on X_0(389),
Heegner point 3/3112*sqrt(-7) - 223/3112 of discriminant -7 and conductor 3␣
→˓on X_0(389)]

map_to_curve(E)
Return the image of this Heegner point on the elliptic curve 𝐸, which must also have conductor𝑁 , where𝑁
is the level of self.

EXAMPLES:

sage: x = heegner_point(389, -7, 5); x
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7
and conductor 5 on X_0(389)

sage: y = x.map_to_curve(EllipticCurve(389a)); y
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 389

sage: y.curve().cremona_label()
389a1

sage: y.heegner_point_on_X0N()
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7
and conductor 5 on X_0(389)

You can also directly apply the modular parametrization of the elliptic curve:

sage: x = heegner_point(37,-7); x
Heegner point 1/74*sqrt(-7) - 17/74 of discriminant -7 on X_0(37)

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 573

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E = EllipticCurve(37a); phi = E.modular_parametrization()
sage: phi(x)
Heegner point of discriminant -7 on elliptic curve of conductor 37

plot(**kwds)
Draw a point at (𝑥, 𝑦) where this Heegner point is represented by the point 𝜏 = 𝑥 + 𝑖𝑦 in the upper half
plane.

The kwds get passed onto the point plotting command.

EXAMPLES:

sage: heegner_point(389,-7,1).plot(pointsize=50)
Graphics object consisting of 1 graphics primitive

quadratic_form()

Return the integral primitive positive-definite binary quadratic form associated to this Heegner point.

EXAMPLES:

sage: heegner_point(389, -7, 5).quadratic_form()
389*x^2 + 147*x*y + 14*y^2

reduced_quadratic_form()

Return reduced binary quadratic corresponding to this Heegner point.

EXAMPLES:

sage: x = heegner_point(389, -7, 5)
sage: x.quadratic_form()
389*x^2 + 147*x*y + 14*y^2
sage: x.reduced_quadratic_form()
4*x^2 - x*y + 11*y^2

tau()

Return an element tau in the upper half plane that corresponds to this particular Heegner point.

Actually, tau is in the quadratic imaginary field K associated to this Heegner point.

EXAMPLES:

sage: x = heegner_point(37, -7, 5); tau = x.tau(); tau
5/74*sqrt_minus_7 - 11/74
sage: 37 * tau.minpoly()
37*x^2 + 11*x + 2
sage: x.quadratic_form()
37*x^2 + 11*x*y + 2*y^2

class sage.schemes.elliptic_curves.heegner.HeegnerPoints(N)

Bases: SageObject

The set of Heegner points with given parameters.

EXAMPLES:

sage: H = heegner_points(389); H
Set of all Heegner points on X_0(389)

(continues on next page)

574 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: type(H)
<class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level >
sage: isinstance(H, sage.schemes.elliptic_curves.heegner.HeegnerPoints)
True

level()

Return the level 𝑁 of the modular curve 𝑋0(𝑁).

EXAMPLES:

sage: heegner_points(389).level()
389

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level(N)
Bases: HeegnerPoints

Return the infinite set of all Heegner points on 𝑋0(𝑁) for all quadratic imaginary fields.

EXAMPLES:

sage: H = heegner_points(11); H
Set of all Heegner points on X_0(11)
sage: type(H)
<class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level >
sage: loads(dumps(H)) == H
True

discriminants(n=10, weak=False)
Return the first 𝑛 quadratic imaginary discriminants that satisfy the Heegner hypothesis for 𝑁 .

INPUT:

• 𝑛 – nonnegative integer

• weak – bool (default: False); if True only require weak Heegner hypothesis, which is the same as
usual but without the condition that gcd(𝐷,𝑁) = 1.

EXAMPLES:

sage: X = heegner_points(37)
sage: X.discriminants(5)
[-7, -11, -40, -47, -67]

The default is 10:

sage: X.discriminants()
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: X.discriminants(15)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -115, -120, -123, -
→˓127]

The discriminant -111 satisfies only the weak Heegner hypothesis, since it is divisible by 37:

sage: X.discriminants(15, weak=True)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -111, -115, -120, -
→˓123]

18.23. Heegner points on elliptic curves over the rational numbers 575

Elliptic curves, Release 10.4.rc1

reduce_mod(ell)
Return object that allows for computation with Heegner points of level 𝑁 modulo the prime ℓ, represented
using quaternion algebras.

INPUT:

• ℓ – prime

EXAMPLES:

sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc(N , D)
Bases: HeegnerPoints

Set of Heegner points of given level and all conductors associated to a quadratic imaginary field.

EXAMPLES:

sage: H = heegner_points(389,-7); H
Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]
sage: type(H)
<class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc >
sage: H._repr_()
Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]

sage: H.discriminant()
-7
sage: H.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I
sage: H.kolyvagin_conductors()
[1, 3, 5, 13, 15, 17, 19, 31, 39, 41]

sage: loads(dumps(H)) == H
True

discriminant()

Return the discriminant of the quadratic imaginary extension𝐾.

EXAMPLES:

sage: heegner_points(389,-7).discriminant()
-7

kolyvagin_conductors(r=None, n=10, E=None, m=None)
Return the first 𝑛 conductors that are squarefree products of distinct primes inert in the quadratic imaginary
field𝐾 = Q(

√
𝐷). If 𝑟 is specified, return only conductors that are a product of 𝑟 distinct primes all inert in

𝐾. If 𝑟 = 0, always return the list [1], no matter what.

If the optional elliptic curve 𝐸 and integer 𝑚 are given, then only include conductors 𝑐 such that for each
prime divisor 𝑝 of 𝑐 we have𝑚 | gcd(𝑎𝑝(𝐸), 𝑝+ 1).

INPUT:

• 𝑟 – (default: None) nonnegative integer or None

• 𝑛 – positive integer

• 𝐸 – an elliptic curve

576 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• 𝑚 – a positive integer

EXAMPLES:

sage: H = heegner_points(389, -7)
sage: H.kolyvagin_conductors(0)
[1]
sage: H.kolyvagin_conductors(1)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61]
sage: H.kolyvagin_conductors(1,15)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97, 101]
sage: H.kolyvagin_conductors(1,5)
[3, 5, 13, 17, 19]
sage: H.kolyvagin_conductors(1, 5, EllipticCurve(389a), 3)
[5, 17, 41, 59, 83]
sage: H.kolyvagin_conductors(2, 5, EllipticCurve(389a), 3)
[85, 205, 295, 415, 697]

quadratic_field()

Return the quadratic imaginary field𝐾 = Q(
√
𝐷).

EXAMPLES:

sage: E = EllipticCurve(389a); K = E.heegner_point(-7,5).ring_class_field()
sage: K.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond(N , D,
c=1)

Bases: HeegnerPoints_level, HeegnerPoints_level_disc

The set of Heegner points of given level, discriminant, and conductor.

EXAMPLES:

sage: H = heegner_points(389,-7,5); H
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
sage: type(H)
<class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond >
sage: H.discriminant()
-7
sage: H.level()
389

sage: len(H.points())
12
sage: H.points()[0]
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389)
sage: H.betas()
(147, 631)

sage: H.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I
sage: H.ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 577

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: H.kolyvagin_conductors()
[1, 3, 5, 13, 15, 17, 19, 31, 39, 41]
sage: H.satisfies_kolyvagin_hypothesis()
True

sage: H = heegner_points(389,-7,5)
sage: loads(dumps(H)) == H
True

betas()

Return the square roots of 𝐷𝑐2 modulo 4𝑁 all reduced mod 2𝑁 , without multiplicity.

EXAMPLES:

sage: X = heegner_points(45,-11,1); X
All Heegner points of conductor 1 on X_0(45) associated to QQ[sqrt(-11)]
sage: [x.quadratic_form() for x in X]
[45*x^2 + 13*x*y + y^2,
45*x^2 + 23*x*y + 3*y^2,
45*x^2 + 67*x*y + 25*y^2,
45*x^2 + 77*x*y + 33*y^2]

sage: X.betas()
(13, 23, 67, 77)
sage: X.points(13)
(Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45),)
sage: [x.quadratic_form() for x in X.points(13)]
[45*x^2 + 13*x*y + y^2]

conductor()

Return the level of the conductor.

EXAMPLES:

sage: heegner_points(389,-7,5).conductor()
5

plot(*args, **kwds)
Returns plot of all the representatives in the upper half plane of the Heegner points in this set of Heegner
points.

The inputs to this function get passed onto the point command.

EXAMPLES:

sage: heegner_points(389,-7,5).plot(pointsize=50, rgbcolor= red) #␣
→˓needs sage.plot
Graphics object consisting of 12 graphics primitives
sage: heegner_points(53,-7,15).plot(pointsize=50, rgbcolor= purple) #␣
→˓needs sage.plot
Graphics object consisting of 48 graphics primitives

points(beta=None)
Return the Heegner points in self. If 𝛽 is given, return only those Heegner points with given 𝛽, i.e., whose
quadratic form has 𝐵 congruent to 𝛽 modulo 2𝑁 .

Use self.beta() to get a list of betas.

578 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: H = heegner_points(389, -7, 5); H
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
sage: H.points()
(Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5

on X_0(389),
...,
Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and conductor 5
on X_0(389))

sage: H.betas()
(147, 631)
sage: [x.tau() for x in H.points(147)]
[5/778*sqrt_minus_7 - 147/778, 5/1556*sqrt_minus_7 - 147/1556,
5/1556*sqrt_minus_7 - 925/1556, 5/3112*sqrt_minus_7 - 1703/3112,
5/3112*sqrt_minus_7 - 2481/3112, 5/5446*sqrt_minus_7 - 21/778]

sage: [x.tau() for x in H.points(631)]
[5/778*sqrt_minus_7 - 631/778, 5/1556*sqrt_minus_7 - 631/1556,
5/1556*sqrt_minus_7 - 1409/1556, 5/3112*sqrt_minus_7 - 631/3112,
5/3112*sqrt_minus_7 - 1409/3112, 5/5446*sqrt_minus_7 - 757/778]

The result is cached and is a tuple (since it is immutable):

sage: H.points() is H.points()
True
sage: type(H.points())
<... tuple >

ring_class_field()

Return the ring class field associated to this set of Heegner points. This is an extension𝐾𝑐 over𝐾, where𝐾
is the quadratic imaginary field and 𝑐 the conductor associated to this Heegner point. This Heegner point is
defined over𝐾𝑐 and the Galois group 𝐺𝑎𝑙(𝐾𝑐/𝐾) acts transitively on the Galois conjugates of this Heegner
point.

EXAMPLES:

sage: heegner_points(389,-7,5).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

satisfies_kolyvagin_hypothesis()

Return True if self satisfies the Kolyvagin hypothesis, i.e., that each prime dividing the conductor 𝑐 of
self is inert in𝐾 and coprime to 𝑁𝐷.

EXAMPLES:

The prime 5 is inert, but the prime 11 is not:

sage: heegner_points(389,-7,5).satisfies_kolyvagin_hypothesis()
True
sage: heegner_points(389,-7,11).satisfies_kolyvagin_hypothesis()
False

class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg(level, ell)
Bases: SageObject

Heegner points viewed as supersingular points on the modular curve 𝑋0(𝑁)/Fℓ.

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 579

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

sage: H = heegner_points(11).reduce_mod(13); H
Heegner points on X_0(11) over F_13
sage: type(H)
<class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg >
sage: loads(dumps(H)) == H
True

brandt_module()

Return the Brandt module of right ideal classes that we used to represent the set of supersingular points on
the modular curve.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).brandt_module()
Brandt module of dimension 2 of level 3*11 of weight 2 over Rational Field

cyclic_subideal_p1(I , c)
Compute dictionary mapping 2-tuples that defined normalized elements of 𝑃 1(/𝑐)

INPUT:

• 𝐼 – right ideal of Eichler order or in quaternion algebra

• 𝑐 – square free integer (currently must be odd prime and coprime to level, discriminant, characteristic,
etc.

OUTPUT:

• dictionary mapping 2-tuples (u,v) to ideals

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: I = H.brandt_module().right_ideals()[0]
sage: sorted(H.cyclic_subideal_p1(I, 3).items())
[((0, 1),

Fractional ideal (2 + 2*j + 32*k, 2*i + 8*j + 82*k, 12*j + 60*k, 132*k)),
((1, 0),
Fractional ideal (2 + 10*j + 28*k, 2*i + 4*j + 62*k, 12*j + 60*k, 132*k)),

((1, 1),
Fractional ideal (2 + 2*j + 76*k, 2*i + 4*j + 106*k, 12*j + 60*k, 132*k)),

((1, 2),
Fractional ideal (2 + 10*j + 116*k, 2*i + 8*j + 38*k, 12*j + 60*k, 132*k))]

sage: len(H.cyclic_subideal_p1(I, 17))
18

ell()

Return the prime ℓ modulo which we are working.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).ell()
3

galois_group_over_hilbert_class_field(D, c)
Return the Galois group of the extension of ring class fields𝐾𝑐 over the Hilbert class field𝐾1 of the quadratic
imaginary field of discriminant 𝐷.

INPUT:

580 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• 𝐷 – fundamental discriminant

• 𝑐 – conductor (square-free integer)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.galois_group_over_hilbert_class_field(D, c)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41
over Hilbert class field of QQ[sqrt(-7)]

galois_group_over_quadratic_field(D, c)
Return the Galois group of the extension of ring class fields 𝐾𝑐 over the quadratic imaginary field 𝐾 of
discriminant 𝐷.

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor (square-free integer)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.galois_group_over_quadratic_field(D, c)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41
over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

heegner_conductors(D, n=5)
Return the first 𝑛 negative fundamental discriminants coprime to𝑁ℓ such that ℓ is inert in the corresponding
quadratic imaginary field and that field satisfies the Heegner hypothesis.

INPUT:

• 𝐷 – negative integer; a fundamental Heegner discriminant

• 𝑛 – positive integer (default: 5)

OUTPUT: A list.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3)
sage: H.heegner_conductors(-7)
[1, 2, 4, 5, 8]
sage: H.heegner_conductors(-7, 10)
[1, 2, 4, 5, 8, 10, 13, 16, 17, 19]

heegner_discriminants(n=5)
Return the first 𝑛 negative fundamental discriminants coprime to𝑁ℓ such that ℓ is inert in the corresponding
quadratic imaginary field and that field satisfies the Heegner hypothesis, and 𝑁 is the level.

INPUT:

• 𝑛 – positive integer (default: 5)

OUTPUT: A list.

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 581

Elliptic curves, Release 10.4.rc1

sage: H = heegner_points(11).reduce_mod(3)
sage: H.heegner_discriminants()
[-7, -19, -40, -43, -52]
sage: H.heegner_discriminants(10)
[-7, -19, -40, -43, -52, -79, -127, -139, -151, -184]

heegner_divisor(D, c=1)
Return Heegner divisor as an element of the Brandt module corresponding to the discriminant 𝐷 and con-
ductor 𝑐, which both must be coprime to 𝑁ℓ.

More precisely, we compute the sum of the reductions of the Gal(𝐾1/𝐾)-conjugates of each choice of 𝑦1,
where the choice comes from choosing the ideal 𝒩 . Then we apply the Hecke operator 𝑇𝑐 to this sum.

INPUT:

• 𝐷 – discriminant (negative integer)

• 𝑐 – conductor (positive integer)

OUTPUT: A Brandt module element.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: H.heegner_discriminants()
[-8, -39, -43, -51, -79]
sage: H.heegner_divisor(-8)
(1, 0, 0, 1, 0, 0)
sage: H.heegner_divisor(-39)
(1, 2, 2, 1, 2, 0)
sage: H.heegner_divisor(-43)
(1, 0, 0, 1, 0, 0)
sage: H.heegner_divisor(-51)
(1, 0, 0, 1, 0, 2)
sage: H.heegner_divisor(-79)
(3, 2, 2, 3, 0, 0)

sage: sum(H.heegner_divisor(-39).element())
8
sage: QuadraticField(-39, a).class_number()
4

kolyvagin_cyclic_subideals(I , p, alpha_quaternion)
Return list of pairs (𝐽, 𝑛) where 𝐽 runs through the cyclic subideals of 𝐼 of index (/𝑝)2, and 𝐽 ∼ 𝛼𝑛(𝐽0)
for some fixed choice of cyclic subideal 𝐽0.

INPUT:

• 𝐼 – right ideal of the quaternion algebra

• 𝑝 – prime number

• alpha_quaternion – image in the quaternion algebra of generator 𝛼 for (𝒪𝐾/𝑐𝒪𝐾)*/(/𝑐)*.

OUTPUT: A list of 2-tuples.

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 5
sage: H = heegner_points(N).reduce_mod(ell)
sage: I = H.brandt_module().right_ideals()[49]

(continues on next page)

582 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: f = H.optimal_embeddings(D, 1, I.left_order())[1]
sage: g = H.kolyvagin_generators(f.domain().number_field(), c)
sage: alpha_quaternion = f(g[0]); alpha_quaternion
1 - 77/192*i - 5/128*j - 137/384*k
sage: H.kolyvagin_cyclic_subideals(I, 5, alpha_quaternion)
[(Fractional ideal (2 + 2/3*i + 364*j + 231928/3*k,

4/3*i + 946*j + 69338/3*k,
1280*j + 49920*k, 94720*k), 0),

(Fractional ideal (2 + 2/3*i + 108*j + 31480/3*k,
4/3*i + 434*j + 123098/3*k,
1280*j + 49920*k, 94720*k), 1),

(Fractional ideal (2 + 2/3*i + 876*j + 7672/3*k,
4/3*i + 434*j + 236762/3*k,
1280*j + 49920*k, 94720*k), 2),

(Fractional ideal (2 + 2/3*i + 364*j + 61432/3*k,
4/3*i + 178*j + 206810/3*k,
1280*j + 49920*k, 94720*k), 3),

(Fractional ideal (2 + 2/3*i + 876*j + 178168/3*k,
4/3*i + 1202*j + 99290/3*k,
1280*j + 49920*k, 94720*k), 4),

(Fractional ideal (2 + 2/3*i + 1132*j + 208120/3*k,
4/3*i + 946*j + 183002/3*k,
1280*j + 49920*k, 94720*k), 5)]

kolyvagin_generator(K , p)
Return element in𝐾 that maps to the multiplicative generator for the quotient group

(𝒪𝐾/𝑝𝒪𝐾)*/(/𝑝)*

of the form
√
𝐷 + 𝑛 with 𝑛 ≥ 1 minimal.

INPUT:

• 𝐾 – quadratic imaginary field

• 𝑝 – inert prime

EXAMPLES:

sage: N = 37; D = -7; ell = 17; p = 5
sage: H = heegner_points(N).reduce_mod(ell)
sage: I = H.brandt_module().right_ideals()[49]
sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
sage: H.kolyvagin_generator(f.domain().number_field(), 5)
a + 1

This function requires that 𝑝 be prime, but kolyvagin_generators works in general:

sage: H.kolyvagin_generator(f.domain().number_field(), 5*17)
Traceback (most recent call last):
...
NotImplementedError: p must be prime
sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
[-34*a + 1, 35*a + 106]

kolyvagin_generators(K , c)
Return elements in 𝒪𝐾 that map to multiplicative generators for the factors of the quotient group

(𝒪𝐾/𝑐𝒪𝐾)*/(/𝑐)*

18.23. Heegner points on elliptic curves over the rational numbers 583

Elliptic curves, Release 10.4.rc1

corresponding to the prime divisors of c. Each generator is of the form
√
𝐷 + 𝑛 with 𝑛 ≥ 1 minimal.

INPUT:

• 𝐾 – quadratic imaginary field

• 𝑐 – square free product of inert prime

EXAMPLES:

sage: N = 37; D = -7; ell = 17; p = 5
sage: H = heegner_points(N).reduce_mod(ell)
sage: I = H.brandt_module().right_ideals()[49]
sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
[-34*a + 1, 35*a + 106]

kolyvagin_point_on_curve(D, c, E , p, bound=10)
Compute image of the Kolyvagin divisor 𝑃𝑐 in 𝐸(Fℓ2)/𝑝𝐸(Fℓ2).

Note that this image is by definition only well defined up to scalars. However, doing multiple computations
will always yield the same result, and working modulo different ℓ is compatible (since we always choose the
same generator for Gal(𝐾𝑐/𝐾1)).

INPUT:

• 𝐷 – fundamental negative discriminant

• 𝑐 – conductor

• 𝐸 – elliptic curve of conductor the level of self

• 𝑝 – odd prime number such that we consider image in 𝐸(Fℓ2)/𝑝𝐸(Fℓ2)

• bound – integer (default: 10)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.kolyvagin_point_on_curve(D, c, EllipticCurve(37a), p)
[1, 1]

kolyvagin_sigma_operator(D, c, r, bound=None)
Return the action of the Kolyvagin sigma operator on the 𝑟-th basis vector.

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor (square-free integer, need not be prime)

• 𝑟 – nonnegative integer

• bound – (default: None), if given, controls precision of computation of theta series, which could impact
performance, but does not impact correctness

EXAMPLES:

We first try to verify Kolyvagin’s conjecture for a rank 2 curve by working modulo 5, but we are unlucky with
𝑐 = 17:

584 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: N = 389; D = -7; ell = 5; c = 17; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: E = EllipticCurve(389a)
sage: V = H.modp_dual_elliptic_curve_factor(E, q, 5) # long time (4s on sage.
→˓math, 2012)
sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
sage: [b.dot_product(k104.element().change_ring(GF(3))) # long time
....: for b in V.basis()]
[0, 0]
sage: [b.dot_product(k118.element().change_ring(GF(3))) # long time
....: for b in V.basis()]
[0, 0]

Next we try again with 𝑐 = 41 and this does work, in that we get something nonzero, when dotting with V:

sage: c = 41
sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
sage: [b.dot_product(k118.element().change_ring(GF(3))) # long time
....: for b in V.basis()]
[2, 0]
sage: [b.dot_product(k104.element().change_ring(GF(3))) # long time
....: for b in V.basis()]
[1, 0]

By the way, the above is the first ever provable verification of Kolyvagin’s conjecture for any curve of rank at
least 2.

Another example, but where the curve has rank 1:

sage: N = 37; D = -7; ell = 17; c = 41; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.heegner_divisor(D,1).element().nonzero_positions()
[49, 51]
sage: k49 = H.kolyvagin_sigma_operator(D, c, 49); k49
(79, 32, 31, 11, 53, 37, 1, 23, 15, 7, 0, 0, 0, 64, 32, 34, 53, 0, 27, 27, 0,␣
→˓0, 0, 26, 0, 0, 18, 0, 22, 0, 53, 19, 27, 10, 0, 0, 0, 30, 35, 38, 0, 0, 0,␣
→˓53, 0, 0, 4, 0, 0, 0, 0, 0)
sage: k51 = H.kolyvagin_sigma_operator(D, c, 51); k51
(20, 12, 57, 0, 0, 0, 0, 52, 23, 15, 0, 7, 0, 0, 19, 4, 0, 73, 11, 0, 104, 31,
→˓ 0, 38, 31, 0, 0, 31, 5, 47, 0, 27, 35, 0, 57, 32, 24, 10, 0, 8, 0, 31, 41,␣
→˓0, 0, 0, 16, 0, 0, 0, 0, 0)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve(37a), q, 5); V
Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
Basis matrix:
2 x 52 dense matrix over Ring of integers modulo 3
sage: [b.dot_product(k49.element().change_ring(GF(q))) for b in V.basis()]
[1, 1]
sage: [b.dot_product(k51.element().change_ring(GF(q))) for b in V.basis()]
[1, 1]

An example with 𝑐 a product of two primes:

sage: N = 389; D = -7; ell = 5; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve(389a), q, 5)
sage: k = H.kolyvagin_sigma_operator(D, 17*41, 104) # long time

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 585

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: k # long time
(990, 656, 219, ..., 246, 534, 1254)
sage: [b.dot_product(k.element().change_ring(GF(3))) for b in V.basis()] #␣
→˓long time (but only because depends on something slow)
[0, 0]

left_orders()

Return the left orders associated to the representative right ideals in the Brandt module.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).left_orders()
[Order of Quaternion Algebra (-1, -3) with base ring Rational Field

with basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k),
Order of Quaternion Algebra (-1, -3) with base ring Rational Field
with basis (1/2 + 1/2*j + 7*k, 1/4*i + 1/2*j + 63/4*k, j + 14*k, 22*k)]

level()

Return the level.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).level()
11

modp_dual_elliptic_curve_factor(E , p, bound=10)
Return the factor of the Brandt module space modulo 𝑝 corresponding to the elliptic curve 𝐸, cut out using
Hecke operators up to bound.

INPUT:

• 𝐸 – elliptic curve of conductor equal to the level of self

• 𝑝 – prime number

• bound – positive integer (default: 10)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve(37a), q, 5); V
Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
Basis matrix: 2 x 52 dense matrix over Ring of integers modulo 3

modp_splitting_data(p)

Returnmod 𝑝 splitting data for the quaternion algebra at the unramified prime 𝑝. This is a pair of 2×2matrices
𝐴,𝐵 over the finite field F𝑝 such that if the quaternion algebra has generators 𝑖, 𝑗, 𝑘, then the homomorphism
sending 𝑖 to 𝐴 and 𝑗 to 𝐵 maps any maximal order homomorphically onto the ring of 2× 2 matrices.

Because of how the homomorphism is defined, we must assume that the prime 𝑝 is odd.

INPUT:

• 𝑝 – unramified odd prime

OUTPUT: A 2-tuple of matrices over finite field.

EXAMPLES:

586 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: H = heegner_points(11).reduce_mod(7)
sage: H.quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: I, J = H.modp_splitting_data(13)
sage: I
[0 12]
[1 0]
sage: J
[7 3]
[3 6]
sage: I^2
[12 0]
[0 12]
sage: J^2
[6 0]
[0 6]
sage: I*J == -J*I
True

The following is a good test because of the asserts in the code:

sage: v = [H.modp_splitting_data(p) for p in primes(13,200)]

Some edge cases:

sage: H.modp_splitting_data(11)
(
[0 10] [6 1]
[1 0], [1 5]
)

Proper error handling:

sage: H.modp_splitting_data(7)
Traceback (most recent call last):
...
ValueError: p (=7) must be an unramified prime

sage: H.modp_splitting_data(2)
Traceback (most recent call last):
...
ValueError: p must be odd

modp_splitting_map(p)
Return (algebra) map from the (𝑝-integral) quaternion algebra to the set of 2× 2 matrices over F𝑝.

INPUT:

• 𝑝 – prime number

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: f = H.modp_splitting_map(13)
sage: B = H.quaternion_algebra(); B
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: i, j, k = H.quaternion_algebra().gens()
sage: a = 2 + i - j + 3*k; b = 7 + 2*i - 4*j + k

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 587

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: f(a*b)
[12 3]
[10 5]
sage: f(a)*f(b)
[12 3]
[10 5]

optimal_embeddings(D, c, R)
INPUT:

• 𝐷 – negative fundamental discriminant

• 𝑐 – integer coprime

• 𝑅 – Eichler order

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3)
sage: R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 1, R)
[Embedding sending sqrt(-7) to i - j - k,
Embedding sending sqrt(-7) to -i + j + k]

sage: H.optimal_embeddings(-7, 2, R)
[Embedding sending 2*sqrt(-7) to 5*i - k,
Embedding sending 2*sqrt(-7) to -5*i + k,
Embedding sending 2*sqrt(-7) to 2*i - 2*j - 2*k,
Embedding sending 2*sqrt(-7) to -2*i + 2*j + 2*k]

quadratic_field(D)
Return our fixed choice of quadratic imaginary field of discriminant 𝐷.

INPUT:

• 𝐷 – fundamental discriminant

OUTPUT: A quadratic number field.

EXAMPLES:

sage: H = heegner_points(389).reduce_mod(5)
sage: H.quadratic_field(-7)
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

quaternion_algebra()

Return the rational quaternion algebra used to implement self.

EXAMPLES:

sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field

rational_kolyvagin_divisor(D, c)
Return the Kolyvagin divisor as an element of the Brandt module corresponding to the discriminant 𝐷 and
conductor 𝑐, which both must be coprime to 𝑁ℓ.

INPUT:

• 𝐷 – discriminant (negative integer)

588 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

• 𝑐 – conductor (positive integer)

OUTPUT: Brandt module element (or tuple of them).

EXAMPLES:

sage: N = 389; D = -7; ell = 5; c = 17; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: k = H.rational_kolyvagin_divisor(D, c); k # long time (5s on sage.math,
→˓ 2013)
(2, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 9, 11, 0, 6, 0, 0, 7, 0, 0, 0, 0,␣
→˓14, 12, 13, 15, 17, 0, 0, 0, 0, 8, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 5, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve(389a), q, 2)
sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()] #␣
→˓long time
[0, 0]
sage: k = H.rational_kolyvagin_divisor(D, 59)
sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()]
[2, 0]

right_ideals()

Return representative right ideals in the Brandt module.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).right_ideals()
(Fractional ideal (2 + 2*j + 28*k, 2*i + 26*k, 4*j + 12*k, 44*k),
Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 38*k, 8*j + 24*k, 88*k))

satisfies_heegner_hypothesis(D, c=1)
The fundamental discriminant 𝐷 must be coprime to 𝑁ℓ, and must define a quadratic imaginary field 𝐾 in
which ℓ is inert. Also, all primes dividing𝑁 must split in𝐾, and 𝑐must be squarefree and coprime to𝑁𝐷ℓ.

INPUT:

• 𝐷 – negative integer

• 𝑐 – positive integer (default: 1)

OUTPUT: A boolean.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: H.satisfies_heegner_hypothesis(-5)
False
sage: H.satisfies_heegner_hypothesis(-7)
False
sage: H.satisfies_heegner_hypothesis(-8)
True
sage: [D for D in [-1,-2..-100] if H.satisfies_heegner_hypothesis(D)]
[-8, -39, -43, -51, -79, -95]

class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding(D, c, R, beta)
Bases: SageObject

18.23. Heegner points on elliptic curves over the rational numbers 589

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

The homomorphism 𝒪 → 𝑅, where 𝒪 is the order of conductor 𝑐 in the quadratic field of discriminant𝐷, and 𝑅
is an Eichler order in a quaternion algebra.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[1]; f
Embedding sending 2*sqrt(-7) to -5*i + k
sage: type(f)
<class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding >
sage: loads(dumps(f)) == f
True

beta()

Return the element 𝛽 in the quaternion algebra order that 𝑐
√
𝐷 maps to.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[1].beta()
-5*i + k

codomain()

Return the codomain of this embedding.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].codomain()
Order of Quaternion Algebra (-1, -3) with base ring Rational Field
with basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k)

conjugate()

Return the conjugate of this embedding, which is also an embedding.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[1]
sage: f.conjugate()
Embedding sending 2*sqrt(-7) to 5*i - k
sage: f
Embedding sending 2*sqrt(-7) to -5*i + k

domain()

Return the domain of this embedding.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].domain()
Order of conductor 4 generated by 2*a
in Number Field in a with defining polynomial x^2 + 7
with a = 2.645751311064591?*I

domain_conductor()

Return the conductor of the domain.

EXAMPLES:

590 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].domain_conductor()
2

domain_gen()

Return the specific generator 𝑐
√
𝐷 for the domain order.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[0]
sage: f.domain_gen()
2*a
sage: f.domain_gen()^2
-28

matrix()

Return matrix overQ of this morphism, with respect to the basis 1, 𝑐
√
𝐷 of the domain and the basis 1, 𝑖, 𝑗, 𝑘

of the ambient rational quaternion algebra (which contains the domain).

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 1, R)[1]; f
Embedding sending sqrt(-7) to -i + j + k
sage: f.matrix()
[1 0 0 0]
[0 -1 1 1]
sage: f.conjugate().matrix()
[1 0 0 0]
[0 1 -1 -1]

class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass(kolyva-
gin_point, n)

Bases: SageObject

A Kolyvagin cohomology class in 𝐻1(𝐾,𝐸[𝑛]) or 𝐻1(𝐾,𝐸)[𝑛] attached to a Heegner point.

EXAMPLES:

sage: y = EllipticCurve(37a).heegner_point(-7)
sage: c = y.kolyvagin_cohomology_class(3); c
Kolyvagin cohomology class c(1) in H^1(K,E[3])
sage: type(c)
<class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn >
sage: loads(dumps(c)) == c
True
sage: y.kolyvagin_cohomology_class(5)
Kolyvagin cohomology class c(1) in H^1(K,E[5])

conductor()

Return the integer 𝑐 such that this cohomology class is associated to the Heegner point 𝑦𝑐.

EXAMPLES:

sage: y = EllipticCurve(37a).heegner_point(-7, 5)
sage: t = y.kolyvagin_cohomology_class()

(continues on next page)

18.23. Heegner points on elliptic curves over the rational numbers 591

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: t.conductor()
5

heegner_point()

Return the Heegner point 𝑦𝑐 to which this cohomology class is associated.

EXAMPLES:

sage: y = EllipticCurve(37a).heegner_point(-7, 5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.heegner_point()
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 37

kolyvagin_point()

Return the Kolyvagin point 𝑃𝑐 to which this cohomology class is associated.

EXAMPLES:

sage: y = EllipticCurve(37a).heegner_point(-7, 5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.kolyvagin_point()
Kolyvagin point of discriminant -7 and conductor 5
on elliptic curve of conductor 37

n()

Return the integer 𝑛 so that this is a cohomology class in 𝐻1(𝐾,𝐸[𝑛]) or 𝐻1(𝐾,𝐸)[𝑛].

EXAMPLES:

sage: y = EllipticCurve(37a).heegner_point(-7)
sage: t = y.kolyvagin_cohomology_class(3); t
Kolyvagin cohomology class c(1) in H^1(K,E[3])
sage: t.n()
3

class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn(kolyva-
gin_point,
n)

Bases: KolyvaginCohomologyClass

EXAMPLES:

class sage.schemes.elliptic_curves.heegner.KolyvaginPoint(heegner_point)
Bases: HeegnerPoint

A Kolyvagin point.

EXAMPLES:

We create a few Kolyvagin points:

sage: EllipticCurve(11a1).kolyvagin_point(-7)
Kolyvagin point of discriminant -7 on elliptic curve of conductor 11
sage: EllipticCurve(37a1).kolyvagin_point(-7)
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: EllipticCurve(37a1).kolyvagin_point(-67)

(continues on next page)

592 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: EllipticCurve(389a1).kolyvagin_point(-7, 5)
Kolyvagin point of discriminant -7 and conductor 5
on elliptic curve of conductor 389

One can also associated a Kolyvagin point to a Heegner point:

sage: y = EllipticCurve(37a1).heegner_point(-7); y
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: y.kolyvagin_point()
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37

curve()

Return the elliptic curve over Q on which this Kolyvagin point sits.

EXAMPLES:

sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67, 3)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

heegner_point()

This Kolyvagin point 𝑃𝑐 is associated to some Heegner point 𝑦𝑐 via Kolyvagin’s construction. This function
returns that point 𝑦𝑐.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: y = P.heegner_point(); y
Heegner point of discriminant -67 on elliptic curve of conductor 37
sage: y.kolyvagin_point() is P
True

index(*args, **kwds)
Return index of this Kolyvagin point in the full group of𝐾𝑐 rational points on 𝐸.

When the conductor is 1, this is computed numerically using the Gross-Zagier formula and explicit point
search, and it may be off by 2. See the documentation for E.heegner_index, where 𝐸 is the curve
attached to self.

EXAMPLES:

sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67); P.index()
6

kolyvagin_cohomology_class(n=None)

INPUT:

• 𝑛 – positive integer that divides the gcd of 𝑎𝑝 and 𝑝+ 1 for all 𝑝 dividing the conductor. If 𝑛 is None,
choose the largest valid 𝑛.

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 593

Elliptic curves, Release 10.4.rc1

sage: y = EllipticCurve(389a).heegner_point(-7, 5)
sage: P = y.kolyvagin_point()
sage: P.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])

sage: y = EllipticCurve(37a).heegner_point(-7, 5).kolyvagin_point()
sage: y.kolyvagin_cohomology_class()
Kolyvagin cohomology class c(5) in H^1(K,E[2])

mod(p, prec=53)
Return the trace of the reduction 𝑄 modulo a prime over 𝑝 of this Kolyvagin point as an element of 𝐸(F𝑝),
where 𝑝 is any prime that is inert in𝐾 that is coprime to 𝑁𝐷𝑐.

The point𝑄 is only well defined up to an element of (𝑝+1)𝐸(F𝑝), i.e., it gives a well defined element of the
abelian group 𝐸(F𝑝)/(𝑝+ 1)𝐸(F𝑝).

See [St2011b], Proposition 5.4 for a proof of the above well-definedness assertion.

EXAMPLES:

A Kolyvagin point on a rank 1 curve:

sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67)
sage: P.mod(2)
(1 : 1 : 1)
sage: P.mod(3)
(1 : 0 : 1)
sage: P.mod(5)
(2 : 2 : 1)
sage: P.mod(7)
(6 : 0 : 1)
sage: P.trace_to_real_numerical()
(1.61355529131986 : -2.18446840788880 : 1.00000000000000)
sage: P._trace_exact_conductor_1() # the actual point we re reducing
(1357/841 : -53277/24389 : 1)
sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt()
12.0000000000000

Here the Kolyvagin point is a torsion point (since 𝐸 has rank 1), and we reduce it modulo several primes.:

sage: E = EllipticCurve(11a1); P = E.kolyvagin_point(-7)
sage: P.mod(3,70) # long time (4s on sage.math, 2013)
(1 : 2 : 1)
sage: P.mod(5,70)
(1 : 4 : 1)
sage: P.mod(7,70)
Traceback (most recent call last):
...
ValueError: p must be coprime to conductors and discriminant
sage: P.mod(11,70)
Traceback (most recent call last):
...
ValueError: p must be coprime to conductors and discriminant
sage: P.mod(13,70)
(3 : 4 : 1)

numerical_approx(prec=53)

Return a numerical approximation to this Kolyvagin point using prec bits of working precision.

594 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

INPUT:

• prec – precision in bits (default: 53)

EXAMPLES:

sage: P = EllipticCurve(37a1).kolyvagin_point(-7); P
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx() # approx. (0 : 0 : 1)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
sage: P.numerical_approx(100)[0].abs() < 2.0^-99
True

sage: P = EllipticCurve(389a1).kolyvagin_point(-7, 5); P
Kolyvagin point of discriminant -7 and conductor 5
on elliptic curve of conductor 389

Numerical approximation is only implemented for points of conductor 1:

sage: P.numerical_approx()
Traceback (most recent call last):
...
NotImplementedError

plot(prec=53, *args, **kwds)
Plot a Kolyvagin point 𝑃1 if it is defined over the rational numbers.

EXAMPLES:

sage: E = EllipticCurve(37a); P = E.heegner_point(-11).kolyvagin_point()
sage: P.plot(prec=30, pointsize=50, rgbcolor= red) + E.plot() #␣
→˓needs sage.plot
Graphics object consisting of 3 graphics primitives

point_exact(prec=53)
INPUT:

• prec – precision in bits (default: 53)

EXAMPLES:

A rank 1 curve:

sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67)
sage: P.point_exact()
(6 : -15 : 1)
sage: P.point_exact(40)
(6 : -15 : 1)
sage: P.point_exact(20)
Traceback (most recent call last):
...
RuntimeError: insufficient precision to find exact point

A rank 0 curve:

sage: E = EllipticCurve(11a1); P = E.kolyvagin_point(-7)
sage: P.point_exact()
(-1/2*sqrt_minus_7 + 1/2 : -2*sqrt_minus_7 - 2 : 1)

A rank 2 curve:

18.23. Heegner points on elliptic curves over the rational numbers 595

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a1); P = E.kolyvagin_point(-7)
sage: P.point_exact()
(0 : 1 : 0)

satisfies_kolyvagin_hypothesis(n=None)
Return True if this Kolyvagin point satisfies the Heegner hypothesis for 𝑛, so that it defines a Galois equiv-
ariant element of 𝐸(𝐾𝑐)/𝑛𝐸(𝐾𝑐).

EXAMPLES:

sage: y = EllipticCurve(389a).heegner_point(-7,5); P = y.kolyvagin_point()
sage: P.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])
sage: P.satisfies_kolyvagin_hypothesis(3)
True
sage: P.satisfies_kolyvagin_hypothesis(5)
False
sage: P.satisfies_kolyvagin_hypothesis(7)
False
sage: P.satisfies_kolyvagin_hypothesis(11)
False

trace_to_real_numerical(prec=53)
Return the trace of this Kolyvagin point down to the real numbers, computed numerically using prec bits of
working precision.

EXAMPLES:

sage: E = EllipticCurve(37a1); P = E.kolyvagin_point(-67)
sage: PP = P.numerical_approx()
sage: [c.real() for c in PP]
[6.00000000000000, -15.0000000000000, 1.00000000000000]
sage: all(c.imag().abs() < 1e-14 for c in PP)
True
sage: P.trace_to_real_numerical()
(1.61355529131986 : -2.18446840788880 : 1.00000000000000)
sage: P.trace_to_real_numerical(prec=80) # abs tol 1e-21
(1.6135552913198573127230 : -2.1844684078888023289187 : 1.
→˓0000000000000000000000)

class sage.schemes.elliptic_curves.heegner.RingClassField(D, c, check=True)
Bases: SageObject

A Ring class field of a quadratic imaginary field of given conductor.

Note: This is a ring class field, not a ray class field. In general, the ring class field of given conductor is a subfield
of the ray class field of the same conductor.

EXAMPLES:

sage: heegner_point(37,-7).ring_class_field()
Hilbert class field of QQ[sqrt(-7)]
sage: heegner_point(37,-7,5).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: heegner_point(37,-7,55).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 55

596 Chapter 18. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

absolute_degree()

Return the absolute degree of this field over Q.

EXAMPLES:

sage: E = EllipticCurve(389a); K = E.heegner_point(-7,5).ring_class_field()
sage: K.absolute_degree()
12
sage: K.degree_over_K()
6

conductor()

Return the conductor of this ring class field.

EXAMPLES:

sage: E = EllipticCurve(389a); K5 = E.heegner_point(-7,5).ring_class_field()
sage: K5.conductor()
5

degree_over_H()

Return the degree of this field over the Hilbert class field 𝐻 of𝐾.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: E.heegner_point(-59).ring_class_field().degree_over_H()
1
sage: E.heegner_point(-59).ring_class_field().degree_over_K()
3
sage: QuadraticField(-59, a).class_number()
3

Some examples in which prime dividing c is inert:

sage: heegner_point(37,-7,3).ring_class_field().degree_over_H()
4
sage: heegner_point(37,-7,3^2).ring_class_field().degree_over_H()
12
sage: heegner_point(37,-7,3^3).ring_class_field().degree_over_H()
36

The prime dividing c is split. For example, in the first case 𝑂𝐾/𝑐𝑂𝐾 is isomorphic to a direct sum of two
copies of GF(2), so the units are trivial:

sage: heegner_point(37,-7,2).ring_class_field().degree_over_H()
1
sage: heegner_point(37,-7,4).ring_class_field().degree_over_H()
2
sage: heegner_point(37,-7,8).ring_class_field().degree_over_H()
4

Now c is ramified:

sage: heegner_point(37,-7,7).ring_class_field().degree_over_H()
7
sage: heegner_point(37,-7,7^2).ring_class_field().degree_over_H()
49

18.23. Heegner points on elliptic curves over the rational numbers 597

Elliptic curves, Release 10.4.rc1

Check that Issue #15218 is solved:

sage: E = EllipticCurve("19a");
sage: s = E.heegner_point(-3,2).ring_class_field().galois_group().complex_
→˓conjugation()
sage: H = s.domain(); H.absolute_degree()
2

degree_over_K()

Return the relative degree of this ring class field over the quadratic imaginary field𝐾.

EXAMPLES:

sage: E = EllipticCurve(389a); P = E.heegner_point(-7,5)
sage: K5 = P.ring_class_field(); K5
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: K5.degree_over_K()
6
sage: type(K5.degree_over_K())
<... sage.rings.integer.Integer >

sage: E = EllipticCurve(389a); E.heegner_point(-20).ring_class_field().
→˓degree_over_K()
2
sage: E.heegner_point(-20,3).ring_class_field().degree_over_K()
4
sage: kronecker(-20,11)
-1
sage: E.heegner_point(-20,11).ring_class_field().degree_over_K()
24

degree_over_Q()

Return the absolute degree of this field over Q.

EXAMPLES:

sage: E = EllipticCurve(389a); K = E.heegner_point(-7,5).ring_class_field()
sage: K.absolute_degree()
12
sage: K.degree_over_K()
6

discriminant_of_K()

Return the discriminant of the quadratic imaginary field𝐾 contained in self.

EXAMPLES:

sage: E = EllipticCurve(389a); K5 = E.heegner_point(-7,5).ring_class_field()
sage: K5.discriminant_of_K()
-7

galois_group(base=Rational Field)
Return the Galois group of self over base.

INPUT:

• base – (default: Q) a subfield of self or Q

EXAMPLES:

598 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/15218

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(389a)
sage: A = E.heegner_point(-7,5).ring_class_field()
sage: A.galois_group()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: B = E.heegner_point(-7).ring_class_field()
sage: C = E.heegner_point(-7,15).ring_class_field()
sage: A.galois_group()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: A.galois_group(B)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
over Hilbert class field of QQ[sqrt(-7)]

sage: A.galois_group().cardinality()
12
sage: A.galois_group(B).cardinality()
6
sage: C.galois_group(A)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 15
over Ring class field extension of QQ[sqrt(-7)] of conductor 5

sage: C.galois_group(A).cardinality()
4

is_subfield(M)

Return True if this ring class field is a subfield of the ring class field𝑀 . If𝑀 is not a ring class field, then
a TypeError is raised.

EXAMPLES:

sage: E = EllipticCurve(389a)
sage: A = E.heegner_point(-7,5).ring_class_field()
sage: B = E.heegner_point(-7).ring_class_field()
sage: C = E.heegner_point(-20).ring_class_field()
sage: D = E.heegner_point(-7,15).ring_class_field()
sage: B.is_subfield(A)
True
sage: B.is_subfield(B)
True
sage: B.is_subfield(D)
True
sage: B.is_subfield(C)
False
sage: A.is_subfield(B)
False
sage: A.is_subfield(D)
True

quadratic_field()

Return the quadratic imaginary field𝐾 = Q(
√
𝐷).

EXAMPLES:

sage: E = EllipticCurve(389a); K = E.heegner_point(-7,5).ring_class_field()
sage: K.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
with sqrt_minus_7 = 2.645751311064591?*I

ramified_primes()

Return the primes of that ramify in this ring class field.

18.23. Heegner points on elliptic curves over the rational numbers 599

https://docs.python.org/library/exceptions.html#TypeError

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(389a); K55 = E.heegner_point(-7,55).ring_class_
→˓field()
sage: K55.ramified_primes()
[5, 7, 11]
sage: E.heegner_point(-7).ring_class_field().ramified_primes()
[7]

sage.schemes.elliptic_curves.heegner.class_number(D)
Return the class number of the quadratic field with fundamental discriminant 𝐷.

INPUT:

• 𝐷 – integer

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.class_number(-20)
2
sage: sage.schemes.elliptic_curves.heegner.class_number(-23)
3
sage: sage.schemes.elliptic_curves.heegner.class_number(-163)
1

A ValueError is raised when 𝐷 is not a fundamental discriminant:

sage: sage.schemes.elliptic_curves.heegner.class_number(-5)
Traceback (most recent call last):
...
ValueError: D (=-5) must be a fundamental discriminant

sage.schemes.elliptic_curves.heegner.ell_heegner_discriminants(self , bound)
Return the list of self’s Heegner discriminants between -1 and -bound.

INPUT:

• bound (int) – upper bound for -discriminant

OUTPUT: The list of Heegner discriminants between -1 and -bound for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve(11a)
sage: E.heegner_discriminants(30) # indirect doctest
[-7, -8, -19, -24]

sage.schemes.elliptic_curves.heegner.ell_heegner_discriminants_list(self , n)
Return the list of self’s first 𝑛 Heegner discriminants smaller than -5.

INPUT:

• n (int) – the number of discriminants to compute

OUTPUT: The list of the first n Heegner discriminants smaller than -5 for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve(11a)
sage: E.heegner_discriminants_list(4) # indirect doctest
[-7, -8, -19, -24]

600 Chapter 18. Elliptic curves over number fields

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.heegner.ell_heegner_point(self , D, c=1, f=None,
check=True)

Returns the Heegner point on this curve associated to the quadratic imaginary field𝐾 = Q(
√
𝐷).

If the optional parameter 𝑐 is given, returns the higher Heegner point associated to the order of conductor 𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• 𝑓 – binary quadratic form or 3-tuple (𝐴,𝐵,𝐶) of coefficients of 𝐴𝑋2 +𝐵𝑋𝑌 + 𝐶𝑌 2

• check – bool (default: True)

OUTPUT: The Heegner point 𝑦𝑐.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: E.heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: P = E.heegner_point(-7); P # indirect doctest
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: z = P.point_exact(); z == E(0, 0, 1) or -z == E(0, 0, 1)
True
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E.heegner_point(-40).point_exact(); P
(a : -a + 1 : 1)
sage: P = E.heegner_point(-47).point_exact(); P
(a : a^4 + a - 1 : 1)
sage: P[0].parent()
Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1

Working out the details manually:

sage: P = E.heegner_point(-47).numerical_approx(prec=200)
sage: f = algdep(P[0], 5); f
x^5 - x^4 + x^3 + x^2 - 2*x + 1
sage: f.discriminant().factor()
47^2

The Heegner hypothesis is checked:

sage: E = EllipticCurve(389a); P = E.heegner_point(-5,7);
Traceback (most recent call last):
...
ValueError: N (=389) and D (=-5) must satisfy the Heegner hypothesis

We can specify the quadratic form:

sage: P = EllipticCurve(389a).heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5
on elliptic curve of conductor 389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2

18.23. Heegner points on elliptic curves over the rational numbers 601

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.heegner.heegner_index(self , D, min_p=2, prec=5,
descent_second_limit=12,
verbose_mwrank=False,
check_rank=True)

Return an interval that contains the index of the Heegner point 𝑦𝐾 in the group of𝐾-rational points modulo torsion
on this elliptic curve, computed using the Gross-Zagier formula and/or a point search, or possibly half the index if
the rank is greater than one.

If the curve has rank > 1, then the returned index is infinity.

Note: If min_p is bigger than 2 then the index can be off by any prime less than min_p. This function returns
the index divided by 2 exactly when the rank of 𝐸(𝐾) is greater than 1 and 𝐸(Q)/𝑡𝑜𝑟 ⊕ 𝐸𝐷(Q)/𝑡𝑜𝑟 has index 2
in 𝐸(𝐾)/𝑡𝑜𝑟, where the second factor undergoes a twist.

INPUT:

• D (int) – Heegner discriminant

• min_p (int) – (default: 2) only rule out primes = min_p dividing the index.

• verbose_mwrank (bool) – (default: False); print lots of mwrank search status information when
computing regulator

• prec (int) – (default: 5), use prec*sqrt(N) + 20 terms of L-series in computations, where N is the
conductor.

• descent_second_limit – (default: 12)- used in 2-descent when computing regulator of the twist

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: an interval that contains the index, or half the index

EXAMPLES:

sage: E = EllipticCurve(11a)
sage: E.heegner_discriminants(50)
[-7, -8, -19, -24, -35, -39, -40, -43]
sage: E.heegner_index(-7)
1.00000?

sage: E = EllipticCurve(37b)
sage: E.heegner_discriminants(100)
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: E.heegner_index(-95) # long time (1 second)
2.00000?

This tests doing direct computation of the Mordell-Weil group.

sage: EllipticCurve(675b).heegner_index(-11)
3.0000?

Currently discriminants -3 and -4 are not supported:

sage: E.heegner_index(-3)
Traceback (most recent call last):
...
ArithmeticError: Discriminant (=-3) must not be -3 or -4.

The curve 681b returns the true index, which is 3:

602 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(681b)
sage: I = E.heegner_index(-8); I
3.0000?

In fact, whenever the returned index has a denominator of 2, the true index is got by multiplying the returned index
by 2. Unfortunately, this is not an if and only if condition, i.e., sometimes the index must be multiplied by 2 even
though the denominator is not 2.

This example demonstrates the descent_second_limit option, which can be used to fine tune the 2-descent
used to compute the regulator of the twist:

sage: E = EllipticCurve([1,-1,0,-1228,-16267])
sage: E.heegner_index(-8)
Traceback (most recent call last):
...
RuntimeError: ...

However when we search higher, we find the points we need:

sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False) # long time
2.00000?

Two higher rank examples (of ranks 2 and 3):

sage: E = EllipticCurve(389a)
sage: E.heegner_index(-7)
+Infinity
sage: E = EllipticCurve(5077a)
sage: E.heegner_index(-7)
+Infinity
sage: E.heegner_index(-7, check_rank=False)
0.001?
sage: E.heegner_index(-7, check_rank=False).lower() == 0
True

sage.schemes.elliptic_curves.heegner.heegner_index_bound(self , D=0, prec=5,
max_height=None)

Assume self has rank 0.

Return a list 𝑣 of primes such that if an odd prime 𝑝 divides the index of the Heegner point in the group of rational
points modulo torsion, then 𝑝 is in 𝑣.

If 0 is in the interval of the height of the Heegner point computed to the given prec, then this function returns
𝑣 = 0. This does not mean that the Heegner point is torsion, just that it is very likely torsion.

If we obtain no information from a search up to max_height, e.g., if the Siksek et al. bound is bigger than
max_height, then we return 𝑣 = −1.

INPUT:

• D (int) – (default: 0) Heegner discriminant; if 0, use the first discriminant -4 that satisfies the Heegner
hypothesis

• verbose (bool) – (default: True)

• prec (int) – (default: 5), use 𝑝𝑟𝑒𝑐 ·
√︀
(𝑁) + 20 terms of 𝐿-series in computations, where 𝑁 is the

conductor.

18.23. Heegner points on elliptic curves over the rational numbers 603

Elliptic curves, Release 10.4.rc1

• max_height (float) – should be = 21; bound on logarithmic naive height used in point searches. Make
smaller to make this function faster, at the expense of possibly obtaining a worse answer. A good range is
between 13 and 21.

OUTPUT:

• v – list or int (bad primes or 0 or -1)

• D – the discriminant that was used (this is useful if 𝐷 was automatically selected).

• exact – either False, or the exact Heegner index (up to factors of 2)

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.heegner_index_bound()
([2], -7, 2)

sage.schemes.elliptic_curves.heegner.heegner_point(N , D=None, c=1)
Return a specific Heegner point of level 𝑁 with given discriminant and conductor. If 𝐷 is not specified, then the
first valid Heegner discriminant is used. If 𝑐 is not given, then 𝑐 = 1 is used.

INPUT:

• 𝑁 – level (positive integer)

• 𝐷 – discriminant (optional: default first valid 𝐷)

• 𝑐 – conductor (positive integer, default: 1)

EXAMPLES:

sage: heegner_point(389)
Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
sage: heegner_point(389,-7)
Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
sage: heegner_point(389,-7,5)
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389)
sage: heegner_point(389,-20)
Heegner point 1/778*sqrt(-20) - 165/389 of discriminant -20 on X_0(389)

sage.schemes.elliptic_curves.heegner.heegner_point_height(self , D, prec=2,
check_rank=True)

Use the Gross-Zagier formula to compute the Neron-Tate canonical height over 𝐾 of the Heegner point corre-
sponding to 𝐷, as an interval (it is computed to some precision using 𝐿-functions).

If the curve has rank at least 2, then the returned height is the exact Sage integer 0.

INPUT:

• D (int) – fundamental discriminant (=/= -3, -4)

• prec (int) – (default: 2), use 𝑝𝑟𝑒𝑐 ·
√︀
(𝑁) + 20 terms of 𝐿-series in computations, where 𝑁 is the

conductor.

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: Interval that contains the height of the Heegner point.

EXAMPLES:

604 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a)
sage: E.heegner_point_height(-7)
0.22227?

Some higher rank examples:

sage: E = EllipticCurve(389a)
sage: E.heegner_point_height(-7)
0
sage: E = EllipticCurve(5077a)
sage: E.heegner_point_height(-7)
0
sage: E.heegner_point_height(-7, check_rank=False)
0.0000?

sage.schemes.elliptic_curves.heegner.heegner_points(N , D=None, c=None)
Return all Heegner points of given level 𝑁 . Can also restrict to Heegner points with specified discriminant𝐷 and
optionally conductor 𝑐.

INPUT:

• 𝑁 – level (positive integer)

• 𝐷 – discriminant (negative integer)

• 𝑐 – conductor (positive integer)

EXAMPLES:

sage: heegner_points(389, -7)
Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]
sage: heegner_points(389, -7, 1)
All Heegner points of conductor 1 on X_0(389) associated to QQ[sqrt(-7)]
sage: heegner_points(389, -7, 5)
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]

sage.schemes.elliptic_curves.heegner.heegner_sha_an(self , D, prec=53)

Return the conjectural (analytic) order of Sha for E over the field𝐾 = Q(
√
𝐷).

INPUT:

• 𝐷 – negative integer; the Heegner discriminant

• prec – integer (default: 53); bits of precision to compute analytic order of Sha

OUTPUT:

(floating point number) an approximation to the conjectural order of Sha.

Note: Often you’ll want to do proof.elliptic_curve(False) when using this function, since often the
twisted elliptic curves that come up have enormous conductor, and Sha is nontrivial, which makes provably finding
the Mordell-Weil group using 2-descent difficult.

EXAMPLES:

An example where E has conductor 11:

18.23. Heegner points on elliptic curves over the rational numbers 605

Elliptic curves, Release 10.4.rc1

sage: E = EllipticCurve(11a)
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

The cache works:

sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7) # long time
True

Lower precision:

sage: E.heegner_sha_an(-7,10) # long time
1.0

Checking that the cache works for any precision:

sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10) # long time
True

Next we consider a rank 1 curve with nontrivial Sha over the quadratic imaginary field𝐾; however, there is no Sha
for 𝐸 over Q or for the quadratic twist of 𝐸:

sage: E = EllipticCurve(37a)
sage: E.heegner_sha_an(-40) # long time
4.00000000000000
sage: E.quadratic_twist(-40).sha().an() # long time
1
sage: E.sha().an() # long time
1

A rank 2 curve:

sage: E = EllipticCurve(389a) # long time
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

If we remove the hypothesis that 𝐸(𝐾) has rank 1 in Conjecture 2.3 in [GZ1986] page 311, then that conjecture
is false, as the following example shows:

sage: # long time
sage: E = EllipticCurve(65a)
sage: E.heegner_sha_an(-56)
1.00000000000000
sage: E.torsion_order()
2
sage: E.tamagawa_product()
1
sage: E.quadratic_twist(-56).rank()
2

sage.schemes.elliptic_curves.heegner.is_inert(D, p)

Return True if p is an inert prime in the field Q(
√
𝐷).

INPUT:

• 𝐷 – fundamental discriminant

• 𝑝 – prime integer

606 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,3)
True
sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,7)
False
sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,11)
False

sage.schemes.elliptic_curves.heegner.is_kolyvagin_conductor(N , E , D, r, n, c)
Return True if 𝑐 is a Kolyvagin conductor for level𝑁 , discriminant𝐷, mod 𝑛, etc., i.e., 𝑐 is divisible by exactly 𝑟
prime factors, is coprime to 𝑁𝐷, each prime dividing 𝑐 is inert, and if 𝐸 is not None then 𝑛| gcd(𝑝+ 1, 𝑎𝑝(𝐸))
for each prime 𝑝 dividing 𝑐.

INPUT:

• 𝑁 – level (positive integer)

• 𝐸 – elliptic curve or None

• 𝐷 – negative fundamental discriminant

• 𝑟 – number of prime factors (nonnegative integer) or None

• 𝑛 – torsion order (i.e., do we get class in (𝐸(𝐾𝑐)/𝑛𝐸(𝐾𝑐))
𝐺𝑎𝑙(𝐾𝑐/𝐾)?)

• 𝑐 – conductor (positive integer)

EXAMPLES:

sage: from sage.schemes.elliptic_curves.heegner import is_kolyvagin_conductor
sage: is_kolyvagin_conductor(389, None, -7, 1, None, 5)
True
sage: is_kolyvagin_conductor(389, None, -7, 1, None, 7)
False
sage: is_kolyvagin_conductor(389, None, -7, 1, None, 11)
False
sage: is_kolyvagin_conductor(389, EllipticCurve(389a), -7, 1, 3, 5)
True
sage: is_kolyvagin_conductor(389, EllipticCurve(389a), -7, 1, 11, 5)
False

sage.schemes.elliptic_curves.heegner.is_ramified(D, p)

Return True if p is a ramified prime in the field Q(
√
𝐷).

INPUT:

• 𝐷 – fundamental discriminant

• 𝑝 – prime integer

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,2)
False
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,7)
True
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-1,2)
True

18.23. Heegner points on elliptic curves over the rational numbers 607

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.heegner.is_split(D, p)

Return True if p is a split prime in the field Q(
√
𝐷).

INPUT:

• 𝐷 – fundamental discriminant

• 𝑝 – prime integer

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.is_split(-7,3)
False
sage: sage.schemes.elliptic_curves.heegner.is_split(-7,7)
False
sage: sage.schemes.elliptic_curves.heegner.is_split(-7,11)
True

sage.schemes.elliptic_curves.heegner.kolyvagin_point(self , D, c=1, check=True)

Return the Kolyvagin point on this curve associated to the quadratic imaginary field 𝐾 = Q(
√
𝐷) and conductor

𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• check – bool (default: True)

OUTPUT: The Kolyvagin point 𝑃 of conductor 𝑐.

EXAMPLES:

sage: E = EllipticCurve(37a1)
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(6.00000000000000 : -15.0000000000000 : 1.00000000000000)
sage: P.index()
6
sage: g = E((0,-1,1)) # a generator
sage: E.regulator() == E.regulator_of_points([g])
True
sage: 6*g
(6 : -15 : 1)

sage.schemes.elliptic_curves.heegner.kolyvagin_reduction_data(E , q, first_only=True)
Given an elliptic curve of positive rank and a prime 𝑞, this function returns data about how to use Kolyvagin’s
𝑞-torsion Heegner point Euler system to do computations with this curve. See the precise description of the output
below.

INPUT:

• 𝐸 – elliptic curve over Q of rank 1 or 2

• 𝑞 – an odd prime that does not divide the order of the
rational torsion subgroup of 𝐸

• first_only – bool (default: True) whether two only return
the first prime that one can work modulo to get data about the Euler system

608 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

OUTPUT in the rank 1 case or when the default flag first_only=True:

• ℓ – first good odd prime satisfying the Kolyvagin
condition that 𝑞 divides gcd(a_{ell},ell+1)` and the reduction map is surjective to 𝐸(Fℓ)/𝑞𝐸(Fℓ)

• 𝐷 – discriminant of the first quadratic imaginary field
𝐾 that satisfies the Heegner hypothesis for𝐸 such that both ℓ is inert in𝐾, and the twist𝐸𝐷 has analytic
rank ≤ 1

• ℎ𝐷 – the class number of𝐾

• the dimension of the Brandt module 𝐵(ℓ,𝑁), where 𝑁 is the conductor of 𝐸

OUTPUT in the rank 2 case:

• ℓ1 – first prime (as above in the rank 1 case) where reduction map is surjective

• ℓ2 – second prime (as above) where reduction map is surjective

• 𝐷 – discriminant of the first quadratic imaginary field
𝐾 that satisfies the Heegner hypothesis for𝐸 such that both ℓ1 and ℓ2 are simultaneously inert in𝐾, and
the twist 𝐸𝐷 has analytic rank ≤ 1

• ℎ𝐷 – the class number of𝐾

• the dimension of the Brandt module 𝐵(ℓ1, 𝑁), where 𝑁 is the conductor of 𝐸

• the dimension of the Brandt module 𝐵(ℓ2, 𝑁)

EXAMPLES:

Import this function:

sage: from sage.schemes.elliptic_curves.heegner import kolyvagin_reduction_data

A rank 1 example:

sage: kolyvagin_reduction_data(EllipticCurve(37a1), 3)
(17, -7, 1, 52)

A rank 3 example:

sage: kolyvagin_reduction_data(EllipticCurve(5077a1), 3)
(11, -47, 5, 4234)
sage: H = heegner_points(5077, -47)
sage: [c for c in H.kolyvagin_conductors(2, 10, EllipticCurve(5077a1), 3)
....: if c % 11]
[667, 943, 1189, 2461]
sage: factor(667)
23 * 29

A rank 4 example (the first Kolyvagin class that we could try to compute would be 𝑃23·29·41, and would require
working in a space of dimension 293060 (so prohibitive at present):

sage: E = elliptic_curves.rank(4)[0]
sage: kolyvagin_reduction_data(E,3) # long time
(11, -71, 7, 293060)
sage: H = heegner_points(293060, -71)
sage: H.kolyvagin_conductors(1,4,E,3)
[11, 17, 23, 41]

The first rank 2 example:

18.23. Heegner points on elliptic curves over the rational numbers 609

Elliptic curves, Release 10.4.rc1

sage: kolyvagin_reduction_data(EllipticCurve(389a), 3)
(5, -7, 1, 130)
sage: kolyvagin_reduction_data(EllipticCurve(389a), 3, first_only=False)
(5, 17, -7, 1, 130, 520)

A large 𝑞 = 7:

sage: kolyvagin_reduction_data(EllipticCurve(1143c1), 7, first_only=False)
(13, 83, -59, 3, 1536, 10496)

Additive reduction:

sage: kolyvagin_reduction_data(EllipticCurve(2350g1), 5, first_only=False)
(19, 239, -311, 19, 6480, 85680)

sage.schemes.elliptic_curves.heegner.make_monic(f)

Return a monic integral polynomial 𝑔 and an integer 𝑑 such that if 𝛼 is a root of 𝑔, then 𝛼/𝑑 is a root of 𝑓 . In other
words, 𝑐𝑓(𝑥) = 𝑔(𝑑𝑥) for some scalar 𝑐.

INPUT:

• 𝑓 – polynomial over the rational numbers

OUTPUT: A monic integral polynomial and an integer.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.heegner import make_monic
sage: R.<x> = QQ[]
sage: make_monic(3*x^3 + 14*x^2 - 7*x + 5)
(x^3 + 14*x^2 - 21*x + 45, 3)

In this example we verify that make_monic does what we claim it does:

sage: K.<a> = NumberField(x^3 + 17*x - 3)
sage: f = (a/7+2/3).minpoly(); f
x^3 - 2*x^2 + 247/147*x - 4967/9261
sage: g, d = make_monic(f); (g, d)
(x^3 - 42*x^2 + 741*x - 4967, 21)
sage: K. = NumberField(g)
sage: (b/d).minpoly()
x^3 - 2*x^2 + 247/147*x - 4967/9261

sage.schemes.elliptic_curves.heegner.nearby_rational_poly(f , **kwds)
Return a polynomial whose coefficients are rational numbers close to the coefficients of 𝑓 .

INPUT:

• 𝑓 – polynomial with real floating point entries

• **kwds – passed on to nearby_rational method

EXAMPLES:

sage: from sage.schemes.elliptic_curves.heegner import nearby_rational_poly
sage: R.<x> = RR[]
sage: nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-16)
21/10*X^2 + 7/2*X - 6/5
sage: nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-17)

(continues on next page)

610 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

4728779608739021/2251799813685248*X^2 + 7/2*X - 5404319552844595/4503599627370496
sage: RR(4728779608739021/2251799813685248 - 21/10)
8.88178419700125e-17

sage.schemes.elliptic_curves.heegner.quadratic_order(D, c, names='a')
Return order of conductor 𝑐 in quadratic field with fundamental discriminant 𝐷.

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor

• names – string (default: ‘a’)

OUTPUT:

• order 𝑅 of conductor 𝑐 in an imaginary quadratic field

• the element 𝑐
√
𝐷 as an element of 𝑅

The generator for the field is named ‘a’ by default.

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3)
(Order of conductor 6 generated by 3*a in Number Field in a
with defining polynomial x^2 + 7 with a = 2.645751311064591?*I,
3*a)
sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3, alpha)
(Order of conductor 6 generated by 3*alpha in Number Field in alpha
with defining polynomial x^2 + 7 with alpha = 2.645751311064591?*I,
3*alpha)

sage.schemes.elliptic_curves.heegner.satisfies_heegner_hypothesis(self , D)
Returns True precisely when𝐷 is a fundamental discriminant that satisfies the Heegner hypothesis for this elliptic
curve.

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: E.satisfies_heegner_hypothesis(-7)
True
sage: E.satisfies_heegner_hypothesis(-11)
False

sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis(N , D)
Check that 𝐷 satisfies the weak Heegner hypothesis relative to 𝑁 . This is all that is needed to define Heegner
points.

The condition is that 𝐷 < 0 is a fundamental discriminant and that each unramified prime dividing 𝑁 splits in
𝐾 = Q(

√
𝐷) and each ramified prime exactly divides 𝑁 . We also do not require that 𝐷 < −4.

INPUT:

• 𝑁 – positive integer

• 𝐷 – negative integer

EXAMPLES:

18.23. Heegner points on elliptic curves over the rational numbers 611

Elliptic curves, Release 10.4.rc1

sage: s = sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis
sage: s(37,-7)
True
sage: s(37,-37)
False
sage: s(37,-37*4)
True
sage: s(100,-4)
False
sage: [D for D in [-1,-2,..,-40] if s(37,D)]
[-3, -4, -7, -11, -40]
sage: [D for D in [-1,-2,..,-100] if s(37,D)]
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: EllipticCurve(37a).heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]

sage.schemes.elliptic_curves.heegner.simplest_rational_poly(f , prec)
Return a polynomial whose coefficients are as simple as possible rationals that are also close to the coefficients of
f.

INPUT:

• 𝑓 – polynomial with real floating point entries

• prec – positive integer

EXAMPLES:

sage: from sage.schemes.elliptic_curves.heegner import simplest_rational_poly
sage: R.<x> = RR[]
sage: simplest_rational_poly(2.1*x^2 + 3.5*x - 1.2, 53)
21/10*X^2 + 7/2*X - 6/5

18.24 𝑝-adic 𝐿-functions of elliptic curves

To an elliptic curve 𝐸 over the rational numbers and a prime 𝑝, one can associate a 𝑝-adic L-function; at least if 𝐸 does
not have additive reduction at 𝑝. This function is defined by interpolation of L-values of 𝐸 at twists. Through the main
conjecture of Iwasawa theory it should also be equal to a characteristic series of a certain Selmer group.

If 𝐸 is ordinary, then it is an element of the Iwasawa algebra Λ(×
𝑝) = 𝑝[Δ][[𝑇]], where Δ is the group of (𝑝 − 1)-st

roots of unity in ×
𝑝 , and 𝑇 = [𝛾]−1 where 𝛾 = 1+𝑝 is a generator of 1+𝑝 𝑝. (There is a slightly different description

for 𝑝 = 2.)

One can decompose this algebra as the direct product of the subalgebras corresponding to the characters ofΔ, which are
simply the powers 𝜏𝜂 (0 ≤ 𝜂 ≤ 𝑝− 2) of the Teichmueller character 𝜏 : Δ → ×

𝑝 . Projecting the L-function into these
components gives 𝑝− 1 power series in 𝑇 , each with coefficients in 𝑝.

If𝐸 is supersingular, the series will have coefficients in a quadratic extension ofQ𝑝, and the coefficients will be unbounded.
In this case we have only implemented the series for 𝜂 = 0. We have also implemented the 𝑝-adic L-series as formulated
by Perrin-Riou [BP1993], which has coefficients in the Dieudonné module 𝐷𝑝𝐸 = 𝐻1

𝑑𝑅(𝐸/Q𝑝) of 𝐸. There is a
different description by Pollack [Pol2003] which is not available here.

According to the 𝑝-adic version of the Birch and Swinnerton-Dyer conjecture [MTT1986], the order of vanishing of the
𝐿-function at the trivial character (i.e. of the series for 𝜂 = 0 at 𝑇 = 0) is just the rank of 𝐸(Q), or this rank plus one if
the reduction at 𝑝 is split multiplicative.

See [SW2013] for more details.

612 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

AUTHORS:

• William Stein (2007-01-01): first version

• Chris Wuthrich (22/05/2007): changed minor issues and added supersingular things

• Chris Wuthrich (11/2008): added quadratic_twists

• David Loeffler (01/2011): added nontrivial Teichmueller components

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseries(E , p,
implementation='eclib',
normalize='L_ratio')

Bases: SageObject

The 𝑝-adic L-series of an elliptic curve.

EXAMPLES:

An ordinary example:

sage: e = EllipticCurve(389a)
sage: L = e.padic_lseries(5)
sage: L.series(0)
Traceback (most recent call last):
...
ValueError: n (=0) must be a positive integer
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(5^4) + O(5)*T + (4 + O(5))*T^2 + (2 + O(5))*T^3 + (3 + O(5))*T^4 + O(T^5)
sage: L.series(3, prec=10)
O(5^5) + O(5^2)*T + (4 + 4*5 + O(5^2))*T^2 + (2 + 4*5 + O(5^2))*T^3 + (3 + O(5^
→˓2))*T^4 + (1 + O(5))*T^5 + O(5)*T^6 + (4 + O(5))*T^7 + (2 + O(5))*T^8 + O(5)*T^
→˓9 + O(T^10)
sage: L.series(2,quadratic_twist=-3)
2 + 4*5 + 4*5^2 + O(5^4) + O(5)*T + (1 + O(5))*T^2 + (4 + O(5))*T^3 + O(5)*T^4 +␣
→˓O(T^5)

A prime p such that E[p] is reducible:

sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.series(1)
5 + O(5^2) + O(T)
sage: L.series(2)
5 + 4*5^2 + O(5^3) + O(5^0)*T + O(5^0)*T^2 + O(5^0)*T^3 + O(5^0)*T^4 + O(T^5)
sage: L.series(3)
5 + 4*5^2 + 4*5^3 + O(5^4) + O(5)*T + O(5)*T^2 + O(5)*T^3 + O(5)*T^4 + O(T^5)

An example showing the calculation of nontrivial Teichmueller twists:

sage: E = EllipticCurve(11a1)
sage: lp = E.padic_lseries(7)
sage: lp.series(4,eta=1)
3 + 7^3 + 6*7^4 + 3*7^5 + O(7^6) + (2*7 + 7^2 + O(7^3))*T + (1 + 5*7^2 + O(7^
→˓3))*T^2 + (4 + 4*7 + 4*7^2 + O(7^3))*T^3 + (4 + 3*7 + 7^2 + O(7^3))*T^4 + O(T^5)
sage: lp.series(4,eta=2)
5 + 6*7 + 4*7^2 + 2*7^3 + 3*7^4 + 2*7^5 + O(7^6) + (6 + 4*7 + 7^2 + O(7^3))*T +␣
→˓(3 + 2*7^2 + O(7^3))*T^2 + (1 + 4*7 + 7^2 + O(7^3))*T^3 + (6 + 6*7 + 6*7^2 +␣
→˓O(7^3))*T^4 + O(T^5)

(continues on next page)

18.24. 𝑝-adic 𝐿-functions of elliptic curves 613

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: lp.series(4,eta=3)
O(7^6) + (5 + 4*7 + 2*7^2 + O(7^3))*T + (6 + 5*7 + 2*7^2 + O(7^3))*T^2 + (5*7 +␣
→˓O(7^3))*T^3 + (7 + 4*7^2 + O(7^3))*T^4 + O(T^5)

(Note that the last series vanishes at 𝑇 = 0, which is consistent with

sage: E.quadratic_twist(-7).rank()
1

This proves that 𝐸 has rank 1 over Q(𝜁7).)

alpha(prec=20)
Return a 𝑝-adic root 𝛼 of the polynomial 𝑥2 − 𝑎𝑝𝑥 + 𝑝 with 𝑜𝑟𝑑𝑝(𝛼) < 1. In the ordinary case this is just
the unit root.

INPUT:

• prec – positive integer, the 𝑝-adic precision of the root.

EXAMPLES:

Consider the elliptic curve 37a:

sage: E = EllipticCurve(37a)

An ordinary prime:

sage: L = E.padic_lseries(5)
sage: alpha = L.alpha(10); alpha
3 + 2*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + O(5^10)
sage: alpha^2 - E.ap(5)*alpha + 5
O(5^10)

A supersingular prime:

sage: L = E.padic_lseries(3)
sage: alpha = L.alpha(10); alpha
alpha + O(alpha^21)
sage: alpha^2 - E.ap(3)*alpha + 3
O(alpha^22)

A reducible prime:

sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.alpha(5)
1 + 4*5 + 3*5^2 + 2*5^3 + 4*5^4 + O(5^5)

elliptic_curve()

Return the elliptic curve to which this 𝑝-adic L-series is associated.

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

measure(a, n, prec, quadratic_twist=1, sign=1)
Return the measure on ×

𝑝 defined by

614 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

𝜇+
𝐸,𝛼(𝑎+ 𝑝𝑛 𝑝) =

1
𝛼𝑛

[︁
𝑎
𝑝𝑛

]︁+
− 1

𝛼𝑛+1

[︁
𝑎

𝑝𝑛−1

]︁+
where [·]+ is the modular symbol. This is used to define this 𝑝-adic L-function (at least when the reduction
is good).

The optional argument sign allows the minus symbol [·]− to be substituted for the plus symbol.

The optional argument quadratic_twist replaces 𝐸 by the twist in the above formula, but the twisted
modular symbol is computed using a sum over modular symbols of𝐸 rather than finding the modular symbols
for the twist. Quadratic twists are only implemented if the sign is +1.

Note that the normalization is not correct at this stage: use _quotient_of periods and _quo-
tient_of periods_to_twist to correct.

Note also that this function does not check if the condition on the quadratic_twist=D is satisfied. So
the result will only be correct if for each prime ℓ dividing 𝐷, we have 𝑜𝑟𝑑ℓ(𝑁) <= 𝑜𝑟𝑑ℓ(𝐷), where 𝑁 is
the conductor of the curve.

INPUT:

• a – an integer

• n – a non-negative integer

• prec – an integer

• quadratic_twist (default = 1) – a fundamental discriminant of a quadratic field, should be coprime
to the conductor of 𝐸

• sign (default = 1) – an integer, which should be ±1.

EXAMPLES:

sage: E = EllipticCurve(37a)
sage: L = E.padic_lseries(5)
sage: L.measure(1,2, prec=9)
2 + 3*5 + 4*5^3 + 2*5^4 + 3*5^5 + 3*5^6 + 4*5^7 + 4*5^8 + O(5^9)
sage: L.measure(1,2, quadratic_twist=8,prec=15)
O(5^15)
sage: L.measure(1,2, quadratic_twist=-4,prec=15)
4 + 4*5 + 4*5^2 + 3*5^3 + 2*5^4 + 5^5 + 3*5^6 + 5^8 + 2*5^9 + 3*5^12 + 2*5^13␣
→˓+ 4*5^14 + O(5^15)

sage: E = EllipticCurve(11a1)
sage: a = E.quadratic_twist(-3).padic_lseries(5).measure(1,2,prec=15)
sage: b = E.padic_lseries(5).measure(1,2, quadratic_twist=-3,prec=15)
sage: a == b * E.padic_lseries(5)._quotient_of_periods_to_twist(-3)
True

modular_symbol(r, sign=1, quadratic_twist=1)
Return the modular symbol evaluated at 𝑟.

This is used to compute this 𝑝-adic L-series.

Note that the normalization is not correct at this stage: use _quotient_of periods_to_twist to
correct.

Note also that this function does not check if the condition on the quadratic_twist=D is satisfied. So the result
will only be correct if for each prime ℓ dividing𝐷, we have 𝑜𝑟𝑑ℓ(𝑁) <= 𝑜𝑟𝑑ℓ(𝐷), where𝑁 is the conductor
of the curve.

INPUT:

18.24. 𝑝-adic 𝐿-functions of elliptic curves 615

Elliptic curves, Release 10.4.rc1

• r – a cusp given as either a rational number or oo

• sign – +1 (default) or -1 (only implemented without twists)

• quadratic_twist – a fundamental discriminant of a quadratic field or +1 (default)

EXAMPLES:

sage: E = EllipticCurve(11a1)
sage: lp = E.padic_lseries(5)
sage: [lp.modular_symbol(r) for r in [0,1/5,oo,1/11]]
[1/5, 6/5, 0, 0]
sage: [lp.modular_symbol(r,sign=-1) for r in [0,1/3,oo,1/7]]
[0, 1/2, 0, -1/2]
sage: [lp.modular_symbol(r,quadratic_twist=-20) for r in [0,1/5,oo,1/11]]
[1, 1, 0, 1/2]

sage: E = EllipticCurve(20a1)
sage: Et = E.quadratic_twist(-4)
sage: lpt = Et.padic_lseries(5)
sage: eta = lpt._quotient_of_periods_to_twist(-4)
sage: lpt.modular_symbol(0) == lp.modular_symbol(0,quadratic_twist=-4) / eta
True

order_of_vanishing()

Return the order of vanishing of this 𝑝-adic L-series.

The output of this function is provably correct, due to a theorem of Kato [Kat2004].

Note: currently 𝑝 must be a prime of good ordinary reduction.

REFERENCES:

• [MTT1986]

• [Kat2004]

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(3)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve(37a).padic_lseries(5)
sage: L.order_of_vanishing()
1
sage: L = EllipticCurve(43a).padic_lseries(3)
sage: L.order_of_vanishing()
1
sage: L = EllipticCurve(37b).padic_lseries(3)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve(389a).padic_lseries(3)
sage: L.order_of_vanishing()
2
sage: L = EllipticCurve(389a).padic_lseries(5)
sage: L.order_of_vanishing()

(continues on next page)

616 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

2
sage: L = EllipticCurve(5077a).padic_lseries(5, implementation = eclib)
sage: L.order_of_vanishing()
3

prime()

Return the prime 𝑝 as in ‘p-adic L-function’.

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.prime()
5

teichmuller(prec)
Return Teichmuller lifts to the given precision.

INPUT:

• prec – a positive integer.

OUTPUT:

• a list of 𝑝-adic numbers, the cached Teichmuller lifts

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(7)
sage: L.teichmuller(1)
[0, 1, 2, 3, 4, 5, 6]
sage: L.teichmuller(2)
[0, 1, 30, 31, 18, 19, 48]

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary(E , p,
implementa-
tion='eclib',
normal-
ize='L_ra-
tio')

Bases: pAdicLseries

is_ordinary()

Return True if the elliptic curve that this L-function is attached to is ordinary.

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.is_ordinary()
True

is_supersingular()

Return True if the elliptic curve that this L function is attached to is supersingular.

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(5)
sage: L.is_supersingular()
False

18.24. 𝑝-adic 𝐿-functions of elliptic curves 617

Elliptic curves, Release 10.4.rc1

power_series(n=2, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series, in the component corresponding to the 𝜂-th power of
the Teichmueller character, as a power series in 𝑇 (corresponding to 𝛾 − 1 with 𝛾 = 1+ 𝑝 as a generator of
1 + 𝑝 𝑝). Each coefficient is a 𝑝-adic number whose precision is provably correct.

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1−1/𝛼)2𝐿(𝐸, 1)/Ω𝐸 where
𝛼 is the unit root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of
unity in ×

𝑝)

power_series() is identical to series.

EXAMPLES:

We compute some 𝑝-adic L-functions associated to the elliptic curve 11a:

sage: E = EllipticCurve(11a)
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(3)
2 + 3 + 3^2 + 2*3^3 + O(3^5) + (1 + 3 + O(3^2))*T + (1 + 2*3 + O(3^2))*T^2 +␣
→˓O(3)*T^3 + O(3)*T^4 + O(T^5)

Another example at a prime of bad reduction, where the 𝑝-adic L-function has an extra 0 (compared to the
non 𝑝-adic L-function):

sage: E = EllipticCurve(11a)
sage: p = 11
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(2)
O(11^4) + (10 + O(11))*T + (6 + O(11))*T^2 + (2 + O(11))*T^3 + (5 + O(11))*T^
→˓4 + O(T^5)

We compute a 𝑝-adic L-function that vanishes to order 2:

sage: E = EllipticCurve(389a)
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(3^4) + O(3)*T + (2 + O(3))*T^2 + O(T^3)
sage: L.series(3)

(continues on next page)

618 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4␣
→˓+ O(T^5)

Checks if the precision can be changed (Issue #5846):

sage: L.series(3,prec=4)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + O(T^4)
sage: L.series(3,prec=6)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4␣
→˓+ (1 + O(3))*T^5 + O(T^6)

Rather than computing the 𝑝-adic L-function for the curve ‘15523a1’, one can compute it as a quadratic_twist:

sage: E = EllipticCurve(43a1)
sage: lp = E.padic_lseries(3)
sage: lp.series(2,quadratic_twist=-19)
2 + 2*3 + 2*3^2 + O(3^4) + (1 + O(3))*T + (1 + O(3))*T^2 + O(T^3)
sage: E.quadratic_twist(-19).label() # optional -- database_cremona_
→˓ellcurve
15523a1

This proves that the rank of ‘15523a1’ is zero, even if mwrank cannot determine this.

We calculate the 𝐿-series in the nontrivial Teichmueller components:

sage: L = EllipticCurve(110a1).padic_lseries(5, implementation="sage")
sage: for j in [0..3]: print(L.series(4, eta=j))
O(5^6) + (2 + 2*5 + 2*5^2 + O(5^3))*T + (5 + 5^2 + O(5^3))*T^2 + (4 + 4*5 +␣
→˓2*5^2 + O(5^3))*T^3 + (1 + 5 + 3*5^2 + O(5^3))*T^4 + O(T^5)
4 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + O(5^6) + (1 + 3*5 + 4*5^2 + O(5^3))*T + (3 +␣
→˓4*5 + 3*5^2 + O(5^3))*T^2 + (3 + 3*5^2 + O(5^3))*T^3 + (1 + 2*5 + 2*5^2 +␣
→˓O(5^3))*T^4 + O(T^5)
2 + O(5^6) + (1 + 5 + O(5^3))*T + (2 + 4*5 + 3*5^2 + O(5^3))*T^2 + (4 + 5 +␣
→˓2*5^2 + O(5^3))*T^3 + (4 + O(5^3))*T^4 + O(T^5)
3 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + O(5^6) + (1 + 2*5 + 4*5^2 + O(5^3))*T +␣
→˓(1 + 4*5 + O(5^3))*T^2 + (3 + 2*5 + 2*5^2 + O(5^3))*T^3 + (5 + 5^2 + O(5^
→˓3))*T^4 + O(T^5)

It should now also work with 𝑝 = 2 (Issue #20798):

sage: E = EllipticCurve("53a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(7)
O(2^8) + (1 + 2^2 + 2^3 + O(2^5))*T + (1 + 2^3 + O(2^4))*T^2 + (2^2 + 2^3 +␣
→˓O(2^4))*T^3 + (2 + 2^2 + O(2^3))*T^4 + O(T^5)

sage: E = EllipticCurve("109a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(6)
2^2 + 2^6 + O(2^7) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 +␣
→˓O(2^2))*T^4 + O(T^5)

Check that twists by odd Teichmuller characters are ok (Issue #32258):

sage: E = EllipticCurve("443c1")
sage: lp = E.padic_lseries(17, implementation="num")
sage: l8 = lp.series(2,eta=8,prec=3)

(continues on next page)

18.24. 𝑝-adic 𝐿-functions of elliptic curves 619

https://github.com/sagemath/sage/issues/5846
https://github.com/sagemath/sage/issues/20798
https://github.com/sagemath/sage/issues/32258

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: l8.list()[0] - 1/lp.alpha()
O(17^4)
sage: lp = E.padic_lseries(2, implementation="num")
sage: l1 = lp.series(8,eta=1,prec=3)
sage: l1.list()[0] - 4/lp.alpha()^2
O(2^9)

series(n=2, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series, in the component corresponding to the 𝜂-th power of
the Teichmueller character, as a power series in 𝑇 (corresponding to 𝛾 − 1 with 𝛾 = 1+ 𝑝 as a generator of
1 + 𝑝 𝑝). Each coefficient is a 𝑝-adic number whose precision is provably correct.

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1−1/𝛼)2𝐿(𝐸, 1)/Ω𝐸 where
𝛼 is the unit root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of
unity in ×

𝑝)

power_series() is identical to series.

EXAMPLES:

We compute some 𝑝-adic L-functions associated to the elliptic curve 11a:

sage: E = EllipticCurve(11a)
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(3)
2 + 3 + 3^2 + 2*3^3 + O(3^5) + (1 + 3 + O(3^2))*T + (1 + 2*3 + O(3^2))*T^2 +␣
→˓O(3)*T^3 + O(3)*T^4 + O(T^5)

Another example at a prime of bad reduction, where the 𝑝-adic L-function has an extra 0 (compared to the
non 𝑝-adic L-function):

sage: E = EllipticCurve(11a)
sage: p = 11
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(2)
O(11^4) + (10 + O(11))*T + (6 + O(11))*T^2 + (2 + O(11))*T^3 + (5 + O(11))*T^
→˓4 + O(T^5)

We compute a 𝑝-adic L-function that vanishes to order 2:

sage: E = EllipticCurve(389a)
sage: p = 3

(continues on next page)

620 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(3^4) + O(3)*T + (2 + O(3))*T^2 + O(T^3)
sage: L.series(3)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4␣
→˓+ O(T^5)

Checks if the precision can be changed (Issue #5846):

sage: L.series(3,prec=4)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + O(T^4)
sage: L.series(3,prec=6)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4␣
→˓+ (1 + O(3))*T^5 + O(T^6)

Rather than computing the 𝑝-adic L-function for the curve ‘15523a1’, one can compute it as a quadratic_twist:

sage: E = EllipticCurve(43a1)
sage: lp = E.padic_lseries(3)
sage: lp.series(2,quadratic_twist=-19)
2 + 2*3 + 2*3^2 + O(3^4) + (1 + O(3))*T + (1 + O(3))*T^2 + O(T^3)
sage: E.quadratic_twist(-19).label() # optional -- database_cremona_
→˓ellcurve
15523a1

This proves that the rank of ‘15523a1’ is zero, even if mwrank cannot determine this.

We calculate the 𝐿-series in the nontrivial Teichmueller components:

sage: L = EllipticCurve(110a1).padic_lseries(5, implementation="sage")
sage: for j in [0..3]: print(L.series(4, eta=j))
O(5^6) + (2 + 2*5 + 2*5^2 + O(5^3))*T + (5 + 5^2 + O(5^3))*T^2 + (4 + 4*5 +␣
→˓2*5^2 + O(5^3))*T^3 + (1 + 5 + 3*5^2 + O(5^3))*T^4 + O(T^5)
4 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + O(5^6) + (1 + 3*5 + 4*5^2 + O(5^3))*T + (3 +␣
→˓4*5 + 3*5^2 + O(5^3))*T^2 + (3 + 3*5^2 + O(5^3))*T^3 + (1 + 2*5 + 2*5^2 +␣
→˓O(5^3))*T^4 + O(T^5)
2 + O(5^6) + (1 + 5 + O(5^3))*T + (2 + 4*5 + 3*5^2 + O(5^3))*T^2 + (4 + 5 +␣
→˓2*5^2 + O(5^3))*T^3 + (4 + O(5^3))*T^4 + O(T^5)
3 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + O(5^6) + (1 + 2*5 + 4*5^2 + O(5^3))*T +␣
→˓(1 + 4*5 + O(5^3))*T^2 + (3 + 2*5 + 2*5^2 + O(5^3))*T^3 + (5 + 5^2 + O(5^
→˓3))*T^4 + O(T^5)

It should now also work with 𝑝 = 2 (Issue #20798):

sage: E = EllipticCurve("53a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(7)
O(2^8) + (1 + 2^2 + 2^3 + O(2^5))*T + (1 + 2^3 + O(2^4))*T^2 + (2^2 + 2^3 +␣
→˓O(2^4))*T^3 + (2 + 2^2 + O(2^3))*T^4 + O(T^5)

sage: E = EllipticCurve("109a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(6)

(continues on next page)

18.24. 𝑝-adic 𝐿-functions of elliptic curves 621

https://github.com/sagemath/sage/issues/5846
https://github.com/sagemath/sage/issues/20798

Elliptic curves, Release 10.4.rc1

(continued from previous page)

2^2 + 2^6 + O(2^7) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 +␣
→˓O(2^2))*T^4 + O(T^5)

Check that twists by odd Teichmuller characters are ok (Issue #32258):

sage: E = EllipticCurve("443c1")
sage: lp = E.padic_lseries(17, implementation="num")
sage: l8 = lp.series(2,eta=8,prec=3)
sage: l8.list()[0] - 1/lp.alpha()
O(17^4)
sage: lp = E.padic_lseries(2, implementation="num")
sage: l1 = lp.series(8,eta=1,prec=3)
sage: l1.list()[0] - 4/lp.alpha()^2
O(2^9)

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular(E , p,
im-
ple-
men-
ta-
tion='eclib',
nor-
mal-
ize='L_ra-
tio')

Bases: pAdicLseries

Dp_valued_height(prec=20)
Return the canonical 𝑝-adic height with values in the Dieudonné module 𝐷𝑝(𝐸).

It is defined to be

ℎ𝜂 · 𝜔 − ℎ𝜔 · 𝜂

where ℎ𝜂 is made out of the sigma function of Bernardi and ℎ𝜔 is 𝑙𝑜𝑔2𝐸 .

The answer v is given as v[1]*omega + v[2]*eta. The coordinates of v are dependent of the Weier-
strass equation.

EXAMPLES:

sage: E = EllipticCurve(53a)
sage: L = E.padic_lseries(5)
sage: h = L.Dp_valued_height(7)
sage: h(E.gens()[0])
(3*5 + 5^2 + 2*5^3 + 3*5^4 + 4*5^5 + 5^6 + 5^7 + O(5^8), 5^2 + 4*5^4 + 2*5^7␣
→˓+ 3*5^8 + O(5^9))

Dp_valued_regulator(prec=20, v1=0, v2=0)
Return the canonical 𝑝-adic regulator with values in the Dieudonné module𝐷𝑝(𝐸) as defined by Perrin-Riou
using the 𝑝-adic height with values in 𝐷𝑝(𝐸).

The result is written in the basis 𝜔, 𝜙(𝜔), and hence the coordinates of the result are independent of the
chosen Weierstrass equation.

Note: The definition here is corrected with respect to Perrin-Riou’s article [PR2003]. See [SW2013].

622 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/32258

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(43a)
sage: L = E.padic_lseries(7)
sage: L.Dp_valued_regulator(7)
(5*7 + 6*7^2 + 4*7^3 + 4*7^4 + 7^5 + 4*7^7 + O(7^8), 4*7^2 + 2*7^3 + 3*7^4 +␣
→˓7^5 + 6*7^6 + 4*7^7 + O(7^8))

Dp_valued_series(n=3, quadratic_twist=1, prec=5)
Return a vector of two components which are p-adic power series.

The answer v is such that

(1− 𝜙)−2 · 𝐿𝑝(𝐸, 𝑇) = v[1] ·𝜔+ v[2] ·𝜙(𝜔)

as an element of the Dieudonné module 𝐷𝑝(𝐸) = 𝐻1
𝑑𝑅(𝐸/Q𝑝) where 𝜔 is the invariant differential and 𝜙

is the Frobenius on 𝐷𝑝(𝐸).

According to the 𝑝-adic Birch and Swinnerton-Dyer conjecture [BP1993] this function has a zero of order
rank of 𝐸(Q) and it’s leading term is contains the order of the Tate-Shafarevich group, the Tamagawa num-
bers, the order of the torsion subgroup and the 𝐷𝑝-valued 𝑝-adic regulator.

INPUT:

• n – (default: 3) a positive integer

• prec – (default: 5) a positive integer

EXAMPLES:

sage: E = EllipticCurve(14a)
sage: L = E.padic_lseries(5)
sage: L.Dp_valued_series(4) # long time (9s on sage.math, 2011)
(1 + 4*5 + O(5^2) + (4 + O(5))*T + (1 + O(5))*T^2 + (4 + O(5))*T^3 + (2 +␣
→˓O(5))*T^4 + O(T^5), 5^2 + O(5^3) + O(5^2)*T + (4*5 + O(5^2))*T^2 + (2*5 +␣
→˓O(5^2))*T^3 + (2 + 2*5 + O(5^2))*T^4 + O(T^5))

bernardi_sigma_function(prec=20)
Return the 𝑝-adic sigma function of Bernardi in terms of 𝑧 = 𝑙𝑜𝑔(𝑡).

This is the same as padic_sigma with E2 = 0.

EXAMPLES:

sage: E = EllipticCurve(14a)
sage: L = E.padic_lseries(5)
sage: L.bernardi_sigma_function(prec=5) # Todo: some sort of consistency␣
→˓check!?
z + 1/24*z^3 + 29/384*z^5 - 8399/322560*z^7 - 291743/92897280*z^9 + O(z^10)

frobenius(prec=20, algorithm='mw')
Return a geometric Frobenius 𝜙 on the Dieudonné module 𝐷𝑝(𝐸) with respect to the basis 𝜔, the invariant
differential, and 𝜂 = 𝑥𝜔.

It satisfies 𝜙2 − 𝑎𝑝/𝑝𝜙+ 1/𝑝 = 0.

INPUT:

• prec – (default: 20) a positive integer

• algorithm – either ‘mw’ (default) for Monsky-Washnitzer or ‘approx’ for the algorithm described by
Bernardi and Perrin-Riou (much slower and not fully tested)

18.24. 𝑝-adic 𝐿-functions of elliptic curves 623

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: E = EllipticCurve(14a)
sage: L = E.padic_lseries(5)
sage: phi = L.frobenius(5)
sage: phi
[2 + 5^2 + 5^4 + O(5^5) 3*5^-1 + 3 + 5 + 4*5^2 + 5^3 +␣
→˓O(5^4)]
[3 + 3*5^2 + 4*5^3 + 3*5^4 + O(5^5) 3 + 4*5 + 3*5^2 + 4*5^3 + 3*5^4 +␣
→˓O(5^5)]
sage: -phi^2
[5^-1 + O(5^4) O(5^4)]
[O(5^5) 5^-1 + O(5^4)]

is_ordinary()

Return True if the elliptic curve that this L-function is attached to is ordinary.

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(19)
sage: L.is_ordinary()
False

is_supersingular()

Return True if the elliptic curve that this L function is attached to is supersingular.

EXAMPLES:

sage: L = EllipticCurve(11a).padic_lseries(19)
sage: L.is_supersingular()
True

power_series(n=3, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series as a power series in 𝑇 (corresponding to 𝛾 − 1 with
𝛾 = 1 + 𝑝 as a generator of 1 + 𝑝 𝑝). Each coefficient is an element of a quadratic extension of the 𝑝-adic
number whose precision is provably correct.

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1−1/𝛼)2𝐿(𝐸, 1)/Ω𝐸 where
𝛼 is a root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of
unity in ×

𝑝)

OUTPUT:

a power series with coefficients in a quadratic ramified extension of the 𝑝-adic numbers generated by a root
𝑎𝑙𝑝ℎ𝑎 of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸.

ALIAS: power_series is identical to series.

EXAMPLES:

624 Chapter 18. Elliptic curves over number fields

Elliptic curves, Release 10.4.rc1

A supersingular example, where we must compute to higher precision to see anything:

sage: e = EllipticCurve(37a)
sage: L = e.padic_lseries(3); L
3-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational␣
→˓Field
sage: L.series(2)
O(T^3)
sage: L.series(4) # takes a long time (several seconds)
O(alpha) + (alpha^-2 + O(alpha^0))*T + (alpha^-2 + O(alpha^0))*T^2 + O(T^5)
sage: L.alpha(2).parent()
3-adic Eisenstein Extension Field in alpha defined by x^2 + 3*x + 3

An example where we only compute the leading term (Issue #15737):

sage: E = EllipticCurve("17a1")
sage: L = E.padic_lseries(3)
sage: L.series(4,prec=1)
alpha^-2 + alpha^-1 + 2 + 2*alpha + ... + O(alpha^38) + O(T)

It works also for 𝑝 = 2:

sage: E = EllipticCurve("11a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(10)
O(alpha^-3) + (alpha^-4 + O(alpha^-3))*T + (alpha^-4 + O(alpha^-3))*T^2 +␣
→˓(alpha^-5 + alpha^-4 + O(alpha^-3))*T^3 + (alpha^-4 + O(alpha^-3))*T^4 +␣
→˓O(T^5)

series(n=3, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series as a power series in 𝑇 (corresponding to 𝛾 − 1 with
𝛾 = 1 + 𝑝 as a generator of 1 + 𝑝 𝑝). Each coefficient is an element of a quadratic extension of the 𝑝-adic
number whose precision is provably correct.

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1−1/𝛼)2𝐿(𝐸, 1)/Ω𝐸 where
𝛼 is a root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of
unity in ×

𝑝)

OUTPUT:

a power series with coefficients in a quadratic ramified extension of the 𝑝-adic numbers generated by a root
𝑎𝑙𝑝ℎ𝑎 of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸.

ALIAS: power_series is identical to series.

EXAMPLES:

A supersingular example, where we must compute to higher precision to see anything:

18.24. 𝑝-adic 𝐿-functions of elliptic curves 625

https://github.com/sagemath/sage/issues/15737

Elliptic curves, Release 10.4.rc1

sage: e = EllipticCurve(37a)
sage: L = e.padic_lseries(3); L
3-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational␣
→˓Field
sage: L.series(2)
O(T^3)
sage: L.series(4) # takes a long time (several seconds)
O(alpha) + (alpha^-2 + O(alpha^0))*T + (alpha^-2 + O(alpha^0))*T^2 + O(T^5)
sage: L.alpha(2).parent()
3-adic Eisenstein Extension Field in alpha defined by x^2 + 3*x + 3

An example where we only compute the leading term (Issue #15737):

sage: E = EllipticCurve("17a1")
sage: L = E.padic_lseries(3)
sage: L.series(4,prec=1)
alpha^-2 + alpha^-1 + 2 + 2*alpha + ... + O(alpha^38) + O(T)

It works also for 𝑝 = 2:

sage: E = EllipticCurve("11a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(10)
O(alpha^-3) + (alpha^-4 + O(alpha^-3))*T + (alpha^-4 + O(alpha^-3))*T^2 +␣
→˓(alpha^-5 + alpha^-4 + O(alpha^-3))*T^3 + (alpha^-4 + O(alpha^-3))*T^4 +␣
→˓O(T^5)

626 Chapter 18. Elliptic curves over number fields

https://github.com/sagemath/sage/issues/15737

CHAPTER

NINETEEN

TO BE SORTED

19.1 Descent on elliptic curves over Q with a 2-isogeny

sage.schemes.elliptic_curves.descent_two_isogeny.test_els(a, b, c, d, e)
Doctest function for cdef int everywhere_locally_soluble(mpz_t, mpz_t, mpz_t, mpz_t, mpz_t).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_els
sage: for _ in range(1000):
....: a,b,c,d,e = randint(1,1000), randint(1,1000), randint(1,1000),␣
→˓randint(1,1000), randint(1,1000)
....: if pari.Pol([a,b,c,d,e]).hyperellratpoints(1000, 1):
....: try:
....: if not test_els(a,b,c,d,e):
....: print("This never happened", a, b, c, d, e)
....: except ValueError:
....: continue

sage.schemes.elliptic_curves.descent_two_isogeny.test_padic_square(a, p)
Doctest function for cdef int padic_square(mpz_t, unsigned long).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_padic_
→˓square as ps
sage: for i in [1..300]:
....: for p in prime_range(100):
....: if Qp(p)(i).is_square() != bool(ps(i,p)):
....: print(i, p)

sage.schemes.elliptic_curves.descent_two_isogeny.test_qpls(a, b, c, d, e, p)
Testing function for Qp_soluble.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_qpls as tq
sage: tq(1,2,3,4,5,7)
1

sage.schemes.elliptic_curves.descent_two_isogeny.test_valuation(a, p)
Doctest function for cdef long valuation(mpz_t, mpz_t).

EXAMPLES:

627

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_valuation␣
→˓as tv
sage: for i in [1..20]:
....: print({:>10} {} {} {} .format(str(factor(i)), tv(i,2), tv(i,3), tv(i,
→˓5)))

1 0 0 0
2 1 0 0
3 0 1 0

2^2 2 0 0
5 0 0 1

2 * 3 1 1 0
7 0 0 0

2^3 3 0 0
3^2 0 2 0

2 * 5 1 0 1
11 0 0 0

2^2 * 3 2 1 0
13 0 0 0

2 * 7 1 0 0
3 * 5 0 1 1
2^4 4 0 0
17 0 0 0

2 * 3^2 1 2 0
19 0 0 0

2^2 * 5 2 0 1

sage.schemes.elliptic_curves.descent_two_isogeny.two_descent_by_two_isogeny(E ,
global_limit_small=10,
global_limit_large=10000,
ver-
bosity=0,
selmer_only=0,
proof=1)

Given an elliptic curve E with a two-isogeny phi : E –> E’ and dual isogeny phi’, runs a two-isogeny descent on E,
returning n1, n2, n1’ and n2’. Here n1 is the number of quartic covers found with a rational point, and n2 is the
number which are ELS.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_
→˓two_isogeny
sage: E = EllipticCurve(14a)
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0
sage: E = EllipticCurve(65a)
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
1

sage: # needs sage.symbolic
sage: x,y = var(x,y)
sage: E = EllipticCurve(y^2 == x^3 + x^2 - 25*x + 39)
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
2
sage: E = EllipticCurve(y^2 + x*y + y == x^3 - 131*x + 558)

(continues on next page)

628 Chapter 19. To be sorted

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
3

Using the verbosity option:

sage: E = EllipticCurve(14a)
sage: two_descent_by_two_isogeny(E, verbosity=1)
2-isogeny
Results:
2 <= #E(Q)/phi (E (Q)) <= 2
2 <= #E (Q)/phi(E(Q)) <= 2
#Sel^(phi)(E /Q) = 2
#Sel^(phi)(E/Q) = 2
1 <= #Sha(E /Q)[phi] <= 1
1 <= #Sha(E/Q)[phi] <= 1
1 <= #Sha(E/Q)[2], #Sha(E /Q)[2] <= 1
0 <= rank of E(Q) = rank of E (Q) <= 0
(2, 2, 2, 2)

Handling curves whose discriminants involve larger than wordsize primes:

sage: E = EllipticCurve(14a)
sage: E = E.quadratic_twist(next_prime(10^20))
sage: E
Elliptic Curve defined by y^2 = x^3 + x^2 +␣
→˓716666666666666667225666666666666666775672*x -␣
→˓391925925925925926384240370370370370549019837037037037060249356 over Rational␣
→˓Field
sage: E.discriminant().factor()
-1 * 2^18 * 7^3 * 100000000000000000039^6
sage: log(100000000000000000039.0, 2.0)
66.438...
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0

sage.schemes.elliptic_curves.descent_two_isogeny.two_descent_by_two_isogeny_work(c,
d,
global_limit_small=10,
global_limit_large=10000,
ver-
bosity=0,
selmer_only=0,
proof=1)

Do all the work in doing a two-isogeny descent.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_
→˓two_isogeny_work
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(13,128)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(1,-16)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank

(continues on next page)

19.1. Descent on elliptic curves over Q with a 2-isogeny 629

Elliptic curves, Release 10.4.rc1

(continued from previous page)

1
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(10,8)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
2
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(85,320)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
3

19.2 Elliptic curves with prescribed good reduction

Construction of elliptic curves with good reduction outside a finite set of primes

A theorem of Shafarevich states that, over a number field 𝐾, given any finite set 𝑆 of primes of 𝐾, there are (up to
isomorphism) only a finite set of elliptic curves defined over 𝐾 with good reduction at all primes outside 𝑆. An explicit
form of the theoremwith an algorithm for finding this finite set was given in “Finding all elliptic curves with good reduction
outside a given set of primes” by John Cremona andMark Lingham, ExperimentalMathematics 16 No.3 (2007), 303-312.
The method requires computation of the class and unit groups of𝐾 as well as all the 𝑆-integral points on a collection of
auxiliary elliptic curves defined over𝐾.

This implementation (April 2009) is only for the case 𝐾 = Q, where in many cases the determination of the neces-
sary sets of 𝑆-integral points is possible. The main user-level function is EllipticCurves_with_good_reduc-
tion_outside_S(), defined in constructor.py. Users should note carefully the following points:

(1) the number of auxiliary curves to be considered is exponential in the size of 𝑆 (specifically, 2.6𝑠 where 𝑠 = |𝑆|).

(2) For some of the auxiliary curves it is impossible at present to provably find all the 𝑆-integral points using the current
algorithms, which rely on first finding a basis for their Mordell-Weil groups using 2-descent. A warning is output in cases
where the set of points (and hence the final output) is not guaranteed to be complete. Using the proof=False flag
suppresses these warnings.

EXAMPLES: We find all elliptic curves with good reduction outside 2, listing the label of each:

sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([2])] # long␣
→˓time (5s on sage.math, 2013)
[32a1 ,
32a2 ,
32a3 ,
32a4 ,
64a1 ,
64a2 ,
64a3 ,
64a4 ,
128a1 ,
128a2 ,
128b1 ,
128b2 ,
128c1 ,
128c2 ,
128d1 ,
128d2 ,
256a1 ,
256a2 ,
256b1 ,
256b2 ,
256c1 ,

(continues on next page)

630 Chapter 19. To be sorted

Elliptic curves, Release 10.4.rc1

(continued from previous page)

256c2 ,
256d1 ,
256d2]

Secondly we try the same with 𝑆 = 11; note that warning messages are printed without proof=False (unless the
optional database is installed: two of the auxiliary curves whose Mordell-Weil bases are required have conductors 13068
and 52272 so are in the database):

sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([11],␣
→˓proof=False)] # long time (13s on sage.math, 2011)
[11a1 , 11a2 , 11a3 , 121a1 , 121a2 , 121b1 , 121b2 , 121c1 , 121c2 , 121d1
→˓ , 121d2 , 121d3]

AUTHORS:

• John Cremona (6 April 2009): initial version (over Q only).

sage.schemes.elliptic_curves.ell_egros.curve_key(E1)
Comparison key for elliptic curves over Q.

The key is a tuple:

• if the curve is in the database: (conductor, 0, label, number)

• otherwise: (conductor, 1, a_invariants)

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import curve_key
sage: E = EllipticCurve_from_j(1728)
sage: curve_key(E)
(32, 0, 0, 2)
sage: E = EllipticCurve_from_j(1729)
sage: curve_key(E)
(2989441, 1, (1, 0, 0, -36, -1))

sage.schemes.elliptic_curves.ell_egros.egros_from_j(j, S=[])
Given a rational j and a list of primes S, returns a list of elliptic curves overQ with j-invariant j and good reduction
outside S, by checking all relevant quadratic twists.

INPUT:

• j – a rational number.

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant equal to 𝑗 and with good reduction at all primes
outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j
sage: [e.label() for e in egros_from_j(0,[3])]
[27a1 , 27a3 , 243a1 , 243a2 , 243b1 , 243b2]

(continues on next page)

19.2. Elliptic curves with prescribed good reduction 631

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: [e.label() for e in egros_from_j(1728,[2])]
[32a1 , 32a2 , 64a1 , 64a4 , 256b1 , 256b2 , 256c1 , 256c2]
sage: elist=egros_from_j(-4096/11,[11])
sage: [e.label() for e in elist]
[11a3 , 121d1]

sage.schemes.elliptic_curves.ell_egros.egros_from_j_0(S=[])

Given a list of primes S, returns a list of elliptic curves over Q with j-invariant 0 and good reduction outside S, by
checking all relevant sextic twists.

INPUT:

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant equal to 0 and with good reduction at all primes
outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_0
sage: egros_from_j_0([])
[]
sage: egros_from_j_0([2])
[]
sage: [e.label() for e in egros_from_j_0([3])]
[27a1 , 27a3 , 243a1 , 243a2 , 243b1 , 243b2]
sage: len(egros_from_j_0([2,3,5])) # long time (8s on sage.math, 2013)
432

sage.schemes.elliptic_curves.ell_egros.egros_from_j_1728(S=[])
Given a list of primes S, returns a list of elliptic curves over Q with j-invariant 1728 and good reduction outside S,
by checking all relevant quartic twists.

INPUT:

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant equal to 1728 and with good reduction at all
primes outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_1728
sage: egros_from_j_1728([])
[]
sage: egros_from_j_1728([3])
[]

(continues on next page)

632 Chapter 19. To be sorted

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: [e.cremona_label() for e in egros_from_j_1728([2])]
[32a1 , 32a2 , 64a1 , 64a4 , 256b1 , 256b2 , 256c1 , 256c2]

sage.schemes.elliptic_curves.ell_egros.egros_from_jlist(jlist, S=[])
Given a list of rational j and a list of primes S, returns a list of elliptic curves overQ with j-invariant in the list and
good reduction outside S.

INPUT:

• j – list of rational numbers.

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant in the list jlist and with good reduction at all
primes outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j, egros_from_
→˓jlist
sage: jlist=egros_get_j([3])
sage: elist=egros_from_jlist(jlist,[3])
sage: [e.label() for e in elist]
[27a1 , 27a2 , 27a3 , 27a4 , 243a1 , 243a2 , 243b1 , 243b2]
sage: [e.ainvs() for e in elist]
[(0, 0, 1, 0, -7),
(0, 0, 1, -270, -1708),
(0, 0, 1, 0, 0),
(0, 0, 1, -30, 63),
(0, 0, 1, 0, -1),
(0, 0, 1, 0, 20),
(0, 0, 1, 0, 2),
(0, 0, 1, 0, -61)]

sage.schemes.elliptic_curves.ell_egros.egros_get_j(S=[], proof=None, verbose=False)
Returns a list of rational 𝑗 such that all elliptic curves defined overQwith good reduction outside 𝑆 have 𝑗-invariant
in the list, sorted by height.

INPUT:

• S – list of primes (default: empty list).

• proof – True/False (default True): the MW basis for auxiliary curves will be computed with this proof
flag.

• verbose – True/False (default False): if True, some details of the computation will be output.

Note: Proof flag: The algorithm used requires determining all S-integral points on several auxiliary curves, which
in turn requires the computation of their generators. This is not always possible (even in theory) using current
knowledge.

The value of this flag is passed to the function which computes generators of various auxiliary elliptic curves, in
order to find their S-integral points. Set to False if the default (True) causes warning messages, but note that

19.2. Elliptic curves with prescribed good reduction 633

Elliptic curves, Release 10.4.rc1

you can then not rely on the set of invariants returned being complete.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j
sage: egros_get_j([])
[1728]
sage: egros_get_j([2]) # long time (3s on sage.math, 2013)
[128, 432, -864, 1728, 3375/2, -3456, 6912, 8000, 10976, -35937/4, 287496, -
→˓784446336, -189613868625/128]
sage: egros_get_j([3]) # long time (3s on sage.math, 2013)
[0, -576, 1536, 1728, -5184, -13824, 21952/9, -41472, 140608/3, -12288000]
sage: jlist=egros_get_j([2,3]); len(jlist) # long time (30s)
83

sage.schemes.elliptic_curves.ell_egros.is_possible_j(j, S=[])
Tests if the rational 𝑗 is a possible 𝑗-invariant of an elliptic curve with good reduction outside 𝑆.

Note: The condition used is necessary but not sufficient unless S contains both 2 and 3.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import is_possible_j
sage: is_possible_j(0,[])
False
sage: is_possible_j(1728,[])
True
sage: is_possible_j(-4096/11,[11])
True

19.3 Elliptic curves over padic fields

class sage.schemes.elliptic_curves.ell_padic_field.EllipticCurve_padic_field(R,
data,
cat-
e-
gory=None)

Bases: EllipticCurve_field, HyperellipticCurve_padic_field

Elliptic curve over a padic field.

EXAMPLES:

sage: Qp = pAdicField(17)
sage: E = EllipticCurve(Qp,[2,3]); E
Elliptic Curve defined by y^2 = x^3 + (2+O(17^20))*x + (3+O(17^20))
over 17-adic Field with capped relative precision 20
sage: E == loads(dumps(E))
True

frobenius(P=None)
Return the Frobenius as a function on the group of points of this elliptic curve.

EXAMPLES:

634 Chapter 19. To be sorted

Elliptic curves, Release 10.4.rc1

sage: Qp = pAdicField(13)
sage: E = EllipticCurve(Qp,[1,1])
sage: type(E.frobenius())
<... function >
sage: point = E(0,1)
sage: E.frobenius(point)
(0 : 1 + O(13^20) : 1 + O(13^20))

Check that Issue #29709 is fixed:

sage: Qp = pAdicField(13)
sage: E = EllipticCurve(Qp,[0,0,1,0,1])
sage: E.frobenius(E(1,1))
Traceback (most recent call last):
...
NotImplementedError: Curve must be in weierstrass normal form.
sage: E = EllipticCurve(Qp,[0,1,0,0,1])
sage: E.frobenius(E(0,1))
(0 : 1 + O(13^20) : 1 + O(13^20))

19.4 Denis Simon’s PARI scripts

sage.schemes.elliptic_curves.gp_simon.init()

Function to initialize the gp process

sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E , verbose=0, lim1=None,
lim3=None, limtriv=None,
maxprob=20, limbigprime=30,
known_points=[])

Interface to Simon’s gp script for two-descent.

Note: Users should instead run E.simon_two_descent()

EXAMPLES:

sage: import sage.schemes.elliptic_curves.gp_simon
sage: E = EllipticCurve(389a1)
sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
(2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])

19.5 Elliptic curves with congruent mod-5 representation

AUTHORS:

• Alice Silverberg and Karl Rubin – original PARI/GP version

• William Stein – Sage version

sage.schemes.elliptic_curves.mod5family.mod5family(a, b)
Formulas for computing the family of elliptic curves with congruent mod-5 representation.

EXAMPLES:

19.4. Denis Simon’s PARI scripts 635

https://github.com/sagemath/sage/issues/29709

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.elliptic_curves.mod5family import mod5family
sage: mod5family(0,1)
Elliptic Curve defined by y^2 = x^3 + (t^30+30*t^29+435*t^28+4060*t^27+27405*t^
→˓26+142506*t^25+593775*t^24+2035800*t^23+5852925*t^22+14307150*t^21+30045015*t^
→˓20+54627300*t^19+86493225*t^18+119759850*t^17+145422675*t^16+155117520*t^
→˓15+145422675*t^14+119759850*t^13+86493225*t^12+54627300*t^11+30045015*t^
→˓10+14307150*t^9+5852925*t^8+2035800*t^7+593775*t^6+142506*t^5+27405*t^4+4060*t^
→˓3+435*t^2+30*t+1) over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field

19.6 Morphism to bring a genus-one curve into Weierstrass form

You should use EllipticCurve_from_cubic() or EllipticCurve_from_curve() to construct the trans-
formation starting with a cubic or with a genus one curve.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True); f
Scheme morphism:

From: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-w : 3*u : 1/3*u + 1/3*v)

sage: finv = f.inverse(); finv
Scheme morphism:

From: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
To: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
Defn: Defined on coordinates by sending (x : y : z) to

(1/3*y : -1/3*y + 3*z : -x)

sage: (u^3 + v^3 + w^3)(f.inverse().defining_polynomials()) * f.inverse().post_
→˓rescaling()
-x^3 + y^2*z - 9*y*z^2 + 27*z^3

sage: E = finv.domain()
sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
u^3 + v^3 + w^3

sage: f([1,-1,0])
(0 : 1 : 0)
sage: f([1,0,-1])
(3 : 9 : 1)
sage: f([0,1,-1])
(3 : 0 : 1)

636 Chapter 19. To be sorted

Elliptic curves, Release 10.4.rc1

class sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformation(do-
main,
codomain,
defin-
ing_poly-
no-
mi-
als,
post_mul-
ti-
pli-
ca-
tion)

Bases: SchemeMorphism_polynomial

A morphism of a genus-one curve to/from the Weierstrass form.

INPUT:

• domain, codomain – two schemes, one of which is an elliptic curve.

• defining_polynomials – triplet of polynomials that define the transformation.

• post_multiplication – a polynomial to homogeneously rescale after substituting the defining polyno-
mials.

EXAMPLES:

sage: P2.<u,v,w> = ProjectiveSpace(2,QQ)
sage: C = P2.subscheme(u^3 + v^3 + w^3)
sage: E = EllipticCurve([2, -1, -1/3, 1/3, -1/27])
sage: from sage.schemes.elliptic_curves.weierstrass_transform import␣
→˓WeierstrassTransformation
sage: f = WeierstrassTransformation(C, E, [w, -v-w, -3*u-3*v], 1); f
Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 + 2*x*y - 1/3*y = x^3 - x^2 + 1/3*x - 1/27

over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(w : -v - w : -3*u - 3*v)

sage: f([-1, 1, 0])
(0 : 1 : 0)
sage: f([-1, 0, 1])
(1/3 : -1/3 : 1)
sage: f([0,-1, 1])
(1/3 : 0 : 1)

sage: A2.<a,b> = AffineSpace(2,QQ)
sage: C = A2.subscheme(a^3 + b^3 + 1)
sage: f = WeierstrassTransformation(C, E, [1, -b-1, -3*a-3*b], 1); f
Scheme morphism:
From: Closed subscheme of Affine Space of dimension 2 over Rational Field␣

→˓defined by:
a^3 + b^3 + 1
To: Elliptic Curve defined by y^2 + 2*x*y - 1/3*y

= x^3 - x^2 + 1/3*x - 1/27 over Rational Field
(continues on next page)

19.6. Morphism to bring a genus-one curve into Weierstrass form 637

../../../../../../../html/en/reference/schemes/sage/schemes/generic/morphism.html#sage.schemes.generic.morphism.SchemeMorphism_polynomial

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Defn: Defined on coordinates by sending (a, b) to
(1 : -b - 1 : -3*a - 3*b)

sage: f([-1,0])
(1/3 : -1/3 : 1)
sage: f([0,-1])
(1/3 : 0 : 1)

post_rescaling()

Return the homogeneous rescaling to apply after the coordinate substitution.

OUTPUT:

A polynomial. See the example below.

EXAMPLES:

sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+7*b^3+64*c^3
sage: P = [2,2,-1]
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True).inverse()
sage: f.post_rescaling()
-1/7

So here is what it does. If we just plug in the coordinate transformation, we get the defining polynomial up
to scale. This method returns the overall rescaling of the equation to bring the result into the standard form:

sage: cubic(f.defining_polynomials())
7*x^3 - 7*y^2*z + 1806336*y*z^2 - 155373797376*z^3
sage: cubic(f.defining_polynomials()) * f.post_rescaling()
-x^3 + y^2*z - 258048*y*z^2 + 22196256768*z^3

sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse(do-
main,
codomain,
defin-
ing_poly-
no-
mi-
als,
post_mul-
ti-
pli-
ca-
tion,
inv_defin-
ing_poly-
no-
mi-
als,
inv_post_mul-
ti-
pli-
ca-
tion)

Construct morphism of a genus-one curve to/from the Weierstrass form with its inverse.

638 Chapter 19. To be sorted

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True); f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-w : 3*u : 1/3*u + 1/3*v)

Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 + 2*x*y + 1/3*y

= x^3 - x^2 - 1/3*x - 1/27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-w : -v + w : 3*u + 3*v)

class sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse_class(do-
main,
codomain,
defin-
ing_poly-
no-
mi-
als,
post_mul-
ti-
pli-
ca-
tion)

Bases: WeierstrassTransformation

inverse()

Return the inverse.

OUTPUT:

A morphism in the opposite direction. This may be a rational inverse or an analytic inverse.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True)
sage: f.inverse()
Scheme morphism:

From: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
To: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
Defn: Defined on coordinates by sending (x : y : z) to
(1/3*y : -1/3*y + 3*z : -x)

19.6. Morphism to bring a genus-one curve into Weierstrass form 639

Elliptic curves, Release 10.4.rc1

640 Chapter 19. To be sorted

CHAPTER

TWENTY

HYPERELLIPTIC CURVES

20.1 Hyperelliptic curve constructor

AUTHORS:

• David Kohel (2006): initial version

• Anna Somoza (2019-04): dynamic class creation

sage.schemes.hyperelliptic_curves.constructor.HyperellipticCurve(f , h=0,
names=None,
PP=None,
check_square-
free=True)

Returns the hyperelliptic curve 𝑦2 + ℎ𝑦 = 𝑓 , for univariate polynomials ℎ and 𝑓 . If ℎ is not given, then it defaults
to 0.

INPUT:

• f – univariate polynomial

• h – optional univariate polynomial

• names (default: ["x","y"]) – names for the coordinate functions

• check_squarefree (default: True) – test if the input defines a hyperelliptic curve when f is ho-
mogenized to degree 2𝑔 + 2 and h to degree 𝑔 + 1 for some g.

Warning: When setting check_squarefree=False or using a base ring that is not a field, the output
curves are not to be trusted. For example, the output of is_singular is always False, without this being
properly tested in that case.

Note: The words “hyperelliptic curve” are normally only used for curves of genus at least two, but this class allows
more general smooth double covers of the projective line (conics and elliptic curves), even though the class is not
meant for those and some outputs may be incorrect.

EXAMPLES:

Basic examples:

641

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 + x + 1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: HyperellipticCurve(x^19 + x + 1, x - 2)
Hyperelliptic Curve over Rational Field defined by y^2 + (x - 2)*y = x^19 + x + 1

sage: k.<a> = GF(9); R.<x> = k[] #␣
→˓needs sage.rings.finite_rings
sage: HyperellipticCurve(x^3 + x - 1, x+a) #␣
→˓needs sage.rings.finite_rings
Hyperelliptic Curve over Finite Field in a of size 3^2
defined by y^2 + (x + a)*y = x^3 + x + 2

Characteristic two:

sage: # needs sage.rings.finite_rings
sage: P.<x> = GF(8, a)[]
sage: HyperellipticCurve(x^7 + 1, x)
Hyperelliptic Curve over Finite Field in a of size 2^3
defined by y^2 + x*y = x^7 + 1
sage: HyperellipticCurve(x^8 + x^7 + 1, x^4 + 1)
Hyperelliptic Curve over Finite Field in a of size 2^3
defined by y^2 + (x^4 + 1)*y = x^8 + x^7 + 1
sage: HyperellipticCurve(x^8 + 1, x)
Traceback (most recent call last):
...
ValueError: not a hyperelliptic curve: highly singular at infinity
sage: HyperellipticCurve(x^8 + x^7 + 1, x^4)
Traceback (most recent call last):
...
ValueError: not a hyperelliptic curve: singularity in the provided affine patch

sage: F.<t> = PowerSeriesRing(FiniteField(2))
sage: P.<x> = PolynomialRing(FractionField(F))
sage: HyperellipticCurve(x^5 + t, x)
Hyperelliptic Curve over Laurent Series Ring in t over Finite Field of size 2
defined by y^2 + x*y = x^5 + t

We can change the names of the variables in the output:

sage: k.<a> = GF(9); R.<x> = k[] #␣
→˓needs sage.rings.finite_rings
sage: HyperellipticCurve(x^3 + x - 1, x + a, names=[X , Y]) #␣
→˓needs sage.rings.finite_rings
Hyperelliptic Curve over Finite Field in a of size 3^2
defined by Y^2 + (X + a)*Y = X^3 + X + 2

This class also allows curves of genus zero or one, which are strictly speaking not hyperelliptic:

sage: P.<x> = QQ[]
sage: HyperellipticCurve(x^2 + 1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^2 + 1
sage: HyperellipticCurve(x^4 - 1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^4 - 1
sage: HyperellipticCurve(x^3 + 2*x + 2)
Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + 2*x + 2

Double roots:

642 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: P.<x> = GF(7)[]
sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1))
Traceback (most recent call last):
...
ValueError: not a hyperelliptic curve: singularity in the provided affine patch

sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1), check_squarefree=False)
Hyperelliptic Curve over Finite Field of size 7 defined by
y^2 = x^12 + 5*x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^6 + 2*x^4 + 3*x^3 + 6*x^2 + 4*x␣
→˓+ 3

The input for a (smooth) hyperelliptic curve of genus 𝑔 should not contain polynomials of degree greater than
2𝑔 + 2. In the following example, the hyperelliptic curve has genus 2 and there exists a model 𝑦2 = 𝐹 of degree
6, so the model 𝑦2 + 𝑦ℎ = 𝑓 of degree 200 is not allowed.:

sage: P.<x> = QQ[]
sage: h = x^100
sage: F = x^6 + 1
sage: f = F - h^2/4
sage: HyperellipticCurve(f, h)
Traceback (most recent call last):
...
ValueError: not a hyperelliptic curve: highly singular at infinity

sage: HyperellipticCurve(F)
Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 1

An example with a singularity over an inseparable extension of the base field:

sage: F.<t> = GF(5)[]
sage: P.<x> = F[]
sage: HyperellipticCurve(x^5 + t)
Traceback (most recent call last):
...
ValueError: not a hyperelliptic curve: singularity in the provided affine patch

Input with integer coefficients creates objects with the integers as base ring, but only checks smoothness over Q,
not over Spec(). In other words, it is checked that the discriminant is non-zero, but it is not checked whether the
discriminant is a unit in *.:

sage: P.<x> = ZZ[]
sage: HyperellipticCurve(3*x^7 + 6*x + 6)
Hyperelliptic Curve over Integer Ring defined by y^2 = 3*x^7 + 6*x + 6

20.2 Hyperelliptic curves over a general ring

EXAMPLES:

sage: P.<x> = GF(5)[]
sage: f = x^5 - 3*x^4 - 2*x^3 + 6*x^2 + 3*x - 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Finite Field of size 5
defined by y^2 = x^5 + 2*x^4 + 3*x^3 + x^2 + 3*x + 4

20.2. Hyperelliptic curves over a general ring 643

Elliptic curves, Release 10.4.rc1

sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2

sage: D = C.affine_patch(0)
sage: D.defining_polynomials()[0].parent()
Multivariate Polynomial Ring in x1, x2 over Rational Field

class sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic(PP,
f ,
h=None,
names=None,
genus=None)

Bases: ProjectivePlaneCurve

base_extend(R)
Returns this HyperellipticCurve over a new base ring R.

EXAMPLES:

sage: # needs sage.rings.padics
sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 - 10*x + 9)
sage: K = Qp(3, 5)
sage: L.<a> = K.extension(x^30 - 3)
sage: HK = H.change_ring(K)
sage: HL = HK.change_ring(L); HL
Hyperelliptic Curve
over 3-adic Eisenstein Extension Field in a defined by x^30 - 3
defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5
+ (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210)

sage: R.<x> = FiniteField(7)[]
sage: H = HyperellipticCurve(x^8 + x + 5)
sage: H.base_extend(FiniteField(7^2, a)) #␣
→˓needs sage.rings.finite_rings
Hyperelliptic Curve over Finite Field in a of size 7^2
defined by y^2 = x^8 + x + 5

change_ring(R)
Returns this HyperellipticCurve over a new base ring R.

EXAMPLES:

sage: # needs sage.rings.padics
sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 - 10*x + 9)
sage: K = Qp(3, 5)
sage: L.<a> = K.extension(x^30 - 3)
sage: HK = H.change_ring(K)
sage: HL = HK.change_ring(L); HL
Hyperelliptic Curve
over 3-adic Eisenstein Extension Field in a defined by x^30 - 3
defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5

(continues on next page)

644 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 10.4.rc1

(continued from previous page)

+ (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210)

sage: R.<x> = FiniteField(7)[]
sage: H = HyperellipticCurve(x^8 + x + 5)
sage: H.base_extend(FiniteField(7^2, a)) #␣
→˓needs sage.rings.finite_rings
Hyperelliptic Curve over Finite Field in a of size 7^2
defined by y^2 = x^8 + x + 5

genus()

has_odd_degree_model()

Return True if an odd degree model of self exists over the field of definition; False otherwise.

Use odd_degree_model to calculate an odd degree model.

EXAMPLES:

sage: x = QQ[x].0
sage: HyperellipticCurve(x^5 + x).has_odd_degree_model()
True
sage: HyperellipticCurve(x^6 + x).has_odd_degree_model()
True
sage: HyperellipticCurve(x^6 + x + 1).has_odd_degree_model()
False

hyperelliptic_polynomials(K=None, var='x')
EXAMPLES:

sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1, x^3/5); C
Hyperelliptic Curve over Rational Field defined by y^2 + 1/5*x^3*y = x^3 + x -
→˓ 1
sage: C.hyperelliptic_polynomials()
(x^3 + x - 1, 1/5*x^3)

invariant_differential()

Returns 𝑑𝑥/2𝑦, as an element of the Monsky-Washnitzer cohomology of self

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: C.invariant_differential()
1 dx/2y

is_singular()

Returns False, because hyperelliptic curves are smooth projective curves, as checked on construction.

EXAMPLES:

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 + 1)
sage: H.is_singular()
False

A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective
curve. This can be seen in the following example.:

20.2. Hyperelliptic curves over a general ring 645

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 + 2)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: H.is_singular()
False
sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve
sage: ProjectivePlaneCurve.is_singular(H)
True

is_smooth()

Returns True, because hyperelliptic curves are smooth projective curves, as checked on construction.

EXAMPLES:

sage: R.<x> = GF(13)[]
sage: H = HyperellipticCurve(x^8 + 1)
sage: H.is_smooth()
True

A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective
curve. This can be seen in the following example.:

sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(27, a)[]
sage: H = HyperellipticCurve(x^10 + 2)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: H.is_smooth()
True
sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve
sage: ProjectivePlaneCurve.is_smooth(H)
False

is_x_coord(x)
Return True if x is the 𝑥-coordinate of a point on this curve.

See also:

See also lift_x() to find the point(s) with a given 𝑥-coordinate. This function may be useful in cases
where testing an element of the base field for being a square is faster than finding its square root.

INPUT:

• x – an element of the base ring of the curve

OUTPUT:

A bool stating whether or not 𝑥 is a x-coordinate of a point on the curve

EXAMPLES:

When 𝑥 is the 𝑥-coordinate of a rational point on the curve, we can request these:

sage: R.<x> = PolynomialRing(QQ)
sage: f = x^5 + x^3 + 1
sage: H = HyperellipticCurve(f)
sage: H.is_x_coord(0)
True

646 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

There are no rational points with 𝑥-coordinate 3:

sage: H.is_x_coord(3)
False

The function also handles the case when ℎ(𝑥) is not zero:

sage: R.<x> = PolynomialRing(QQ)
sage: f = x^5 + x^3 + 1
sage: h = x + 1
sage: H = HyperellipticCurve(f, h)
sage: H.is_x_coord(1)
True

We can perform these operations over finite fields too:

sage: # needs sage.rings.finite_rings
sage: R.<x> = PolynomialRing(GF(163))
sage: f = x^7 + x + 1
sage: H = HyperellipticCurve(f)
sage: H.is_x_coord(13)
True

Including the case of characteristic two:

sage: # needs sage.rings.finite_rings
sage: F.<z4> = GF(2^4)
sage: R.<x> = PolynomialRing(F)
sage: f = x^7 + x^3 + 1
sage: h = x + 1
sage: H = HyperellipticCurve(f, h)
sage: H.is_x_coord(z4^3 + z4^2 + z4)
True

AUTHORS:

• Giacomo Pope (2024): adapted from lift_x()

jacobian()

lift_x(x, all=False)
Return one or all points with given 𝑥-coordinate.

This method is deterministic: It returns the same data each time when called again with the same 𝑥.

INPUT:

• x – an element of the base ring of the curve

• all (bool, default False) – if True, return a (possibly empty) list of all points; if False, return just
one point, or raise a ValueError if there are none.

OUTPUT:

A point or list of up to two points on this curve.

See also:

is_x_coord()

AUTHORS:

• Giacomo Pope (2024): Allowed for the case of characteristic two

20.2. Hyperelliptic curves over a general ring 647

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 10.4.rc1

EXAMPLES:

When 𝑥 is the 𝑥-coordinate of a rational point on the curve, we can request these:

sage: R.<x> = PolynomialRing(QQ)
sage: f = x^5 + x^3 + 1
sage: H = HyperellipticCurve(f)
sage: H.lift_x(0)
(0 : -1 : 1)
sage: H.lift_x(4, all=True)
[(4 : -33 : 1), (4 : 33 : 1)]

There are no rational points with 𝑥-coordinate 3:

sage: H.lift_x(3)
Traceback (most recent call last):
...
ValueError: No point with x-coordinate 3 on Hyperelliptic Curve over Rational␣
→˓Field defined by y^2 = x^5 + x^3 + 1

An empty list is returned when there are no points and all=True:

sage: H.lift_x(3, all=True)
[]

The function also handles the case when ℎ(𝑥) is not zero:

sage: R.<x> = PolynomialRing(QQ)
sage: f = x^5 + x^3 + 1
sage: h = x + 1
sage: H = HyperellipticCurve(f, h)
sage: H.lift_x(1)
(1 : -3 : 1)

We can perform these operations over finite fields too:

sage: # needs sage.rings.finite_rings
sage: R.<x> = PolynomialRing(GF(163))
sage: f = x^7 + x + 1
sage: H = HyperellipticCurve(f)
sage: H.lift_x(13)
(13 : 41 : 1)

Including the case of characteristic two:

sage: # needs sage.rings.finite_rings
sage: F.<z4> = GF(2^4)
sage: R.<x> = PolynomialRing(F)
sage: f = x^7 + x^3 + 1
sage: h = x + 1
sage: H = HyperellipticCurve(f, h)
sage: H.lift_x(z4^3 + z4^2 + z4, all=True)
[(z4^3 + z4^2 + z4 : z4^2 + z4 + 1 : 1), (z4^3 + z4^2 + z4 : z4^3 : 1)]

local_coord(P, prec=20, name='t')
Calls the appropriate local_coordinates function

INPUT:

648 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

• P – a point on self

• prec – desired precision of the local coordinates

• name – generator of the power series ring (default: t)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)), where 𝑡 is the local parameter at 𝑃

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x)
sage: H.local_coord(H(1 ,6), prec=5)
(1 + t + O(t^5), 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5))
sage: H.local_coord(H(4, 0), prec=7)
(4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7), t + O(t^
→˓7))
sage: H.local_coord(H(0, 1, 0), prec=5)
(t^-2 + 23*t^2 - 18*t^4 - 569*t^6 + O(t^7),
t^-5 + 46*t^-1 - 36*t - 609*t^3 + 1656*t^5 + O(t^6))

AUTHOR:

• Jennifer Balakrishnan (2007-12)

local_coordinates_at_infinity(prec=20, name='t')
For the genus 𝑔 hyperelliptic curve 𝑦2 = 𝑓(𝑥), return (𝑥(𝑡), 𝑦(𝑡)) such that (𝑦(𝑡))2 = 𝑓(𝑥(𝑡)), where
𝑡 = 𝑥𝑔/𝑦 is the local parameter at infinity

INPUT:

• prec – desired precision of the local coordinates

• name – generator of the power series ring (default: t)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)) and 𝑡 = 𝑥𝑔/𝑦 is the local parameter at infinity

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5 - 5*x^2 + 1)
sage: x, y = H.local_coordinates_at_infinity(10)
sage: x
t^-2 + 5*t^4 - t^8 - 50*t^10 + O(t^12)
sage: y
t^-5 + 10*t - 2*t^5 - 75*t^7 + 50*t^11 + O(t^12)

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3 - x + 1)
sage: x, y = H.local_coordinates_at_infinity(10)
sage: x
t^-2 + t^2 - t^4 - t^6 + 3*t^8 + O(t^12)
sage: y
t^-3 + t - t^3 - t^5 + 3*t^7 - 10*t^11 + O(t^12)

AUTHOR:

• Jennifer Balakrishnan (2007-12)

20.2. Hyperelliptic curves over a general ring 649

Elliptic curves, Release 10.4.rc1

local_coordinates_at_nonweierstrass(P, prec=20, name='t')
For a non-Weierstrass point 𝑃 = (𝑎, 𝑏) on the hyperelliptic curve 𝑦2 = 𝑓(𝑥), return (𝑥(𝑡), 𝑦(𝑡)) such that
(𝑦(𝑡))2 = 𝑓(𝑥(𝑡)), where 𝑡 = 𝑥− 𝑎 is the local parameter.

INPUT:

• P = (a, b) – a non-Weierstrass point on self

• prec – desired precision of the local coordinates

• name – gen of the power series ring (default: t)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)) and 𝑡 = 𝑥− 𝑎 is the local parameter at 𝑃

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x)
sage: P = H(1, 6)
sage: x, y = H.local_coordinates_at_nonweierstrass(P, prec=5)
sage: x
1 + t + O(t^5)
sage: y
6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5)
sage: Q = H(-2, 12)
sage: x, y = H.local_coordinates_at_nonweierstrass(Q, prec=5)
sage: x
-2 + t + O(t^5)
sage: y
12 - 19/2*t - 19/32*t^2 + 61/256*t^3 - 5965/24576*t^4 + O(t^5)

AUTHOR:

• Jennifer Balakrishnan (2007-12)

local_coordinates_at_weierstrass(P, prec=20, name='t')
For a finite Weierstrass point on the hyperelliptic curve 𝑦2 = 𝑓(𝑥), returns (𝑥(𝑡), 𝑦(𝑡)) such that (𝑦(𝑡))2 =
𝑓(𝑥(𝑡)), where 𝑡 = 𝑦 is the local parameter.

INPUT:

• P – a finite Weierstrass point on self

• prec – desired precision of the local coordinates

• name – gen of the power series ring (default: 𝑡)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)) and 𝑡 = 𝑦 is the local parameter at 𝑃

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x)
sage: A = H(4, 0)
sage: x, y = H.local_coordinates_at_weierstrass(A, prec=7)
sage: x
4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7)
sage: y
t + O(t^7)

(continues on next page)

650 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: B = H(-5, 0)
sage: x, y = H.local_coordinates_at_weierstrass(B, prec=5)
sage: x
-5 + 1/1260*t^2 + 887/2000376000*t^4 + O(t^5)
sage: y
t + O(t^5)

AUTHOR:

• Jennifer Balakrishnan (2007-12)

– Francis Clarke (2012-08-26)

monsky_washnitzer_gens()

odd_degree_model()

Return an odd degree model of self, or raise ValueError if one does not exist over the field of definition.

EXAMPLES:

sage: x = QQ[x].gen()
sage: H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5)); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 10*x^4 + 31*x^
→˓2 + 30
sage: H.odd_degree_model()
Traceback (most recent call last):
...
ValueError: No odd degree model exists over field of definition

sage: K2 = QuadraticField(-2, a) #␣
→˓needs sage.rings.number_field
sage: Hp2 = H.change_ring(K2).odd_degree_model(); Hp2 #␣
→˓needs sage.rings.number_field
Hyperelliptic Curve over Number Field in a
with defining polynomial x^2 + 2 with a = 1.414213562373095?*I
defined by y^2 = 6*a*x^5 - 29*x^4 - 20*x^2 + 6*a*x + 1

sage: K3 = QuadraticField(-3, b) #␣
→˓needs sage.rings.number_field
sage: Hp3 = H.change_ring(QuadraticField(-3, b)).odd_degree_model(); Hp3 #␣
→˓needs sage.rings.number_field
Hyperelliptic Curve over Number Field in b
with defining polynomial x^2 + 3 with b = 1.732050807568878?*I
defined by y^2 = -4*b*x^5 - 14*x^4 - 20*b*x^3 - 35*x^2 + 6*b*x + 1

Of course, Hp2 and Hp3 are isomorphic over the composite
extension. One consequence of this is that odd degree models
reduced over "different" fields should have the same number of
points on their reductions. 43 and 67 split completely in the
compositum, so when we reduce we find:

sage: # needs sage.rings.number_field
sage: P2 = K2.factor(43)[0][0]
sage: P3 = K3.factor(43)[0][0]
sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849
sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial()

(continues on next page)

20.2. Hyperelliptic curves over a general ring 651

Elliptic curves, Release 10.4.rc1

(continued from previous page)

x^4 - 16*x^3 + 134*x^2 - 688*x + 1849

sage: H.change_ring(GF(43)).odd_degree_model().frobenius_polynomial() #␣
→˓needs sage.rings.finite_rings
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849

sage: # needs sage.rings.number_field
sage: P2 = K2.factor(67)[0][0]
sage: P3 = K3.factor(67)[0][0]
sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489

sage: H.change_ring(GF(67)).odd_degree_model().frobenius_polynomial() #␣
→˓needs sage.rings.finite_rings
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489

rational_points(**kwds)
Find rational points on the hyperelliptic curve, all arguments are passed on to sage.schemes.generic.
algebraic_scheme.rational_points().

EXAMPLES:

For the LMFDB genus 2 curve 932.a.3728.1:

sage: R.<x> = PolynomialRing(QQ)
sage: C = HyperellipticCurve(R([0, -1, 1, 0, 1, -2, 1]), R([1]))
sage: C.rational_points(bound=8)
[(-1 : -3 : 1),
(-1 : 2 : 1),
(0 : -1 : 1),
(0 : 0 : 1),
(0 : 1 : 0),
(1/2 : -5/8 : 1),
(1/2 : -3/8 : 1),
(1 : -1 : 1),
(1 : 0 : 1)]

Check that Issue #29509 is fixed for the LMFDB genus 2 curve 169.a.169.1:

sage: C = HyperellipticCurve(R([0, 0, 0, 0, 1, 1]), R([1, 1, 0, 1]))
sage: C.rational_points(bound=10)
[(-1 : 0 : 1),
(-1 : 1 : 1),
(0 : -1 : 1),
(0 : 0 : 1),
(0 : 1 : 0)]

An example over a number field:

sage: R.<x> = PolynomialRing(QuadraticField(2)) #␣
→˓needs sage.rings.number_field
sage: C = HyperellipticCurve(R([1, 0, 0, 0, 0, 1])) #␣
→˓needs sage.rings.number_field
sage: C.rational_points(bound=2) #␣
→˓needs sage.rings.number_field

(continues on next page)

652 Chapter 20. Hyperelliptic curves

https://www.lmfdb.org/Genus2Curve/Q/932/a/3728/1
https://github.com/sagemath/sage/issues/29509
https://www.lmfdb.org/Genus2Curve/Q/169/a/169/1

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[(-1 : 0 : 1),
(0 : -1 : 1),
(0 : 1 : 0),
(0 : 1 : 1),
(1 : -a : 1),
(1 : a : 1)]

sage.schemes.hyperelliptic_curves.hyperelliptic_generic.is_HyperellipticCurve(C)

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hyperelliptic_generic import is_
→˓HyperellipticCurve
sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1); C
Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + x - 1
sage: is_HyperellipticCurve(C)
doctest:warning...
DeprecationWarning: The function is_HyperellipticCurve is deprecated; use
→˓ isinstance(..., HyperellipticCurve_generic) instead.
See https://github.com/sagemath/sage/issues/38022 for details.
True

20.3 Hyperelliptic curves over a finite field

EXAMPLES:

sage: K.<a> = GF(9, a)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - x^5 - 2, x^2 + a)
sage: C._points_fast_sqrt()
[(0 : 1 : 0), (a + 1 : a : 1), (a + 1 : a + 1 : 1), (2 : a + 1 : 1),
(2*a : 2*a + 2 : 1), (2*a : 2*a : 1), (1 : a + 1 : 1)]

AUTHORS:

• David Kohel (2006)

• Robert Bradshaw (2007)

• Alyson Deines, Marina Gresham, Gagan Sekhon, (2010)

• Daniel Krenn (2011)

• Jean-Pierre Flori, Jan Tuitman (2013)

• Kiran Kedlaya (2016)

• Dean Bisogno (2017): Fixed Hasse-Witt computation

class sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field(PP,
f ,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic, ProjectivePlaneCurve_finite_field

20.3. Hyperelliptic curves over a finite field 653

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field

Elliptic curves, Release 10.4.rc1

Cartier_matrix()

INPUT:

• E : Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• M: The matrix𝑀 = (𝑐𝑝𝑖−𝑗), where 𝑐𝑖 are the coefficients of 𝑓(𝑥)(𝑝−1)/2 =
∑︀
𝑐𝑖𝑥

𝑖

REFERENCES:

N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic 𝑝 > 2.

EXAMPLES:

sage: K.<x> = GF(9, x)[]
sage: C = HyperellipticCurve(x^7 - 1, 0)
sage: C.Cartier_matrix()
[0 0 2]
[0 0 0]
[0 1 0]

sage: K.<x> = GF(49, x)[]
sage: C = HyperellipticCurve(x^5 + 1, 0)
sage: C.Cartier_matrix()
[0 3]
[0 0]

sage: P.<x> = GF(9, a)[]
sage: E = HyperellipticCurve(x^29 + 1, 0)
sage: E.Cartier_matrix()
[0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0]

Hasse_Witt()

INPUT:

• E : Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• N : The matrix 𝑁 =𝑀𝑀𝑝 . . .𝑀𝑝𝑔−1

where𝑀 = 𝑐𝑝𝑖−𝑗 , and 𝑓(𝑥)(𝑝−1)/2 =
∑︀
𝑐𝑖𝑥

𝑖

Reference-N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic 𝑝 > 2.

EXAMPLES:

sage: K.<x> = GF(9, x)[]
sage: C = HyperellipticCurve(x^7 - 1, 0)

(continues on next page)

654 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: C.Hasse_Witt()
[0 0 0]
[0 0 0]
[0 0 0]

sage: K.<x> = GF(49, x)[]
sage: C = HyperellipticCurve(x^5 + 1, 0)
sage: C.Hasse_Witt()
[0 0]
[0 0]

sage: P.<x> = GF(9, a)[]
sage: E = HyperellipticCurve(x^29 + 1, 0)
sage: E.Hasse_Witt()
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]

a_number()

INPUT:

• E: Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• a : a-number

EXAMPLES:

sage: K.<x> = GF(49, x)[]
sage: C = HyperellipticCurve(x^5 + 1, 0)
sage: C.a_number()
1

sage: K.<x> = GF(9, x)[]
sage: C = HyperellipticCurve(x^7 - 1, 0)
sage: C.a_number()
1

sage: P.<x> = GF(9, a)[]
sage: E = HyperellipticCurve(x^29 + 1, 0)
sage: E.a_number()
5

cardinality(extension_degree=1)
Count points on a single extension of the base field.

EXAMPLES:

20.3. Hyperelliptic curves over a finite field 655

Elliptic curves, Release 10.4.rc1

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5)
sage: H.cardinality()
106
sage: H.cardinality(15)
1160968955369992567076405831000
sage: H.cardinality(100)
270481382942152609326719471080753083367793838278100277689020104911710151430673927943945601434674459120495370826289654897190781715493352266982697064575800553229661690000887425442240414673923744999504000

sage: K = GF(37)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5)
sage: H.cardinality()
40
sage: H.cardinality(2)
1408
sage: H.cardinality(3)
50116

The following example shows that Issue #20391 has been resolved:

sage: F=GF(23)
sage: x=polygen(F)
sage: C=HyperellipticCurve(x^8+1)
sage: C.cardinality()
24

cardinality_exhaustive(extension_degree=1, algorithm=None)
Count points on a single extension of the base field by enumerating over x and solving the resulting quadratic
equation for y.

EXAMPLES:

sage: K.<a> = GF(9, a)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - 1, x^2 + a)
sage: C.cardinality_exhaustive()
7

sage: K = GF(next_prime(1<<10))
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_exhaustive()
1025

sage: P.<x> = PolynomialRing(GF(9, a))
sage: H = HyperellipticCurve(x^5+x^2+1)
sage: H.count_points(5)
[18, 78, 738, 6366, 60018]

sage: F.<a> = GF(4); P.<x> = F[]
sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1)
sage: H.count_points(6)
[2, 24, 74, 256, 1082, 4272]

cardinality_hypellfrob(extension_degree=1, algorithm=None)
Count points on a single extension of the base field using the hypellfrob program.

656 Chapter 20. Hyperelliptic curves

https://github.com/sagemath/sage/issues/20391

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: K = GF(next_prime(1<<10))
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_hypellfrob()
1025

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_hypellfrob()
50162
sage: H.cardinality_hypellfrob(3)
124992471088310

count_points(n=1)

Count points over finite fields.

INPUT:

• n – integer.

OUTPUT:

An integer. The number of points over F𝑞, . . . ,F𝑞𝑛 on a hyperelliptic curve over a finite field F𝑞 .

Warning: This is currently using exhaustive search for hyperelliptic curves over non-prime fields, which
can be awfully slow.

EXAMPLES:

sage: P.<x> = PolynomialRing(GF(3))
sage: C = HyperellipticCurve(x^3+x^2+1)
sage: C.count_points(4)
[6, 12, 18, 96]
sage: C.base_extend(GF(9, a)).count_points(2)
[12, 96]

sage: K = GF(2**31-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 3*t + 5)
sage: H.count_points() # long time, 2.4 sec on a Corei7
[2147464821]
sage: H.count_points(n=2) # long time, 30s on a Corei7
[2147464821, 4611686018988310237]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5)
sage: H.count_points(n=6)
[112, 16360, 2045356, 260199160, 33038302802, 4195868633548]

sage: P.<x> = PolynomialRing(GF(3))
sage: H = HyperellipticCurve(x^3+x^2+1)
sage: C1 = H.count_points(4); C1
[6, 12, 18, 96]

(continues on next page)

20.3. Hyperelliptic curves over a finite field 657

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: C2 = sage.schemes.generic.scheme.Scheme.count_points(H,4); C2 # long␣
→˓time, 2s on a Corei7
[6, 12, 18, 96]
sage: C1 == C2 # long time, because we need C2 to be defined
True

sage: P.<x> = PolynomialRing(GF(9, a))
sage: H = HyperellipticCurve(x^5+x^2+1)
sage: H.count_points(5)
[18, 78, 738, 6366, 60018]

sage: F.<a> = GF(4); P.<x> = F[]
sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1)
sage: H.count_points(6)
[2, 24, 74, 256, 1082, 4272]

This example shows that Issue #20391 is resolved:

sage: x = polygen(GF(4099))
sage: H = HyperellipticCurve(x^6 + x + 1)
sage: H.count_points(1)
[4106]

count_points_exhaustive(n=1, naive=False)
Count the number of points on the curve over the first 𝑛 extensions of the base field by exhaustive search
if 𝑛 if smaller than 𝑔, the genus of the curve, and by computing the frobenius polynomial after performing
exhaustive search on the first 𝑔 extensions if 𝑛 > 𝑔 (unless naive == True).

EXAMPLES:

sage: K = GF(5)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.count_points_exhaustive(n=5)
[9, 27, 108, 675, 3069]

When 𝑛 > 𝑔, the frobenius polynomial is computed from the numbers of points of the curve over the first 𝑔
extension, so that computing the number of points on extensions of degree 𝑛 > 𝑔 is not much more expensive
than for 𝑛 == 𝑔:

sage: H.count_points_exhaustive(n=15)
[9,
27,
108,
675,
3069,
16302,
78633,
389475,
1954044,
9768627,
48814533,
244072650,
1220693769,
6103414827,
30517927308]

658 Chapter 20. Hyperelliptic curves

https://github.com/sagemath/sage/issues/20391

Elliptic curves, Release 10.4.rc1

This behavior can be disabled by passing naive=True:

sage: H.count_points_exhaustive(n=6, naive=True) # long time, 7s on a Corei7
[9, 27, 108, 675, 3069, 16302]

count_points_frobenius_polynomial(n=1, f=None)
Count the number of points on the curve over the first𝑛 extensions of the base field by computing the frobenius
polynomial.

EXAMPLES:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^19 + t + 1)

The following computation takes a long time as the complete characteristic polynomial of the frobenius is
computed:

sage: H.count_points_frobenius_polynomial(3) # long time, 20s on a Corei7␣
→˓(when computed before the following test of course)
[49491, 2500024375, 124992509154249]

As the polynomial is cached, further computations of number of points are really fast:

sage: H.count_points_frobenius_polynomial(19) # long time, because of the␣
→˓previous test
[49491,
2500024375,
124992509154249,
6249500007135192947,
312468751250758776051811,
15623125093747382662737313867,
781140631562281338861289572576257,
39056250437482500417107992413002794587,
1952773465623687539373429411200893147181079,
97636720507718753281169963459063147221761552935,
4881738388665429945305281187129778704058864736771824,
244082037694882831835318764490138139735446240036293092851,
12203857802706446708934102903106811520015567632046432103159713,
610180686277519628999996211052002771035439565767719719151141201339,
30508424133189703930370810556389262704405225546438978173388673620145499,
1525390698235352006814610157008906752699329454643826047826098161898351623931,
76268009521069364988723693240288328729528917832735078791261015331201838856825193,
→˓

3813324208043947180071195938321176148147244128062172555558715783649006587868272993991,
→˓

190662397077989315056379725720120486231213267083935859751911720230901597698389839098903847]

count_points_hypellfrob(n=1, N=None, algorithm=None)
Count the number of points on the curve over the first 𝑛 extensions of the base field using the hypellfrob
program.

This only supports prime fields of large enough characteristic.

EXAMPLES:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)

(continues on next page)

20.3. Hyperelliptic curves over a finite field 659

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: H = HyperellipticCurve(t^21 + 3*t^5 + 5)
sage: H.count_points_hypellfrob()
[49804]
sage: H.count_points_hypellfrob(2)
[49804, 2499799038]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^11 + 3*t^5 + 5)
sage: H.count_points_hypellfrob()
[127]
sage: H.count_points_hypellfrob(n=5)
[127, 16335, 2045701, 260134299, 33038098487]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5)
sage: H.count_points(n=6)
[112, 16360, 2045356, 260199160, 33038302802, 4195868633548]

The base field should be prime:

sage: K.<z> = GF(19**10)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + (z+1)*t^5 + 1)
sage: H.count_points_hypellfrob()
Traceback (most recent call last):
...
ValueError: hypellfrob does not support non-prime fields

and the characteristic should be large enough:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.count_points_hypellfrob()
Traceback (most recent call last):
...
ValueError: p=7 should be greater than (2*g+1)(2*N-1)=27

count_points_matrix_traces(n=1, M=None, N=None)
Count the number of points on the curve over the first 𝑛 extensions of the base field by computing traces of
powers of the frobenius matrix. This requires less 𝑝-adic precision than computing the charpoly of the matrix
when 𝑛 < 𝑔 where 𝑔 is the genus of the curve.

EXAMPLES:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^19 + t + 1)
sage: H.count_points_matrix_traces(3)
[49491, 2500024375, 124992509154249]

frobenius_matrix(N=None, algorithm='hypellfrob')
Compute 𝑝-adic frobenius matrix to precision 𝑝𝑁 . If𝑁 not supplied, a default value is selected, which is the
minimum needed to recover the charpoly unambiguously.

660 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

Note: Currently only implemented using hypellfrob, which means it only works over the prime field
𝐺𝐹 (𝑝), and requires 𝑝 > (2𝑔 + 1)(2𝑁 − 1).

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_matrix()
[1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)]
[1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)]
[1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)]
[1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]

The hypellfrob program doesn’t support non-prime fields:

sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_matrix(algorithm= hypellfrob)
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented
for hyperelliptic curves defined over prime fields.

nor too small characteristic:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_matrix(algorithm= hypellfrob)
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-
→˓1) = 81

frobenius_matrix_hypellfrob(N=None)

Compute 𝑝-adic frobenius matrix to precision 𝑝𝑁 . If𝑁 not supplied, a default value is selected, which is the
minimum needed to recover the charpoly unambiguously.

Note: Implemented using hypellfrob, which means it only works over the prime field 𝐺𝐹 (𝑝), and
requires 𝑝 > (2𝑔 + 1)(2𝑁 − 1).

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_matrix_hypellfrob()
[1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)]
[1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)]
[1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)]
[1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]

The hypellfrob program doesn’t support non-prime fields:

20.3. Hyperelliptic curves over a finite field 661

Elliptic curves, Release 10.4.rc1

sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_matrix_hypellfrob()
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented
for hyperelliptic curves defined over prime fields.

nor too small characteristic:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_matrix_hypellfrob()
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-
→˓1) = 81

frobenius_polynomial()

Compute the charpoly of frobenius, as an element of [𝑥].

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Slightly larger example:

sage: K = GF(2003)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
sage: H.frobenius_polynomial()
x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027

Curves defined over a non-prime field of odd characteristic, or an odd prime field which is too small compared
to the genus, are supported via PARI:

sage: K.<z> = GF(23**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^3 + z*t + 4)
sage: H.frobenius_polynomial()
x^2 - 15*x + 12167

sage: K.<z> = GF(3**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z**3)
sage: H.frobenius_polynomial()
x^4 - 3*x^3 + 10*x^2 - 81*x + 729

662 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

Over prime fields of odd characteristic, ℎ may be non-zero:

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 27*t + 3, t)
sage: H.frobenius_polynomial()
x^4 + 2*x^3 - 58*x^2 + 202*x + 10201

Over prime fields of odd characteristic, 𝑓 may have even degree:

sage: H = HyperellipticCurve(t^6 + 27*t + 3)
sage: H.frobenius_polynomial()
x^4 + 25*x^3 + 322*x^2 + 2525*x + 10201

In even characteristic, the naive algorithm could cover all cases because we can easily check for squareness
in quotient rings of polynomial rings over finite fields but these rings unfortunately do not support iteration:

sage: K.<z> = GF(2**5)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z**3, t)
sage: H.frobenius_polynomial()
x^4 - x^3 + 16*x^2 - 32*x + 1024

frobenius_polynomial_cardinalities(a=None)
Compute the charpoly of frobenius, as an element of [𝑥], by computing the number of points on the curve
over 𝑔 extensions of the base field where 𝑔 is the genus of the curve.

Warning: This is highly inefficient when the base field or the genus of the curve are large.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_cardinalities()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_cardinalities()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Curve over a non-prime field:

sage: K.<z> = GF(7**2)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z^2)
sage: H.frobenius_polynomial_cardinalities()
x^4 + 8*x^3 + 70*x^2 + 392*x + 2401

This method may actually be useful when hypellfrob does not work:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)

(continues on next page)

20.3. Hyperelliptic curves over a finite field 663

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: H.frobenius_polynomial_matrix(algorithm= hypellfrob)
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-
→˓1) = 81
sage: H.frobenius_polynomial_cardinalities()
x^8 - 5*x^7 + 7*x^6 + 36*x^5 - 180*x^4 + 252*x^3 + 343*x^2 - 1715*x + 2401

frobenius_polynomial_matrix(M=None, algorithm='hypellfrob')
Compute the charpoly of frobenius, as an element of [𝑥], by computing the charpoly of the frobenius matrix.

This is currently only supported when the base field is prime and large enough using the hypellfrob
library.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_matrix()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_matrix()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Curves defined over larger prime fields:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^5 + 1)
sage: H.frobenius_polynomial_matrix()
x^8 + 281*x^7 + 55939*x^6 + 14144175*x^5 + 3156455369*x^4 + 707194605825*x^3
+ 139841906155939*x^2 + 35122892542149719*x + 6249500014999800001
sage: H = HyperellipticCurve(t^15 + t^5 + 1)
sage: H.frobenius_polynomial_matrix() # long time, 8s on a Corei7
x^14 - 76*x^13 + 220846*x^12 - 12984372*x^11 + 24374326657*x^10 -␣
→˓1203243210304*x^9
+ 1770558798515792*x^8 - 74401511415210496*x^7 + 88526169366991084208*x^6
- 3007987702642212810304*x^5 + 3046608028331197124223343*x^4
- 81145833008762983138584372*x^3 + 69007473838551978905211279154*x^2
- 1187357507124810002849977200076*x + 781140631562281254374947500349999

This hypellfrob program doesn’t support non-prime fields:

sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_polynomial_matrix(algorithm= hypellfrob)
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented
for hyperelliptic curves defined over prime fields.

frobenius_polynomial_pari()

664 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

Compute the charpoly of frobenius, as an element of [𝑥], by calling the PARI function hyperellchar-
poly.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_pari()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_pari()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Slightly larger example:

sage: K = GF(2003)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
sage: H.frobenius_polynomial_pari()
x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027

Curves defined over a non-prime field are supported as well:

sage: K.<a> = GF(7^2)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + a*t + 1)
sage: H.frobenius_polynomial_pari()
x^4 + 4*x^3 + 84*x^2 + 196*x + 2401

sage: K.<z> = GF(23**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^3 + z*t + 4)
sage: H.frobenius_polynomial_pari()
x^2 - 15*x + 12167

Over prime fields of odd characteristic, ℎ may be non-zero:

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 27*t + 3, t)
sage: H.frobenius_polynomial_pari()
x^4 + 2*x^3 - 58*x^2 + 202*x + 10201

p_rank()

INPUT:

• E : Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• pr :p-rank

EXAMPLES:

sage: K.<x> = GF(49, x)[]
sage: C = HyperellipticCurve(x^5 + 1, 0)

(continues on next page)

20.3. Hyperelliptic curves over a finite field 665

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: C.p_rank()
0

sage: K.<x> = GF(9, x)[]
sage: C = HyperellipticCurve(x^7 - 1, 0)
sage: C.p_rank()
0

sage: P.<x> = GF(9, a)[]
sage: E = HyperellipticCurve(x^29 + 1, 0)
sage: E.p_rank()
0

points()

All the points on this hyperelliptic curve.

EXAMPLES:

sage: x = polygen(GF(7))
sage: C = HyperellipticCurve(x^7 - x^2 - 1)
sage: C.points()
[(0 : 1 : 0), (2 : 5 : 1), (2 : 2 : 1), (3 : 0 : 1), (4 : 6 : 1),
(4 : 1 : 1), (5 : 0 : 1), (6 : 5 : 1), (6 : 2 : 1)]

sage: x = polygen(GF(121, a))
sage: C = HyperellipticCurve(x^5 + x - 1, x^2 + 2)
sage: len(C.points())
122

Conics are allowed (the issue reported at Issue #11800 has been resolved):

sage: R.<x> = GF(7)[]
sage: H = HyperellipticCurve(3*x^2 + 5*x + 1)
sage: H.points()
[(0 : 6 : 1), (0 : 1 : 1), (1 : 4 : 1), (1 : 3 : 1), (2 : 4 : 1),
(2 : 3 : 1), (3 : 6 : 1), (3 : 1 : 1)]

The method currently lists points on the plane projective model, that is the closure in P2 of the curve defined
by 𝑦2 + ℎ𝑦 = 𝑓 . This means that one point (0 : 1 : 0) at infinity is returned if the degree of the curve is at
least 4 and deg(𝑓) > deg(ℎ) + 1. This point is a singular point of the plane model. Later implementations
may consider a smooth model instead since that would be a more relevant object. Then, for a curve whose
only singularity is at (0 : 1 : 0), the point at infinity would be replaced by a number of rational points of the
smooth model. We illustrate this with an example of a genus 2 hyperelliptic curve:

sage: R.<x>=GF(11)[]
sage: H = HyperellipticCurve(x*(x+1)*(x+2)*(x+3)*(x+4)*(x+5))
sage: H.points()
[(0 : 1 : 0), (0 : 0 : 1), (1 : 7 : 1), (1 : 4 : 1), (5 : 7 : 1), (5 : 4 : 1),
(6 : 0 : 1), (7 : 0 : 1), (8 : 0 : 1), (9 : 0 : 1), (10 : 0 : 1)]

The plane model of the genus 2 hyperelliptic curve in the above example is the curve in P2 defined by 𝑦2𝑧4 =
𝑔(𝑥, 𝑧) where 𝑔(𝑥, 𝑧) = 𝑥(𝑥+ 𝑧)(𝑥+ 2𝑧)(𝑥+ 3𝑧)(𝑥+ 4𝑧)(𝑥+ 5𝑧). This model has one point at infinity
(0 : 1 : 0) which is also the only singular point of the plane model. In contrast, the hyperelliptic curve is
smooth and imbeds via the equation 𝑦2 = 𝑔(𝑥, 𝑧) into weighted projected space P(1, 3, 1). The latter model
has two points at infinity: (1 : 1 : 0) and (1 : −1 : 0).

666 Chapter 20. Hyperelliptic curves

https://github.com/sagemath/sage/issues/11800

Elliptic curves, Release 10.4.rc1

zeta_function()

Compute the zeta function of the hyperelliptic curve.

EXAMPLES:

sage: F = GF(2); R.<t> = F[]
sage: H = HyperellipticCurve(t^9 + t, t^4)
sage: H.zeta_function()
(16*x^8 + 8*x^7 + 8*x^6 + 4*x^5 + 6*x^4 + 2*x^3 + 2*x^2 + x + 1)/(2*x^2 - 3*x␣
→˓+ 1)

sage: F.<a> = GF(4); R.<t> = F[]
sage: H = HyperellipticCurve(t^5 + t^3 + t^2 + t + 1, t^2 + t + 1)
sage: H.zeta_function()
(16*x^4 + 8*x^3 + x^2 + 2*x + 1)/(4*x^2 - 5*x + 1)

sage: F.<a> = GF(9); R.<t> = F[]
sage: H = HyperellipticCurve(t^5 + a*t)
sage: H.zeta_function()
(81*x^4 + 72*x^3 + 32*x^2 + 8*x + 1)/(9*x^2 - 10*x + 1)

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.zeta_function()
(1369*x^4 + 37*x^3 - 52*x^2 + x + 1)/(37*x^2 - 38*x + 1)

A quadratic twist:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.zeta_function()
(1369*x^4 - 37*x^3 - 52*x^2 - x + 1)/(37*x^2 - 38*x + 1)

20.4 Hyperelliptic curves over a 𝑝-adic field

class sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field(PP,
f ,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic, ProjectivePlaneCurve_field

P_to_S(P, S)
Given a finite Weierstrass point 𝑃 and a point 𝑆 in the same disc, computes the Coleman integrals
{
∫︀ 𝑆
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

INPUT:

• P: finite Weierstrass point

• S: point in disc of P

OUTPUT:

Coleman integrals {
∫︀ 𝑆
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

20.4. Hyperelliptic curves over a 𝑝-adic field 667

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,4)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: HJ = HK.curve_over_ram_extn(10)
sage: S = HK.get_boundary_point(HJ,P)
sage: HK.P_to_S(P, S)
(2*a + 4*a^3 + 2*a^11 + 4*a^13 + 2*a^17 + 2*a^19 + a^21 + 4*a^23 + a^25 + 2*a^
→˓27 + 2*a^29 + 3*a^31 + 4*a^33 + O(a^35), a^-5 + 2*a + 2*a^3 + a^7 + 3*a^11␣
→˓+ a^13 + 3*a^15 + 3*a^17 + 2*a^19 + 4*a^21 + 4*a^23 + 4*a^25 + 2*a^27 + a^
→˓29 + a^31 + O(a^33))

AUTHOR:

• Jennifer Balakrishnan

S_to_Q(S, Q)

Given 𝑆 a point on self over an extension field, computes the Coleman integrals {
∫︀ 𝑄
𝑆
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

one should be able to feed `S,Q` into coleman_integral, but currently that segfaults

INPUT:

• S: a point with coordinates in an extension of Q𝑝 (with unif. a)

• Q: a non-Weierstrass point defined over Q𝑝
OUTPUT:

the Coleman integrals {
∫︀ 𝑄
𝑆
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0 in terms of 𝑎

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: J.<a> = K.extension(x^20-5)
sage: HJ = H.change_ring(J)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: S = HK.get_boundary_point(HJ,P)
sage: P_to_S = HK.P_to_S(P,S)
sage: S_to_Q = HJ.S_to_Q(S,Q)
sage: P_to_S + S_to_Q
(2*a^40 + a^80 + a^100 + O(a^105), a^20 + 2*a^40 + 4*a^60 + 2*a^80 + O(a^103))
sage: HK.coleman_integrals_on_basis(P,Q)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + O(5^7), 5 + 2*5^2 + 4*5^3 + 2*5^4 + 5^6 + O(5^7))

AUTHOR:

• Jennifer Balakrishnan

coleman_integral(w, P, Q, algorithm='None')

Return the Coleman integral
∫︀ 𝑄
𝑃
𝑤.

INPUT:

• w differential (if one of P,Q is Weierstrass, w must be odd)

668 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

• P point on self

• Q point on self

• algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integral
∫︀ 𝑄
𝑃
𝑤

EXAMPLES:

Example of Leprevost from Kiran Kedlaya The first two should be zero as (𝑃 − 𝑄) = 30(𝑃 − 𝑄) in the
Jacobian and 𝑑𝑥/2𝑦 and 𝑥𝑑𝑥/2𝑦 are holomorphic.

sage: K = pAdicField(11, 6)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C(-1, 1); P1 = C(-1, -1)
sage: Q = C(0, 1/4); Q1 = C(0, -1/4)
sage: x, y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coleman_integral(P, Q)
O(11^6)
sage: C.coleman_integral(x*w, P, Q)
O(11^6)
sage: C.coleman_integral(x^2*w, P, Q)
7*11 + 6*11^2 + 3*11^3 + 11^4 + 5*11^5 + O(11^6)

sage: p = 71; m = 4
sage: K = pAdicField(p, m)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C(-1, 1); P1 = C(-1, -1)
sage: Q = C(0, 1/4); Q1 = C(0, -1/4)
sage: x, y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.integrate(P, Q), (x*w).integrate(P, Q)
(O(71^4), O(71^4))
sage: R, R1 = C.lift_x(4, all=True)
sage: w.integrate(P, R)
50*71 + 3*71^2 + 43*71^3 + O(71^4)
sage: w.integrate(P, R) + w.integrate(P1, R1)
O(71^4)

A simple example, integrating dx:

sage: R.<x> = QQ[x]
sage: E= HyperellipticCurve(x^3-4*x+4)
sage: K = Qp(5,10)
sage: EK = E.change_ring(K)
sage: P = EK(2, 2)
sage: Q = EK.teichmuller(P)
sage: x, y = EK.monsky_washnitzer_gens()
sage: EK.coleman_integral(x.diff(), P, Q)
5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: Q[0] - P[0]
5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)

20.4. Hyperelliptic curves over a 𝑝-adic field 669

Elliptic curves, Release 10.4.rc1

Yet another example:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x*(x-1)*(x+9))
sage: K = Qp(7,10)
sage: HK = H.change_ring(K)
sage: import sage.schemes.hyperelliptic_curves.monsky_washnitzer as mw
sage: M_frob, forms = mw.matrix_of_frobenius_hyperelliptic(HK)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: f = forms[0]
sage: S = HK(9,36)
sage: Q = HK.teichmuller(S)
sage: P = HK(-1,4)
sage: b = x*w*w._coeff.parent()(f)
sage: HK.coleman_integral(b,P,Q)
7 + 7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^6 + 5*7^7 + 3*7^8 + 4*7^9 + 4*7^10 + O(7^
→˓11)

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3+1)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: w = HK.invariant_differential()
sage: P = HK(0,1)
sage: Q = HK(5, 1 + 3*5^3 + 2*5^4 + 2*5^5 + 3*5^7)
sage: x,y = HK.monsky_washnitzer_gens()
sage: (2*y*w).coleman_integral(P,Q)
5 + O(5^9)
sage: xloc,yloc,zloc = HK.local_analytic_interpolation(P,Q)
sage: I2 = (xloc.derivative()/(2*yloc)).integral()
sage: I2.polynomial()(1) - I2(0)
3*5 + 2*5^2 + 2*5^3 + 5^4 + 4*5^6 + 5^7 + O(5^9)
sage: HK.coleman_integral(w,P,Q)
3*5 + 2*5^2 + 2*5^3 + 5^4 + 4*5^6 + 5^7 + O(5^9)

Integrals involving Weierstrass points:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: negP = HK(0,-3)
sage: T = HK(0,1,0)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: HK.coleman_integral(w*x^3,S,T)
0
sage: HK.coleman_integral(w*x^3,T,S)
0
sage: HK.coleman_integral(w,S,P)
2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9)
sage: HK.coleman_integral(w,T,P)
2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9)
sage: HK.coleman_integral(w*x^3,T,P)
5^2 + 2*5^3 + 3*5^6 + 3*5^7 + O(5^8)

(continues on next page)

670 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: HK.coleman_integral(w*x^3,S,P)
5^2 + 2*5^3 + 3*5^6 + 3*5^7 + O(5^8)
sage: HK.coleman_integral(w, P, negP, algorithm= teichmuller)
5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 3*5^6 + 2*5^7 + 4*5^8 + O(5^9)
sage: HK.coleman_integral(w, P, negP)
5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 3*5^6 + 2*5^7 + 4*5^8 + O(5^9)

AUTHORS:

• Robert Bradshaw (2007-03)

• Kiran Kedlaya (2008-05)

• Jennifer Balakrishnan (2010-02)

coleman_integral_P_to_S(w, P, S)

Given a finite Weierstrass point 𝑃 and a point 𝑆 in the same disc, computes the Coleman integral
∫︀ 𝑆
𝑃
𝑤

INPUT:

• w: differential

• P: Weierstrass point

• S: point in the same disc of P (S is defined over an extension of Q𝑝; coordinates of S are given in terms
of uniformizer 𝑎)

OUTPUT:

Coleman integral
∫︀ 𝑆
𝑃
𝑤 in terms of 𝑎

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,4)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: J.<a> = K.extension(x^10-5)
sage: HJ = H.change_ring(J)
sage: S = HK.get_boundary_point(HJ,P)
sage: x,y = HK.monsky_washnitzer_gens()
sage: S[0]-P[0] == HK.coleman_integral_P_to_S(x.diff(),P,S)
True
sage: HK.coleman_integral_P_to_S(HK.invariant_differential(),P,S) == HK.P_to_
→˓S(P,S)[0]
True

AUTHOR:

• Jennifer Balakrishnan

coleman_integral_S_to_Q(w, S, Q)

Compute the Coleman integral
∫︀ 𝑄
𝑆
𝑤

one should be able to feed `S,Q` into coleman_integral, but currently that segfaults

INPUT:

• w: a differential

• S: a point with coordinates in an extension of Q𝑝

20.4. Hyperelliptic curves over a 𝑝-adic field 671

Elliptic curves, Release 10.4.rc1

• Q: a non-Weierstrass point defined over Q𝑝
OUTPUT:

the Coleman integral
∫︀ 𝑄
𝑆
𝑤

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: J.<a> = K.extension(x^20-5)
sage: HJ = H.change_ring(J)
sage: x,y = HK.monsky_washnitzer_gens()
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: S = HK.get_boundary_point(HJ,P)
sage: P_to_S = HK.coleman_integral_P_to_S(y.diff(),P,S)
sage: S_to_Q = HJ.coleman_integral_S_to_Q(y.diff(),S,Q)
sage: P_to_S + S_to_Q
3 + O(a^119)
sage: HK.coleman_integral(y.diff(),P,Q)
3 + O(5^6)

AUTHOR:

• Jennifer Balakrishnan

coleman_integral_from_weierstrass_via_boundary(w, P, Q, d)

Computes the Coleman integral
∫︀ 𝑄
𝑃
𝑤 via a boundary point in the disc of 𝑃 , defined over a degree 𝑑 extension

INPUT:

• w: a differential

• P: a Weierstrass point

• Q: a non-Weierstrass point

• d: degree of extension where coordinates of boundary point lie

OUTPUT:

the Coleman integral
∫︀ 𝑄
𝑃
𝑤, written in terms of the uniformizer 𝑎 of the degree 𝑑 extension

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: x,y = HK.monsky_washnitzer_gens()
sage: HK.coleman_integral_from_weierstrass_via_boundary(y.diff(),P,Q,20)
3 + O(a^119)
sage: HK.coleman_integral(y.diff(),P,Q)
3 + O(5^6)
sage: w = HK.invariant_differential()
sage: HK.coleman_integral_from_weierstrass_via_boundary(w,P,Q,20)
2*a^40 + a^80 + a^100 + O(a^105)

(continues on next page)

672 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: HK.coleman_integral(w,P,Q)
2*5^2 + 5^4 + 5^5 + 3*5^6 + O(5^7)

AUTHOR:

• Jennifer Balakrishnan

coleman_integrals_on_basis(P, Q, algorithm=None)

Computes the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

INPUT:

• P point on self

• Q point on self

• algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C.lift_x(2)
sage: Q = C.lift_x(3)
sage: C.coleman_integrals_on_basis(P, Q)
(9*11^2 + 7*11^3 + 5*11^4 + O(11^5), 11 + 3*11^2 + 7*11^3 + 11^4 + O(11^5),␣
→˓10*11 + 11^2 + 5*11^3 + 5*11^4 + O(11^5), 3 + 9*11^2 + 6*11^3 + 11^4 + O(11^
→˓5))
sage: C.coleman_integrals_on_basis(P, Q, algorithm= teichmuller)
(9*11^2 + 7*11^3 + 5*11^4 + O(11^5), 11 + 3*11^2 + 7*11^3 + 11^4 + O(11^5),␣
→˓10*11 + 11^2 + 5*11^3 + 5*11^4 + O(11^5), 3 + 9*11^2 + 6*11^3 + 11^4 + O(11^
→˓5))

sage: K = pAdicField(11,5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C(11^-2, 10*11^-5 + 10*11^-4 + 10*11^-3 + 2*11^-2 + 10*11^-1)
sage: Q = C(3*11^-2, 11^-5 + 11^-3 + 10*11^-2 + 7*11^-1)
sage: C.coleman_integrals_on_basis(P, Q)
(6*11^3 + 3*11^4 + 8*11^5 + 4*11^6 + 9*11^7 + O(11^8), 11 + 10*11^2 + 8*11^3␣
→˓+ 7*11^4 + 5*11^5 + O(11^6), 6*11^-1 + 2 + 6*11 + 3*11^3 + O(11^4), 9*11^-3␣
→˓+ 9*11^-2 + 9*11^-1 + 2*11 + O(11^2))

sage: R = C(0,1/4)
sage: a = C.coleman_integrals_on_basis(P,R) # long time (7s on sage.math,␣
→˓2011)
sage: b = C.coleman_integrals_on_basis(R,Q) # long time (9s on sage.math,␣
→˓2011)
sage: c = C.coleman_integrals_on_basis(P,Q) # long time
sage: a+b == c # long time
True

20.4. Hyperelliptic curves over a 𝑝-adic field 673

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: T = HK(0,1,0)
sage: Q = HK.lift_x(5^-2)
sage: R = HK.lift_x(4*5^-2)
sage: HK.coleman_integrals_on_basis(S,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^
→˓4 + 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(T,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^
→˓4 + 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(P,S) == -HK.coleman_integrals_on_basis(S,
→˓P)
True
sage: HK.coleman_integrals_on_basis(S,Q)
(5 + O(5^4), 4*5^-1 + 4 + 4*5 + 4*5^2 + O(5^3))
sage: HK.coleman_integrals_on_basis(Q,R)
(5 + 2*5^2 + 2*5^3 + 2*5^4 + 3*5^5 + 3*5^6 + 3*5^7 + 5^8 + O(5^9), 3*5^-1 +␣
→˓2*5^4 + 5^5 + 2*5^6 + O(5^7))
sage: HK.coleman_integrals_on_basis(S,R) == HK.coleman_integrals_on_basis(S,
→˓Q) + HK.coleman_integrals_on_basis(Q,R)
True
sage: HK.coleman_integrals_on_basis(T,T)
(0, 0)
sage: HK.coleman_integrals_on_basis(S,T)
(0, 0)

AUTHORS:

• Robert Bradshaw (2007-03): non-Weierstrass points

• Jennifer Balakrishnan and Robert Bradshaw (2010-02): Weierstrass points

coleman_integrals_on_basis_hyperelliptic(P, Q, algorithm=None)

Computes the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

INPUT:

• P point on self

• Q point on self

• algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C.lift_x(2)
sage: Q = C.lift_x(3)

(continues on next page)

674 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: C.coleman_integrals_on_basis(P, Q)
(9*11^2 + 7*11^3 + 5*11^4 + O(11^5), 11 + 3*11^2 + 7*11^3 + 11^4 + O(11^5),␣
→˓10*11 + 11^2 + 5*11^3 + 5*11^4 + O(11^5), 3 + 9*11^2 + 6*11^3 + 11^4 + O(11^
→˓5))
sage: C.coleman_integrals_on_basis(P, Q, algorithm= teichmuller)
(9*11^2 + 7*11^3 + 5*11^4 + O(11^5), 11 + 3*11^2 + 7*11^3 + 11^4 + O(11^5),␣
→˓10*11 + 11^2 + 5*11^3 + 5*11^4 + O(11^5), 3 + 9*11^2 + 6*11^3 + 11^4 + O(11^
→˓5))

sage: K = pAdicField(11,5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C(11^-2, 10*11^-5 + 10*11^-4 + 10*11^-3 + 2*11^-2 + 10*11^-1)
sage: Q = C(3*11^-2, 11^-5 + 11^-3 + 10*11^-2 + 7*11^-1)
sage: C.coleman_integrals_on_basis(P, Q)
(6*11^3 + 3*11^4 + 8*11^5 + 4*11^6 + 9*11^7 + O(11^8), 11 + 10*11^2 + 8*11^3␣
→˓+ 7*11^4 + 5*11^5 + O(11^6), 6*11^-1 + 2 + 6*11 + 3*11^3 + O(11^4), 9*11^-3␣
→˓+ 9*11^-2 + 9*11^-1 + 2*11 + O(11^2))

sage: R = C(0,1/4)
sage: a = C.coleman_integrals_on_basis(P,R) # long time (7s on sage.math,␣
→˓2011)
sage: b = C.coleman_integrals_on_basis(R,Q) # long time (9s on sage.math,␣
→˓2011)
sage: c = C.coleman_integrals_on_basis(P,Q) # long time
sage: a+b == c # long time
True

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: T = HK(0,1,0)
sage: Q = HK.lift_x(5^-2)
sage: R = HK.lift_x(4*5^-2)
sage: HK.coleman_integrals_on_basis(S,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^
→˓4 + 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(T,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^
→˓4 + 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(P,S) == -HK.coleman_integrals_on_basis(S,
→˓P)
True
sage: HK.coleman_integrals_on_basis(S,Q)
(5 + O(5^4), 4*5^-1 + 4 + 4*5 + 4*5^2 + O(5^3))
sage: HK.coleman_integrals_on_basis(Q,R)
(5 + 2*5^2 + 2*5^3 + 2*5^4 + 3*5^5 + 3*5^6 + 3*5^7 + 5^8 + O(5^9), 3*5^-1 +␣
→˓2*5^4 + 5^5 + 2*5^6 + O(5^7))
sage: HK.coleman_integrals_on_basis(S,R) == HK.coleman_integrals_on_basis(S,
→˓Q) + HK.coleman_integrals_on_basis(Q,R)
True
sage: HK.coleman_integrals_on_basis(T,T)

(continues on next page)

20.4. Hyperelliptic curves over a 𝑝-adic field 675

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(0, 0)
sage: HK.coleman_integrals_on_basis(S,T)
(0, 0)

AUTHORS:

• Robert Bradshaw (2007-03): non-Weierstrass points

• Jennifer Balakrishnan and Robert Bradshaw (2010-02): Weierstrass points

curve_over_ram_extn(deg)

Return self over Q𝑝(𝑝(1/𝑑𝑒𝑔)).

INPUT:

• deg: the degree of the ramified extension

OUTPUT:

self over Q𝑝(𝑝(1/𝑑𝑒𝑔))

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: K = Qp(11,5)
sage: HK = H.change_ring(K)
sage: HL = HK.curve_over_ram_extn(2)
sage: HL
Hyperelliptic Curve over 11-adic Eisenstein Extension Field in a defined by x^
→˓2 - 11 defined by (1 + O(a^10))*y^2 = (1 + O(a^10))*x^5 + (10 + 8*a^2 +␣
→˓10*a^4 + 10*a^6 + 10*a^8 + O(a^10))*x^3 + (7 + a^2 + O(a^10))*x^2 + (7 +␣
→˓3*a^2 + O(a^10))*x

AUTHOR:

• Jennifer Balakrishnan

find_char_zero_weier_point(Q)
Given 𝑄 a point on self in a Weierstrass disc, finds the center of the Weierstrass disc (if defined over
self.base_ring())

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(5^-2)
sage: S = HK(1,0)
sage: T = HK(0,1,0)
sage: HK.find_char_zero_weier_point(P)
(1 + O(5^8) : 0 : 1 + O(5^8))
sage: HK.find_char_zero_weier_point(Q)
(0 : 1 + O(5^8) : 0)
sage: HK.find_char_zero_weier_point(S)
(1 + O(5^8) : 0 : 1 + O(5^8))
sage: HK.find_char_zero_weier_point(T)
(0 : 1 + O(5^8) : 0)

676 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

AUTHOR:

• Jennifer Balakrishnan

frobenius(P=None)
Returns the 𝑝-th power lift of Frobenius of 𝑃

EXAMPLES:

sage: K = Qp(11, 5)
sage: R.<x> = K[]
sage: E = HyperellipticCurve(x^5 - 21*x - 20)
sage: P = E.lift_x(2)
sage: E.frobenius(P)
(2 + 10*11 + 5*11^2 + 11^3 + O(11^5) : 6 + 11 + 8*11^2 + 8*11^3 + 10*11^4 +␣
→˓O(11^5) : 1 + O(11^5))
sage: Q = E.teichmuller(P); Q
(2 + 10*11 + 4*11^2 + 9*11^3 + 11^4 + O(11^5) : 6 + 11 + 4*11^2 + 9*11^3 +␣
→˓4*11^4 + O(11^5) : 1 + O(11^5))
sage: E.frobenius(Q)
(2 + 10*11 + 4*11^2 + 9*11^3 + 11^4 + O(11^5) : 6 + 11 + 4*11^2 + 9*11^3 +␣
→˓4*11^4 + O(11^5) : 1 + O(11^5))

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: Q = H(0,0)
sage: u,v = H.local_coord(Q,prec=100)
sage: K = Qp(11,5)
sage: L.<a> = K.extension(x^20-11)
sage: HL = H.change_ring(L)
sage: S = HL(u(a),v(a))
sage: HL.frobenius(S)
(8*a^22 + 10*a^42 + 4*a^44 + 2*a^46 + 9*a^48 + 8*a^50 + a^52 + 7*a^54 +
7*a^56 + 5*a^58 + 9*a^62 + 5*a^64 + a^66 + 6*a^68 + a^70 + 6*a^74 +
2*a^76 + 2*a^78 + 4*a^82 + 5*a^84 + 2*a^86 + 7*a^88 + a^90 + 6*a^92 +
a^96 + 5*a^98 + 2*a^102 + 2*a^106 + 6*a^108 + 8*a^110 + 3*a^112 +
a^114 + 8*a^116 + 10*a^118 + 3*a^120 + O(a^122) :
a^11 + 7*a^33 + 7*a^35 + 4*a^37 + 6*a^39 + 9*a^41 + 8*a^43 + 8*a^45 +
a^47 + 7*a^51 + 4*a^53 + 5*a^55 + a^57 + 7*a^59 + 5*a^61 + 9*a^63 +
4*a^65 + 10*a^69 + 3*a^71 + 2*a^73 + 9*a^75 + 10*a^77 + 6*a^79 +
10*a^81 + 7*a^85 + a^87 + 4*a^89 + 8*a^91 + a^93 + 8*a^95 + 2*a^97 +
7*a^99 + a^101 + 3*a^103 + 6*a^105 + 7*a^107 + 4*a^109 + O(a^111) :
1 + O(a^100))

AUTHORS:

• Robert Bradshaw and Jennifer Balakrishnan (2010-02)

get_boundary_point(curve_over_extn, P)
Given self over an extension field, find a point in the disc of 𝑃 near the boundary

INPUT:

• curve_over_extn: self over a totally ramified extension

• P: Weierstrass point

OUTPUT:

a point in the disc of 𝑃 near the boundary

EXAMPLES:

20.4. Hyperelliptic curves over a 𝑝-adic field 677

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(3,6)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: J.<a> = K.extension(x^30-3)
sage: HJ = H.change_ring(J)
sage: S = HK.get_boundary_point(HJ,P)
sage: S
(1 + 2*a^2 + 2*a^6 + 2*a^18 + a^32 + a^34 + a^36 + 2*a^38 + 2*a^40 + a^42 +␣
→˓2*a^44 + a^48 + 2*a^50 + 2*a^52 + a^54 + a^56 + 2*a^60 + 2*a^62 + a^70 +␣
→˓2*a^72 + a^76 + 2*a^78 + a^82 + a^88 + a^96 + 2*a^98 + 2*a^102 + a^104 +␣
→˓2*a^106 + a^108 + 2*a^110 + a^112 + 2*a^116 + a^126 + 2*a^130 + 2*a^132 + a^
→˓144 + 2*a^148 + 2*a^150 + a^152 + 2*a^154 + a^162 + a^164 + a^166 + a^168 +␣
→˓a^170 + a^176 + a^178 + O(a^180) : a + O(a^180) : 1 + O(a^180))

AUTHOR:

• Jennifer Balakrishnan

is_in_weierstrass_disc(P)
Checks if 𝑃 is in a Weierstrass disc

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK(0,3)
sage: HK.is_in_weierstrass_disc(P)
False
sage: Q = HK(0,1,0)
sage: HK.is_in_weierstrass_disc(Q)
True
sage: S = HK(1,0)
sage: HK.is_in_weierstrass_disc(S)
True
sage: T = HK.lift_x(1+3*5^2); T
(1 + 3*5^2 + O(5^8) : 3*5 + 4*5^2 + 5^4 + 3*5^5 + 5^6 + O(5^7) : 1 + O(5^8))
sage: HK.is_in_weierstrass_disc(T)
True

AUTHOR:

• Jennifer Balakrishnan (2010-02)

is_same_disc(P, Q)
Checks if 𝑃,𝑄 are in same residue disc

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(5^-2)
sage: S = HK(1,0)

(continues on next page)

678 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: HK.is_same_disc(P,Q)
False
sage: HK.is_same_disc(P,S)
True
sage: HK.is_same_disc(Q,S)
False

is_weierstrass(P)

Checks if 𝑃 is a Weierstrass point (i.e., fixed by the hyperelliptic involution)

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK(0,3)
sage: HK.is_weierstrass(P)
False
sage: Q = HK(0,1,0)
sage: HK.is_weierstrass(Q)
True
sage: S = HK(1,0)
sage: HK.is_weierstrass(S)
True
sage: T = HK.lift_x(1+3*5^2); T
(1 + 3*5^2 + O(5^8) : 3*5 + 4*5^2 + 5^4 + 3*5^5 + 5^6 + O(5^7) : 1 + O(5^8))
sage: HK.is_weierstrass(T)
False

AUTHOR:

• Jennifer Balakrishnan (2010-02)

local_analytic_interpolation(P, Q)
For points 𝑃 , 𝑄 in the same residue disc, this constructs an interpolation from 𝑃 to 𝑄 (in homogeneous
coordinates) in a power series in the local parameter 𝑡, with precision equal to the 𝑝-adic precision of the
underlying ring.

INPUT:

• P and Q points on self in the same residue disc

OUTPUT:

Returns a point 𝑋(𝑡) = (𝑥(𝑡) : 𝑦(𝑡) : 𝑧(𝑡)) such that:

(1) 𝑋(0) = 𝑃 and 𝑋(1) = 𝑄 if 𝑃,𝑄 are not in the infinite disc

(2) 𝑋(𝑃 [0]𝑔/𝑃 [1]) = 𝑃 and 𝑋(𝑄[0]𝑔/𝑄[1]) = 𝑄 if 𝑃,𝑄 are in the infinite disc

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)

A non-Weierstrass disc:

20.4. Hyperelliptic curves over a 𝑝-adic field 679

Elliptic curves, Release 10.4.rc1

sage: P = HK(0,3)
sage: Q = HK(5, 3 + 3*5^2 + 2*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8))
sage: x,y,z, = HK.local_analytic_interpolation(P,Q)
sage: x(0) == P[0], x(1) == Q[0], y(0) == P[1], y.polynomial()(1) == Q[1]
(True, True, True, True)

A finite Weierstrass disc:

sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(1 + 3*5^2)
sage: x,y,z = HK.local_analytic_interpolation(P,Q)
sage: x(0) == P[0], x.polynomial()(1) == Q[0], y(0) == P[1], y(1) == Q[1]
(True, True, True, True)

The infinite disc:

sage: P = HK.lift_x(5^-2)
sage: Q = HK.lift_x(4*5^-2)
sage: x,y,z = HK.local_analytic_interpolation(P,Q)
sage: x = x/z
sage: y = y/z
sage: x(P[0]/P[1]) == P[0]
True
sage: x(Q[0]/Q[1]) == Q[0]
True
sage: y(P[0]/P[1]) == P[1]
True
sage: y(Q[0]/Q[1]) == Q[1]
True

An error if points are not in the same disc:

sage: x,y,z = HK.local_analytic_interpolation(P,HK(1,0))
Traceback (most recent call last):
...
ValueError: (5^-2 + O(5^6) : 4*5^-3 + 4*5^-2 + 4*5^-1 + 4 + 4*5 + 3*5^3 + 5^4␣
→˓+ O(5^5) : 1 + O(5^8)) and (1 + O(5^8) : 0 : 1 + O(5^8)) are not in the␣
→˓same residue disc

AUTHORS:

• Robert Bradshaw (2007-03)

• Jennifer Balakrishnan (2010-02)

newton_sqrt(f , x0, prec)
Takes the square root of the power series 𝑓 by Newton’s method

NOTE:

this function should eventually be moved to 𝑝-adic power series ring

INPUT:

• f – power series with coefficients in Q𝑝 or an extension

• x0 – seeds the Newton iteration

• prec – precision

OUTPUT: the square root of 𝑓

680 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: Q = H(0,0)
sage: u,v = H.local_coord(Q,prec=100)
sage: K = Qp(11,5)
sage: HK = H.change_ring(K)
sage: L.<a> = K.extension(x^20-11)
sage: HL = H.change_ring(L)
sage: S = HL(u(a),v(a))
sage: f = H.hyperelliptic_polynomials()[0]
sage: y = HK.newton_sqrt(f(u(a)^11), a^11,5)
sage: y^2 - f(u(a)^11)
O(a^122)

AUTHOR:

• Jennifer Balakrishnan

residue_disc(P)
Gives the residue disc of 𝑃

EXAMPLES:

sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: HK.residue_disc(P)
(1 : 0 : 1)
sage: Q = HK(0,3)
sage: HK.residue_disc(Q)
(0 : 3 : 1)
sage: S = HK.lift_x(5^-2)
sage: HK.residue_disc(S)
(0 : 1 : 0)
sage: T = HK(0,1,0)
sage: HK.residue_disc(T)
(0 : 1 : 0)

AUTHOR:

• Jennifer Balakrishnan

teichmuller(P)
Find a Teichm:uller point in the same residue class of 𝑃 .

Because this lift of frobenius acts as 𝑥 ↦→ 𝑥𝑝, take the Teichmuller lift of 𝑥 and then find a matching 𝑦 from
that.

EXAMPLES:

sage: K = pAdicField(7, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: E.frobenius(P) == P
False
sage: TP = E.teichmuller(P); TP

(continues on next page)

20.4. Hyperelliptic curves over a 𝑝-adic field 681

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(0 : 2 + 3*7 + 3*7^2 + 3*7^4 + O(7^5) : 1 + O(7^5))
sage: E.frobenius(TP) == TP
True
sage: (TP[0] - P[0]).valuation() > 0, (TP[1] - P[1]).valuation() > 0
(True, True)

tiny_integrals(F , P, Q)
Evaluate the integrals of 𝑓𝑖𝑑𝑥/2𝑦 from 𝑃 to 𝑄 for each 𝑓𝑖 in 𝐹 by formally integrating a power series in a
local parameter 𝑡

𝑃 and 𝑄MUST be in the same residue disc for this result to make sense.

INPUT:

• F a list of functions 𝑓𝑖
• P a point on self

• Q a point on self (in the same residue disc as P)

OUTPUT:

The integrals
∫︀ 𝑄
𝑃
𝑓𝑖𝑑𝑥/2𝑦

EXAMPLES:

sage: K = pAdicField(17, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: TP = E.teichmuller(P);
sage: x,y = E.monsky_washnitzer_gens()
sage: E.tiny_integrals([1,x],P, TP) == E.tiny_integrals_on_basis(P,TP)
True

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.tiny_integrals([1],P,Q)
(5*11^3 + 7*11^4 + 2*11^5 + 6*11^6 + 11^7 + O(11^8))

Note that this fails if the points are not in the same residue disc:

sage: S = C(0,1/4)
sage: C.tiny_integrals([1,x,x^2,x^3],P,S)
Traceback (most recent call last):
...
ValueError: (11^-2 + O(11^3) : 11^-5 + 8*11^-2 + O(11^0) : 1 + O(11^5)) and␣
→˓(0 : 3 + 8*11 + 2*11^2 + 8*11^3 + 2*11^4 + O(11^5) : 1 + O(11^5)) are not␣
→˓in the same residue disc

tiny_integrals_on_basis(P, Q)

Evaluate the integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0 by formally integrating a power series in a local parameter 𝑡. 𝑃
and 𝑄MUST be in the same residue disc for this result to make sense.

INPUT:

682 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

• P a point on self

• Q a point on self (in the same residue disc as P)

OUTPUT:

The integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: K = pAdicField(17, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: TP = E.teichmuller(P);
sage: E.tiny_integrals_on_basis(P, TP)
(17 + 14*17^2 + 17^3 + 8*17^4 + O(17^5), 16*17 + 5*17^2 + 8*17^3 + 14*17^4 +␣
→˓O(17^5))

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.tiny_integrals_on_basis(P,Q)
(5*11^3 + 7*11^4 + 2*11^5 + 6*11^6 + 11^7 + O(11^8), 10*11 + 2*11^3 + 3*11^4␣
→˓+ 5*11^5 + O(11^6), 5*11^-1 + 8 + 4*11 + 10*11^2 + 7*11^3 + O(11^4), 2*11^-
→˓3 + 11^-2 + 11^-1 + 10 + 8*11 + O(11^2))

Note that this fails if the points are not in the same residue disc:

sage: S = C(0,1/4)
sage: C.tiny_integrals_on_basis(P,S)
Traceback (most recent call last):
...
ValueError: (11^-2 + O(11^3) : 11^-5 + 8*11^-2 + O(11^0) : 1 + O(11^5)) and␣
→˓(0 : 3 + 8*11 + 2*11^2 + 8*11^3 + 2*11^4 + O(11^5) : 1 + O(11^5)) are not␣
→˓in the same residue disc

weierstrass_points()

Return theWeierstrass points of self defined over self.base_ring(), that is, the point at infinity and those points
in the support of the divisor of 𝑦

EXAMPLES:

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→˓16)
sage: C.weierstrass_points()
[(0 : 1 + O(11^5) : 0), (7 + 10*11 + 4*11^3 + O(11^5) : 0 : 1 + O(11^5))]

20.4. Hyperelliptic curves over a 𝑝-adic field 683

Elliptic curves, Release 10.4.rc1

20.5 Hyperelliptic curves over the rationals

class sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field(PP,
f ,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic, ProjectivePlaneCurve_field

lseries(prec=53)
Return the L-series of this hyperelliptic curve of genus 2.

EXAMPLES:

sage: x = polygen(QQ, x)
sage: C = HyperellipticCurve(x^2+x, x^3+x^2+1)
sage: C.lseries()
PARI L-function associated to Hyperelliptic Curve
over Rational Field defined by y^2 + (x^3 + x^2 + 1)*y = x^2 + x

matrix_of_frobenius(p, prec=20)
Compute the matrix of Frobenius on Monsky-Washnitzer cohomology using the 𝑝-adic field with precision
prec.

This function is essentially a wrapper function of sage.schemes.hyperelliptic_curves.
monsky_washnitzer.matrix_of_frobenius_hyperelliptic().

INPUT:

• p (prime integer or pAdic ring / field) – if p is an integer, constructs a pAdicField with p to compute
the matrix of Frobenius, otherwise uses the supplied pAdic ring or field.

• prec (optional) – if p is an prime integer, the 𝑝-adic precision of the coefficient ring constructed.

EXAMPLES:

sage: K = pAdicField(5, prec=3)
sage: R.<x> = QQ[x]
sage: H = HyperellipticCurve(x^5 - 2*x + 3)
sage: H.matrix_of_frobenius(K)
[4*5 + O(5^3) 5 + 2*5^2 + O(5^3) 2 + 3*5 + 2*5^2 + O(5^3) ␣
→˓ 2 + 5 + 5^2 + O(5^3)]
[3*5 + 5^2 + O(5^3) 3*5 + O(5^3) 4*5 + O(5^3) ␣
→˓ 2 + 5^2 + O(5^3)]
[4*5 + 4*5^2 + O(5^3) 3*5 + 2*5^2 + O(5^3) 5 + 3*5^2 + O(5^3) ␣
→˓ 2*5 + 2*5^2 + O(5^3)]
[5^2 + O(5^3) 5 + 4*5^2 + O(5^3) 4*5 + 3*5^2 + O(5^3) ␣
→˓ 2*5 + O(5^3)]

You can also pass directly a prime 𝑝 with to construct a pAdic field with precision prec:

sage: H.matrix_of_frobenius(3, prec=2)
[O(3^2) 3 + O(3^2) O(3^2) O(3^2)]
[3 + O(3^2) O(3^2) O(3^2) 2 + 3 + O(3^2)]
[2*3 + O(3^2) O(3^2) O(3^2) 3^-1 + O(3)]
[O(3^2) O(3^2) 3 + O(3^2) O(3^2)]

684 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field

Elliptic curves, Release 10.4.rc1

20.6 Mestre’s algorithm

This file contains functions that:

• create hyperelliptic curves from the Igusa-Clebsch invariants (over Q and finite fields)

• create Mestre’s conic from the Igusa-Clebsch invariants

AUTHORS:

• Florian Bouyer

• Marco Streng

sage.schemes.hyperelliptic_curves.mestre.HyperellipticCurve_from_invariants(i,
re-
duced=True,
pre-
ci-
sion=None,
al-
go-
rithm='de-
fault')

Returns a hyperelliptic curve with the given Igusa-Clebsch invariants up to scaling.

The output is a curve over the field in which the Igusa-Clebsch invariants are given. The output curve is unique up
to isomorphism over the algebraic closure. If no such curve exists over the given field, then raise a ValueError.

INPUT:

• i – list or tuple of length 4 containing the four Igusa-Clebsch invariants: I2,I4,I6,I10.

• reduced – Boolean (default = True) If True, tries to reduce the polynomial defining the hyperelliptic
curve using the function reduce_polynomial() (see the reduce_polynomial() documentation
for more details).

• precision – integer (default = None) Which precision for real and complex numbers should the reduction
use. This only affects the reduction, not the correctness. If None, the algorithm uses the default 53 bit
precision.

• algorithm – default or magma . If set to magma , usesMagma to parameterizeMestre’s conic
(needs Magma to be installed).

OUTPUT:

A hyperelliptic curve object.

EXAMPLES:

Examples over the rationals:

sage: HyperellipticCurve_from_invariants([3840,414720,491028480,2437709561856])
Traceback (most recent call last):
...
NotImplementedError: Reduction of hyperelliptic curves not yet implemented.
See issues #14755 and #14756.

sage: HyperellipticCurve_from_invariants([3840,414720,491028480,2437709561856],␣
→˓reduced=False)
Hyperelliptic Curve over Rational Field defined by

(continues on next page)

20.6. Mestre’s algorithm 685

Elliptic curves, Release 10.4.rc1

(continued from previous page)

y^2 = -46656*x^6 + 46656*x^5 - 19440*x^4 + 4320*x^3 - 540*x^2 + 4410*x - 1

sage: HyperellipticCurve_from_invariants([21, 225/64, 22941/512, 1])
Traceback (most recent call last):
...
NotImplementedError: Reduction of hyperelliptic curves not yet implemented.
See issues #14755 and #14756.

An example over a finite field:

sage: H = HyperellipticCurve_from_invariants([GF(13)(1), 3, 7, 5]); H
Hyperelliptic Curve over Finite Field of size 13 defined by ...
sage: H.igusa_clebsch_invariants()
(4, 9, 6, 11)

An example over a number field:

sage: K = QuadraticField(353, a) #␣
→˓needs sage.rings.number_field
sage: H = HyperellipticCurve_from_invariants([21, 225/64, 22941/512, 1], #␣
→˓needs sage.rings.number_field
....: reduced=false)
sage: f = K[x](H.hyperelliptic_polynomials()[0]) #␣
→˓needs sage.rings.number_field

If the Mestre Conic defined by the Igusa-Clebsch invariants has no rational points, then there exists no hyperelliptic
curve over the base field with the given invariants.:

sage: HyperellipticCurve_from_invariants([1,2,3,4])
Traceback (most recent call last):
...
ValueError: No such curve exists over Rational Field as there are
no rational points on Projective Conic Curve over Rational Field defined by
-2572155000*u^2 - 317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w
+ 39276887040*v*w + 2736219686912*w^2

Mestre’s algorithm only works for generic curves of genus two, so another algorithm is needed for those curves
with extra automorphism. See also Issue #12199:

sage: P.<x> = QQ[]
sage: C = HyperellipticCurve(x^6 + 1)
sage: i = C.igusa_clebsch_invariants()
sage: HyperellipticCurve_from_invariants(i)
Traceback (most recent call last):
...
TypeError: F (=0) must have degree 2

Igusa-Clebsch invariants also only work over fields of characteristic different from 2, 3, and 5, so another algorithm
will be needed for fields of those characteristics. See also Issue #12200:

sage: P.<x> = GF(3)[]
sage: HyperellipticCurve(x^6 + x + 1).igusa_clebsch_invariants()
Traceback (most recent call last):
...
NotImplementedError: Invariants of binary sextics/genus 2 hyperelliptic curves
not implemented in characteristics 2, 3, and 5

(continues on next page)

686 Chapter 20. Hyperelliptic curves

https://github.com/sagemath/sage/issues/12199
https://github.com/sagemath/sage/issues/12200

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: HyperellipticCurve_from_invariants([GF(5)(1), 1, 0, 1])
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(0, 5) does not exist

ALGORITHM:

This is Mestre’s algorithm [Mes1991]. Our implementation is based on the formulae on page 957 of [LY2001],
cross-referenced with [Wam1999b] to correct typos.

First construct Mestre’s conic using the Mestre_conic() function. Parametrize the conic if possible. Let
𝑓1, 𝑓2, 𝑓3 be the three coordinates of the parametrization of the conic by the projective line, and change them into
one variable by letting 𝐹𝑖 = 𝑓𝑖(𝑡, 1). Note that each 𝐹𝑖 has degree at most 2.

Then construct a sextic polynomial 𝑓 =
∑︀

0<=𝑖,𝑗,𝑘<=3 𝑐𝑖𝑗𝑘 * 𝐹𝑖 * 𝐹𝑗 * 𝐹𝑘, where 𝑐𝑖𝑗𝑘 are defined as rational
functions in the invariants (see the source code for detailed formulae for 𝑐𝑖𝑗𝑘). The output is the hyperelliptic curve
𝑦2 = 𝑓 .

sage.schemes.hyperelliptic_curves.mestre.Mestre_conic(i, xyz=False, names='u,v,w')
Return the conic equation from Mestre’s algorithm given the Igusa-Clebsch invariants.

It has a rational point if and only if a hyperelliptic curve corresponding to the invariants exists.

INPUT:

• i – list or tuple of length 4 containing the four Igusa-Clebsch invariants: I2, I4, I6, I10

• xyz – Boolean (default: False) if True, the algorithm also returns three invariants 𝑥,`y`,`z` used inMestre’s
algorithm

• names (default: u,v,w) – the variable names for the conic

OUTPUT:

A Conic object

EXAMPLES:

A standard example:

sage: Mestre_conic([1,2,3,4])
Projective Conic Curve over Rational Field defined by
-2572155000*u^2 - 317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w
+ 39276887040*v*w + 2736219686912*w^2

Note that the algorithm works over number fields as well:

sage: x = polygen(ZZ, x)
sage: k = NumberField(x^2 - 41, a) #␣
→˓needs sage.rings.number_field
sage: a = k.an_element() #␣
→˓needs sage.rings.number_field
sage: Mestre_conic([1, 2 + a, a, 4 + a]) #␣
→˓needs sage.rings.number_field
Projective Conic Curve over Number Field in a with defining polynomial x^2 - 41
defined by (-801900000*a + 343845000)*u^2 + (855360000*a + 15795864000)*u*v
+ (312292800000*a + 1284808579200)*v^2 + (624585600000*a + 2569617158400)*u*w
+ (15799910400*a + 234573143040)*v*w + (2034199306240*a + 16429854656512)*w^2

And over finite fields:

20.6. Mestre’s algorithm 687

Elliptic curves, Release 10.4.rc1

sage: Mestre_conic([GF(7)(10), GF(7)(1), GF(7)(2), GF(7)(3)])
Projective Conic Curve over Finite Field of size 7
defined by -2*u*v - v^2 - 2*u*w + 2*v*w - 3*w^2

An example with xyz:

sage: Mestre_conic([5,6,7,8], xyz=True)
(Projective Conic Curve over Rational Field
defined by -415125000*u^2 + 608040000*u*v + 33065136000*v^2

+ 66130272000*u*w + 240829440*v*w + 10208835584*w^2,
232/1125, -1072/16875, 14695616/2109375)

ALGORITHM:

The formulas are taken from pages 956 - 957 of [LY2001] and based on pages 321 and 332 of [Mes1991].

See the code or [LY2001] for the detailed formulae defining x, y, z and L.

20.7 Computation of Frobenius matrix on Monsky-Washnitzer coho-
mology

The most interesting functions to be exported here are matrix_of_frobenius() and adjusted_prec().

Currently this code is limited to the case 𝑝 ≥ 5 (no 𝐺𝐹 (𝑝𝑛) for 𝑛 > 1), and only handles the elliptic curve case (not
more general hyperelliptic curves).

REFERENCES:

• [Ked2001]

• [Edix]

AUTHORS:

• David Harvey and Robert Bradshaw: initial code developed at the 2006 MSRI graduate workshop, working with
Jennifer Balakrishnan and Liang Xiao

• David Harvey (2006-08): cleaned up, rewrote some chunks, lots more documentation, added Newton iteration
method, added more complete ‘trace trick’, integrated better into Sage.

• David Harvey (2007-02): added algorithm with sqrt(p) complexity (removed in May 2007 due to better C++
implementation)

• Robert Bradshaw (2007-03): keep track of exact form in reduction algorithms

• Robert Bradshaw (2007-04): generalization to hyperelliptic curves

• Julian Rueth (2014-05-09): improved caching

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential(par-
ent,
val,
off-
set=0)

Bases: ModuleElement

An element of the Monsky-Washnitzer ring of differentials, of the form 𝐹𝑑𝑥/2𝑦.

EXAMPLES:

688 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: MW = C.invariant_differential().parent()
sage: MW(x)
x dx/2y
sage: MW(y)
y*1 dx/2y
sage: MW(x, 10)
y^10*x dx/2y

coeff()

Return 𝐴, where this element is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w
1 dx/2y
sage: w.coeff()
1
sage: (x*y*w).coeff()
y*x

coeffs(R=None)
Used to obtain the raw coefficients of a differential, seeSpecialHyperellipticQuotientElement.
coeffs()

INPUT:

• R – An (optional) base ring in which to cast the coefficients

OUTPUT:

The raw coefficients of 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coeffs()
([(1, 0, 0, 0, 0)], 0)
sage: (x*w).coeffs()
([(0, 1, 0, 0, 0)], 0)
sage: (y*w).coeffs()
([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)
sage: (y^-2*w).coeffs()
([(1, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)

coleman_integral(P, Q)
Compute the definite integral of self from 𝑃 to 𝑄.

INPUT:

• 𝑃 , 𝑄 – two points on the underlying curve

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 689

Elliptic curves, Release 10.4.rc1

OUTPUT:∫︀ 𝑄
𝑃
self

EXAMPLES:

sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)

sage: Q = E([3,58332])
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True

extract_pow_y(k)
Return the power of 𝑦 in 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = C.monsky_washnitzer_gens()
sage: A = y^5 - x*y^3
sage: A.extract_pow_y(5)
[1, 0, 0, 0, 0]
sage: (A * C.invariant_differential()).extract_pow_y(5)
[1, 0, 0, 0, 0]

integrate(P, Q)
Compute the definite integral of self from 𝑃 to 𝑄.

INPUT:

• 𝑃 , 𝑄 – two points on the underlying curve

OUTPUT:∫︀ 𝑄
𝑃
self

EXAMPLES:

sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)

sage: Q = E([3,58332])
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)

(continues on next page)

690 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True

max_pow_y()

Return the maximum power of 𝑦 in 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.max_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.max_pow_y()
5

min_pow_y()

Return the minimum power of 𝑦 in 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.min_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.min_pow_y()
4

reduce()

Use homology relations to find 𝑎 and 𝑓 such that this element is equal to 𝑎+ 𝑑𝑓 , where 𝑎 is given in terms of
the 𝑥𝑖𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = (y*x).diff()
sage: w.reduce()
(y*x, 0 dx/2y)

sage: w = x^4 * C.invariant_differential()
sage: w.reduce()
(1/5*y*1, 4/5*1 dx/2y)

sage: w = sum(QQ.random_element() * x^i * y^j
....: for i in [0..4] for j in [-3..3]) * C.invariant_differential()
sage: f, a = w.reduce()
sage: f.diff() + a - w
0 dx/2y

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 691

Elliptic curves, Release 10.4.rc1

reduce_fast(even_degree_only=False)
Use homology relations to find 𝑎 and 𝑓 such that this element is equal to 𝑎+ 𝑑𝑓 , where 𝑎 is given in terms of
the 𝑥𝑖𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^3 - 4*x + 4)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.diff().reduce_fast()
(x, (0, 0))
sage: y.diff().reduce_fast()
(y*1, (0, 0))
sage: (y^-1).diff().reduce_fast()
((y^-1)*1, (0, 0))
sage: (y^-11).diff().reduce_fast()
((y^-11)*1, (0, 0))
sage: (x*y^2).diff().reduce_fast()
(y^2*x, (0, 0))

reduce_neg_y()

Use homology relations to eliminate negative powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

reduce_neg_y_fast(even_degree_only=False)
Use homology relations to eliminate negative powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x, y = E.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y_fast()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_fast()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

It leaves non-negative powers of 𝑦 alone:

sage: y.diff()
(-3*1 + 5*x^4) dx/2y
sage: y.diff().reduce_neg_y_fast()
(0, (-3*1 + 5*x^4) dx/2y)

reduce_neg_y_faster(even_degree_only=False)

Use homology relations to eliminate negative powers of 𝑦.

EXAMPLES:

692 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_faster()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

reduce_pos_y()

Use homology relations to eliminate positive powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^3-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^2).diff().reduce_pos_y()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)

reduce_pos_y_fast(even_degree_only=False)
Use homology relations to eliminate positive powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^3 - 4*x + 4)
sage: x, y = E.monsky_washnitzer_gens()
sage: y.diff().reduce_pos_y_fast()
(y*1, 0 dx/2y)
sage: (y^2).diff().reduce_pos_y_fast()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y_fast()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y_fast()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing(base_ring)

Bases: UniqueRepresentation, Module

A ring of Monsky–Washnitzer differentials over base_ring.

Element

alias of MonskyWashnitzerDifferential

Q()

Return 𝑄(𝑥) where the model of the underlying hyperelliptic curve of self is given by 𝑦2 = 𝑄(𝑥).

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 693

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/modules/sage/modules/module.html#sage.modules.module.Module

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4

base_extend(R)
Return a new differential ring which is self base-extended to 𝑅.

INPUT:

• R – ring

OUTPUT:

Self, base-extended to 𝑅.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4)
over Rational Field

sage: MW.base_extend(Qp(5,5)).base_ring() #␣
→˓needs sage.rings.padics
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5

+ (1 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + 4 + O(5^5))
over 5-adic Field with capped relative precision 5

change_ring(R)
Return a new differential ring which is self with the coefficient ring changed to 𝑅.

INPUT:

• R – ring of coefficients

OUTPUT:

self with the coefficient ring changed to 𝑅.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4)
over Rational Field

sage: MW.change_ring(Qp(5,5)).base_ring() #␣
→˓needs sage.rings.padics
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5

+ (1 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + 4 + O(5^5))
over 5-adic Field with capped relative precision 5

degree()

Return the degree of 𝑄(𝑥), where the model of the underlying hyperelliptic curve of self is given by
𝑦2 = 𝑄(𝑥).

694 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4
sage: MW.degree()
5

dimension()

Return the dimension of self.

EXAMPLES:

sage: # needs sage.rings.padics
sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: K = Qp(7,5)
sage: CK = C.change_ring(K)
sage: MW = CK.invariant_differential().parent()
sage: MW.dimension()
4

frob_Q(p)

Return and cache𝑄(𝑥𝑝), which is used in computing the image of 𝑦 under a 𝑝-power lift of Frobenius to𝐴†.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.frob_Q(3)
-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3
sage: MW.Q()(MW.x_to_p(3)) #␣
→˓needs sage.rings.real_interval_field
-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3
sage: MW.frob_Q(11) is MW.frob_Q(11)
True

frob_basis_elements(prec, p)
Return the action of a 𝑝-power lift of Frobenius on the basis.

{𝑑𝑥/2𝑦, 𝑥𝑑𝑥/2𝑦, ..., 𝑥𝑑−2𝑑𝑥/2𝑦},

where 𝑑 is the degree of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: prec = 1
sage: p = 5
sage: MW = C.invariant_differential().parent()
sage: MW.frob_basis_elements(prec, p)
[((92000*y^-14-74200*y^-12+32000*y^-10-8000*y^-8+1000*y^-6-50*y^-4)*1

- (194400*y^-14-153600*y^-12+57600*y^-10-9600*y^-8+600*y^-6)*x
+ (204800*y^-14-153600*y^-12+38400*y^-10-3200*y^-8)*x^2

(continues on next page)

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 695

Elliptic curves, Release 10.4.rc1

(continued from previous page)

- (153600*y^-14-76800*y^-12+9600*y^-10)*x^3
+ (63950*y^-14-18550*y^-12+1600*y^-10-400*y^-8+50*y^-6+5*y^-4)*x^4) dx/2y,

(-(1391200*y^-14-941400*y^-12+302000*y^-10-76800*y^-8+14400*y^-6-1320*y^-
→˓4+30*y^-2)*1
+ (2168800*y^-14-1402400*y^-12+537600*y^-10-134400*y^-8+16800*y^-6-720*y^-

→˓4)*x
- (1596800*y^-14-1433600*y^-12+537600*y^-10-89600*y^-8+5600*y^-6)*x^2
+ (1433600*y^-14-1075200*y^-12+268800*y^-10-22400*y^-8)*x^3
- (870200*y^-14-445350*y^-12+63350*y^-10-3200*y^-8+600*y^-6-30*y^-4-5*y^-

→˓2)*x^4) dx/2y,
((19488000*y^-14-15763200*y^-12+4944400*y^-10-913800*y^-8+156800*y^-6-
→˓22560*y^-4+1480*y^-2-10)*1
- (28163200*y^-14-18669600*y^-12+5774400*y^-10-1433600*y^-8+268800*y^-6-

→˓25440*y^-4+760*y^-2)*x
+ (15062400*y^-14-12940800*y^-12+5734400*y^-10-1433600*y^-8+179200*y^-6-

→˓8480*y^-4)*x^2
- (12121600*y^-14-11468800*y^-12+4300800*y^-10-716800*y^-8+44800*y^-6)*x^3
+ (9215200*y^-14-6952400*y^-12+1773950*y^-10-165750*y^-8+5600*y^-6-720*y^-

→˓4+10*y^-2+5)*x^4) dx/2y,
(-(225395200*y^-14-230640000*y^-12+91733600*y^-10-18347400*y^-8+2293600*y^-6-
→˓280960*y^-4+31520*y^-2-1480-10*y^2)*1
+ (338048000*y^-14-277132800*y^-12+89928000*y^-10-17816000*y^-8+3225600*y^-

→˓6-472320*y^-4+34560*y^-2-720)*x
- (172902400*y^-14-141504000*y^-12+58976000*y^-10-17203200*y^-8+3225600*y^-

→˓6-314880*y^-4+11520*y^-2)*x^2
+ (108736000*y^-14-109760000*y^-12+51609600*y^-10-12902400*y^-8+1612800*y^-

→˓6-78720*y^-4)*x^3
- (85347200*y^-14-82900000*y^-12+31251400*y^-10-5304150*y^-8+367350*y^-6-

→˓8480*y^-4+760*y^-2+10-5*y^2)*x^4) dx/2y]

frob_invariant_differential(prec, p)
Kedlaya’s algorithm allows us to calculate the action of Frobenius on the Monsky-Washnitzer cohomology.
First we lift 𝜑 to 𝐴† by setting

𝜑(𝑥) = 𝑥𝑝, 𝜑(𝑦) = 𝑦𝑝

√︃
1 +

𝑄(𝑥𝑝)−𝑄(𝑥)𝑝

𝑄(𝑥)𝑝
.

Pulling back the differential 𝑑𝑥/2𝑦, we get

𝜑*(𝑑𝑥/2𝑦) = 𝑝𝑥𝑝−1𝑦(𝜑(𝑦))−1𝑑𝑥/2𝑦 = 𝑝𝑥𝑝−1𝑦1−𝑝

√︃
1 +

𝑄(𝑥𝑝)−𝑄(𝑥)𝑝

𝑄(𝑥)𝑝
𝑑𝑥/2𝑦.

Use Newton’s method to calculate the square root.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: prec = 2
sage: p = 7
sage: MW = C.invariant_differential().parent()
sage: MW.frob_invariant_differential(prec, p)
((67894400*y^-20-81198880*y^-18+40140800*y^-16-10035200*y^-14+1254400*y^-12-
→˓62720*y^-10)*1
- (119503944*y^-20-116064242*y^-18+43753472*y^-16-7426048*y^-14+514304*y^-12-
→˓12544*y^-10+1568*y^-8-70*y^-6-7*y^-4)*x

(continues on next page)

696 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

+ (78905288*y^-20-61014016*y^-18+16859136*y^-16-2207744*y^-14+250880*y^-12-
→˓37632*y^-10+3136*y^-8-70*y^-6)*x^2
- (39452448*y^-20-26148752*y^-18+8085490*y^-16-2007040*y^-14+376320*y^-12-
→˓37632*y^-10+1568*y^-8)*x^3
+ (21102144*y^-20-18120592*y^-18+8028160*y^-16-2007040*y^-14+250880*y^-12-
→˓12544*y^-10)*x^4) dx/2y

helper_matrix()

We use this to solve for the linear combination of 𝑥𝑖𝑦𝑗 needed to clear all terms with 𝑦𝑗−1.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.helper_matrix()
[256/2101 320/2101 400/2101 500/2101 625/2101]
[-625/8404 -64/2101 -80/2101 -100/2101 -125/2101]
[-125/2101 -625/8404 -64/2101 -80/2101 -100/2101]
[-100/2101 -125/2101 -625/8404 -64/2101 -80/2101]
[-80/2101 -100/2101 -125/2101 -625/8404 -64/2101]

invariant_differential()

Return 𝑑𝑥/2𝑦 as an element of self.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.invariant_differential()
1 dx/2y

x_to_p(p)
Return and cache 𝑥𝑝, reduced via the relations coming from the defining polynomial of the hyperelliptic
curve.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: MW = C.invariant_differential().parent()
sage: MW.x_to_p(3)
x^3
sage: MW.x_to_p(5)
-(4-y^2)*1 + 4*x
sage: MW.x_to_p(101) is MW.x_to_p(101)
True

sage.schemes.hyperelliptic_curves.monsky_washnitzer.
MonskyWashnitzerDifferentialRing_class

alias of MonskyWashnitzerDifferentialRing

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing(Q,
lau-
rent_se-
ries=False)

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 697

Elliptic curves, Release 10.4.rc1

Bases: UniqueRepresentation, Parent

Specialised class for representing the quotient ring𝑅[𝑥, 𝑇]/(𝑇−𝑥3−𝑎𝑥−𝑏), where𝑅 is an arbitrary commutative
base ring (in which 2 and 3 are invertible), 𝑎 and 𝑏 are elements of that ring.

Polynomials are represented internally in the form 𝑝0+𝑝1𝑥+𝑝2𝑥2 where the 𝑝𝑖 are polynomials in𝑇 . Multiplication
of polynomials always reduces high powers of 𝑥 (i.e. beyond 𝑥2) to powers of 𝑇 .

Hopefully this ring is faster than a general quotient ring because it uses the special structure of this ring to speed
multiplication (which is the dominant operation in the frobenius matrix calculation). I haven’t actually tested this
theory though…

Todo: Eventually we will want to run this in characteristic 3, so we need to: (a) Allow 𝑄(𝑥) to contain an 𝑥2
term, and (b) Remove the requirement that 3 be invertible. Currently this is used in the Toom-Cook algorithm to
speed multiplication.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R
SpecialCubicQuotientRing over Ring of integers modulo 125
with polynomial T = x^3 + 124*x + 94
sage: TestSuite(R).run()

Get generators:

sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2

Coercions:

sage: R(7)
(7) + (0)*x + (0)*x^2

Create elements directly from polynomials:

sage: A = R.poly_ring()
sage: A
Univariate Polynomial Ring in T over Ring of integers modulo 125
sage: z = A.gen()
sage: R.create_element(z^2, z+1, 3)
(T^2) + (T + 1)*x + (3)*x^2

Some arithmetic:

sage: x^3
(T + 31) + (1)*x + (0)*x^2
sage: 3 * x**15 * T**2 + x - T
(3*T^7 + 90*T^6 + 110*T^5 + 20*T^4 + 58*T^3 + 26*T^2 + 124*T) +
(15*T^6 + 110*T^5 + 35*T^4 + 63*T^2 + 1)*x +
(30*T^5 + 40*T^4 + 8*T^3 + 38*T^2)*x^2

Retrieve coefficients (output is zero-padded):

698 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Elliptic curves, Release 10.4.rc1

sage: x^10
(3*T^2 + 61*T + 8) + (T^3 + 93*T^2 + 12*T + 40)*x + (3*T^2 + 61*T + 9)*x^2
sage: (x^10).coeffs()
[[8, 61, 3, 0], [40, 12, 93, 1], [9, 61, 3, 0]]

Todo: write an example checking multiplication of these polynomials against Sage’s ordinary quotient ring arith-
metic. I cannot seem to get the quotient ring stuff happening right now…

Element

alias of SpecialCubicQuotientRingElement

create_element(check, *args)
Create the element 𝑝0 + 𝑝1 * 𝑥+ 𝑝2 * 𝑥2, where the 𝑝𝑖 are polynomials in 𝑇 .

INPUT:

• p0, p1, p2 – coefficients; must be coercible into poly_ring()

• check – bool (default: True): whether to carry out coercion

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: A, z = R.poly_ring().objgen()
sage: R.create_element(z^2, z+1, 3) # indirect doctest
(T^2) + (T + 1)*x + (3)*x^2

gens()

Return a list [x, T] where x and T are the generators of the ring (as element of this ring).

Note: I have no idea if this is compatible with the usual Sage ‘gens’ interface.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2

one()

Return the unit of self.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R.one()
(1) + (0)*x + (0)*x^2

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 699

Elliptic curves, Release 10.4.rc1

poly_ring()

Return the underlying polynomial ring in 𝑇 .

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R.poly_ring()
Univariate Polynomial Ring in T over Ring of integers modulo 125

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement(par-
ent,
p0,
p1,
p2,
check=True)

Bases: ModuleElement

An element of a SpecialCubicQuotientRing.

coeffs()

Return list of three lists of coefficients, corresponding to the 𝑥0, 𝑥1, 𝑥2 coefficients.

The lists are zero padded to the same length. The list entries belong to the base ring.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: p = R.create_element(t, t^2 - 2, 3)
sage: p.coeffs()
[[0, 1, 0], [123, 0, 1], [3, 0, 0]]

scalar_multiply(scalar)
Multiply this element by a scalar, i.e. just multiply each coefficient of 𝑥𝑗 by the scalar.

INPUT:

• scalar – either an element of base_ring, or an element of poly_ring.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.scalar_multiply(2)
(4) + (2*T)*x + (2*T^2 + 119)*x^2
sage: f.scalar_multiply(t)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2

shift(n)

Return this element multiplied by 𝑇𝑛.

EXAMPLES:

700 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Elliptic curves, Release 10.4.rc1

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.shift(1)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2
sage: f.shift(2)
(2*T^2) + (T^3)*x + (T^4 + 122*T^2)*x^2

square()

Return the square of the element.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()

sage: f = R.create_element(1 + 2*t + 3*t^2, 4 + 7*t + 9*t^2, 3 + 5*t + 11*t^2)
sage: f.square()
(73*T^5 + 16*T^4 + 38*T^3 + 39*T^2 + 70*T + 120)
+ (121*T^5 + 113*T^4 + 73*T^3 + 8*T^2 + 51*T + 61)*x
+ (18*T^4 + 60*T^3 + 22*T^2 + 108*T + 31)*x^2

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement(par-
ent,
val=0,
off-
set=0,
check=True)

Bases: ModuleElement

Element in the Hyperelliptic quotient ring.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 36*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: MW(x + x**2 + y - 77)
-(77-y)*1 + x + x^2

change_ring(R)

Return the same element after changing the base ring to 𝑅.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 36*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: z = MW(x + x**2 + y - 77)
sage: z.change_ring(AA).parent() #␣
→˓needs sage.rings.number_field

(continues on next page)

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 701

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Elliptic curves, Release 10.4.rc1

(continued from previous page)

SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 36*x + 1)
over Algebraic Real Field

coeffs(R=None)

Return the raw coefficients of this element.

INPUT:

• R – an (optional) base-ring in which to cast the coefficients

OUTPUT:

• coeffs – a list of coefficients of powers of 𝑥 for each power of 𝑦

• n – an offset indicating the power of 𝑦 of the first list element

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.coeffs()
([(0, 1, 0, 0, 0)], 0)
sage: y.coeffs()
([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)

sage: a = sum(n*x^n for n in range(5)); a
x + 2*x^2 + 3*x^3 + 4*x^4
sage: a.coeffs()
([(0, 1, 2, 3, 4)], 0)
sage: a.coeffs(Qp(7)) #␣
→˓needs sage.rings.padics
([(0, 1 + O(7^20), 2 + O(7^20), 3 + O(7^20), 4 + O(7^20))], 0)
sage: (a*y).coeffs()
([(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)], 0)
sage: (a*y^-2).coeffs()
([(0, 1, 2, 3, 4), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)

Note that the coefficient list is transposed compared to how they are stored and printed:

sage: a*y^-2
(y^-2)*x + (2*y^-2)*x^2 + (3*y^-2)*x^3 + (4*y^-2)*x^4

A more complicated example:

sage: a = x^20*y^-3 - x^11*y^2; a
(y^-3-4*y^-1+6*y-4*y^3+y^5)*1 - (12*y^-3-36*y^-1+36*y+y^2-12*y^3-2*y^4+y^6)*x
+ (54*y^-3-108*y^-1+54*y+6*y^2-6*y^4)*x^2 - (108*y^-3-108*y^-1+9*y^2)*x^3
+ (81*y^-3)*x^4

sage: raw, offset = a.coeffs()
sage: a.min_pow_y()
-3
sage: offset
-3
sage: raw
[(1, -12, 54, -108, 81),
(0, 0, 0, 0, 0),
(-4, 36, -108, 108, 0),

(continues on next page)

702 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(0, 0, 0, 0, 0),
(6, -36, 54, 0, 0),
(0, -1, 6, -9, 0),
(-4, 12, 0, 0, 0),
(0, 2, -6, 0, 0),
(1, 0, 0, 0, 0),
(0, -1, 0, 0, 0)]

sage: sum(c * x^i * y^(j+offset)
....: for j, L in enumerate(raw) for i, c in enumerate(L)) == a
True

Can also be used to construct elements:

sage: a.parent()(raw, offset) == a
True

diff()

Return the differential of self.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x + 3*y).diff()
(-(9-2*y)*1 + 15*x^4) dx/2y

extract_pow_y(k)

Return the coefficients of 𝑦𝑘 in self as a list.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x + 3*y + 9*x*y).extract_pow_y(1)
[3, 9, 0, 0, 0]

max_pow_y()

Return the maximal degree of self with respect to 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x + 3*y).max_pow_y()
1

min_pow_y()

Return the minimal degree of self with respect to 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)

(continues on next page)

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 703

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: x,y = E.monsky_washnitzer_gens()
sage: (x + 3*y).min_pow_y()
0

truncate_neg(n)
Return self minus its terms of degree less than 𝑛 wrt 𝑦.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x + 3*y + 7*x*2*y**4).truncate_neg(1)
3*y*1 + 14*y^4*x

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing(Q,
R=None,
in-
vert_y=True)

Bases: UniqueRepresentation, Parent

The special hyperelliptic quotient ring.

Element

alias of SpecialHyperellipticQuotientElement

Q()

Return the defining polynomial of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5-2*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().Q()
x^5 - 2*x + 1

base_extend(R)
Return the base extension of self to the ring R if possible.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().base_extend(UniversalCyclotomicField()) #␣
→˓needs sage.libs.gap
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1)
over Universal Cyclotomic Field
sage: x.parent().base_extend(ZZ)
Traceback (most recent call last):
...
TypeError: no such base extension

change_ring(R)
Return the analog of self over the ring R.

EXAMPLES:

704 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().change_ring(ZZ)
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1)
over Integer Ring

curve()

Return the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().curve()
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - 3*x + 1

degree()

Return the degree of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().degree()
5

gens()

Return the generators of self

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().gens()
(x, y*1)

is_field(proof=True)

Return False as self is not a field.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().is_field()
False

monomial(i, j, b=None)
Return 𝑏𝑦𝑗𝑥𝑖, computed quickly.

EXAMPLES:

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 705

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial(4,5)
y^5*x^4

monomial_diff_coeffs(i, j)
Compute coefficients of the basis representation of 𝑑(𝑥𝑖𝑦𝑗).

The key here is that the formula for 𝑑(𝑥𝑖𝑦𝑗) is messy in terms of 𝑖, but varies nicely with 𝑗.

𝑑(𝑥𝑖𝑦𝑗) = 𝑦𝑗−1(2𝑖𝑥𝑖−1𝑦2 + 𝑗(𝐴𝑖(𝑥) +𝐵𝑖(𝑥)𝑦
2))

𝑑𝑥

2𝑦
,

where𝐴,𝐵 have degree at most 𝑛− 1 for each 𝑖. Pre-compute𝐴𝑖, 𝐵𝑖 for each 𝑖 the “hard” way, and the rest
are easy.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial_diff_coeffs(2,3)
((0, -15, 36, 0, 0), (0, 19, 0, 0, 0))

monomial_diff_coeffs_matrices()

Compute tables of coefficients of the basis representation of 𝑑(𝑥𝑖𝑦𝑗) for small 𝑖, 𝑗.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial_diff_coeffs_matrices()
(
[0 5 0 0 0] [0 2 0 0 0]
[0 0 5 0 0] [0 0 4 0 0]
[0 0 0 5 0] [0 0 0 6 0]
[0 0 0 0 5] [0 0 0 0 8]
[0 0 0 0 0], [0 0 0 0 0]
)

monsky_washnitzer()

Return the stored Monsky-Washnitzer differential ring.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: type(x.parent().monsky_washnitzer())
<class sage.schemes.hyperelliptic_curves.monsky_washnitzer.
→˓MonskyWashnitzerDifferentialRing_with_category >

one()

Return the unit of self.

EXAMPLES:

706 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().one()
1

prime()

Return the stored prime number 𝑝.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().prime() is None
True

x()

Return the generator 𝑥 of self

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().x()
x

y()

Return the generator 𝑦 of self

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().y()
y*1

zero()

Return the zero of self.

EXAMPLES:

sage: R.<x> = QQ[x]
sage: E = HyperellipticCurve(x^5 - 3*x + 1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().zero()
0

sage.schemes.hyperelliptic_curves.monsky_washnitzer.
SpecialHyperellipticQuotientRing_class

alias of SpecialHyperellipticQuotientRing

sage.schemes.hyperelliptic_curves.monsky_washnitzer.adjusted_prec(p, prec)
Compute how much precision is required in matrix_of_frobenius to get an answer correct to prec 𝑝-adic
digits.

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 707

Elliptic curves, Release 10.4.rc1

The issue is that the algorithm used in matrix_of_frobenius() sometimes performs divisions by 𝑝, so
precision is lost during the algorithm.

The estimate returned by this function is based on Kedlaya’s result (Lemmas 2 and 3 of [Ked2001]), which implies
that if we start with𝑀 𝑝-adic digits, the total precision loss is at most 1 + ⌊log𝑝(2𝑀 − 3)⌋ 𝑝-adic digits. (This
estimate is somewhat less than the amount you would expect by naively counting the number of divisions by 𝑝.)

INPUT:

• p – a prime p >= 5

• prec – integer, desired output precision, prec >= 1

OUTPUT: adjusted precision (usually slightly more than prec)

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import adjusted_
→˓prec
sage: adjusted_prec(5,2)
3

sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_newton(Q,
p,
M)

Compute the action of Frobenius on 𝑑𝑥/𝑦 and on 𝑥𝑑𝑥/𝑦, using Newton’s method (as suggested in Kedlaya’s paper
[Ked2001]).

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds 𝐹0 and 𝐹1 in the quotient ring 𝑅[𝑥, 𝑇]/(𝑇 −𝑄(𝑥)), such that

𝐹 (𝑑𝑥/𝑦) = 𝑇−𝑟𝐹0𝑑𝑥/𝑦, and 𝐹 (𝑥𝑑𝑥/𝑦) = 𝑇−𝑟𝐹1𝑑𝑥/𝑦

where

𝑟 = ((2𝑀 − 3)𝑝− 1)/2.

(Here 𝑇 is 𝑦2 = 𝑧−2, and 𝑅 is the coefficient ring of 𝑄.)

𝐹0 and 𝐹1 are computed in the SpecialCubicQuotientRing associated to𝑄, so all powers of 𝑥𝑗 for 𝑗 ≥ 3
are reduced to powers of 𝑇 .

INPUT:

• Q – cubic polynomial of the form 𝑄(𝑥) = 𝑥3 + 𝑎𝑥+ 𝑏, whose coefficient ring is a 𝑍/(𝑝𝑀)𝑍-algebra

• p – residue characteristic of the p-adic field

• M – p-adic precision of the coefficient ring (this will be used to determine the number of Newton iterations)

OUTPUT:

• F0, F1 – elements of SpecialCubicQuotientRing(Q), as described above

• r – non-negative integer, as described above

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_
→˓expansion_by_newton
sage: R.<x> = Integers(5^3)[x]
sage: Q = x^3 - x + R(1/4)

(continues on next page)

708 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: frobenius_expansion_by_newton(Q,5,3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3
+ 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,
(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50)
+ (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x
+ (15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_series(Q,
p,
M)

Compute the action of Frobenius on 𝑑𝑥/𝑦 and on 𝑥𝑑𝑥/𝑦, using a series expansion.

(This function computes the same thing as frobenius_expansion_by_newton(), using a different method. Theoreti-
cally the Newton method should be asymptotically faster, when the precision gets large. However, in practice, this
functions seems to be marginally faster for moderate precision, so I’m keeping it here until I figure out exactly why
it is faster.)

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds F0 and F1 in the quotient ring𝑅[𝑥, 𝑇]/(𝑇 −𝑄(𝑥)), such that 𝐹 (𝑑𝑥/𝑦) = 𝑇−𝑟𝐹0𝑑𝑥/𝑦,
and 𝐹 (𝑥𝑑𝑥/𝑦) = 𝑇−𝑟𝐹1𝑑𝑥/𝑦 where 𝑟 = ((2𝑀 − 3)𝑝 − 1)/2. (Here 𝑇 is 𝑦2 = 𝑧−2, and 𝑅 is the coefficient
ring of 𝑄.)

𝐹0 and 𝐹1 are computed in the SpecialCubicQuotientRing associated to𝑄, so all powers of 𝑥𝑗 for 𝑗 ≥ 3
are reduced to powers of 𝑇 .

It uses the sum

𝐹0 =

𝑀−2∑︁
𝑘=0

(︂
−1/2

𝑘

)︂
𝑝𝑥𝑝−1𝐸𝑘𝑇 (𝑀−2−𝑘)𝑝

and

𝐹1 = 𝑥𝑝𝐹0,

𝑤ℎ𝑒𝑟𝑒`𝐸 = 𝑄(𝑥𝑝)−𝑄(𝑥)𝑝`.

INPUT:

• Q – cubic polynomial of the form 𝑄(𝑥) = 𝑥3 + 𝑎𝑥+ 𝑏, whose coefficient ring is a /(𝑝𝑀) -algebra

• p – residue characteristic of the 𝑝-adic field

• M – 𝑝-adic precision of the coefficient ring (this will be used to determine the number of terms in the series)

OUTPUT:

• F0, F1 – elements of SpecialCubicQuotientRing(Q), as described above

• r – non-negative integer, as described above

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_
→˓expansion_by_series
sage: R.<x> = Integers(5^3)[x]
sage: Q = x^3 - x + R(1/4)
sage: frobenius_expansion_by_series(Q,5,3) #␣
→˓needs sage.libs.pari
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3
+ 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,

(continues on next page)

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 709

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50)
+ (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x
+ (15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.helper_matrix(Q)
Compute the (constant) matrix used to calculate the linear combinations of the 𝑑(𝑥𝑖𝑦𝑗) needed to eliminate the
negative powers of 𝑦 in the cohomology (i.e., in reduce_negative()).

INPUT:

• Q – cubic polynomial

EXAMPLES:

sage: t = polygen(QQ, t)
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import helper_
→˓matrix
sage: helper_matrix(t**3-4*t-691)
[64/12891731 -16584/12891731 4297329/12891731]
[6219/12891731 -32/12891731 8292/12891731]
[-24/12891731 6219/12891731 -32/12891731]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.lift(x)
Try to call x.lift(), presumably from the 𝑝-adics to .

If this fails, it assumes the input is a power series, and tries to lift it to a power series over Q.

This function is just a very kludgy solution to the problem of trying to make the reduction code (below) work over
both 𝑝 and 𝑝[[𝑡]].

EXAMPLES:

sage: # needs sage.rings.padics
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import lift
sage: l = lift(Qp(13)(131)); l
131
sage: l.parent()
Integer Ring
sage: x = PowerSeriesRing(Qp(17), x).gen()
sage: l = lift(4 + 5*x + 17*x**6); l
4 + 5*t + 17*t^6
sage: l.parent()
Power Series Ring in t over Rational Field

sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius(Q, p, M ,
trace=None,
com-
pute_ex-
act_forms=False)

Compute the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦).

INPUT:

• Q – cubic polynomial 𝑄(𝑥) = 𝑥3 + 𝑎𝑥+ 𝑏 defining an elliptic curve 𝐸 by 𝑦2 = 𝑄(𝑥). The coefficient ring
of 𝑄 should be a /(𝑝𝑀) -algebra in which the matrix of frobenius will be constructed.

• p – prime >= 5 for which E has good reduction

• M – integer >= 2; 𝑝 -adic precision of the coefficient ring

710 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

• trace – (optional) the trace of the matrix, if known in advance. This is easy to compute because it is just
the 𝑎𝑝 of the curve. If the trace is supplied, matrix_of_frobenius will use it to speed the computation (i.e.
we know the determinant is 𝑝, so we have two conditions, so really only column of the matrix needs to be
computed. it is actually a little more complicated than that, but that’s the basic idea.) If trace=None, then
both columns will be computed independently, and you can get a strong indication of correctness by verifying
the trace afterwards.

Warning: THE RESULTWILLNOTNECESSARILY BE CORRECT TOM p-ADIC DIGITS. If you
want prec digits of precision, you need to use the function adjusted_prec(), and then you need to reduce
the answer mod 𝑝prec at the end.

OUTPUT:

2× 2 matrix of Frobenius acting on Monsky-Washnitzer cohomology, with entries in the coefficient ring of Q.

EXAMPLES:

A simple example:

sage: p = 5
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec); M
4
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A
[340 62]
[70 533]

But the result is only accurate to prec digits:

sage: B = A.change_ring(Integers(p**prec))
sage: B
[90 62]
[70 33]

Check trace (123 = -2 mod 125) and determinant:

sage: B.det()
5
sage: B.trace()
123
sage: EllipticCurve([-1, 1/4]).ap(5)
-2

Try using the trace to speed up the calculation:

sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4),
....: p, M, -2)
sage: A
[90 62]
[320 533]

Hmmm… it looks different, but that’s because the trace of our first answer was only -2 modulo 53, not -2 modulo
55. So the right answer is:

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 711

Elliptic curves, Release 10.4.rc1

sage: A.change_ring(Integers(p**prec))
[90 62]
[70 33]

Check it works with only one digit of precision:

sage: p = 5
sage: prec = 1
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A.change_ring(Integers(p))
[0 2]
[0 3]

Here is an example that is particularly badly conditioned for using the trace trick:

sage: # needs sage.libs.pari
sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M)
sage: A.change_ring(Integers(p**prec))
[1144 176]
[847 185]

The problem here is that the top-right entry is divisible by 11, and the bottom-left entry is divisible by 112. So when
you apply the trace trick, neither 𝐹 (𝑑𝑥/𝑦) nor 𝐹 (𝑥𝑑𝑥/𝑦) is enough to compute the whole matrix to the desired
precision, even if you try increasing the target precision by one. Nevertheless, matrix_of_frobenius knows
how to get the right answer by evaluating 𝐹 ((𝑥+ 1)𝑑𝑥/𝑦) instead:

sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M, -2)
sage: A.change_ring(Integers(p**prec))
[1144 176]
[847 185]

The running time is about O(p*prec**2) (times some logarithmic factors), so it is feasible to run on fairly large
primes, or precision (or both?!?!):

sage: # long time, needs sage.libs.pari
sage: p = 10007
sage: prec = 2
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: B = A.change_ring(Integers(p**prec)); B
[74311982 57996908]
[95877067 25828133]
sage: B.det()
10007
sage: B.trace()
66
sage: EllipticCurve([-1, 1/4]).ap(10007)
66

712 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: # long time, needs sage.libs.pari
sage: p = 5
sage: prec = 300
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: B = A.change_ring(Integers(p**prec))
sage: B.det()
5
sage: -B.trace()
2
sage: EllipticCurve([-1, 1/4]).ap(5)
-2

Let us check consistency of the results for a range of precisions:

sage: # long time, needs sage.libs.pari
sage: p = 5
sage: max_prec = 60
sage: M = monsky_washnitzer.adjusted_prec(p, max_prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A = A.change_ring(Integers(p**max_prec))
sage: result = []
sage: for prec in range(1, max_prec):
....: M = monsky_washnitzer.adjusted_prec(p, prec)
....: R.<x> = PolynomialRing(Integers(p^M), x)
....: B = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
....: B = B.change_ring(Integers(p**prec))
....: result.append(B == A.change_ring(Integers(p**prec)))
sage: result == [True] * (max_prec - 1)
True

The remaining examples discuss what happens when you take the coefficient ring to be a power series ring; i.e. in
effect you’re looking at a family of curves.

The code does in fact work…

sage: # needs sage.libs.pari
sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: S.<t> = PowerSeriesRing(Integers(p**M), default_prec=4)
sage: a = 7 + t + 3*t^2
sage: b = 8 - 6*t + 17*t^2
sage: R.<x> = PolynomialRing(S)
sage: Q = x**3 + a*x + b
sage: A = monsky_washnitzer.matrix_of_frobenius(Q, p, M) # long time
sage: B = A.change_ring(PowerSeriesRing(Integers(p**prec), t , # long time
....: default_prec=4)); B
[1144 + 264*t + 841*t^2 + 1025*t^3 + O(t^4) 176 + 1052*t + 216*t^2 + 523*t^3 +␣
→˓O(t^4)]
[847 + 668*t + 81*t^2 + 424*t^3 + O(t^4) 185 + 341*t + 171*t^2 + 642*t^3 +␣
→˓O(t^4)]

The trace trick should work for power series rings too, even in the badly-conditioned case. Unfortunately I do
not know how to compute the trace in advance, so I am not sure exactly how this would help. Also, I suspect the
running time will be dominated by the expansion, so the trace trick will not really speed things up anyway. Another

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 713

Elliptic curves, Release 10.4.rc1

problem is that the determinant is not always p:

sage: B.det() # long time
11 + 484*t^2 + 451*t^3 + O(t^4)

However, it appears that the determinant always has the property that if you substitute t - 11t, you do get the constant
series p (mod p**prec). Similarly for the trace. And since the parameter only really makes sense when it is divisible
by p anyway, perhaps this is not a problem after all.

sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius_hyperelliptic(Q,
p=None,
prec=None,
M=None)

Compute the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis
(𝑑𝑥/2𝑦, 𝑥𝑑𝑥/2𝑦, ...𝑥𝑑−2𝑑𝑥/2𝑦), where 𝑑 is the degree of 𝑄.

INPUT:

• Q – monic polynomial 𝑄(𝑥)

• p – prime ≥ 5 for which 𝐸 has good reduction

• prec – (optional) 𝑝-adic precision of the coefficient ring

• M – (optional) adjusted 𝑝-adic precision of the coefficient ring

OUTPUT:

(𝑑− 1) x (𝑑− 1) matrix𝑀 of Frobenius on Monsky-Washnitzer cohomology, and list of differentials {f_i } such
that

𝜑*(𝑥𝑖𝑑𝑥/2𝑦) = 𝑑𝑓𝑖 +𝑀 [𝑖] * 𝑣𝑒𝑐(𝑑𝑥/2𝑦, ..., 𝑥𝑑−2𝑑𝑥/2𝑦)

EXAMPLES:

sage: # needs sage.rings.padics
sage: p = 5
sage: prec = 3
sage: R.<x> = QQ[x]
sage: A,f = monsky_washnitzer.matrix_of_frobenius_hyperelliptic(x^5 - 2*x + 3, p,␣
→˓prec)
sage: A
[4*5 + O(5^3) 5 + 2*5^2 + O(5^3) 2 + 3*5 + 2*5^2 + O(5^3) 2␣
→˓+ 5 + 5^2 + O(5^3)]
[3*5 + 5^2 + O(5^3) 3*5 + O(5^3) 4*5 + O(5^3) ␣
→˓ 2 + 5^2 + O(5^3)]
[4*5 + 4*5^2 + O(5^3) 3*5 + 2*5^2 + O(5^3) 5 + 3*5^2 + O(5^3) ␣
→˓2*5 + 2*5^2 + O(5^3)]
[5^2 + O(5^3) 5 + 4*5^2 + O(5^3) 4*5 + 3*5^2 + O(5^3) ␣
→˓ 2*5 + O(5^3)]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_all(Q, p, coeffs, offset,
compute_ex-
act_form=False)

Apply cohomology relations to reduce all terms to a linear combination of 𝑑𝑥/𝑦 and 𝑥𝑑𝑥/𝑦.

INPUT:

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖-th list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

714 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

• offset – nonnegative integer

OUTPUT:

• A, B – pair such that the input differential is cohomologous to (A + Bx) dx/y.

Note: The algorithm operates in-place, so the data in coeffs is destroyed.

EXAMPLES:

sage: R.<x> = Integers(5^3)[x]
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_all(Q, 5, coeffs, 1)
(21, 106)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_negative(Q, p, coeffs,
offset, ex-
act_form=None)

Apply cohomology relations to incorporate negative powers of 𝑦 into the 𝑦0 term.

INPUT:

• p – prime

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖-th list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

The reduction is performed in-place. The output is placed in coeffs[offset]. Note that coeffs[i] will be meaningless
for i offset after this function is finished.

EXAMPLES:

sage: R.<x> = Integers(5^3)[x]
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[10, 15, 20], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 5, coeffs, 3)
sage: coeffs[3]
[28, 52, 9]

sage: R.<x> = Integers(7^3)[x]
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[7, 14, 21], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 7, coeffs, 3)
sage: coeffs[3]
[245, 332, 9]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_positive(Q, p, coeffs,
offset, ex-
act_form=None)

Apply cohomology relations to incorporate positive powers of 𝑦 into the 𝑦0 term.

20.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 715

Elliptic curves, Release 10.4.rc1

INPUT:

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖-th list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

The reduction is performed in-place. The output is placed in coeffs[offset]. Note that coeffs[i] will be meaningless
for i offset after this function is finished.

EXAMPLES:

sage: R.<x> = Integers(5^3)[x]
sage: Q = x^3 - x + R(1/4)

sage: coeffs = [[1, 2, 3], [10, 15, 20]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
[16, 102, 88]

sage: coeffs = [[9, 8, 7], [10, 15, 20]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
[24, 108, 92]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_zero(Q, coeffs, offset,
exact_form=None)

Apply cohomology relation to incorporate 𝑥2𝑦0 term into 𝑥0𝑦0 and 𝑥1𝑦0 terms.

INPUT:

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖-th list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

The reduction is performed in-place. The output is placed in coeffs[offset]. This method completely ignores
coeffs[i] for i != offset.

EXAMPLES:

sage: R.<x> = Integers(5^3)[x]
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_zero(Q, coeffs, 1)
sage: coeffs[1]
[6, 5, 0]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.transpose_list(input)

INPUT:

• input – a list of lists, each list of the same length

716 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

OUTPUT:

• output – a list of lists such that output[i][j] = input[j][i]

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import transpose_
→˓list
sage: L = [[1, 2], [3, 4], [5, 6]]
sage: transpose_list(L)
[[1, 3, 5], [2, 4, 6]]

20.8 Frobenius onMonsky-Washnitzer cohomology of a hyperelliptic
curve

This module provides hypellfrob(), that is a wrapper for the matrix() function in hypellfrob.cpp.

hypellfrob.cpp is a C++ program for computing the zeta function of a hyperelliptic curve over a largish prime finite
field, based on the method described in the paper [Harv2007]. More precisely, it computes the matrix of Frobenius on
the Monsky-Washnitzer cohomology of the curve; the zeta function can be recovered via the characteristic polynomial of
the matrix.

AUTHORS:

• David Harvey (2007-05): initial version

• David Harvey (2007-12): rewrote for hypellfrob version 2.0

• Alex J. Best (2018-02): added wrapper

sage.schemes.hyperelliptic_curves.hypellfrob.hypellfrob(p, N , Q)
Compute the matrix of Frobenius acting on the Monsky-Washnitzer cohomology of a hyperelliptic curve 𝑦2 =
𝑄(𝑥), with respect to the basis 𝑥𝑖𝑑𝑥/𝑦, 0 ≤ 𝑖 < 2𝑔.

INPUT:

• p – a prime

• Q – a monic polynomial in [𝑥] of odd degree; must have no multiple roots mod 𝑝.

• N – precision parameter; the output matrix will be correct modulo 𝑝𝑁

The prime 𝑝 should satisfy 𝑝 > (2𝑔 + 1)(2𝑁 − 1), where 𝑔 = (deg𝑄− 1) /2 is the genus of the curve.

ALGORITHM:

Described in [Harv2007], Section 7. Running time is theoretically ̃︀𝑂(𝑝1/2𝑁5/2𝑔3).

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^5 + 2*x^2 + x + 1; p = 101
sage: M = hypellfrob(p, 4, f); M
[91844754 + O(101^4) 38295665 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^
→˓4)]
[93514789 + O(101^4) 48987424 + O(101^4) 53287857 + O(101^4) 61431148 + O(101^
→˓4)]
[77916046 + O(101^4) 60656459 + O(101^4) 101244586 + O(101^4) 56237448 + O(101^
→˓4)]

(continues on next page)

20.8. Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve 717

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[58643832 + O(101^4) 81727988 + O(101^4) 85294589 + O(101^4) 70104432 + O(101^
→˓4)]
sage: -M.trace()
7 + O(101^4)
sage: sum(legendre_symbol(f(i), p) for i in range(p))
7
sage: ZZ(M.det())
10201
sage: M = hypellfrob(p, 1, f); M
[O(101) O(101) 93 + O(101) 62 + O(101)]
[O(101) O(101) 55 + O(101) 19 + O(101)]
[O(101) O(101) 65 + O(101) 42 + O(101)]
[O(101) O(101) 89 + O(101) 29 + O(101)]

Todo: Remove the restriction on 𝑝. Probably bymerging in Robert’s code, which eventually needs a fast C++/NTL
implementation.

sage.schemes.hyperelliptic_curves.hypellfrob.interval_products(M0, M1, target)
Given matrices𝑀(𝑡) with entries linear in 𝑡 over /𝑁 and a list of integers 𝑎0 < 𝑏0 ≤ 𝑎1 < 𝑏1 ≤ · · · ≤ 𝑎𝑛 <

𝑏𝑛, compute the matrices
∏︀𝑏𝑖
𝑡=𝑎𝑖+1𝑀(𝑡) for 𝑖 = 0 to 𝑛.

INPUT:

• M0, M1 – matrices over /𝑁 , so that𝑀(𝑡) =𝑀0 +𝑀1𝑡

• target – a list of integers 𝑎0, 𝑏0, . . . , 𝑎𝑛, 𝑏𝑛
ALGORITHM:

Described in [Harv2007], Theorem 10. Based on the work of Bostan-Gaudry-Schost [BGS2007].

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import interval_products
sage: interval_products(Matrix(Integers(9), 2,2, [1,0,1,0]),
....: Matrix(Integers(9), 2, 2, [1, 1, 0, 2]),[0,2,2,4])
[
[7 8] [5 4]
[5 1], [2 7]
]
sage: [prod(Matrix(Integers(9), 2, 2, [t + 1, t, 1, 2*t])
....: for t in range(2*i + 1, 2*i + 1 + 2)) for i in range(2)]
[
[7 8] [5 4]
[5 1], [2 7]
]

An example with larger modulus:

sage: interval_products(Matrix(Integers(3^8), 1, 1, [1]),
....: Matrix(Integers(3^8), 1, 1, [1]), [2,4])
[[20]]
sage: [prod(Matrix(Integers(3^8), 1, 1, [t + 1]) for t in range(3,5))]
[[20]]

An even larger modulus:

718 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: interval_products(Matrix(Integers(3^18), 1, 1, [1]),
....: Matrix(Integers(3^18), 1, 1, [1]), [2,4])
[[20]]
sage: [prod(Matrix(Integers(3^18), 1, 1, [t + 1]) for t in range(3,5))]
[[20]]

20.9 Jacobian of a general hyperelliptic curve

class sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic(C,
cat-
e-
gory=None)

Bases: Jacobian_generic

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: FF = FiniteField(2003)
sage: R.<x> = PolynomialRing(FF)
sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: a = x**2 + 376*x + 245; b = 1015*x + 1368
sage: X = J(FF)
sage: D = X([a,b])
sage: D
(x^2 + 376*x + 245, y + 988*x + 635)
sage: J(0)
(1)
sage: D == J([a,b])
True
sage: D == D + J(0)
True

A more extended example, demonstrating arithmetic in J(QQ) and J(K) for a number field K/QQ.

sage: P.<x> = PolynomialRing(QQ)
sage: f = x^5 - x + 1; h = x
sage: C = HyperellipticCurve(f,h, u,v); C
Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1
sage: PP = C.ambient_space(); PP
Projective Space of dimension 2 over Rational Field
sage: C.defining_polynomial()
-x0^5 + x0*x1*x2^3 + x1^2*x2^3 + x0*x2^4 - x2^5
sage: C(QQ)
Set of rational points of Hyperelliptic Curve over Rational Field
defined by v^2 + u*v = u^5 - u + 1
sage: K.<t> = NumberField(x^2 - 2) #␣
→˓needs sage.rings.number_field
sage: C(K) #␣
→˓needs sage.rings.number_field
Set of rational points of Hyperelliptic Curve
over Number Field in t with defining polynomial x^2 - 2
defined by v^2 + u*v = u^5 - u + 1

(continues on next page)

20.9. Jacobian of a general hyperelliptic curve 719

../../../../../../../html/en/reference/curves/sage/schemes/jacobians/abstract_jacobian.html#sage.schemes.jacobians.abstract_jacobian.Jacobian_generic

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: P = C(QQ)(0,1,1); P
(0 : 1 : 1)
sage: P == C(0,1,1)
True
sage: C(0,1,1).parent()
Set of rational points of Hyperelliptic Curve over Rational Field
defined by v^2 + u*v = u^5 - u + 1

sage: # needs sage.rings.number_field
sage: P1 = C(K)(P)
sage: P2 = C(K)([2, 4*t - 1, 1])
sage: P3 = C(K)([-1/2, 1/8*(7*t+2), 1])
sage: P1, P2, P3
((0 : 1 : 1), (2 : 4*t - 1 : 1), (-1/2 : 7/8*t + 1/4 : 1))

sage: J = C.jacobian(); J
Jacobian of Hyperelliptic Curve over Rational Field
defined by v^2 + u*v = u^5 - u + 1
sage: Q = J(QQ)(P); Q
(u, v - 1)
sage: for i in range(6): Q*i
(1)
(u, v - 1)
(u^2, v + u - 1)
(u^2, v + 1)
(u, v + 1)
(1)

sage: # needs sage.rings.number_field
sage: Q1 = J(K)(P1); print("%s -> %s"%(P1, Q1))
(0 : 1 : 1) -> (u, v - 1)
sage: Q2 = J(K)(P2); print("%s -> %s"%(P2, Q2))
(2 : 4*t - 1 : 1) -> (u - 2, v - 4*t + 1)
sage: Q3 = J(K)(P3); print("%s -> %s"%(P3, Q3))
(-1/2 : 7/8*t + 1/4 : 1) -> (u + 1/2, v - 7/8*t - 1/4)
sage: R.<x> = PolynomialRing(K)
sage: Q4 = J(K)([x^2 - t, R(1)])
sage: for i in range(4): Q4*i
(1)
(u^2 - t, v - 1)
(u^2 + (-3/4*t - 9/16)*u + 1/2*t + 1/4, v + (-1/32*t - 57/64)*u + 1/2*t + 9/16)
(u^2 + (1352416/247009*t - 1636930/247009)*u - 1156544/247009*t + 1900544/247009,
v + (-2326345442/122763473*t + 3233153137/122763473)*u

+ 2439343104/122763473*t - 3350862929/122763473)
sage: R2 = Q2*5; R2
(u^2 - 3789465233/116983808*u - 267915823/58491904,
v + (-233827256513849/1789384327168*t + 1/2)*u - 15782925357447/894692163584*t)
sage: R3 = Q3*5; R3
(u^2 + 5663300808399913890623/14426454798950909645952*u

- 26531814176395676231273/28852909597901819291904,
v + (253155440321645614070860868199103/2450498420175733688903836378159104*t + 1/
→˓2)*u

+ 2427708505064902611513563431764311/4900996840351467377807672756318208*t)
sage: R4 = Q4*5; R4
(u^2 - 3789465233/116983808*u - 267915823/58491904,
v + (233827256513849/1789384327168*t + 1/2)*u + 15782925357447/894692163584*t)

720 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

Thus we find the following identity:

sage: 5*Q2 + 5*Q4 #␣
→˓needs sage.rings.number_field
(1)

Moreover the following relation holds in the 5-torsion subgroup:

sage: Q2 + Q4 == 2*Q1 #␣
→˓needs sage.rings.number_field
True

dimension()

Return the dimension of this Jacobian.

OUTPUT:

Integer

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(9); R.<x> = k[]
sage: HyperellipticCurve(x^3 + x - 1, x + a).jacobian().dimension()
1
sage: g = HyperellipticCurve(x^6 + x - 1, x + a).jacobian().dimension(); g
2
sage: type(g)
<... sage.rings.integer.Integer >

geometric_endomorphism_algebra_is_field(B=200, proof=False)
Return whether the geometric endomorphism algebra is a field.

This implies that the Jacobian of the curve is geometrically simple. It is based on Algorithm 4.10 from
[Lom2019]

INPUT:

• B – (default: 200) the bound which appears in the statement of the algorithm from [Lom2019]

• proof – (default: False) whether or not to insist on a provably correct answer. This is related to the
warning in the docstring of this module: if this function returns False, then strictly speaking this has
not been proven to be False until one has exhibited a non-trivial endomorphism, which these methods
are not designed to carry out. If one is convinced that this method should return True, but it is returning
False, then this can be exhibited by increasing 𝐵.

OUTPUT:

Boolean indicating whether or not the geometric endomorphism algebra is a field.

EXAMPLES:

This is LMFDB curve 262144.d.524288.2 which has QM. Although its Jacobian is geometrically simple, the
geometric endomorphism algebra is not a field:

sage: R.<x> = QQ[]
sage: f = x^5 + x^4 + 4*x^3 + 8*x^2 + 5*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_algebra_is_field()
False

20.9. Jacobian of a general hyperelliptic curve 721

Elliptic curves, Release 10.4.rc1

This is LMFDB curve 50000.a.200000.1:

sage: f = 8*x^5 + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_algebra_is_field()
True

geometric_endomorphism_ring_is_ZZ(B=200, proof=False)
Return whether the geometric endomorphism ring of self is the integer ring .

INPUT:

• B – (default: 200) the bound which appears in the statement of the algorithm from [Lom2019]

• proof – (default: False) whether or not to insist on a provably correct answer. This is related to
the warning in the module docstring of 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛𝑒𝑛𝑑𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠.𝑝𝑦: if this function returns False,
then strictly speaking this has not been proven to be False until one has exhibited a non-trivial en-
domorphism, which the methods in that module are not designed to carry out. If one is convinced that
this method should return True, but it is returning False, then this can be exhibited by increasing 𝐵.

OUTPUT:

Boolean indicating whether or not the geometric endomorphism ring is isomorphic to the integer ring.

EXAMPLES:

This is LMFDB curve 603.a.603.2:

sage: R.<x> = QQ[]
sage: f = 4*x^5 + x^4 - 4*x^3 + 2*x^2 + 4*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
True

This is LMFDB curve 1152.a.147456.1 whose geometric endomorphism ring is isomorphic to the group of
2x2 matrices over Q:

sage: f = x^6 - 2*x^4 + 2*x^2 - 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 20736.k.373248.1 whose geometric endomorphism ring is isomorphic to the group of
2x2 matrices over a CM field:

sage: f = x^6 + 8
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 708.a.181248.1:

sage: R.<x> = QQ[]
sage: f = -3*x^6 - 16*x^5 + 36*x^4 + 194*x^3 - 164*x^2 - 392*x - 143
sage: C = HyperellipticCurve(f)

(continues on next page)

722 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
True

This is LMFDB curve 10609.a.10609.1 whose geometric endomorphism ring is an order in a real quadratic
field:

sage: f = x^6 + 2*x^4 + 2*x^3 + 5*x^2 + 6*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 160000.c.800000.1 whose geometric endomorphism ring is an order in a CM field:

sage: f = x^5 - 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 262144.d.524288.2 whose geometric endomorphism ring is an order in a quaternion
algebra:

sage: f = x^5 + x^4 + 4*x^3 + 8*x^2 + 5*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 578.a.2312.1 whose geometric endomorphism ring is Q×Q:

sage: f = 4*x^5 - 7*x^4 + 10*x^3 - 7*x^2 + 4*x
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

point(mumford, check=True)

20.10 Jacobian of a hyperelliptic curve of genus 2

class sage.schemes.hyperelliptic_curves.jacobian_g2.HyperellipticJacobian_g2(C,
cat-
e-
gory=None)

Bases: HyperellipticJacobian_generic

kummer_surface()

20.10. Jacobian of a hyperelliptic curve of genus 2 723

Elliptic curves, Release 10.4.rc1

20.11 Rational point sets on a Jacobian

EXAMPLES:

sage: x = QQ[x].0
sage: f = x^5 + x + 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: C(QQ)
Set of rational points of Hyperelliptic Curve over Rational Field
defined by y^2 = x^5 + x + 1

sage: P = C([0,1,1])
sage: J = C.jacobian(); J
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: Q = J(QQ)(P); Q
(x, y - 1)
sage: Q + Q
(x^2, y - 1/2*x - 1)
sage: Q*3
(x^2 - 1/64*x + 1/8, y + 255/512*x + 65/64)

sage: F.<a> = GF(3)
sage: R.<x> = F[]
sage: f = x^5 - 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: X = J(F)
sage: a = x^2 - x + 1; b = -x + 1; c = x - 1; d = 0
sage: D1 = X([a,b]); D1
(x^2 + 2*x + 1, y + x + 2)
sage: D2 = X([c,d]); D2
(x + 2, y)
sage: D1 + D2
(x^2 + 2*x + 2, y + 2*x + 1)

class sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes(Y ,
X,
**kwds)

Bases: SchemeHomset_points

base_extend(R)

curve()

value_ring()

Return S for a homset X(T) where T = Spec(S).

724 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/schemes/sage/schemes/generic/homset.html#sage.schemes.generic.homset.SchemeHomset_points

Elliptic curves, Release 10.4.rc1

20.12 Jacobian ‘morphism’ as a class in the Picard group

This module implements the group operation in the Picard group of a hyperelliptic curve, represented as divisors in
Mumford representation, using Cantor’s algorithm.

A divisor on the hyperelliptic curve 𝑦2 + 𝑦ℎ(𝑥) = 𝑓(𝑥) is stored in Mumford representation, that is, as two polynomials
𝑢(𝑥) and 𝑣(𝑥) such that:

• 𝑢(𝑥) is monic,

• 𝑢(𝑥) divides 𝑓(𝑥)− ℎ(𝑥)𝑣(𝑥)− 𝑣(𝑥)2,

• 𝑑𝑒𝑔(𝑣(𝑥)) < 𝑑𝑒𝑔(𝑢(𝑥)) ≤ 𝑔.

REFERENCES:

A readable introduction to divisors, the Picard group, Mumford representation, and Cantor’s algorithm:

• J. Scholten, F. Vercauteren. An Introduction to Elliptic and Hyperelliptic Curve Cryptography and the NTRU
Cryptosystem. To appear in B. Preneel (Ed.) State of the Art in Applied Cryptography - COSIC ‘03, Lecture
Notes in Computer Science, Springer 2004.

A standard reference in the field of cryptography:

• R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren, Handbook of Elliptic and
Hyperelliptic Curve Cryptography. CRC Press, 2005.

EXAMPLES: The following curve is the reduction of a curve whose Jacobian has complex multiplication.

sage: x = GF(37)[x].gen()
sage: H = HyperellipticCurve(x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x); H
Hyperelliptic Curve over Finite Field of size 37 defined
by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x

At this time, Jacobians of hyperelliptic curves are handled differently than elliptic curves:

sage: J = H.jacobian(); J
Jacobian of Hyperelliptic Curve over Finite Field of size 37 defined
by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x

sage: J = J(J.base_ring()); J
Set of rational points of Jacobian of Hyperelliptic Curve over Finite Field
of size 37 defined by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x

Points on the Jacobian are represented by Mumford’s polynomials. First we find a couple of points on the curve:

sage: P1 = H.lift_x(2); P1
(2 : 11 : 1)
sage: Q1 = H.lift_x(10); Q1
(10 : 18 : 1)

Observe that 2 and 10 are the roots of the polynomials in x, respectively:

sage: P = J(P1); P
(x + 35, y + 26)
sage: Q = J(Q1); Q
(x + 27, y + 19)

sage: P + Q
(x^2 + 25*x + 20, y + 13*x)

(continues on next page)

20.12. Jacobian ‘morphism’ as a class in the Picard group 725

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: (x^2 + 25*x + 20).roots(multiplicities=False)
[10, 2]

Frobenius satisfies

𝑥4 + 12 * 𝑥3 + 78 * 𝑥2 + 444 * 𝑥+ 1369

on the Jacobian of this reduction and the order of the Jacobian is 𝑁 = 1904.

sage: 1904*P
(1)
sage: 34*P == 0
True
sage: 35*P == P
True
sage: 33*P == -P
True

sage: Q*1904
(1)
sage: Q*238 == 0
True
sage: Q*239 == Q
True
sage: Q*237 == -Q
True

class sage.schemes.hyperelliptic_curves.jacobian_morphism.JacobianMorphism_divisor_class_field(par-
ent,
polys,
check=True)

Bases: AdditiveGroupElement, SchemeMorphism

An element of a Jacobian defined over a field, i.e. in 𝐽(𝐾) = Pic0𝐾(𝐶).

point_of_jacobian_of_curve()

Return the point in the Jacobian of the curve.

The Jacobian is the one attached to the projective curve corresponding to this hyperelliptic curve.

EXAMPLES:

sage: R.<x> = PolynomialRing(GF(11))
sage: f = x^6 + x + 1
sage: H = HyperellipticCurve(f)
sage: J = H.jacobian()
sage: D = J(H.lift_x(1))
sage: D # divisor in Mumford representation
(x + 10, y + 6)
sage: jacobian_order = sum(H.frobenius_polynomial())
sage: jacobian_order
234
sage: p = D.point_of_jacobian_of_curve(); p
[Place (1/x0, 1/x0^3*x1 + 1)
+ Place (x0 + 10, x1 + 6)]

sage: p # Jacobian point represented by an effective divisor

(continues on next page)

726 Chapter 20. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AdditiveGroupElement
../../../../../../../html/en/reference/schemes/sage/schemes/generic/morphism.html#sage.schemes.generic.morphism.SchemeMorphism

Elliptic curves, Release 10.4.rc1

(continued from previous page)

[Place (1/x0, 1/x0^3*x1 + 1)
+ Place (x0 + 10, x1 + 6)]

sage: p.order()
39
sage: 234*p == 0
True
sage: G = p.parent()
sage: G
Group of rational points of Jacobian over Finite Field of size 11 (Hess model)
sage: J = G.parent()
sage: J
Jacobian of Projective Plane Curve over Finite Field of size 11
defined by x0^6 + x0^5*x1 + x1^6 - x0^4*x2^2 (Hess model)

sage: C = J.curve()
sage: C
Projective Plane Curve over Finite Field of size 11
defined by x0^6 + x0^5*x1 + x1^6 - x0^4*x2^2

sage: C.affine_patch(0) == H.affine_patch(2)
True

scheme()

Return the scheme this morphism maps to; or, where this divisor lives.

Warning: Although a pointset is defined over a specific field, the scheme returnedmay be over a different
(usually smaller) field. The example below demonstrates this: the pointset is determined over a number
field of absolute degree 2 but the scheme returned is defined over the rationals.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: x = QQ[x].gen()
sage: f = x^5 + x
sage: H = HyperellipticCurve(f)
sage: F.<a> = NumberField(x^2 - 2, a)
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve
over Number Field in a with defining polynomial x^2 - 2
defined by y^2 = x^5 + x

sage: P = J(H.lift_x(F(1)))
sage: P.scheme()
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_composition(D1, D2, f ,
h, genus)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(7^2, a)
sage: x = F[x].gen()
sage: f = x^7 + x^2 + a
sage: H = HyperellipticCurve(f, 2*x); H
Hyperelliptic Curve over Finite Field in a of size 7^2
defined by y^2 + 2*x*y = x^7 + x^2 + a
sage: J = H.jacobian()(F); J

(continues on next page)

20.12. Jacobian ‘morphism’ as a class in the Picard group 727

Elliptic curves, Release 10.4.rc1

(continued from previous page)

Set of rational points of Jacobian of Hyperelliptic Curve over
Finite Field in a of size 7^2 defined by y^2 + 2*x*y = x^7 + x^2 + a

sage: Q = J(H.lift_x(F(1))); Q #␣
→˓needs sage.rings.finite_rings
(x + 6, y + 5*a)
sage: 10*Q # indirect doctest #␣
→˓needs sage.rings.finite_rings
(x^3 + (3*a + 1)*x^2 + (2*a + 5)*x + a + 5, y + (3*a + 2)*x^2 + (6*a + 1)*x + a +␣
→˓4)
sage: 7*8297*Q #␣
→˓needs sage.rings.finite_rings
(1)

sage: Q = J(H.lift_x(F(a+1))); Q #␣
→˓needs sage.rings.finite_rings
(x + 6*a + 6, y + 2)
sage: 7*8297*Q # indirect doctest #␣
→˓needs sage.rings.finite_rings
(1)

A test over a prime field:

sage: # needs sage.rings.finite_rings
sage: F = GF(next_prime(10^30))
sage: x = F[x].gen()
sage: f = x^7 + x^2 + 1
sage: H = HyperellipticCurve(f, 2*x); H
Hyperelliptic Curve over Finite Field of size 1000000000000000000000000000057
defined by y^2 + 2*x*y = x^7 + x^2 + 1
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve
over Finite Field of size 1000000000000000000000000000057
defined by y^2 + 2*x*y = x^7 + x^2 + 1
sage: Q = J(H.lift_x(F(1))); Q
(x + 1000000000000000000000000000056, y + 1000000000000000000000000000056)
sage: 10*Q # indirect doctest
(x^3 + 150296037169838934997145567227*x^2

+ 377701248971234560956743242408*x + 509456150352486043408603286615,
y + 514451014495791237681619598519*x^2
+ 875375621665039398768235387900*x + 861429240012590886251910326876)

sage: 7*8297*Q
(x^3 + 35410976139548567549919839063*x^2

+ 26230404235226464545886889960*x + 681571430588959705539385624700,
y + 999722365017286747841221441793*x^2
+ 262703715994522725686603955650*x + 626219823403254233972118260890)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_composition_simple(D1,
D2,
f ,
genus)

Given 𝐷1 and 𝐷2 two reduced Mumford divisors on the Jacobian of the curve 𝑦2 = 𝑓(𝑥), computes a represen-
tative 𝐷1 +𝐷2.

728 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

Warning: The representative computed is NOT reduced! Use cantor_reduction_simple() to re-
duce it.

EXAMPLES:

sage: x = QQ[x].gen()
sage: f = x^5 + x
sage: H = HyperellipticCurve(f); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x

sage: F.<a> = NumberField(x^2 - 2, a) #␣
→˓needs sage.rings.number_field
sage: J = H.jacobian()(F); J #␣
→˓needs sage.rings.number_field
Set of rational points of Jacobian of Hyperelliptic Curve over
Number Field in a with defining polynomial x^2 - 2 defined by y^2 = x^5 + x

sage: # needs sage.rings.number_field
sage: P = J(H.lift_x(F(1))); P
(x - 1, y + a)
sage: Q = J(H.lift_x(F(0))); Q
(x, y)
sage: 2*P + 2*Q # indirect doctest
(x^2 - 2*x + 1, y + 3/2*a*x - 1/2*a)
sage: 2*(P + Q) # indirect doctest
(x^2 - 2*x + 1, y + 3/2*a*x - 1/2*a)
sage: 3*P # indirect doctest
(x^2 - 25/32*x + 49/32, y + 45/256*a*x + 315/256*a)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_reduction(a, b, f , h,
genus)

Return the unique reduced divisor linearly equivalent to (𝑎, 𝑏) on the curve 𝑦2 + 𝑦ℎ(𝑥) = 𝑓(𝑥).

See the docstring ofsage.schemes.hyperelliptic_curves.jacobian_morphism for information
about divisors, linear equivalence, and reduction.

EXAMPLES:

sage: x = QQ[x].gen()
sage: f = x^5 - x
sage: H = HyperellipticCurve(f, x); H
Hyperelliptic Curve over Rational Field defined by y^2 + x*y = x^5 - x
sage: J = H.jacobian()(QQ); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Rational Field defined by y^2 + x*y = x^5 - x

The following point is 2-torsion:

sage: Q = J(H.lift_x(0)); Q
(x, y)
sage: 2*Q # indirect doctest
(1)

The next point is not 2-torsion:

20.12. Jacobian ‘morphism’ as a class in the Picard group 729

Elliptic curves, Release 10.4.rc1

sage: P = J(H.lift_x(-1)); P
(x + 1, y)
sage: 2 * J(H.lift_x(-1)) # indirect doctest
(x^2 + 2*x + 1, y + 4*x + 4)
sage: 3 * J(H.lift_x(-1)) # indirect doctest
(x^2 - 487*x - 324, y + 10755*x + 7146)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_reduction_simple(a,
b,
f ,
genus)

Return the unique reduced divisor linearly equivalent to (𝑎, 𝑏) on the curve 𝑦2 = 𝑓(𝑥).

See the docstring ofsage.schemes.hyperelliptic_curves.jacobian_morphism for information
about divisors, linear equivalence, and reduction.

EXAMPLES:

sage: x = QQ[x].gen()
sage: f = x^5 - x
sage: H = HyperellipticCurve(f); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x
sage: J = H.jacobian()(QQ); J
Set of rational points of Jacobian of Hyperelliptic Curve over Rational Field
defined by y^2 = x^5 - x

The following point is 2-torsion:

sage: P = J(H.lift_x(-1)); P
(x + 1, y)
sage: 2 * P # indirect doctest
(1)

20.13 Hyperelliptic curves of genus 2 over a general ring

class sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2(PP,
f ,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic

absolute_igusa_invariants_kohel()

Return the three absolute Igusa invariants used by Kohel [KohECHIDNA].

See also:

sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_kohel()
(0, 0, 0)
sage: HyperellipticCurve(x^5 - x + 1, x^2).absolute_igusa_invariants_kohel()

(continues on next page)

730 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

(-1030567/178769, 259686400/178769, 20806400/178769)
sage: HyperellipticCurve((x^5 - x + 1)(3*x + 1), (x^2)(3*x + 1)).absolute_
→˓igusa_invariants_kohel()
(-1030567/178769, 259686400/178769, 20806400/178769)

absolute_igusa_invariants_wamelen()

Return the three absolute Igusa invariants used by van Wamelen [Wam1999].

EXAMPLES:

sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_wamelen()
(0, 0, 0)
sage: HyperellipticCurve((x^5 - 1)(x - 2), (x^2)(x - 2)).absolute_igusa_
→˓invariants_wamelen()
(0, 0, 0)

clebsch_invariants()

Return the Clebsch invariants (𝐴,𝐵,𝐶,𝐷) of Mestre, p 317, [Mes1991].

See also:

sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).clebsch_invariants()
(0, -2048/375, -4096/25, -4881645568/84375)
sage: HyperellipticCurve(f(2*x)).clebsch_invariants()
(0, -8388608/375, -1073741824/25, -5241627016305836032/84375)

sage: HyperellipticCurve(f, x).clebsch_invariants()
(-8/15, 17504/5625, -23162896/140625, -420832861216768/7119140625)
sage: HyperellipticCurve(f(2*x), 2*x).clebsch_invariants()
(-512/15, 71696384/5625, -6072014209024/140625, -451865844002031331704832/
→˓7119140625)

igusa_clebsch_invariants()

Return the Igusa-Clebsch invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 of Igusa and Clebsch [IJ1960].

See also:

sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x + 2
sage: HyperellipticCurve(f).igusa_clebsch_invariants()
(-640, -20480, 1310720, 52160364544)
sage: HyperellipticCurve(f(2*x)).igusa_clebsch_invariants()
(-40960, -83886080, 343597383680, 56006764965979488256)

sage: HyperellipticCurve(f, x).igusa_clebsch_invariants()
(-640, 17920, -1966656, 52409511936)
sage: HyperellipticCurve(f(2*x), 2*x).igusa_clebsch_invariants()
(-40960, 73400320, -515547070464, 56274284941110411264)

20.13. Hyperelliptic curves of genus 2 over a general ring 731

Elliptic curves, Release 10.4.rc1

is_odd_degree()

Return True if the curve is an odd degree model.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).is_odd_degree()
True

jacobian()

Return the Jacobian of the hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).jacobian()
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x^
→˓4 + 3

kummer_morphism()

Return the morphism of an odd degree hyperelliptic curve to the Kummer surface of its Jacobian.

This could be extended to an even degree model if a prescribed embedding in its Jacobian is fixed.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).kummer_morphism() # not tested

20.14 Compute invariants of quintics and sextics via ‘Ueber-
schiebung’

Todo:

• Implement invariants in small positive characteristic.

• Cardona-Quer and additional invariants for classifying automorphism groups.

AUTHOR:

• Nick Alexander

sage.schemes.hyperelliptic_curves.invariants.Ueberschiebung(f , g, k)
Return the differential operator (𝑓𝑔)𝑘.

This is defined by Mestre on page 315 [Mes1991]:

(𝑓𝑔)𝑘 =
(𝑚− 𝑘)!(𝑛− 𝑘)!

𝑚!𝑛!

(︂
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
− 𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

)︂𝑘
.

EXAMPLES:

732 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: from sage.schemes.hyperelliptic_curves.invariants import Ueberschiebung as␣
→˓ub
sage: R.<x, y> = QQ[]
sage: ub(x, y, 0)
x*y
sage: ub(x^5 + 1, x^5 + 1, 1)
0
sage: ub(x^5 + 5*x + 1, x^5 + 5*x + 1, 0)
x^10 + 10*x^6 + 2*x^5 + 25*x^2 + 10*x + 1

sage.schemes.hyperelliptic_curves.invariants.absolute_igusa_invariants_kohel(f)
Given a sextic form 𝑓 , return the three absolute Igusa invariants used by Kohel [KohECHIDNA].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import absolute_igusa_
→˓invariants_kohel
sage: R.<x> = QQ[]
sage: absolute_igusa_invariants_kohel(x^5 - 1)
(0, 0, 0)
sage: absolute_igusa_invariants_kohel(x^5 - x)
(100, -20000, -2000)

The following example can be checked against Kohel’s database [KohECHIDNA]

sage: h = -x^5 + 3*x^4 + 2*x^3 - 6*x^2 - 3*x + 1
sage: i1, i2, i3 = absolute_igusa_invariants_kohel(h)
sage: list(map(factor, (i1, i2, i3)))
[2^2 * 3^5 * 5 * 31, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]
sage: list(map(factor, (150660, 28343520, 9762768)))
[2^2 * 3^5 * 5 * 31, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]

sage.schemes.hyperelliptic_curves.invariants.absolute_igusa_invariants_wamelen(f)
Given a sextic form 𝑓 , return the three absolute Igusa invariants used by van Wamelen [Wam1999].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

REFERENCES:

• [Wam1999]

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import absolute_igusa_
→˓invariants_wamelen
sage: R.<x> = QQ[]
sage: absolute_igusa_invariants_wamelen(x^5 - 1)
(0, 0, 0)

The following example can be checked against van Wamelen’s paper:

sage: h = -x^5 + 3*x^4 + 2*x^3 - 6*x^2 - 3*x + 1
sage: i1, i2, i3 = absolute_igusa_invariants_wamelen(h)
sage: list(map(factor, (i1, i2, i3)))
[2^7 * 3^15, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]

20.14. Compute invariants of quintics and sextics via ‘Ueberschiebung’ 733

Elliptic curves, Release 10.4.rc1

sage.schemes.hyperelliptic_curves.invariants.clebsch_invariants(f)
Given a sextic form 𝑓 , return the Clebsch invariants (𝐴,𝐵,𝐶,𝐷) of Mestre, p 317, [Mes1991].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_invariants
sage: R.<x, y> = QQ[]
sage: clebsch_invariants(x^6 + y^6)
(2, 2/3, -2/9, 0)
sage: R.<x> = QQ[]
sage: clebsch_invariants(x^6 + x^5 + x^4 + x^2 + 2)
(62/15, 15434/5625, -236951/140625, 229930748/791015625)

sage: magma(x^6 + 1).ClebschInvariants() # optional - magma
[2, 2/3, -2/9, 0]
sage: magma(x^6 + x^5 + x^4 + x^2 + 2).ClebschInvariants() # optional - magma
[62/15, 15434/5625, -236951/140625, 229930748/791015625]

sage.schemes.hyperelliptic_curves.invariants.clebsch_to_igusa(A, B, C, D)
Convert Clebsch invariants 𝐴,𝐵,𝐶,𝐷 to Igusa invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_to_igusa,␣
→˓igusa_to_clebsch
sage: clebsch_to_igusa(2, 3, 4, 5)
(-240, 17370, 231120, -103098906)
sage: igusa_to_clebsch(*clebsch_to_igusa(2, 3, 4, 5))
(2, 3, 4, 5)

sage: Cs = tuple(map(GF(31), (2, 3, 4, 5))); Cs
(2, 3, 4, 5)
sage: clebsch_to_igusa(*Cs)
(8, 10, 15, 26)
sage: igusa_to_clebsch(*clebsch_to_igusa(*Cs))
(2, 3, 4, 5)

sage.schemes.hyperelliptic_curves.invariants.differential_operator(f , g, k)
Return the differential operator (𝑓𝑔)𝑘 symbolically in the polynomial ring in dfdx, dfdy, dgdx, dgdy.

This is defined by Mestre on p 315 [Mes1991]:

(𝑓𝑔)𝑘 =
(𝑚− 𝑘)!(𝑛− 𝑘)!

𝑚!𝑛!

(︂
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
− 𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

)︂𝑘
.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import differential_
→˓operator
sage: R.<x, y> = QQ[]
sage: differential_operator(x, y, 0)
1
sage: differential_operator(x, y, 1)
-dfdy*dgdx + dfdx*dgdy
sage: differential_operator(x*y, x*y, 2)
1/4*dfdy^2*dgdx^2 - 1/2*dfdx*dfdy*dgdx*dgdy + 1/4*dfdx^2*dgdy^2

(continues on next page)

734 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: differential_operator(x^2*y, x*y^2, 2)
1/36*dfdy^2*dgdx^2 - 1/18*dfdx*dfdy*dgdx*dgdy + 1/36*dfdx^2*dgdy^2
sage: differential_operator(x^2*y, x*y^2, 4)
1/576*dfdy^4*dgdx^4 - 1/144*dfdx*dfdy^3*dgdx^3*dgdy + 1/96*dfdx^2*dfdy^2*dgdx^
→˓2*dgdy^2
- 1/144*dfdx^3*dfdy*dgdx*dgdy^3 + 1/576*dfdx^4*dgdy^4

sage.schemes.hyperelliptic_curves.invariants.diffsymb(U , f , g)
Given a differential operator U in dfdx, dfdy, dgdx, dgdy, represented symbolically by U, apply it to f,
g.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import diffsymb
sage: R.<x, y> = QQ[]
sage: S.<dfdx, dfdy, dgdx, dgdy> = QQ[]
sage: [diffsymb(dd, x^2, y*0 + 1) for dd in S.gens()]
[2*x, 0, 0, 0]
sage: [diffsymb(dd, x*0 + 1, y^2) for dd in S.gens()]
[0, 0, 0, 2*y]
sage: [diffsymb(dd, x^2, y^2) for dd in S.gens()]
[2*x*y^2, 0, 0, 2*x^2*y]

sage: diffsymb(dfdx + dfdy*dgdy, y*x^2, y^3)
2*x*y^4 + 3*x^2*y^2

sage.schemes.hyperelliptic_curves.invariants.diffxy(f , x, xtimes, y, ytimes)
Differentiate a polynomial f, xtimes with respect to x, and ytimes with respect to y.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import diffxy
sage: R.<u, v> = QQ[]
sage: diffxy(u^2*v^3, u, 0, v, 0)
u^2*v^3
sage: diffxy(u^2*v^3, u, 2, v, 1)
6*v^2
sage: diffxy(u^2*v^3, u, 2, v, 2)
12*v
sage: diffxy(u^2*v^3 + u^4*v^4, u, 2, v, 2)
144*u^2*v^2 + 12*v

sage.schemes.hyperelliptic_curves.invariants.igusa_clebsch_invariants(f)
Given a sextic form 𝑓 , return the Igusa-Clebsch invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 of Igusa and Clebsch [IJ1960].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import igusa_clebsch_
→˓invariants
sage: R.<x, y> = QQ[]
sage: igusa_clebsch_invariants(x^6 + y^6)
(-240, 1620, -119880, -46656)
sage: R.<x> = QQ[]
sage: igusa_clebsch_invariants(x^6 + x^5 + x^4 + x^2 + 2)
(-496, 6220, -955932, -1111784)

(continues on next page)

20.14. Compute invariants of quintics and sextics via ‘Ueberschiebung’ 735

Elliptic curves, Release 10.4.rc1

(continued from previous page)

sage: magma(x^6 + 1).IgusaClebschInvariants() # optional -␣
→˓magma
[-240, 1620, -119880, -46656]
sage: magma(x^6 + x^5 + x^4 + x^2 + 2).IgusaClebschInvariants() # optional -␣
→˓magma
[-496, 6220, -955932, -1111784]

sage.schemes.hyperelliptic_curves.invariants.igusa_to_clebsch(I2, I4, I6, I10)
Convert Igusa invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 to Clebsch invariants 𝐴,𝐵,𝐶,𝐷.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_to_igusa,␣
→˓igusa_to_clebsch
sage: igusa_to_clebsch(-2400, 173700, 23112000, -10309890600)
(20, 342/5, 2512/5, 43381012/1125)
sage: clebsch_to_igusa(*igusa_to_clebsch(-2400, 173700, 23112000, -10309890600))
(-2400, 173700, 23112000, -10309890600)

sage: Is = tuple(map(GF(31), (-2400, 173700, 23112000, -10309890600))); Is
(18, 7, 12, 27)
sage: igusa_to_clebsch(*Is)
(20, 25, 25, 12)
sage: clebsch_to_igusa(*igusa_to_clebsch(*Is))
(18, 7, 12, 27)

sage.schemes.hyperelliptic_curves.invariants.ubs(f)
Given a sextic form 𝑓 , return a dictionary of the invariants of Mestre, p 317 [Mes1991].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import ubs
sage: x = QQ[x].0
sage: ubs(x^6 + 1)
{ A : 2,
B : 2/3,
C : -2/9,
D : 0,
Delta : -2/3*x^2*h^2,
f : x^6 + h^6,
i : 2*x^2*h^2,
y1 : 0,
y2 : 0,
y3 : 0}

sage: R.<u, v> = QQ[]
sage: ubs(u^6 + v^6)
{ A : 2,
B : 2/3,
C : -2/9,
D : 0,
Delta : -2/3*u^2*v^2,
f : u^6 + v^6,
i : 2*u^2*v^2,

(continues on next page)

736 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

(continued from previous page)

y1 : 0,
y2 : 0,
y3 : 0}

sage: R.<t> = GF(31)[]
sage: ubs(t^6 + 2*t^5 + t^2 + 3*t + 1)
{ A : 0,
B : -12,
C : -15,
D : -15,
Delta : -10*t^4 + 12*t^3*h + 7*t^2*h^2 - 5*t*h^3 + 2*h^4,
f : t^6 + 2*t^5*h + t^2*h^4 + 3*t*h^5 + h^6,
i : -4*t^4 + 10*t^3*h + 2*t^2*h^2 - 9*t*h^3 - 7*h^4,
y1 : 4*t^2 - 10*t*h - 13*h^2,
y2 : 6*t^2 - 4*t*h + 2*h^2,
y3 : 4*t^2 - 4*t*h - 9*h^2}

20.15 Kummer surfaces over a general ring

class sage.schemes.hyperelliptic_curves.kummer_surface.KummerSurface(J)
Bases: AlgebraicScheme_subscheme_projective

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 + x + 1
sage: X = HyperellipticCurve(f)
sage: J = Jacobian(X)
sage: K = KummerSurface(J); K
Closed subscheme of Projective Space of dimension 3 over Rational Field defined␣
→˓by:
X0^4 - 4*X0*X1^3 + 4*X0^2*X1*X2 - 4*X0*X1^2*X2 + 2*X0^2*X2^2 + X2^4 - 4*X0^3*X3 -␣
→˓2*X0^2*X1*X3 - 2*X1*X2^2*X3 + X1^2*X3^2 - 4*X0*X2*X3^2

20.16 Conductor and reduction types for genus 2 curves

AUTHORS:

• Qing Liu and Henri Cohen (1994-1998): wrote genus2reduction C program

• William Stein (2006-03-05): wrote Sage interface to genus2reduction

• Jeroen Demeyer (2014-09-17): replace genus2reduction program by PARI library call (Issue #15808)

ACKNOWLEDGMENT: (From Liu’s website:) Many thanks to Henri Cohen who started writing this program. After
this program is available, many people pointed out to me (mathematical as well as programming) bugs : B. Poonen, E.
Schaefer, C. Stahlke, M. Stoll, F. Villegas. So thanks to all of them. Thanks also go to Ph. Depouilly who help me to
compile the program.

Also Liu has given me explicit permission to include genus2reduction with Sage and for people to modify the C source
code however they want.

20.15. Kummer surfaces over a general ring 737

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_subscheme.html#sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective
https://github.com/sagemath/sage/issues/15808

Elliptic curves, Release 10.4.rc1

class sage.interfaces.genus2reduction.Genus2reduction

Bases: SageObject

Conductor and Reduction Types for Genus 2 Curves.

Use R = genus2reduction(Q, P) to obtain reduction information about the Jacobian of the projective
smooth curve defined by 𝑦2 + 𝑄(𝑥)𝑦 = 𝑃 (𝑥). Type R? for further documentation and a description of how to
interpret the local reduction data.

EXAMPLES:

sage: x = QQ[x].0
sage: R = genus2reduction(x^3 - 2*x^2 - 2*x + 1, -5*x^5)
sage: R.conductor
1416875
sage: factor(R.conductor)
5^4 * 2267

The discriminant is always minimal:

sage: factor(R.minimal_disc)
2^3 * 5^5 * 2267

Printing R summarizes all the information computed about the curve

sage: R
Reduction data about this proper smooth genus 2 curve:

y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
A Minimal Equation:

y^2 ...
Minimal Discriminant: 56675000
Conductor: 1416875
Local Data:

p=2
(potential) stable reduction: (II), j=1
p=5
(potential) stable reduction: (I)
reduction at p: [V] page 156, (3), f=4
p=2267
(potential) stable reduction: (II), j=432
reduction at p: [I{1-0-0}] page 170, (1), f=1

Here are some examples of curves with modular Jacobians:

sage: R = genus2reduction(x^3 + x + 1, -2*x^5 - 3*x^2 + 2*x - 2)
sage: factor(R.conductor)
23^2
sage: factor(genus2reduction(x^3 + 1, -x^5 - 3*x^4 + 2*x^2 + 2*x - 2).conductor)
29^2
sage: factor(genus2reduction(x^3 + x + 1, x^5 + 2*x^4 + 2*x^3 + x^2 - x - 1).
→˓conductor)
5^6

EXAMPLES:

sage: genus2reduction(0, x^6 + 3*x^3 + 63)
Reduction data about this proper smooth genus 2 curve:

y^2 = x^6 + 3*x^3 + 63

(continues on next page)

738 Chapter 20. Hyperelliptic curves

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(continued from previous page)

A Minimal Equation:
y^2 ...

Minimal Discriminant: -10628388316852992
Conductor: 2893401
Local Data:

p=2
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
p=3
(potential) stable reduction: (I)
reduction at p: [III{9}] page 184, (3)^2, f=10
p=7
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
reduction at p: [I{0}-II-0] page 159, (1), f=2

In the above example, Liu remarks that in fact at 𝑝 = 2, the reduction is [II-II-0] page 163, (1), 𝑓 = 8. So the
conductor of J(C) is actually 2 · 2893401 = 5786802.

A MODULAR CURVE:

Consider the modular curve 𝑋1(13) defined by an equation

𝑦2 + (𝑥3 − 𝑥2 − 1)𝑦 = 𝑥2 − 𝑥.

We have:

sage: genus2reduction(x^3-x^2-1, x^2 - x)
Reduction data about this proper smooth genus 2 curve:

y^2 + (x^3 - x^2 - 1)*y = x^2 - x
A Minimal Equation:

y^2 ...
Minimal Discriminant: -169
Conductor: 169
Local Data:

p=13
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
reduction at p: [I{0}-II-0] page 159, (1), f=2

So the curve has good reduction at 2. At 𝑝 = 13, the stable reduction is union of two elliptic curves, and both of
them have 0 as modular invariant. The reduction at 13 is of type [I_0-II-0] (see Namikawa-Ueno, page 159). It
is an elliptic curve with a cusp. The group of connected components of the Neron model of 𝐽(𝐶) is trivial, and
the exponent of the conductor of 𝐽(𝐶) at 13 is 𝑓 = 2. The conductor of 𝐽(𝐶) is 132. (Note: It is a theorem of
Conrad-Edixhoven-Stein that the component group of 𝐽(𝑋1(𝑝)) is trivial for all primes 𝑝.)

class sage.interfaces.genus2reduction.ReductionData(pari_result, P, Q, Pmin, Qmin,
minimal_disc, local_data, conductor)

Bases: SageObject

Reduction data for a genus 2 curve.

How to read local_data attribute, i.e., if this class is R, then the following is the meaning of R.
local_data[p].

For each prime number 𝑝 dividing the discriminant of 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥), there are two lines.

The first line contains information about the stable reduction after field extension. Here are the meanings of the
symbols of stable reduction:

(I) The stable reduction is smooth (i.e. the curve has potentially good reduction).

20.16. Conductor and reduction types for genus 2 curves 739

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 10.4.rc1

(II) The stable reduction is an elliptic curve 𝐸 with an ordinary double point. 𝑗 mod 𝑝 is the modular invariant of
𝐸.

(III) The stable reduction is a projective line with two ordinary double points.

(IV) The stable reduction is two projective lines crossing transversally at three points.

(V) The stable reduction is the union of two elliptic curves 𝐸1 and 𝐸2 intersecting transversally at one point. Let
𝑗1, 𝑗2 be their modular invariants, then 𝑗1 + 𝑗2 and 𝑗1𝑗2 are computed (they are numbers mod 𝑝).

(VI) The stable reduction is the union of an elliptic curve 𝐸 and a projective line which has an ordinary double
point. These two components intersect transversally at one point. 𝑗 mod 𝑝 is the modular invariant of 𝐸.

(VII) The stable reduction is as above, but the two components are both singular.

In the cases (I) and (V), the Jacobian 𝐽(𝐶) has potentially good reduction. In the cases (III), (IV) and (VII), 𝐽(𝐶)
has potentially multiplicative reduction. In the two remaining cases, the (potential) semi-abelian reduction of 𝐽(𝐶)
is extension of an elliptic curve (with modular invariant 𝑗 mod 𝑝) by a torus.

The second line contains three data concerning the reduction at 𝑝 without any field extension.

1. The first symbol describes the REDUCTIONAT 𝑝 of𝐶. We use the symbols of Namikawa-Ueno for the type
of the reduction (Namikawa, Ueno:”The complete classification of fibers in pencils of curves of genus two”,
Manuscripta Math., vol. 9, (1973), pages 143-186.) The reduction symbol is followed by the corresponding
page number (or just an indication) in the above article. The lower index is printed by , for instance, [I2-II-5]
means [I_2-II-5]. Note that if𝐾 and𝐾 ′ are Kodaira symbols for singular fibers of elliptic curves, [K-K’-m]
and [K’-K-m] are the same type. Finally, [K-K’-1] (not the same as [K-K’-1]) is [K’-K-alpha] in the notation
of Namikawa-Ueno. The figure [2I_0-m] in Namikawa-Ueno, page 159 must be denoted by [2I_0-(m+1)].

2. The second datum is the GROUP OF CONNECTED COMPONENTS (over an ALGEBRAIC CLOSURE
(!) of F𝑝) of the Neron model of J(C). The symbol (n) means the cyclic group with n elements. When n=0,
(0) is the trivial group (1). Hn is isomorphic to (2)x(2) if n is even and to (4) otherwise.

Note - The set of rational points of Φ can be computed using Theorem 1.17 in S. Bosch and Q. Liu “Rational
points of the group of components of a Neron model”, Manuscripta Math. 98 (1999), 275-293.

3. Finally, 𝑓 is the exponent of the conductor of 𝐽(𝐶) at 𝑝.

Warning: Be careful regarding the formula:

valuation of the naive minimal discriminant = 𝑓 + 𝑛− 1 + 11𝑐(𝑋).

(Q. Liu : “Conducteur et discriminant minimal de courbes de genre 2”, Compositio Math. 94 (1994) 51-79,
Theoreme 2) is valid only if the residual field is algebraically closed as stated in the paper. So this equality does
not hold in general over Q𝑝. The fact is that the minimal discriminant may change after unramified extension.
One can show however that, at worst, the change will stabilize after a quadratic unramified extension (Q. Liu
: “Modèles entiers de courbes hyperelliptiques sur un corps de valuation discrète”, Trans. AMS 348 (1996),
4577-4610, Section 7.2, Proposition 4).

sage.interfaces.genus2reduction.divisors_to_string(divs)

Convert a list of numbers (representing the orders of cyclic groups in the factorization of a finite abelian group) to
a string according to the format shown in the examples.

INPUT:

• divs – a (possibly empty) list of numbers

OUTPUT: a string representation of these numbers

EXAMPLES:

740 Chapter 20. Hyperelliptic curves

Elliptic curves, Release 10.4.rc1

sage: from sage.interfaces.genus2reduction import divisors_to_string
sage: print(divisors_to_string([]))
(1)
sage: print(divisors_to_string([5]))
(5)
sage: print(divisors_to_string([5]*6))
(5)^6
sage: print(divisors_to_string([2,3,4]))
(2)x(3)x(4)
sage: print(divisors_to_string([6,2,2]))
(6)x(2)^2

20.16. Conductor and reduction types for genus 2 curves 741

Elliptic curves, Release 10.4.rc1

742 Chapter 20. Hyperelliptic curves

CHAPTER

TWENTYONE

INDICES AND TABLES

• Index

• Module Index

• Search Page

743

../genindex.html
../py-modindex.html
../search.html

Elliptic curves, Release 10.4.rc1

744 Chapter 21. Indices and Tables

PYTHON MODULE INDEX

i
sage.interfaces.genus2reduction, 737

s
sage.schemes.elliptic_curves.cm, 480
sage.schemes.elliptic_curves.construc-

tor, 1
sage.schemes.elliptic_curves.de-

scent_two_isogeny, 627
sage.schemes.ellip-

tic_curves.ec_database, 361
sage.schemes.ellip-

tic_curves.ell_curve_isogeny,
193

sage.schemes.ellip-
tic_curves.ell_egros, 630

sage.schemes.ellip-
tic_curves.ell_field, 91

sage.schemes.elliptic_curves.ell_fi-
nite_field, 121

sage.schemes.ellip-
tic_curves.ell_generic, 59

sage.schemes.elliptic_curves.ell_lo-
cal_data, 493

sage.schemes.elliptic_curves.ell_modu-
lar_symbols, 537

sage.schemes.elliptic_curves.ell_num-
ber_field, 362

sage.schemes.ellip-
tic_curves.ell_padic_field, 634

sage.schemes.ellip-
tic_curves.ell_point, 21

sage.schemes.elliptic_curves.ell_ra-
tional_field, 269

sage.schemes.ellip-
tic_curves.ell_tate_curve, 503

sage.schemes.elliptic_curves.ell_tor-
sion, 437

sage.schemes.elliptic_curves.ell_wp, 507
sage.schemes.elliptic_curves.for-

mal_group, 153

sage.schemes.elliptic_curves.gal_reps,
441

sage.schemes.ellip-
tic_curves.gal_reps_num-
ber_field, 452

sage.schemes.elliptic_curves.gp_simon,
635

sage.schemes.elliptic_curves.heegner,
557

sage.schemes.elliptic_curves.height, 414
sage.schemes.elliptic_curves.hom, 159
sage.schemes.elliptic_curves.hom_com-

posite, 173
sage.schemes.ellip-

tic_curves.hom_frobenius, 229
sage.schemes.ellip-

tic_curves.hom_scalar, 223
sage.schemes.elliptic_curves.hom_sum,

181
sage.schemes.ellip-

tic_curves.hom_velusqrt, 215
sage.schemes.ellip-

tic_curves.isogeny_class, 463
sage.schemes.ellip-

tic_curves.isogeny_small_degree,
235

sage.schemes.elliptic_curves.jacobian,
17

sage.schemes.elliptic_curves.ko-
daira_symbol, 501

sage.schemes.ellip-
tic_curves.lseries_ell, 548

sage.schemes.elliptic_curves.mod5fam-
ily, 635

sage.schemes.elliptic_curves.mod_poly,
267

sage.schemes.ellip-
tic_curves.mod_sym_num, 542

sage.schemes.elliptic_curves.modu-
lar_parametrization, 535

sage.schemes.ellip-
tic_curves.padic_lseries, 612

745

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.pe-
riod_lattice, 511

sage.schemes.elliptic_curves.pe-
riod_lattice_region, 530

sage.schemes.elliptic_curves.Qcurves,
489

sage.schemes.elliptic_curves.satura-
tion, 432

sage.schemes.elliptic_curves.sha_tate,
470

sage.schemes.elliptic_curves.weier-
strass_morphism, 187

sage.schemes.elliptic_curves.weier-
strass_transform, 636

sage.schemes.hyperelliptic_curves.con-
structor, 641

sage.schemes.hyperelliptic_curves.hy-
pellfrob, 717

sage.schemes.hyperelliptic_curves.hy-
perelliptic_finite_field, 653

sage.schemes.hyperelliptic_curves.hy-
perelliptic_g2, 730

sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic, 643

sage.schemes.hyperelliptic_curves.hy-
perelliptic_padic_field, 667

sage.schemes.hyperelliptic_curves.hy-
perelliptic_rational_field, 684

sage.schemes.hyperelliptic_curves.in-
variants, 732

sage.schemes.hyperelliptic_curves.ja-
cobian_g2, 723

sage.schemes.hyperelliptic_curves.ja-
cobian_generic, 719

sage.schemes.hyperelliptic_curves.ja-
cobian_homset, 724

sage.schemes.hyperelliptic_curves.ja-
cobian_morphism, 725

sage.schemes.hyperelliptic_curves.kum-
mer_surface, 737

sage.schemes.hyperellip-
tic_curves.mestre, 685

sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer, 688

746 Python Module Index

INDEX

A
a1() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 60
a2() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 60
a3() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 60
a4() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 60
a6() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 60
a_invariants() (sage.schemes.ellip-

tic_curves.ell_generic.EllipticCurve_generic
method), 60

a_number() (sage.schemes.hyperelliptic_curves.hyperel-
liptic_finite_field.HyperellipticCurve_finite_field
method), 655

abelian_group() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method), 122

abelian_variety() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 274

absolute_degree() (sage.schemes.ellip-
tic_curves.heegner.RingClassField method),
596

absolute_igusa_invariants_kohel() (in
module sage.schemes.hyperelliptic_curves.invari-
ants), 733

absolute_igusa_invariants_kohel()
(sage.schemes.hyperelliptic_curves.hyperel-
liptic_g2.HyperellipticCurve_g2 method), 730

absolute_igusa_invariants_wamelen() (in
module sage.schemes.hyperelliptic_curves.invari-
ants), 733

absolute_igusa_invariants_wamelen()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_g2.HyperellipticCurve_g2 method), 731

add_reductions() (sage.schemes.elliptic_curves.sat-
uration.EllipticCurveSaturator method), 433

additive_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 24

additive_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_fi-
nite_field method), 40

additive_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 44

adjusted_prec() (in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 707

ainvs() (sage.schemes.elliptic_curves.ell_generic.Ellip-
ticCurve_generic method), 61

all_values_for_one_denomi-
nator() (sage.schemes.ellip-
tic_curves.mod_sym_num.ModularSymbol-
Numerical method), 544

alpha() (sage.schemes.elliptic_curves.heegner.Ga-
loisAutomorphismQuadraticForm method),
560

alpha() (sage.schemes.elliptic_curves.height.Elliptic-
CurveCanonicalHeight method), 417

alpha() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),
614

an() (sage.schemes.elliptic_curves.ell_rational_field.Ellip-
ticCurve_rational_field method), 275

an() (sage.schemes.elliptic_curves.sha_tate.Sha method),
472

an_numerical() (sage.schemes.ellip-
tic_curves.sha_tate.Sha method), 473

an_padic() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 474

analytic_rank() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 275

analytic_rank_upper_bound() (sage.schemes.el-
liptic_curves.ell_rational_field.EllipticCurve_ra-
tional_field method), 276

anlist() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
279

antilogarithm() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 279

747

Elliptic curves, Release 10.4.rc1

ap() (sage.schemes.elliptic_curves.ell_rational_field.Ellip-
ticCurve_rational_field method), 280

aplist() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
280

approximative_value() (sage.schemes.ellip-
tic_curves.mod_sym_num.ModularSymbolNu-
merical method), 545

archimedean_local_height() (sage.schemes.el-
liptic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 45

are_projectively_equivalent() (in module
sage.schemes.elliptic_curves.constructor), 14

as_morphism() (sage.schemes.elliptic_curves.hom.El-
lipticCurveHom method), 159

at1() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 549

ate_pairing() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 24

atkin_lehner_act() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnX0N
method), 572

automorphisms() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 61

B
B() (sage.schemes.elliptic_curves.height.EllipticCurve-

CanonicalHeight method), 414
b2() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 62
b4() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 62
b6() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 62
b8() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 63
b_invariants() (sage.schemes.ellip-

tic_curves.ell_generic.EllipticCurve_generic
method), 63

bad_reduction_type() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 495

base_extend() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 63

base_extend() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
364

base_extend() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic.HyperellipticCurve_generic
method), 644

base_extend() (sage.schemes.hyperelliptic_curves.ja-
cobian_homset.JacobianHomset_divisor_classes
method), 724

base_extend() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferentialRing method), 694

base_extend() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialHyper-
ellipticQuotientRing method), 704

base_field() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
91

base_field() (sage.schemes.elliptic_curves.heeg-
ner.GaloisGroup method), 561

base_field() (sage.schemes.elliptic_curves.height.El-
lipticCurveCanonicalHeight method), 417

base_ring() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 64

base_ring() (sage.schemes.elliptic_curves.ell_modu-
lar_symbols.ModularSymbol method), 538

baseWI (class in sage.schemes.elliptic_curves.weier-
strass_morphism), 191

basis() (sage.schemes.elliptic_curves.period_lattice.Pe-
riodLattice_ell method), 513

basis_matrix() (sage.schemes.elliptic_curves.pe-
riod_lattice.PeriodLattice_ell method), 514

bernardi_sigma_function() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSupersingu-
lar method), 623

beta() (sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlgEmbedding method), 590

betas() (sage.schemes.elliptic_curves.heegner.Heegner-
Points_level_disc_cond method), 578

Billerey_B_bound() (in module sage.schemes.ellip-
tic_curves.gal_reps_number_field), 453

Billerey_B_l() (in module sage.schemes.ellip-
tic_curves.gal_reps_number_field), 454

Billerey_P_l() (in module sage.schemes.ellip-
tic_curves.gal_reps_number_field), 454

Billerey_R_bound() (in module sage.schemes.ellip-
tic_curves.gal_reps_number_field), 454

Billerey_R_q() (in module sage.schemes.ellip-
tic_curves.gal_reps_number_field), 455

border() (sage.schemes.elliptic_curves.period_lat-
tice_region.PeriodicRegion method), 530

bound() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 476

bound_kato() (sage.schemes.ellip-
tic_curves.sha_tate.Sha method), 476

bound_kolyvagin() (sage.schemes.ellip-
tic_curves.sha_tate.Sha method), 477

brandt_module() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerQuatAlg method), 580

748 Index

Elliptic curves, Release 10.4.rc1

C
c4() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 64
c6() (sage.schemes.elliptic_curves.ell_generic.Elliptic-

Curve_generic method), 64
c_invariants() (sage.schemes.ellip-

tic_curves.ell_generic.EllipticCurve_generic
method), 64

cantor_composition() (in module sage.schemes.hy-
perelliptic_curves.jacobian_morphism), 727

cantor_composition_simple() (in module
sage.schemes.hyperelliptic_curves.jacobian_mor-
phism), 728

cantor_reduction() (in module sage.schemes.hy-
perelliptic_curves.jacobian_morphism), 729

cantor_reduction_simple() (in module
sage.schemes.hyperelliptic_curves.jacobian_mor-
phism), 730

cardinality() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
123

cardinality() (sage.schemes.elliptic_curves.heeg-
ner.GaloisGroup method), 562

cardinality() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_finite_field.HyperellipticCurve_fi-
nite_field method), 655

cardinality_bsgs() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 125

cardinality_exhaustive() (sage.schemes.el-
liptic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 126

cardinality_exhaustive() (sage.schemes.hyper-
elliptic_curves.hyperelliptic_finite_field.Hyperel-
lipticCurve_finite_field method), 656

cardinality_hypellfrob() (sage.schemes.hyper-
elliptic_curves.hyperelliptic_finite_field.Hyperel-
lipticCurve_finite_field method), 656

cardinality_pari() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 126

Cartier_matrix() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_finite_field.Hyperel-
lipticCurve_finite_field method), 653

change_ring() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 65

change_ring() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic.HyperellipticCurve_generic
method), 644

change_ring() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferentialRing method), 694

change_ring() (sage.schemes.hyperellip-

tic_curves.monsky_washnitzer.SpecialHyper-
ellipticQuotientElement method), 701

change_ring() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialHyper-
ellipticQuotientRing method), 704

change_weierstrass_model() (sage.schemes.el-
liptic_curves.ell_generic.EllipticCurve_generic
method), 65

characteristic_polynomial() (sage.schemes.el-
liptic_curves.hom.EllipticCurveHom method),
159

check_prime() (in module sage.schemes.ellip-
tic_curves.ell_local_data), 500

chord_and_tangent() (in module sage.schemes.el-
liptic_curves.constructor), 14

class_number() (in module sage.schemes.ellip-
tic_curves.heegner), 600

classical_modular_polynomial() (in module
sage.schemes.elliptic_curves.mod_poly), 267

clear_cache() (sage.schemes.ellip-
tic_curves.mod_sym_num.ModularSymbol-
Numerical method), 546

clebsch_invariants() (in module sage.schemes.hy-
perelliptic_curves.invariants), 733

clebsch_invariants() (sage.schemes.hyperel-
liptic_curves.hyperelliptic_g2.Hyperelliptic-
Curve_g2 method), 731

clebsch_to_igusa() (in module sage.schemes.hy-
perelliptic_curves.invariants), 734

cm_discriminant() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 364

cm_discriminant() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 280

cm_j_invariants() (in module sage.schemes.ellip-
tic_curves.cm), 481

cm_j_invariants_and_orders() (in module
sage.schemes.elliptic_curves.cm), 482

cm_orders() (in module sage.schemes.ellip-
tic_curves.cm), 483

codomain() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerQuatAlgEmbedding method),
590

coeff() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential
method), 689

coefficients_from_j() (in module
sage.schemes.elliptic_curves.constructor), 15

coefficients_from_Weierstrass_poly-
nomial() (in module sage.schemes.ellip-
tic_curves.constructor), 15

coeffs() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential

Index 749

Elliptic curves, Release 10.4.rc1

method), 689
coeffs() (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.SpecialCubicQuotientRingEle-
ment method), 700

coeffs() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientEle-
ment method), 702

coleman_integral() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperellip-
ticCurve_padic_field method), 668

coleman_integral() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 689

coleman_integral_from_weier-
strass_via_boundary()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field.HyperellipticCurve_padic_field
method), 672

coleman_integral_P_to_S() (sage.schemes.hy-
perelliptic_curves.hyperelliptic_padic_field.Hy-
perellipticCurve_padic_field method), 671

coleman_integral_S_to_Q() (sage.schemes.hy-
perelliptic_curves.hyperelliptic_padic_field.Hy-
perellipticCurve_padic_field method), 671

coleman_integrals_on_basis()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field.HyperellipticCurve_padic_field
method), 673

coleman_integrals_on_basis_hyper-
elliptic() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperellip-
ticCurve_padic_field method), 674

compare_via_evaluation() (in module
sage.schemes.elliptic_curves.hom), 169

complex_area() (sage.schemes.elliptic_curves.pe-
riod_lattice.PeriodLattice_ell method), 514

complex_conjugation() (sage.schemes.ellip-
tic_curves.heegner.GaloisGroup method), 562

complex_intersection_is_empty()
(sage.schemes.elliptic_curves.height.Elliptic-
CurveCanonicalHeight method), 417

compute_codomain_formula() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
202

compute_codomain_kohel() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
203

compute_intermediate_curves() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
204

compute_isogeny_bmss() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
205

compute_isogeny_kernel_polyno-

mial() (in module sage.schemes.ellip-
tic_curves.ell_curve_isogeny), 205

compute_isogeny_stark() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
206

compute_model() (in module sage.schemes.ellip-
tic_curves.ell_field), 118

compute_sequence_of_maps() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
207

compute_trace_generic() (in module
sage.schemes.elliptic_curves.hom), 170

compute_vw_kohel_even_deg1() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
208

compute_vw_kohel_even_deg3() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
209

compute_vw_kohel_odd() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
210

compute_wp_fast() (in module sage.schemes.ellip-
tic_curves.ell_wp), 508

compute_wp_pari() (in module sage.schemes.ellip-
tic_curves.ell_wp), 508

compute_wp_quadratic() (in module
sage.schemes.elliptic_curves.ell_wp), 508

conductor() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
365

conductor() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
281

conductor() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPoint method), 564

conductor() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPoints_level_disc_cond method),
578

conductor() (sage.schemes.elliptic_curves.heeg-
ner.KolyvaginCohomologyClass method), 591

conductor() (sage.schemes.elliptic_curves.heeg-
ner.RingClassField method), 597

conductor_valuation() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 496

congruence_number() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 281

conjugacy_test() (in module sage.schemes.ellip-
tic_curves.Qcurves), 490

conjugate() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerQuatAlgEmbedding method), 590

conjugates_over_K() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnEllipticCurve

750 Index

Elliptic curves, Release 10.4.rc1

method), 566
contract() (sage.schemes.elliptic_curves.period_lat-

tice_region.PeriodicRegion method), 531
coordinates() (sage.schemes.elliptic_curves.pe-

riod_lattice.PeriodLattice_ell method), 515
copy() (sage.schemes.ellip-

tic_curves.isogeny_class.IsogenyClass_EC_Num-
berField method), 466

copy() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC_Ratio-
nal method), 466

count_points() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
126

count_points() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_finite_field.Hyperel-
lipticCurve_finite_field method), 657

count_points_exhaustive() (sage.schemes.hy-
perelliptic_curves.hyperelliptic_finite_field.Hy-
perellipticCurve_finite_field method), 658

count_points_frobenius_polynomial()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_finite_field.HyperellipticCurve_finite_field
method), 659

count_points_hypellfrob() (sage.schemes.hy-
perelliptic_curves.hyperelliptic_finite_field.Hy-
perellipticCurve_finite_field method), 659

count_points_matrix_traces()
(sage.schemes.hyperelliptic_curves.hyperel-
liptic_finite_field.HyperellipticCurve_finite_field
method), 660

CPS_height_bound() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 270

create_element() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialCubic-
QuotientRing method), 699

create_key_and_extra_args() (sage.schemes.el-
liptic_curves.constructor.EllipticCurveFactory
method), 4

create_object() (sage.schemes.elliptic_curves.con-
structor.EllipticCurveFactory method), 5

cremona_curves() (in module sage.schemes.ellip-
tic_curves.ell_rational_field), 359

cremona_label() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 282

cremona_optimal_curves() (in module
sage.schemes.elliptic_curves.ell_rational_field),
359

curve() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint method), 22

curve() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),

504
curve() (sage.schemes.elliptic_curves.ell_torsion.Ellip-

ticCurveTorsionSubgroup method), 439
curve() (sage.schemes.elliptic_curves.formal_group.El-

lipticCurveFormalGroup method), 153
curve() (sage.schemes.elliptic_curves.heegner.Heegner-

PointOnEllipticCurve method), 566
curve() (sage.schemes.elliptic_curves.heegner.Koly-

vaginPoint method), 593
curve() (sage.schemes.elliptic_curves.height.Elliptic-

CurveCanonicalHeight method), 418
curve() (sage.schemes.elliptic_curves.modu-

lar_parametrization.ModularParameterization
method), 535

curve() (sage.schemes.elliptic_curves.period_lattice.Pe-
riodLattice_ell method), 516

curve() (sage.schemes.hyperelliptic_curves.jaco-
bian_homset.JacobianHomset_divisor_classes
method), 724

curve() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
method), 705

curve_key() (in module sage.schemes.ellip-
tic_curves.ell_egros), 631

curve_over_ram_extn() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperellip-
ticCurve_padic_field method), 676

curves_with_j_0() (in module sage.schemes.ellip-
tic_curves.ell_finite_field), 146

curves_with_j_0_char2() (in module
sage.schemes.elliptic_curves.ell_finite_field),
146

curves_with_j_0_char3() (in module
sage.schemes.elliptic_curves.ell_finite_field),
147

curves_with_j_1728() (in module sage.schemes.el-
liptic_curves.ell_finite_field), 149

cyclic_subideal_p1() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
580

D
data (sage.schemes.elliptic_curves.period_lattice_re-

gion.PeriodicRegion attribute), 531
database_attributes() (sage.schemes.ellip-

tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 283

database_curve() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 283

DE() (sage.schemes.elliptic_curves.height.EllipticCurve-
CanonicalHeight method), 414

deg_one_primes_iter() (in module
sage.schemes.elliptic_curves.gal_reps_num-

Index 751

Elliptic curves, Release 10.4.rc1

ber_field), 460
degree() (sage.schemes.elliptic_curves.hom_scalar.El-

lipticCurveHom_scalar method), 225
degree() (sage.schemes.elliptic_curves.hom_sum.Ellip-

ticCurveHom_sum method), 182
degree() (sage.schemes.elliptic_curves.hom.Elliptic-

CurveHom method), 160
degree() (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.MonskyWashnitzerDifferential-
Ring method), 694

degree() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
method), 705

degree_over_H() (sage.schemes.elliptic_curves.heeg-
ner.RingClassField method), 597

degree_over_K() (sage.schemes.elliptic_curves.heeg-
ner.RingClassField method), 598

degree_over_Q() (sage.schemes.elliptic_curves.heeg-
ner.RingClassField method), 598

deriv_at1() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
550

descend_to() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
91

diff() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotien-
tElement method), 703

differential() (sage.schemes.elliptic_curves.for-
mal_group.EllipticCurveFormalGroup method),
153

differential_operator() (in module
sage.schemes.hyperelliptic_curves.invariants),
734

diffsymb() (in module sage.schemes.hyperellip-
tic_curves.invariants), 735

diffxy() (in module sage.schemes.hyperellip-
tic_curves.invariants), 735

dimension() (sage.schemes.hyperelliptic_curves.ja-
cobian_generic.HyperellipticJacobian_generic
method), 721

dimension() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential-
Ring method), 695

discrete_log() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_fi-
nite_field method), 41

discriminant() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 65

discriminant() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPoint method), 564

discriminant() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPoints_level_disc method), 576

discriminant_of_K() (sage.schemes.ellip-
tic_curves.heegner.RingClassField method),
598

discriminant_valuation() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 496

discriminants() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPoints_level method), 575

discriminants_with_bounded_class_num-
ber() (in module sage.schemes.ellip-
tic_curves.cm), 483

division_field() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
92

division_points() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 27

division_polynomial() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 66

division_polynomial_0() (sage.schemes.el-
liptic_curves.ell_generic.EllipticCurve_generic
method), 67

divisors_to_string() (in module sage.inter-
faces.genus2reduction), 740

dokchitser() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
551

domain() (sage.schemes.elliptic_curves.heegner.Ga-
loisAutomorphism method), 558

domain() (sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlgEmbedding method), 590

domain_conductor() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlgEmbedding
method), 590

domain_gen() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerQuatAlgEmbedding method), 591

Dp_valued_height() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 622

Dp_valued_regulator() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSupersingu-
lar method), 622

Dp_valued_series() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 623

ds() (sage.schemes.elliptic_curves.period_lattice_re-
gion.PeriodicRegion method), 531

dual() (sage.schemes.ellip-
tic_curves.ell_curve_isogeny.Elliptic-
CurveIsogeny method), 199

dual() (sage.schemes.elliptic_curves.hom_composite.El-
lipticCurveHom_composite method), 175

dual() (sage.schemes.elliptic_curves.hom_frobenius.El-

752 Index

Elliptic curves, Release 10.4.rc1

lipticCurveHom_frobenius method), 231
dual() (sage.schemes.elliptic_curves.hom_scalar.Elliptic-

CurveHom_scalar method), 225
dual() (sage.schemes.elliptic_curves.hom_sum.Elliptic-

CurveHom_sum method), 182
dual() (sage.schemes.elliptic_curves.hom_velusqrt.Ellip-

ticCurveHom_velusqrt method), 217
dual() (sage.schemes.elliptic_curves.hom.EllipticCurve-

Hom method), 161
dual() (sage.schemes.elliptic_curves.weierstrass_mor-

phism.WeierstrassIsomorphism method), 188

E
E2() (sage.schemes.elliptic_curves.ell_tate_curve.Tate-

Curve method), 503
e_log_RC() (sage.schemes.elliptic_curves.period_lat-

tice.PeriodLattice_ell method), 516
e_p() (sage.schemes.elliptic_curves.height.EllipticCurve-

CanonicalHeight method), 418
egros_from_j() (in module sage.schemes.ellip-

tic_curves.ell_egros), 631
egros_from_j_0() (in module sage.schemes.ellip-

tic_curves.ell_egros), 632
egros_from_j_1728() (in module sage.schemes.el-

liptic_curves.ell_egros), 632
egros_from_jlist() (in module sage.schemes.ellip-

tic_curves.ell_egros), 633
egros_get_j() (in module sage.schemes.ellip-

tic_curves.ell_egros), 633
ei() (sage.schemes.elliptic_curves.period_lattice.Period-

Lattice_ell method), 517
Element (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.MonskyWashnitzerDifferential-
Ring attribute), 693

Element (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialCubicQuotientRing
attribute), 699

Element (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
attribute), 704

ell() (sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 580

ell_heegner_discriminants() (in module
sage.schemes.elliptic_curves.heegner), 600

ell_heegner_discriminants_list() (in mod-
ule sage.schemes.elliptic_curves.heegner), 600

ell_heegner_point() (in module sage.schemes.el-
liptic_curves.heegner), 600

elliptic_curve() (sage.schemes.ellip-
tic_curves.ell_modular_symbols.ModularSymbol
method), 538

elliptic_curve() (sage.schemes.ellip-
tic_curves.gal_reps_number_field.Galois-
Representation method), 457

elliptic_curve() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 442

elliptic_curve() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
552

elliptic_curve() (sage.schemes.ellip-
tic_curves.mod_sym_num.ModularSymbol-
Numerical method), 546

elliptic_curve() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),
614

elliptic_curve_congruence_graph() (in
module sage.schemes.elliptic_curves.ell_ratio-
nal_field), 360

elliptic_exponential() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 283

elliptic_exponential() (sage.schemes.el-
liptic_curves.period_lattice.PeriodLattice_ell
method), 518

elliptic_logarithm() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 46

elliptic_logarithm() (sage.schemes.ellip-
tic_curves.period_lattice.PeriodLattice_ell
method), 520

EllipticCurve_field (class in sage.schemes.ellip-
tic_curves.ell_field), 91

EllipticCurve_finite_field (class in
sage.schemes.elliptic_curves.ell_finite_field),
121

EllipticCurve_from_c4c6() (in module
sage.schemes.elliptic_curves.constructor), 6

EllipticCurve_from_cubic() (in module
sage.schemes.elliptic_curves.constructor), 6

EllipticCurve_from_j() (in module
sage.schemes.elliptic_curves.constructor), 11

EllipticCurve_from_Weierstrass_poly-
nomial() (in module sage.schemes.ellip-
tic_curves.constructor), 5

EllipticCurve_generic (class in sage.schemes.el-
liptic_curves.ell_generic), 59

EllipticCurve_number_field (class in
sage.schemes.elliptic_curves.ell_number_field),
363

EllipticCurve_padic_field (class in
sage.schemes.elliptic_curves.ell_padic_field),
634

EllipticCurve_rational_field (class in
sage.schemes.elliptic_curves.ell_rational_field),
269

EllipticCurve_with_order() (in module
sage.schemes.elliptic_curves.ell_finite_field), 144

Index 753

Elliptic curves, Release 10.4.rc1

EllipticCurveCanonicalHeight (class in
sage.schemes.elliptic_curves.height), 414

EllipticCurveFactory (class in sage.schemes.ellip-
tic_curves.constructor), 1

EllipticCurveFormalGroup (class in
sage.schemes.elliptic_curves.formal_group),
153

EllipticCurveHom (class in sage.schemes.ellip-
tic_curves.hom), 159

EllipticCurveHom_composite (class in
sage.schemes.elliptic_curves.hom_composite),
174

EllipticCurveHom_frobenius (class in
sage.schemes.elliptic_curves.hom_frobenius),
230

EllipticCurveHom_scalar (class in
sage.schemes.elliptic_curves.hom_scalar),
225

EllipticCurveHom_sum (class in sage.schemes.ellip-
tic_curves.hom_sum), 181

EllipticCurveHom_velusqrt (class in
sage.schemes.elliptic_curves.hom_velusqrt),
217

EllipticCurveIsogeny (class in sage.schemes.ellip-
tic_curves.ell_curve_isogeny), 194

EllipticCurveLocalData (class in sage.schemes.el-
liptic_curves.ell_local_data), 494

EllipticCurvePoint (class in sage.schemes.ellip-
tic_curves.ell_point), 22

EllipticCurvePoint_field (class in
sage.schemes.elliptic_curves.ell_point), 23

EllipticCurvePoint_finite_field (class in
sage.schemes.elliptic_curves.ell_point), 40

EllipticCurvePoint_number_field (class in
sage.schemes.elliptic_curves.ell_point), 44

EllipticCurves (class in sage.schemes.ellip-
tic_curves.ec_database), 361

EllipticCurves_with_good_reduc-
tion_outside_S() (in module
sage.schemes.elliptic_curves.constructor), 12

EllipticCurveSaturator (class in sage.schemes.el-
liptic_curves.saturation), 432

EllipticCurveTorsionSubgroup (class in
sage.schemes.elliptic_curves.ell_torsion), 437

endomorphism_discrimi-
nant_from_class_number()
(sage.schemes.elliptic_curves.ell_finite_field.El-
lipticCurve_finite_field method), 127

endomorphism_ring_is_commutative()
(sage.schemes.elliptic_curves.ell_field.Elliptic-
Curve_field method), 96

eps() (in module sage.schemes.elliptic_curves.height),
430

eval_modular_form() (sage.schemes.ellip-

tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 285

expand() (sage.schemes.elliptic_curves.period_lat-
tice_region.PeriodicRegion method), 532

extended_agm_iteration() (in module
sage.schemes.elliptic_curves.period_lattice),
528

extract_pow_y() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 690

extract_pow_y() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialHyper-
ellipticQuotientElement method), 703

F
factors() (sage.schemes.elliptic_curves.hom_com-

posite.EllipticCurveHom_composite method),
176

faltings_height() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 285

FastEllipticPolynomial (class in sage.schemes.el-
liptic_curves.hom_velusqrt), 220

field() (sage.schemes.elliptic_curves.heegner.Galois-
Group method), 563

fill_isogeny_matrix() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
210

fill_ss_j_dict() (in module sage.schemes.ellip-
tic_curves.ell_finite_field), 149

find_char_zero_weier_point()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field.HyperellipticCurve_padic_field
method), 676

find_post_isomorphism() (in module
sage.schemes.elliptic_curves.hom), 171

finite_endpoints() (sage.schemes.ellip-
tic_curves.height.UnionOfIntervals method),
428

fk_intervals() (sage.schemes.ellip-
tic_curves.height.EllipticCurveCanonicalHeight
method), 419

formal() (sage.schemes.elliptic_curves.ell_generic.Ellip-
ticCurve_generic method), 69

formal() (sage.schemes.elliptic_curves.hom_com-
posite.EllipticCurveHom_composite method),
176

formal() (sage.schemes.elliptic_curves.hom.Elliptic-
CurveHom method), 161

formal_group() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 70

Fricke_module() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 235

754 Index

Elliptic curves, Release 10.4.rc1

Fricke_polynomial() (in module sage.schemes.el-
liptic_curves.isogeny_small_degree), 235

frob_basis_elements() (sage.schemes.hyperel-
liptic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferentialRing method), 695

frob_invariant_differential()
(sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferen-
tialRing method), 696

frob_Q() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential-
Ring method), 695

frobenius() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
128

frobenius() (sage.schemes.ellip-
tic_curves.ell_padic_field.Elliptic-
Curve_padic_field method), 634

frobenius() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 623

frobenius() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_padic_field.Hyperelliptic-
Curve_padic_field method), 677

frobenius_discriminant() (sage.schemes.el-
liptic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 128

frobenius_endomorphism() (sage.schemes.el-
liptic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 128

frobenius_expansion_by_newton() (in module
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 708

frobenius_expansion_by_series() (in module
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 709

Frobenius_filter() (in module sage.schemes.ellip-
tic_curves.gal_reps_number_field), 456

frobenius_isogeny() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 70

frobenius_matrix() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_finite_field.Hyperelliptic-
Curve_finite_field method), 660

frobenius_matrix_hypellfrob()
(sage.schemes.hyperelliptic_curves.hyperel-
liptic_finite_field.HyperellipticCurve_finite_field
method), 661

frobenius_order() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 129

frobenius_polynomial() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 129

frobenius_polynomial() (sage.schemes.hyperel-
liptic_curves.hyperelliptic_finite_field.Hyperellip-
ticCurve_finite_field method), 662

frobenius_polynomial_cardinalities()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_finite_field.HyperellipticCurve_finite_field
method), 663

frobenius_polynomial_matrix()
(sage.schemes.hyperelliptic_curves.hyperel-
liptic_finite_field.HyperellipticCurve_finite_field
method), 664

frobenius_polynomial_pari()
(sage.schemes.hyperelliptic_curves.hyperel-
liptic_finite_field.HyperellipticCurve_finite_field
method), 664

from_factors() (sage.schemes.ellip-
tic_curves.hom_composite.EllipticCurve-
Hom_composite class method), 176

full (sage.schemes.elliptic_curves.period_lattice_re-
gion.PeriodicRegion attribute), 532

full_p_saturation() (sage.schemes.ellip-
tic_curves.saturation.EllipticCurveSaturator
method), 434

G
galois_group() (sage.schemes.elliptic_curves.heeg-

ner.RingClassField method), 598
galois_group_over_hilbert_class_field()

(sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 580

galois_group_over_quadratic_field()
(sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 581

galois_orbit_over_K() (sage.schemes.el-
liptic_curves.heegner.HeegnerPointOnX0N
method), 573

galois_representation() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 365

galois_representation() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 286

GaloisAutomorphism (class in sage.schemes.ellip-
tic_curves.heegner), 558

GaloisAutomorphismComplexConjugation
(class in sage.schemes.elliptic_curves.heegner),
559

GaloisAutomorphismQuadraticForm (class in
sage.schemes.elliptic_curves.heegner), 559

GaloisGroup (class in sage.schemes.ellip-
tic_curves.heegner), 561

GaloisRepresentation (class in sage.schemes.ellip-
tic_curves.gal_reps), 442

Index 755

Elliptic curves, Release 10.4.rc1

GaloisRepresentation (class in sage.schemes.ellip-
tic_curves.gal_reps_number_field), 457

gen() (sage.schemes.elliptic_curves.ell_generic.Elliptic-
Curve_generic method), 70

gens() (sage.schemes.elliptic_curves.ell_finite_field.El-
lipticCurve_finite_field method), 129

gens() (sage.schemes.elliptic_curves.ell_generic.Elliptic-
Curve_generic method), 71

gens() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
366

gens() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
287

gens() (sage.schemes.elliptic_curves.period_lattice.Peri-
odLattice_ell method), 523

gens() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialCubicQuotientRing
method), 699

gens() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
method), 705

gens_certain() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 288

gens_quadratic() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 367

genus() (sage.schemes.elliptic_curves.ell_field.Elliptic-
Curve_field method), 96

genus() (sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic.HyperellipticCurve_generic method),
645

Genus2reduction (class in sage.interfaces.genus2re-
duction), 737

geometric_endomorphism_alge-
bra_is_field() (sage.schemes.hyperel-
liptic_curves.jacobian_generic.HyperellipticJaco-
bian_generic method), 721

geometric_endomorphism_ring_is_ZZ()
(sage.schemes.hyperelliptic_curves.jaco-
bian_generic.HyperellipticJacobian_generic
method), 722

get_boundary_point() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperellip-
ticCurve_padic_field method), 677

global_integral_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 368

global_integral_model() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 288

global_minimal_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-

ber_field method), 369
global_minimality_class() (sage.schemes.ellip-

tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 371

graph() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC
method), 463

group_law() (sage.schemes.elliptic_curves.for-
mal_group.EllipticCurveFormalGroup method),
154

H
has_additive_reduction() (sage.schemes.ellip-

tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 496

has_additive_reduction() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 372

has_bad_reduction() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 496

has_bad_reduction() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 372

has_cm() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
373

has_cm() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
288

has_finite_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 29

has_finite_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_fi-
nite_field method), 41

has_finite_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 48

has_global_minimal_model() (sage.schemes.el-
liptic_curves.ell_number_field.Elliptic-
Curve_number_field method), 373

has_good_reduction() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 497

has_good_reduction() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 373

has_good_reduction() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 49

has_good_reduction_outside_S()
(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),

756 Index

Elliptic curves, Release 10.4.rc1

289
has_infinite_order() (sage.schemes.ellip-

tic_curves.ell_point.EllipticCurvePoint_field
method), 29

has_infinite_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 49

has_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_local_data.El-
lipticCurveLocalData method), 497

has_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
374

has_nonsplit_multiplicative_reduc-
tion() (sage.schemes.elliptic_curves.ell_lo-
cal_data.EllipticCurveLocalData method),
497

has_nonsplit_multiplicative_reduc-
tion() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
374

has_odd_degree_model() (sage.schemes.hyperel-
liptic_curves.hyperelliptic_generic.Hyperelliptic-
Curve_generic method), 645

has_order() (sage.schemes.elliptic_curves.ell_point.El-
lipticCurvePoint_field method), 30

has_rational_cm() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 375

has_rational_cm() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 289

has_split_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_local_data.El-
lipticCurveLocalData method), 498

has_split_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
376

hasse_invariant() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
97

Hasse_Witt() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_finite_field.HyperellipticCurve_fi-
nite_field method), 654

heegner_conductors() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
581

heegner_discriminants() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 290

heegner_discriminants() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),

581
heegner_discriminants_list()

(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
291

heegner_divisor() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
582

heegner_index() (in module sage.schemes.ellip-
tic_curves.heegner), 601

heegner_index() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 291

heegner_index_bound() (in module
sage.schemes.elliptic_curves.heegner), 603

heegner_index_bound() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 292

heegner_point() (in module sage.schemes.ellip-
tic_curves.heegner), 604

heegner_point() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 293

heegner_point() (sage.schemes.elliptic_curves.heeg-
ner.KolyvaginCohomologyClass method), 592

heegner_point() (sage.schemes.elliptic_curves.heeg-
ner.KolyvaginPoint method), 593

heegner_point_height() (in module
sage.schemes.elliptic_curves.heegner), 604

heegner_point_height() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 294

heegner_point_on_X0N() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnEllipticCurve
method), 567

heegner_points() (in module sage.schemes.ellip-
tic_curves.heegner), 605

heegner_sha_an() (in module sage.schemes.ellip-
tic_curves.heegner), 605

heegner_sha_an() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 295

HeegnerPoint (class in sage.schemes.ellip-
tic_curves.heegner), 564

HeegnerPointOnEllipticCurve (class in
sage.schemes.elliptic_curves.heegner), 566

HeegnerPointOnX0N (class in sage.schemes.ellip-
tic_curves.heegner), 572

HeegnerPoints (class in sage.schemes.ellip-
tic_curves.heegner), 574

HeegnerPoints_level (class in sage.schemes.ellip-
tic_curves.heegner), 575

HeegnerPoints_level_disc (class in
sage.schemes.elliptic_curves.heegner), 576

Index 757

Elliptic curves, Release 10.4.rc1

HeegnerPoints_level_disc_cond (class in
sage.schemes.elliptic_curves.heegner), 577

HeegnerQuatAlg (class in sage.schemes.ellip-
tic_curves.heegner), 579

HeegnerQuatAlgEmbedding (class in
sage.schemes.elliptic_curves.heegner), 589

height() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint_number_field method), 50

height() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
296

height_above_floor() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 131

height_function() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 376

height_pairing_matrix() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 377

helper_matrix() (in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 710

helper_matrix() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferentialRing method), 697

hilbert_class_polynomial() (in module
sage.schemes.elliptic_curves.cm), 484

hypellfrob() (in module sage.schemes.hyperellip-
tic_curves.hypellfrob), 717

hyperelliptic_polynomials() (sage.schemes.el-
liptic_curves.ell_generic.EllipticCurve_generic
method), 71

hyperelliptic_polynomials()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic.HyperellipticCurve_generic method),
645

HyperellipticCurve() (in module sage.schemes.hy-
perelliptic_curves.constructor), 641

HyperellipticCurve_finite_field (class in
sage.schemes.hyperelliptic_curves.hyperellip-
tic_finite_field), 653

HyperellipticCurve_from_invari-
ants() (in module sage.schemes.hyperel-
liptic_curves.mestre), 685

HyperellipticCurve_g2 (class in sage.schemes.hy-
perelliptic_curves.hyperelliptic_g2), 730

HyperellipticCurve_generic (class in
sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic), 644

HyperellipticCurve_padic_field (class in
sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field), 667

HyperellipticCurve_rational_field (class
in sage.schemes.hyperelliptic_curves.hyperellip-

tic_rational_field), 684
HyperellipticJacobian_g2 (class in

sage.schemes.hyperelliptic_curves.jacobian_g2),
723

HyperellipticJacobian_generic (class
in sage.schemes.hyperelliptic_curves.jaco-
bian_generic), 719

I
ideal() (sage.schemes.elliptic_curves.heegner.Ga-

loisAutomorphismQuadraticForm method),
560

identity_morphism() (in module sage.schemes.el-
liptic_curves.weierstrass_morphism), 191

identity_morphism() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 71

igusa_clebsch_invariants() (in module
sage.schemes.hyperelliptic_curves.invariants),
735

igusa_clebsch_invariants() (sage.schemes.hy-
perelliptic_curves.hyperelliptic_g2.Hyperelliptic-
Curve_g2 method), 731

igusa_to_clebsch() (in module sage.schemes.hy-
perelliptic_curves.invariants), 736

image_classes() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 442

image_type() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 444

index() (sage.schemes.elliptic_curves.heegner.Koly-
vaginPoint method), 593

index() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC
method), 463

inf_max_abs() (in module sage.schemes.ellip-
tic_curves.height), 430

init() (in module sage.schemes.elliptic_curves.gp_si-
mon), 635

innermost_point() (sage.schemes.elliptic_curves.pe-
riod_lattice_region.PeriodicRegion method), 532

inseparable_degree() (sage.schemes.el-
liptic_curves.ell_curve_isogeny.Elliptic-
CurveIsogeny method), 201

inseparable_degree() (sage.schemes.ellip-
tic_curves.hom_composite.EllipticCurve-
Hom_composite method), 177

inseparable_degree() (sage.schemes.ellip-
tic_curves.hom_frobenius.EllipticCurve-
Hom_frobenius method), 232

inseparable_degree() (sage.schemes.ellip-
tic_curves.hom_scalar.EllipticCurveHom_scalar
method), 226

758 Index

Elliptic curves, Release 10.4.rc1

inseparable_degree() (sage.schemes.ellip-
tic_curves.hom_sum.EllipticCurveHom_sum
method), 183

inseparable_degree() (sage.schemes.el-
liptic_curves.hom_velusqrt.EllipticCurve-
Hom_velusqrt method), 218

inseparable_degree() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
161

inseparable_degree() (sage.schemes.ellip-
tic_curves.weierstrass_morphism.WeierstrassIso-
morphism method), 188

integral_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 378

integral_model() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 296

integral_points() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 296

integral_points_with_bounded_mw_co-
effs() (in module sage.schemes.ellip-
tic_curves.ell_rational_field), 360

integral_short_weierstrass_model()
(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
298

integral_x_coords_in_interval()
(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
298

integrate() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential
method), 690

intersection() (sage.schemes.ellip-
tic_curves.height.UnionOfIntervals class
method), 428

interval_products() (in module sage.schemes.hy-
perelliptic_curves.hypellfrob), 718

intervals() (sage.schemes.ellip-
tic_curves.height.UnionOfIntervals method),
428

invariant_differential() (sage.schemes.hyper-
elliptic_curves.hyperelliptic_generic.Hyperellip-
ticCurve_generic method), 645

invariant_differential() (sage.schemes.hy-
perelliptic_curves.monsky_washnitzer.Monsky-
WashnitzerDifferentialRing method), 697

inverse() (sage.schemes.elliptic_curves.for-
mal_group.EllipticCurveFormalGroup method),
154

inverse() (sage.schemes.elliptic_curves.weier-
strass_transform.WeierstrassTransformation-

WithInverse_class method), 639
is_cm_j_invariant() (in module sage.schemes.el-

liptic_curves.cm), 486
is_crystalline() (sage.schemes.ellip-

tic_curves.gal_reps.GaloisRepresentation
method), 446

is_divisible_by() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 31

is_EllipticCurve() (in module sage.schemes.ellip-
tic_curves.ell_generic), 90

is_empty() (sage.schemes.ellip-
tic_curves.height.UnionOfIntervals method),
429

is_empty() (sage.schemes.elliptic_curves.period_lat-
tice_region.PeriodicRegion method), 533

is_field() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
method), 705

is_finite_order() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 32

is_global_integral_model() (sage.schemes.el-
liptic_curves.ell_number_field.Elliptic-
Curve_number_field method), 381

is_global_integral_model() (sage.schemes.el-
liptic_curves.ell_rational_field.EllipticCurve_ra-
tional_field method), 298

is_global_minimal_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 381

is_good() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
299

is_HCP() (in module sage.schemes.elliptic_curves.cm),
485

is_HyperellipticCurve() (in module
sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic), 653

is_identity() (sage.schemes.elliptic_curves.weier-
strass_morphism.baseWI method), 191

is_identity() (sage.schemes.elliptic_curves.weier-
strass_morphism.WeierstrassIsomorphism
method), 188

is_in_weierstrass_disc() (sage.schemes.hyper-
elliptic_curves.hyperelliptic_padic_field.Hyperel-
lipticCurve_padic_field method), 678

is_inert() (in module sage.schemes.ellip-
tic_curves.heegner), 606

is_injective() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
162

is_integral() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),

Index 759

Elliptic curves, Release 10.4.rc1

299
is_irreducible() (sage.schemes.ellip-

tic_curves.gal_reps.GaloisRepresentation
method), 447

is_isogenous() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
97

is_isogenous() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
131

is_isogenous() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 382

is_isogenous() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 299

is_isomorphic() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 71

is_j_supersingular() (in module sage.schemes.el-
liptic_curves.ell_finite_field), 149

is_kernel_polynomial() (in module
sage.schemes.elliptic_curves.isogeny_small_de-
gree), 236

is_kolyvagin() (sage.schemes.elliptic_curves.heeg-
ner.GaloisGroup method), 563

is_kolyvagin_conductor() (in module
sage.schemes.elliptic_curves.heegner), 607

is_local_integral_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 383

is_local_integral_model() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 300

is_minimal() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
300

is_normalized() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
163

is_odd_degree() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_g2.Hyperelliptic-
Curve_g2 method), 731

is_on_curve() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 72

is_on_identity_component() (sage.schemes.el-
liptic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 54

is_ordinary() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
133

is_ordinary() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),

300
is_ordinary() (sage.schemes.ellip-

tic_curves.gal_reps.GaloisRepresentation
method), 447

is_ordinary() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesOrdinary
method), 617

is_ordinary() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 624

is_p_integral() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 301

is_p_minimal() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 301

is_possible_j() (in module sage.schemes.ellip-
tic_curves.ell_egros), 634

is_potentially_crystalline()
(sage.schemes.elliptic_curves.gal_reps.Ga-
loisRepresentation method), 447

is_potentially_semistable() (sage.schemes.el-
liptic_curves.gal_reps.GaloisRepresentation
method), 448

is_Q_curve() (in module sage.schemes.ellip-
tic_curves.Qcurves), 490

is_Q_curve() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
379

is_quadratic_twist() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
98

is_quartic_twist() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
100

is_quasi_unipotent() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 448

is_ramified() (in module sage.schemes.ellip-
tic_curves.heegner), 607

is_real() (sage.schemes.elliptic_curves.period_lat-
tice.PeriodLattice_ell method), 523

is_rectangular() (sage.schemes.elliptic_curves.pe-
riod_lattice.PeriodLattice_ell method), 524

is_reducible() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 448

is_same_disc() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperel-
lipticCurve_padic_field method), 678

is_semistable() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 301

is_semistable() (sage.schemes.ellip-

760 Index

Elliptic curves, Release 10.4.rc1

tic_curves.gal_reps.GaloisRepresentation
method), 449

is_separable() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
164

is_sextic_twist() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
100

is_singular() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic.HyperellipticCurve_generic
method), 645

is_smooth() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic.HyperellipticCurve_generic
method), 646

is_split() (in module sage.schemes.ellip-
tic_curves.heegner), 607

is_split() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
504

is_subfield() (sage.schemes.elliptic_curves.heeg-
ner.RingClassField method), 599

is_supersingular() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 133

is_supersingular() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 302

is_supersingular() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesOrdinary
method), 617

is_supersingular() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 624

is_surjective() (sage.schemes.ellip-
tic_curves.gal_reps_number_field.Galois-
Representation method), 457

is_surjective() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 449

is_surjective() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
165

is_unipotent() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 450

is_unramified() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 451

is_weierstrass() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperel-
lipticCurve_padic_field method), 679

is_x_coord() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 72

is_x_coord() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic.HyperellipticCurve_generic
method), 646

is_zero() (sage.schemes.elliptic_curves.hom.Elliptic-
CurveHom method), 166

isogenies() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC
method), 464

isogenies_2() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 241

isogenies_3() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 242

isogenies_5_0() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 243

isogenies_5_1728() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 244

isogenies_7_0() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 246

isogenies_7_1728() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 248

isogenies_13_0() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 238

isogenies_13_1728() (in module sage.schemes.el-
liptic_curves.isogeny_small_degree), 240

isogenies_prime_degree() (in module
sage.schemes.elliptic_curves.isogeny_small_de-
gree), 249

isogenies_prime_degree() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
101

isogenies_prime_degree() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 384

isogenies_prime_degree() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 302

isogenies_prime_degree_general()
(in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 252

isogenies_prime_degree_genus_0()
(in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 256

isogenies_prime_degree_genus_plus_0()
(in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 257

isogenies_prime_de-
gree_genus_plus_0_j0() (in module
sage.schemes.elliptic_curves.isogeny_small_de-
gree), 260

isogenies_prime_de-
gree_genus_plus_0_j1728()
(in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 262

isogenies_sporadic_Q() (in module

Index 761

Elliptic curves, Release 10.4.rc1

sage.schemes.elliptic_curves.isogeny_small_de-
gree), 264

isogeny() (sage.schemes.elliptic_curves.ell_field.Ellip-
ticCurve_field method), 106

isogeny_bound() (sage.schemes.ellip-
tic_curves.gal_reps_number_field.Galois-
Representation method), 458

isogeny_class() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 385

isogeny_class() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 303

isogeny_codomain() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
110

isogeny_codomain_from_kernel() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
211

isogeny_degree() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 390

isogeny_degree() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 306

isogeny_degrees_cm() (in module sage.schemes.el-
liptic_curves.isogeny_class), 467

isogeny_ell_graph() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
110

isogeny_graph() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 307

IsogenyClass_EC (class in sage.schemes.ellip-
tic_curves.isogeny_class), 463

IsogenyClass_EC_NumberField (class in
sage.schemes.elliptic_curves.isogeny_class),
466

IsogenyClass_EC_Rational (class in
sage.schemes.elliptic_curves.isogeny_class),
466

isomorphism() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 73

isomorphism_to() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 74

isomorphisms() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 75

J
j_invariant() (sage.schemes.ellip-

tic_curves.ell_generic.EllipticCurve_generic

method), 76
Jacobian() (in module sage.schemes.elliptic_curves.ja-

cobian), 17
jacobian() (sage.schemes.hyperelliptic_curves.hyperel-

liptic_g2.HyperellipticCurve_g2 method), 732
jacobian() (sage.schemes.hyperelliptic_curves.hy-

perelliptic_generic.HyperellipticCurve_generic
method), 647

Jacobian_of_curve() (in module sage.schemes.el-
liptic_curves.jacobian), 18

Jacobian_of_equation() (in module
sage.schemes.elliptic_curves.jacobian), 18

JacobianHomset_divisor_classes (class
in sage.schemes.hyperelliptic_curves.jaco-
bian_homset), 724

JacobianMorphism_divisor_class_field
(class in sage.schemes.hyperelliptic_curves.jaco-
bian_morphism), 726

join() (sage.schemes.elliptic_curves.height.UnionOfIn-
tervals static method), 429

K
kernel_polynomial() (sage.schemes.el-

liptic_curves.ell_curve_isogeny.Elliptic-
CurveIsogeny method), 201

kernel_polynomial() (sage.schemes.ellip-
tic_curves.hom_composite.EllipticCurve-
Hom_composite method), 177

kernel_polynomial() (sage.schemes.ellip-
tic_curves.hom_frobenius.EllipticCurve-
Hom_frobenius method), 232

kernel_polynomial() (sage.schemes.ellip-
tic_curves.hom_scalar.EllipticCurveHom_scalar
method), 226

kernel_polynomial() (sage.schemes.ellip-
tic_curves.hom_sum.EllipticCurveHom_sum
method), 184

kernel_polynomial() (sage.schemes.ellip-
tic_curves.hom_velusqrt.EllipticCurve-
Hom_velusqrt method), 218

kernel_polynomial() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
166

kernel_polynomial() (sage.schemes.ellip-
tic_curves.weierstrass_morphism.WeierstrassIso-
morphism method), 189

kernel_polynomial_from_divisor()
(sage.schemes.elliptic_curves.ell_field.Ellip-
ticCurve_field method), 112

kernel_polynomial_from_point()
(sage.schemes.elliptic_curves.ell_field.Ellip-
ticCurve_field method), 113

kodaira_symbol() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-

762 Index

Elliptic curves, Release 10.4.rc1

Data method), 498
kodaira_symbol() (sage.schemes.ellip-

tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 391

kodaira_symbol() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 308

kodaira_type() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 308

kodaira_type_old() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 309

KodairaSymbol() (in module sage.schemes.ellip-
tic_curves.kodaira_symbol), 502

KodairaSymbol_class (class in sage.schemes.ellip-
tic_curves.kodaira_symbol), 502

kolyvagin_cohomology_class()
(sage.schemes.elliptic_curves.heegner.Heegn-
erPointOnEllipticCurve method), 567

kolyvagin_cohomology_class()
(sage.schemes.elliptic_curves.heegner.Koly-
vaginPoint method), 593

kolyvagin_conductors() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPoints_level_disc
method), 576

kolyvagin_cyclic_subideals()
(sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 582

kolyvagin_generator() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
583

kolyvagin_generators() (sage.schemes.ellip-
tic_curves.heegner.GaloisGroup method), 563

kolyvagin_generators() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
583

kolyvagin_point() (in module sage.schemes.ellip-
tic_curves.heegner), 608

kolyvagin_point() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 309

kolyvagin_point() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnEllipticCurve
method), 567

kolyvagin_point() (sage.schemes.ellip-
tic_curves.heegner.KolyvaginCohomologyClass
method), 592

kolyvagin_point_on_curve() (sage.schemes.el-
liptic_curves.heegner.HeegnerQuatAlg method),
584

kolyvagin_reduction_data() (in module
sage.schemes.elliptic_curves.heegner), 608

kolyvagin_sigma_operator() (sage.schemes.el-

liptic_curves.heegner.HeegnerQuatAlg method),
584

KolyvaginCohomologyClass (class in
sage.schemes.elliptic_curves.heegner), 591

KolyvaginCohomologyClassEn (class in
sage.schemes.elliptic_curves.heegner), 592

KolyvaginPoint (class in sage.schemes.ellip-
tic_curves.heegner), 592

kummer_morphism() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_g2.Hyperelliptic-
Curve_g2 method), 732

kummer_surface() (sage.schemes.hyperellip-
tic_curves.jacobian_g2.HyperellipticJacobian_g2
method), 723

KummerSurface (class in sage.schemes.hyperellip-
tic_curves.kummer_surface), 737

L
L1_vanishes() (sage.schemes.ellip-

tic_curves.lseries_ell.Lseries_ell method),
548

L_invariant() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
503

L_ratio() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
548

label() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
309

Lambda() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
270

largest_disc_with_class_number() (in mod-
ule sage.schemes.elliptic_curves.cm), 487

largest_fundamen-
tal_disc_with_class_number()
(in module sage.schemes.elliptic_curves.cm), 488

left_orders() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerQuatAlg method), 586

level() (sage.schemes.elliptic_curves.heegner.Heegner-
Point method), 564

level() (sage.schemes.elliptic_curves.heegner.Heegner-
Points method), 575

level() (sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 586

lift() (in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 710

lift() (sage.schemes.elliptic_curves.ell_tate_curve.Tate-
Curve method), 504

lift_of_hilbert_class_field_ga-
lois_group() (sage.schemes.ellip-
tic_curves.heegner.GaloisGroup method),
563

Index 763

Elliptic curves, Release 10.4.rc1

lift_x() (sage.schemes.elliptic_curves.ell_generic.Ellip-
ticCurve_generic method), 76

lift_x() (sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic.HyperellipticCurve_generic method),
647

lll_reduce() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
391

lmfdb_page() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
310

local_analytic_interpolation()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field.HyperellipticCurve_padic_field
method), 679

local_coord() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_generic.HyperellipticCurve_generic
method), 648

local_coordinates_at_infinity()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic.HyperellipticCurve_generic method),
649

local_coordinates_at_nonweierstrass()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic.HyperellipticCurve_generic method),
649

local_coordinates_at_weierstrass()
(sage.schemes.hyperelliptic_curves.hyperellip-
tic_generic.HyperellipticCurve_generic method),
650

local_data() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
393

local_integral_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 395

local_integral_model() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 310

local_minimal_model() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 395

log() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint_finite_field method), 41

log() (sage.schemes.elliptic_curves.formal_group.Ellip-
ticCurveFormalGroup method), 155

lseries() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
310

lseries() (sage.schemes.hyperelliptic_curves.hyperel-
liptic_rational_field.HyperellipticCurve_ratio-
nal_field method), 684

Lseries_ell (class in sage.schemes.ellip-
tic_curves.lseries_ell), 548

lseries_gross_zagier() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 311

M
make_monic() (in module sage.schemes.ellip-

tic_curves.heegner), 610
manin_constant() (sage.schemes.ellip-

tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 311

manin_symbol() (sage.schemes.ellip-
tic_curves.mod_sym_num.ModularSymbol-
Numerical method), 546

map_to_complex_numbers() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnEllipticCurve
method), 567

map_to_complex_numbers() (sage.schemes.ellip-
tic_curves.modular_parametrization.ModularPa-
rameterization method), 535

map_to_curve() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPointOnX0N method), 573

matrix() (sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlgEmbedding method), 591

matrix() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC
method), 464

matrix_of_frobenius() (in module
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 710

matrix_of_frobenius() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 312

matrix_of_frobenius() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_rational_field.Hyperel-
lipticCurve_rational_field method), 684

matrix_of_frobenius_hyperelliptic() (in
module sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer), 714

matrix_on_subgroup() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
166

max_pow_y() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential
method), 691

max_pow_y() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientEle-
ment method), 703

ME() (sage.schemes.elliptic_curves.height.EllipticCurve-
CanonicalHeight method), 415

measure() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),
614

Mestre_conic() (in module sage.schemes.hyperellip-
tic_curves.mestre), 687

764 Index

Elliptic curves, Release 10.4.rc1

min() (sage.schemes.elliptic_curves.height.EllipticCurve-
CanonicalHeight method), 420

min_gr() (sage.schemes.elliptic_curves.height.Elliptic-
CurveCanonicalHeight method), 421

min_on_disk() (in module sage.schemes.ellip-
tic_curves.height), 431

min_pow_y() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential
method), 691

min_pow_y() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientEle-
ment method), 703

minimal_discriminant_ideal()
(sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
396

minimal_model() (sage.schemes.elliptic_curves.ell_lo-
cal_data.EllipticCurveLocalData method), 498

minimal_model() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 313

minimal_quadratic_twist() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 313

mod() (sage.schemes.elliptic_curves.heegner.Kolyvagin-
Point method), 594

mod5family() (in module sage.schemes.ellip-
tic_curves.mod5family), 635

mod5family() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
314

modp_dual_elliptic_curve_factor()
(sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 586

modp_splitting_data() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
586

modp_splitting_map() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
587

modular_degree() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 314

modular_form() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 316

modular_parametrization() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 316

modular_symbol() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 317

modular_symbol() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),

615
modular_symbol_numerical() (sage.schemes.el-

liptic_curves.ell_rational_field.EllipticCurve_ra-
tional_field method), 319

modular_symbol_space() (in module
sage.schemes.elliptic_curves.ell_modular_sym-
bols), 541

modular_symbol_space() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 320

ModularParameterization (class in
sage.schemes.elliptic_curves.modu-
lar_parametrization), 535

ModularSymbol (class in sage.schemes.ellip-
tic_curves.ell_modular_symbols), 538

ModularSymbolECLIB (class in sage.schemes.ellip-
tic_curves.ell_modular_symbols), 538

ModularSymbolNumerical (class in sage.schemes.el-
liptic_curves.mod_sym_num), 544

ModularSymbolSage (class in sage.schemes.ellip-
tic_curves.ell_modular_symbols), 540

module
sage.interfaces.genus2reduction, 737
sage.schemes.elliptic_curves.cm, 480
sage.schemes.elliptic_curves.con-

structor, 1
sage.schemes.elliptic_curves.de-

scent_two_isogeny, 627
sage.schemes.ellip-

tic_curves.ec_database, 361
sage.schemes.ellip-

tic_curves.ell_curve_isogeny,
193

sage.schemes.ellip-
tic_curves.ell_egros, 630

sage.schemes.ellip-
tic_curves.ell_field, 91

sage.schemes.ellip-
tic_curves.ell_finite_field,
121

sage.schemes.ellip-
tic_curves.ell_generic, 59

sage.schemes.ellip-
tic_curves.ell_local_data, 493

sage.schemes.ellip-
tic_curves.ell_modular_symbols,
537

sage.schemes.ellip-
tic_curves.ell_number_field,
362

sage.schemes.ellip-
tic_curves.ell_padic_field, 634

sage.schemes.ellip-
tic_curves.ell_point, 21

Index 765

Elliptic curves, Release 10.4.rc1

sage.schemes.ellip-
tic_curves.ell_rational_field,
269

sage.schemes.ellip-
tic_curves.ell_tate_curve, 503

sage.schemes.ellip-
tic_curves.ell_torsion, 437

sage.schemes.ellip-
tic_curves.ell_wp, 507

sage.schemes.elliptic_curves.for-
mal_group, 153

sage.schemes.ellip-
tic_curves.gal_reps, 441

sage.schemes.ellip-
tic_curves.gal_reps_num-
ber_field, 452

sage.schemes.ellip-
tic_curves.gp_simon, 635

sage.schemes.elliptic_curves.heeg-
ner, 557

sage.schemes.ellip-
tic_curves.height, 414

sage.schemes.elliptic_curves.hom,
159

sage.schemes.ellip-
tic_curves.hom_composite, 173

sage.schemes.ellip-
tic_curves.hom_frobenius, 229

sage.schemes.ellip-
tic_curves.hom_scalar, 223

sage.schemes.ellip-
tic_curves.hom_sum, 181

sage.schemes.ellip-
tic_curves.hom_velusqrt, 215

sage.schemes.ellip-
tic_curves.isogeny_class, 463

sage.schemes.ellip-
tic_curves.isogeny_small_degree,
235

sage.schemes.elliptic_curves.jaco-
bian, 17

sage.schemes.elliptic_curves.ko-
daira_symbol, 501

sage.schemes.ellip-
tic_curves.lseries_ell, 548

sage.schemes.ellip-
tic_curves.mod5family, 635

sage.schemes.ellip-
tic_curves.mod_poly, 267

sage.schemes.ellip-
tic_curves.mod_sym_num, 542

sage.schemes.elliptic_curves.modu-
lar_parametrization, 535

sage.schemes.ellip-

tic_curves.padic_lseries, 612
sage.schemes.elliptic_curves.pe-

riod_lattice, 511
sage.schemes.elliptic_curves.pe-

riod_lattice_region, 530
sage.schemes.ellip-

tic_curves.Qcurves, 489
sage.schemes.elliptic_curves.satu-

ration, 432
sage.schemes.ellip-

tic_curves.sha_tate, 470
sage.schemes.ellip-

tic_curves.weierstrass_morphism,
187

sage.schemes.ellip-
tic_curves.weierstrass_trans-
form, 636

sage.schemes.hyperellip-
tic_curves.constructor, 641

sage.schemes.hyperellip-
tic_curves.hypellfrob, 717

sage.schemes.hyperellip-
tic_curves.hyperelliptic_fi-
nite_field, 653

sage.schemes.hyperellip-
tic_curves.hyperelliptic_g2,
730

sage.schemes.hyperellip-
tic_curves.hyperellip-
tic_generic, 643

sage.schemes.hyperellip-
tic_curves.hyperellip-
tic_padic_field, 667

sage.schemes.hyperellip-
tic_curves.hyperelliptic_ra-
tional_field, 684

sage.schemes.hyperellip-
tic_curves.invariants, 732

sage.schemes.hyperellip-
tic_curves.jacobian_g2, 723

sage.schemes.hyperellip-
tic_curves.jacobian_generic,
719

sage.schemes.hyperellip-
tic_curves.jacobian_homset, 724

sage.schemes.hyperellip-
tic_curves.jacobian_morphism,
725

sage.schemes.hyperellip-
tic_curves.kummer_surface, 737

sage.schemes.hyperellip-
tic_curves.mestre, 685

sage.schemes.hyperellip-
tic_curves.monsky_washnitzer,

766 Index

Elliptic curves, Release 10.4.rc1

688
monomial() (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.SpecialHyperellipticQuotientRing
method), 705

monomial_diff_coeffs() (sage.schemes.hyperel-
liptic_curves.monsky_washnitzer.SpecialHyperel-
lipticQuotientRing method), 706

monomial_diff_coeffs_matrices()
(sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
method), 706

monsky_washnitzer() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialHyperellip-
ticQuotientRing method), 706

monsky_washnitzer_gens() (sage.schemes.hyper-
elliptic_curves.hyperelliptic_generic.Hyperellip-
ticCurve_generic method), 651

MonskyWashnitzerDifferential (class in
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 688

MonskyWashnitzerDifferentialRing (class in
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 693

MonskyWashnitzerDifferentialRing_class
(in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 697

montgomery_model() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 79

mult_by_n() (sage.schemes.elliptic_curves.for-
mal_group.EllipticCurveFormalGroup method),
155

multiplication_by_m() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 82

multiplication_by_m_isogeny()
(sage.schemes.elliptic_curves.ell_generic.El-
lipticCurve_generic method), 83

multiplication_by_p_isogeny()
(sage.schemes.elliptic_curves.ell_finite_field.El-
lipticCurve_finite_field method), 134

mwrank() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
321

mwrank_curve() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 322

N
n() (sage.schemes.elliptic_curves.heegner.KolyvaginCoho-

mologyClass method), 592
nearby_rational_poly() (in module

sage.schemes.elliptic_curves.heegner), 610

negation_morphism() (in module sage.schemes.el-
liptic_curves.weierstrass_morphism), 192

newform() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
322

newton_sqrt() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_padic_field.Hyperelliptic-
Curve_padic_field method), 680

ngens() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
322

non_archimedean_local_height()
(sage.schemes.elliptic_curves.ell_point.Ellip-
ticCurvePoint_number_field method), 55

non_minimal_primes() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 396

non_surjective() (sage.schemes.ellip-
tic_curves.gal_reps_number_field.Galois-
Representation method), 459

non_surjective() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 451

nonneg_region() (in module sage.schemes.ellip-
tic_curves.height), 431

normalise_periods() (in module sage.schemes.el-
liptic_curves.period_lattice), 529

normalised_basis() (sage.schemes.ellip-
tic_curves.period_lattice.PeriodLattice_ell
method), 524

Np() (sage.schemes.elliptic_curves.ell_rational_field.Ellip-
ticCurve_rational_field method), 271

numerical_approx() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnEllipticCurve
method), 568

numerical_approx() (sage.schemes.ellip-
tic_curves.heegner.KolyvaginPoint method),
594

O
odd_degree_model() (sage.schemes.hyperellip-

tic_curves.hyperelliptic_generic.Hyperelliptic-
Curve_generic method), 651

omega() (sage.schemes.elliptic_curves.period_lattice.Pe-
riodLattice_ell method), 525

one() (sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer.SpecialCubicQuotientRing method), 699

one() (sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer.SpecialHyperellipticQuotientRing method),
706

optimal_curve() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 323

optimal_embeddings() (sage.schemes.ellip-

Index 767

Elliptic curves, Release 10.4.rc1

tic_curves.heegner.HeegnerQuatAlg method),
588

order() (sage.schemes.elliptic_curves.ell_finite_field.El-
lipticCurve_finite_field method), 134

order() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint_field method), 32

order() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint_finite_field method), 42

order() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint_number_field method), 56

order() (sage.schemes.elliptic_curves.heegner.Ga-
loisAutomorphismComplexConjugation method),
559

order() (sage.schemes.elliptic_curves.heegner.Ga-
loisAutomorphismQuadraticForm method),
560

order() (sage.schemes.elliptic_curves.weierstrass_mor-
phism.WeierstrassIsomorphism method), 189

order_of_vanishing() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),
616

OrderClassNumber() (in module sage.schemes.ellip-
tic_curves.cm), 481

ordinary_primes() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 323

original_curve() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
505

P
p1_element() (sage.schemes.elliptic_curves.heeg-

ner.GaloisAutomorphismQuadraticForm
method), 561

p_primary_bound() (sage.schemes.ellip-
tic_curves.sha_tate.Sha method), 478

p_primary_order() (sage.schemes.ellip-
tic_curves.sha_tate.Sha method), 479

p_projections() (in module sage.schemes.ellip-
tic_curves.saturation), 436

p_rank() (sage.schemes.hyperelliptic_curves.hyperel-
liptic_finite_field.HyperellipticCurve_finite_field
method), 665

p_saturation() (sage.schemes.elliptic_curves.satura-
tion.EllipticCurveSaturator method), 434

P_to_S() (sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field.HyperellipticCurve_padic_field
method), 667

padic_E2() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
324

padic_elliptic_logarithm() (sage.schemes.el-
liptic_curves.ell_point.EllipticCurvePoint_fi-
nite_field method), 43

padic_elliptic_logarithm() (sage.schemes.el-
liptic_curves.ell_point.EllipticCurvePoint_num-
ber_field method), 56

padic_height() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 326

padic_height() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
505

padic_height_pairing_matrix()
(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
328

padic_height_via_multiply() (sage.schemes.el-
liptic_curves.ell_rational_field.EllipticCurve_ra-
tional_field method), 329

padic_lseries() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 330

padic_regulator() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 332

padic_regulator() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
505

padic_sigma() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
333

padic_sigma_truncated() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 335

pAdicLseries (class in sage.schemes.ellip-
tic_curves.padic_lseries), 613

pAdicLseriesOrdinary (class in sage.schemes.ellip-
tic_curves.padic_lseries), 617

pAdicLseriesSupersingular (class in
sage.schemes.elliptic_curves.padic_lseries),
622

parameter() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
506

parametrisation_onto_origi-
nal_curve() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
506

parametrisation_onto_tate_curve()
(sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
506

parent() (sage.schemes.elliptic_curves.heegner.Ga-
loisAutomorphism method), 559

pari_curve() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 83

768 Index

Elliptic curves, Release 10.4.rc1

pari_curve() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
336

pari_mincurve() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 337

period_lattice() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 397

period_lattice() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 337

PeriodicRegion (class in sage.schemes.ellip-
tic_curves.period_lattice_region), 530

PeriodLattice (class in sage.schemes.ellip-
tic_curves.period_lattice), 512

PeriodLattice_ell (class in sage.schemes.ellip-
tic_curves.period_lattice), 512

plot() (sage.schemes.elliptic_curves.ell_finite_field.El-
lipticCurve_finite_field method), 136

plot() (sage.schemes.elliptic_curves.ell_generic.Elliptic-
Curve_generic method), 84

plot() (sage.schemes.elliptic_curves.ell_point.Elliptic-
CurvePoint_field method), 32

plot() (sage.schemes.elliptic_curves.heegner.Heegner-
PointOnX0N method), 574

plot() (sage.schemes.elliptic_curves.heegner.Heegner-
Points_level_disc_cond method), 578

plot() (sage.schemes.elliptic_curves.heegner.Kolyvagin-
Point method), 595

plot() (sage.schemes.elliptic_curves.period_lattice_re-
gion.PeriodicRegion method), 533

point() (sage.schemes.hyperelliptic_curves.jaco-
bian_generic.HyperellipticJacobian_generic
method), 723

point_exact() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPointOnEllipticCurve method),
569

point_exact() (sage.schemes.elliptic_curves.heeg-
ner.KolyvaginPoint method), 595

point_of_jacobian_of_curve()
(sage.schemes.elliptic_curves.ell_point.Ellip-
ticCurvePoint_field method), 33

point_of_jacobian_of_curve()
(sage.schemes.hyperelliptic_curves.jaco-
bian_morphism.JacobianMorphism_divi-
sor_class_field method), 726

point_of_order() (in module sage.schemes.ellip-
tic_curves.ell_field), 119

point_search() (sage.schemes.elliptic_curves.ell_ra-
tional_field.EllipticCurve_rational_field
method), 337

points() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),

136
points() (sage.schemes.elliptic_curves.ell_torsion.Ellip-

ticCurveTorsionSubgroup method), 439
points() (sage.schemes.elliptic_curves.heegner.Heegn-

erPoints_level_disc_cond method), 578
points() (sage.schemes.hyperelliptic_curves.hyperel-

liptic_finite_field.HyperellipticCurve_finite_field
method), 666

pollack_stevens_modular_symbol()
(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
338

poly_ring() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialCubicQuotientRing
method), 699

possible_isogeny_degrees() (in module
sage.schemes.elliptic_curves.isogeny_class), 468

post_rescaling() (sage.schemes.ellip-
tic_curves.weierstrass_transform.Weier-
strassTransformation method), 638

power_series() (sage.schemes.elliptic_curves.mod-
ular_parametrization.ModularParameterization
method), 536

power_series() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesOrdinary
method), 617

power_series() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 624

prime() (sage.schemes.elliptic_curves.ell_local_data.El-
lipticCurveLocalData method), 499

prime() (sage.schemes.ellip-
tic_curves.ell_tate_curve.TateCurve method),
507

prime() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),
617

prime() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialHyperellipticQuotientRing
method), 707

projective_point() (in module sage.schemes.ellip-
tic_curves.constructor), 15

prove_BSD() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
339

Psi() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 235

psi() (sage.schemes.elliptic_curves.height.EllipticCurve-
CanonicalHeight method), 422

Psi2() (in module sage.schemes.ellip-
tic_curves.isogeny_small_degree), 236

Q
Q() (sage.schemes.hyperelliptic_curves.monsky_wash-

Index 769

Elliptic curves, Release 10.4.rc1

nitzer.MonskyWashnitzerDifferentialRing
method), 693

Q() (sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer.SpecialHyperellipticQuotientRing method),
704

q_eigenform() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
342

q_expansion() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
342

qf_matrix() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC
method), 465

quadratic_field() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPoint method),
565

quadratic_field() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPoints_level_disc
method), 577

quadratic_field() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
588

quadratic_field() (sage.schemes.ellip-
tic_curves.heegner.RingClassField method),
599

quadratic_form() (sage.schemes.ellip-
tic_curves.heegner.GaloisAutomorphis-
mQuadraticForm method), 561

quadratic_form() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnEllipticCurve
method), 570

quadratic_form() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPointOnX0N
method), 574

quadratic_order() (in module sage.schemes.ellip-
tic_curves.heegner), 611

quadratic_order() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPoint method),
565

quadratic_twist() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
115

quadratic_twist() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 342

quartic_twist() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
116

quaternion_algebra() (sage.schemes.ellip-
tic_curves.heegner.HeegnerQuatAlg method),
588

R
ramified_primes() (sage.schemes.ellip-

tic_curves.heegner.RingClassField method),
599

random_element() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 137

random_point() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
138

rank() (sage.schemes.elliptic_curves.ec_database.Ellip-
ticCurves method), 361

rank() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
398

rank() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
343

rank_bound() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
344

rank_bounds() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
399

rat_term_CIF() (in module sage.schemes.ellip-
tic_curves.height), 432

rational_kolyvagin_divisor()
(sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 588

rational_maps() (sage.schemes.ellip-
tic_curves.ell_curve_isogeny.Elliptic-
CurveIsogeny method), 201

rational_maps() (sage.schemes.ellip-
tic_curves.hom_composite.EllipticCurve-
Hom_composite method), 177

rational_maps() (sage.schemes.ellip-
tic_curves.hom_frobenius.EllipticCurve-
Hom_frobenius method), 232

rational_maps() (sage.schemes.ellip-
tic_curves.hom_scalar.EllipticCurveHom_scalar
method), 226

rational_maps() (sage.schemes.ellip-
tic_curves.hom_sum.EllipticCurveHom_sum
method), 184

rational_maps() (sage.schemes.ellip-
tic_curves.hom_velusqrt.EllipticCurve-
Hom_velusqrt method), 218

rational_maps() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
168

rational_maps() (sage.schemes.elliptic_curves.weier-
strass_morphism.WeierstrassIsomorphism
method), 189

rational_points() (sage.schemes.ellip-

770 Index

Elliptic curves, Release 10.4.rc1

tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 139

rational_points() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 400

rational_points() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_generic.Hyperelliptic-
Curve_generic method), 652

real_components() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 401

real_components() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 344

real_intersection_is_empty()
(sage.schemes.elliptic_curves.height.Elliptic-
CurveCanonicalHeight method), 423

real_period() (sage.schemes.elliptic_curves.pe-
riod_lattice.PeriodLattice_ell method), 526

reduce() (sage.schemes.elliptic_curves.period_lat-
tice.PeriodLattice_ell method), 527

reduce() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.MonskyWashnitzerDifferential
method), 691

reduce_all() (in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 714

reduce_fast() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 691

reduce_mod() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPoints_level method), 575

reduce_mod_q() (in module sage.schemes.ellip-
tic_curves.saturation), 436

reduce_neg_y() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 692

reduce_neg_y_fast() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 692

reduce_neg_y_faster() (sage.schemes.hyperel-
liptic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 692

reduce_negative() (in module sage.schemes.hyper-
elliptic_curves.monsky_washnitzer), 715

reduce_pos_y() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 693

reduce_pos_y_fast() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.MonskyWash-
nitzerDifferential method), 693

reduce_positive() (in module sage.schemes.hyper-
elliptic_curves.monsky_washnitzer), 715

reduce_tau() (in module sage.schemes.ellip-
tic_curves.period_lattice), 529

reduce_zero() (in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 716

reduced_quadratic_form() (sage.schemes.el-
liptic_curves.heegner.HeegnerPointOnX0N
method), 574

reducible_primes() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 401

reducible_primes() (sage.schemes.ellip-
tic_curves.gal_reps_number_field.Galois-
Representation method), 460

reducible_primes() (sage.schemes.ellip-
tic_curves.gal_reps.GaloisRepresentation
method), 452

reducible_primes_Billerey() (in module
sage.schemes.elliptic_curves.gal_reps_num-
ber_field), 461

reducible_primes_naive() (in module
sage.schemes.elliptic_curves.gal_reps_num-
ber_field), 462

reduction() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
402

reduction() (sage.schemes.elliptic_curves.ell_point.El-
lipticCurvePoint_number_field method), 58

reduction() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
345

ReductionData (class in sage.interfaces.genus2reduc-
tion), 739

refine() (sage.schemes.elliptic_curves.period_lat-
tice_region.PeriodicRegion method), 533

regulator() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
345

regulator_of_points() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 402

reorder() (sage.schemes.ellip-
tic_curves.isogeny_class.IsogenyClass_EC
method), 465

residue_disc() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperel-
lipticCurve_padic_field method), 681

right_ideals() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerQuatAlg method), 589

ring_class_field() (sage.schemes.ellip-
tic_curves.heegner.HeegnerPoint method),
565

ring_class_field() (sage.schemes.el-
liptic_curves.heegner.Heegner-
Points_level_disc_cond method), 579

RingClassField (class in sage.schemes.ellip-
tic_curves.heegner), 596

Index 771

Elliptic curves, Release 10.4.rc1

root_number() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
346

rst_transform() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 86

S
S() (sage.schemes.elliptic_curves.height.EllipticCurve-

CanonicalHeight method), 415
S_integral_points() (sage.schemes.ellip-

tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 271

S_to_Q() (sage.schemes.hyperelliptic_curves.hyperellip-
tic_padic_field.HyperellipticCurve_padic_field
method), 668

sage.interfaces.genus2reduction
module, 737

sage.schemes.elliptic_curves.cm
module, 480

sage.schemes.elliptic_curves.construc-
tor

module, 1
sage.schemes.elliptic_curves.de-

scent_two_isogeny
module, 627

sage.schemes.ellip-
tic_curves.ec_database

module, 361
sage.schemes.ellip-

tic_curves.ell_curve_isogeny
module, 193

sage.schemes.elliptic_curves.ell_egros
module, 630

sage.schemes.elliptic_curves.ell_field
module, 91

sage.schemes.elliptic_curves.ell_fi-
nite_field

module, 121
sage.schemes.ellip-

tic_curves.ell_generic
module, 59

sage.schemes.elliptic_curves.ell_lo-
cal_data

module, 493
sage.schemes.elliptic_curves.ell_modu-

lar_symbols
module, 537

sage.schemes.elliptic_curves.ell_num-
ber_field

module, 362
sage.schemes.ellip-

tic_curves.ell_padic_field
module, 634

sage.schemes.elliptic_curves.ell_point
module, 21

sage.schemes.elliptic_curves.ell_ra-
tional_field

module, 269
sage.schemes.ellip-

tic_curves.ell_tate_curve
module, 503

sage.schemes.elliptic_curves.ell_tor-
sion

module, 437
sage.schemes.elliptic_curves.ell_wp

module, 507
sage.schemes.elliptic_curves.for-

mal_group
module, 153

sage.schemes.elliptic_curves.gal_reps
module, 441

sage.schemes.ellip-
tic_curves.gal_reps_num-
ber_field

module, 452
sage.schemes.elliptic_curves.gp_simon

module, 635
sage.schemes.elliptic_curves.heegner

module, 557
sage.schemes.elliptic_curves.height

module, 414
sage.schemes.elliptic_curves.hom

module, 159
sage.schemes.elliptic_curves.hom_com-

posite
module, 173

sage.schemes.ellip-
tic_curves.hom_frobenius

module, 229
sage.schemes.ellip-

tic_curves.hom_scalar
module, 223

sage.schemes.elliptic_curves.hom_sum
module, 181

sage.schemes.ellip-
tic_curves.hom_velusqrt

module, 215
sage.schemes.ellip-

tic_curves.isogeny_class
module, 463

sage.schemes.ellip-
tic_curves.isogeny_small_degree

module, 235
sage.schemes.elliptic_curves.jacobian

module, 17
sage.schemes.elliptic_curves.ko-

daira_symbol

772 Index

Elliptic curves, Release 10.4.rc1

module, 501
sage.schemes.ellip-

tic_curves.lseries_ell
module, 548

sage.schemes.elliptic_curves.mod5fam-
ily

module, 635
sage.schemes.elliptic_curves.mod_poly

module, 267
sage.schemes.ellip-

tic_curves.mod_sym_num
module, 542

sage.schemes.elliptic_curves.modu-
lar_parametrization

module, 535
sage.schemes.ellip-

tic_curves.padic_lseries
module, 612

sage.schemes.elliptic_curves.pe-
riod_lattice

module, 511
sage.schemes.elliptic_curves.pe-

riod_lattice_region
module, 530

sage.schemes.elliptic_curves.Qcurves
module, 489

sage.schemes.elliptic_curves.satura-
tion

module, 432
sage.schemes.elliptic_curves.sha_tate

module, 470
sage.schemes.elliptic_curves.weier-

strass_morphism
module, 187

sage.schemes.elliptic_curves.weier-
strass_transform

module, 636
sage.schemes.hyperelliptic_curves.con-

structor
module, 641

sage.schemes.hyperelliptic_curves.hy-
pellfrob

module, 717
sage.schemes.hyperelliptic_curves.hy-

perelliptic_finite_field
module, 653

sage.schemes.hyperelliptic_curves.hy-
perelliptic_g2

module, 730
sage.schemes.hyperelliptic_curves.hy-

perelliptic_generic
module, 643

sage.schemes.hyperelliptic_curves.hy-
perelliptic_padic_field

module, 667
sage.schemes.hyperelliptic_curves.hy-

perelliptic_rational_field
module, 684

sage.schemes.hyperelliptic_curves.in-
variants

module, 732
sage.schemes.hyperelliptic_curves.ja-

cobian_g2
module, 723

sage.schemes.hyperelliptic_curves.ja-
cobian_generic

module, 719
sage.schemes.hyperelliptic_curves.ja-

cobian_homset
module, 724

sage.schemes.hyperelliptic_curves.ja-
cobian_morphism

module, 725
sage.schemes.hyperelliptic_curves.kum-

mer_surface
module, 737

sage.schemes.hyperellip-
tic_curves.mestre

module, 685
sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer
module, 688

satisfies_heegner_hypothesis() (in module
sage.schemes.elliptic_curves.heegner), 611

satisfies_heegner_hypothesis()
(sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
346

satisfies_heegner_hypothesis()
(sage.schemes.elliptic_curves.heegner.Heegn-
erQuatAlg method), 589

satisfies_kolyvagin_hypothesis()
(sage.schemes.elliptic_curves.heegner.Heegn-
erPointOnEllipticCurve method), 570

satisfies_kolyvagin_hypothesis()
(sage.schemes.elliptic_curves.heegner.Heegn-
erPoints_level_disc_cond method), 579

satisfies_kolyvagin_hypothesis()
(sage.schemes.elliptic_curves.heegner.Koly-
vaginPoint method), 596

satisfies_weak_heegner_hypothesis() (in
module sage.schemes.elliptic_curves.heegner),
611

saturation() (sage.schemes.elliptic_curves.ell_num-
ber_field.EllipticCurve_number_field method),
404

saturation() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),

Index 773

Elliptic curves, Release 10.4.rc1

347
scalar_multiplication() (sage.schemes.el-

liptic_curves.ell_generic.EllipticCurve_generic
method), 86

scalar_multiply() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialCubicQuo-
tientRingElement method), 700

scale_curve() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 86

scaling_factor() (sage.schemes.ellip-
tic_curves.ell_curve_isogeny.Elliptic-
CurveIsogeny method), 202

scaling_factor() (sage.schemes.ellip-
tic_curves.hom_composite.EllipticCurve-
Hom_composite method), 178

scaling_factor() (sage.schemes.ellip-
tic_curves.hom_frobenius.EllipticCurve-
Hom_frobenius method), 232

scaling_factor() (sage.schemes.ellip-
tic_curves.hom_scalar.EllipticCurveHom_scalar
method), 227

scaling_factor() (sage.schemes.ellip-
tic_curves.hom_sum.EllipticCurveHom_sum
method), 184

scaling_factor() (sage.schemes.ellip-
tic_curves.hom_velusqrt.EllipticCurve-
Hom_velusqrt method), 219

scaling_factor() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
168

scaling_factor() (sage.schemes.ellip-
tic_curves.weierstrass_morphism.WeierstrassIso-
morphism method), 190

scheme() (sage.schemes.hyperelliptic_curves.jaco-
bian_morphism.JacobianMorphism_divi-
sor_class_field method), 727

selmer_rank() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
348

separable_degree() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
168

series() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesOrdinary
method), 620

series() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseriesSuper-
singular method), 625

set_order() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
139

set_order() (sage.schemes.elliptic_curves.ell_point.El-
lipticCurvePoint_field method), 33

sextic_twist() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
116

Sha (class in sage.schemes.elliptic_curves.sha_tate), 471
sha() (sage.schemes.elliptic_curves.ell_rational_field.El-

lipticCurve_rational_field method), 348
shift() (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.SpecialCubicQuotientRingEle-
ment method), 700

short_weierstrass_model() (sage.schemes.el-
liptic_curves.ell_generic.EllipticCurve_generic
method), 87

sigma() (sage.schemes.elliptic_curves.formal_group.El-
lipticCurveFormalGroup method), 156

sigma() (sage.schemes.elliptic_curves.period_lattice.Pe-
riodLattice_ell method), 527

sign() (sage.schemes.elliptic_curves.ell_modular_sym-
bols.ModularSymbol method), 538

silverman_height_bound() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 348

simon_two_descent() (in module sage.schemes.el-
liptic_curves.gp_simon), 635

simon_two_descent() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 406

simon_two_descent() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 349

simplest_rational_poly() (in module
sage.schemes.elliptic_curves.heegner), 612

Sn() (sage.schemes.elliptic_curves.height.EllipticCurve-
CanonicalHeight method), 416

solve_linear_differential_system() (in
module sage.schemes.elliptic_curves.ell_wp), 509

special_supersingular_curve() (in module
sage.schemes.elliptic_curves.ell_finite_field), 150

SpecialCubicQuotientRing (class in
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 697

SpecialCubicQuotientRingElement (class in
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 700

SpecialHyperellipticQuotientElement
(class in sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer), 701

SpecialHyperellipticQuotientRing (class in
sage.schemes.hyperelliptic_curves.monsky_wash-
nitzer), 704

SpecialHyperellipticQuotientRing_class
(in module sage.schemes.hyperellip-
tic_curves.monsky_washnitzer), 707

square() (sage.schemes.hyperelliptic_curves.mon-
sky_washnitzer.SpecialCubicQuotientRingEle-

774 Index

Elliptic curves, Release 10.4.rc1

ment method), 701
Step4Test() (in module sage.schemes.ellip-

tic_curves.Qcurves), 489
summands() (sage.schemes.elliptic_curves.hom_sum.El-

lipticCurveHom_sum method), 185
supersingular_j_polynomial() (in module

sage.schemes.elliptic_curves.ell_finite_field), 151
supersingular_primes() (sage.schemes.ellip-

tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 351

sympow() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
552

sympow_derivs() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
553

T
tamagawa_exponent() (sage.schemes.ellip-

tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 500

tamagawa_exponent() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 408

tamagawa_exponent() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 352

tamagawa_number() (sage.schemes.ellip-
tic_curves.ell_local_data.EllipticCurveLocal-
Data method), 500

tamagawa_number() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 408

tamagawa_number() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 352

tamagawa_number_old() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 352

tamagawa_numbers() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 409

tamagawa_product() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 409

tamagawa_product() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 353

tamagawa_product_bsd() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 410

tangent_at_smooth_point() (in module
sage.schemes.elliptic_curves.constructor), 16

tate_curve() (sage.schemes.elliptic_curves.ell_ratio-

nal_field.EllipticCurve_rational_field method),
353

tate_pairing() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 35

TateCurve (class in sage.schemes.ellip-
tic_curves.ell_tate_curve), 503

tau() (sage.schemes.elliptic_curves.heegner.Heegner-
PointOnEllipticCurve method), 570

tau() (sage.schemes.elliptic_curves.heegner.Heegner-
PointOnX0N method), 574

tau() (sage.schemes.elliptic_curves.height.EllipticCurve-
CanonicalHeight method), 424

tau() (sage.schemes.elliptic_curves.period_lattice.Period-
Lattice_ell method), 528

taylor_series() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
554

teichmuller() (sage.schemes.ellip-
tic_curves.padic_lseries.pAdicLseries method),
617

teichmuller() (sage.schemes.hyperelliptic_curves.hy-
perelliptic_padic_field.Hyperelliptic-
Curve_padic_field method), 681

test_els() (in module sage.schemes.elliptic_curves.de-
scent_two_isogeny), 627

test_mu() (sage.schemes.elliptic_curves.height.Elliptic-
CurveCanonicalHeight method), 424

test_padic_square() (in module sage.schemes.el-
liptic_curves.descent_two_isogeny), 627

test_qpls() (in module sage.schemes.ellip-
tic_curves.descent_two_isogeny), 627

test_valuation() (in module sage.schemes.ellip-
tic_curves.descent_two_isogeny), 627

three_selmer_rank() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 354

tiny_integrals() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperel-
lipticCurve_padic_field method), 682

tiny_integrals_on_basis() (sage.schemes.hy-
perelliptic_curves.hyperelliptic_padic_field.Hy-
perellipticCurve_padic_field method), 682

to_isogeny_chain() (sage.schemes.ellip-
tic_curves.hom_sum.EllipticCurveHom_sum
method), 185

torsion_basis() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method), 141

torsion_bound() (in module sage.schemes.ellip-
tic_curves.ell_torsion), 439

torsion_order() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 410

torsion_order() (sage.schemes.ellip-

Index 775

Elliptic curves, Release 10.4.rc1

tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 354

torsion_points() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 411

torsion_points() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 354

torsion_polynomial() (sage.schemes.ellip-
tic_curves.ell_generic.EllipticCurve_generic
method), 88

torsion_subgroup() (sage.schemes.ellip-
tic_curves.ell_number_field.EllipticCurve_num-
ber_field method), 413

torsion_subgroup() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-
nal_field method), 356

trace() (sage.schemes.elliptic_curves.hom.Elliptic-
CurveHom method), 169

trace_of_frobenius() (sage.schemes.ellip-
tic_curves.ell_finite_field.EllipticCurve_fi-
nite_field method), 142

trace_to_real_numerical() (sage.schemes.ellip-
tic_curves.heegner.KolyvaginPoint method), 596

transportable_symbol() (sage.schemes.ellip-
tic_curves.mod_sym_num.ModularSymbolNu-
merical method), 547

transpose_list() (in module sage.schemes.hyperel-
liptic_curves.monsky_washnitzer), 716

truncate_neg() (sage.schemes.hyperellip-
tic_curves.monsky_washnitzer.SpecialHyper-
ellipticQuotientElement method), 704

tuple() (sage.schemes.elliptic_curves.weierstrass_mor-
phism.baseWI method), 191

twist_values() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
554

twist_zeros() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
555

twists() (sage.schemes.elliptic_curves.ell_fi-
nite_field.EllipticCurve_finite_field method),
142

two_descent() (sage.schemes.elliptic_curves.ell_ratio-
nal_field.EllipticCurve_rational_field method),
356

two_descent_by_two_isogeny() (in
module sage.schemes.elliptic_curves.de-
scent_two_isogeny), 628

two_descent_by_two_isogeny_work()
(in module sage.schemes.elliptic_curves.de-
scent_two_isogeny), 629

two_descent_simon() (sage.schemes.ellip-
tic_curves.ell_rational_field.EllipticCurve_ratio-

nal_field method), 357
two_division_polynomial() (sage.schemes.el-

liptic_curves.ell_generic.EllipticCurve_generic
method), 89

two_selmer_bound() (sage.schemes.ellip-
tic_curves.sha_tate.Sha method), 480

two_torsion_part() (in module sage.schemes.ellip-
tic_curves.ell_curve_isogeny), 211

two_torsion_rank() (sage.schemes.ellip-
tic_curves.ell_field.EllipticCurve_field method),
117

U
ubs() (in module sage.schemes.hyperelliptic_curves.in-

variants), 736
Ueberschiebung() (in module sage.schemes.hyperel-

liptic_curves.invariants), 732
unfill_isogeny_matrix() (in module

sage.schemes.elliptic_curves.ell_curve_isogeny),
212

union() (sage.schemes.elliptic_curves.height.UnionOfIn-
tervals class method), 429

UnionOfIntervals (class in sage.schemes.ellip-
tic_curves.height), 427

V
value_ring() (sage.schemes.hyperelliptic_curves.ja-

cobian_homset.JacobianHomset_divisor_classes
method), 724

values_along_line() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
555

verify() (sage.schemes.elliptic_curves.period_lat-
tice_region.PeriodicRegion method), 534

W
w() (sage.schemes.elliptic_curves.formal_group.Elliptic-

CurveFormalGroup method), 157
w1 (sage.schemes.elliptic_curves.period_lattice_region.Peri-

odicRegion attribute), 534
w2 (sage.schemes.elliptic_curves.period_lattice_region.Peri-

odicRegion attribute), 534
weierstrass_p() (in module sage.schemes.ellip-

tic_curves.ell_wp), 509
weierstrass_p() (sage.schemes.ellip-

tic_curves.ell_field.EllipticCurve_field method),
117

weierstrass_points() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_padic_field.Hyperellip-
ticCurve_padic_field method), 683

WeierstrassIsomorphism (class in sage.schemes.el-
liptic_curves.weierstrass_morphism), 187

776 Index

Elliptic curves, Release 10.4.rc1

WeierstrassTransformation (class in
sage.schemes.elliptic_curves.weierstrass_trans-
form), 636

WeierstrassTransformationWithInverse()
(in module sage.schemes.elliptic_curves.weier-
strass_transform), 638

WeierstrassTransformationWithIn-
verse_class (class in sage.schemes.el-
liptic_curves.weierstrass_transform), 639

weil_pairing() (sage.schemes.ellip-
tic_curves.ell_point.EllipticCurvePoint_field
method), 37

wp_c() (sage.schemes.elliptic_curves.height.Elliptic-
CurveCanonicalHeight method), 426

wp_intervals() (sage.schemes.ellip-
tic_curves.height.EllipticCurveCanonicalHeight
method), 426

wp_on_grid() (sage.schemes.elliptic_curves.height.El-
lipticCurveCanonicalHeight method), 427

X
x() (sage.schemes.elliptic_curves.ell_point.EllipticCurve-

Point_field method), 39
x() (sage.schemes.elliptic_curves.formal_group.Elliptic-

CurveFormalGroup method), 157
x() (sage.schemes.hyperelliptic_curves.monsky_wash-

nitzer.SpecialHyperellipticQuotientRing method),
707

x_poly_exact() (sage.schemes.elliptic_curves.heeg-
ner.HeegnerPointOnEllipticCurve method),
571

x_rational_map() (sage.schemes.ellip-
tic_curves.ell_curve_isogeny.Elliptic-
CurveIsogeny method), 202

x_rational_map() (sage.schemes.ellip-
tic_curves.hom_composite.EllipticCurve-
Hom_composite method), 178

x_rational_map() (sage.schemes.ellip-
tic_curves.hom_frobenius.EllipticCurve-
Hom_frobenius method), 233

x_rational_map() (sage.schemes.ellip-
tic_curves.hom_scalar.EllipticCurveHom_scalar
method), 227

x_rational_map() (sage.schemes.ellip-
tic_curves.hom_sum.EllipticCurveHom_sum
method), 186

x_rational_map() (sage.schemes.ellip-
tic_curves.hom_velusqrt.EllipticCurve-
Hom_velusqrt method), 219

x_rational_map() (sage.schemes.ellip-
tic_curves.hom.EllipticCurveHom method),
169

x_rational_map() (sage.schemes.ellip-
tic_curves.weierstrass_morphism.WeierstrassIso-

morphism method), 190
x_to_p() (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.MonskyWashnitzerDifferential-
Ring method), 697

xy() (sage.schemes.elliptic_curves.ell_point.EllipticCurve-
Point_field method), 39

Y
y() (sage.schemes.elliptic_curves.ell_point.EllipticCurve-

Point_field method), 39
y() (sage.schemes.elliptic_curves.formal_group.Elliptic-

CurveFormalGroup method), 158
y() (sage.schemes.hyperelliptic_curves.monsky_wash-

nitzer.SpecialHyperellipticQuotientRing method),
707

Z
zero() (sage.schemes.hyperelliptic_curves.mon-

sky_washnitzer.SpecialHyperellipticQuotientRing
method), 707

zero_sums() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
556

zeros() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
556

zeros_in_interval() (sage.schemes.ellip-
tic_curves.lseries_ell.Lseries_ell method),
556

zeta_function() (sage.schemes.hyperellip-
tic_curves.hyperelliptic_finite_field.Hyperel-
lipticCurve_finite_field method), 666

Index 777

	Elliptic curve constructor
	Construct elliptic curves as Jacobians
	Points on elliptic curves
	Elliptic curves over a general ring
	Elliptic curves over a general field
	Elliptic curves over finite fields
	Formal groups of elliptic curves
	Elliptic-curve morphisms
	Composite morphisms of elliptic curves
	Sums of morphisms of elliptic curves
	Isomorphisms between Weierstrass models of elliptic curves
	Isogenies
	Square‑root Vélu algorithm for elliptic-curve isogenies
	Scalar-multiplication morphisms of elliptic curves
	Frobenius isogenies of elliptic curves
	Isogenies of small prime degree
	Modular polynomials for elliptic curves
	Elliptic curves over number fields
	Elliptic curves over the rational numbers
	Tables of elliptic curves of given rank
	Elliptic curves over number fields
	Canonical heights for elliptic curves over number fields
	Saturation of Mordell-Weil groups of elliptic curves over number fields
	Torsion subgroups of elliptic curves over number fields (including Q)
	Galois representations attached to elliptic curves
	Galois representations for elliptic curves over number fields
	Isogeny class of elliptic curves over number fields
	Tate-Shafarevich group
	Complex multiplication for elliptic curves
	Testing whether elliptic curves over number fields are Q-curves
	Local data for elliptic curves over number fields
	Kodaira symbols
	Tate’s parametrisation of p-adic curves with multiplicative reduction
	Weierstrass -function for elliptic curves
	Period lattices of elliptic curves and related functions
	Regions in fundamental domains of period lattices
	Modular parametrization of elliptic curves over Q
	Modular symbols attached to elliptic curves over Q
	Modular symbols by numerical integration
	L-series for elliptic curves
	Heegner points on elliptic curves over the rational numbers
	p-adic L-functions of elliptic curves

	To be sorted
	Descent on elliptic curves over Q with a 2-isogeny
	Elliptic curves with prescribed good reduction
	Elliptic curves over padic fields
	Denis Simon’s PARI scripts
	Elliptic curves with congruent mod-5 representation
	Morphism to bring a genus-one curve into Weierstrass form

	Hyperelliptic curves
	Hyperelliptic curve constructor
	Hyperelliptic curves over a general ring
	Hyperelliptic curves over a finite field
	Hyperelliptic curves over a p-adic field
	Hyperelliptic curves over the rationals
	Mestre’s algorithm
	Computation of Frobenius matrix on Monsky-Washnitzer cohomology
	Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve
	Jacobian of a general hyperelliptic curve
	Jacobian of a hyperelliptic curve of genus 2
	Rational point sets on a Jacobian
	Jacobian ‘morphism’ as a class in the Picard group
	Hyperelliptic curves of genus 2 over a general ring
	Compute invariants of quintics and sextics via ‘Ueberschiebung’
	Kummer surfaces over a general ring
	Conductor and reduction types for genus 2 curves

	Indices and Tables
	Python Module Index
	Index

